4,127 research outputs found

    A MARKETING STRATEGY ON PHOTOVOLTAIC MARKET

    Get PDF
    Photovoltaic is an increasingly important energy technology. Deriving energy from the sun offers numerous environmental benefits. It is an extremely clean energy source, and few other power-generating technologies have as little environmental impact as photovoltaic. In this article we explored some dimensions of photovoltaic market and suggested a marketing strategy for solar panels manufacturersPhotovoltaic Market, Solar Panels, Strategy

    Highly efficient 3rd generation multi-junction solar cells using silicon heterojunction and perovskite tandem : prospective life cycle environmental impacts

    Get PDF
    In this study, the environmental impacts of monolithic silicon heterojunction organometallic perovskite tandem cells (SHJ-PSC) and single junction organometallic perovskite solar cells (PSC) are compared with the impacts of crystalline silicon based solar cells using a prospective life cycle assessment with a time horizon of 2025. This approach provides a result range depending on key parameters like efficiency, wafer thickness, kerf loss, lifetime, and degradation, which are appropriate for the comparison of these different solar cell types with different maturity levels. The life cycle environmental impacts of SHJ-PSC and PSC solar cells are similar or lower compared to conventional crystalline silicon solar cells, given comparable lifetimes, with the exception of mineral and fossil resource depletion. A PSC single-junction cell with 20% efficiency has to exceed a lifetime of 24 years with less than 3% degradation per year in order to be competitive with the crystalline silicon single-junction cells. If the installed PV capacity has to be maximised with only limited surface area available, the SHJ-PSC tandem is preferable to the PSC single-junction because their environmental impacts are similar, but the surface area requirement of SHJ-PSC tandems is only 70% or lower compared to PSC single-junction cells. The SHJ-PSC and PSC cells have to be embedded in proper encapsulation to maximise the stability of the PSC layer as well as handled and disposed of correctly to minimise the potential toxicity impacts of the heavy metals used in the PSC layer

    Prospectives in Deep Space Infrastructures, Development, and Colonization

    Get PDF
    The realization of the long studied cost reduction benefits of reusable rockets is expected to revolutionize and enable both commercial deep space beyond Geostationary Earth Orbit (GEO) and solar system human colonization. The projections for a myriad of space commercialization activities beyond the current largely positional Earth utilities and Humans Mars both safe and affordable may now be realizable. This report considers these putative commercial and colonizationrelated activities, the emerging technologies, the space functionalities to support and further enable them, and envisions the nature of space developments beyond GEO going forward

    Projecting the future levelized cost of electricity storage technologies

    Get PDF
    The future role of stationary electricity storage is perceived as highly uncertain. One reason is that most studies into the future cost of storage technologies focus on investment cost. An appropriate cost assessment must be based on the application-specific lifetime cost of storing electricity. We determine the levelized cost of storage (LCOS) for 9 technologies in 12 power system applications from 2015 to 2050 based on projected investment cost reductions and current performance parameters. We find that LCOS will reduce by one-third to one-half by 2030 and 2050, respectively, across the modeled applications, with lithium ion likely to become most cost efficient for nearly all stationary applications from 2030. Investments in alternative technologies may prove futile unless significant performance improvements can retain competitiveness with lithium ion. These insights increase transparency around the future competitiveness of electricity storage technologies and can help guide research, policy, and investment activities to ensure cost-efficient deployment

    ADVANCES IN MICROELECTROMECHANICAL SYSTEMS

    Get PDF
    Microelectromechanical systems (MEMS) are integratedmicrodevices or systems combining electrical and mechanical components. The mechanical microcomponents either move inresponse to certain stimuli (sensors) or are initiated to performcertain tasks (actuators). The microelectronic components areused to control that motion or to obtain information from that motion. These systems can sense, control, actuate, and function individually or in arrays to generate effects on the microscale.These are fabricated using integrated circuit (IC) batch processing techniques making it possible to realise the complete systemon a chip. The miniaturisation of mechanical components bringsthe same benefit to mechanical systems that microfabrication brings to electronics. In a broader sense, technologies associatedwith MEMS include smart materials (e.g. shape memory alloys,ferroelectrics) and processes required to make MEMS components, integration of components to make MEMS devices (sensors,actuators, etc.) and applications that use MEMS devices. The MEMS are considered as building blocks for complex microrobots performing a variety of tasks and are used to make system swhich function very close to biological systems existing in nature.Defence Science Journal, 2009, 59(6), pp.555-556, DOI:http://dx.doi.org/10.14429/dsj.59.157

    towards disruptions in earth observation new earth observation systems and markets evolution possible scenarios and impacts

    Get PDF
    Abstract This paper reviews the trends in Earth observation (EO) and the possible impacts on markets of the new initiatives, launched either by existing providers of EO data or by new players, privately funded. After a presentation of the existing models, the paper discusses the new approaches, addressing both commercial and institutional markets. New concepts for the very high resolution markets, in Europe and in the US, are the main focus of this analysis. Two complementary perspectives are summarised: on the one hand, the type of system and its operational performance and, on the other, the related business models, concepts of operation and ownership schemes. Until now, Earth observation systems for the most critical institutional needs are mainly dedicated assets owned and operated by governments or public organisations, often at national level. Even in the case of dual use missions, the governmental and commercial operations are in general fully segregated for the very high resolution satellites. Recent evolutions could affect this paradigm. Firstly, the increased performance of commercial satellites has a high degree of convergence with defence needs: 25–30 cm resolution is now the benchmark or at least a very short term target for commercial missions. The second evolution is the development of hybrid procurement schemes, combining proprietary missions and data buy framework contracts, partly triggered by the budgetary constraints of public customers, some failures in the execution of large spy satellites contracts and by the willingness to foster the competitiveness of industry on the export market. New space is another trend, which is more disruptive. This trend begun in the Silicon Valley and spread worldwide, arousing our expectations, sometimes excessively. This new model involves not only start-ups but also big web actors with substantial investment capacity. Both aim to transforming space into a commodity, taking benefit from the convergence between Information technology and EO. Beside the massive constellations for broadband Internet access, some initiatives have been launched for Earth observation markets, targeting high resolution and high revisit. Last but not least, more and more countries, the newcomers, invest in their own EO capacity, confirming the soft power dimension of space but also opening new opportunities for international or regional cooperation. As many unpredictable events may occur, even in a short time frame, the last part of the paper has a prospective dimension. Based on market trends and industrial stakes, it discusses the realism and likelihood of possible scenarios and identifies their impacts on the EO landscape and the main stakeholders involved, in particular in Europe: – The governmental and institutional actors, using Earth observation data for their operational missions, with an evolving balance between sovereign assets and external services. – The commercial operators of very high resolution satellites, with the new market opportunities and the possible emergence of worldwide champions. – The satellite manufacturers and their competitiveness. – The role of nations and space agencies, including the non-dependence or national sovereignty and international cooperation dimensions. Based on the comparison of three "radical" scenarios, the conclusion shows that there are opportunities for service providers and satellite manufacturers. Even without clear answer to the future industrial, technical and political structure of EO systems, relevant indicators to be monitored during the next three-five years are identified. The last section focuses on Europe and the role of institutions in order to support European champions and small and medium companies in the new worldwide competition

    Assessment of potential bottlenecks along the materials supply chain for the future deployment of low-carbon energy and transport technologies in the EU: Wind power, photovoltaic and electric vehicles technologies, time frame: 2015-2030

    Get PDF
    The ambitious EU policy to reduce greenhouse gas emissions in combination with a significant adoption of low-carbon energy and transport technologies will lead to strong growth in the demand for certain raw materials. This report addresses the EU resilience in view of supply of the key materials required for the large deployment of selected low-carbon technologies, namely wind, photovoltaic and electric vehicles. A comprehensive methodology based on various indicators is used to determine the EU’s resilience to supply bottlenecks along the complete supply chain – from raw materials to final components manufacturing. The results revealed that, in 2015, the EU had low resilience to supply bottlenecks for dysprosium, neodymium, praseodymium and graphite, medium resilience to supply of indium, silver, silicon, cobalt and lithium and high resilience to supply of carbon fibre composites. In the worst case scenario where no mitigation measures are adopted, the materials list with supply issues will grow until 2030. Indium, silver, cobalt and lithium will add up to the 2015 list. However, the probability of material supply shortages for these three low-carbon technologies might diminish by 2030 as a result of mitigation measures considered in the present analysis, i.e. increasing the EU raw materials production, adoption of recycling and substitution. In such optimistic conditions, most of the materials investigated are rated as medium or high resilience. The exceptions are neodymium and praseodymium in electric vehicles, for which the EU resilience will remain low.JRC.C.7-Knowledge for the Energy Unio

    How 5G wireless (and concomitant technologies) will revolutionize healthcare?

    Get PDF
    The need to have equitable access to quality healthcare is enshrined in the United Nations (UN) Sustainable Development Goals (SDGs), which defines the developmental agenda of the UN for the next 15 years. In particular, the third SDG focuses on the need to “ensure healthy lives and promote well-being for all at all ages”. In this paper, we build the case that 5G wireless technology, along with concomitant emerging technologies (such as IoT, big data, artificial intelligence and machine learning), will transform global healthcare systems in the near future. Our optimism around 5G-enabled healthcare stems from a confluence of significant technical pushes that are already at play: apart from the availability of high-throughput low-latency wireless connectivity, other significant factors include the democratization of computing through cloud computing; the democratization of Artificial Intelligence (AI) and cognitive computing (e.g., IBM Watson); and the commoditization of data through crowdsourcing and digital exhaust. These technologies together can finally crack a dysfunctional healthcare system that has largely been impervious to technological innovations. We highlight the persistent deficiencies of the current healthcare system and then demonstrate how the 5G-enabled healthcare revolution can fix these deficiencies. We also highlight open technical research challenges, and potential pitfalls, that may hinder the development of such a 5G-enabled health revolution

    Physics opportunities with future proton accelerators at CERN

    Get PDF
    We analyze the physics opportunities that would be made possible by upgrades of CERN's proton accelerator complex. These include the new physics possible with luminosity or energy upgrades of the LHC, options for a possible future neutrino complex at CERN, and opportunities in other physics including rare kaon decays, other fixed-target experiments, nuclear physics and antiproton physics, among other possibilities. We stress the importance of inputs from initial LHC running and planned neutrino experiments, and summarize the principal detector R&D issues.Comment: 39 page, word document, full resolution version available from http://cern.ch/pofpa/POFPA-arXive.pd
    • …
    corecore