
Clemson University
TigerPrints

All Theses Theses

12-2018

Hardware Obfuscation for Finite Field Algorithms
Ankur A. Sharma
Clemson University, ankuratsh15@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Sharma, Ankur A., "Hardware Obfuscation for Finite Field Algorithms" (2018). All Theses. 3013.
https://tigerprints.clemson.edu/all_theses/3013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clemson University: TigerPrints

https://core.ac.uk/display/268676768?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3013&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3013&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3013&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3013&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/3013?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3013&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Hardware Obfuscation for Finite Field
Algorithms

A Thesis
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science
Computer Engineering

by
Ankur A Sharma
December 2018

Accepted by:
Dr. Yingjie Lao, Committee Chair

Dr. Richard R Brooks
Dr. Adam Hoover

Abstract

With the rise of computing devices, the security robustness of the devices has

become of utmost importance. Companies invest huge sums of money, time and effort

in security analysis and vulnerability testing of their software products. Bug bounty

programs are held which incentivize security researchers for finding security holes

in software. Once holes are found, software firms release security patches for their

products.

The semiconductor industry has flourished with accelerated innovation. Fab-

less manufacturing has reduced the time-to-market and lowered the cost of produc-

tion of devices. Fabless paradigm has introduced trust issues among the hardware

designers and manufacturers. Increasing dependence on computing devices in per-

sonal applications as well as in critical infrastructure has given a rise to hardware

attacks on the devices in the last decade. Reverse engineering and IP theft are major

challenges that have emerged for the electronics industry.

Integrated circuit design companies experience a loss of billions of dollars be-

cause of malicious acts by untrustworthy parties involved in the design and fabrication

process, and because of attacks by adversaries on the electronic devices in which the

chips are embedded.

To counter these attacks, researchers have been working extensively towards

finding strong countermeasures. Hardware obfuscation techniques make the reverse

ii

engineering of device design and functionality difficult for the adversary. The goal

is to conceal or lock the underlying intellectual property of the integrated circuit.

Obfuscation in hardware circuits can be implemented to hide the gate-level design,

layout and the IP cores.

Our work presents a novel hardware obfuscation design through reconfigurable

finite field arithmetic units, which can be employed in various error correction and

cryptographic algorithms. The effectiveness and efficiency of the proposed methods

are verified by an obfuscated Reformulated Inversion-less Berlekamp-Massey (RiBM)

architecture based Reed-Solomon decoder. Our experimental results show the hard-

ware implementation of RiBM based Reed-Solomon decoder built using reconfigurable

field multiplier designs. The proposed design provides only very low overhead with

improved security by obfuscating the functionality and the outputs. The design pro-

posed in our work can also be implemented in hardware designs of other algorithms

that are based on finite field arithmetic. However, our main motivation was to target

encryption and decryption circuits which store and process sensitive data and are

used in critical applications.

iii

Dedication

To my parents and my sister for their love and support, and to my advisor for

his patience and faith in me.

iv

Acknowledgments

I would first like to thank my advisor Dr. Yingjie Lao of the Holcombe De-

partment of Electrical and Computer Engineering at Clemson University. Professor

Lao always had his door open for me whenever I ran into a trouble or faced any major

or minor obstacle in my research. He consistently allowed me to work on this research

as my own work, providing me the necessary independence but at the same time also

guided me and steered me in the right direction whenever he felt the need to do so.

I would also like to thank Dr Xinmiao Zhang of the Department of Electrical and

Computer Engineering at the Ohio State University who guided me in understanding

some of the difficult concepts and pointed out the mistakes I did while progressing in

my research.

I would also like to acknowledge Dr. Richard R Brooks and Dr Adam Hoover

of the Holcombe Department of Electrical and Computer Engineering at Clemson

University who were involved in the validation of this research project and were the

second reader of this thesis. I am gratefully indebted to both of them for their valuable

comments on this thesis.

Finally, I express my profound gratitude to my parents and the people around

me for providing me with unfailing support and continuous encouragement throughout

my years of education and through the process of researching and writing this thesis.

This accomplishment would not have been possible without them.

v

Thank you.

vi

Table of Contents

Title Page . i

Abstract . ii

Dedication . iv

Acknowledgments . v

List of Tables . ix

List of Figures . x

1 Introduction . 1
1.1 Hardware Attacks . 2
1.2 Hardware Security . 7
1.3 Cryptography and Error Correcting Codes 8
1.4 Contribution and Thesis Organization 8
1.5 Thesis Overview . 9

2 Hardware Obfuscation . 11
2.1 Importance of Hardware Obfuscation 11
2.2 Recent Work in Hardware Obfuscation 13
2.3 Cryptography and ECC applications 17
2.4 Hardware Obfuscation for Cryptography and ECC 18
2.5 Our Focus . 19

3 Background . 20
3.1 Finite Fields . 20
3.2 Reed-Solomon Codes . 28

4 Research Methodology . 33
4.1 RS decoder . 33
4.2 Syndrome Computation: J-Parallel Architecture 34
4.3 KES Block: RiBM Architecture . 36

vii

4.4 Chien Search and Error Evaluator Block: Partial Parallel Design . . . 38
4.5 Reconfigurable Finite Field Units . 41
4.6 Final Design . 42
4.7 Configurations . 43

5 Experimental Results . 48
5.1 Impact of Using Combinations of Polynomials 49
5.2 Overheads . 50
5.3 Selecting the Best Polynomial Combination for Secure Reconfigurable

Design . 51
5.4 The Best Pair of p(x) and q(x) . 53
5.5 Security Analysis . 54

6 Conclusions and Discussion . 55

Bibliography . 58

viii

List of Tables

4.1 Modes for a single-bit control signal and two polynomial reconfigurable
design . 45

4.2 Modes for a two-bit control signal and two polynomial reconfigurable
design . 46

4.3 Modes for a four-bit control signal and four polynomial reconfigurable
design . 46

5.1 Overhead for four-polynomial configuration 50
5.2 Overhead for each case configuration 50
5.3 The least overhead p(x)-q(x) pair . 53

ix

List of Figures

1.1 IC supply chain . 3

2.1 Hardware obfuscation designs . 14
2.2 Logic Encryption example . 15

3.1 Error Correction using RS Codes . 29
3.2 Encoding process for Reed-Solomon Code 30
3.3 Reed-Solomon Decoder Block Diagram 31

4.1 Syndrome computation block using J-Parallel architecture showing a
stack of syndrome computation cells operating simultaneously to pro-
duce 2t syndromes per clock cycle . 35

4.2 Key Equation solver (KES) block based on the RiBM architecture. . 36
4.3 RiBM’s PE architecture . 37
4.4 GF Multiplier . 38
4.5 XTime for p(x) = 111000011 . 39
4.6 Individual cells in the parallel architectures of the syndrome computa-

tion and Chien search blocks . 40
4.7 Chien Search and error evaluation architecture 40
4.8 Individual cells using a control signal for reconfiguration. 42
4.9 Obfuscated XTime block with an 1-bit key: x = 0, XTime works for

p(x) = 111000011; x = 1, XTime works for q(x) = 111100111. 43
4.10 An example of the reconfigurable constant multiplier. 44

5.1 Percentage overheads with respect to Hamming Distance between p(x)
and q(x) . 52

5.2 Percentage average overheads with respect to Hamming Distance be-
tween p(x) and q(x) . 53

x

Chapter 1

Introduction

For a long time, cybersecurity study and research was focused on information

and software security concerning the protection of the integrity of data and the confi-

dentiality of data while on storage for computation or in transmission. Software-based

security research has brought our technology forward by providing us with various

forms of encryption and decryption methods, passwords and bio-metric identification

codes, digital signatures, anti-virus tools, etc. It also has helped us develop method-

ologies and tools to identify and analyze malicious codes that leverage properties of

the system’s hardware.

However, security management of modern electronic systems can no longer

be based on the contestable and sometimes naive assumption that the underlying

hardware is trusted and secure. The hardware includes the processor, the chips,

integrated circuits, motherboard and other electronic systems that allow us to run

the software. With the rise of the Internet of Things (IoT) and wearable technology,

the technology is no more limited to a black box kept seemingly secured in one’s

apartment or office premise. The data being provided to big data companies by

third-party corporations, governments as well as the general public has become more

1

sensitive. Thus, the potential ramifications of a single data breach can be far-reaching

with disastrous consequences for all the parties involved. Therefore, the security of the

data centres and portable devices, as well as the secure transmission of all such data,

has become if great importance. For this purpose, not only software but also hardware

needs to be evaluated for security and tested for any unauthorized modifications.

In recent years itself, many hardware vulnerabilities have been discovered in

the integrated circuits and processor chips that are popularly being used in consumer

electronics, computers, data centres, government offices, military equipment and the

portions of critical infrastructure. For instance, modern processors from leading pro-

cessor manufacturers were affected by Meltdown [30] and Spectre [24] vulnerabilities,

from which the attackers could gain access to the data being processed on the hard-

ware. Processors were in use in almost all computing systems. Though fixes for these

vulnerabilities were released, they reduced the performance of the processor by up to

25%. There have also been discoveries of back-doors in ICs know as Hardware Tro-

jans which can stealthily cause an IC malfunction. These are just two examples of

malicious hardware tampering. There are other major concerns in today’s hardware

manufacturing supply chain such as IC counterfeiting and IP piracy.

1.1 Hardware Attacks

In today’s semiconductor industry, a device usually involves a long supply

chain from design to final packaging as shown in Figure 1.1. Due to the high cost

of foundries and high design complexity of new chips, the supply chain spreads over

multiple countries, companies and third-party vendors. Every stage of the supply

chain may involve global suppliers who may or may not be trustworthy.

This might apparently seem beneficial from the monetary perspective as it

2

Design
specification

RTL Netlist

Gate-level Netlist

Physical Synthesis

Fabrication

Layout (GDSII)

Packaging and Assembly

Wafer

IC

Design Phase

Fabrication Phase

Malicious Designer
Third-party Design Tools

Third Party IPs

Malicious Foundry

Figure 1.1: IC supply chain

reduces the time to market of the electronic products, as well as saves the cost.

However, it also introduces new security challenges through the supply chain which

may cause the organization to incur losses later on. Tampering hardware design and

pirating the design by any of the third party vendors can result in huge losses to the

IC design company in terms of profits as well as in terms of consumer trust.

Hardware Trojans may be inserted into the chips by the fabrication house.

Contrary to the expectation of the IP provider, the final product may contain mali-

cious logic and flaws that an attacker can exploit after the chips are embedded into

the devices. Post-deployment, reverse engineering against ICs on the other hand may

3

also provide adversaries with hardware vulnerabilities or valuable IP information.

1.1.1 Attacks through the IC supply chain

There are two major stages in the semiconductor manufacturing process.

• Design Stage: Using a register transfer level language (RTL) such as VHDL

or (System) Verilog, a design specification is described. Thereafter a synthesis

tool is used to synthesize the design into a gate-level netlist. This netlist file

is then used to generate a layout file which contains the information regarding

the location and shapes of the cells. The layout file also has information about

the routing paths between the gates. This file is used for chip fabrication.

• Fabrication Stage: For fabrication of the chips, masks such as photo-masks

are required for lithography. These masks are produced using the (GDSII)

layout file as a reference. The final product has the chip packaged and assembled

onto a printed circuit board. To accelerate the delivery and lower the costs,

most IC companies outsource the fabrication to off-shore foundries which work

autonomously without any direct monitoring by the IP providing company.

Both of these stages have potential for attacks.

1.1.1.1 Design Stage Attacks

In the design stage, three of the potential security threats are a malicious

design party, an untrusted IP from a third party, and the design tools bought from a

third party. An employee in the project team who has full access to the chip design,

if gone rogue, can modify the design to include malicious logic or backdoors. This

might not be even discovered by the team and the company until and even after the

product has been launched in the market.

4

Additionally, a rogue employee can sell the design’s IP to a competitor firm

which can then claim ownership of the design or can sabotage the market of the

original designer firm by producing the chips based on the design illegally. These

categories of attacks are commonly referred to as IP piracy and IP counterfeiting.

Untrusted IP vendors may provide IPs with built-in backdoors, sabotaging the entire

hardware design. This can allow attackers who know about the IP design to cause

the device to malfunction under target conditions.

Designers and hardware testers often rely on third-party design tools for design

optimization and verification of the design. However, these tools also pose a potential

threat to the design as they might tamper the results produced. These kinds of attacks

are referred to as Hardware Trojan attacks.

1.1.1.2 Fabrication Stage Attacks

Outsourcing of IC designs by the IC design companies to fabrication foundry

houses is a common trend today. This lowers the gross cost of production of the

final product as well as reduces the time-to-market of the product. However, the

foundries, if not trustworthy, can pirate or tamper the designs by the actions of a

single unethical employee of the foundry. By reverse engineering the design obtained

from the contracting IC design company, the foundry can obtain gate-level design

knowledge of the IP and sell the information to competing design firms. This comes

under IP piracy.

In addition to this, the foundry can overproduce the chip for their own profit,

spooning out profit from the IC designer. Since the foundry doesn’t own the design,

the overproduced chips may not go through proper testing and may be of much lower

quality than the ones being sold by the IC designer. This IC overproduction by

the foundry may result in reputation and profit loss for the IC designer company.

5

Foundries can also try to gain unauthorized profits by selling old out-of-spec chips by

relabeling them as new chips. Counterfeiting of chips includes recycled chips as well

as fake chips. Modification of the layout by an employee in a foundry may also cause

a hardware Trojan to be inserted into the design leading to the production of a huge

number of infected chips, trusted by the IC designer and its clients.

1.1.2 Attacks on hardware post-production

With increasing widespread adoption of computing systems in our daily lives

and in the corporate industry, in terms of embedded systems, wearable technologies,

portable devices, IoT devices and data centre firms for cloud services, attacks on

hardware post-deployment to the client are also becoming major concerns. Recently,

there were reports on evidence of security backdoors in the chips used in weaponry

systems, nuclear power plants and transportation systems used by the military. This

clearly indicates the urgency of hardware protection. Post-deployment attacks can be

mainly categorized into Reverse engineering, Fault injection attacks and Side channel

attacks. We discuss two of these categories which are more relevant to our work.

• Reverse Engineering: By depackaging the chip and then delayering it, an

adversary can reverse engineer the internal design of the chip and use that

information to exploit a vulnerability or change the behaviour in the target chip

of the same design. Reverse engineering in the final product is not easy and

requires considerable resources, time, patience and knowledge on the adversary’s

part.

• Side Channel Attacks: Hardware device could leak some information in the

form of heat signatures, power consumption, sound or electromagnetic radiation.

After enough data are accumulated, the data can be analyzed and associated

6

with the operation being processed inside the chip. This enables the adversary

to gain insight about the confidential data such as encryption/decryption keys

from the memory on the chip. This side channel information from modern mi-

croprocessors was the concern behind the Spectre and Meltdown vulnerabilities

in the modern processors, discovered in 2017. The vulnerabilities allowed an

adversarial process to gain the data of another process from the memory, which

ideally is a security design flaw.

1.2 Hardware Security

Due to the growing discovery of such potential attacks and the alarmingly

rising risk they put on the people, infrastructure, governments, military and trade,

designers have to come up with methods to protect the IP of their designs. It has be-

come necessary to develop methods against reverse engineering for hardware devices.

Widely used countermeasures to reverse engineering are discussed as follows.

1.2.1 Circuit Camouflaging

IC camouflaging is a technique to design the layout in a manner to thwart

the attempts of reverse engineering attempted through electron microscopy. Electron

microscopy allows the adversary to visually see the cells on the IC, enabling him

to potentially obtain the gate level layout of the chip. To implement camouflaging,

some standard gate cells are made identical in shape so that they are difficult to

identify in the images obtained through an electron microscope. Additionally, dummy

contacts are also created which appear to be connected in the images but are actually

disconnected being only a small distance apart. It makes it difficult for the attacker

to deduce the exact functionality and netlist when these techniques are used.

7

1.2.2 Logic Encryption

Adding some additional gates known as the key gates to the design, designers

can lock the correct functionality of the chip. The key gates obtain input from the

chip’s I/O. A correct input to the key gates activates the correct functionality of the

chip. This technique is also called logic locking or logic obfuscation.

1.3 Cryptography and Error Correcting Codes

Cryptography is the area of research where methods and algorithms are de-

veloped to hide information from unauthorized access and to authenticate the source

while maintaining the integrity of the message. Error correcting codes (ECC) are

used to detect and correct errors that might infect a message when received via a

noisy communication channel, therefore protecting the integrity of the message from

sending party to the receiving end. ECC and cryptography are used in different

scenarios. However, both perform the encoding of the information to execute their

respective purposes.

1.4 Contribution and Thesis Organization

In this dissertation, we focus on the logic obfuscation methods for error correct-

ing codes and crytographic algorithms that are primarily based on finite field algebra.

The hardware implementations of coding theory based algorithms usually employ a

number of basic arithmetic units such as adders and multipliers. The adders and

multipliers are specifically designed for finite field based addition and multiplication

operations. The devices implementing cryptography and ECC are one of the most

popular applications that work on the concept of finite field coding theory, and use a

8

numerous finite field adders and multipliers. We focus on such arithmetic circuits in

our work.

We propose reconfigurable designs by exploiting the concepts of hardware ob-

fuscation for finite field arithmetic. The design of the adder and the multiplier is

dependent on a set of chosen parameters. Thus, to prevent reverse engineering of the

hardware, the design and functionality of the arithmetic units should be obfuscated.

Our work provides a method to deceive the adversary and making it difficult for

him to guess the set of chosen parameters that make the circuit work correctly. Our

method also results in very low hardware overheads which is an important aspect for

real world application of the new hardware design.

1.5 Thesis Overview

The thesis is organized as follows: In Chapter 1, we discussed the various

security challenges that the semiconductor industry faces. Our main focus is to

propose a design methodology for improving the security of ICs.

In chapter 2, we present the background of the process of IC design and man-

ufacturing and discuss the potential points of attacks. Additionally, we elaborate on

the types of attacks in the field of hardware security and go over the recent research

progress in the field of hardware obfuscation. Cryptography and Error Correction

Codes and their applications have also been discussed to emphasize the importance

and potential contribution of this work in the chip design for such applications.

In chapter 3, we provide a background on finite field arithmetic and its appli-

cation in coding theory. We also describe the process of Reed Solomon encoding and

decoding to provide a foundation for the reader to understand our research method-

ology and the nature of this research work.

9

In chapter 4, we go over the recent findings and proposed designs that helped

us shape and improve our experimental setup. We also describe the implementation

of our version of the Reed-Solomon decoder inspired from recent academic research

findings and discuss the methodology used to obtain and analyze the results.

In chapter 5, we present our findings from our experiment. Our experiment

involves using our method for obfuscation of finite field based circuits to implement

obfuscation in Reed Solomon error correcting codes by the use of re-configurable units

of finite field computation. We produce results for different scenarios and analyze

them to conclude and strengthen the confidence of our findings.

In chapter 6, we present the conclusion of our research findings and discuss

the potential implications of our results. We also briefly talk about potential future

research in this field.

10

Chapter 2

Hardware Obfuscation

Hardware obfuscation transforms an original design into a functional equiva-

lent version that is much harder to reverse engineer. Hardware obfuscation can be

realized via various ways [45, 28, 25, 9, 8, 16, 18, 40, 27, 20].

2.1 Importance of Hardware Obfuscation

There have been events concerning IP theft and reverse engineering among

big firms as well as small agencies. In 2016, FPGA manufacturer Xilinx accused

a popular chip supplier Flextronics of violating its IP contract. Xilinx stated that

Flextronics bought chips from Xilinx on the pretext of a different consumer market

and then sold the chips at higher rates after branding them as higher grade chips [33].

In the economics of it, Xilinx was exposed to higher liabilities.

Understanding the competitor’s product is something not very unexpected in

today’s era and large firms do spend time and resources reverse engineering competi-

tors’ products. The laws of IP protection vary vastly from country to country and it

is not easy for a company to protect its IP [44] and prevent another corporation from

11

using the IP to develop and sell products with no compensation to the IP holder.

Because of the variation in laws and degree of law enforcement in different areas,

patents and copyrights do not provide complete assurance to the IP holder. Thus, IP

protection needs to be enforced actively by the designers if they want to avoid loss of

profits and trust.

Obfuscation cannot be converted into such mathematical algorithms. Also,

the encryption and decryption of the hardware design requires additional gate logic

added to the design. Since encryption algorithms involve multiple copies of similar

manipulation blocks, it also increases the area and power overheads considerably.

Additionally, due to the presence of multiple identical blocks in the design,

it is easy for an adversary at the fabrication house having access to the layout for

fabrication purpose, to deduce the gates responsible for the encryption logic. The

adversary can simply remove these gates to produce the unencrypted fully functional

chip. Add to this the logistic overhead and inconvenience that would be encountered

while sending these chips for testing.

An obfuscated form P ′() of an operation P () is analogous to a virtual black

box that can be used by a user to obtain an output P (x) for an input x without

knowing the exact structure of P (). It was stated in [2] that perfect virtual black box

obfuscation is unachievable for all operations. Specifically, it was argued that Boolean

circuits were inherently unobfuscable. Consequently, an obfuscated form P ′() of the

program P () can be exploited to extract a key information about P () or the entire

program P () itself with a probability greater than zero.

Though perfect obfuscation which leaks no information about the output to

input relation of the program, is impossible to achieve, there is a ’best possible ob-

fuscation’ with relatively relaxed constraints that can be achieved. Best possible ob-

fuscation relaxes the strict constraint of the perfect black box obfuscation and relies

12

on the following constraint: An obfuscated program P ′() is allowed to leak the least

amount of information that can be leaked by any other program which implements

the same function F () as being implemented by the program P (). Consequently, from

the set of all programs that perform the function F (), none should reveal any infor-

mation more than that revealed by any other program in the set about the function

F () to the adversary.

Another concept that is related to the above is indistinguishable obfuscation

[6]. Indistinguishable obfuscation means that for two programs P () and Q() that

implement the same function F (), there exists an indistinguishability obfuscator O()

such that the respective obfuscated programs O(P ()) = P ′() and O(Q()) = Q′() are

indistinguishable from each other. However, it has been shown that indistinguisha-

bility is not achievable in practice [2]. Nonetheless, there have been consistent efforts

in the academic community towards enhancing the security strength of partial obfus-

cation. In the next section, we discuss some of the representative work in the field of

hardware obfuscation.

2.2 Recent Work in Hardware Obfuscation

Numerous hardware obfuscation techniques have been proposed by researchers

in the literature. Figure 2.1 shows a taxonomy of various techniques of implementing

hardware obfuscation. We discuss some of those methods briefly below.

2.2.1 Layout Level Obfuscation

Layout level obfuscation is used as a countermeasure against reverse engineer-

ing [34]. The most popular method is camouflaging [13, 29]. Standard cells such

as XOR, NAND and NOR gates are designed to appear identical in the layout by

13

Hardware
Obfuscation

SOFT IP or RTL LEVEL

White Box Obfuscation
RTL Locking

IP Encryption

GATE LEVEL

Logic Encryption

FSM Locking

Protocol Based

LAYOUT LEVEL

Monolithic Split Fabrication

2.5D/3D IC Split Fabrication

Camouflaging

PCB LEVEL

Permutation Block

Figure 2.1: Hardware obfuscation designs

having the same shape and size. Additionally, contacts that are not actually forming

a closed circuit, known as dummy contacts which appear to connect two cells in the

layout images are helpful in confusing the adversary about the actual design of the

circuit. This makes it difficult for the adversary to retrieve the exact netlist. How-

ever, to have a considerable level of security, a large number of such camouflaged gates

might be required, thereby increasing the overhead considerably. Also, recently SAT

solvers have been demonstrated to be successful in revealing the correct functionality

of a highly camouflaged design, raising doubts about the security of this technique

[32, 48, 17, 3].

14

2.2.2 Gate Level Obfuscation

The gate level obfuscation focuses on the protection of the netlist. Logic

encryption is one of the major techniques as shown in Figure 2.2. A set of bits are

I1
I2

I3
I4

I5
I6
K2

K1

O1

O2

Figure 2.2: Logic Encryption example

used as keys which dominate the function of the netlist. These bits are inputs to some

additional logic gates inserted into the netlist. Physically unclonable functions (PUFs)

are functions derived from physical properties of tiny semiconductor components that

are unique to each component. The key bits for logic encryption can be derived from

PUFs, essentially providing a unique key for each chip. Netlist level obfuscation is

considered a countermeasure against hardware trojans [10].

However, SAT attacks have been shown to be successful against such logic

encryption techniques [39, 47]. For circuits having partial or entire sequential por-

tions, a correct ordered sequence of inputs can be used as a key to unlock the netlist

functionality. Since this employs a series of finite states, this is also referred as Finite

State Machine (FSM) based locking [4, 31, 43]. Due to the use of multiple finite

states, this technique imposes high overheads in terms of time, power and area.

15

2.2.3 Soft IP Obfuscation

Soft IP obfuscation is implemented at the register transfer level (RTL). Various

methods include RTL logic locking and Encryption of IP. In RTL locking methods,

non-functional states are added to the functional states of the IP after analyzing the

state transition graphs of the Verilog or VHDL code. Until the correct key sequence

is applied to the design, the IP remains in the non-functional states producing no or

incorrect outputs. When the correct key sequence is applied, the IP becomes func-

tional and operates in one of the functional states depending on the input sequence.

Encryption of IP is handled by the trusted design tools i.e. EDA tools that the client

uses to use the encrypted IP without knowing the internal structure [37, 26].

Among these, most of the recently proposed obfuscation techniques utilize

additional keys to implement logic obfuscation [9, 8], which is also referred to as

logic encryption [16]. Recently, a new class of hardware obfuscation techniques that

applies high-level transformations to achieve obfuscation has been proposed [28]. Both

meaningful and non-meaningful obfuscating modes are introduced in these schemes,

which creates another level of ambiguity to protect the device from adversarial attacks.

2.2.4 Printed Circuit Board Level Obfuscation

PCB obfuscation is governed by different constraints than IC obfuscation.

These differences include the differences in design dimension, attack challenges and

opportunities for design modification. These differences limit the possible choices for

PCB level obfuscation. However, gate-level approaches like logic permutation and

logic encryption can be applied to PCB level as well.

Since, the connections on the board are easily discoverable as compared to that

on an IC, adversary has higher flexibility in identifying, removing or bypassing the

16

components responsible for obfuscation. In permutation based obfuscation [21, 22],

a permutation block permutes a set of selected inter-component connections using a

permutation network controlled by a key. Before moving onto obfuscation of finite

fields, let’s take a look at the most popular application of finite fields in security

cryptography and coding theory.

2.3 Cryptography and ECC applications

Encryption hides a message from unauthorized read access. Cryptography

also provides authenticity to message as well as the source of the message. Error

correcting codes, on the other hand, enables us to evaluate the integrity of the message

by detecting and correcting error(s) in a message received from a communication

channel.

ECC and cryptography have a few fundamental concepts common to both.

There are a few similarities between ECC and cryptography as was also noted by

[23]:

• Both perform encoding of the message into another format of information.

• Both have theoretical origins from Shannon’s work [42, 41].

• Most algorithms in both domains work on principles of abstract algebra, finite

field mathematics and combinatorial theory.

However, one fundamental difference between the two is that ECC embraces

the variation in the message, attempting to evaluate the error and retrieve the correct

value of the message while, a cryptographic system tries to evaluate any possible

variation to identify even the slightest change in the message in order to strongly

reject a modified received message. For example, a few bit flips in a message received

17

by an ECC decoder may still provide the user with the expected output i.e. the

message that was intentionally sent. However, a single bit flip in a message received

by a decryption algorithm will straight away reject the received message as a bad

input and deny the user the access to the correct message.

Owing to the similarities in the mathematical concepts and in terms of the

subject of the application, there have been some interesting research in the overlap-

ping fields of ECC and cryptography [23]. Linear error correcting codes have been

used in developing cryptographic solutions as in the case of [14]. Linear secret shar-

ing schemes are used in a certain area of cryptography for applications such as secret

sharing, multi-party computation as well as two-party primitives. In 2015, Baldi et

al invented a method of using public key cryptography using the concepts of error

correcting codes [1].

2.4 Hardware Obfuscation for Cryptography and

ECC

In [35], a method to protect hardware implementation of Advanced Encryption

Scheme (AES) was proposed by shifting down the inversion operation from GF (28) to

GF (22), since linear operations like inversion are easy to mask in smaller fields. They

concluded that they could achieve significant masking against first-order side-channel

attacks by combining the concepts of multiplicative and additive masking. Obfusca-

tion using high-level transformation was obtained for Digital Signal Processing (DSP)

circuits using Finite State Machines (FSM) based obfuscation [28]. They were able to

achieve an area overhead of about 17% for an Infinite Impulse Response (IIR) filter

using a 128-bit key. [9] proposed RTL obfuscation design using data and control flow

18

to incorporate FSM based obfuscation. Many have proposed obfuscation techniques

using FSMs and other mathematical tools [31, 36, 46, 49]. To the best of my knowl-

edge, there has been no previous work specifically focused on the obfuscation of the

hardware implementation of finite field based algorithms, be it cryptography or error

correction codes.

2.5 Our Focus

In our work, we focus on hardware obfuscation methodology for finite field

arithmetic circuits. This includes many error correcting codes as well as cryptogra-

phy solutions. The Rijndael AES [15] uses a number of Galois field units. Coding

theory also relies heavily on finite field based computation. We demonstrate a useful

method for strengthening the security of hardware implementation of such algorithms.

We demonstrate our technique and our analysis of its benefits, on one of the most

popular coding theory algorithm known as Reed-Solomon error correction code. For

proper understanding of our implementation, we provide a background on finite field

arithmetic and the conceptual design of the Reed-Solomon decoding process in the

next chapter.

19

Chapter 3

Background

In this chapter, we provide an overview of finite field arithmetic and its ap-

plication for cryptography and error correcting codes. We will also discuss the use

of hardware obfuscation and various methods by which hardware obfuscation can be

achieved in today’s world.

3.1 Finite Fields

A field is a set of elements on which the operations of addition and multiplica-

tion are defined. The operations are commutative, associative, and closed as shown

below.

• a+ b = b+ a (Commutative Property of Addition)

• ab = ba (Commutative Property of Multiplication)

• a+ b = b+ a (Associative Property of Addition)

• a(bc) = (ab)c (Associative Property of Multiplication)

20

Closure implies that the sum and product of any two elements in the field are also

elements of the field. The distributive law relates multiplication and addition by

• a (b + c) = ab + ac

The additive and multiplicative identities (0 and 1) exist for all elements in the field.

• a+ 0 = a (Additive Identity)

• 1× a = a (Multiplicative Identity)

The additive and multiplicative identities are not the same.

The elements of a field also have additive and multiplicative inverses. The

additive inverse b and the multiplicative inverse c of the element a from a field satisfy

the following relations:

• a+ b = 0

• a× c = 1

Since there is an additive inverse, the operation of subtraction is also defined in a field.

Similarly, the existence of multiplicative inverse implies the operation of division.

Popularly known and commonly used fields having an infinite number of el-

ements are the one consisting of the real numbers R, the complex numbers C, and

the rational numbers Q. because only +1 and −1 have multiplicative inverses, the

integers under the usual arithmetic (Z), do not constitute a field. Although the real,

complex, and rational fields belong to the set of infinite fields. The fields consisting

of finite number of elements are called the finite fields. The symbol Zp refers to the

set of integers 0, 1, 2, . . . , p− 1 using modulo p arithmetic. Zp is a field if and only if

p is a prime number. Regardless of whether or not p is prime, each element x has an

21

additive inverse with the value (p− x). This follows from the fact that

x+ p− x = p

= 0 mod p

(3.1)

p being prime, there exists an element y in the field such that x× y = 1 mod p. y is

called the multiplicative inverse of x.

If p is not a prime number, then p can be factored as p = ab where 1 < a,

b < p. The product of a and b, ab = 0 mod p. In this case, a and b are the divisors

of zero. Fields satisfy a cancellation law: ac = ad implies c = d, and the following

argument shows that a field cannot have divisors of zero. Zp for p not prime is not

a field. For any such finite field, it will always be the case each row of the addition

is a permutation of the values 0, 1, . . . , p− 1 and each row of the multiplication table

except the first row will also be a permutation of the elements of the field. As noted

previously, a value of 1 in the multiplication table identifies a pair of multiplicative

inverses.

3.1.1 Galois fields

If p is a prime number, then it is also possible to define a field with pm elements

for any m. These fields are named after the great French algebraist Evariste Galois

who was killed in a duel at the age of 20. They have many applications in coding

theory. The elements of Galois Field GF (pm) is defined as

GF (pm) =(0, 1, 2, . . . , p− 1) ∪ (p, p+ 1, p+ 2, . . . , p+ p− 1)

∪ (p2, p2 + 1, p2 + 2, . . . , p2 + p− 1) ∪ . . .

∪ (pm−1, pm−1 + 1, pm−1 + 2, . . . , pm−1 + p− 1)

(3.2)

22

where p ∈ P and m ∈ Z+. The order of the field is given by pm while p is called the

characteristic of the field. Also note that the degree of polynomial of each element

is at most (m − 1). The fields, denoted GF (pm), are comprised of the polynomials

of degree (m− 1) over the field Zp. These polynomials are expressed as a (m− 1)×

(m − 1) + · · · + a1 × 1 + a0 × 0 where the coefficients ai take on values in the set

0, 1, . . . , p− 1. When employed in coding applications p is commonly 2 and thus the

coefficients a0, . . . , am−1 are taken from the binary digits 0, 1. Consider the following

example where

GF (5) = (0, 1, 2, 3, 4) (3.3)

which consists of 5 elements where each of them is a polynomial of degree 0 (a

constant) while

GF (23) = (0, 1, 2, 2 + 1, 22, 22 + 1, 22 + 2, 22 + 2 + 1)

= (0, 1, 2, 3, 4, 5, 6, 7)

(3.4)

which consists of 23 = 8 elements where each of them is a polynomial of degree at

most 2 evaluated at 2.

In coding applications, for m <= 32, it is common to represent an entire

polynomial in GF (2m) as a single integer value in which individual bits of the integer

represents the coefficients of the polynomial. The least significant bit of the integer

represents the a0 coefficient.

3.1.2 Finite field polynomial arithmetic in GF (2m)

Addition and multiplication of polynomial coefficients, but not the polyno-

mials themselves in the field GF (2m) are defined by the rules of Z2. Addition is

defined by the exclusive OR operation and multiplication by the AND operation.

23

These operations are used in manipulating the coefficients during multiplication and

addition of polynomials, but the basic algorithms used in adding and multiplying

polynomials over the integers remain applicable[5].

3.1.2.1 Addition and Additive Inverse

To add two or more polynomials, for each power of x present in the summands,

one needs to just add the corresponding coefficients modulo 2. If a particular power

appears an odd number of times in the summands it will have a coefficient of 1 in the

sum. If it appears an even number of times or does not appear at all, it will have a

coefficient of 0 in the sum. For example,

(x2 + 1) + (x+ 1) + (x2 + x+ 1) = 1. (3.5)

Note that the polynomials of degree (m − 1) are closed under polynomial addition.

The sum is always a polynomial of degree no more than degree (m− 1).

Consider the following example. Suppose we are working in GF (28), then

84 + 247 is

84 + 247 = (26 + 24 + 22) + (27 + 26 + 25 + 24 + 22 + 21 + 20)

= 27 + 2 · 26 + 25 + 2 · 24 + 2 · 22 + 21 + 20

= 27 + 25 + 21 + 20

= 163

(3.6)

24

Alternatively, from binary numeral system perspective,

84 + 247 = 01010100 + 11110111

= 10100011

= 163

(3.7)

and the results coincide. Furthermore, because of the XOR method of addition, each

polynomial is its own additive inverse.

3.1.2.2 Multiplication and Multiplicative Inverse

Multiplication requires more tedious work. Suppose a(x) and b(x) are poly-

nomials in GF (pm) and let p(x) be an irreducible polynomial (or a polynomial that

cannot be factored) of degree at least m in GF (pm). We want p(x) to be a polyno-

mial of degree at least n so that the product of two a(x) and b(x) does not exceed

11111111 = 255 as the product needs to be stored as a byte. If c(x) denotes the

resulting product then

c(x) = (a(x) · b(x))(mod p(x)) (3.8)

On the other hand, the multiplicative inverse of a(x) is given by inv(a(x)) such that

(a(x) · inv(a(x)))(mod p(x)) = 1 (3.9)

Note that figuring out the product of two polynomials and the multiplicative inverse

of a polynomial requires both reducing coefficients modulo x and reducing polynomi-

als modulo p(x). The reduced polynomial can be calculated easily with long division

while the best way to compute the multiplicative inverse is by using Extended Eu-

25

clidean Algorithm. The details on the calculations in GF (28) is best explained in the

following example. Suppose we are working in GF (28) and we take the irreducible

polynomial modulo p(x) to be x8 + x6 + x5 + x1 + x0. To calculate 13 · 84, we need

to go through several steps. First, we compute the product of the polynomial and

reduce the coefficients modulo 2.

138̇4 = ((23 + 22 + 20) · (26 + 24 + 22))(mod p(x))

= (29 + 28 + 27 + 2 · 26 + 25 + 2 · 24 + 22)(mod p(x))

= (29 + 28 + 27 + 25 + 22)(mod p(x))

(3.10)

Then we use long division to compute the reduced polynomial as follows

Quotient Remainder

29 + 28 + 27 + 25 + 22

28 + 26 + 25 + 21 + 20

21 + 20 20

(3.11)

Where the last entry in the first column is the product we seek for. Since the product

is 1, it follows that 84 and 13 are multiplicative inverse pairs. If we assume that we

do not know the multiplicative inverse of 84. Then to calculate the multiplicative

inverse we will use Extended Euclidean Algorithm. Unlike long division, we need

to keep track of the auxiliary when we work with Extended Euclidean Algorithm as

26

follows

Quotient Remainder Auxiliary

28 + 26 + 25 + 21 + 20 0

26 + 24 + 22 1

22 25 + 24 + 21 + 20 22

21 + 20 20 23 + 22 + 1

(3.12)

The first two rows in the Remainder column are always the modulo polynomial fol-

lowed by the polynomial we wish to invert. The first two rows in the Auxiliary are

always 0 and 20. The remainder and the quotient in row m is then calculated from

the division of the remainders in row (m − 1) and (m − 2) while the auxiliary in

row m is given by the sum of the auxiliary in row (m − 2) and the product of the

quotient and the auxiliary in row (m− 1) until the last remainder equals to 20. The

final entry in Auxiliary happens to be the multiplicative inverse of the product, thus

the multiplicative inverse of 84 is 23 + 22 + 20 = 13 which agrees with the preceding

example.

The polynomials of degree (m − 1) are not closed under multiplication. For

example, xm−1 × xm−1 is x2m−2. Thus for all m > 1, the degree of the product

may exceed (m − 1). Our objective is to build a field of 2m elements in which the

operations of addition and multiplication are based upon polynomial addition and

multiplication. Thus, we need a mechanism for ensuring that multiplication is closed.

To do this we resort again to modular arithmetic.

A generating polynomial for GF (pm) is a degree m polynomial that is irre-

ducible over Zp. This simply means that it cannot be factored. For example (x3− 1)

is not irreducible over Z2 because it can be factored as (x2 +x+ 1)(x+ 1). Note that

this factorization works only over Z2 but not Z. If an irreducible polynomial p(x) can

be found, then polynomial multiplication can be defined as standard polynomial mul-

27

tiplication modulo p(x). That is, to compute the product a(x)b(x), we need to first

compute c(x) = a(x)b(x) and then transform c(x) back into the set of polynomials of

degree (m− 1) by taking the remainder when c(x) is divided by p(x). If c(x) already

has degree no larger than (m − 1), then the remainder is simply c(x), but if this is

not the case, the remainder is guaranteed to have degree no higher than (m− 1).

Note that the requirement that p(x) be irreducible is implicit in this definition

of multiplication. Suppose p(x) is not irreducible. Then there exist two polynomials

a(x) and b(x) such that p(x) = a(x)b(x). However, p(x) = 0 mod p(x). Hence a(x)

and b(x) are divisors of zero, and it has previously been shown that fields may not

contain zero divisors.

3.2 Reed-Solomon Codes

Figure 3.1 shows a typical error correction process using the Reed-Solomon

(RS) encoder and decoder. The RS encoder takes the message to be transmitted as

a block of digital data, and adds redundant bits to the block. A noisy transmission

channel introduces errors in the transmitted message block. The decoder processes

the received block and attempts to correct the errors to recover the original message

data. The redundant bits help the decoder to recover the message from the corrupted

received codeword. The error correction capability in terms of the type and the

number of errors that the system can correct, is determined by the RS code used.

RS codes defined over GF (2m) are popular error-correcting codes used in dig-

ital communications and data storage. RS codes are a subset of the Bose-Chaudhuri-

Hocquenghem (BCH) [7] codes which are a subset of cyclic block codes. Cyclic block

codes belong to the family of the block codes for error correction in general. [19].

Given the value m for the Galois field extension GF (Pm), a set of RS codes can

28

RS Encoder

RS Decoder

Noisy Transmission Channel

M(x)

M(x)

C(x)

R(x)=C(x)+E(x)

C(x)=RSEnc(M(x))

M(x)=RSDec(R(x))

Sender

Receiver

Figure 3.1: Error Correction using RS Codes

be constructed with different block lengths, error correction capabilities and correction

rates. The primitive element a(x) and the field generator polynomial F (x) are used

to construct each of the Pm unique code symbols. The generator polynomial p(x)

having its roots from GF (Pm) field, provides the information for the parity check.

The values of p(x), m an n define a n, k RS code. However, when we get into the

implementation we need to also know P (2 for ECC in most cases), F (x) (which is

the primitive polynomial p(x) in most cases), a(x) (x = α in almost all cases), and

αG (any primitive element of GF (Pm) using F (x) which is almost always set to α1).

3.2.1 Encoder

The encoders for Reed-Solomon use a systematic encoding architecture using

a linear feedback shift register as shown in Figure 3.2. For an RS(n, k) encoder, n−k

stages of multiplier-adder pairs are used. The multipliers are constant multipliers with

29

g0 g1 gn−k−2 gn−k−1

Message
Symbols

Code-words

0

Figure 3.2: Encoding process for Reed-Solomon Code

coefficients of the generator polynomial, p(x) as the constants. This architecture takes

n clock cycles to encode an input word. However, parallel architectures have also been

invented to perform the encoding at much higher rates.

3.2.2 Decoder

A number of algorithms have been proposed for decoding of RS codes. One

category of decoders known as Hard Decision decoders, which have lower error cor-

rection capability as well as lower complexity. Soft decision decoders have higher

error correction capability and higher complexity. Examples of the hard decision de-

coding algorithms include the Euclidean algorithm, the Peterson-Gorenstein-Zierler

algorithm and Berlekamp-Welch algorithm. In this dissertation, we focus on the

Reformulated inversionless Berlekamp-Massey Algorithm (RiBM) for our implemen-

tation of the decoder, shown in Figure 3.3.

The decoding process is executed in five-stages involving the following steps:

1. Calculation of the syndromes from the received word.

2. Calculation of the error-locator word from the syndromes.

3. Calculation of the error locations within the received word from the error-locator

30

numbers.

4. Calculation of the error magnitudes at each error location from the syndromes

and the error-locator numbers.

5. Calculation of the decoded codeword from the received word using the calculated

error locations and error magnitudes.

Received Word R(x)

Syndrome
Computation

Key
Equation

Solver

Chien Search
(Error Locator)

Forney’s
Algorithm

(Error
Evaluator)

Error Correction

FIFO Register

Corrected Word C(x)

Syndromes

Ω(x) Λ(x)
Ω(αi)

Λ(αi)

error valueerror location

S(x)

Figure 3.3: Reed-Solomon Decoder Block Diagram

First, we calculate the 2t syndrome components or in other words, the syndrome

S(x). The syndromes can be determined by either of the two methods:

Si = R(αI)(= E(αI)). (3.13)

or

s(x) = R(x)mod p(x)

= REM [R(x)/p(x)].

(3.14)

31

where Si = s(αI) from I = GI from p(x).

From all the syndromes Si we calculate the error-locator polynomial Ω(x).

This is done by using one of the two methods: the Berlekamp-Massey’s method for

error-locator polynomial or the linear recursion method. Next, from the error-locator

polynomial Ω(x), we calculate the error-locator numbers zi for i = l, 2, 3, . . . , T . Then

we calculate the error locations λi for i = l, 2, 3, . . . , T . Error locations are the roots

of the error magnitude polynomial, Λ(x). The error locations can be calculated using

one of the two methods, namely, the Explicit Method and the Chien Search Method.

From the error-locator numbers zi and the syndrome components Si, we cal-

culate the error values λi for i = l, 2, 3, . . . , T . From the error locations, ωi and the

error values λi, the estimate of the error polynomial E(x). In the final stage, the

determination of the nearest code word C(x)′ is done from R(x) and E(x). R(x) and

E(x) can be XOR added to reproduce the original codeword C(X).

32

Chapter 4

Research Methodology

We use an implementation of Reed-Solomon Decoder with the Reformulated

inversion-less Berlekamp-Massey architecture to illustrate the proposed hardware ob-

fuscation idea. Our idea is to incorporate a reconfigurable design to all the finite field

multiplier units to achieve obfuscation without increasing significant overhead.

4.1 RS decoder

As explained in the previous section, the decoder consists of three steps as

shown in Figure 3.3: syndrome computation (SC), key equation solver (KES), and

Chien search. After this, the obtained Error polynomial, E(x) is bitwise XOR’ed with

the received word to obtain the corrected code-word. Our implementation of the RS

decoder uses a partial parallel architecture for the syndrome computation block and

the RiBM architecture for the KES block.

33

4.2 Syndrome Computation: J-Parallel Architec-

ture

Recall that α is a primitive element of GF (2m) and R(x) is the received code-

word represented as a binary polynomial. A RS(n, k) code can correct t = (n− k)/2

errors in the R(x). For an t error-correcting code, 2t syndromes sj (1 < j ≤ 2t)

are computed as R(αj). This requires the use of constant multipliers. Constant

multipliers are implemented as binary constant matrix multiplications using XOR

trees. Using 2t syndrome computation cells each with a constant multiplier work in

the syndrome computation block to generate 2t syndromes for each received word.

The syndrome computation can be implemented in a serial manner as illustrated

in Figure 4.6a. The value in the register is multiplied with αj in each clock cycle.

The output from the multiplier is added to the input symbol and the result is again

stored in the register for calculation of the next syndrome. It takes n clock cycles

to calculate j syndromes. However, for faster computation of syndromes, the serial

architecture can be upgraded into a parallel architecture by using 2t copies of the

serial computation unit. Since, syndromes are values evaluated from a polynomial, a

design similar to the Chien search can also be used for computation of syndromes.

We use the J-parallel architecture to speed up the process which looks like

Figure 4.1 at the RTL Level. Each cell in the block is basically a single serial syndrome

computation unit. J coefficients of the received word are grouped together and then

the Horner’s rule for converting the polynomial in a more computationally efficient is

applied to obtain this parallel architecture. A J-parallel architectures need n/J clock

cycles to compute each syndrome. If J = n, then no feedback loop is required. In

such a design, all syndromes can be calculated in a single clock period.

34

syndromeComputation:syndromeComputation

clock

activateSC

reset

enableCell

evaluateSyndrome

holdSyndrome

receivedWord[7..0]

detectError

syndrome0[7..0]

syndrome1[7..0]

syndrome2[7..0]

syndrome3[7..0]

syndrome4[7..0]

syndrome5[7..0]

syndrome6[7..0]

syndrome7[7..0]

syndrome8[7..0]

syndrome9[7..0]

syndrome10[7..0]

syndrome11[7..0]

syndrome12[7..0]

syndrome13[7..0]

syndrome14[7..0]

syndrome15[7..0]

SCCell0:cell0

clock

enable

hold

receivedWord[0..7]

synvalue0[0..7]

SCCell1:cell1

clock

enable

hold

receivedWord[0..7]

synvalue1[0..7]

SCCell2:cell2

clock

enable

hold

receivedWord[0..7]

synvalue2[0..7]

SCCell3:cell3

clock

enable

hold

receivedWord[0..7]

synvalue3[0..7]

SCCell4:cell4

clock

enable

hold

receivedWord[0..7]

synvalue4[0..7]

SCCell5:cell5

clock

enable

hold

receivedWord[0..7]

synvalue5[0..7]

SCCell6:cell6

clock

enable

hold

receivedWord[0..7]

synvalue6[0..7]

SCCell7:cell7

clock

enable

hold

receivedWord[0..7]

synvalue7[0..7]

SCCell8:cell8

clock

enable

hold

receivedWord[0..7]

synvalue8[0..7]

SCCell9:cell9

clock

enable

hold

receivedWord[0..7]

synvalue9[0..7]

SCCell10:cell10

clock

enable

hold

receivedWord[0..7]

synvalue10[0..7]

SCCell11:cell11

clock

enable

hold

receivedWord[0..7]

synvalue11[0..7]

SCCell12:cell12

clock

enable

hold

receivedWord[0..7]

synvalue12[0..7]

SCCell13:cell13

clock

enable

hold

receivedWord[0..7]

synvalue13[0..7]

SCCell14:cell14

clock

enable

hold

receivedWord[0..7]

synvalue14[0..7]

SCCell15:cell15

clock

enable

hold

receivedWord[0..7]

synvalue15[0..7]

always2

detectError
01'h0

1

state

activateSC

clk

evaluateSyndrome

reset

st2

state~01'h0

state~11'h0

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

0
1
2
3
4
5
6
7

Figure 4.1: Syndrome computation block using J-Parallel architecture showing a stack
of syndrome computation cells operating simultaneously to produce 2t syndromes per
clock cycle

35

4.3 KES Block: RiBM Architecture

S1

PE0

S1

S2

PE1

S2

S2t−1
PE2t−1
S2t−1

1
PE3t

1

0
PE3t−1

0

0
PE2t

0

Control
0

Figure 4.2: Key Equation solver (KES) block based on the RiBM architecture.

The syndromes are used by the KES block to calculate the two polynomials,

viz. Λ(x) and an error evaluator polynomial Ω(x) are computed from the syndromes in

the KES step. Most practical systems adopt finite field GF (2m) (m ∈ Z+). GF (2m)

consists of 2m elements. Each element is represented by an m-bit binary vector or

equivalently as the coefficients of a degree (m − 1) binary polynomial. Addition

operation is evaluated as a bit-wise XOR. The multiplication between a(x), b(x) ∈

GF (2m) is defined as c(x) = a(x)b(x) mod p(x), where p(x) is a degree-m binary

irreducible polynomial. Let

a(x) = am−1x
m−1 + a1x+ a0. (4.1)

36

Figure 4.3: RiBM’s PE architecture

Then the field multiplication of a(x) and b(x) is calculated as:

c(x) = a0b(x) + a1(b(x)x) mod p(x) + · · ·+ am−1(b(x)xm−1 mod p(x)). (4.2)

where

b(x)x mod p(x) = (bm−2⊕pm−1)xm−1+(bm−3⊕pm−2)xm−2+· · ·+(b0⊕p1)x+p0x. (4.3)

and b(x)xi for i > 1 are computed in the same manner iteratively.

One of the most efficient architectures for the KES step is the reformulated

inversion-less Berlekamp-Massey (RiBM) architecture [38] shown in Figure 4.2. It

consists of (3t+ 1) copies of the processing element (PE) block shown in Figure 4.3.

Of these, each of the 3t instances of the PE block contains two instances of a GF (2m)

multiplier. The remaining one PE unit contains one GF (2m) multiplier. According

to equation (4.3), the multiplier is implemented by the architecture in Figure 4.4,

and the XTime block implements multiplication with x. The XTime block design

is dependent on the primitive polynomial, p(x). In Figure 4.5, an example for the

XTime block is shown for p(x) = 111000011. The bit outputs corresponding to a set

37

XTime
ByteAnd

ByteAnd
XTime

ByteAnd

XTime

ByteAnd

b(x)

c(x)
a7

a1

a0

a2

Figure 4.4: GF Multiplier

bit in the primitive polynomial, p(x), are bitwise XORs of the corresponding previous

bit and the most significant bit of the input byte. Thus for different p(x), the XTime

architecture will be different.

4.4 Chien Search and Error Evaluator Block: Par-

tial Parallel Design

The roots of the error locator polynomial, Λ(x) provide the locations of the

error in the received codeword. Λ(x) has a root of α−i indicates that the ith symbol

in the received codeword is corrupted by an error value. Similarly to obtain the value

of the error that has infected a symbol, roots of the error evaluator, also known as

error magnitude polynomial, Ω(x) are required to be calculated. Adding the error

magnitude to the infected symbol indicated by the roots of Λ(x) will give the correct

symbol that was originally transmitted. Chien search is carried out on Λ(x) and Ω(x)

to find the roots, which are used to generate the error locations and magnitudes.

38

in2

in7
in6

in4

in5

in3

in1

in0

out7

out6

out4

out5

out3
out2

out1
out0

Figure 4.5: XTime for p(x) = 111000011

In the original Block Matching Algorithm (BMA) algorithm, calculation of roots of

the Ω(x) is only possible after the roots of Λ′(x) have been obtained, where Λ′(x) =

Λ1 + Λ3x
2 + Λ4x

3 In the case of binary finite fields, consider the two polynomials

derived from the even and odd coefficients of Λ(x), i.e. for

Λ(x) = Λ0 + Λ1x+ Λ2x
2 (4.4)

its even and odd polynomials are

Λodd(x) = Λ1 + Λ3x
3 + Λ5x

5 . . . ; Λeven(x) = Λ0 + Λ2x
2 + Λ4x

4 (4.5)

Consequently,

Λodd(x) = xΛ′(x). (4.6)

Therefore, the values evaluated from a separate Chien search block over the odd

polynomial can be used for calculation of the error magnitude values [11].

39

αi

si
ri

(a) SC Cell

αi

λi/Ωi ei

(b) CS Cell

Figure 4.6: Individual cells in the parallel architectures of the syndrome computation
and Chien search blocks

Thus, the Chien search architecture can also be made to be partially parallel.

The design we implemented in our experiment is shown in Figure 4.7. As can be noted

from the design of the individual cells in the Chien Search block shown in Figure 4.6b,

each Chien search block employs a constant multiplier in which the constant is a power

of α, a primitive element in GF (2m). The Chien search architecture also consists of

arrays of constant multipliers.

Chien Search
Λeven(x)

=0?

Chien Search
Λodd(x)

Inversion

Chien Search
Ω(x)

α−iΛ′(α−i)

Λ(α−i)

α−1

Ω(α−i)

ei

α−i

Figure 4.7: Chien Search and error evaluation architecture

40

4.5 Reconfigurable Finite Field Units

As discussed in the previous sections, the implementation of the XTime block

is decided by the irreducible polynomial p(x). Since this polynomial is not unique,

the general multipliers can be designed to be reconfigurable according to a different

p(x) which can be efficiently exploited for hardware obfuscation. A key can be used to

control the mode of operation of the XTime block where different modes correspond to

different primitive polynomials incorporated in the unit’s reconfigurable design. Other

legitimate polynomials integrated into the design can serve as meaningful obfuscating

modes. In addition, this reconfigurable GF multiplier can be leveraged to operate

on the input for the same number of iterations to maintain nearly indistinguishable

side-channel leakage profile, while still yielding incorrect outputs for the incorrectly

applied keys. From the section 4.3 we also know that the XTime block is instantiated

(m − 1) times in a GF (2m) multiplier that operates on the input (m − 1) times

recursively. This creates a large degree of freedom for the obfuscation combined by

all the instances that are extremely suitable for hardware obfuscation.

A similar concept also applies to the syndrome computation block as well as

the Chien search block. As discussed in the previous section and shown in Figure 4.6,

both have constant multipliers for multiplication withm×m binary constant matrices.

The entries of the constant multipliers are determined according to p(x). Figure

4.8a and Figure 4.8b show the modified designs of cell templates in the syndrome

computation and Chien search blocks, respectively. In Figure 4.6, we observed that

each root computation cell in the syndrome computation block as well as in each of

the Chien search block, contains a constant field multiplier unit.

41

si
ri

αi αj

k

(a) Reconfigured SC Cell

αi

λi/Ωi ei

k

αj

(b) Reconfigured CS Cell

Figure 4.8: Individual cells using a control signal for reconfiguration.

4.6 Final Design

In the final design of our version of RS decoder, we leverage the concepts

of reconfigurability discussed above to exploit it to build a hardware design of the

decoder which should also provide security against IP theft and reverse engineering.

In the syndrome computation and Chien search blocks, we replace the default

constant multipliers with instances of the new reconfigurable constant multiplier de-

signed for a number of primitive polynomials. A control signal, S will switch the

mode of operation of the multiplier. The value of the control signal will be dependent

on the applied key. For correct key value, the control signal activates the mode of

operation of the constant multiplier corresponding to the correct value of p(x). For an

incorrect value of the applied key, the activated mode can be any of those associated

with the other primitive polynomials. For an adversary, both of these modes appear

to be meaningful modes, since in both modes, the computation inside the decoder is

similar to a decoder with the corresponding polynomial as the correct polynomial.

The decision about the length of the key is left to the designer. It is a widely accepted

fact that a longer key generally provides a higher level of security. However, longer

keys may incur higher overheads of hardware complexity.

The general GF multiplier in the KES’ PE units, are directly configured ac-

42

cording to the primitive polynomials and the key length. The modifications are similar

to that for constant multipliers, the difference being that the design changes are in

the XTime block which is instantiated in the GF multipliers. We tested multiple

configurations and key lengths, which we describe in the next section.

4.7 Configurations

Numerous different configurations can be employed in our proposal of re-

configurable finite field units. We consider two main configurations.Two primitive

polynomials and four polynomials for reconfigurations.

in2

in7
in6

in4

in5

in3

in1

in0

out7

out6

out4

out5

out3
out2

out1
out0

S

Figure 4.9: Obfuscated XTime block with an 1-bit key: x = 0, XTime works for
p(x) = 111000011; x = 1, XTime works for q(x) = 111100111.

In the case of using two polynomials, we assume that one correct polynomial

is p(x) and the incorrect polynomial is q(x). Since there are only two modes of

operation for the XTime block, a one-bit control signal is sufficient. This means that

if the applied key to the chip is correct, then the control signal puts the XTime block

in the mode corresponding to p(x) which enables the decoder to work as a normal

functional decoder for polynomial, p(x). On the other hand, incorrect key causes

43

the control signal to put the chip into a mode suitable for q(x) but not for p(x).

An implementation for the reconfigurable XTime block, with p(x) = 111000011 =

x8 + x7 + x6 + x+ 1 and q(x) = 111100111 = x8 + x7 + x6 + x5 + x2 + x+ 1, is shown

in Figure 4.9, where S represents the single-bit control signal.

This means that the decoder will still try to find any errors in R(x) but will

possibly fail. It will fail because according to the syndromes produced the number

of errors will be beyond its error correction capability. The control signal or the key

7 6 5 4 3 2 1 0

= XOR

Input[7..0]

Output[6]

αi=01011011
αj=11100001S

Figure 4.10: An example of the reconfigurable constant multiplier.

itself needs to be propagated from the higher level main external module to each of

the XTime blocks inside each of the GF multipliers, as well as inside each of the

constant multiplier. The constant multiplier is also redesigned into a reconfigurable

constant multiplier design for different αi value of the multiplier’s constant. An ex-

ample design for αi = 11100001 corresponding to one polynomial, and αj = 11100001

corresponding to another polynomial, with a single bit control signal, S is shown in

Figure 4.10. For our experiment, we considered two sub-cases for the setup of one

correct primitive polynomial and one incorrect polynomial - a single bit control sig-

nal, and a two bit control signal. Additionally, we also experiment with the case of

44

four polynomials, in which there is one correct polynomial, p(x) and three incorrect

polynomials, q1(x), q2(x) and q3(x). Let us discuss each of the three cases in more

detail.

4.7.1 One additional primitive polynomial with a single-bit

control signal

S polynomial mode operation
1 p(x) meaningful correct
0 q(x) non-meaningful incorrect

Table 4.1: Modes for a single-bit control signal and two polynomial reconfigurable
design

When a single-bit control signal is used in the multiplier design for polynomial

selection, a NOT gate is required to invert the signal. This is considered an optimized

design where inversion is done only once. Thus an overhead of only one gate cell for

each of the XTime blocks in the general GF multipliers, and one gate cell overhead

for each constant multiplier block is achieved. Outside the multipliers, only one

control signal wire is routed across the parent blocks such as the cells in syndrome

computation and Chien search blocks, and the PE units in the KES block.

4.7.2 One additional primitive polynomial with a two-bit

control signal

The overhead of inverting the control signal in every constant multiplier and

every XTime block in the general multipliers can be avoided by using a two-bit control

signal (one bit for each primitive polynomial). This design requires no inverters since

each control signal directly maps to one of the modes. Additionally, this also adds

45

S1 S2 polynomial mode operation
0 0 − non-meaningful incorrect
0 1 p(x) meaningful correct
1 0 − non-meaningful incorrect
1 1 q(x) meaningful incorrect

Table 4.2: Modes for a two-bit control signal and two polynomial reconfigurable design

two incorrect modes or non-meaningful modes, which do not correspond to any of

the polynomials considered for the design. Therefore, another layer of ambiguity is

introduced in this case without adding any complexity and overhead for two more

polynomials.

4.7.3 Three additional polynomials (with four bit control sig-

nal)

S1 S2 S3 S4 polynomial mode operation
0 0 0 0 − non-meaningful incorrect
0 0 0 1 p(x) meaningful correct
0 0 1 0 q1(x) meaningful incorrect
0 1 0 0 q2(x) meaningful incorrect
1 0 0 0 q3(x) meaningful incorrect
0 0 1 1 − non-meaningful incorrect
...

...
...

...
...

...
...

1 1 1 1 − non-meaningful incorrect

Table 4.3: Modes for a four-bit control signal and four polynomial reconfigurable
design

For a higher level of security, the number of operating modes can be increased

by having more polynomials incorporated in the GF multipliers and the constant

multipliers. A total of four operating modes will need a control signal of a minimum

of two bits driven by the values of the applied key. We tested this case with a four-

bit control signal to select from the four modes of operation. Similar to two bit

46

control signal for two polynomial modes, four bit control signal for a four polynomial

modes design would discount the overhead of at least two inverters per constant

multiplier and two inverters per XTime block. In this configuration, we would have

four meaningful modes and twelve non-meaningful modes.

In the next chapter, we present our results and analysis of the results.

47

Chapter 5

Experimental Results

We implemented the entire GF (28) RS(255,239) decoder design in Verilog

HDL based on the RiBM architecture with some modifications for higher efficiency.

These modifications are adopted from some of the most efficient designs proposed

in the literature. We gave preferences to efficient designs that incorporated parallel

processing of data which can be explored for observation.

The Chien search and error evaluator block is implemented using the J-parallel

architecture [12] so that the computation of the roots of the error locator polynomial

can be partially executed while the computation of the roots of the error evaluator

polynomial is in process. There are 350 XTime units in total in the KES module. In

our experiment, we first considered construction with p(x) = 111000011 as the correct

configuration. However, we further developed designs for all the combinations of the

primitive irreducible polynomials and observed the area, timing and power overheads

in each of the designs. We implemented several obfuscated designs with different

legitimate polynomials under GF (28) through reconfigurable finite field arithmetic

units. Note that in the case of GF (28), there are 30 irreducible polynomials, out

of which 16 are primitive irreducible polynomials that can be used for construction.

48

The original architecture and the obfuscated designs are synthesized using Synopsys

Design Compiler with the 32/28nm generic library.

5.1 Impact of Using Combinations of Polynomials

5.1.1 Case 1: Two legitimate polynomials with a 1-bit con-

trol signal

One parameter to select the pair of polynomials is to have the minimum num-

ber of additional cells/gates to build the obfuscated design. In this experiment, we

select the construction corresponding to q(x) = 111100111 as one meaningful obfus-

cating mode, which only has a Hamming distance of 2 to p(x). In the XTime block

for these polynomials, there is an XOR gate for each of the input bits except for

bits 3 and 4. The XOR gates for bit 2 and 3 do not contribute to the output when

the correct key is applied, while the XOR gates for bits 2 and 3 become operational

when the key is configured into the mode corresponding to q(x). Therefore, only 2

additional gates were required and only one-bit control signal is required for each

reconfigurable XTime unit. The reconfigurable XTime block design between these

two polynomials is shown in Figure 4.9.

5.1.2 Case 2: Two legitimate polynomials with a 2-bit con-

trol signal

We also consider the case where the key is mapped to 2-bit control signals for

each reconfigurable finite field arithmetic unit with q(x) = 111100111. In this case,

each of the additional gate in the reconfigurable XTime block is controlled separately.

49

5.1.3 Case 3: Four legitimate polynomials with a 4-bit con-

trol signal

We implemented the obfuscated design with q1(x) = 101011111, q2(x) = 111001111, q3(x) =

111110101 as other legitimate primitive polynomials. A 4-bit control signal is mapped

to control each reconfigurable finite field arithmetic unit.

Table 5.1: Overhead for four-polynomial configuration

Area Power Time

10.34% 2.78% 1.31%
11.02% 2.81% 1.31%

5.2 Overheads

The overhead results for the above three cases are summarized in Table 5.2,

which are calculated based on the entire decoder architecture.

Table 5.2: Overhead for each case configuration

Case Area Power Time

1 6.82% 1.23% 7.81%
2 6.17% 1.04% 2.38%
3 10.34% 2.78% 1.31%

It can be seen that the overhead of the proposed hardware obfuscation method-

ology is small, compared to prior works [20, 28]. It can also be concluded that given a

correct construction, different polynomial combinations that are included in the obfus-

cating modes will yield different hardware design costs. Higher number of legitimate

polynomials would certainly increase the design complexity while achieving a higher

level of obfuscation. In addition, our experimental results indicate that introducing

50

more control signal could reduce the design complexity within the reconfigurable fi-

nite field arithmetic units. However, using more bits in the meaningful modes would

decrease the degree of freedom for incorporating non-meaningful modes. As a result,

the overall obfuscation level might be reduced. Therefore, the detailed obfuscation

circuit should be carefully designed according to the performance requirement of a

certain application.

5.3 Selecting the Best Polynomial Combination for

Secure Reconfigurable Design

Selecting the number of polynomials and the set of those polynomials to im-

plement a reconfigurable multiplier design is crucial to obtaining a low-overhead and

secure chip. For a four-polynomial reconfigurable module, one of the P (16, 4) (per-

mutation function, P (n, r)) (assuming all four selections are unique) permutations

can be used. In order to select the combination wisely the area, power and timing

overheads of each combination needs to be compared.

For a two-polynomial reconfigurable module, one of the 16P2 combinations can

be used. We developed RS decoder designs for each of the 16 irreducible primitive

polynomials in GF (28) as the generator polynomial. We then created the set of re-

configurable decoder designs for each configuration, making them reconfigurable by

selecting another irreducible primitive polynomial as the second polynomial (corre-

sponding to the incorrect meaningful mode of the operation).

The variations in the overheads, shown in Figure 5.1 for different values of

the Hamming distance is attributed to the reconfigurable constant multiplier designs.

Since, there is not much flexibility in modifying the ′i′ and the ′α′ values in a RS

51

0

2

4

6

8

10

12

14

2 4 6

Pe
rc

en
ta

ge
 o

ve
rh

ea
d

Hamming Distance between p(x) and
q(x)

(a) Area Overhead

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

2 4 6

P
er

ce
nt

ag
e

ov
er

he
ad

Hamming Distance between p(x) and
q(x)

(b) Power Overhead

0
1
2
3
4
5
6
7
8
9

10

2 4 6

Pe
rc

en
ta

ge
 o

ve
rh

ea
d

Hamming Distance between p(x) and
q(x)

(c) Timing Overhead

Figure 5.1: Percentage overheads with respect to Hamming Distance between p(x)
and q(x)

decoder for a specific p(x), the variations in the observed overheads are expected to

remain similar for any design of the RS decoder.

The results are presented graphically in Figure 5.2, which validates our hy-

pothesis that a lower hamming distance between the two polynomials yields lower

overall area and power overheads. This is understandable since lower Hamming dis-

tance corresponds to less number of gates that are required to incorporate the design

associated with the second polynomial.

52

0

2

4

6

8

10

12

2 4 6

P
er

ce
nt

ag
e

ov
er

he
ad

Hamming Distance between p(x) and
q(x)

(a) Average Area Overhead

0

0.5

1

1.5

2

2.5

3

2 4 6

Pe
rc

en
ta

ge
 o

ve
rh

ea
d

Hamming Distance between p(x) and
q(x)

(b) Average Power Overhead

3.8

3.9

4

4.1

4.2

4.3

2 4 6

P
er

ce
nt

ag
e

ov
er

he
ad

Hamming Distance between p(x) and
q(x)

(c) Average Timing Overhead

Figure 5.2: Percentage average overheads with respect to Hamming Distance between
p(x) and q(x)

5.4 The Best Pair of p(x) and q(x)

Our experiment results also revealed the best combinations that can be used

to implement the multipliers with the least overheads in area and power. We present

3 such combinations in Table 5.3.

p(x) q(x) % Area Overhead % Power Overhead
111001111 110000111 3.67 1.45
111001111 101001101 4.06 1.45
111001111 111000011 4.27 1.45

Table 5.3: The least overhead p(x)-q(x) pair

53

5.5 Security Analysis

The obfuscation level of the design is dependent on the possible configurations

in each block. Theoretically, if the control signal of each block is mapped from

the key separately, there are maximum 2k configurations in each block, where k

is the length of the key. However, this would require one-to-one mapping for all

the control signals, which incurs significant overhead. In general, we assume the

possible configurations for each syndrome computation block, GF multiplier in the

KES architecture, and constant multiplier in Chien search and Forneys algorithm

as 2S1 , 2S2 , and 2S3 , respectively. Since the syndrome computation block produces

2t syndromes for a received word, there are 2t × 2S1 possible combinations in the

obfuscated design.

In addition, the KES block computes the polynomials, Λ(x) and Ω(x) using

(6t+ 2)(m− 1) XTime blocks that can take 2S2 arithmetic forms. As each coefficient

in KES is computed using the parameters obtained for the previous coefficients, these

units cumulatively contribute in final coefficient value. Furthermore, Chien Search

and Forneys algorithm also consist of (4t−2) constant multipliers that can be mapped

into 2S3 configurations each depending upon the value of control signal. Therefore, the

overall obfuscation level of the proposed design is about (48t4−56t3 +8t)×2S1+S2+S3 .

However, the RS decoder may not change the output if it concludes that the

errors are more than it’s designed to correct. Adding an FSM based obfuscation layer

between these blocks can change this behaviour causing the decoder to produce a

different output even if the number of errors is beyond its correction capability.

54

Chapter 6

Conclusions and Discussion

In Chapter 1, we discussed the various security challenges that today’s semi-

conductor industry and the electronic industry faces, which includes basically all the

computing-based industries viz. embedded systems, data centres, cloud servers, web

servers, governments, military equipment, wearable technology as well as individuals

themselves. The main focus of our work is to propose a design methodology which

can be widely employed in different kind of semiconductor chips. These techniques

can be useful to semiconductor IP and IC design companies as well as their clients in

building trust with their respective clients and also to keep their business essentials

secure.

In chapter 2, we presented a brief background of the IC design supply chain,

finite field arithmetic and its applications in coding theory, that will enable the reader

to understand the applicability and nature of this research work.

In chapter 3, we went over the recent research progress in the field of hardware

obfuscation. We particularly discussed obfuscation with regard to logic encryption

and finite field circuits. We acknowledged some of the work that has contributed to

our study and analysis, the open challenges that we could take up in order to produce

55

this work.

In chapter 4, we discussed the details of our research methodology and our

approach in producing better designs of the hardware units for a RS decoder. We

explained the designs we chose as the basis of our initial implementation and the

factors that make them a better choice for our work. Further, we detailed the changes

we made to the initial designs in order to improve security of the circuits without

compromising on the efficiency and resource consumption of the decoder.

In chapter 5, we presented our findings from our experiment. Our experiment

involved using our method for obfuscation of finite field based circuits to implement

obfuscation in Reed Solomon error correcting codes by the use of reconfigurable units

of finite field computation. We provided results for different scenarios and analyze

them to conclude and strengthen the confidence of our findings. We showed that

using reconfigurable computation units for finite field arithmetic, we can considerably

improve the obscurity of the IC design without having a high overhead.

We produced results for various polynomials and various configurations of

reconfigurability and report our observation. Our observation is that the reconfig-

urability only imposes a low overhead over the original design if the key length is

small and it increases with the increase of the key length. Our initial hypothesis that

the overheads, on average, increase with increasing hamming distance between the

polynomials in the set selected for different modes in the reconfigurable arithmetic

units.

For a minimal modification to the circuit, we believe that our design does not

give out any significant information in terms of side channel leakage to indicate that

the circuit was not functioning correctly when the applied key was incorrect. However,

with higher key length and no other method of obfuscation employed, the obscurity

of the design is slightly compromised. To prevent this, FSM based scramblers can be

56

used between the major blocks to introduce additional level of obscurity, making the

design more robust to reverse engineering.

In our work, we have presented a novel hardware obfuscation methodology

through re-configurable finite field arithmetic units. The obfuscated design can

achieve a high level of security by incorporating both meaningful and non-meaningful

modes. Techniques for developing efficient obfuscated designs have also been dis-

cussed with the use of a Reed-Solomon decoder as an example.

Future work will be directed towards developing obfuscated architectures for

other applications on the finite field. There are many directions that can be taken

from here to improve upon the work. First, what configuration is the most secure or

the least taxing configuration when putting on the final product. Another question

that immediately follows is how do we verify and prove that this the best possible

configuration without doing an exhaustive search and synthesizing each configuration.

Third, which characteristics of the considered polynomials, the field and the error

correction capability exactly determine if a configuration is supposed to be a secure

one or not and taxing in terms of hardware or not. Furthermore, we only covered

the constant and general GF multipliers which although are the foundation units

of operations in a finite field, may not be the only units that can be augmented or

modified to achieve higher security with lower overheads.

57

Bibliography

[1] Marco Baldi, Marco Bianchi, Franco Chiaraluce, Joachim Jakob Rosenthal, Da-
vide Mose, et al. Method and apparatus for public-key cryptography based on
error correcting codes, November 17 2015. US Patent 9,191,199.

[2] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai,
Salil Vadhan, and Ke Yang. On the (im) possibility of obfuscating programs. In
Annual International Cryptology Conference, pages 1–18. Springer, 2001.

[3] James P Baukus, Lap Wai Chow, and William M Clark Jr. Digital circuit
with transistor geometry and channel stops providing camouflage against reverse
engineering, July 21 1998. US Patent 5,783,846.

[4] Alex Baumgarten, Akhilesh Tyagi, and Joseph Zambreno. Preventing ic piracy
using reconfigurable logic barriers. IEEE Design & Test of Computers, 27(1),
2010.

[5] Christoforus Juan Benvenuto. Galois field in cryptography. University of Wash-
ington, 2012.

[6] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from
functional encryption. Journal of the ACM (JACM), 65(6):39, 2018.

[7] R.C. Bose and D.K. Ray-Chaudhuri. On a class of error correcting binary group
codes. Information and Control, 3(1):68 – 79, 1960.

[8] Rajat Subhra Chakraborty and Swarup Bhunia. Hardware protection and
authentication through netlist level obfuscation. In Proceedings of the 2008
IEEE/ACM International Conference on Computer-Aided Design, pages 674–
677. IEEE Press, 2008.

[9] Rajat Subhra Chakraborty and Swarup Bhunia. Rtl hardware ip protection using
key-based control and data flow obfuscation. In VLSI Design, 2010. VLSID’10.
23rd International Conference on, pages 405–410. IEEE, 2010.

[10] Rajat Subhra Chakraborty and Swarup Bhunia. Security against hardware tro-
jan attacks using key-based design obfuscation. Journal of Electronic Testing,
27(6):767–785, 2011.

58

[11] Bainan Chen, Xinmiao Zhang, and Zhongfeng Wang. Error correction for multi-
level nand flash memory using reed-solomon codes. In Signal Processing Systems,
2008. SiPS 2008. IEEE Workshop on, pages 94–99. IEEE, 2008.

[12] Yanni Chen and Keshab K Parhi. Small area parallel chien search architectures
for long bch codes. Ieee Transactions on Very Large Scale Integration (VLSI)
Systems, 12(5):545–549, 2004.

[13] Maria I Mera Collantes, Mohamed El Massad, and Siddharth Garg. Threshold-
dependent camouflaged cells to secure circuits against reverse engineering at-
tacks. In VLSI (ISVLSI), 2016 IEEE Computer Society Annual Symposium on,
pages 443–448. IEEE, 2016.

[14] Ronald Cramer, Vanesa Daza, Ignacio Gracia, Jorge Jiménez Urroz, Gregor Le-
ander, Jaume Mart́ı-Farré, and Carles Padró. On codes, matroids and secure
multi-party computation from linear secret sharing schemes. In Annual Interna-
tional Cryptology Conference, pages 327–343. Springer, 2005.

[15] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES-the advanced
encryption standard. Springer Science & Business Media, 2013.

[16] Sophie Dupuis, Papa-Sidi Ba, Giorgio Di Natale, Marie-Lise Flottes, and Bruno
Rouzeyre. A novel hardware logic encryption technique for thwarting illegal
overproduction and hardware trojans. In On-Line Testing Symposium (IOLTS),
2014 IEEE 20th International, pages 49–54. IEEE, 2014.

[17] Mohamed El Massad, Siddharth Garg, and Mahesh V Tripunitara. Integrated
circuit (ic) decamouflaging: Reverse engineering camouflaged ics within minutes.
In NDSS, 2015.

[18] Domenic Forte, Swarup Bhunia, and Mark M Tehranipoor. Hardware protection
through obfuscation. Springer, 2017.

[19] William A Geisel. Tutorial on reed-solomon error correction coding. 1990.

[20] W Paul Griffin, Anand Raghunathan, and Kaushik Roy. Clip: Circuit level ic
protection through direct injection of process variations. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 20(5):791–803, 2012.

[21] Z. Guo, M. Tehranipoor, D. Forte, and J. Di. Investigation of obfuscation-
based anti-reverse engineering for printed circuit boards. In 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6, June
2015.

[22] Zimu Guo, Mark M. Tehranipoor, and Domenic Forte. Permutation-Based Ob-
fuscation, pages 103–133. Springer International Publishing, Cham, 2017.

59

[23] Hideki Imai and Manabu Hagiwara. Error-correcting codes and cryptography.
Applicable Algebra in Engineering, Communication and Computing, 19(3):213–
228, 2008.

[24] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg,
Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yu-
val Yarom. Spectre attacks: Exploiting speculative execution. arXiv preprint
arXiv:1801.01203, 2018.

[25] Farinaz Koushanfar and Yousra Alkabani. Provably secure obfuscation of diverse
watermarks for sequential circuits. In Hardware-Oriented Security and Trust
(HOST), 2010 IEEE International Symposium on, pages 42–47. IEEE, 2010.

[26] Farinaz Koushanfar, Saverio Fazzari, Carl McCants, William Bryson, Peilin
Song, Matthew Sale, and Miodrag Potkonjak. Can eda combat the rise of elec-
tronic counterfeiting? In Design Automation Conference (DAC), 2012 49th
ACM/EDAC/IEEE, pages 133–138. IEEE, 2012.

[27] Yingjie Lao and Keshab K Parhi. Protecting dsp circuits through obfuscation. In
Circuits and Systems (ISCAS), 2014 IEEE International Symposium on, pages
798–801. IEEE, 2014.

[28] Yingjie Lao and Keshab K Parhi. Obfuscating dsp circuits via high-level trans-
formations. IEEE transactions on very large scale integration (vlsi) systems,
23(5):819–830, 2015.

[29] Meng Li, Kaveh Shamsi, Travis Meade, Zheng Zhao, Bei Yu, Yier Jin, and
David Z Pan. Provably secure camouflaging strategy for ic protection. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
2017.

[30] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
Meltdown. arXiv preprint arXiv:1801.01207, 2018.

[31] Bao Liu and Brandon Wang. Embedded reconfigurable logic for asic design
obfuscation against supply chain attacks. In Design, Automation and Test in
Europe Conference and Exhibition (DATE), 2014, pages 1–6. IEEE, 2014.

[32] Duo Liu, Cunxi Yu, Xiangyu Zhang, and Daniel Holcomb. Oracle-guided in-
cremental sat solving to reverse engineer camouflaged logic circuits. In Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2016, pages
433–438. IEEE, 2016.

[33] Inez Miyamoto, Thomas H Holzer, and Shahryar Sarkani. Why a counterfeit risk
avoidance strategy fails. Computers & Security, 66:81–96, 2017.

60

[34] Gleb Naumovich and Nasir Memon. Preventing piracy, reverse engineering, and
tampering. Computer, 36(7):64–71, 2003.

[35] Elisabeth Oswald, Stefan Mangard, Norbert Pramstaller, and Vincent Rijmen. A
side-channel analysis resistant description of the aes s-box. In Henri Gilbert and
Helena Handschuh, editors, Fast Software Encryption, pages 413–423, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg.

[36] Ahmad Patooghy, Ehsan Aerabi, Hamidreza Rezaei, Miguel Mark, Mahdi Fazeli,
and Michel A Kinsy. Mystic: Mystifying ip cores using an always-on fsm obfus-
cation method. In 2018 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), pages 626–631. IEEE, 2018.

[37] Jarrod A Roy, Farinaz Koushanfar, and Igor L Markov. Circuit cad tools as a
security threat. In Hardware-Oriented Security and Trust, 2008. HOST 2008.
IEEE International Workshop on, pages 65–66. IEEE, 2008.

[38] Dilip V Sarwate and Naresh R Shanbhag. High-speed architectures for reed-
solomon decoders. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 9(5):641–655, 2001.

[39] Kaveh Shamsi, Meng Li, Travis Meade, Zheng Zhao, David Z Pan, and Yier
Jin. Appsat: Approximately deobfuscating integrated circuits. In Hardware
Oriented Security and Trust (HOST), 2017 IEEE International Symposium on,
pages 95–100. IEEE, 2017.

[40] Goutham NC Shanmugam, Yingjie Lao, and Keshab K Parhi. An obfus-
cated radix-2 real fft architecture. In Acoustics, Speech and Signal Processing
(ICASSP), 2015 IEEE International Conference on, pages 1056–1060. IEEE,
2015.

[41] Claude E Shannon. Communication theory of secrecy systems. Bell system
technical journal, 28(4):656–715, 1949.

[42] Claude Elwood Shannon. A mathematical theory of communication. Bell system
technical journal, 27(3):379–423, 1948.

[43] Yuanqi Shen and Hai Zhou. Double dip: Re-evaluating security of logic encryp-
tion algorithms. In Proceedings of the on Great Lakes Symposium on VLSI 2017,
pages 179–184. ACM, 2017.

[44] USTR. Ustr releases 2018 special 301 report on intellectual property rights, Apr
2018.

[45] James B Wendt and Miodrag Potkonjak. Hardware obfuscation using puf-based
logic. In Computer-Aided Design (ICCAD), 2014 IEEE/ACM International
Conference on, pages 270–271. IEEE, 2014.

61

[46] Mingfu Xue, Jian Wang, Youdong Wang, and Aiqun Hu. Security against hard-
ware trojan attacks through a novel chaos fsm and delay chains array puf based
design obfuscation scheme. In International Conference on Cloud Computing
and Security, pages 14–24. Springer, 2015.

[47] Muhammad Yasin, Bodhisatwa Mazumdar, Ozgur Sinanoglu, and Jeyavijayan
Rajendran. Security analysis of anti-sat. In Design Automation Conference
(ASP-DAC), 2017 22nd Asia and South Pacific, pages 342–347. IEEE, 2017.

[48] Cunxi Yu, Xiangyu Zhang, Duo Liu, Maciej Ciesielski, and Daniel Holcomb.
Incremental sat-based reverse engineering of camouflaged logic circuits. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
36(10):1647–1659, 2017.

[49] Jiliang Zhang and Lu Wan. Cmos: Dynamic multi-key obfuscation structure for
strong pufs. arXiv preprint arXiv:1806.02011, 2018.

62

	Clemson University
	TigerPrints
	12-2018

	Hardware Obfuscation for Finite Field Algorithms
	Ankur A. Sharma
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Hardware Attacks
	Hardware Security
	Cryptography and Error Correcting Codes
	Contribution and Thesis Organization
	Thesis Overview

	Hardware Obfuscation
	Importance of Hardware Obfuscation
	Recent Work in Hardware Obfuscation
	Cryptography and ECC applications
	Hardware Obfuscation for Cryptography and ECC
	Our Focus

	Background
	Finite Fields
	Reed-Solomon Codes

	Research Methodology
	RS decoder
	Syndrome Computation: J-Parallel Architecture
	KES Block: RiBM Architecture
	Chien Search and Error Evaluator Block: Partial Parallel Design
	Reconfigurable Finite Field Units
	Final Design
	Configurations

	Experimental Results
	Impact of Using Combinations of Polynomials
	Overheads
	Selecting the Best Polynomial Combination for Secure Reconfigurable Design
	The Best Pair of p(x) and q(x)
	Security Analysis

	Conclusions and Discussion
	Bibliography

