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Abstract

As Field Programmable Gate Arrays (FPGAs) become more widely used, se-

curity concerns have been raised regarding FPGA use for cryptographic, sensitive,

or proprietary data. Storing or implementing proprietary code and designs on FP-

GAs could result in the compromise of sensitive information if the FPGA device

was physically relinquished or remotely accessible to adversaries seeking to obtain

the information. Although multiple defensive measures have been implemented (and

overcome), the possibility exists to create a secure design through the implementa-

tion of polymorphic Dynamically Reconfigurable FPGA (DRFPGA) circuits. Using

polymorphic DRFPGAs removes the static attributes from their design; thus, sub-

stantially increasing the difficulty of successful adversarial reverse-engineering attacks.

A variety of dynamically reconfigurable methodologies exist for implementation that

challenge designers in the reconfigurable technology field.

A Hardware Description Language (HDL) DRFPGA model is presented for use

in security applications. The Very High Speed Integrated Circuit HDL (VHSIC)

language was chosen to take advantage of its capabilities, which are well suited to

the current research. Additionally, algorithms that explicitly support granular au-

tonomous reconfiguration have been developed and implemented on the DRFPGA as

a means of protecting its designs. Documented testing validates the reconfiguration

results and compares power usage, timing, and area estimates from a conventional

and DRFPGA model.
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Anti-Tamper Method for Field Programmable Gate

Arrays

Through

Dynamic Reconfiguration and Decoy Circuits

I. Introduction

The United States (US) military maintains military dominance because of the

quality of its members, training, and technological superiority. Due to the

relatively low cost of exploitation and abundance of reverse engineering tools and

methods, the technology used by the US military is a common target for adversaries.

Technology acquisition through subversive means and analysis/reverse engineering

of US military Critical Technologies ( CT) represents a significant threat to the US

military’s technological lead over adversaries. In order to counter this threat, it is

essential that the Department of Defense (DoD) and the United States Air Force

(USAF) implement procedures to safeguard proprietary technology.

It is not enough to assume that current safeguards will keep DoD equipment and

CTs out of adversarial hands. A US Government Accountability Office (GAO) report

published in 2007 describes a critical shortcoming in the DoD’s ability to maintain

control of its equipment. Over 190,000 weapons meant to be distributed to the Iraqi

Security Forces are unaccounted for [11]. These weapons not only represent million of

dollars in DoD funds, but also US military technologies that could be in possession of

entities we are facing in combat. Without additional safeguards the DoD could lose

the technological edge gained through research and development of CTs.

One of the relatively new technologies seeing increasing use in the USAF is the

Field Programmable Gate Array (FPGA). A particularly critical vulnerability inher-

ent in the current FPGA platforms is the ease of reverse engineering. Because FPGAs

contain flexible architecture defined by stored configuration data, circuit functions

1



implemented on the devices are susceptible to theft and tampering. Consequently,

adversaries may be able to identify and reverse engineer the functionality of FPGAs

used in military applications. In addition to reverse engineering, there exist malicious

entities interested in tampering with FPGA circuits; thus, altering their operation.

If an FPGA device is unaccounted for, as was the case for the 190,000 weapons in

Iraq, then any technology associated with the device can be considered compromised.

Additionally, deployed FPGA systems are not secured against tampering and cannot

be considered safe for use in critical applications. Countermeasures for threats against

military FPGA designs must be investigated and implemented to secure FPGA de-

signs and CTs.

FPGAs offer substantial potential for dynamic reconfiguration by harnessing the

strengths of the FPGA architecture, but current technology is not sufficient to pro-

tect DoD CTs against theft and malicious misuse. Someone must address the crucial

need for CT protection to maintain the DoD’s technological lead over adversaries.

This research analyzed current FPGA architectures and proposes a new enhanced

anti-tampering capable architecture fulfilling the need for a method of securing CTs.

A particular focus is the use of dynamic reconfiguration to defend against adversarial

tamper and reverse engineering attacks. The ability to create decoy circuits on the

FPGA is explored and demonstrated. The proposed methods are included in the

simulated architecture design and verified through synthesis. The final design incor-

porates dynamic programming and decoy circuits to secure FPGA implemented CTs

from adversarial theft.

1.1 Problem Statement

Current FPGA architecture does not provide adequate protection against ad-

versarial tampering or reverse-engineering attacks targeting DoD technology. There

exists ample documentation on the vulnerabilities affecting FPGAs to allow adver-

saries with relatively modest experience and/or resources to successfully obtain FPGA

implemented designs or even alter programs to operate in a manner inconsistent with

2



the intended application. While defensive technologies exist on modern designs, these

do not address all methods used by malicious adversaries. Additionally, capabilities

in the promising dynamic configuration field fall short of the required granularity,

efficiency, and overall effectiveness for adequate defence against theft and tampering.

1.2 Goals

This research directly supports the AFRL/RYT’s mission of developing tech-

nologies to prevent or delay the exploitation of critical program information. In a

broader sense, this research supports the Air Force’s air superiority mission through

safeguarding of critical technological intellectual property; so that weapon system

capabilities stay out of adversarial hands. This research extends beyond the USAF

mission to support the nation’s technological edge and its research and development

investment protection by preventing or delaying the exploitation of critical technol-

ogy. The desired outcome is a new architecture and supporting dynamic configuration

methods that can be implemented in USAF weapons systems at a reasonable cost in

terms of development, manufacturing, and performance degradation.

Hardware design is only one aspect to consider in developing a secure FPGA

design platform. In order to fully take advantage of the custom design, software al-

gorithms use the capabilities of the secure hardware platform. Algorithms using the

hardware must leverage the benefits of dynamic reconfiguration and the reconfigura-

tion hardware must provide adequate granularity. This thesis investigates the total

solution methodology.

Finally, the hardware and algorithm product must compare favorably to current

designs in operation speed, power usage, and size. This research fully compares viable

options while realizing a synthesizable implementation.

3



1.3 Scope and Assumptions

The research is limited to the hardware contained within a Xilinxr hardware

model coded in the VHDL programming language. While the model is simulated and

synthesized, actual fabrication or implementation on an FPGA does not fall within the

scope of this research. All research, tests, and results will be limited to digital logic

simulations/synthesis of components contained within the actual FPGA hardware.

External factors (i.e. heat, power limitations) will not be considered.

1.4 Methodology

The foundation for this research is the implementation and evaluation of a

Virtex4r based FPGA device modified to provide dynamic reconfiguration capa-

bilities beyond the existing platforms. The dynamic reconfiguration supports the

execution of defensive measures to include design and bitstream obfuscation. This re-

search proposes two reconfiguration strategies for securing circuits using the custom

hardware design; functional replacement and LUT inversion. While both strategies

serve to protect the design implemented on the proposed FPGA platform, they em-

ploy unique aspects and granularity of dynamic reconfiguration to address different

vulnerabilities.

1.5 Materials and Equipment

The following software programs were used in the modeling, testing, and verifi-

cation of the proposed design:

Mentor Graphics Modelsimr SE 6.2e Allows VHDL file editing and compiling.

Performs VHDL hardware model testing via simulation.

Alterar Quartusr II v6.0 Performs VHDL hardware model interconnection. Ab-

stracts VHDL code to visual diagrams.

4



Xilinxr ISETM 9.2i Xilinxr Performs synthesis, design, and verification of imple-

mentation on Xilinxr FPGA devices. Also provides parametric estimates for

operating speed, power, and area requirements for the targeted Xilinxr device.

ActivePerl v5.8.8 Executes FPGA bitstream creation scripts.

1.6 Overview

This document is organized into 6 different chapters. Chapter 1 is the intro-

duction to the problem statement and approach. Chapter 2 provides background on

the vulnerabilities affecting current FPGA designs. Chapter 3 outlines the approach

to solving the problem and testing the method applied. Chapter 4 consolidates the

results of the implementation and testing phase outlined in Chapter 3. Chapter 5

summarizes the analysis and conclusions based on Chapter 4’s test results. Finally,

Chapter 6 closes with ideas on future research based on the insights learned from this

research effort.
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II. Background

The following chapter serves to familiarize readers with FPGA designs and their

vulnerabilities. There exist various articles documenting vulnerabilities affect-

ing FPGAs and Integrated Circuits (ICs). While this chapter should not be considered

an all encompassing study of FPGA security, it does serve as an introduction to the

critical dangers facing FPGA designers and users.

This chapter also serves to introduce the concepts behind polymorphic dynamic

configuration; specifically, how it relates to the security of FPGA designs. The reader

is presented with background information on FPGAs and reconfiguration followed

by examples of different dynamic reconfiguration implementations. Finally, potential

challenges and shortcomings in the field of dynamic reconfiguration are explored.

2.1 FPGA Background

2.1.1 FPGA Architecture Overview. As integrated circuit technology has

progressed so has the desire for organizations to create and test their own integrated

circuit designs. Creating a custom integrated circuit in the traditional sense is expen-

sive and the cost per device is prohibitive for cases where a designer is not seeking to

mass manufacture devices. Although Application Specific Integrated Circuit (ASIC)

devices have provided a relatively low cost method to manufacture low volume designs

for over 25 years, FPGAs have presented an even more flexible way to design, create,

and test custom integrated circuit designs with relatively modest up-front investment

capital.

The primary advantage to using FPGAs is their flexibility and ability to be

reprogrammed. FPGAs are used to implement digital functions in hardware. The

functions are programmed in an HDL such as VHDL or Verilog and saved to a file.

This HDL code file is compiled and downloaded to the FPGA device for implemen-

tation. A similar process can be used to create ASICs with the exception that ASICs

require fabrication at specialized facilities. The FPGA structure allows it to be pro-

grammed with low initial investment and FPGAs can be easily reprogrammed with
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new or updated designs. These attributes make FPGAs a well-suited platform for

low-volume designs as well as digital circuit prototypes.

One of the lead developers in the FPGA field is Xilinxr . Xilinxr FPGAs have

been the platform of choice for dynamic reconfiguration implementations based on

their built-in reconfiguration capabilities [10,16,28,30,33,45]. The Xilinxr Virtex4r

Static Random Access Memory(SRAM) based FPGA was chosen as the base for the

research model in order to provide a capable foundation for dynamic reconfiguration

work. The research into vulnerabilities is relevant to SRAM based FPGAs in general,

not only the Virtex4r .

In general, FPGAs implement user designs through the interconnecting and

configuration of Configurable Logic Blocks (CLBs). Each CLB is formatted to imple-

ment a small portion of the design using components such as one or more flip-flops,

Look-Up Tables (LUT), and data storage elements. The equivalent component may

have different names for varying FPGA manufacturers; for example, Altera refers to

their CLB equivalent components as Logic Elements (LEs). CLBs are interconnected

by a data network to create the overall design of the circuit. Figure 2.1 shows a

simplified pictorial view of an FPGA.

Figure 2.1: Simplified FPGA Structure. The fundamental components (CLBs)
are interconnected via the data network and data routers. While this description is
oversimplified, it captures the basic understanding necessary for discussion.
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FPGA devices can be decomposed into the following components. The nomen-

clature is Xilinxr specific because of the Virtex4r based model used in this research.

LUT LUTs contain the fundamental functions of the circuit. They function similar

to a truth table in that values are stored within the LUT at locations addressed

by the inputs. A truth table representing a two input AND gate function is

demonstrated in Table 2.1. Some LUTs contain shift register, memory, or other

functions in addition to the ability to implement a truth table.

Slice Each slice contains two LUTs for implementing digital circuits. The slice also

contains routing hardware to select input and output locations and FFs for

implementing sequential designs.

CLB The CLB is the largest functional component within the FPGA. Each CLB

contains 4 slices: two L-Slices and two M-Slices. The M-Slices contain data

storage and shift components in addition to the LUT functions and routing

hardware.

Data Network The data network routes data between the CLBs to implement com-

plex functions.

Bitstream The bitstream is the program stored and implemented on the FPGA. It

is compiled off-chip and downloaded to the FPGA.

Table 2.1: A truth table representation of a two input AND gate. The output value
is selected based on the two inputs as in a logic truth table. A LUT can be viewed
as a hardware implementation of a truth table.

Two Input AND Gate Truth Table
Input A Input B Output Value

0 0 0
0 1 0
1 0 0
1 1 1
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2.1.2 Bitstream Overview. FPGAs are configured to match user speci-

fications. Unlike ASICs, which are configured in an ASIC facility and cannot be

reprogrammed, FPGAs can be reprogrammed using a computer with the appropriate

software. Once the user design is created, using either VHDL programming soft-

ware or other specific software for the FPGA, the design is compiled and saved to

the bitstream file. The bitstream contains all configuration data necessary to cre-

ate the user’s design on an FPGA, including the bus routing between CLBs and the

format for every CLB to be used. The bitstream can be saved for implementation

in the future and is the single file needed to recreate the user designs on an FPGA.

The bitstream must be downloaded to the FPGA either from a computer or from

a storage medium such as EPROM/PROM/ROM connected to the FPGA. During

the transmission from the source to the FPGA itself, the bitstream is encrypted on

certain FPGAs (including the Xilinxr Virtex4r ) to prevent capture of the infor-

mation from the transmission lines. For example, on the Virtex4r the bitstream is

encrypted before transmission to the FPGA by the software package used to generate

the bitstream. The encrypted bitstream is then transmitted to the FPGA, where it

is decrypted for use in configuration [1]. Once the bitstream is downloaded onto the

local FPGA storage, the configuration takes place on the FPGA itself. While the

bitstream may be considered the heart of the FPGA, it is also a vulnerable point for

acquisition of the FPGA design. As such, it must be protected to prevent theft of

FPGA designs.

2.1.3 JTAG Programming Interface. Most current FPGA designs use the

Joint Test Action Group (JTAG) boundary scan standard to load the bitstream onto

the FPGA. The boundary scan standard is a serial, sequential method of loading

data into a device for programming or testing. The fundamental component of the

boundary scan system is the boundary scan cell. Figure 2.2 depicts a generalized

schematic of the cell. The cells are arranged in a chain with the To Next Cell line

output feeding the From Previous Cell input on the next cell. This arrangement
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permits the serial loading of test and/or configuration vectors to a device. Each cell

can operate as a shift register, accept new data on the From Previous Cell line, and

provide current data out on the To Next Cell line. As long as the ClockDR clock is

operating and the ShiftDR line is high, the boundary scan cells will continue to shift

data in serially, one bit per clock cycle from the first cell’s From Previous Cell line.

Using this method, an entire FPGA bitstream can be loaded onto the device through

a single bit input. Some FPGAs, including the Xilinxr Virtex4r , also include

functionality to load a single column of CLBs at a time by bypassing portions of the

boundary scan cell chain.

Once the entire chain or the column currently under configuration contains

the configuration bits within the ClockDR fed FFs, the ClockDR signal is halted

and the UpdateDR signal is cycled through one clock cycle while the Mode signal is

high. This process loads a single bit into the selected CLBs in parallel through the

simultaneous loading of every UpdateDR FF. In order to program the FPGA or a

portion of the FPGA, the entire process must be repeated for each bit of the bitstream.

The ClockDR and UpdateDR clocks are able to run at a significantly faster clock rate

than the general system clock since there are limited gates between FFs to increase

delay. See Appendix E for an example of a JTAG programming implementation.

Figure 2.2: General schematic of boundary scan cell based on example presented
by Bushnell and Agrawal. [34].
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2.2 Vulnerabilities Affecting FPGAs

2.2.1 Vulnerabilities Overview. One of the concerns surrounding the use of

FPGAs is the insecurity of the device itself [46]. The configurability of the FPGA is

one of the reasons it is inherently more insecure than standard VLSI ICs. Although

there are numerous papers and studies on a wide variety of FPGA vulnerabilities,

many of the attacks designed to acquire circuits stored on an FPGA focus on the

bitstream. As the bitstream contains all of the necessary information to create the

FPGA design, anyone that is able to compromise the bitstream information would

have complete ability to recreate the design as many times as desired or alter the

design to meet their specifications. If the bitstream is not properly protected, it rep-

resents a significant vector for proprietary design theft. Although there are steps in

place to protect the bitstream, every protective measure comes under attack as more

FPGAs are used for sensitive design implementation. In addition to bitstream at-

tacks, which are particularly well suited for compromising the circuit design, another

focus area is passive circuit analysis. This can be performed either by capturing in-

formation at the circuit boundaries (inputs and outputs) as a non-invasive procedure

or by actually stripping the physical layers of protection from the FPGA and mon-

itoring the hardware. These attack methods are detailed later, but it is important

to understand the methods more likely to be employed by aggressors. The following

FPGA vulnerabilities represent critical vectors for design theft and tampering:

Bitstream Interception Adversaries can capture the bitstream during transmis-

sion from an off-chip location to the FPGA. The bitstream in current FPGA

platforms is encrypted during transmission, but an adversary could leverage

other attacks listed to weaken the encryption and obtain the design.

Fault Injection The goal of fault injection attacks is to provide input or power val-

ues beyond the tolerance of the FPGA hardware. Examples include adjusting

the power supply, clock signal, or inputs to cause the circuit to detour from the

intended operation. Fault injection can be used to alter the design functional-
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ity, cause the circuit to cease functioning completely, or circumvent defensive

functions protecting the bitstream or other critical data.

Passive Circuit Analysis In performance of this attack, adversaries seek to moni-

tor the circuit operation without impacting it. They may capture input/output

combinations, thermal signatures, or inspect individual transistor values to gain

useful information. The information obtained can be used directly to compro-

mise the device or aid in other attacks.

Altered Bitstream Attack Adversaries can modify the bitstream during transmis-

sion to influence the FPGA device operation.

Bitstream Readback FPGAs contain functionality enabling them to provide the

bitstream data via the JTAG interface. There is a security bit in place for

Xilinxr Virtex4r FPGAs to prevent this activity, but other attacks could be

used to bypass the security bit.

2.2.2 Bitstream Interception. As mentioned in the bitstream overview, the

bitstream is transmitted to the FPGA device during the configuration stage. The

FPGAs addressed in this thesis (SRAM FPGAs) must be programmed before use.

Also, it is important to note that due to the volatile nature of the SRAM configuration

cells, the FPGA must be reprogrammed whenever it loses power. It is possible to

intercept the transmission of the bitstream and capture the information for later

analysis during the configuration stages given the off-chip location of the configuration

bitstream. This method is not easily executed as the bitstream is transmitted as an

encrypted file in the current FPGA devices.

Although the bitstream is an important and vulnerable feature of the FPGA, it

was not until 2000/2001 that a mainstream FPGA manufacturer introduced substan-

tial security features on an SRAM FPGA board: the Virtex IIr FPGA by Xilinxr

[26]. Previous to the implementation of encrypted data transfer, the most efficient

means of protecting sensitive information was to program the FPGA in a secure lo-

cation and place the FPGA device on battery backup to keep the volatile memory in
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the FPGA from loosing its configuration [26]. While this method avoids capture of

the bitstream by adversaries, it increases the cost of design due to the need to provide

battery backup for the FPGA device. In addition, it complicates the reconfiguration

process and does not address remote reconfiguration operation vulnerabilities.

In an effort to address the need for more practical means of protecting sensi-

tive design information, the Xilinxr Virtex4r FPGAs utilize encryption during the

transmission of the bitstream to the FPGA. In cases where the storage medium resides

on the same device as the FPGA (i.e. in Read Only Memory (ROM) on the board)

or in cases where the bitstream is transmitted to a remote device, encryption of the

bitstream is essential to protect the design. Early Xilinxr FPGAs used the Data

Encryption Standard (DES) encryption algorithm. DES, which was created in the

late 70s, has become obsolete due to its relatively short key (56 bits) and the devel-

opment of the Advanced Encryption Standard (AES). A DES encrypted message can

be theoretically cracked in as little as 3.5 minutes using substantial computing power

and investment (on the order of $10MIL). While $10MIL investments may be afford-

able for large organizations and governments, smaller organizations could crack the

DES encryption algorithm in just 2.5 days with as little as $10K invested [44]. Users

with sensitive designs should implement them on FPGAs using the AES standard of

encryption which protects against brute-force bitstream attacks.

The Virtex4r FPGA uses the AES standard, which is the current encryption

standard as described by Federal Information Processing Standards (FIPS) Publi-

cation 197 [35]. While this does provide substantial protection due to its increased

key length (at least 128-bits) and improved algorithm, there is still the possibility of

compromise. The key used to decrypt the bitstream must be stored on the actual

FPGA. If an adversary could successfully obtain the key from the FPGA memory,

then it would be a trivial matter to decrypt the messages. Therefore, it is crucial

FPGA designers take special care to protect the region of the FPGA device housing

the encryption key. The physical defenses against value inspection are covered in the

physical inspection vulnerabilities section of this paper.
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2.2.3 Fault Injection. Fault injection is a generic term describing the injec-

tion of faults into digital systems using a variety of attacks including voltage higher

or lower than system tolerances, voltage spikes, or clock glitches. An attacker may

use any of these methods to cause the system to malfunction with intentions to re-

veal information useful in further attacks. In the case of bitstream vulnerabilities,

fault injection has the most potential with regards to interrupting the encryption

of the bitstream or forcing the FPGA to reveal the bitstream through its readback

functionality.

As stated previously, a primary defense against bitstream theft/reverse engi-

neering is the encryption of the bitstream. Using the AES encryption standard will

render brute force bitstream decryption unfeasible. However, the encryption strength

relies on the successful completion of the encryption process. Attackers with access

to the FPGA and storage medium could use fault injection techniques to interrupt

the bitstream encryption and create a partially encrypted bitstream decipherable in

a more reasonable time than a correctly encrypted bitstream. Therefore, the goal of

an adversary is no longer to break the encryption of the bitstream using brute-force

methods, but rather to interrupt the successful encryption/decryption process.

The AES encryption implemented on the Virtex4r FPGA relies on successive

iterations of encryption and decryption for the creation of a valid encrypted bitstream.

Bertoni, et. al. discuss the impact single and multiple fault injections have on hard-

ware AES encryption processes [13]. Although the tests targeted AES encryption, the

results are pertinent for any iterative encryption process. The core AES encryption

algorithm was found to be susceptible to even single fault injections. The AES algo-

rithm illustrated in Figure 2.3 reveals faults injected at early rounds of the encryption

process resulted in a significantly altered output. In fact, faults injected as late as the

eighth (out of 10) stage resulted in a 50% error rate for the encrypted message.

While an incorrectly encrypted message will not immediately allow an attacker

to obtain a protected design, the tests highlight the susceptibility of the AES algorithm
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Figure 2.3: Results of fault injection on the successful completion of a basic AES
encryption algorithm. Figure 2.a. indicates that faults injected early in the encryption
process result in the highest percentage of errors in the encrypted message (about
50%). Figure 2.b displays the inverse is true for the decryption of a message. [13].

to fault injection. At the very least, the FPGA design will operate in an unknown,

faulty manner, making it possible for a clever, dedicated adversary to use the results to

obtain the security key and/or the design itself. It is important that the encryption

process is supplemented to limit the impact of faults. Unfortunately, many of the

generalized protection methods may not translate to the FPGA design due to limited

space and computational ability. Perhaps the most appropriate protection method is

based on redundancy. By implementing a decryption block following the encryption,

the encrypted message can be validated. Implementation of the decryption hardware

will approximately double the total area and power requirements due to similarities

between the encryption and decryption processes [13]. Therefore, the redundancy

technique may not be applicable for limited resource implementations.

The encryption disruption vulnerability is just one example of how fault in-

jection can be used to circumvent the FPGA design protection methods. Countless

opportunities exist for curious or malicious individuals practicing fault injection tech-

niques against FPGA bitstreams. Redundancy is one method of protecting against

fault injection, but Skorobogatov and Anderson also discuss a method of fault injec-
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tion protection using a “dual-rail” technology [13]. Using this technology, a value is

based on a combination of two lines. For instance, instead of a signal (logical one or

zero) being represented by a single line, the signal would be represented by two lines

having opposite values (i.e. one tied to 5v and the other to ground). Two signal lines

will limit the susceptibility of the circuit to single transistor failures and, according to

the authors, also make the circuit more resistant to power analysis attacks. The dual

rail design significantly increases the area and power consumed by the data routing

hardware. Widespread use of the design within a circuit would also require substantial

changes in the hardware to accommodate the two value interpretation.

2.2.4 Passive Circuit Analysis. Although the circuits contained within

FPGA IC packages are far too small for unaided visual analysis, numerous tools exist

that enable viewing of the circuits and even individual transistors, as demonstrated

in Figure 2.4.

Figure 2.4: SRAM array as viewed through Wentworth Labs MP-901 manual
prober. By illuminating the black circle with a photographer’s flash, Sergei P. Sko-
robogatov and Ross J. Anderson were able to store a ‘1’ in the SRAM cell. Alterna-
tively, by illuminating the region within the white circle, they were able to store a ‘0’
in the cell. In this way, the authors are able to combine Analysis and Fault Injection
techniques [13].

16



By viewing transistors and patterns within the design, attackers can identify

key portions of a design and target them. Passive analysis is best used in conjunc-

tion with other methods of tampering with the design. This form of analysis, when

properly carried out, can provide an attacker with valuable information with which

further means of identifying and compromising sensitive design information can be

performed. The Xilinxr FPGAs, like most ICs, have the most rudimentary of defense

mechanisms: they are housed within an IC “package” with an epoxy body covering

the circuit itself. The standard epoxy package housing of most IC designs will not

deter a dedicated attacker from gaining access to the design, but serves mainly to

deter casual investigation or accidental damage to the circuit hardware. Xilinxr has

taken the extra step to cover especially critical portions of their design (i.e. the key for

bitstream encryption) with multiple layers of metal; thus, making the de-packaging

process that much more difficult [42]. This fact combined with the volatile nature

of the key memory greatly reduces the chance of an attacker successfully obtaining

the key. However, the physical barriers should not be considered sufficient to protect

critical designs. Time, experience, and determination will allow an attacker to slowly

strip away physical defences to reveal sensitive designs contained within.

Another popular method of passive analysis is power usage monitoring. By

capturing and studying patterns in the power used by an FPGA, adversaries can

map the timing for the chip processes. This information can be incredibly useful in

carrying out fault injection or other attacks. Kamawal demonstrated that by viewing

the power usage as a waveform, certain key points in an algorithm are visible [25]. As

multiple data sets are captured, a composite signature for the FPGA operation can

be constructed. Pattern analysis will highlight periods of increased activity, possibly

the initial decryption period for an FPGA in the configuration cycle or recurring,

critical tasks. As stated previously, Skorobogatov and Anderson discuss the idea that

incorporating a dual rail logic design may protect against some power analysis attacks.

Another method of protecting against power analysis is the random or pseudo-random

reorganization of FPGA functional components. While there is not a large amount of
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literature on the use of reconfiguration for power analysis defense, implementation of

an automatically reconfiguring FPGA device will substantially hinder malicious power

analysis attacks and defend against fault injection attempts. By creating a “moving

target” the FPGA designer has taken the element of stability from the attacker and

added an entirely new dimension of information obfuscation.

2.2.5 Altered Bitstream Attacks. It is important to maintain the confiden-

tiality of sensitive or proprietary information stored on an FPGA. Although encryp-

tion of the bitstream may prevent an adversary from obtaining the design, someone

with access to the transmission medium can alter the data flowing to a remotely con-

figured FPGA or simply transmit a message of his choice. Attackers may be more

interested in maliciously altering a bitstream downloaded to the FPGA than stealing

the device’s design. While there has been adequate research on the other vulnerabili-

ties, the altered bitstream vulnerability has not been substantially addressed in open

research. One method of protecting against adversaries planting malicious designs

on an FPGA is to use a combined encryption/authentication scheme as proposed by

Parelkar and Gaj [36]. They propose utilizing the EAX functionality of the AES en-

cryption algorithm to verify that the data received by the FPGA is valid and credible.

Although two methods are presented in their paper, the benefit lies with the FIPS

compliant method as it will more easily obtain accreditation through most agencies.

The primary drawback to authentication implementation is the need for additional

resources on the FPGA, which takes from the overall power/space available for the

primary FPGA functions. If the space and power can be sacrificed, then it is highly

recommended that some form of authentication be implemented especially for critical

devices.

2.2.6 Bitstream Readback. While not technically a vulnerability, users im-

plementing designs on FPGAs must be aware of the readback options available for

the FPGA before fielding the design. The readback functionality is meant to pro-

vide users a way to obtain the bitstream directly from the FPGA typically through a
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JTAG standard interface. The bitstream readback function and standard format for

the connection make the readback function a perfect “first stop” for any adversary

attempting to gain access to the bitstream. Xilinxr offers a simple security setting

on the FPGA to prevent readback of the bitstream [48]. The Xilinxr documenta-

tion states that the only way to change the security setting once it has been set is

to recycle the power or assert the PROGRAM input. Either of the actions will erase

the configuration of the FPGA and require a new configuration stream to be loaded

to the FPGA.

As stated in the fault injection section of this thesis, transistor values can be

altered using optical radiation. This fact casts doubt upon the claim that the security

setting cannot be altered without resetting the FPGA. Although research on this

particular approach is not widespread, it is an important aspect of FPGA security

that must be examined. At the very least, the security bit and readback function

must be considered a potential security hole. Users should not completely rely on this

functionality to protect critical designs.

2.2.7 Vulnerabilities Summary. As with all technology, FPGAs offer great

possibilities, but misuse can seriously hinder any operations relying on the device and

result in compromise of sensitive data. As FPGA use becomes more prevalent for

proprietary designs, so has the overall community effort to discover ways to view/ac-

quire those designs. While there are a variety of methods available to compromise

the FPGA, the bitstream represents a tempting target for adversaries due to its fun-

damental place in the operation and programming of FPGAs. Organizations using

FPGAs must be aware of the existing vulnerabilities and fund protective measure

research to avoid operational impact due to design theft or sabotage. While there is

no one end-all defensive measure for bitstream vulnerabilities, every method studied

and implemented will further ensure that the mission will continue to succeed. Cur-

rently, the actual theft of the bitstream has not been considered as the primary vector

of attack against FPGAs. Without a concerted community effort to discover more
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defensive methods, the FPGA users will remain unaware of the true threat against

their agency’s operations.

2.3 Dynamic Reconfiguration

2.3.1 Dynamic Reconfiguration Overview. The primary advantage to the

use of FPGAs versus other forms of custom circuits (i.e. ASIC, Programmable Logic

Array ( PLA), etc.) is the reconfigurable nature of the circuit. Traditionally, FPGAs

are programmed using a serial or Universal Serial Bus (USB) interface. During the

configuration process, the user downloads a design to the FPGA board using propri-

etary software. The software determines the placement, configuration, and routing of

CLBs. This information is encoded in the bitstream and downloaded to the FPGA.

Once the encoded bitstream is downloaded to the FPGA, the design is implemented.

This method of programming FPGAs leaves the design vulnerable to multiple reverse

engineering attacks. One method of protecting against such attacks is to implement

a polymorphic DRFPGA.

Dynamic reconfiguration refers to the ability of a circuit to reconfigure itself

while in operation. In order to reconfigure the FPGA while it is in operation, the

user must be able to replace some, but not all, of the FPGA components specified

by the bitstream information; thus, retaining the operating functions while replac-

ing or creating additional functional components on the FPGA. The new design is

implemented with little to no impact on the system output or operation. Dynamic

reconfiguration offers no advantages if it imposes the same penalties as completely re-

configuring the device. Dynamic reconfiguration designs cannot only be optimized for

current work loads, but can also retain the ability to perform additional specific tasks.

One relatively common approach is to supplement a general purpose processor with

specific computational modules. An example is Lodi et al.’s Very Long Instruction

Word (VLIW) reconfigurable processor [7]. While a static core provides the major-

ity of the computational functionality, a PiCoGa module is dynamically altered to

meet current processing needs. This allows the processor to use custom designed al-
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gorithms (i.e. Digital Signal Processing (DSP) programs) through the PiCoGa while

also providing the capability to update the existing custom programs or replace them

altogether for differing applications. Figure 2.5 depicts the relation between the static

core and the reconfigurable PiCoGa module.

Figure 2.5: VLIW Reconfigurable Processor by Lodi et. al [7]. The PiCoGa is
reconfigurable dynamically (while in operation) but the remaining modules are static.

Lodi et al. are not the only researchers to propose and implement a recon-

figurable platform. In fact, multiple reconfigurable devices exist for FPGAs taking

advantage of partially modifying the bitstream for a particular FPGA design; how-

ever, Kalte et al. discuss the lack of support and/or commercial programs supporting

partial bitstream reconfiguration [16]. The research of Kalte et al. finds there were

some non-commercial programs available for editing and downloading modified bit-

streams (i. e. PARRBIT), but these tools are not able to fulfill the needs of an

autonomous reconfiguring FPGA. Xilinxr also discusses limited reconfiguration po-

tential for their Virtex IIr line of FPGAs in Application Note 662 [47], but the

reconfiguration is limited in scope to specific functions and does not contribute sig-

nificantly to the dynamic reconfiguration solution. One short-coming is the lack of
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fine granularity. Reconfiguration only applies to predefined modules and cannot be

used to target arbitrary circuits/sub-circuits within the design. More focus is nec-

essary on providing valid flexible solutions for users wishing to implement dynamic

reconfigurable designs on FPGAs.

Polymorphism adds another aspect to the dynamic reconfigurable FPGA field.

This thesis takes a polymorphic design to be one exhibiting granular reconfiguration

and a substantial amount of autonomy when reconfiguring. This definition is not ex-

act, but rather a descriptive outline serving to guide research direction and initiatives.

While existing reconfigurable devices typically rely on predefined substitution of mod-

ules, polymorphism dictates an alteration of state, form, and function as defined in an

algorithm. For instance, while the processor proposed by Lodi et al. is dynamically

reconfigurable, it is not truly polymorphic because it simply replaces designated logic

regions with different predefined functions. Another aspect of polymorphism is the

inferred autonomy of polymorphic circuits. Polymorphic circuits are able to recon-

figure themselves with minimal guidance in place via the reconfiguration algorithm.

This aspect is discussed in depth as an evolutionary design method.

In studying the field of dynamic reconfiguration, it becomes evident that the

primary focus has been reconfigurable devices that utilize preformed modules loaded

from off-chip storage. Although this works well for the implementation of custom

processors, it does not address the need for higher security through reconfiguration.

In the next section, methods of dynamic reconfiguration specifically relevant to the

security aspects of dynamic reconfiguration are discussed.

2.3.2 Dynamically Reconfigurable Designs. The DRFPGA field has seen

multiple designs aimed at providing flexible, efficient solutions for users seeking to

perform a range of tasks [12,21,32]. The current designs vary primarily in the method

of reconfiguration rather than the motivation behind the reconfigurable nature of

the devices. Although the designs may not be well suited to reconfiguration for
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protection of circuit design, the methods themselves help to shed light on how dynamic

reconfiguration can be achieved.

Xilinxr is a major player in the FPGA manufacturing field and has a com-

mercial solution for customers seeking to implement a dynamically reconfigurable

platform. As early as 2001, Wu et al. discussed the increasing attention gained by

DRFPGAs and highlighted a Xilinxr approach to reconfiguring the FPGA using

modified Xilinxr XC4000E CLBs [14]. While Wu et al.’s article focuses on an al-

gorithm addressing the complex placement problem for DRFPGAs, it also highlights

an interesting method of implementing the dynamic reconfiguration. When the re-

configuration process is initiated, the values for the current operations are stored in

Micro Registers. The new configuration is stored as a “plane” of Configuration Mem-

ory Cells (CMCs) and is mapped over the existing CLB array. Once the change has

been mapped and implemented, the operations resume using the values stored in the

Micro Registers [14]. This method of reconfiguration has limited use in the security

field due to the need for precompiled CMCs. While it may add a level of complexity

to the progress of reverse-engineering, pattern analysis could reveal the limited num-

ber of CMC planes in use and may provide the attacker with enough information to

accurately predict which planes will be implemented.

Lala and Walker present a very different form of the DRFPGA [29]. This

design is well suited to reliability as opposed to efficiency or security, but the idea can

be applied to other areas. In their implementation, CLBs are grouped together into

“cells.” Each cell contains four CLBs. Three of the CLBs are used much like any other

FPGA to implement specific functions or parts of an overall design. The fourth CLB

is used to replace one of the primaries should that CLB fail. The design is relatively

rudimentary, but does require significant work to perfect the timing and ensure that

routing to/from the CLB is accomplished. Unfortunately, this implementation results

in 33% overhead in unused area since the CLB must be maintained as a spare. In

addition, once a CLB experiences a failure there is no other spare available. There is a

proposed method to arrange the cells in a “super cell” arrangement [29]. This mimics
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the cell arrangement in that there are four cells, one of which serves as a backup for

another cell in case it should fail. Again, the shortfall comes in that the arrangement

will not account for more than one cell failure. Overall the design provides provisions

for minimal reconfiguration, but does not provide an acceptable platform for security

minded reconfiguration needs as the replacement CLBs/Cells are all precompiled.

2.3.3 Dynamic Reconfiguration Challenges. Implementing dynamic recon-

figuration is no trivial task. In addition to the difficulties facing any circuit design

team, one must also consider the changing functionally and physically relationships

between modules. Designers must also accommodate extra space/power requirements

for the reconfiguration overhead. Finally, the reconfiguration itself consumes compu-

tational effort resulting in lost time and space for the primary functional processes.

The penalties associated with reconfiguration circuitry are proportional to the com-

plexity and flexibility of the device. Many researchers have invested time in reducing

the overhead of certain aspects only to increase the cost of others. For example, Jean

et al. discuss reducing the computational time and space overhead by preprocessing

the reconfiguration information with a dedicated Resource Manager (RM) on board

the FPGA while the board is in operation [20]. While this may assist in lowering

the time necessary to implement the new configuration, it comes with the penalty of

increased system complexity and the need for FPGA resources dedicated to the RM.

This design does require the new modules to be statically determined prior to the RM

placing them. The RM does, however, dynamically allocate space for the new mod-

ules. Which reduces the amount of on-board real estate needed for the new processes.

The RM is an example of placing more autonomy in the FPGA processes resulting in

increased flexibility of the design at the expense of additional computing resources.

Placing compilation resources on board (as opposed to using precompiled modules)

can further increase the flexibility and reduce space overhead, but processing time

and system complexity are sacrificed.
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2.4 Polymorphic Reconfiguration

2.4.1 Polymorphic Reconfiguration Overview. The designs discussed thus

far represent dynamic configuration, but are not good examples of polymorphic dy-

namic reconfiguration. They used precompiled blocks that could be substituted for

the current functions as needed. Although some designs exhibited granular reconfig-

uration, they required a precompiled bitstream or bitstream components to overwrite

current functions. Polymorphic circuits, on the other hand, provide reconfiguration

based on an algorithm rather than implementing static precompiled modules. The

computational complexity is greatly increased for polymorphic circuits as compared

with DRFPGAs using precompiled modules, but the resulting design is more flexible

and better suited to security applications. The primary advantages the polymorphic

design has over other DRFPGA designs are granularity and autonomous operation.

Since they implement a design algorithm as opposed to strict static module placement,

they are capable of implementing a wider variation of designs. They also behave more

autonomously since the algorithms typically only require a small set of rules, which

leaves the rest to the processor and FPGA attributes.

Most research designs address polymorphic methods as evolutionary in nature.

Evolutionary methods work at constructing/reconfiguring the FPGA circuit from the

bottom up using a small number of building blocks. This is not consistent with

standard engineering top-down design. The general concept is that designs created

using small functional circuit blocks combined using a low level algorithm provide an

almost natural development process that is largely autonomous. Miller et al. outline

some basic defining characteristics of evolutionary methods, a simpler set of rules,

building blocks, and an “assemble and test” methodology that differentiate them

from more prominent traditional methods of circuit design [23]. Figure 2.6 depicts

an abstract representation of the evolutionary and traditional design ideologies. By

incorporating evolutionary development facets into the reconfiguration scheme, the

overall range of design possibilities increases greatly. Also, by distributing the decision
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making to a high number of low level entities instead of consolidating the directives in

a single high-level location, the target for adversaries is smaller and more disjointed.

Figure 2.6: An abstract diagram highlighting evolutionary (left side) and traditional
(right side) digital circuit design approaches [23].

2.4.2 Polymorphic Reconfigurable FPGA Designs. The polymorphic DRF-

PGA field contains few examples of fully functioning designs. Most research in the

area of polymorphic DRFPGAs focuses on “proof of concept” algorithms or relatively

simple implementations of the algorithms. For example, one of the more prolific pub-

lishers on polymorphic/evolutionary design, Stoica, discusses a planned architecture

that relies on actual transistor level granular reconfiguration for implementation [4].

Reconfiguration is performed at the transistor level where different voltages, temper-

atures, and other environmental values cause the transistors to behave in varying

manners. Gates constructed using these transistors in a Field Programmable Tran-

sistor Array (FPTA) will have different functions depending on the voltage, temper-

ature, etc. For example, an “AND/OR gate” will function as an AND gate at lower
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temperatures (5◦ C) or an OR gate at higher temperatures (90◦ C) [4]. While this

implementation appears to have promising uses in the security field, controlling the

temperature and voltage in a reliable enough manner to prevent accidental miscon-

figuration could prove to be an overwhelming task. The following section covers some

difficulties in the evolutionary circuit field.

2.4.3 Polymorphic Reconfiguration Challenges. While promising in theory,

there are still challenges to the implementation of polymorphic dynamic reconfigura-

tion. The practicality of evolutionary design may be in question when it comes to

large circuits. Stoica et al. found that the efficiency of large designs was not optimal

using the evolutionary model [3]. They theorized that larger circuits could be real-

ized if the complexity of the basic building blocks was increased. Since one of the

factors separating the DRFPGAs from polymorphic FPGAs is the very idea of small

functional units, designers must be careful they do not cross the boundary into the

DRFPGA field, which limits the benefits of implementing the evolutionary design.

Some designs proposed environmental control variables such as temperature or

voltage level. External conditions are not always easily controlled and can pose a

serious threat to the standard operation of the circuit. Given the critical applications

at hand, it is unlikely implementing external controls will provide a format conducive

to the job. In addition to random environmental impacts, using external conditions for

directing the reconfiguration process provides another attack vector for adversaries.

2.4.4 Polymorphic Reconfiguration Summary. As with all technology, FP-

GAs offer great possibilities, but misuse can seriously hinder any operations relying on

the device and result in compromise of sensitive data. As FPGA use becomes more

prevalent for proprietary designs, so does the overall community effort to discover

ways to view/acquire said designs. One possible way of protecting designs imple-

mented on an FPGA is to reconfigure the design, which creates a mobile target for

those seeking to illicitly obtain information from the FPGA. In order to maintain the
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operability of FPGA devices, the reconfiguration must be performed while the device

is in operation – also known as dynamic reconfiguration.

A substantial amount of research has been performed targeting dynamic recon-

figuration for optimization or flexibility of designs, but little has been published on

security-minded reconfiguration. Dynamic reconfiguration presents a valid approach

to protect designs and, in particular, polymorphic dynamic reconfiguration provides a

granular, autonomous method of implementing FPGA design security. The research

in this field is limited, but has provided some promising prospects.

It is important for more research to be performed exploring the possibility of

implementing security designs using polymorphic reconfiguration. While research has

provided promising designs, the shortcomings prevent them from serving as valid

solutions for critical applications. More research must be accomplished to investigate

a controllable polymorphic design capable of protecting proprietary designs from theft

while providing a reliable computing platform.
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III. Research Methodology

The following chapter serves to provide an outline of the implementation and

testing phase for research into dynamic reconfiguration in support of FPGA

security. Each step of the development and test process is provided for understanding

of the actual test results.

3.1 Problem Definition

3.1.1 Goals and Hypothesis. The goal of this research effort is to secure

FPGA designs against adversarial compromise through the use of polymorphic and

dynamic reconfiguration. For simplicity, further discussions in this thesis will refer

to all reconfiguration methods as dynamic reconfiguration as opposed to separating

the polymorphic and standard dynamic reconfiguration. There are other designs

that incorporate dynamically reconfigurable functionality; however, security is not the

motivation for reconfiguration. In addition, there are serious shortcomings regarding

the granularity of existing reconfiguration methods that limits their effectiveness at

reconfiguration for security.

Research supports the belief that a reconfigurable FPGA will provide significant

protection against reverse-engineering and/or cloning of the device. Even a relatively

simple design from a reconfigurable Xilinxr Virtex4r based FPGA cannot be ob-

tained using the current reverse engineering methods unless the reconfiguration time

is longer than the time necessary to discover the design from the original FPGA. The

most rudimentary exploration technique, black box testing, is not feasible for most

designs found in current systems. For example, to perform an entire black box anal-

ysis on a 32-bit adder would take over 1,000 years. Current architectures commonly

use even larger designs of 64 or even 128 bits. Therefore, black box techniques are

not a primary concern in this research.

The other methods of reverse engineering discussed previously, including pas-

sive power analysis, glitching, and bitstream theft, are addressed through the recon-

figurable platform and algorithm addressed in this chapter.
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3.1.2 Approach. The security of an FPGA is improved using a dynamically

reconfigurable FPGA design. The proposed design performs reconfiguration “on-the-

fly” such that the circuit design implemented on the FPGA is resistant to analysis or

reverse engineering. Reconfiguration is accomplished without external interaction in

the form of user commands or off-chip computational resources. Everything needed to

execute the reconfiguration process is contained within the actual FPGA IC package;

thus, the possibility of malicious interaction with the FPGA design is limited. The

current research effort does not include the full autonomy, but will support future

efforts through autonomous designs requiring modest computational investment on

the part of the external controller.

The reconfiguration process must not only retain all the functionality of the

original circuit and be executed autonomously, but it must also be completed within

a time frame deemed reasonable. This particular time frame is bounded by a value

based on the criticality and size of the target circuit. If a user dictates that a circuit

must operate with no more than 5 ms of downtime, then this value becomes the

upper bound for the reconfiguration time. Although the targeted portion of the

circuit will not be operable during the reconfiguration process, the rest of the circuit

will be capable of operating with limited impact. The limited impact comes in the

form of buffering any inputs/outputs from the targeted portion to other non-targeted

portions.

One half of the solution is the development of a hardware platform supporting

dynamic reconfiguration. Current FPGA designs are limited in granularity and do

not permit the reconfiguration of single CLB s as required for successful execution of

the algorithm above. They also lack autonomy at a low level of operation. A custom

FPGA architecture has been developed to address these shortcomings and support the

reconfiguration process. The custom architecture permits the reconfiguration of any

CLB without reloading or reconfiguring any other CLBs through the use of a custom

designed serial/parallel communication network. The FPGA is also supplemented
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with a similar serial network allowing the system to target any single LUT in the

FPGA for reconfiguration via the reconfiguration algorithm.

The other half of the reconfiguration process is the reconfiguration algorithm.

The algorithm defines the changes in circuit configuration. For this implementation,

the algorithm has two primary avenues for reconfiguration: LUT value inversion and

functional replacement. Through completion of either reconfiguration method, the

actual composition of the circuit can be altered without impacting the operation.

The functional replacement process can also be used to alter the output of the circuit

in a manner that is only predictable to processes or modules that have knowledge of

the new function output configuration through a key. Use of the key will allow an

external process to identify the legitimate and illegitimate output pins for the circuit

as well as to adjust the timing to accommodate changes in the timing.

The Xilinxr Virtex4r includes a PowerPCr microprocessor embedded within

the FPGA design. The design is structured such that the embedded processor is used

to execute the algorithm for reconfiguration using code stored on the FPGA. The effi-

ciency and security of the reconfiguration is improved over an implementation where

the microprocessor executes the algorithm from off-chip. Given time constraints,

the PowerPCr processes are simulated using a manual process of developing the pro-

gramming bitstream. The reconfiguration algorithm and hardware are designed to

implement as much of the functionality as possible at the CLB or LUT level. This

granular autonomy is used to lower the computational overhead of the reconfiguration

process as well as limit the transmission of critical data across data busses within the

FPGA. By limiting the amount of data transmitted to accomplish the reconfigura-

tion, the odds of an adversary successfully tampering with the reconfiguration process

itself are reduced.

After a thorough survey of the DRFPGA field, it became evident that a dif-

ferent approach was needed. The evolutionary algorithm arena provides a manner of

reconfiguration that has not been widely implemented in the FPGA fields. Evolution-
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ary algorithms rely on fine granularity and autonomous cells to simulate biological

processes and remove the constraints of established circuit design procedures. By

implementing the granular, autonomous structure, the reconfiguration algorithm be-

comes truly polymorphic and is limited only by the constraints of the reconfiguration

algorithms. However, the evolutionary algorithms currently in use are not well suited

to obfuscation of code and typically suffer from inefficient time and power usage. By

combining the strengths of granular, autonomous, cellular reconfiguration with selec-

tive and predictable (to authorized parties) obfuscation, an ideal secure platform is

developed.

3.2 Research Boundaries

To evaluate the effectiveness of the DRFPGA, it is imperative that there are

clearly defined boundaries between what is within the scope of the research effort.

As seen in Figure 3.1, the overall System Under Test (SUT) consists of the FPGA

device, software, and the test circuit implemented within the FPGA. This collection

of components constitutes the DRFPGA.

Figure 3.1: Abstract representation of the Reconfigurable FPGA as the SUT.
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The Component Under Test (CUT) of the system is the reconfiguration pro-

cess and support hardware. The DRFPGA is comprised of six primary components:

reconfiguration algorithms, CLBs, configuration network, inversion network, routing

bus, PowerPCr Microprocessor, and the data I/O interface.

Reconfiguration Algorithm This is part of the actual CUT. The reconfiguration

algorithm is executed manually as of the conclusion of this research effort, but

future implementations would be executed autonomously using on-board re-

sources.

CLBs The CLBs make up the primary functional components of the DRFPGA. Each

CLB houses eight LUTs and devices needed to route the LUT input/output to

the routing bus. The circuit functionality is contained within the CLBs.

Configuration Network The configuration bus carries the information necessary

to configure the CLBs. This is separate from the routing bus, which is used for

operational data. The configuration bus also serves to reconfigure the DRFPGA

while it is in operation.

Inversion Network The inversion network allows the targeted inversion of any LUT

within the design. As discussed later in this chapter, the inversion process is

carried out in two stages, both of which are implemented functionally at the LUT

level. The inversion network carries the command from the initiator (PowerPCr

core or manually derived instruction) to the selected LUT.

Routing Bus The routing bus connects CLB inputs and outputs across the DRF-

PGA. The bus is not unique to this platform, but is instead based on the

Xilinxr schematics. This component does not implement the core functional-

ity of the components, but rather the interconnection of CLBs.

PowerPCr Microprocessor The PowerPCr microprocessor is implemented on the

DRFPGA and is used to execute the reconfiguration algorithm using the inver-

sion and reconfiguration networks. The PowerPC microprocessor has not been
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implemented as part of this research effort; therefore, the instructions deliv-

ered through the networks will be compiled manually and programmed into the

networks via VHDL test bench stimulus.

Data I/O Interface The data I/O interface allows inputs to be passed to the circuit

implemented on the FPGA and allows reading of the outputs for the circuit. For

the purpose of this research, inputs are provided via VHDL test bench stimulus.

The outputs are read directly from the VHDL model during simulation.

Outside of the system boundaries and the scope of research is the support hard-

ware such as the computer used to initially program the FPGA, power supply, and

input/output monitoring equipment. Since a VHDL model is being used for the test

runs, the actual FPGA hardware and factors affecting its operation (e.g., tempera-

ture, voltage) are not contained within the scope of this research. In addition to the

components listed within the SUT, there are also parameters and metrics, which are

discussed in their respective sections.

This research effort will not study the actual attributes of the physical im-

plementation of the design except as it applies to the functionality of the circuit,

reconfiguration algorithm, and hardware support for dynamic reconfiguration. The

VHDL model includes the custom architecture design permitting individual CLB ad-

dressing, but will not include the actual PowerPCr processor. The steps taken by the

PowerPCr are simulated using a manual process to develop LUT and reconfiguration

instructions while operating under the constraints of the algorithm. The design of

the DRFPGA is based on the Virtex4r FPGA with added hardware supporting the

individual CLB and LUT addressing methods. For this research effort, the recon-

figuration algorithm is limited to operating on relatively simple circuits. The goal

does not include stress testing the design using large data sets. Typical test circuits

include simple designs such as adders, counters and comparator circuits (specifics are

discussed further in the workload section).
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3.3 System Services

The purpose of the SUT is to implement an original user provided circuit and

provide a secure, reconfigured circuit that is functionally identical to the original, ex-

cept in the case where spatial output obfuscation is desired. With each reconfiguration

operation, the reconfigured portion of the circuit returns to normal operation within

the reconfiguration time overhead (dependant on the circuit implemented). Inputs

are provided to the DRFPGA, processed by its programmed circuit, and provided as

outputs for use or analysis. After reconfiguration, the circuit will either operate as

expected given the reconfiguration and the decoy circuit output routing or the output

will not match. Differing output represents a failure in the reconfiguration process

unless the output differentiation is planned. Failure of the SUT can occur either due

to an incomplete reconfiguration execution (e.g. the algorithm is interrupted) or the

reconfiguration completes, but the result is not functionally equivalent to the origi-

nal circuit. Given the two possible variables (reconfiguration completion and correct

reconfiguration) and the two values per variable (failure or success), there are a total

of four potential outcomes of the process as dictated in Table 3.1. Although the pos-

sibility exists for the reconfiguration to fail and the outputs to match the expected

outputs, this does not represent a successful SUT outcome.

Table 3.1: Potential outcomes of SUT
Output Correct Reconfiguration Succeeds SUT Success

No No No
No Yes No
Yes No No
Yes Yes Yes

3.4 Workload

Given the varied uses of a design and the limited functionality needed at this

time, the workload selected is simple in design and operation as compared to the
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final expected circuits since the goal is to verify the correctness of the reconfiguration

algorithm and the feasibility of the implementation. The workload consists of binary

counters, ripple carry adders (with carry in), and comparators. Specifically, 4-bit and

8-bit versions of the adder and binary counter and an 8-bit variant of the comparator

circuit provide a total of five sample circuits. The 4-bit variants are used to implement

the 8-bit circuits and are not independently evaluated because they are included in

the 8-bit test vectors.

In addition to the circuit inputs supplied to the SUT, there is also the require-

ment for a reconfiguration key. The reconfiguration key determines the pseudo-random

target outputs for the decoy circuits. The key is currently implemented as a seed for

the Linear Feedback Shift Register (LFSR) selecting the reconfiguration target. Fu-

ture implementations will also designate valid and invalid outputs. While the key is

provided as part of the workload for the purpose of evaluation, it will be stored on

the chip for any actual fielding of the DRFPGA.

3.5 Performance Metrics

The SUT is evaluated based on measured performance metrics. The four se-

lected metrics are: power usage, time to reconfigure, area overhead for reconfiguration

logic, and the accuracy of the reconfigured circuit output.

Power Usage The power needed to perform reconfigurations is compared between

the DRFPGA and FPGA. The measurement will capture the power consumed

from the first issuance of the reconfiguration command until the system is ready

to accept its first input signal for the reconfigured circuit. Evaluating this

metric will provide a method of determining whether the implementation of a

reconfigurable platform yields power benefits when compared to the FPGA.

Time to reconfigure After the system performs a task using a sample circuit (e.g.,

an adder) and input, a command is issued to reconfigure the circuit. The time
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from the first issuance of the reconfiguration command until the system is ready

to accept its first input signal for the reconfigured circuit is called the time to

reconfigure. Reconfiguration time impacts operation since the DRFPGA CLB s

targeted for reconfiguration are not available during the reconfiguration. For

example, if an operation normally takes 100 clock cycles to complete and the

reconfiguration takes five clock cycles, then the operation running on the DRF-

PGA will take 5% more time to execute the operation.

Area overhead for reconfiguration logic The area for an FPGA implementation

with reconfiguration functionality is calculated and compared to a functionally

similar FPGA without the reconfiguration hardware. This metric serves to

highlight the feasibility of the system in limited space/weight applications such

as space vehicles or portable systems.

Accuracy of reconfigured circuit output The non-reconfigured circuit output is

compared to the output of the reconfigured circuit given the same input val-

ues. Given the relatively simple sample circuits chosen, exhaustive tests can

verify that the input is 100% accurate. Accurate circuit output is vital to any

operation.

3.6 Parameters

3.6.1 SUT Parameters. The SUT parameters are variables impacting the

outcome of the dynamic reconfiguration process. The SUT parameters are: available

resources, algorithm iterations, CLB/LUT resolution, maximum routing distance,

time between reconfigurations, and FPGA timing characteristics.

Available resources This parameter describes the size of the FPGA in CLBs. The

number of CLBs limits the maximum size sample circuit that can be imple-

mented.

Algorithm iterations The reconfiguration algorithm is executed iteratively to strengthen

the security for the resulting reconfigured circuit. For the LUT inversion method,
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continual iterations throughout the circuit operation will guarantee a bitstream

that cannot be stolen and implemented on another DRFPGA.

CLB/LUT resolution The reconfiguration resolution refers to the smallest com-

ponent that can be targeted for reconfiguration. The module size targeted for

reconfiguration varies from a single LUT entry to the entire DRFPGA. For

the cases considered in this research, the resolution varies either at the LUT

level(LUT inversion algorithm) or CLB level (functional replacement).

Maximum routing distance Routing signals between CLBs takes time and con-

sumes power. To maintain correct operation, an upper limit must be imposed

on routing lengths between CLBs. This value may be altered for specific ap-

plications. For example, low power applications would require shorter routing

lengths at the cost of less flexible reconfigurations. If security and speed of re-

configuration becomes the goal, the routing lengths can be increased providing

more options when placing CLB components. For the purpose of this research,

the routing distance is across four CLBs. This allows the measurement and

analysis to be focused on the reconfiguration algorithms and hardware aspects

as they are critical to the development of a DRFPGA platform.

Time between reconfigurations The time between reconfigurations is varied to

increase security or to decrease latency in operations. This parameter is not to

be confused with algorithm iterations. For example, if the algorithm iteration

parameter is five, then five iterations of the algorithm are ran successively and

separated by the time between reconfigurations. After waiting for the time be-

tween reconfigurations, five iterative algorithm executions are performed again.

Increasing the time between reconfigurations will allow more operational pro-

cessing to occur at the cost of lower security while decreasing the time will

shorten the analysis opportunities for adversaries seeking to study the circuit

but negatively impact operation processing efficiency.
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FPGA timing characteristics Timing characteristics encompass the delay param-

eters dictating a circuit’s operating speed. The fundamental defining attribute

for timing will be the delay between input and output on combination circuits

(adder and comparator) or the maximum delay between storage elements in

sequential circuits (counter).

3.6.2 Workload parameters.

Sample Circuit CLB usage This is the number of CLBs that are needed to imple-

ment the sample circuit. CLB usage will affect the power needed for the circuit

as well as the time to reconfigure. A larger circuit generally uses more power

and takes more time to reconfigure.

Sample Circuit Routing The connection routing between CLBs for the sample

circuit affects the power usage and reconfiguration time.

Sample Circuit Input Varying the sample circuit input is necessary to verify that

the reconfigured circuit correctly operates. Since the 4-bit sample circuits used

are relatively simple, full factorial input vectors are used to test for correct

operation. The 8-bit variants use a full factorial test for each 4-bit sub-circuit.

The 8-bit circuits have been designed in a modular manner that allows the upper

4-bit circuit to be tested independently of the first four bits as long as the carry

bit from the lower four to the upper four is included in the upper 4-bit module’s

full factorial test.

Reconfiguration Key Length The reconfiguration key is used to initialize the LFSR

selecting the target for reconfiguration. The length of the key affects the secu-

rity and efficiency of the reconfiguration effort. A larger key results in a more

secure circuit by providing more options for the random node placement, but

requires more storage and computation.
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3.7 Factors

Factors provide a way to alter the experiment and find ways to improve the

process or identify potential problems. The following factors are taken from the list

of parameters affecting the SUT and experiments:

Sample Circuit The circuit makeup affects the time to reconfigure different circuits

and can have a significant effect on the process results. The DRFPGA is pro-

grammed with three different types of circuits: binary counters, ripple-carry

adders, and comparators. Each circuit type is implemented in 4-bit and 8-bit

variations except for the comparator. The four basic designs represent common

components of larger systems. By varying the complexity of each circuit type

through the adjustment of the bit width, varying degrees of CLB usage are

evaluated while still retaining an achievable goal of total factorial testing. The

next common input size, 16 bits, will increase the number of test cases for full

factorial testing by a factor of over 65,000 times for the adder and compara-

tor circuits. Diagrams of sample circuits expressed as CLB block diagrams are

located in Appendix D.

Sample Circuit Input Each input circuit is evaluated using every input combina-

tion available. For an 8-bit circuit (the most complex test configuration), there

are 131,072 different input combinations. Given the time required to implement

each of the test vectors, the testing method uses overlap between subsequent

4-bit modules to reduce the number of vectors to 64. Since the counter does

not accept user input aside from the enable and clock signals, the vectors for

its test are relatively simple. The counter is simply allowed to progress from

the initial state (all 0’s) to the final state (all 1’s). This process takes 256 clock

cycles. For all test circuits, the output for every input test is compared with a

known good output to verify accurate operation.

Time between Reconfigurations The reconfigurations are not being run continu-

ously. Otherwise, for the relatively simple designs implemented as test circuits,
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the actual circuit implemented on the DRFPGA would never perform its func-

tion. The time between reconfigurations dictates how much time the circuit

will have to run. Shortening the time between reconfigurations decreases the

target time for adversaries to inspect the DRFPGA hardware/operations as a

static system; however, this also decreases the efficiency of the sample circuit

implemented on the DRFPGA. On the other hand, increasing the time between

operations provides more time for the sample circuit operation and a longer

static target for adversarial inspection and analysis. The time is designated

based on the time needed to successfully map the circuit using black box re-

verse engineering attacks.

3.8 Evaluation Technique

The DRFPGA is evaluated using simulation software on the VHDL model. The

software is relatively straight forward and will not include testing of environmental

variables on the operation of the DRFPGA. The algorithm is developed and tested

for the target FPGA ( Xilinxr Virtex4r ) and will not be modeled for implemen-

tation on other hardware. Each of the three primary circuit variations listed in the

factors section is programmed on the DRFPGA in 4-bit and 8-bit variants, except for

the comparator, which is implemented only in an 8-bit variant. For each circuit pro-

grammed (regardless of whether it is on the DRFPGA or the FPGA), the following

steps are performed:

Program Compile the VHDL model in the simulation software.

Operation Circuit simulation using the test input combinations in a sequential man-

ner. For example, on the 4-bit adder the first run would be 0000 + 0000, for

input A + input B. This input can be viewed as input 00000000, where the first

four bits are input A, the next four input B. The next input is 00000001. In

this manner, the input is varied from all 0’s to all 1’s.
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Power Measurement Simulation software used to measure the maximum power

usage.

Execution Time Execution time is measured for the total run of all inputs.

Output Output values for each input are compared to the output of a known good

circuit. Any discrepancies result in immediate flagging as a failed run and no

further input vectors are executed.

FPGA CLB Count Total area (in CLBs) is documented. The CLB count is pro-

vided by counting the CLBs used in the VHDL model.

Each of the results for a specific circuit will be compared between the initial

circuit and the reconfigured circuit. This will provide values as discussed in the metrics

section.

3.9 Experimental Design

The experimental design mimics a full factorial test. To test the 8-bit circuits,

the circuit is first broken down into two 4-bit circuits with a single signal carrying

from one 4-bit section to the next. Every combination of the first 4-bit circuit is

tested, followed by the second circuit tested in the same manner, except that the carry

signal is simulated to provide the second circuit with every possible signal it could

receive. Every combination of factor values is explored and the results compared.

This provides the means to determine the implications of implementing the DRFPGA

for the selected circuits which, since the circuits selected represent common sub-

components of most real-world circuits, accurately reflect the DRFPGA performance

in fielded applications. The total number of experimental inputs applied per full

factorial run is listed in Table 3.9.

The total estimated time to run each full factorial test on the simulation is based

on an average time of one second per test (measured mean). Therefore, the total test

time given no failures is 37.55 hours.
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Table 3.2: Experimental input counts.
Test Counts per System (DRFPGA/FPGA)

Original Reconfigured Total

8-Bit Adder 1,536 1,536 3,072
8-Bit Counter 512 512 1,024
8-Bit Comparator 65,536 65,536 131,072

Totals 67,584 67,584 135,168

Since the test is conducted as a simulation of a VHDL model, multiple runs will

not be necessary for any given configuration of the SUT. No random variables will be

added to the test runs so the results will be identical from each execution of the full

factorial test to the next unless factors are adjusted. If a failure is found, then that

test must be reaccomplished after fixing existing issues.

3.10 Methodology Summary

This section serves to document the design and experimentation of the DRF-

PGA. The DRFPGA is proposed as a solution for a secure FPGA platform protect-

ing circuit designs from exploitation, theft, and unauthorized duplication. The key

distinguishing factors for a DRFPGA are the reconfiguration algorithm and the hard-

ware network supporting granular reconfiguration. It is important to consider the

parameters affecting the DRFPGA performance before initializing the experimen-

tation process. The reconfiguration algorithms and supporting hardware networks

are the primary foci of experimentation. Other key parameters are the DRFPGA

hardware attributes (e.g. CLB resources and timing characteristics), actual circuits

implemented on the DRFPGA, and the time between reconfigurations. The circuits,

reconfiguration targets, and reconfiguration methods are varied through the experi-

mental design as factors. Through manipulation of the factors, differing results are

found that can be attributed to the adjusted value. Important results include the

time necessary to perform a reconfiguration, the power overhead involved in provid-

ing a reconfigurable system, and the hardware resource (in CLBs) of implementing
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a DRFPGA as compared to the FPGA. The manipulation of the factors results in a

total of 4,286,976 combined test cases for the DRFPGA and FPGA devices.

Overall, implementing this experimental model adequately addresses the need

for evaluation of the DRFPGA device using simulated runs of a VHDL model. Through

analysis of the results, shortfalls are identified and further research directions pro-

vided.

3.11 Custom FPGA Design

The functional requirements of the reconfigurable platform mandate a custom

FPGA design as no design currently exists that supports the granularity of reconfig-

uration needed. The custom design is based on the Xilinxr Virtex4r architecture,

but includes substantially more capabilities in the retiming and reconfiguration arena.

The framework was constructed by Jason Paul in support of his work on retiming FP-

GAs for security [37]. The FPGA was created in two primary phases: one to model

the CLB and data routing functions and the other to implement a programming router

network. The CLB hardware foundation was created by Paul in 2007 as a hardware

platform supporting retiming.

The original design consisted of a 4x4 array of CLBs arranged in an FPGA. For

this research effort the CLB count remains the same, although the overall size (in

area and components) is larger due to the addition of the reconfiguration hardware.

In order to permit precise dynamic reconfiguration, a programming network has been

created and added to the FPGA design to allow the real-time programming of any

single CLB or the entire FPGA.

The FPGA model is constructed in a hierarchical manner allowing the abstrac-

tion of function and data requirements for the modules within the design. The stan-

dard VHDL programming language was selected for the FPGA model based on its

acceptance as an industry standard. Each component has clearly defined functional

requirements as outlined below.
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3.11.1 CLB. The CLBs are used to implement discrete functions within

the FPGA. Multiple CLBs are connected together to create the overall design. For

example, a 4-bit adder can be constructed of four 1-bit adders connected together.

Each 1-bit adder can be implemented in a single CLB. The four CLBs are inter-

connected using the data bus to implement the complete 4-bit adder design. The

CLB structure is based on the CLBs found in the Xilinxr Virtex4r line of FPGAs.

Each individual CLB consists of eight total LUTs capable of implementing custom

functions as well as 32 bits of RAM/ROM storage (configurable as a 32x1-bit or a

16x2-bit memory element), Multiplexors (MUXs), Flip Flops (FFs), and Latches. For

ease of programming and comprehension, the components within the CLB are divided

into four Slices (two M-Slices and two L-Slices). The schematic diagram of a single

CLB is shown Figure 3.2. The CLBs are interconnected through the use of a switch

matrix connecting output and input lines to selected buses in the fabric. The fabric

represents the data network responsible for passing data between different CLB s. It

is important to note the data network is completely separate from the configuration

and LUT inversion networks.

Figure 3.2: VHDL model of a CLB. Each labeled block represents a VHDL sub-
module at the bottom of the hierarchy (i.e. not composed of other sub-modules).
The data and programming networks are omitted for clarity. A schematic view of the
CLB is depicted in Appendix A.
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L-Slice L-Slices contain two 4-input, 16-entry LUTs and the switching hardware

necessary to direct the input and output of the slices. They also contain two

components that can be configured as FF’s or Latches, which are used to im-

plement sequential devices.

M-Slice The M-Slice contains all of the functionality of the L-Slice, but adds memory

functions and the capability to serve as a shift register.

Input/Output Control Module The Input/Output control modules dictate where

the input and output lines are connected for the slices. This should not be con-

fused with the switch matrix or data bus routers as the Control Modules only

direct the information flow within the CLB.

LUT The LUT modules serve to implement the fundamental functions. The reconfig-

uration algorithm is functionally contained within the LUT hardware although

it is not performed unless the instruction is delivered through the LUT inversion

network.

3.11.2 Control Registers. The control registers are used to configure the

FPGA for operation. Each CLB is connected to a single control register. LUT

configuration, data contents, and data directions are all dictated at the configuration

time and based on the contents of the control registers. To program the circuit using

a serial JTAG method, the control registers include a shift-in and shift-out bit that

is used to implement a chain of registers. In addition, the Programming Network is

connected to the control registers allowing dynamic reconfiguration.

3.11.3 FPGA Data Network. The data network is composed of the data

bus (or fabric) and routers. The routers serve to connect certain lines in the data

bus together creating a data path between CLBs. The data routers are configured

during the initial programming stage. The routers serve as the equivalent of a multi

selectable input MUX. Any input to the router can be routed to any output from the
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router. Multiple outputs can be fed from the same input, but to avoid conflicting

signals only one input can drive any output.

3.11.4 CLB Programming Network. The CLB Programming Network is

composed of routers that allow the targeting of individual CLBs for reconfiguration.

It is similar to the data network because it is composed of routers and data lines,

but the actual data line is only one bit wide. Configuration data is streamed to

the target CLB in a serial manner. While this increases the overall configuration

time over a parallel load, it significantly reduces the space/power requirements. The

programming network is further dissected into three primary subcomponents: chain,

channel router, and sub router.

Chain There are a total of 8 chains feeding the configuration data to the CLBs. Each

chain is responsible for 32 CLBs.

Channel Router Each chain has a channel router that directs programming bits to

the components within the chain if the targeted CLB is one of the 32 for which

the chain is responsible. The channel router is also responsible for resetting the

chain components and preparing the sub routers to receive the address for the

target CLB.

Sub Router Every chain has a channel router and eight sub routers. The sub routers

are controlled by the channel router and do not initiate address collection or

start processing the bitstream until told to do so by the channel router. Each

sub router is responsible for four CLBs. Once the target CLB has been identified

via an 8-bit address code, the responsible sub router starts the transfer of data

bits to the CLB control register. While not an actual programming network

component, the control register plays an important part as the final destination

for the programming bits. Once the control register has been programmed with

the necessary bits, the actual CLB configuration takes place.
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To program the CLB array (or any single CLB), the programmer must first

send the address of the target CLB. After sending the address through the input line

of the programming network, the bitstream is transmitted serially to the target CLB

through the network. The CLB can be programmed during runtime, provided the

CLB itself is not in operation or the input sequences are not critical to the overall

circuit function.

3.11.5 LUT Inversion Network. The LUT inversion network is similar in

structure to the FPGA Programming Network. The primary difference is in the

addition of MUXs and registers contained within the CLBs to decode the instructions

and deliver them to the appropriate LUT within the CLB. Since the network is serial

and the LUT and MUX instructions are needed in parallel, the registers store the

data and provide them to the LUT and MUX in a 6-bit wide parallel configuration.

The chains, channel routers, and sub-routers all function the same as the components

from the FPGA Programming Network.

3.11.6 DRFPGA Programming. Standard FPGA designs use a serial JTAG

interface for programming. The serial data line is composed of the control registers

connected in a chain through the FPGA. By using the control registers as shift reg-

isters, the data is clocked into the FPGA as a single bitstream. The custom design

proposed in this research contains the serial programming functionality in addition to

the CLB addressable network previously discussed. The JTAG programming method

results are compared to the CLB addressable network. Of interest in this comparison

are the approximate power usage, area required, and time to reconfigure. The most

critical attribute is the time to reconfigure.

3.12 Reconfiguration Algorithm

The reconfiguration algorithm dictates the process of altering the circuit while

maintaining correct functionality or, in some cases, creating a deterministic method of

obfuscating the output. The process is performed in two different methods: inversion
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and functional replacement. The end product of the inversion method results in a

circuit functionally equivalent to the original circuit. The functional replacement

method may be used to create a functionally equivalent circuit or can provide a

way to redirect inputs/outputs or even change the timing and design of the circuit

completely. In this manner, it is more flexible than the inversion technique, but

requires more time due to reprogramming the entire CLB and is not as autonomous

(i.e. it requires significant work to create the functional replacement modules). Each

step is specialized to operate on FPGA architectures as opposed to Register Transfer

Logic (RTL) schematics. The benefits to this approach are two-fold: less overhead

for processing and increased security.

One of the concerns regarding reconfigurable FPGAs is the added overhead of

the reconfiguration process. The proposed design eliminates a substantial portion

of the overhead involved in reconfiguring a circuit because it does not require the

translation from RTL or designer level functional diagrams to the architecture of the

FPGA. By relating the attributes of the reconfiguration process directly to FPGA

modules and components (i.e. LUTs, FFs, or CLBs) the translation between circuit

schematics to FPGA implementations is omitted. Most reconfigurable architectures

employ a partitioning step similar to Alpert’s use of the Fiduccua-Mattheyses parti-

tioning algorithm [6]. This partitioning consumes a great deal of system resources

and must be performed after every reconfiguration unless the designer maintains a

complete graph representation of the circuit on the FPGA device. Either method

sacrifices limited computational resources and adds complexity to the overall process.

By avoiding the partitioning process altogether, the proposed reconfiguration method

eliminates the performance and time penalties associated with partitioning.

Another concern regarding partitioning of the circuit and/or storage of non-

native representations of the circuit is related to the security of the FPGA architec-

ture. Since there has not been extensive research into the use of reconfiguration for

the security, this problem has not been well addressed. Recall, adversaries may be

able to view the contents of certain memory cells through the use of specialized imag-
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ing equipment. If the schematic of the circuit is stored anywhere on the chip, there

is potential the adversary may acquire a complete schematic of the circuit. Even if

the circuit is not stored permanently at any given time, there are small portions of

the circuit stored for the purpose of reconfiguration and placement that are vulner-

able. This means that the adversary may be able to acquire small portions of the

circuit and, over time, assemble these into a complete overall schematic. These po-

tential pitfalls are avoided altogether through the implementation of a native, organic

reconfiguration algorithm.

3.12.1 LUT Inversion Algorithm. The inversion process is similar to the

bubble pushing concept used in gate level circuit implementations and demonstrated

in Figure 3.3. Although pushing bubbles on the gate level circuit description is

complicated (given the partitioning and translation from the physical implementation

on the actual FPGA), it can be accomplished by focusing on altering the bubble

pushing idea to pertain to the LUTs. For example, the function F = (A+B) · (C ·D)

can be implemented gate-wise as seen in Figure 3.3 Schematic 1.

Figure 3.3: Simple demonstration of the bubble pushing concept on a gate level
circuit schematic. The circuits in Schematic 1 and Schematic 2 both behave identically
in spite of their different structures.

The circuit is reconfigured by pushing the bubbles, creating inverters on the

outputs of gates and on the inputs on the following gates, and converting them to
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equivalent gates. The same circuit after pushing the bubbles is shown in Figure 3.3

Schematic 2. While the circuits are schematically different (reconfigured), they both

will produce identical outputs for any given input combination.

The same concept can be applied to LUTs within a CLB or FPGA. The LUTs

are treated like gates, but with a specialized set of rules. LUTs can be thought of

as a RAM module storing bits in certain addresses accessed through the inputs. The

first step in pushing bubbles in the LUT process involves inverting the values in the

LUT, which equates to inverting the output on a gate. Then, select entries in the

LUTs connected to the output of the inverted LUT are exchanged. The results of

a LUT inversion process are shown in Figure 3.4. As in the gate-wise implementa-

tion, Schematic 1 represents the circuit before reconfiguration and Schematic 2 is a

functionally identical circuit post-reconfiguration.

Figure 3.4: Simple demonstration of the pushing bubbles concept as applied to the
LUT schematic. The circuits in Schematic 1 and Schematic 2 both behave identically
in spite of their different LUT contents.

The manual algorithm for inverting LUTs is more complicated than the basic

gate method, but the hardware implementation is significantly easier with the au-
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tonomous LUTs created for this research and the algorithm’s compatibility with the

LUT hardware attributes. Any gate level circuit can be translated to the LUT realm

as long as no single gate has more inputs than the LUTs. For example, if a schematic

has only 2-input gates, then the circuit can be translated to a LUT circuit completely

composed of the 2-input, 4-entry LUTs found in Figure 3.4. In the example, all of the

LUT contents were inverted. This is not always the case and only single LUTs are

inverted at any given time for the actual reconfiguration. This takes advantage of the

flexibility of the LUT as compared to gates. If only one of the gates feeding the out-

put OR gate in Figure 3.3 Schematic 1 were inverted, then the OR gate itself could

not be translated to an equivalent gate. LUTs, however, provide additional rules

and flexibility that permit single LUTs to be inverted. The operation is governed

by a unique set of rules developed for this research effort. Although other sources

have performed LUT inversion [39], there are no step-by-step algorithms available for

performing single LUT inversions followed by subsequent connected LUT reconfigu-

rations to account for the inverted values. A LUT specific equivalent of the bubble

pushing algorithm applied to the circuit shown in Figure 3.3 is depicted in Figure 3.4.

A more detailed description of the process is demonstrated in Appendix C.

To further strengthen the obfuscation of the circuit, stages for different recon-

figurations can be overlapped. For example, while one LUT system (one LUT output

feeding multiple LUT inputs) is in stage one of the inversion process another unre-

lated LUT is in stage two. Given the current components, this configuration would

require either two parallel inversion networks or the FPGA would be segmented into

two different regions administered by separate inversion networks.

By performing the inversion steps in an overlapping manner, the circuit bit-

stream in its entirety would never be correct. The actual bitstream of the LUT

system is incorrect because of the initial inversion of the first stage. It is not until the

completion of stage two that correct operation is maintained. With this method of

reconfiguration, any static adversarial capture of the entire FPGA bitstream would

result in an incorrectly functioning circuit.
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3.12.2 Functional Replacement Algorithm. The DRFPGA has, in addition

to the LUT inversion method of obfuscation, the capability to perform functional

replacement. This method of obfuscation is similar to other functional unit reconfig-

uration such as Lodi et. al.’s VLIW FPGA [7]. The primary difference is replacement

modules, which are constructed in real-time from a library of sub-modules stored on

the chip. While the hardware for reprogramming modules is completely functional as

of this research effort, the actual library of sub modules and the module identification

method specifics are an area of future study. This research effort serves to outline the

fundamental process and provide a roadmap for implementation.

In future research, the functional replacement algorithm is performed by the

on-board PowerPC processor executing a semi-intelligent method of module identifi-

cation, decomposition, and recomposition. The process can be used to create func-

tionally equivalent circuits similar to the bubble pushing algorithm described for RTL

circuits, or can actually be used to obfuscate the circuit via output/input relocation

and retiming. The following sections outline the fundamental process and provide

examples of how specific circuits can be replaced with functional equivalent circuits

and obfuscated circuits.

The functional replacement algorithm is a top-level outline of a method for

replacing functional systems with new systems. The granularity of the system may

be as small as a single CLB or may contain the entire FPGA. Likely the upper limit for

the granularity will be the computational overhead and time penalty imposed through

the reconfiguration. There are two primary categories of replacement: functionally

identical replacement and obfuscated replacement.

Functionally Identical Replacement The system selected for replacement is re-

placed with a system that will produce the exact same output for any input as

the original system. In addition, the timing of the replacement system must be

the same. Although the overall timing is identical, timing within the system

may be adjusted. For example, assume that the original system can be decom-
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posed into sub-module-A and sub-module-B with the output of sub-module-A

feeding the input of sub-module-B. Sub-module-A may be sequential and re-

quire one clock cycle to latch the data onto the output while sub-module-B is

combinational and provides the output within a clock cycle. A functionally iden-

tical system could consist of two modules in a similar configuration, but with a

combinational sub module feeding a sequential sub module. Although the tim-

ing within the system has been altered, the change is completely transparent

from the system’s external inputs/outputs; thus, the systems are functionally

identical when considered as a black box system.

Obfuscated Replacement Circuit details can be further secured using temporal

and spatial obfuscation. Temporal obfuscation is achieved using retiming as

in Paul’s research effort [37]. Using temporal obfuscation, the output timing

is altered by changing the overall clock cycles required to process the input

and provide an accurate output. For example, if an adder is implemented as

a combinational circuit then the output for any given input is available within

one clock cycle. By inserting delays via FFs, the output is shifted temporally

by at least one clock cycle. Any adversary attempting to analyze the results

would not know when the correct output is available without a comprehensive

understanding of the reconfiguration process. Spatial obfuscation is similar, but

the output is placed on different physical pins as opposed to being shifted in

time. This serves the same purpose as an adversary would not be aware of which

pins contain the appropriate output (or what order the pins should be read in)

without a comprehensive understanding and insider information.

In order to explain the abstraction of functional replacement, certain attributes

of the overarching design must be identified and defined. The following attributes will

be referred to throughout the process description:

Target System For the purpose of describing the abstract replacement process, the

target system refers to the collective group of components that will be replaced.
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This includes all of the components necessary to implement the function selected

for replacement. For example, in the case of FPGA system replacement, the

system would include the CLBs, routers, data lines, and input output lines.

Sub-module A sub-module is a system identified by its input/output relationship.

Examples of sub-modules applicable to the functional replacement algorithm

may be adders, multipliers, or even simple gates. The size of a sub-module

depends on its function and can vary from granular (i.e. an AND gate) to coarse

(i.e. a binary divider) depending on the function. The key is that multiple sub-

modules may be schematically different, but still implement the same function.

This idea is critical functional replacement.

Library The library consists of all available, precompiled sub-modules. Each sub-

module is identified by its input/output width, timing, size, and function. For

example, an XOR gate may be identified as having a 4-bit input/1-bit output,

combinational (timing of zero clock cycles), 1-LUT (or CLB depending on cho-

sen granularity) configuration. Functionally, this sub-module could be replaced

with any 4-bit input/1-bit output, combinational XOR gate regardless of size.

It could also be replaced with a sequential (as opposed to combinational) con-

figuration to effectively retime the circuit; however, this would have to be taken

into account at the external output. The library contains multiple instances

of functionally equivalent sub-modules for replacement as well as sub-modules

that are slightly different in spacial or timing characteristics such that the re-

placement can be functionally equivalent or may provide a temporal or spacial

offset for the purpose of obfuscation or optimization.

Both categories of replacement follow the same algorithm structure. The al-

gorithm is described in an abstract sense in the following stages: system boundary

identification, system decomposition, sub-module replacement, system recomposition,

reconfiguration. The definitions of each step are described below:
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System Boundary Identification Initially, the system chosen for replacement must

be defined. The granularity of the selection can be defined as a single LUT or

entire DRFPGA. The size of the system will affect the time necessary to accom-

plish the replacement itself. In identifying the system, the inputs and outputs

must be listed. If the replacement is functionally identical, then the inputs and

outputs of the final reconfiguration must match identically to the current con-

figuration. For obfuscated replacement, the inputs and outputs may not match

functionally, but each external connection must be connected to an internal

function to prevent a complete failure of the entire device.

System Decomposition The system, as identified in the first stage of the replace-

ment process, must be broken down into sub-modules that can be compared to

the library modules. The size and configuration of the modules are determined

by the library contents.

Sub-Module Replacement The library contains multiple instances of each sub-

module that are functionally equivalent. In addition, there may be spatially

or temporally obfuscated circuit representations. The equivalent sub-modules

will provide identical output for the entire input space, but will accomplish the

execution in a different manner.

System Recomposition After selecting the sub-modules for replacement, the tar-

geted system must be reassembled to match the overall external input and

output configuration of the original circuit.

System Reconfiguration Once the targeted system has been reassembled, the en-

tire system is stored in the FPGA. The reconfiguration takes place one CLB

at a time. To minimize the impact, the reconfiguration should start with the

lowest numbered CLBs (as arranged in a levelized manner).

3.12.3 Obfuscation Mask. Obfuscated replacement differs from functional

only replacement primarily in the addition of a mask designating the correct output

locations (spatial obfuscation) or timing (temporal obfuscation). The mask must be
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known to the program receiving the reconfigured circuit outputs. The specifics of mask

design are not within the scope of this research, although the functional replacement

example does demonstrate spatial obfuscation for the purpose of security. The mask

itself is a static representation of the reconfiguration algorithm starting point and is

dependant on the reconfiguration key. The DRFPGA and external interface systems

must be synchronized such that legitimate systems interacting with the DRFPGA can

predict the current input and output locations. The mask does not serve to simply

block the incoming or outgoing signals, but redirects data targets (input side of the

DRFPGA) or sources (output side of the DRFPGA) for proper operation.

The obfuscation mask was not developed for the examples in this research be-

cause of the limited output lines. The mask is an essential part of reconfiguration for

more complicated designs.

3.13 Summary

The DRFPGA SUT was tested in accordance with the specified workload pa-

rameters, factors, and metrics. Both the functional replacement and LUT inversion

methods of reconfiguration are evaluated for functional accuracy and efficiency pa-

rameters. Three 8-bit test circuits were constructed for the DRFPGA: ripple carry

adder, counter, and comparator.
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IV. Test Process and Results

This chapter describes the details of the test implementations and results. The

test details are provided for both the inversion and functional replacement tech-

niques. After reconfiguring the circuit, the altered circuit is tested for correct opera-

tion.

4.1 Test Circuits

4.1.1 Test Circuit Overview. A variety of test circuits are used to demon-

strate the effectiveness of reconfiguration and to measure the penalty in performance

and power usage associated with the reconfiguration process. Given the intense man-

ual cost of implementing the individual circuits, the test circuits are limited to rela-

tively simple devices that might be used in the construction of larger, more complex

systems. Each test circuit has been implemented in 4-bit and 8-bit variations ex-

cept for the comparator circuit, which is implemented in an 8-bit variant only. The

functionality for the circuits is contained within the CLB LUTs. Generalized LUT

content for each circuit can be found in Appendix C. An overview of the test circuits

is provided below:

Adder The adder circuit accepts two binary numbers as input and provides two

output values: the sum value and the carry out value. An 8-bit adder was

developed for this research using two 4-bit adders.

Counter The counter circuit accepts an enable input and a clock input and provides

a binary number as output. As long as the enable input is 1, the counter

will increment the binary number output. Once the binary output reaches the

maximum value possible (all bits = 1) it will restart from the zero state (all bits

= 0).

Comparator The comparator circuit accepts two binary numbers as input and pro-

vides a single bit output. The output is 1 if the two input numbers are identical

else it is 0.
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In addition to implementing the functional attributes of the test circuits in

LUTs within the FPGA, the routing between different functions is created to main-

tain proper operation. The functional LUT schematics can be found in Appendix D.

Understanding the way the modules interact with each other is as important as under-

standing the actual functions of the modules themselves. All data routing is carried

out over the data routing network as previously discussed.

4.1.2 Test Circuit Creation. Designing test circuits for implementation on

the DRFPGA is significantly different from the design using standard methods such

as RTL or VHDL. Since the DRFPGA uses proprietary hardware to implement the

functions, all designs must be tailored to the DRFPGA layout. The functionality of

the test circuits is implemented in the DRFPGA LUTs. As discussed previously, the

LUTs can implement any binary combinational 4-input, 1-output digital operation.

Although the LUT itself operates asynchronously, synchronous functions can also be

implemented using the flip flops and latches within the CLBs.

Routing signals between functional elements is performed via CLB internal rout-

ing hardware. The RTL schematic for a single CLB can be found in Appendix A.

Once data exits the CLB, the routing is up to the routing network discussed in Chap-

ter 3. The routing network permits any single CLB to provide input or accept output

from any other CLB, although there are limits on how many CLBs may communicate

across the routers due to limited physical busses. Due to the fact that the DRFPGA

is implemented as a VHDL model, limitations on the physical travel of signals across

the data network are non existent.

4.1.3 Adder. A common component in a wide variety of digital systems is

the binary adder. The adders used in this research are ripple carry adders, which

significantly reduces design and debug time. The adder function implemented in this

research takes three inputs (A, B and CIN) and provides two outputs (SUM and

COUT ). The functionality of the adder is contained within the LUTs (four bits per

CLB); for each bit of the adder one LUT output is used to compute the SUM result
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while the other is used for the COUT result. The SUM output is provided using the

G-LUT whereas the COUT is implemented in the F-LUT in the same slice. Each slice

implements one full adder, accepting three 1-bit values and providing a 2-bit output.

The configuration of single bit adders connected in a multiple bit arrangement is

depicted in Figure 4.1. Both 4-bit and 8-bit adders were built for this research.

The 4-bit adder consumes one CLB while the 8-bit uses two (being two 4-bit adders

chained together). Only the 8-bit adder is explicitly addressed in the testing and

reconfiguration phase as the 4-bit adder is included in the 8-bit adder test.

Figure 4.1: Functional configuration diagram for n bit ripple carry adder. Each 1
bit adder is capable of functioning independently, but can be chained together with
other 1 bit adders to create a 2, 3, or n-bit adder. Each 1 bit adder is implemented in
a single slice with one LUT providing the SUM output and the other providing the
COUT output.

4.1.4 Counter. Binary counters represent another fundamental component

of digital systems. The counters store a state representing their current count or value.

The counters implemented for this research are 4-bit or 8-bit up counters. With each

clock cycle, the counter implements its value sequentially. Once the stored value has

reached is maximum value (all 1’s) the counter starts from all 0’s and repeats the

process. In addition to the clock input, the counters also have an enable signal that

can either instruct the counter to increment the value (enable = 1) or hold the current

value (enable = 0) and a reset signal that instructs the counter to return to an all

0 state. Similar to the adder, each CLB implements four bits of the counter. In its

simplest design, each bit (x) in an n-bit counter must consider the previous values

to determine what value it must assume on the next clock cycle. For example, bit

three must consider the values for bits zero, one, two, and three to determine what
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the next value should be. Given the limited inputs available on the CLBs, this design

functions in a manner similar to the ripple carry adder by generating a signal for

each bit indicating the values of all the previous bits. The current bit will only toggle

if every previous bit is 1; therefore, there is a signal passed through the bits that

indicates if every previous bit is 1. The configuration of the counter is graphically

represented in Figure 4.2.

Figure 4.2: Functional configuration diagram for n-bit counter. Each 1 bit counter
is capable of functioning independently, but can be chained together with other 1-bit
counters to create a 2, 3, or n-bit counter. Each 1-bit counter is implemented in a
single slice with one LUT providing the COUNT output for that bit and the other
providing the All 1 output for the current bit. The All 1 output is high if the current
bit and all the previous bits are 1. This indicates that the next bit should toggle
at the next clock cycle. The final n-1 All 1 signal is not used unless the counter is
chained to another counter to make a larger unit.

4.1.5 Comparator. Comparators provide a means to determine the rela-

tionship between two binary numbers, i.e. A < B,A > B, or A = B. For this

research effort, a simple comparator was constructed to determine whether two bi-

nary numbers are identical. The circuit is implemented in two different configurations

to demonstrate the use of functional replacement. In both configurations, the com-

parator function is broken down into two stages. In the first stage, input bits are

compared to one another and the result of comparing the bits (1 for a match 0 for

different values) are passed to the second stage. The second stage compares the re-

sults from the first stage and, if any first stage results are 0 indicating a difference

in value, then the result of the entire comparison is 0 since at least one of the bits is

different. Functionally, the first stage can be viewed as a set of XNORs comparing

the input values while the second stage is equivalent to an AND gate ensuring that
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all bits for both n-bit input values match (Ax = Bx: 0 ≤ x < n). For clarification on

the gate level implementation, see Figure 4.3.

Figure 4.3: Gate level implementation a simple 2-bit binary comparator. The
output reflects whether the inputs, A and B, are identical. The output will be 1 for
identical inputs or 0 otherwise.

The implementation of the first comparator design within the actual FPGA is

constructed such that the stage one functionality (XNORs) are contained in a single

CLB while the second stage (ANDs) is contained in a second CLB. Each LUT in the

first stage CLB compares two pairs of bits and outputs two values representing each

pair’s successful or failed match. For example, the first slice takes A0, B0, A1, B1 as

inputs and provides two values, A0 = B0 and A1 = B1 as outputs through the two

LUTs contained in the slice. The outputs are 1 if the values match and 0 otherwise.

These output values are fed into the second stage. The second stage is performed in

two steps. The first two slices in the second CLB (M0 and M1) each compare the

outputs from four of the eight match tests computed in the first CLB. The second

two slices in the second CLB (L0 and L1) compare the results from the first Slices

M0 and M1 in a hierarchical manner using an AND gate functionality to determine

whether all inputs matched. An example of the CLB/LUT schematic is shown in

Figure D.3 in Appendix D. The hierarchical relationship between the different stages

in a functional diagram are shown in Figure 4.4.

The second comparator design is constructed such that the stage one and stage

two functionality are both contained in a single CLB. The first two slices (M0 and
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M1) compare four pairs each (for a total of eight pairs needed for the comparator).

For example, Slice M0 takes A0, B0, A1, B1, A2, B2, A3, B3 as inputs and outputs two

values. (A0 = B0) · (A1 = B1) and (A2 = B2) · (A3 = B3). The outputs are 1 if the

values match and 0 otherwise. These output values are fed into the second stage. The

second stage compares the results from the first stage using an AND gate functionality

to determine whether all inputs matched. An example of the CLB/LUT schematic

is shown in Figure D.4 in Appendix D. The hierarchical relationship between the

different stages in a functional diagram are shown in Figure 4.4.

Figure 4.4: Functional diagram demonstrating the hierarchical structure of a bi-
nary comparator. The example has single bit comparators in the first stage, matching
the equivalent layout of the first comparator configuration. The second, functional
replacement configuration contains the equivalent of 2-bit comparators, thus combin-
ing the functionality of two LUTs from the original design into a single LUT. Both
implementations use 4-bit AND gate equivalents in the second stage, but due to the
differences in output lines, the original implementation has three levels of ANDs in
Stage 2 as compared to a single level for the functional replacement.

4.2 Reconfiguration

4.2.1 Reconfiguration Overview. The test circuit bitstreams are imple-

mented on the VHDL model DRFPGA and tested for correct operation. Each test
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bench compares the results from the FPGA implementation with the results of a

similar function implemented behaviorally. Given the large number of test cases as

described in Chapter 3, the tests were ran using the assert function. The assert func-

tion allows the test to be automated and informs the tester of any input combinations

that triggered an incorrect or unexpected output.

Once the original circuit is shown to be operating correctly, the reconfiguration

process must be tested for every circuit. LUT inversion reconfiguration is performed

on the adder and counter test circuits and functional replacement test reconfiguration

is conducted on the comparator circuit.

The LUT inversion tests are relatively straight forward. A pseudo-random al-

gorithm, implemented as an XNOR LFSR, is used to randomly select single LUTs to

invert. While the current FPGA is 16 CLBs and 128 LUTs in size, the LFSR used

provides a 10-bit pseudo-random number. For the adder and counter circuits, each

having 16 LUTs, the target is selected by using the lower four bits of the 10-bit value.

Once the target address has been generated, the initial inversion is performed on the

selected LUT. Following the initial inversion, the selective segment swapping (Phase

2) is executed to complete the overall LUT inversion process. Once the entire process

has been completed, the output results are evaluated to ensure the circuit is correctly

operating.

The functional replacement tests replace the original functional units with an

alternate implementation. For example, the comparator circuit has two implemen-

tations that are identical in function, but different in design. The original circuit is

reconfigured to implement the second, functional replacement design. This simulates

the substitution of a module from the library of modules for replacement. Since the

target functional circuit may vary widely in size, the selection process is different

from that used in the LUT inversion. The circuit boundaries are determined manu-

ally, and a suitable replacement bitstream is programmed into the FPGA to simulate

an autonomous design. The replacement module for the comparator is precompiled.
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4.2.2 Adder Reconfiguration. The LUT inversion test for the adder com-

pleted successfully. The initial step is selection of a random (or pseudo random) LUT

to initiate the process. As explained in Chapter 3, each LUT relying on the initial

LUT’s output will then have selected segments of its contents swapped with neigh-

boring segments. Details on the LUT inversion process are shown in Appendix B.

The original circuit was given five test cases to demonstrate the operation. A full test

is not required at this point as the circuit was tested for correct operation previously.

Once the five test cases had been presented, the circuit was reconfigured. The LFSR

provided a pseudo-random binary number of “0101” indicating a selection of LUT-5.

LUT-5 is the F-LUT contained in Slice L0 used to compute the COUT value for bit-2.

For clarification, see Figure D.1. This represents the LUT that will be completely

inverted as stated for the Stage 1 actions. Once the initial LUT was inverted, the cir-

cuit outputs are incorrect until the second stage has been completed. This attribute

provides the basis for the phased defense discussed in Chapter 5. Because the COUT

value for bit-2 impacts the values for bits 3-7, an incorrect value will adversely affect

the adder output on all subsequent bits.

Once the initial inversion has been performed, the LUTs relying on the LUT-5

output must be located and inverted with respect to the rules outlined in the LUT

inversion algorithm. LUT-5’s output is connected to the inputs of two different LUTs:

LUT-6 (Slice L1 G) and LUT-7 (Slice L1 F). The output is connected to input-3 on

both LUTs so the Stage 2 LUT inversion performs a swap of the first eight (23)

bits for the second eight. For example, if the contents of the LUT before inversion

were “00110110 11101110”, the resulting contents would be “11101110 00110110”.

Following Stage 2 completion, the circuit returns to normal operation.

The entire reconfiguration process took 69 clock cycles from when the inversion

LUT network was initialized to when the final LUT was inverted and the correct

output was available. For reference, it takes a total of 640 clock cycles to reprogram

a CLB using the CLB programming network and a total of over 2500 clock cycles

using a serial JTAG interface with a column size of four. Although the LUT inversion
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reconfiguration process took 69 clock cycles, the circuit was correctly operating for

the initial 23 clock cycles because these are used to address the initial LUT inversion

target for Stage 1 and no reconfiguration takes place until the target has been found

and the command issued.

4.2.3 Counter Reconfiguration. The LUT inversion test for the counter

completed successfully. The counter was enabled and allowed to count to 64 as a

demonstration of the correct operation. Following the operational phase, the initial

LUT for inversion was selected using the four bits from the LFSR, just as in the adder

reconfiguration test. Since the same seed is used on the LFSR, this test would target

the same LUT if the LFSR was allowed to run the same length of time as the adder

LFSR. Therefore, the LFSR in the test was allowed to run for an additional two clock

cycles to develop a different number. The target was “0111” or LUT-7 (LUT-F in

Slice L1). The schematic of the circuit for identification of the appropriate LUT is

shown in Figure D.2. As with the adder, the output of the circuit will be incorrect

until the final stage of the LUT inversion is complete.

The configuration for the counter is similar to the adder because the initial

target LUT’s output is connected to two other LUT inputs. The major difference is

the sequential characteristics of the circuit. The adder is combinational; therefore,

the output is solely dependant on the inputs. The counter output is dependant on

the inputs and the current values stored in the FFs. For example, with an input

of en = 1 and reset = 0 the output can either be 0 (if the current value is 255) or

current output + 1. This plays an important part in the determination of how the

reconfiguration must be accomplished. If the reconfiguration is performed while the

circuit is in operation (i.e. en = 1 and reset = 0), the count will be disrupted and

the output will be unpredictable. Following the initial inversion, the output values

are seemingly random. Once the reconfiguration process is complete, the count will

resume correctly, but from whatever value was currently stored during the sporadic

operation. To remedy the situation, the count was halted (en = 0) for the entire
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reconfiguration process and resumed once the process was completed. The issues

related to continuous operation during the reconfiguration process are depicted in

Figure 4.5, while Figure 4.6 demonstrates proper operation of the circuit during the

reconfiguration.

Figure 4.5: Demonstration of the counter output errors due to operation of the
circuit during the reconfiguration process. The count value after 87 is a seemingly
random value based on the inverted initial target LUT. The output will continue to
be incorrect until the reconfiguration process is complete, at which time it will count
correctly from whatever value it happens to be when the reconfiguration is complete.

Figure 4.6: Demonstration of the proper method to reconfigure a sequential circuit.
The circuit is halted for the duration of the reconfiguration process. Because the LUT
inversion does not affect the storage elements (i.e. flip flops), the current value will not
change due to the reconfiguration. Once the reconfiguration is complete, the circuit
resumes standard operation.

The timing specifications for the counter circuit are identical to the adder given

the similar relationship between the target LUTs and the LUTs relying on the target

LUT output. The process takes a total of 69 clock cycles, with the first 23 not

impacting operation. Although the counter only had to be disabled for 46 clock cycles,
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it was disabled for the entire 69 clock cycles to clearly demonstrate the reconfiguration

process.

4.2.4 Comparator Reconfiguration. The comparator circuit differs from the

other two designs because the method used to reconfigure the circuit is the functional

replacement method, as opposed to the LUT inversion process used for the adder

and counter. The functional replacement reconfiguration completed successfully with

the final circuit operating as expected. For the purpose of functional replacement,

two schematically different, but functionally equivalent circuits were designed. Each

design accepts two 8-bit numbers and provides a 1 as output if the two numbers are

identical else the output is 0. The initial design is larger than the second and uses

different pins for input and output.

The first step in performing functional replacement reconfiguration is to locate

the boundary of the function to be replaced. In this case, the boundary includes

CLB-0 and CLB-1. The replacement design will occupy CLB-0 only and will not use

CLB-1 pins for output. Due to the shorter chain of LUTs for the input to output

travel, the results of the replacement improve the performance and provide output

obfuscation for security. The second design occupies less area and has less delay

than the original given a shorter data path. For security, the second design relocates

the output value consistent with spatial obfuscation. In this manner, any adversary

observing the output in a black box attack or general analysis would not receive the

correct output values following the reconfiguration. Any authorized system would

need to have knowledge of the inner workings and original circuit to anticipate the

output obfuscation.

4.3 Test Results

4.3.1 Test Results Overview. Every test completed successfully with regards

to correct circuit operation. In addition to ensuring that the reconfiguration does not

adversely affect the correct operation of the circuit, the affect of reconfiguration on
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circuit operation efficiency must be considered. The test circuits operate with a

negligible impact due to reconfiguration time overhead. The two circuits reconfigured

using the LUT Inversion method realized a 13.48% and .5284% loss in operational

efficiency for the adder and counter circuits respectively. Discrepancies between the

two circuits are due to the reduced time between reconfigurations for the counter

circuit. The functional replacement process resulted in increased performance due to

the consolidation of Comparator circuit functions.

The DRFPGA performed favorably when compared to the serial JTAG method

of reconfiguration implemented in conventional FPGA. The LUT inversion process

imposed the lowest penalties in time and power costs for reconfiguring circuits. This

is because the LUT inversion requires transmission of only 23 bits of data as opposed to

626 bits for the functional replacement method. The functional replacement method,

on the other hand, displayed lower penalties in power and speed than the JTAG

implementation when performing reconfigurations consistent with security DRFPGA

operations. It should be noted that the JTAG method is more efficient in power

and time for any CLB count that is a multiple of four because it does not incur the

addressing overhead of the functional replacement method. This value would change

for future, larger implementations of the DRFPGA to further favor the functional

replacement method over the JTAG due to a courser JTAG resolution for larger

FPGAs.

The addition of the functional replacement and LUT inversion hardware imposes

an area increase of less than 6%. This represents a negligible increase considering the

added functionality. A DRFPGA identical in size to a conventional FPGA with 60,000

CLBs would have 55,000 CLBs for operational functions.

4.3.2 Circuit Operation and Performance. Each circuit was tested in two

variations: pre and post reconfiguration. The initial and reconfiguration programming

was performed using the CLB addressable network. Each circuit is strictly diagramed

to provide an accurate portrayal of which individual FPGA components are used. This
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information dictates the delay and speed attributes of the circuit. All attributes were

derived using the Cadencer software suite. The longest path through the configured

circuit was determined and every component along the path is included in the results.

Because the FPGA allows loop-back connections, the software must be specifically

directed on which components are under analysis. These components are evaluated

individually and the results combined for the final value.

In addition to measuring the performance of the circuit itself, it is also necessary

to decide on the time between reconfigurations. The time for the adder is decided

by taking the maximum amount of time to discover the functionality and dividing it

by 10. This equates to reconfiguring the circuit one tenth of the way through any

black box analysis attack. The sequential circuit is significantly more complicated to

determine given a black box approach. For each possible combination (256 total) of

FF values, testing all possible input values is imperative. For the sequential circuit,

the time between reconfigurations is reduced to half of the total time to evaluate.

This equates to reconfiguring the circuit halfway through the black box test. Finally,

for the comparator circuit, the reconfiguration takes almost 100 times the clock cycles

that the LUT inversion needs due to the need for bitstream transmission. Therefore,

the time is half of the total time to discover the circuit.
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The final values indicate the LUT inversion process does not significantly impact

the system performance. Performance of the LUT inversion algorithm, however, does

impact the system as seen in the adder and counter operations per second values.

This is to be expected as alterations to the LUT contents will not add or subtract

from the components necessary in the data path, but any process taking clock cycles

from the primary operation will affect the overall performance. The primary use

of the LUT inversion is to provide a means of obfuscation of the circuit bitstream.

Additionally, the LUT inversion may be used in conjunction with LUT merging and

splitting algorithms to provide an evolutionary basis for system improvement. The

performance and capabilities of the LUT inversion algorithm meet the expectations

for this research effort. Because the LUT inversion process actually modifies the

LUT contents and bitstream, it also defends against readback or bitstream theft

vulnerabilities if the implementation is phased. If the first phase of a LUT inversion

is in operation while the second phase is in operation elsewhere in the circuit, then

the overall result is a bitstream that will not operate correctly without the exact

reconfiguration settings of the original circuit.

The functional replacement process impacts both the security stance and per-

formance of the circuit. In this example, the replacement circuit design is both faster

and requires a smaller area than the original design. The replacement circuit oc-

cupies less than half (42.8%) of the original design area. It is important to note

that even with the recurring reconfiguration, the overall performance in operations

per second is increased. In addition to saving space and time, the new design also

increases the security of the circuit by disguising the operation through spatial ob-

fuscation of the output. The initial design had the correct output on bit 20, bus

row0 CLB1 BUS 1 OUT. This was changed to bit 16 bus row0 BUS 0 OUT on the

reconfigured circuit. Not only is the valid data output relocated, but the original

output location now provides incorrect data. In this respect, the reconfiguration has

relocated the output (spatial obfuscation) and created a decoy circuit that will not

match the function output.
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4.3.3 DRFPGA Programming Network Performance. One of the key fea-

tures to consider regarding the implementation of additional hardware is the cost or

gain in power, area, and speed over the original design. The Cadencer software suite

was used to simulate the design fabrication given 90 nm technology so a new reconfig-

urable design can be conservatively compared to the original hardware. Two different

power attributes are measured: active and passive. The active power measurement

seeks to identify the power usage while the system is being (re)configured while the

passive measures the power leakage from the additional hardware during circuit oper-

ation, but not being configured or reconfigured. The speed of the device is measured

by taking the inverse of the maximum delay for a signal to travel from an input to an

output. In addition to the delay measurement, speed is also determined by the total

amount of steps necessary to perform a desired function. The area will be measured

as the difference or ratio of the original FPGA area and the DRFPGA area.

4.3.3.1 DRFPGA Power Usage. For the programming network, the

power measurement considers the JTAG capable control registers for the original

design and the complete control register programming network for the DRFPGA

design. Since the CLBs are not affected by the change in the CLB addressable array,

they are not considered for the measurement of the programming network power

usage. To properly figure the power ratio of the programming network over the

standard programming setup, the total time necessary to program using each method

must be considered along with the power usage of the method in use. The standard

method requires all control registers within a column to be in operation through the

entire serial transmission of the four CLB bitstreams. Given that each CLB requires

640 clock cycles to program, the total time amounts to 2,560 clock cycles to reconfigure

a column of CLBs. The programming network only requires one control register to

be in operation through a single CLB programming time span (640 clock cycles) in

addition to the programming network operating throughout the entire programming

period. Assuming that only one column of CLBs (four control registers) is used
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to perform a single CLB reconfiguration for the original JTAG method, the new

CLB addressable network consumes 8.29% of the power used by the standard control

register method while the circuit is reconfiguring a single CLB. There is, however, a

2.12% increase in the leakage power drawn by the device due to the addition of the

programming network. Since the design is a reconfigurable array, and will be in a

configuration state for most of the operation time, it is the desired outcome.

One case in which the power is equal or greater is any time the programming

network is used to load more than six CLBs. The relationship between power usage

and the number of CLBs configured are depicted in Figure 4.7. Because of the addi-

tional hardware implemented to allow granular reconfiguration, the overall efficiency

per CLB is lower than the original design for larger reconfigured CLB counts. Most no-

table are the multiples of four. Because the overall efficiency per reconfigured CLB is

higher for the JTAG implementation, any reconfiguration involving entire columns will

not realize benefits using the CLB programming network. Dynamic reconfiguration

for security applications typically will not target entire columns of CLBs; therefore,

the power usage for targeted applications still favors the CLB programmable network.

Additionally, the efficiency of larger CLB arrays will favor the programmable network

due to the coarser granularity of the JTAG programming selection. For example, a 16

x 16 CLB array would require approximately 4-W to reconfigure anything less than

17 CLBs. This gives the programming network the advantage on power usage up to a

configuration of 12 CLBs. Eventually, the goal is to fabricate the DRFPGA on a scale

comparable to Virtex4r designs of 30,000 CLBs. This size would definitely favor the

programmable network for granular security minded reconfigurations.

The LUT inversion network is expected to consume less power than either the

JTAG or programming network method of reconfiguration because it broadcasts a 4-

bit opcode instead of the 626-bit bitstreams used by the other methods. This comes

at a cost of reduced capabilities, i.e. the LUT inversion network is limited to issuing

LUT commands and cannot reroute data within CLBs or affect the FFs within the

CLBs. The concept of the LUT network is similar to the CLB programming network
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since a single element, in this case a LUT, is targeted for reconfiguration. The primary

difference between the two is the LUT issues a 4-bit LUT command as opposed to a

626 bit bitstream. This significantly reduces the power usage to reconfigure a CLB,

as evidenced by Figure 4.7.

Figure 4.7: The programming network is more efficient for reconfigurations involv-
ing less than four CLBs as well as five or nine CLB counts. Given the expected low
CLB reconfiguration count for security minded reconfigurations, the programmable
network displays favorable characteristics as far as power usage. The LUT inversion
network is preferable to the other methods for performing LUT inversions, but is more
limited in functionality

It should be noted that to reconfigure an entire CLB, the LUT inversion process

must actually reconfigure eight LUTs. Programming the LUTs incurs an overhead

of 23 clock cycles comprised of 16 for addressing the target LUT, four for the LUT

command, and three for the LUT to execute the command. The total time to address

a single LUT for reconfiguration in a column selectable JTAG configuration is 2,560

clock cycles. It is evident the LUT inversion method requires significantly less time

in terms of clock cycles, and consumes less power. The maximum power used by the

LUT inversion process to perform LUT inversion on every LUT within the FPGA
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is less than 0.5-W. This makes it the clear choice when attempting to perform a

LUT based reconfiguration method and highlights one of the advantages of granular

reconfiguration.

4.3.3.2 DRFPGA Area Usage. The overall size of the DRFPGA with

the programming network or LUT inversion network will be larger than the original

design. The absolute size and area increase attributable to the added reconfiguration

hardware is summarized in Table 4.2. Although the LUT inversion network is very

similar in design to the programming network, the overall area impact for implemen-

tation is higher due to the use of hardware in the CLBs used to route and store the

LUT inversion commands.

Table 4.2: Area values for the original circuit, LUT inversion network, and pro-
gramming network

Area Results
Size(µm2) Area Increase

Original Design 468,462 NA
LUT Inversion Network 16,955 3.62%
Programming Network 9,845 2.10%
LUT Inversion Network

and 26,800 5.72%
Programming Network

4.3.3.3 DRFPGA Time Usage. In addition to the power and space

requirements, it is important to consider the overall impact to the reconfiguration

time resulting from the implementation of the programming network. As discussed

in the power usage section, the programming network requires less clock cycles for

any operation where fewer than four CLBs are reconfigured. The synthesis results

obtained through the Cadencer software indicates the CLB programming network

can operate at a higher clock cycle than the control register hardware. To reconfigure

a CLB with the CLB programming network, the control register is used to store
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the values in the CLB; the results are compiled using the most conservative operating

frequency for both the programming network and the JTAG reconfiguration methods.

The operating frequency for the reconfiguration hardware is conservatively set at

350 MHz. The time required to perform reconfigurations for the JTAG and CLB

programming network are shown in Figure 4.8. The values displayed are in clock

cycles to provide a clear comparison. To put the overall time in perspective, at 350

MHz a complete configuration would occur in less than 34 µs.

Figure 4.8: The programming network is more efficient for reconfigurations on any
CLB count that is not a multiple of four. Given the expected low CLB reconfigura-
tion count for security minded reconfigurations and the low percentage of CLB counts
that are evenly divisible by four, the programmable network displays favorable char-
acteristics as far as time to reconfigure. The LUT inversion network is preferable to
either of the other methods for performing LUT inversions, but is more limited in
functionality

The programming network displays clear advantages for CLB counts that are

not multiples of four. The JTAG method reconfigures columns of four and it maintains

advantages for any multiple of four due to the addressing overhead imposed by the

programming network. The overhead amounts to 14 clock cycles per CLB and is
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not enough to offset the disadvantages of the JTAG method except for the few cases

discussed. For a larger design, the JTAG advantage would occur even less frequently.

In general, the JTAG method incurs less time overhead any time the total number

of CLBs to be reconfigured is an even multiple of the column size for the FPGA. For

the 16 x 16 FPGA example mentioned previously, the JTAG would reap advantages

in time for every value of x such that x = 16n with n being any integer.

The overhead for the LUT inversion network is even lower given the substan-

tially smaller (23 vs 626) amount of data bits necessary to perform the reconfiguration.

The overall time performance numbers for the LUT inversion network in comparison

to both the JTAG and addressing networks is depicted in Figure 4.8. As with the

addressing networks, the LUT inversion network is capable of higher operating fre-

quencies than the JTAG network but is purposely limited to the conservative estimate

of 350 MHz for ease of comparison. There are no cases where it would be more ef-

ficient to perform a LUT inversion process using either other method. It should be

noted the values in Figure 4.8 represent the clock cycles necessary to reconfigure an

entire CLB (eight LUTs).

4.4 Summary

Results from testing the DRFPGA verify that the added hardware for functional

replacement and LUT inversion offers a power and time benefit over the conventional

JTAG programming for security oriented operation. The most efficient means of per-

forming reconfiguration is through the use of the LUT inversion network. The other

methods of reconfiguring, JTAG or functional replacement, offer more functionality

than the LUT inversion network. Adding the hardware supporting dynamic reconfig-

uration also adds area to the overall DRFPGA design. The area penalty imposed by

the added reconfiguration hardware is negligible at less than 6%.
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V. Analysis and Conclusions

This chapter discusses the analysis of the results from the tests implemented in

Chapter 4 and provides conclusions based on the analysis. The tests have ver-

ified that the proposed DRFPGA platform yields a reliable method of implementing

proprietary designs. The CLB programming network is significantly more efficient in

time and power usage for reconfiguring the circuit for most situations related to secu-

rity minded dynamic reconfiguration. The addition of the CLB addressable network

does not render the original serial loading via JTAG boundary scan unusable in any

fashion; therefore, either method can be used to program the DRFPGA, allowing the

user to reap the benefits of both implementations.

In addition to providing a basis for reliable and efficient dynamic programming,

the DRFPGA design also enables users to secure designs against bitstream theft.

The tests validate the implementation of a phased defense using the LUT inversion

algorithm to obfuscate the bitstream. The concept behind the algorithm is key in

understanding the phased process, which can be substituted to yield similar results.

The functional replacement method of reconfiguration provides a means to protect

the design through input/output obfuscation.

5.1 Bitstream Protection

As presented in Chapter 2, the bitstream is a vulnerable and valuable target

for adversaries seeking to acquire FPGA implemented designs through illegitimate

means. The defenses in place for existing FPGA platforms can be circumvented

and do not adequately protect proprietary or critical circuits. By implementing the

phased defense system of LUT inversion, the designs implemented on the DRFPGA

render the bitstream inoperable if taken from the device. By overlapping the current

Phase 2 with the next algorithm iteration Phase 1, the bitstream itself, through the

configurations stored in the CLBs, is never accurate. As long as the output for the

CLBs being reconfigured are not being used by other CLBs during the reconfiguration
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process, the phased defense will not have an adverse effect on the accuracy of the

system output.

Figure 5.1 demonstrates how the phased defense is used to maintain an inac-

curate bitstream. A relatively small circuit is used to demonstrate the process on

the test circuits visually is not reasonable and will not convey the information. The

sample circuit is shown in six discrete stages of reconfiguration. The original circuit

stage shows the initial circuit program. Each box represents a two input single output

LUT with the stored values under the LUT label. The top input represents input-0

and the lower input-1. Each reconfiguration is performed in two phases, as outlined

in the previous chapter and in Appendix B. During the second phase of an inversion,

the next inversion begins its first phase. Since the output of any LUT is incorrect as

of completion of Phase 1 (before completion of Phase 2) and there is always at least

one LUT completing Phase 1, the bitstream is always incorrect. For the example, the

reconfiguration is halted after four iterations (after iteration D) to demonstrate that

the final circuit is correct. One drawback to working in the LUT realm is that the

circuit cannot be translated directly back to a gate level implementation. Before the

reconfiguration, each LUT within the example circuit can be expressed as a single

gate. After the reconfiguration, LUT-6 and LUT-8 can no longer be expressed as

single gate functions.

In order to properly interpret the results of the circuit, a user must have knowl-

edge of the initial circuit content and the order, timing, and current state of the circuit.

If any of this information is not available, then the current circuit contents cannot

be positively determined. Since the LUT inversion algorithm’s strict adherence to a

set of rules, a user with order and timing information can determine which outputs

are valid and which outputs are not. The information may be presented as an initial

circuit schematic (interconnected LUTs), LUT inversion phases start every 10ns, and

LUT reconfiguration order based on an 8-bit LFSR with key of 01001100. While this

particular information does not pertain to the circuit below, it is an example of the

information necessary to properly determine the accurate output of the circuit.
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5.2 Reverse Engineering Defense

In addition to the threat of system compromise via bitstream theft, there also ex-

ists the risk of adversarial analysis and tampering using reverse engineering techniques

such as black box or power analysis. The functional replacement reconfiguration has

shown proficiency in obfuscating the output of a circuit. While the functional replace-

ment method can be used to place modules that are identical in input and output

locations to maintain functionality, the output and input can be relocated on the

replacement module to provide the obfuscation.

The higher-level abstraction for the functional replacement as compared to the

LUT inversion (CLBs instead of LUTs) provides the means to alter the input and

output routing. Figure 5.2 shows an example of the actual test comparator pre and

post reconfiguration.

Figure 5.2: Demonstration of the functional replacement method of obfuscating the
input and output of a given circuit. The original circuit is replaced with a smaller
module with differing input and output locations.
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The original circuit uses two CLBs to implement a comparator function. The

inputs are divided between two different input buses, with the lower four bits from

both A and B placed on a bus together and the upper four bits placed together on

a different input bus. The output is provided as a single bit indicating whether A

equals B (1 if they are equal, else 0). Since the functionality is divided between

two CLBs, there is an intermediate value passed from the first CLB to the second.

Following the functional replacement, the input bits are moved between the two input

buses. Where the bits were divided evenly by input value rank, they are divided in

a seemingly random configuration (0,1,4,5 input bit positions on one bus and 2,3,6,7

input bit positions on the other). In addition to moving the input value locations,

the output has been relocated from an output bus on the second CLB to a different

bus on the first CLB. The bus that originally carried the intermediate value is now

disconnected and has the value Z for high impedance on all the bus bits. The second

CLB is programmed to output a 1 if it receives a Z as input. The second CLB is now

disconnected and any adversary monitoring the circuit will receive a valid, if incorrect,

value.

Interpreting the results of a functional replacement reconfigured circuit is more

difficult than the LUT inversion reconfiguration. The functional replacement pro-

cess is not a clearly defined algorithm, but more of a method of using the CLB

programming network to target specific CLBs for reconfiguration. Therefore, a user

would need to have knowledge of the replacement modules, location of replacement,

and timing of replacement. The timing and location can be compared to the order

(identifying which LUT or module is being reconfigured) and timing as discussed in

the LUT inversion discussion above. The replacement module information, however,

would have to include every module that could possibly be used to replace an existing

function. This adds complexity to the process, but also provides a substantial amount

of flexibility for creating various obfuscated functions.
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5.3 Circuit Protection Effectiveness

Although the algorithms and concepts provided have a wide variety of appli-

cations throughout the reconfigurable design realm, the focus of this research is the

applicability towards protecting circuits implemented on the DRFPGA. For each vul-

nerability discussed in Chapter 2, there is a method to address it using LUT inversion,

function replacement, or both.

5.3.1 Bitstream Interception. Even with the encryption employed for the

transmission of bitstream data from off-chip storage to the FPGA, there is still the

chance that an adversary could compromise the bitstream if they were able to cap-

ture the information during transmission. If the adversary were able to obtain the

encryption key from the FPGA device, then compromise of the bitstream information

would be nearly certain.

To combat the theft and use of a bitstream from the proposed DRFPGA, a

programmer can implement the LUT inversion algorithm to provide a mangled bit-

stream. If the stored bitstream is in a state halfway through the reconfiguration of a

CLB (completed Phase 1), the bitstream would not be usable on a standard FPGA

or a DRFPGA without the knowledge of the order and current state for the recon-

figuration. The bitstream itself is keyed to the DRFPGA design and the current

reconfiguration state information. Also, the key is dynamic because the current state

changes with every reconfiguration. By encrypting the bitstream and including the

LUT inversion protection, the bitstream is adequately protected from unauthorized

acquisition.

5.3.2 Fault Injection. By injecting faulty signals at the circuit inputs, ad-

versaries are able to impact the successful accomplishment of circuit functions. This

is particularly evident in functions such as encryption algorithms that require multi-

ple iterations to achieve their full effect. It is not a trivial matter to target functions

using fault injection as the adversary must have knowledge on the timing, inputs,
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and overall functions that are being targeted. By using the functional replacement

algorithm, the DRFPGA device can minimize the potential impact of fault injection

techniques. Users can choose to modify the location of input and output pins, deny-

ing any adversary a static target for injection faults. Not only can the functional

replacement method provide a means of relocating inputs and outputs, but a user

could also implement a sequential circuit to replace a combinational circuit, tempo-

rally obfuscating the output by shifting it one or multiple clock cycles from where it

originally became available.

The LUT inversion algorithm also assists in defending against Fault Injection.

Since LUTs are chosen at random for reconfiguration, adversaries have no knowledge

of which LUT may be in the process of reconfiguring. Also, if the fault injection is

being performed mid-circuit (as opposed to from the input) using probes, then the

attacks are more difficult. After Phase 1 of the LUT inversion reconfiguration, a LUT

output that was 1 for a given input will now have an output of 0. If the adversary is

attempting to insert an incorrect value to influence the outcome of a circuit operation,

the inverted LUT will counter that threat.

5.3.3 Passive Circuit Analysis. Using passive circuit analysis, adversaries

can attempt to map the functions contained within an FPGA design. Passive analysis

may include electromagnetic or thermal observation and input or output monitoring.

When multiple observations are combined, the composite picture may provide a rea-

sonable understanding of the circuit functionality enabling more malicious attacks.

One of the primary requirements for successful passive analysis is a pattern of ac-

tivity or readings. Patterns are needed to establish a common response to values or

timing of inputs. Both the LUT inversion and functional replacement are beneficial

in combating passive analysis of circuits by denying the adversaries a static target.

Any process that alters the composition of the circuit is beneficial to countering

the threat of successful circuit mapping with passive analysis. The functional replace-

ment process provides an extremely flexible manner in which to modify the makeup

85



of the circuit. As in the comparator circuit reconfiguration, inputs and outputs can

be re-mapped to different locations. Passive analysis can be used to spatially or tem-

porally locate functionality. For either case, the relocation of the circuit input and

output pins will render any further analysis useless. For example, if an adversary is

monitoring the output of the comparator test circuit to map the functionality, then

once the circuit has been reconfigured, they will be monitoring the wrong output.

Even if they were to locate the current input pin, they would need to re-accomplish

all previous tests as the input pins have been relocated as well. The comparator is a

relatively simple circuit having only 16 inputs (eight for A and eight for B) and a sin-

gle output. For a simple example like the comparator, the task of completely mapping

the circuit requires the analysis of 216 or 65,536 different input combinations. While

this task is within reach of most adversaries the addition of a reconfiguration that

occurs every 16,000 or even 32,000 clock cycles makes the process significantly more

difficult. Additionally, electromagnetic or thermal observations also provide mislead-

ing data when the core functionality (or the parts that give off the highest readings in

both electromagnetic or thermal energy) is relocated to a different physical location

within the FPGA. By moving the functionality to different locations throughout the

circuit operation, the adversary is left guessing the actual circuit arrangement after

each reconfiguration.

The LUT inversion algorithm is more limited in the protection against passive

analysis than the functional replacement, but is not without its own advantages.

Since the reconfiguration does not seek to alter the location of input and output

pins, reconfiguration will not provide the same displacement and spatial obfuscation

advantages as the functional replacement system. The LUT inversion does provide

the advantages of modifying intermediate signals between inversion LUT phases. If

an adversary is attempting to monitor a signal between LUTs, and the first LUT is

inverted (Phase 1 of the LUT inversion process), they will unknowingly capture data

inconsistent with the correct operations.
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5.3.4 Altered Bitstream Attack. In the altered bitstream attack, adversaries

attempt to modify the operation of an FPGA by mangling the bitstream itself. The

target opportunity occurs during transmission of the bitstream from the off-chip stor-

age to the actual FPGA. Modification of the bitstream potentially exposes design,

state, or critical encryption data from the device registers.

Although the bitstream must remain somewhat similar to the original design,

the functional replacement process can provide defense against the altered bitstream

attack. The algorithm must identify the boundary and function of the targeted mod-

ule(s) for replacement. If the bitstream has been altered beyond a certain point,

existing modules cannot be positively identified due to input and output combina-

tions outside of the limits of recognition or a system boundary that has been increased

to where it no longer falls within the range accepted during the boundary identifica-

tion step. For example, if the original circuit contains a 4-bit ripple carry adder and

the functional replacement system can identify this adder and replace it with an ob-

fuscated output ripple carry adder or carry look ahead designs, the altered bitstream

significantly changes the adder functionality and the altered outputs will defy identi-

fication by the system. As well, if the adder is maliciously altered to consume three

CLBs instead of two, the replacement process will not consider the entire adder when

identifying the boundary without a robust boundary identification system. This situ-

ation addresses the importance of implementing an intelligent boundary identification

and input/output analysis system as opposed to a system that operates strictly from

precompiled modules. If the system is able to identify the altered adder, it can re-

place the malicious module with a known good implementation denying the adversary

information or operation sought through tampering with the bitstream.

5.3.5 Bitstream Readback. To exploit the bitstream readback vulnerability,

an adversary must first bypass the bitstream security measures implemented on most

current FPGAs. An example of a security measure is the security bit on the Xilinxr

Virtex4r . In order to download the bitstream from the FPGA, the security bit
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must be set to allow readback. Chapter 2 discussed methods found to be successful

in altering the value of storage bits using radiation and/or optical energy. Therefore,

the security bit should not be considered a failsafe method of protecting compromise

of the bitstream data.

The LUT inversion algorithm provides a reasonable defense against the bit-

stream readback attack. Given the phased operation of the algorithm, the bitstream

stored on the device always contains incorrect information causing the overall cir-

cuit to operate in an unpredictable manner. The random selection of target LUTs

combined with the use of a key to initiate the LFSR used to provide the random

target deny the adversary a reliable method of gauging which LUT is currently in

failure state. Therefore, the downloaded bitstream would not function correctly if

downloaded to another FPGA. The key to successful operation is the storage of cur-

rent state information. Without the state information, an adversary cannot use the

bitstream in the event that it is recorded from the device.

5.4 Summary

The data collected on the DRFPGA operation confirms the platform is a valid

architecture for protecting the operation and security of circuits. Implementation of

the methods provided in this thesis alleviate substantial risks posed to FPGA designs.
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VI. Future Research

This chapter provides ideas as to the direction of future research into dynamic

reconfiguration for security minded applications. Although the current research

has provided a solid, reliable platform supporting dynamic reconfiguration and cellular

autonomy, future research will yield a completely self-contained DRFPGA capable of

controlling the dynamic reconfiguration with no user intervention.

6.1 Autonomous Secure DRFPGA Platform

Future research must continually investigate security applications. The DRF-

PGA requires significant user interaction to perform the reconfigurations. In the

future, reconfiguration commands issued through the VHDL test bench files must

be handled by on-board computational resources. The Xilinxr Virtex4r provides

PowerPCr microprocessor cores on-chip and can run programs created to automate

the reconfiguration processes. Once initially programmed, the DRFPGA will require

no interaction from a human interface except for updating, reprogramming, or repair.

By containing all resources needed for reconfiguration on-chip, the security of

the device is greatly improved over issuing commands from off-chip. Additionally, self

contained units can be integrated with tampering detection methods to prevent unau-

thorized disclosure. Upon tampering detection, critical components can be erased.

6.2 Biological Computing

The LUT inversion algorithm is one example of the many uses for DRFPGAs ca-

pable of cellular autonomy. Evolutionary computing focuses on replicating biological

developments in hardware and software. By controlling the function and programming

of the DRFPGA at the lowest reconfigurable level (LUTs), the DRFPGA achieves

the required granularity. Because the LUT inversion functionality is built-in at the

LUT level, it opens the path for any number of functions to be added or substituted

relatively easily.
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In addition to the current hardware, the addition of cross talk between LUTs

(aside from the data network) could also greatly benefit the DRFPGA as an evolu-

tionary platform. Eventually, the completed device could be programmed and left

unattended. Given an ability to monitor performance, the potential exists to de-

velop designs that achieve unique, valuable attributes through development outside

the strict processes used by human programmers.

Insect swarming simulations are another example of biological computing. Using

the granular programming capability of the DRFPGA and relatively simple decision

making programs within the LUTs, the DRFPGA can be used to model select aspects

of swarm psychology.

6.3 Reliability and Self-healing

System hardware is not always in an easily accessible location. Devices may be

in place deep within the ocean, in remote locations far from civilization, or even in

space. In these situations, maintainers are not able to access the systems for repair

if a circuit should become inoperable. Therefore, it is important to build reliable

designs capable of operating in extreme environment conditions. Current methods of

increasing reliability include electromagnetic shielding, remote access for repair, and

Triple Modular Redundancy (TMR). Shielding serves to protect the device through

physical means designed to limit exposure to harmful radiation. Remote access is

often provided via satellite data links, Internet connections, or even dedicated data

lines. TMR is a method of increasing reliability using redundant circuits. The circuits

process the same input and provide output to a voting logic module. Based on whether

or not the outputs agree, the voting logic selects the output that is most common

among the three outputs received.

Using the proposed design, the opportunity exists to create a self-healing plat-

form for use in inaccessible locations. The functional replacement method of recon-

figuration can be used to replace faulty modules with known-good versions stored on

or off chip. In addition, certain modules may be more resistant to external variables
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than other, identical functioning modules. In this way, a circuit can be dynamically

configured and tailored to a specific environment.

6.4 Defragmentation and Self-Optimizing

Hardware implementations may incur performance penalties with regards to

fragmented construction and un-optimized designs. Once programs have been down-

loaded to an FPGA, the design is not automatically measured for performance or

efficiency. FPGAs do not have capabilities in place to reconfigure the circuit during

operation even if the performance can be measured to identify shortcomings. The

process of evaluating operational circuits and reprogramming based on defragmented

or optimized programs is time-consuming and, in some cases, not feasible.

The DRFPGA design proposed in this research can be used to perform de-

fragmentation and optimization. With on-board circuit evaluation capabilities, the

DRFPGA can be configured as an autonomous, self-optimizing platform. This offers

a unique capability not currently available in the field.

6.5 Summary

Although this thesis focused on the DRFPGA for security applications, it also

provides a framework supporting a variety of other applications. The flexibility of

the design comes in its dynamic reconfiguration capabilities as well as the granular

programming capabilities. Any design requiring dynamic reconfiguration can benefit

from the proposed design methodologies.
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Appendix A. CLB Schematic

The following schematic demonstrates the layout of a single CLB without includ-

ing the actual data/programming routing information. The CLB represents the

fundamental component of the FPGA design.

Figure A.1: Schematic of a CLB as based on the schematics of the Xilinxr

Virtex4r FPGA [2].
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Appendix B. LUT Inversion Algorithm

This appendix documents the steps to perform the LUT inversion algorithm for

reconfiguration. Before proceeding with the bubble pushing description, there

are some basic attributes and definitions for the circuit that must be outlined.

• All of the LUTs are of the same size with 2n one bit entries, n input lines, and

one output.

• LUTs are connected in a hypergraph configuration with nodes (LUTs) and ver-

tices (data lines between LUTs).

• LUTs have an absolute identification obtained by levelizing the circuit. A LUT’s

level is one greater than the highest level LUT feeding it. LUTs connected to

the circuit inputs only have a level of 0.

• LUTs are also identified in a relative manner. Given any two LUTs connected

together via data lines, the LUT providing the input is LUT- and the LUT

accepting the output of LUT- as an input is LUT+.

The bubble pushing step of the reconfiguration is accomplished in a total of

four steps split into two stages. The first stage involves selecting and inverting an

arbitrarily chose LUT other than a LUT whose output is directly connected to an

external devices not include in the reconfiguration.

Stage 1:

1. Step 1: Select 2n entry LUT within the circuit for initial bubble push

2. Step 2: Invert all entries, 0 through 2n−1, within the LUT

For the second stage, the following steps must be accomplished for every LUT+

connected to the initial LUT inverted in stage 1. For reference, the initial LUT will

be referred to as LUT- and the input line connected to the output of LUT- will be

input x as counted from least to most significant of the input lines (which may be a

different line for each LUT+).
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Stage 2:

1. Step 3: Given the input, x, that the LUT- connects to on LUT+, partition the

entries in LUT+ into equal segments of size 2x (for example, if the LUT- output

is connected to input 2 on LUT+ then you would partition the entries in LUT+

into segments of size 22 or 4)

2. Step 4: Exchange the contents of neighboring segment pairs starting with 0,1.

For example, segment 0 and 1 exchange contents, then 2 and 3, 4 and 5, 6 and

7, etc.

The following figures demonstrate the LUT inversion algorithm through the

reconfiguration of a 7 LUT specialized counter circuit. There are a total of 16 inputs

to and 3 outputs from the circuit. The inputs are sectioned into four sets of four

inputs each. The goal is to count how many of the four sets have at least two 1’s

on the inputs. The circuit can be broken down into two different levels, labeled as

Layer 1 and Layer 2 in the diagrams. All of the Layer 1 LUTs are LUT-’s as defined

in the previous description of the algorithm. Conversely, the LUTs in Layer 2 are all

LUT+’s.

As discussed in the process description previously, the next step will involve

exchanging neighboring segments of LUT values. The size of the segments is dictated

by the input that is connected to LUT-. Since the LUTs in use have four inputs, the

largest segment size is 20 or 8.

The circuit from the example was implemented in VHDL for the purpose of

functionally testing the original and reconfigured configuration. The VHDL code can

be found in Appendix D. For this test, each of the layer 1 LUTs are inverted followed

by the execution of the stage 2 steps on the layer 2 LUTs. The results support the

fact that the operation has not been altered due to the reconfiguration. The test

results are available in Figure B.5
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Figure B.1: Sample circuit for LUT inversion demonstration. Layer 1 LUTs are
LUT-’s as referenced above whereas the Layer 2 LUTs are LUT+’s. The three bit
Count value will express the number of input sets (as connected to the input LUTs
in layer 1) that have at least two “1” values on the input.
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Figure B.2: Demonstration of steps one and two of the LUT inversion algorithm.
LUT 0 is chosen as the target LUT for inversion and the values are inverted (step 1
and 2).
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Figure B.3: Demonstration of steps three and four of the LUT inversion algorithm.
LUT 0 is connected to LUT 4 on input 0, LUT 5 on input 1 and LUT 6 on input
3. Therefore, neighboring segments of size 20 (LUT 4), 21 (LUT 5), 23 (LUT 6) are
swapped. The LUT values on the right represent the final LUT configuration.
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Figure B.4: The final product of performing the LUT inversion algorithm on LUT
0. Every LUT in layer 2, connected to the output of LUT 0, has altered values within
the LUT.
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Appendix C. Test Circuit LUT Contents

The following tables specify the LUT contents for implementing the test circuits.

Table C.1: Ripple Carry Adder LUT Values. All slices have the same values for
the F and G LUTs. The general makeup is based on the chaining of 8 single bit full
adders as outlined in Appendix D.

8 Bit Adder LUT Contents
Bits 0-7

Input 0 Input 1 Input 2 Input 3 LUT F Values LUT G Values
A B CIN Not Used COUT SUM

0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 1
0 0 1 1 0 1
0 1 0 0 0 1
0 1 0 1 0 1
0 1 1 0 1 0
0 1 1 1 1 0
1 0 0 0 0 1
1 0 0 1 0 1
1 0 1 0 1 0
1 0 1 1 1 0
1 1 0 0 1 0
1 1 0 1 1 0
1 1 1 0 1 1
1 1 1 1 1 1
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Table C.2: Counter LUT Values. All slices have the same values for the F and G
LUTs. The general makeup is based on the chaining of 8 single bit counters with a
“carry in” from the previous bits indicating when all previous bits are ‘1’as outlined
in Appendix D. When all previous bits are ‘1’, the current bit flips. For bit 0, the
output toggles every clock cycle.

8 Bit Counter LUT Contents
Bits 0-7

Input 0 Input 1 Input 2 Input 3 LUT F Values LUT G Values
All previous bits Enable Q(t) Reset Q(t+1) All previous and

= ‘1’ Count Count current bits = ‘1’

0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 1
0 0 1 1 0 0
0 1 0 0 0 0
0 1 0 1 0 0
0 1 1 0 0 1
0 1 1 1 0 0
1 0 0 0 0 0
1 0 0 1 0 0
1 0 1 0 1 1
1 0 1 1 0 0
1 1 0 0 0 1
1 1 0 1 0 0
1 1 1 0 1 0
1 1 1 1 0 0
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Table C.3: Comparator LUT Values for stage 1 of the comparator operation. All
slices have the same values for the F and G LUTs. There are 4 slices (8 LUTs) in
stage 1 of the comparator process. Each Slice compares two concurrent input value
pairs, Ax−1 = Bx−1 and Ax = Bx for x = 2n : n = 0, 1, 2, 3.

8 Bit Original Comparator LUT Contents
Bits 0-7 Stage 1 LUT Contents

Input 0 Input 1 Input 2 Input 3 LUT F Values LUT G Values
Ax Bx Ax+1 Bx+1 Ax = Bx Ax+1 = Bx+1

0 0 0 0 1 1
0 0 0 1 1 0
0 0 1 0 1 0
0 0 1 1 1 1
0 1 0 0 0 1
0 1 0 1 0 0
0 1 1 0 0 0
0 1 1 1 0 1
1 0 0 0 0 1
1 0 0 1 0 0
1 0 1 0 0 0
1 0 1 1 0 1
1 1 0 0 1 1
1 1 0 1 1 0
1 1 1 0 1 0
1 1 1 1 1 1
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Table C.4: Comparator LUT Values for stage 2 of the comparator operation. All
slices have the same values for the F-LUTs and G-LUTs. The LUTs are configured in
a hierarchical design wherein the previous matches are, themselves matched. In this
manner, any pair of original inputs that do not match will cause the final value to be
0. The slice names are listed in the top row to designate which slice handles which
level of the hierarchy.

8 Bit Original Comparator LUT Contents
Bits 0-7 Stage 2 LUT Contents

Slice Input 0 Input 1 Input 2 Input 3 LUT F Values LUT G Values
M0 A1 = B1 A5 = B5 A0 = B0 A4 = B4 A4−5 = B4−5 A0−1 = B0−1

M1 A3 = B3 A7 = B7 A2 = B2 A6 = B6 A6−7 = B6−7 A2−3 = B2−3

L0 A0−1 = B0−1 A2−3 = B2−3 A4−5 = B4−5 A6−7 = B6−7 A4−7 = B4−7 A0−3 = B0−3

L1 A0−3 = B0−3 A4−7 = B4−7 ‘1’ ‘1’ NA A=B

0 0 0 0 1 1
0 0 0 1 1 0
0 0 1 0 1 0
0 0 1 1 1 1
0 1 0 0 0 1
0 1 0 1 0 0
0 1 1 0 0 0
0 1 1 1 0 1
1 0 0 0 0 1
1 0 0 1 0 0
1 0 1 0 0 0
1 0 1 1 0 1
1 1 0 0 1 1
1 1 0 1 1 0
1 1 1 0 1 0
1 1 1 1 1 1
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Table C.5: Comparator LUT Values for the functional replacement comparator,
phase 1. The overall size of the comparator is reduced to 3 from the 8 used for the
original design. All slices have the same values for the F-LUTs and G-LUTs, the
only difference being the inputs fed to the LUT. The general layout consists of the
first two LUTs, which compare eight pairs of bits from the input and the third LUT,
which outputs a 1 if all the pairs match and a 0 otherwise. The LUT relationship is
graphically demonstrated in Appendix D.

8 Bit Replacement Comparator LUT Contents
Bits 0-7 Stage 1 LUT Contents

LUT Input 0 Input 1 Input 2 Input 3 LUT Values
G A0 B0 A1 B1 A0 = B0 and A1 = B1

F A2 B2 A3 B3 A2 = B2 and A3 = B3

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1
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Table C.6: Comparator LUT Values. The Stage 2 is contained completely within
the G-LUT of a single slice (the L0 Slice). The LUTs are configured in a hierarchical
design wherein the previous matches are, themselves matched. In this manner, any
pair of original input matches that are false cause the final value to be 0.

8 Bit Replacement Comparator LUT Contents
Bits 0-7 Stage 2 LUT Contents

Input 0 Input 1 Input 2 Input 3 LUT G Values
A0−1 = B0−1 A2−3 = B2−3 A4−5 = B4−5 A6−7 = B6−7 A = B

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1
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Appendix D. Test Circuit Schematics

This appendix documents the test circuit schematics using CLB functional block

diagrams. Each circuit is specified as to the LUT and routing usage.
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Figure D.1: Test circuit for 8-bit adder, bits 0-7 and the carry in. The 4-bit adder
can be implemented using this circuit and taking the outputs for the first four bits of
the 8-bit adder and using the single bit carry signal as the final carry out.

107



Figure D.2: Test circuit for 8-bit counter. A 4-bit counter can be implemented
using this circuit and taking the outputs for the first four bits of the 8-bit adder.
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Figure D.3: Test circuit for 8-bit comparator. This is the original circuit before the
functional replacement reconfiguration. Figure D.4 demonstrates the post functional
replacement circuit.

109



Figure D.4: Test circuit for 8-bit comparator circuit used for functional replacement.
This circuit, housed in a single CLB, replaces the original circuit found in Figure
D.3. In addition to reducing the total resources needed for circuit implementation,
the replacement circuit also spatially obfuscates the output by placing it on a different
output bus/pin (bit 16 on Bus 0 instead of bit 20 on Bus 1).
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Appendix E. JTAG Programming Network Example

The following appendix serves to provide a simple example of a JTAG program-

ming network. The example below illustrates the overall arrangement of the

boundary scan cells and their relationship to the CLB control registers.

The JTAG Network programs the FPGA CLBs in a serial, sequential manner.

Each CLB control register is connected to the other control registers along a 1-bit wide

serial data path. For the example demonstrated in Figure E.1, the control registers

each hold 626 bits per CLB for the bitstream.

Figure E.1: A simplified, abstract example of a JTAG programming network for
an eight CLB FPGA.

The connection to the serial data path is made through a boundary cell, which

permits selection of programming or operating modes and contains logic circuits to

facilitate the passing of data through the data path to other boundary cells. The

JTAG boundary scan cell is described in more detail in Chapter 2. The following

steps are followed to accomplish the programming process (some steps/components

omitted for clarity).
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1. The boundary cells are configured for “pass-through” operation. Chapter 2

contains more data on the specifics of this configuration method.

2. The ShiftDR clock is used to pass the current data stream along the JTAG

Network. Once the entire data stream is loaded into the JTAG Network, each

boundary cell will contain one bit (which is the first bit to be loaded into the

control registers). The process requires one clock cycle per boundary cell in the

JTAG Network.

3. Once the boundary cells have their bit of information, the UpdateDR clock

is used to latch the data into the most significant bit of the control registers,

shifting the data downwards (from most to least significant) similar to a shift

register.

4. The previous steps are repeated for each bit within the bitstream. For exam-

ple, the FPGA developed for this research effort would require the steps to be

repeated a total of 626 times.
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Appendix F. CLB Addressable Programming Network Example

The following appendix serves to provide a simple example of the CLB address-

able network. The LUT inversion network is nearly identical with the exception

of more addressing capabilities through the sub-routers (due to the fact that there are

eight times as many LUTs as CLBs) and the substitution of LUT inversion registers

instead of the control registers. The example below illustrates the overall arrangement

of the chains, routers, and end registers.

The CLB addressable network programs the FPGA CLBs in random access

manner. Each CLB control register is connected to a dedicated line from a sub-router

module. For the example demonstrated in Figure F.1, the control registers each hold

626 bits per CLB for the bitstream. In the case of the LUT inversion network, the

registers would store a total of four bits each for the LUT inversion command.

Figure F.1: A simplified, abstract example of a CLB addressable programming
network for a 16 CLB FPGA.

Any single CLB Control Register can be targeted for programming by using

an addressing system. For example, the CLB Control Register marked with the star

corresponds to an address of ”1010” (Channel router ‘1’, Sub Router ‘0’, CLB Control

Register “10”). Each Channel Router has a “chain” of Sub Routers connected to it

which, in turn, have 4 CLBs connected to them. The process of programming a
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selected CLB Control Register involves the following steps (some components/steps

omitted for clarity).

1. The network is issued a “reset” command.

2. The address is sent along the serial data line. Each Channel Router examines

the first bit to determine whether the final target CLB falls within its chain.

3. If the Channel Router’s chain contains the target CLB, then the data stream

(minus the Channel Router address portion) is broadcast to the Sub Routers

falling within the chain.

4. The Sub Router examines the first bit it receives (but the second bit of the data

stream overall) to determine whether the final target CLB is one of the four

connected to it.

5. If the Sub Router is connected to the target CLB, then it reads the next two

bits from the data stream to determine which CLB will receive the data.

6. Once the target CLB is determined, the data for that CLB is broadcast along

the CLB Addressable Network.

7. For example, in order to store the data stream ”0101” at the Control Register

marked with the star, the following bitstream would be passed through the

Serial Data In: “10100101...” where the first four bits represent the CLB Control

Register address and the remaining 626 bits represent the data to be stored at

the target CLB Control Register.
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