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Abstract—Semiconductor design houses rely on third-party
foundries to manufacture their integrated circuits (IC). While
this trend allows them to tackle fabrication costs, it introduces
security concerns as external (and potentially malicious) parties
can access critical parts of the designs and steal or modify the
Intellectual Property (IP). Embedded FPGA (eFPGA) redaction
is a promising technique to protect critical IPs of an ASIC
by redacting (i.e., removing) critical parts and mapping them
onto a custom reconfigurable fabric. Only trusted parties will
receive the correct bitstream to restore the redacted functionality.
While previous studies imply that using an eFPGA is a sufficient
condition to provide security against IP threats like reverse-
engineering, whether this truly holds for all eFPGA architectures
is unclear, thus motivating the study in this paper. We examine the
security of eFPGA fabrics generated by varying different FPGA
design parameters. We characterize the power, performance, and
area (PPA) characteristics and evaluate each fabric’s resistance to
SAT-based bitstream recovery. Our results encourage designers
to work with custom eFPGA fabrics rather than off-the-shelf
commercial FPGAs and reveals that only considering a redaction
fabric’s bitstream size is inadequate for gauging security.

Index Terms—Embedded FPGA, Hardware Security, IP
Redaction

I. INTRODUCTION

As technology advances, integrated circuit (IC) complexity
has grown significantly and led to increased outsourcing of the
steps of the design flow to third-party entities in the supply-
chain, as shown in Fig. 1(a). Outsourcing and globalization
introduce many players in the supply-chain and this presents
challenges of intellectual property block (IP) theft, reverse-
engineering, and malicious manipulation [1]. Consider IC lay-
out design files which are sent to the foundry for fabrication,
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Fig. 1. (a) IC design and fabrication flow and possible way to secure in
the design house stage. (b) eFPGA redaction takes a module of an IP and
implements it as a reprogrammable fabric replacing the redacted function.

malicious (or compromised) employees can access these files
and reverse-engineer the function to steal the IP of critical
design portions or to insert hardware Trojans. Malicious end-
users can obtain working ICs to analyze the I/O relationships
and reverse-engineer the correct function (in collusion with a
malicious foundry) to make unauthorized clones.

In response, researchers have proposed a myriad of solutions
that aim to protect the confidentiality of the hardware IP, in-
cluding design obfuscation and logic locking (e.g., [2]–[11]).
All these techniques obscure a design’s function by adding
modules whose correct functionality depends on an external
key [11] or by withholding information such as algorithm
constants that only a legitimate user can later restore [2].
Incorrect keys corrupt the IC’s functionality, rendering the
design useless to the malicious party. To date, attacks have
overcome the protections. The most notable class of attacks is
based on Boolean satisfiability (SAT) [3], [12], [13]. These
SAT-based attacks assume an adversary with access to an
unlocked implementation (the Oracle). Recently, redacting
parts of an IP by using embedded field programmable gate
arrays (eFPGAs), as depicted in Fig. 1(b), has emerged as a
promising, SAT-attack resilient defense [5], [7]. The intuition
is that even small eFPGAs fabrics are insurmountable for
SAT solvers because of their complexity and their size when
converted into a representation for SAT solving [5]. Prior work
has begun to characterize the feasibility of this defense by
studying the overhead associated with this technique assuming
a fixed eFPGA architecture [14].

However, are all eFPGAs the same from a security
perspective? To the best of our knowledge, the literature does
not yet offer insights on how different eFPGA parameters,
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such as look-up table size, affect the security offered by
eFPGA-based redaction. In logic locking approaches, security
is distilled into a single parameter: the key size [3] – a
designer can choose a key size, as a measure of security,
and incur follow-on impacts on PPA metrics. In eFPGAs,
the counterpart is the configuration bitstream size, which is
determined by the conflation of multitudinous design choices,
from logic element configuration through to routing channel
width (see Section III) – in other words, the eFPGA design
space is vast [15]. From a practical standpoint, it is crucial for
designers to understand the relationships between security and
other design factors. Thus, we address this gap in literature by
performing an empirical study of eFPGA architecture con-
figurations and resistance to bitstream recovery through
SAT-attack as the security metric. For insights into eFPGA-
based IP redaction, we adapt an open-source FPGA design
flow [16] to produce different eFPGAs fabrics, with different
configurations, and explore how eFPGA parameters affect
security. Our contributions are threefold:

1) An analysis of eFPGA architectures that can be used
for redaction. We analyze PPA and security effects and
explore how the parameter choices of an eFPGA fabric
“contribute” to the security provided by it.

2) A formulation of SAT-based attack for bitstream recov-
ery of eFPGAs used for redaction and an experimental
evaluation of eFPGA-based defense.

3) Insights into the practical considerations for adopting
eFPGA-based redaction and a perspective on the future
outlook of this IP protection technique.

In Section II, we present the hardware IP protection problem
alongside prior work to tackle this issue. This is followed by
an introduction to eFPGA and their architectural parameters
in Section III, and architecture settings that we explore.
Section IV details our initial attempts at eFPGA bitstream
recovery, including threat model and assumptions. Section V
revises our approach for eFPGA bitstream recovery, with
insights into security of eFPGA fabrics. We discuss insights
from our study in Section VI and then conclude in Section VII.

II. RELATED WORK AND MOTIVATION

A. Key-based Hardware IP Protection

Logic locking is a popular technique for hardware IP
protection [3], [4]. Designers insert additional gates (controlled
by an input key) to thwart reverse engineering of the real
functionality. The key is known to the design house but
unknown to the foundry. The correct key is installed into the
chip after fabrication, assuming it is the only one that restores
the correct functionality. So, the key is the one and only
secret to be protected (by the designers) or retrieved (by
the attackers). Attackers may have access to a working chip
(called Oracle) for key recovery by analyzing I/O relationships
with SAT-based formulations [12], [13], [17]–[20]. Otherwise,
they can analyze the existence of structural artifacts [21],
[22] to guess the correct key bits. Designers need to design
locking techniques such that they 1) protect the semantics of
the circuit, 2) guarantee that the key is not easy to retrieve,
and 3) minimize hardware overhead.

For protecting essential semantics, locking is applied at
register transfer level (RTL), even though these methods
incur in significant area overhead [2]. Other methods aim at
trading off different security metrics, like SAT resilience and
corruptibility [23], but these approaches have structural vulner-
abilities, leading to key recovery [24]. In all cases, the security
of such key-locked design is proportional to the number of
key bits. However, the key cannot grow indefinitely because
of technological constraints like the size of the tamper-proof
memory where it is installed.

B. eFPGA-based Redaction

IP redaction is an alternative method to logic obfuscation.
In this case, designers select specific modules – the ones
they want to protect – to conceal and replace them with soft
eFPGAs (i.e., reconfigurable fabrics described in RTL and
designed using standard-cells with the rest of the chip). The
key idea is that only a sub-design gives the design house a
competitive market advantage. An eFPGA is a soft IP module
that includes configurable logic blocks (CLBs) containing
look-up tables (LUTs), flip-flops, and routing logic that can
be fabricated and programmed to implement the desired func-
tionality. The specific configuration of such devices is called
bitstream. A bitstream must include the configuration of each
configurable module of the eFPGA. When used for redaction,
the designer will insert the eFPGA module to replace the
“sensitive” parts of the design that are thus unknown to un-
trusted parties during fabrication. On the contrary, the attacker
must recover the complete bitstream to implement the correct
functionality in each eFPGA, which is now the “secret” to
be protected. eFPGA-based redaction is particularly attracting
for thwarting several reverse-engineering attacks. On one
hand, structural attacks are difficult to be applied because the
eFPGA is regular and generic, able to implement an arbitrary
functionality. On the other hand, the size of the configuration
bitstream grows exponentially with the complexity of the
eFPGA architecture, significantly enlarging the key space and
so thwarting SAT-based attacks [5], [7], [14].

Fig. 2 shows the general flow for eFPGA-based redaction.
After selecting the portion of the design to be redact, it goes
through the fabric generation step, while the rest of the chip is
designed and optimized as usual. The fabric netlist describes
the eFPGA architecture and is then recombined with the rest of
the chip to go through the physical design flow. The redacted
module is instead compiled into a bitstream to configure
the eFPGA after manufacturing. This obfuscation technique
is resource-intensive, occupying considerably more area than
the baseline design as noted in [14]. The studies by [25],
[26] offer an in-depth analysis of various IP obfuscation
methods but not eFPGA-based redaction. Interested readers
can check those works for a sense of the drawbacks of non-
eFPGA-based techniques. Prior work [14] studied only the
eFPGA architecture and restricted the analysis to consider
security primarily. While the approach is promising, there are
several issues to address. Which module(s) should a designer
redact? What is the impact of inserting eFPGAs into ASIC
design flow? How can the designer generate the proper
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Fig. 2. An eFPGA-based redaction flow for RTL IP. The redacted portion (module) is picked by a designer. We adapt the OpenFPGA flow to produce the
required eFPGA fabric, which we treat as a macro and connect to the remaining portion of the design.

eFPGA architecture? Are all eFPGA architectures equally
secure? We explore the correlation between overhead and
security, considering eFPGA architecture as a variable that
designers can tune. By picking the parameters for the eFPGA,
we can achieve similar security level with a smaller fabric,
minimizing overhead.

When deciding which module(s) to redact, the designer
could know the “sensitive” parts of the design, manually
driving the selection [5], or use methods based on high-level
synthesis (HLS) to identify the logic that differentiates variants
of the same design [6]. In all cases, the designer assumes a
standard or even off-the-shelf implementation of the eFPGA,
incurring in significant overheads. Several open-source CAD
flows can be used to generate the eFPGA architectures and the
corresponding bitstream for the modules to be redacted. Yosys
and VTR/VPR can be used to identify the fabric parameters,
along with a Chisel-based generator [5]. OpenFPGA is an
open-source generator of customizable FPGA architectures
that can be combined with logic synthesis flows to generate the
proper configuration bit-stream [27]. While these approaches
allow exploration of fabric parameters, their security and
design implications have never been explored in the case of IP
redaction. The security of eFPGA-based redaction comes, in
principle, with the size of the configuration bitstream rendering
SAT-based attacks infeasible [5]. However, the impact of
different eFPGA architectures on SAT resilience is unclear;
exploring this impact is the topic of our work.

We base our exploration on OpenFPGA, i.e., an open-
source eFPGA generator, precisely because we can explore
different parameters and produce the corresponding fabrics –
specifically for redaction – that are smaller than commercial
eFPGAs. In fact, commercial eFPGA fabrics are less flexible,
closed, and typically larger as they prioritize other design goals
(e.g., FlexLogic fabrics [28] start at ∼1K LUTs). We note as
well that redacting parts of an IP with small fabrics can already
incurs considerable overheads [5]. Next, we will introduce the
eFPGA architecture, describing which parameters we consider.

III. BACKGROUND ON EFPGA

This section provides a brief overview of FPGAs, covering
the most crucial parts, i.e., architectural choices and EDA
toolchains for agile hardware development techniques. These

are the essential factors for enabling eFPGA redaction, as
explored in this paper. We refer the readers to the work of
Boutros and Betz for more details on FPGA architectures [15].

A. FPGA Architectures

FPGAs are reconfigurable fabrics that are (re)-
programmable “in the field” to implement a specific
digital design. Modern FPGAs are designed using a tile-based
architecture, where the FPGA comprises repeatable tiles and
a “sea” of routing resources, as shown in Fig. 3 (Ê). A B×B
architecture means there are B tiles distributed in horizontal
and vertical direction, respectively. For example, Fig. 3 (Ê)
shows a 5×5 FPGA architecture. The predominant tiles in
an FPGA are CLB tiles that implement logic functions. An
example of a CLB tile is shown in Fig. 3 (Ë); it contains
a CLB and blocks for setting the connection between
signals within and outside the tile. Modern FPGAs can also
include some specialized tiles, such as block RAM (BRAM)
or digital signal processing (DSP) tiles. A heterogeneous
tile-based FPGA gives the designer flexibility to meet design
requirements and also control the power, performance,
and area (PPA) aspects of the architecture. Tile-based
architectures offer a better trade-off between programmability
and efficiency compared to alternatives [15]; designers can
also separately focus on the problem of how to route and
connect signals within a tile, and problem of interconnecting
tiles “globally”. This allows engineers to focus on optimizing
the layout of a tile and spend less time on placing and routing
tiles. At a lower level of abstraction, the building blocks of
an FPGA include the following:

Configurable Logic Blocks are used to implement combi-
national and sequential logic. Fig. 3 (Ì) shows a detailed CLB
architecture, where there are N basic logic elements (BLEs)
which are connected through a local routing architecture. A
BLE is the primitive module implementing logic functions and
comprises a LUT, a flip-flop (FF) and a 2-input multiplexer,
as shown in Fig. 3 (Í). One can map a K-input single-output
Boolean function to a single K-input LUT. By configuring 2-
input multiplexer, a BLE can operate in either combinational
or sequential mode. To route interconnect CLB inputs and BLE
inputs and outputs, the local routing architecture, typically
implemented as a crossbar, includes a set of programmable



4

I/O
1

Connection
Block

Configurable
Logic Block

Switch
Block

C
on

ne
ct

io
n

Bl
oc

k

2

BLE 1

BLE N

Local Routing

3

CLB Tile

K-LUT FF
MUXK

In
pu

ts

clock

SRAM

4

Tile

5

5

Fig. 3. Simplified view of an FPGA and its constituent parts.

multiplexers. The local routing guarantees that BLEs can be
fully connected to each other and also to every CLB input pin.

As shown in Fig. 3 (Ì), the fabric can be configured such
that the output from the BLE can be fed back in as an input,
creating a possible loop in the design. This concept is further
elaborated in Fig. 3 (Í), where for various SRAM values,
the output from the LUT may reappear as input via some
combinations of the bitstream that controls the local routing.
In traditional design methodology, such “combinational loops”
are avoided to prevent instability. Therefore, when generating
a bitstream for the fabric, the tool is mindful to prevent any
accidental introduction of combinational loops in the design.

The logic capacity of a CLB is determined by the following
parameters: (1) input size of LUTs, K; (2) numbers of BLEs
in a CLB, N ; and (3) number of inputs to the CLB, I . These
parameters are chosen based on the trade-off between the logic
capacity and impact on the area, delay and power. To have
better resource utilization in a CLB, for any LUT size, I =
K(N+1)

2 has been shown to give good PPA [29].
The Global Routing Architecture determines the signal

routing outside CLBs, and comprises of connection blocks
(CBs) and switch blocks (SBs). Both CBs and SBs employ
programmable multiplexers for routing. CBs are used to con-
nect the input and output of CLBs to routing tracks (that con-
nect different tiles) and SBs connect routing blocks together
for producing longer routes between tiles [15]. Typically, a
sparse connection is used for global routing where a routing
multiplexer is connected to a subset of routing tracks to
have a better trade-off between routing area and routability.
Parameters for routing include: (1) the number of routing
tracks grouped together in a channel, W ; (2) the fraction of
routing track connected to a CLB input, Fc,in; (3) the fraction
of routing track connected to a CLB output, Fc,out; and (4) the
number of routing tracks that can be connected to one routing
track, Fs. In modern FPGAs, uni-direction global routing is
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Fig. 4. Global Routing Structure.

preferred over classical bi-directional routing [30], as it can
save 25% area and improve delay by 9%. Fig. 4 illustrates an
example of a unidirectional global routing architecture, where
CLB CLB0 is surrounded by a SB SB0 and CB CB0, with a
channel width (W ) of 4. Fc,in of inputs pins IN0, IN1, and
IN2 are 2/4 = 0.5, 3/4 = 0.75 and 4/4 = 1 respectively. Fc,out

of output pins OUT1 and OUT2 have the same value of 2/4
= 0.5. Each routing track connects to 3 other tracks, thus Fs,
= 3 in SB0. Usually, a routing path starts from a CLB input,
and connect to routing track through a CB, and then passes
through SB, to finally reach a CLB output through another
CB. But, if CLBs are far from each other, the routing may
have to go through a number of SBs, increasing the delay. To
tackle this, routing tracks are allowed to span multiple CLBs.
This parameter is defined as the length of routing track L, i.e.,
the number of CLBs spanned by a routing track.

The FPGA is configured by loading a bitstream, where
each bit sets some element of the fabric, such as routing
configurations and LUT contents. One can load the bitstream
with frame-based [31] and scan-chain based [27], [32] config-
urations. In this study, we focus on scan-chain based bitstream
programming, where the bitstream is loaded sequentially, one
bit per cycle, with a dedicated clock (prog_clk).

B. Open Source (e)FPGA Design Flows

Heterogeneous computing have renewed interest in em-
bedded field programmable gate arrays (eFPGAs) fabrics
due to their flexibility and adaptability. Commercially, field
programmable gate arrays (FPGAs) are coupled tightly to
processors in a single-chip so that they can act as a pro-
grammable accelerator or co-processor [33], [34], with benefits
like increasing the peak performance of a System-on-Chip
(SoC) by 3.4× along with a 2.9× power reduction. Different
SoCs can be customized with different eFPGA fabrics to best
serve a specific application’s requirements, e.g., eFPGAs for
machine learning require a high density of Digital Signal
Processing (DSP) blocks, embedded memories, and arithmetic
accelerators (such as for multiply and accumulate).

Recently, open-source (e)FPGA prototyping tools have
emerged [16], [31], [35]. Fig. 5 illustrates principles of
the OpenFPGA framework for prototyping customizable



5

Fig. 5. Open-source eFPGA design flows: (a) XML-to-layout generation for
IC designers; and (b) Verilog-to-Bitstream generation for end-users.

eFPGAs [16]. The framework provides a unified environment
for FPGA IP Prototyping and supporting FPGA CAD tools.
In the XML-to-layout flow, designers produce fabrication-ready
eFPGA layouts by specifying designs with XML-based archi-
tecture description languages [36], [37], customizing circuit
elements, standard cells, and flexible hardware IPs. The core
engine converts the architecture description Verilog netlists
(either tech-mapped or synthesizable). The auto-generated
netlists are post-processed [38], with a focus on easing the
physical design flow, and then followed by Place&Route
(P&R) tools for generating GDSII layouts and design sign-
offs. For functional verification, OpenFPGA also produces
Verilog testbenches. The testbenches validate the correctness
of a generated fabric, simulating a complete process, including
bitstream downloading and eFPGA operation. The ability to
create custom fabrics is a better fit for redaction compared
with off-the-shelf (commercial) eFPGA IP [5]. In the Verilog-
to-Bitstream flow, end-users can implement HDL designs on
the eFPGAs. HDL designs are first synthesized by Yosys
[39] and physically mapped (packed, placed, and routed) on
the eFPGA programmable resources using VPR [40] tool.
The implemented design is translated to a bitstream which
is compatible with configuration protocols of eFPGAs.

Open-source efforts aim to overcome two major techni-
cal barriers of contemporary eFPGA development: (1) the
time-consuming physical design process—by leveraging the
sophisticated ASIC design tools rather than manual lay-
outs, and (2) the increasing design complexity of associated
electronic design automation (EDA) tool-chain—by using
well-known open-source FPGA architecture exploration tools,
e.g., VPR [40], rather than developing ad hoc, in-house tools.
Using the design flows in Fig. 5, the development cycle of a
160k-LUT FPGA layout is ∼24 hours and its performance is
competitive against commercial products [16], [38]. We thus
adopt the OpenFPGA framework to implement eFPGA fabrics
[16] for redaction and provide insights into our experience.

C. eFPGA Architecture for this Study
Given the different FPGA architectural parameters, as we

described in Section III-A, we are interested in understanding
how changing the parameters affects security. As the design
space is considerable, we limit our study to exploring the K
and N parameters, as these are the factors that have direct
impact on complexity and hardware utilization. In the FPGA
fabric netlists, LUTs comprise a tree-of-MUXes, so varying N
and K changes the MUX sizes.

To summarize, Table I describes the architecture settings
that we explore for generating eFPGA redaction fabrics. For
this study, we use a tile-based FPGA to emulate complexity
similar to that in a commercial FPGA, and vary the overall
fabric size from 4×4 to 6×6 tiles. For consistency of results,
we use uni-directional routing. These parameters are set on the
basis of the prior studies of FPGA designs [15], [29], which
showed that these ranges of parameters give the best power,
performance, and area (PPA) results. In this work, we first
characterize the fabrics’ bitstream size, area, power, and delay,
and then evaluate their security in Section IV and Section V.

1) Tool Setup for Fabric Design: To generate the fabrics
and determine the cost of the redaction fabrics based on area,
power, and delay, we synthesize, place, and floorplan fabrics
that we generate using the OpenFPGA flow [37]. This flow is
depicted in Fig. 2. For synthesis we use Cadence Genus 18.14
and for layout implementation we use Cadence Innovus 18.10.
The timing, area, and power reports are generated by Innovus.
For floorplanning we set utilization to 70% for faster timing
closure. We use FreePDK 45 nm library [41] for our study.

2) Bitstream Characteristics: Table II reports the number
of bits required for the configuration bitstream, and this can
be taken as a measure of the overall “programmability” of
the fabric. It is important to note that there are overlaps in
bitstream sizes across tile sizes (e.g., 4×4 K7N8 fabric has
more bits in its bitstream compared to 5×5 K5N7).

3) Area Characteristics: Table III shows how the area is
affected by varying N and K. For a given N value, as we
increase K the number of inputs to the CLB increases (as
a result of the relationship between I , K, and N mentioned
in Section III-A); increasing the LUT sizes in the BLEs and
also slightly affecting local and global routing. For a given K
however, an increase in N has more impact in increasing the
area, as entire BLEs are added; this increases the complexity
of both local and global routing, as suddenly there is a jump
of another K inputs to the CLBs, resulting in added pressure
on local routing to route this additional set of inputs to CLBs.
This forces the global routing (CBs and SBs) to increase the
routing complexity as more inputs are being fed to CLBs.

4) Delay Characteristics: Compared to our study on area,
the impact on the critical path delay from varying N and K
is less obvious, as shown in Table IV. As observed in prior
work [15], [29], the impact on delay is not a linear function
of K and N . In our fabrics, we observe that for a given N ,
the delay values improve as one increases K, where the least
delay is generally achieved for the largest K (= 7).

5) Power Characteristics: Power is shown in Table V.
Similar to area, power increases with complexity of the fabric
(increasing K and N ). If one look at the two extremes for a
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TABLE I
EFPGA FABRIC ARCHITECTURE PARAMETERS USED IN THIS WORK.

Parameter Range Description

K [3,7] Input size of a LUT
N [2,8] Number of BLEs in a Configuration Logic Block
I I =

K(N+1)
2

Number of inputs to a CLB.
W 40 Number of routing tracks in a channel.

Fc,in 0.15 Fraction of routing tracks to which each CLB input pin connects
Fc,out 0.1 Fraction of routing tracks to which each CLB output pin connects.
Fs 3 Number of routing tracks to which each incoming routing track can connect in a SB.
L 4 The length of a routing track in term of the number of CLBs spanned by the track

TABLE II
BITSTREAM SIZE FOR DIFFERENT EFPGA FABRICS FOR DIFFERENT CONFIGURATION PARAMETERS.

N
K Fabric: 4×4 Fabric: 5×5 Fabric: 6×6

3 4 5 6 7 3 4 5 6 7 3 4 5 6 7

2 642 680 856 1166 1712 1265 1553 1958 2684 3893 2090 2739 3322 5037 7313
3 766 851 1107 1559 2475 1539 1908 2493 3501 5725 2574 3309 4430 6635 10326
4 878 1090 1518 2019 3262 1786 2370 3344 4974 7150 3533 4392 6137 8598 13144
5 982 1357 1782 2775 3958 2354 3161 3926 6748 8710 3935 5369 6786 11510 15525
6 1195 1509 2053 2969 4661 2429 3302 4780 6948 10693 4679 6059 8251 11947 18348
7 1284 1688 2312 3388 5552 3030 3948 5379 7598 12714 5134 6766 9310 13770 21660
8 1434 1890 2614 4030 6361 3321 4356 6007 9211 14378 5647 7487 10420 16116 25305

TABLE III
AREA (mm2) FOR DIFFERENT EFPGA FABRICS.

N
K Fabric: 4×4 Fabric: 5×5 Fabric: 6×6

3 4 5 6 7 3 4 5 6 7 3 4 5 6 7

2 0.006 0.007 0.008 0.011 0.016 0.012 0.016 0.019 0.025 0.037 0.020 0.028 0.034 0.051 0.070
3 0.007 0.008 0.011 0.016 0.023 0.015 0.018 0.026 0.033 0.053 0.025 0.032 0.047 0.066 0.096
4 0.009 0.011 0.016 0.024 0.031 0.018 0.024 0.035 0.049 0.069 0.036 0.046 0.068 0.087 0.127
5 0.010 0.014 0.018 0.029 0.040 0.025 0.033 0.040 0.069 0.085 0.042 0.056 0.067 0.122 0.159
6 0.013 0.016 0.022 0.032 0.046 0.027 0.035 0.052 0.077 0.107 0.053 0.065 0.086 0.128 0.183
7 0.014 0.019 0.026 0.038 0.058 0.034 0.043 0.059 0.087 0.133 0.058 0.073 0.101 0.150 0.220
8 0.017 0.023 0.031 0.047 0.068 0.039 0.050 0.068 0.104 0.155 0.067 0.086 0.117 0.156 0.224

given fabric size, {K=3 and N=2} and the other being {K=7
and N=8}, there is 10× increase in power consumption.

D. General Observations

There is considerable variation in bitstream size, area, delay,
and power as we vary K and N , given a fabric size. Given
a module to redact, a designer will naturally be drawn to the
fabric configuration with the least area/power/delay that can fit
the redaction target. However, let us consider bitstream size as
our security parameter (intuition: more bits in the bitstream,
more security). Seeing as there are fabrics that have similar
configuration bitstream sizes with different fabric sizes and
K/N parameter values, this begs the question: Can we gauge
security by considering only the bitstream size? Take, for
instance, the 4×4 K7N8 fabric uses 6361 bits for its bitstream,
does this mean better security compared to the 5×5 K5N7
fabric, which ∼1000 fewer bits and requires smaller area? In
the next section, we perform a security analysis on all the
fabrics to try to see if this is indeed the case.

IV. ASSESSING EFPGA-BASED REDACTION FABRICS

This section describes the threat model and assumptions
under which our study operates, outlines our intuitions about
the characteristics of eFPGAs generally that contribute to their
security, and then present the results of our experiments. We
perform the experiments using a High Performance Computing
(HPC), with jobs running in parallel, each on an independent
compute node that has an Intel Xeon Platinum 8268 processor
running at 2.9 GHz and 256 GB of RAM.

A. Assumptions and Threat Model
For insight into the security offered by using eFPGA-based

redaction, we explore SAT-attack resilience of the various
fabrics (as described earlier in Section III-C), as this has been
used to gauge the security of redaction in prior work [5] and
has proven to be a challenge to overcome for prior IP protec-
tion approaches [3]. Previous work suggests that large FPGA
bitstream lengths make SAT-based attacks impractical [7] and
the evaluation results in [5] appear to support this claim.

As we want to investigate how structural variations of the
eFPGA contribute to complexity parameters of SAT-based
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TABLE IV
CRITICAL PATH DELAY (ns) FOR DIFFERENT EFPGA FABRICS.

N
K Fabric: 4×4 Fabric: 5×5 Fabric: 6×6

3 4 5 6 7 3 4 5 6 7 3 4 5 6 7

2 1.85 1.96 1.91 1.22 1.68 3.74 2.82 2.24 2.24 1.67 6.47 4.41 3.74 3.84 4.46
3 1.86 1.52 1.91 1.39 1.10 3.15 2.37 3.63 3.58 2.64 5.64 3.78 5.91 3.81 4.11
4 1.88 1.29 1.41 1.28 1.56 3.99 3.21 3.15 3.59 2.48 6.93 5.24 5.07 4.23 3.61
5 1.77 2.06 1.65 1.77 1.35 5.34 3.45 4.14 3.36 3.37 8.92 6.21 4.89 6.19 3.74
6 2.58 1.67 1.65 1.88 1.41 5.30 3.39 3.93 3.21 2.52 8.72 6.21 4.86 5.28 3.51
7 2.55 2.43 1.83 1.59 1.23 6.43 4.83 3.99 3.21 2.58 8.73 5.89 4.74 5.22 3.65
8 2.43 2.12 1.77 1.82 1.83 6.52 4.71 3.72 3.06 2.81 8.74 5.94 4.54 5.02 3.33

TABLE V
POWER (mW ) FOR DIFFERENT EFPGA FABRICS.

N
K Fabric: 4×4 Fabric: 5×5 Fabric: 6×6

3 4 5 6 7 3 4 5 6 7 3 4 5 6 7

2 0.71 0.79 0.98 1.31 1.94 1.56 2.06 2.45 3.19 4.85 2.62 3.75 4.45 6.76 9.24
3 0.89 0.98 1.39 1.92 2.84 1.88 2.36 3.33 4.25 6.98 3.22 4.18 6.44 8.64 13.06
4 1.07 1.39 1.99 2.63 3.87 2.33 3.34 4.68 6.35 9.14 4.84 6.34 9.31 11.63 17.23
5 1.31 1.77 2.35 3.75 5.03 3.30 4.52 5.46 9.35 11.16 5.74 7.92 9.48 16.57 21.44
6 1.62 2.09 3.02 4.02 5.58 3.53 4.86 7.44 10.35 13.68 7.36 9.44 12.61 17.56 23.13
7 1.92 2.51 3.58 4.86 7.14 4.89 6.19 8.69 11.41 16.12 8.46 10.80 15.12 20.63 28.31
8 2.20 3.07 4.28 5.97 8.17 5.65 7.33 10.21 14.14 19.52 9.73 12.98 17.95 21.44 30.43

attacks, we perform a security evaluation by launching a SAT-
based attack on the fabrics described in Section III-C. In our
analyses, we assume that the designers already know which
parts of the design must be protected to stay competitive in
the market. Hence, this paper does not address the selection
of the modules to be redacted; we assume that a given fabric
is already selected as sufficient for their desired redaction. For
worst-case analysis, our threat model overwhelmingly favors
the attacker. We assume the attacker has access to the redacted
IC’s netlist and to a fully-scanned1 and fully-unlocked design
(i.e., access to an Oracle with the bitstream loaded).

The adversary has to override three challenges before they
can launch a SAT-based attack on eFPGA fabric. First, they
have to isolate the eFPGA fabric from the rest of the IP;
this is possible since the regular structure of the fabric is
distinguishable from the rest of the design. Second, for the
Oracle, the adversary should have complete control over the
inputs, outputs and internal flip-flops, excluding configurable
flip-flops. We endow the attacker with these capabilities al-
though there are orthogonal efforts to mitigate this Oracle-
based threat model [11]. Third, the adversary cannot extract
the FPGA bitstream [7], i.e., the attacker does not have access
to the configuration flip-flops, so cannot steal the bitstream
directly. While there are many attacks on FPGA security [42],
we consider such attacks orthogonal to this study. Physical
attacks (e.g., optical probing [43]) are out of scope. Our threat

1For those unfamiliar with Design-for-Test concepts, a fully-scanned design
means that all flip-flops have been replaced with scan flip-flops that are
connected to each other into a long scan chain, essentially acting as a
large shift register. A tester is able to scan-in values and then scan-out the
combinational logic outputs a clock cycle later, thus deducing the input/output
relationship for the logic in the design.

model and assumptions are consistent with prior work [5].

B. Security Evaluation Setup

In an eFPGA, the bitstream is loaded into configuration
FFs. The configuration FFs are interconnected as a scan-chain
driven by a programming clock (prog_clk). To prepare the
fabrics that we generated in Section III-C, we need to trans-
form the gate-level netlist and produce a netlist understood
by an attack tool, with the configuration bitstream as a set
of “key inputs”. To identify the configuration scan chain,
we do a depth-first search of the netlist, starting from the
scan_in_head port, until we reach the scan_in_tail.
All FFs in the traversal path driven by the programming clock
(prog_clk) store the configuration bitstream. The order in
which the configuration FFs are detected corresponds to the
bitstream order. The detected configuration FFs are exposed as
primary key inputs to convert the eFPGA netlist into a netlist
suitable for SAT attack. This netlist is fed to IcySAT [13] to
unroll hard loops (as will be explained next). To model an
Oracle, we use the same locked netlist, but set the key bits to
the configuration values from the bitstream generated in the
OpenFPGA flow. The unrolled netlist and the oracle netlist are
used with the KC2 attack tool [20].

C. On Combinational Loops in eFPGAs

The SAT-based attack requires an attacker to model a miter
circuit featuring the design-under-attack as input to a SAT
solver [12]; for an eFPGA fabric, the configuration bitstream
is the “key”. There are several factors that make a SAT
solver’s task challenging. SAT solvers fail in the presence
of combinational loops [19], as these lead to unstable results
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or repeated distinguishing input patterns. Note that, in well-
formed designs, circuits with structural combinational loops
are usually designed such that the overall design behaves
as though it is acyclic. The structure of eFPGAs includes
instances of such loops due to the re-configurable routing
network in the fabric. The sequence of re-configurable logic
represented by the chain of LUTs/CLBs interconnected by this
network adds a polynomial complexity to a SAT formulation.

To launch a SAT attack on designs with loops, like in
eFPGAs, one needs to preprocess the netlist to break the loops
and create an acyclic equivalent. Researchers have proposed
multiple approaches to modify the SAT attack for cyclic
designs [13], [18], [19]. We observe that eFPGAs have hard
combinational loops that CycSAT [19] cannot resolve. These
hard loops are intertwined such that, when CycSAT breaks a
loop to make the circuit acyclic, at least one loop remains. The
acyclic constraints generated by CycSAT overlook such loops
and live-locks the solver into repeating the same distinguishing
input patterns (DIPs). Be-SAT [18] can break such loops
by pruning the keys leading to live-lock DIPs. However, it
has exponential complexity in key size. IcySAT2 [13] is a
loop-breaking alternative that finds a subset of feedback nets
that, when “removed”, make the netlist acyclic. The circuit
is “unrolled” with respect to these feedback nets, with an
unroll factor equal to the size of the feedback set. Unrolling
involves replicating a circuit several times and connecting
the feedback wires (that caused the loops) across replicas to
represent different time frames (refer to Shamsi et al.’s work
for the definitive explanation [13]). The unrolled circuit can
be fed into a SAT tool.

D. Relating Attack Complexity to eFPGA Parameters

There are several ways to thwart an attacker (or at least, their
SAT solver). One is to make the circuit very large, such that
its representation as a Boolean formula requires an impractical
amount of memory to load for the solver – the need to “unroll”
loops increases security in this way, as formula sizes grow due
to the need for circuit replication or additional constraining
clauses. In fact, the time complexity of the IcySAT attack that
we use is directly related to the total number of clauses and
variables that needs to be solved by the solver in retrieving the
eFPGA bitstream. This complexity can be directly related to
the constraints added in a single SAT attack iteration, which
is proportional to the gate size of fabric-under-attack. Since
IcySAT requires unrolling as part of preprocessing to eradicate
combinational cycles, the net gate size of the unrolled netlist is
proportional to the unroll factor. eFPGA fabrics are naturally
loop-ridden, arising from the sophisticated intra-CLB (local
routing) and inter-CLB (global routing) routing networks.
Also, another source of variables in the formula is the presence
of LUTs within the CLBs, where the contents of LUT should
be determined to reverse-engineer the logic functionality. Prior
work [44] explains how programmable logic renders SAT
complexity. A SAT solver might encounter difficulties due to
the polynomial complexity in solving interdependent clauses

2IcySAT-II, which we will refer to as IcySAT in this paper.

TABLE VI
ICYSAT ATTACKS ON ARCHITECTURAL VARIANTS OF 4X4 EFPGA

FABRIC. TO REPRESENTS time-out.

Fabric Unroll
factor Bitstream #Gates Time Variables Clauses

K3N2 64 601 4227 127.6 551293 1433840
K3N3 70 725 5179 283.8 737293 1922216
K3N4 79 837 6355 6998.15 1019357 2681792
K3N5 73 941 7686 14035.9 1135927 3006984
K3N6 105 1154 9284 TO – –
K3N7 85 1243 10823 TO – –
K3N8 130 1393 12405 TO – –
K4N2 55 639 4053 103.54 454039 1167026
K4N3 57 810 5439 896.15 629232 1642049
K4N4 63 1049 8230 TO – –
K4N5 113 1316 10141 TO – –
K4N6 112 1468 12352 TO – –
K4N7 85 1647 14616 TO – –
K4N8 132 1849 17406 TO – –
K5N2 65 815 5185 267.8 685187 1773156
K5N3 68 1066 7235 25135.2 996664 2618621
K5N4 105 1477 11274 TO – –
K5N5 136 1741 13817 TO – –
K5N6 104 2012 17170 TO – –
K5N7 144 2271 20836 TO – –
K5N8 162 2573 24635 TO – –
K6N2 69 1125 6831 2033.91 955817 2481464
K6N3 70 1518 9976 TO – –
K6N4 93 2089 14762 TO – –
K6N5 93 2694 20357 TO – –
K6N6 144 2928 24089 TO – –
K6N7 143 3347 28946 TO – –
K6N8 164 3989 35073 TO – –
K7N2 54 1671 9559 TO – –
K7N3 95 2434 14700 TO – –
K7N4 93 2089 14762 TO – –
K7N5 84 3221 21285 TO – –
K7N6 101 3917 27075 TO – –
K7N7 146 4620 34003 TO – –
K7N8 151 5511 41913 TO – –

despite the number of clauses being nominal, as is the case
with the LUTs within eFPGA fabric.

From an architecture perspective, increasing K increases
the complexity of local routing within a CLB, while slightly
improving the complexity of global routing. Larger LUTs
require larger numbers of crossbar multiplexers to multiplex
the LUT fanout and the inputs from connection block. This
increases local routing complexity. Meanwhile, increasing N
(number of K-input LUTs in a CLB), should slightly increase
the local routing complexity while significantly increasing the
global routing complexity.

E. Results

Table VI gives the attack-time for different K and N in a
4×4 tile configuration, and the corresponding bitstream sizes,
fabric size (measured as number of gates after producing an
equivalent fabric netlist using 2-input gates for the attack), and
the number of variables/clauses in the Boolean formula for
the attack as reported by the KC2 attack tool on a successful
attack. We set a time-out of 2 days. All 6×6 and all but one
5×5 fabrics timed-out (smallest 5×5 fabric, K3N2, bitstream
size: 1204, was recovered in 18190 s).

Focusing on the data from the successful attacks, the unroll
factor does not show a monotonous or significant change as
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Fig. 6. (a) Attack time and # gates in the unrolled 4×4 fabric for K = 3.
Attack timed-out for N = 6, 7. (b) # of gates in unrolled 4×4 fabric for K,
N.

one varies K while keeping N constant. This suggests that
there is no significant progress / change in the complexity
of combinational cycles in increasing the size of LUTs in
CLB. A higher K adds higher complexity to local routing
while maintaining or decreasing complexity of global routing.
In contrast, increasing N value while maintaining constant
K caused a significant monotonic increase in unroll factor
for distinct constant K values. Increasing N with constant K
increased the global routing complexity, while maintaining the
local routing complexity. From these experiments, we can infer
that the unroll factor, and hence the SAT attack complexity, is
related to the complexity of the global routing network.

Fig. 6(a) shows the attack times for different N , with a fixed
K=3 (N=6 and N=7 timed-out). These are plotted against the
size of the unrolled fabric. This validates our claim that attack
time increases with gate-size of the unrolled eFPGA fabric
netlist. Although the attack timed out for K > 3, we expect
the attack complexity trend for K > 3 to continue, given the
unrolled gate-size for K > 3 as shown in Fig. 6(b).

Fig. 7(a) shows the attack complexity as a function of
K with fixed N=2. As anticipated, the attack complexity
increases with increasing K. Increasing K with fixed N is
associated with increasing SAT hardness due to presence of
larger LUTs. Although it also renders more complex local
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Fig. 7. (a) Attack time and # of gates in the unrolled 4×4 fabric for N = 2.
Attack timed-out for K = 7. (b) # of gates in unrolled 4×4 fabric for K, N.

routing, previously we found that local routing does not
appear to significantly change the unroll factor and hence does
not contribute to the complexity arising from combinational
cycles. Hence we can say that the attack complexity in this
case is primarily sourced from SAT hardness of LUTs. For
K=3, the attack time trend in Fig. 7(a) aligns with the trend
seen for total 2 input gate-size shown in Fig. 7(a), which once
again validates our claim that SAT attack complexity is directly
related to the gate-size of unrolled eFPGA fabric.

Fig. 7(b) shows the total unrolled gate-size for various N,
K values. The increase in SAT attack time-complexity due
to increasing N dominates vis-a-vis the increase in attack
complexity due to increasing K. This result hints at the fact
that SAT attack complexity from cyclic networks within the
eFPGA fabric contributes more to SAT attack complexity
compared to the SAT attack complexity from SAT hardness
of LUTs within the fabric.

V. WHAT HAPPENS IF WE PARTIALLY UNROLL?

In the previous section, we found that the complexity of
the cyclic network and the associated SAT complexity of the
eFPGA fabric is related to the complexity of global routing.
The unroll factor required for a complete IcySAT attack is
expected to increase significantly with more complex global
routing. Since the unrolled gate-size of the eFPGA fabric is
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directly proportional to the size of the unroll factor, this is the
primary quantifiable parameter to gauge SAT complexity.

A. The Unroll Factor

In Shamsi et al.’s original presentation of IcySAT [13], the
recommendation is to set the unroll factor equal to the
cardinality of the non-optimal subset of nets that must be
broken iteratively to remove the cycles in the circuit. With
increasing complexity from cyclic networks in global routing
of eFPGAs, more nets have to be broken to render an acyclic
eFPGA netlist. For the general case, Shamsi et al. propose
that a circuit should be unrolled unroll factor number
of times to perfectly replicate the functions of a cyclic circuit
with an acyclic equivalent. This is a based on a worst-case
assumption that there might exist at least one trace between
any pair of broken nets that traverses through all other broken
nets, in which case, to perfectly replicate the intended acyclic
behavior, the circuit has to be unrolled unroll factor
times – we will refer to this as the original IcySAT’s “ideal”
unroll factor. We contend that this worst-case scenario is a rare,
at least in the context of eFPGA fabrics, which suggests that a
partial unrolling might be sufficient for a successful attack. If
we can unroll a circuit partially, the resulting Boolean formula
will be smaller, and more easily digested by a SAT solver.

Thus, to investigate the possibility of recovering the bit-
stream after only unrolling a redaction fabric partially in the
pre-processing step, we study the attack under three unroll fac-
tors: 10, 20 and 30. From the perspective of an adversary, the
recovered bitstream is correct only if the locked netlist is found
to be formally equivalent to the functional Oracle by applying
the bitstream. The experimental setup is in Section IV.

B. Results

Table VII presents the attack results on partially unrolled
variants of 4×4 and 5×5 eFPGA fabrics. The attack was
incrementally performed for different unroll factors until we
recovered a bitstream that rendered the locked fabric netlist
formally equivalent to the Oracle netlist. The (7) in the table
represents a failed attempt in which the recovered bitstream
rendered a nonequivalent fabric, whereas the (3) represents
a correct bitstream solution. Upon getting a correct solution,
further unrolling is skipped which is represented by (–). We
observed that the bitstream for most of the fabrics in 4×4
variants could be successfully recovered by partial unrolling,
in contrast to the results of Section IV,

The % column in Table VII shows that the adversary could
successfully recover the bitstream, even when the unroll factor
is as low as 6% compared to the “ideal” unroll factor that
would be used in the original IcySAT attack formulation. This
demonstrates that the “actual” SAT complexity imparted by
the cyclic networks of eFPGAs is lower than the expected
complexity suggested by using the typical IcySAT algorithm.
Although we do not have data representing the minimum
unroll factor required to correctly recover the bitstream for
each fabric, the data collected from successful attacks in this
partial case might suggest that fabrics with higher “ideal”
unroll factor (as determined by the original IcySAT algorithm)

but smaller circuit size (in terms of the number of 2-input gates
in the netlist) are more attack resilient compared to fabrics with
lower “ideal” unroll factors but larger circuit size. The fact the
bitstreams for so many of our fabrics were recovered in the
partial unrolling case does raises concerns about the security
of eFPGA redaction and merits further study.

VI. DISCUSSION

Gauging Security: Given the results of our security as-
sessment in Section IV, we now revisit the question: can we
gauge security by considering only the bitstream size? As
we alluded earlier, the bitstream, being the “key” in eFPGA
redaction, might be thought of as the security parameter. This
is the case in prior work [5] and other attempts at logic
locking/obfuscation. In the case of eFPGA-based redaction,
however, our experimental results indicate a more complex
picture. Fig 8(c) depicts the attack times for fabrics of different
bitstream size. Although we can observe that the attack time
generally increases with larger bitstream size, the distribution
is scattered and hence the relationship between security and
bitstream size is not definitive. One can argue that increasing
the number of LUTs and LUT inputs makes SAT attacks
harder; however, given that designers must also consider PPA
overheads, our findings show that the story is more complex
when also considering security. We note that the attack time
appears better correlated with the total number of gates in
the unrolled netlist, which is similar to the trend observed
in the product of unroll factor and the gate size of the netlist
(Section IV). For instance, K5N3 with a bitstream size of 1066
is found to have approximately 10× attack time compared to
K6N2 with a bitstream size of 1125. When we examine gate
size however, notice that the gate size of the K5N3 fabric is
much more than that of K6N2, resulting in more clauses for
the SAT attack. This explains the difference in attack time.

To further explore the possible contribution of bitstream
towards attack complexity, we examined the bitstream in terms
of the number of bits used to configure the different parts of
the of eFPGA. Since the eFPGAs used for redaction have fixed
IO configuration bits, the bitstream has three parts: (1) Logic
configuration bits that set the contents of LUTs; (2) Local
routing configuration bits that select the input of the crossbar
multiplexer that multiplex the CB outputs to the LUTs; and
(3) Global routing configuration bits, being the sum of CB and
the SB configuration bits. Fig. 8(d), Fig. 8(e), and Fig. 8(f)
(where, LR and GR stands for Local Routing and Global
Routing respectively) demonstrate how the attack time varies
with logic, local routing, and global routing bits.

eFPGA Fabric Resource Utilization: The cost of redaction
tremendously increases as one move towards a complex or
different fabric size as shown in Table III and Table V. Thus
a designer should have an idea of how much resources in terms
of logic and I/Os are available in a fabric. This will lead to a
better resource use in the fabric when one redacts a module,
especially if one adopts a High Level Synthesis approach [6],
[7]. There are two cases limiting the choice of a fabric: (1)
Logic: number of CLBs required to map a design; (2) I/Os:
number of inputs and outputs of a modules. For the first point,
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TABLE VII
RESULTS FROM ATTACKS USING PARTIALLY UNROLLED 4×4 AND 5×5 EFPGA FABRICS. THE % COLUMNS REPRESENT HOW MUCH UNROLLING WAS

PERFORMED RELATIVE TO THE “IDEAL” UNROLL FACTOR USED BY THE ORIGINAL ICYSAT ATTACK.

4x4 Fabric 5x5 Fabric

Unroll Factor Unroll Factor
Fabric Time Variables Clauses 10 20 30 % Time Variables Clauses 10 20 30 %

K3N2 14.2 259505 674076 7 3 – 31 376.6 535654 1397911 7 7 3 20
K3N3 27.6 317373 826296 7 3 – 29 217 445372 1164011 7 3 – 11
K3N4 53.1 260145 682636 7 3 – 25 6066.7 822049 2170856 7 7 3 19
K3N5 165.3 313473 827836 7 3 – 27 79473.1 1148329 3053506 7 7 3 13
K3N6 225.4 567108 1500081 7 3 – 19 65301.6 1254310 3349951 7 7 3 11
K3N7 48.13 222211 593346 3 – – 12 – – – 7 7 7 –
K3N8 1119.3 505917 1355976 7 3 – 15 – – – 7 7 7 –
K4N2 14.1 248639 628326 7 3 – 36 162.8 421978 1099551 7 3 – 13
K4N3 FAIL – – 7 7 7 – 1298.1 544679 1433976 7 3 – 14
K4N4 23.6 169281 446096 3 – – 16 9592.47 750851 1995976 7 3 – 11
K4N5 265.6 414398 1097191 7 3 – 18 – – – 7 7 7 –
K4N6 926.1 503270 1344271 7 3 – 18 25951.8 1153969 3093536 7 3 – 7
K4N7 2915.2 593303 1601046 7 3 – 24 – – – 7 3 – –
K4N8 5395 707405 1920016 7 3 – 15 – – – 7 3 – –
K5N2 38.14 317687 820946 7 3 – 31 378.2 534513 1397656 7 3 – 12
K5N3 172.2 295576 774461 7 3 – 29 2311 1086874 2868501 7 7 3 14
K5N4 293.3 459865 1220356 7 3 – 19 – – – 7 7 7 –
K5N5 976 563633 1499516 7 3 – 15 – – – 7 3 – 8
K5N6 105.5 351822 943831 3 – – 10 – – – 7 7 7 –
K5N7 10589.3 847415 2292606 7 7 3 21 – – – 7 7 7 –
K5N8 5582.6 999937 2722796 7 3 – 12 – – – 7 7 7 –
K6N2 71 279617 723756 7 3 – 29 930.2 672571 1752806 7 3 – 12
K6N3 32.85 205732 536881 3 – – 14 4130.3 978498 2583981 7 3 – 11
K6N4 557.5 600741 1589936 7 3 – 22 – – – 7 7 7 –
K6N5 3552 826572 2204601 7 3 – 22 – – 7 7 7 –
K6N6 4563.2 978410 2630371 7 3 – 14 – – 7 7 7 –
K6N7 170 1173923 3183426 3 – – 7 – – – 7 7 7 –
K6N8 300.2 717045 1938196 3 – – 6 – – 7 7 7 –
K7N2 68.6 389775 1006366 7 3 – 37 1697.1 945518 2460251 7 3 – 10
K7N3 45 303460 786641 3 – – 11 4376 1449330 3792581 7 3 – 9
K7N4 1426.3 864697 2278516 7 3 – 24 – – – 7 7 7 –
K7N5 172.4 555561 1437396 3 – – 10 – – – 7 7 7
K7N6 3356 1380126 3693231 7 3 – 14 – – – 7 7 7 –
K7N7 443.9 1699415 1938196 3 – – 7 – – – 7 7 7 –
K7N8 28407.7 2089178 5644891 7 3 – 11 – – – 7 7 7 –

one can increase either K and N values in a fixed fabric,
to increase its logic capacity rather than moving to bigger
fabric sizes. To increase number of I/Os, one can increase the
capacity of I/O tiles, but routing becomes complex, but lower
increase in overhead compared to next-sized fabric.

Area vs Security: Our results from Table VI and Table VII
suggest that the security of a fabric is dependent on multiple
parameters like fabric size, unroll factor, and their relative
measures. We have shown that, even within a fixed fabric size,
by varying K and N, the resulting SAT-based attack duration
can vary considerably. Hence from a designer’s perspective
with a fixed area budget, a smart choice is to chose a fabric
with the right size of resources while maximizing security by
considering the insights from Section IV and Section V. For
better visualization, we have plotted the time taken by the
successful attacks in against the area of the attacked fabric,

shown in Fig. 8(a), where one can observe that, for a fixed
area, the attack times can significantly differ for different fabric
configuration. This implies that the security of a fabric is
not solely dependant on the area, but on the combination of
parameters of the FPGA architecture.

Area-delay vs Security: The Area-delay product provides
a more general measure of the trade-off between area and
delay [29]. As shown in Table IV, delay decreases with
increasing K and N as more logic can be clustered in one
CLB and there are fewer paths that need to traverse through
inter-cluster routing (CBs and SBs), where the delay will be
quite large compared to intra-cluster routing. We have seen
similar sort of results when we consider attack-time vs area-
delay in Fig. 8(b), where one can select a fabric with better
area-delay and security parameters.

Study Limitations and Future Work: Our study explores
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Fig. 8. Characteristics of parameters of eFPGA, vis-a-vis SAT-attack time.

the security implications of eFPGA fabrics by varying two
parameters: K and N from Table I. The study in this pa-
per motivates further scrutiny of eFPGA architectures for
redaction to better enable better trade-offs between PPA and
security. There are more parameters that can be configured
in redaction fabric design as our future work. This includes
alternative LUT designs, such as fracturable LUTs, which
have been shown to facilitate better resource utilization as
more than one function can be mapped to a LUT with the
cost of only a few gates to separate the different outputs of
a LUT. This will somewhat increase the routing complexity
(both local and global), with more numbers of input and
outputs to consider, but could result in only a slight change
in the overhead compared to mapping two different functions
to separate LUTs in a conventional FPGA design [15], [29].
In future, we will extend the analysis to include BRAMs and
DSPs as they represent more points in the design space [15].

For our study we fixed W , Fc,in, Fc,out, Fs and L. These
present knobs that further expand the design space, and their
implications on security should also be studied. With regards
to our security evaluation, our partially-unrolled IcySAT ex-
periments featured a limited number of unroll factors. In future
work, we will find the minimum unroll factor at which a given
bitstream can be recovered by more comprehensively sweeping
unroll factors. Moreover, for designs where all 3 unroll factors
failed to recover the correct bitstream, note that higher unroll
factors and higher time-outs may still recover the correct keys.
For instance, the partially unrolled IcySAT could successfully
recover the keys for K4N3 variant of 4x4 eFPGA fabric for
an unroll factor of 40. Hence wider sweep of unroll factor is

required to evaluate the security of fabrics more thoroughly.

VII. CONCLUSIONS

This study has presented some of the key characteristics
and security inferences of eFPGA architecture that have to
be considered while performing redaction-based logic obfus-
cation. The study was performed by analyzing architectural
variants of an eFPGA fabric by varying two parameters of an
eFPGA: K and N which signifies the size and number of LUTs
in the fabric. This gave several inferences on how security
parameters relate to the architectural parameters. We framed
a SAT-based security framework to recover the bitstream of
FPGA that used the state-of-art IcySAT attack algorithm [13]
in the backend. We experimentally concluded that security
offered by an eFPGA fabric is primarily sourced from the
SAT hardness of LUTs and the cyclic routing networks within
the fabric. In contradiction to the assumptions from earlier
work which stated that security was directly related to fabric
size, we proved that in addition to fabric size, the attack com-
plexity depends upon unroll factor, a parameter of the IcySAT
algorithm. We further showed that the primary contribution to
an increasing unrolling factor is sourced from the complexity
of global routing. We improvised the attack models to verify
that existing attack parameters like unroll factor might not
reflect the actual security strength of the process. Experiments
showed that in most cases in 4x4 and 5x5 eFPGA fabrics, the
adversary could recover the bitstream with an unroll factor of
7-36% of the ideal unroll factor. Further, we experimentally
disproved the assumption that bitstream size or size of any of
its component is directly correlated to the security strength. We
finally demonstrated how security strength might not strictly
increase in proportion with physical parameters like area.

Given that choice of fabric depends on circumstances, we
cannot conclude that there is a single “good” or “best” fabric
for redaction. Bigger fabrics do not necessarily imply more
SAT resilience; one can achieve a comparable level of security
with a similar overhead. If a designer needs to consider
overhead , our results point to a need for co-designing to
balance overheads and security.
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