32 research outputs found

    Improvement of the Accuracy of InSAR Image Co-Registration Based On Tie Points – A Review

    Get PDF
    Interferometric Synthetic Aperture Radar (InSAR) is a new measurement technology, making use of the phase information contained in the Synthetic Aperture Radar (SAR) images. InSAR has been recognized as a potential tool for the generation of digital elevation models (DEMs) and the measurement of ground surface deformations. However, many critical factors affect the quality of InSAR data and limit its applications. One of the factors is InSAR data processing, which consists of image co-registration, interferogram generation, phase unwrapping and geocoding. The co-registration of InSAR images is the first step and dramatically influences the accuracy of InSAR products. In this paper, the principle and processing procedures of InSAR techniques are reviewed. One of important factors, tie points, to be considered in the improvement of the accuracy of InSAR image co-registration are emphatically reviewed, such as interval of tie points, extraction of feature points, window size for tie point matching and the measurement for the quality of an interferogram

    Investigation of developments in interferometric synthetic aperture radar until 1994

    Get PDF
    Bibliography: p. 149-155.This thesis examines the topic of Synthetic Aperture Radar Interferometry in a historical perspective, tracing its development from its beginnings in the 1960s up until May 1994. Applications are listed and airborne and spaceborne implementations reviewed. The underlying theory of interferometry is explained, including a discussion of error sources, and a simulation for point targets is documented to illustrate the interferometric processing steps. The application of the SASAR VHF SAR system to interferometric operation is examined analytically

    Effective and Efficient Non-Destructive Testing of Large and Complex Shaped Aircraft Structures

    Get PDF
    The main aim of the research described within this thesis is to develop methodologies that enhance the defect detection capabilities of nondestructive testing (NDT) for the aircraft industry. Modem aircraft non-destructive testing requires the detection of small defects in large complex shaped components. Research has therefore focused on the limitations of ultrasonic, radioscopic and shearographic methods and the complimentary aspects associated with each method. The work has identified many parameters that have significant effect on successful defect detection and has developed methods for assessing NDT systems capabilities by noise analysis, excitation performance and error contributions attributed to the positioning of sensors. The work has resulted in 1. The demonstration that positional accuracy when ultrasonic testing has a significant effect on defect detection and a method to measure positional accuracy by evaluating the compensation required in a ten axis scanning system has revealed limitsio the achievable defect detection when using complex geometry scanning systems. 2. A method to reliably detect 15 micron voids in a diffusion bonded joint at ultrasonic frequencies of 20 MHz and above by optimising transducer excitation, focussing and normalisation. 3. A method of determining the minimum detectable ultrasonic attenuation variation by plotting the measuring error when calibrating the alignment of a ten axis scanning system. 4. A new formula for the calculation of the optimum magnification for digital radiography. The formula is applicable for focal spot sizes less than 0.1 mm. 5. A practical method of measuring the detection capabilities of a digital radiographic system by calculating the modulation transfer function and the noise power spectrum from a reference image. 6. The practical application of digital radiography to the inspection of super plastically formed ditThsion bonded titanium (SPFDB) and carbon fibre composite structure has been demonstrated but has also been supported by quantitative measurement of the imaging systems capabilities. 7. A method of integrating all the modules of the shearography system that provides significant improvement in the minimum defect detection capability for which a patent has been granted. 8. The matching of the applied stress to the data capture and processing during a shearographic inspection which again contributes significantly to the defect detection capability. 9. The testing and validation of the Parker and Salter [1999] temporal unwrapping and laser illumination work has led to the realisation that producing a pressure drop that would result in a linear change in surface deformation over time is difficult to achieve. 10. The defect detection capabilities achievable by thermal stressing during a shearographic inspection have been discovered by applying the pressure drop algorithms to a thermally stressed part. 11. The minimum surface displacement measurable by a shearography system and therefore the defect detection capabilities can be determined by analysing the signal to noise ratio of a transition from a black (poor reflecting surface) to white (good reflecting surface). The quantisation range for the signal to noise ratio is then used in the Hung [1982] formula to calculate the minimum displacement. Many of the research aspects contained within this thesis are cuffently being implemented within the production inspection process at BAE Samlesbury

    Advanced DSP Techniques for High-Capacity and Energy-Efficient Optical Fiber Communications

    Get PDF
    The rapid proliferation of the Internet has been driving communication networks closer and closer to their limits, while available bandwidth is disappearing due to an ever-increasing network load. Over the past decade, optical fiber communication technology has increased per fiber data rate from 10 Tb/s to exceeding 10 Pb/s. The major explosion came after the maturity of coherent detection and advanced digital signal processing (DSP). DSP has played a critical role in accommodating channel impairments mitigation, enabling advanced modulation formats for spectral efficiency transmission and realizing flexible bandwidth. This book aims to explore novel, advanced DSP techniques to enable multi-Tb/s/channel optical transmission to address pressing bandwidth and power-efficiency demands. It provides state-of-the-art advances and future perspectives of DSP as well

    Synthetic Aperture Radar (SAR) Meets Deep Learning

    Get PDF
    This reprint focuses on the application of the combination of synthetic aperture radars and depth learning technology. It aims to further promote the development of SAR image intelligent interpretation technology. A synthetic aperture radar (SAR) is an important active microwave imaging sensor, whose all-day and all-weather working capacity give it an important place in the remote sensing community. Since the United States launched the first SAR satellite, SAR has received much attention in the remote sensing community, e.g., in geological exploration, topographic mapping, disaster forecast, and traffic monitoring. It is valuable and meaningful, therefore, to study SAR-based remote sensing applications. In recent years, deep learning represented by convolution neural networks has promoted significant progress in the computer vision community, e.g., in face recognition, the driverless field and Internet of things (IoT). Deep learning can enable computational models with multiple processing layers to learn data representations with multiple-level abstractions. This can greatly improve the performance of various applications. This reprint provides a platform for researchers to handle the above significant challenges and present their innovative and cutting-edge research results when applying deep learning to SAR in various manuscript types, e.g., articles, letters, reviews and technical reports

    Effective and efficient non-destructive testing of large and complex shaped aircraft structures

    Get PDF
    The main aim of the research described within this thesis is to develop methodologies that enhance the defect detection capabilities of nondestructive testing (NDT) for the aircraft industry. Modem aircraft non-destructive testing requires the detection of small defects in large complex shaped components. Research has therefore focused on the limitations of ultrasonic, radioscopic and shearographic methods and the complimentary aspects associated with each method. The work has identified many parameters that have significant effect on successful defect detection and has developed methods for assessing NDT systems capabilities by noise analysis, excitation performance and error contributions attributed to the positioning of sensors. The work has resulted in 1. The demonstration that positional accuracy when ultrasonic testing has a significant effect on defect detection and a method to measure positional accuracy by evaluating the compensation required in a ten axis scanning system has revealed limitsio the achievable defect detection when using complex geometry scanning systems. 2. A method to reliably detect 15 micron voids in a diffusion bonded joint at ultrasonic frequencies of 20 MHz and above by optimising transducer excitation, focussing and normalisation. 3. A method of determining the minimum detectable ultrasonic attenuation variation by plotting the measuring error when calibrating the alignment of a ten axis scanning system. 4. A new formula for the calculation of the optimum magnification for digital radiography. The formula is applicable for focal spot sizes less than 0.1 mm. 5. A practical method of measuring the detection capabilities of a digital radiographic system by calculating the modulation transfer function and the noise power spectrum from a reference image. 6. The practical application of digital radiography to the inspection of super plastically formed ditThsion bonded titanium (SPFDB) and carbon fibre composite structure has been demonstrated but has also been supported by quantitative measurement of the imaging systems capabilities. 7. A method of integrating all the modules of the shearography system that provides significant improvement in the minimum defect detection capability for which a patent has been granted. 8. The matching of the applied stress to the data capture and processing during a shearographic inspection which again contributes significantly to the defect detection capability. 9. The testing and validation of the Parker and Salter [1999] temporal unwrapping and laser illumination work has led to the realisation that producing a pressure drop that would result in a linear change in surface deformation over time is difficult to achieve. 10. The defect detection capabilities achievable by thermal stressing during a shearographic inspection have been discovered by applying the pressure drop algorithms to a thermally stressed part. 11. The minimum surface displacement measurable by a shearography system and therefore the defect detection capabilities can be determined by analysing the signal to noise ratio of a transition from a black (poor reflecting surface) to white (good reflecting surface). The quantisation range for the signal to noise ratio is then used in the Hung [1982] formula to calculate the minimum displacement. Many of the research aspects contained within this thesis are cuffently being implemented within the production inspection process at BAE Samlesbury.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Precise Estimation of Vocal Tract and Voice Source Characteristics

    Get PDF
    This thesis addresses the problem of quality degradation in speech produced by parameter-based speech synthesis, within the framework of an articulatory-acoustic forward mapping. I first investigate current problems in speech parameterisation, and point out the fact that conventional parameterisation inaccurately extracts the vocal tract response due to interference from the harmonic structure of voiced speech. To overcome this problem, I introduce a method for estimating filter responses more precisely from periodic signals. The method achieves such estimation in the frequency domain by approximating all the harmonics observed in several frames based on a least squares criterion. It is shown that the proposed method is capable of estimating the response more accurately than widely-used frame-by-frame parameterisation, for simulations using synthetic speech and for an articulatory-acoustic mapping using actual speech. I also deal with the source-filter separation problem and independent control of the voice source characteristic during speech synthesis. I propose a statistical approach to separating out the vocal-tract filter response from the voice source characteristic using a large articulatory database. The approach realises such separation for voiced speech using an iterative approximation procedure under the assumption that the speech production process is a linear system composed of a voice source and a vocal-tract filter, and that each of the components is controlled independently by different sets of factors. Experimental results show that controlling the source characteristic greatly improves the accuracy of the articulatory-acoustic mapping, and that the spectral variation of the source characteristic is evidently influenced by the fundamental frequency or the power of speech. The thesis provides more accurate acoustical approximation of the vocal tract response, which will be beneficial in a wide range of speech technologies, and lays the groundwork in speech science for a new type of corpus-based statistical solution to the source-filter separation problem

    Visual Human-Computer Interaction

    Get PDF
    corecore