7 research outputs found

    Proposal for generalised Supersymmetry Les Houches Accord for see-saw models and PDG numbering scheme

    Get PDF
    The SUSY Les Houches Accord (SLHA) 2 extended the first SLHA to include various generalisations of the Minimal Supersymmetric Standard Model (MSSM) as well as its simplest next-to-minimal version. Here, we propose further extensions to it, to include the most general and well-established see-saw descriptions (types I/II/III, inverse, and linear) in both an effective and a simple gauged extension of the MSSM framework. In addition, we generalise the PDG numbering scheme to reflect the properties of the particles.Comment: 44 pages. Changed titl

    Lepton Flavor Violation in a Z′Z^\prime model for the b→sb \to s anomalies

    Full text link
    In recent years, several observables associated to semileptonic b→sb \to s processes have been found to depart from their predicted values in the Standard Model, including a few tantalizing hints of lepton flavor universality violation. In this work we consider an existing model with a massive Z′Z^\prime boson that addresses the anomalies in b→sb \to s transitions and extend it with a non-trivial embedding of neutrino masses. We analyze lepton flavor violating effects, induced by the non-universal interaction associated to the b→sb \to s anomalies and by the new physics associated to the neutrino mass generation, and determine the expected ranges for the most relevant observables.Comment: 19 pages, 5 figures; v2: added references; v3: added references and expanded discussion on collider limits; v4: minor editions, matches published versio

    Lepton flavor violation beyond the MSSM

    Get PDF
    Most extensions of the Standard Model lepton sector predict large lepton flavor violating rates. Given the promising experimental perspectives for lepton flavor violation in the next few years, this generic expectation might offer a powerful indirect probe to look for new physics. In this review we will cover several aspects of lepton flavor violation in supersymmetric models beyond the Minimal Supersymmetric Standard Model. In particular, we will concentrate on three different scenarios: high-scale and low-scale seesaw models as well as models with R-parity violation. We will see that in some cases the LFV phenomenology can have characteristic features for specific scenarios, implying that dedicated studies must be performed in order to correctly understand the phenomenology in non-minimal supersymmetric models.Comment: 47 pages, 11 figures; v3: references added. Prepared for "Supersymmetry beyond the NMSSM

    Lepton Flavor Violation Phenomenology Beyond the Standard Model

    Get PDF
    Historically, experimental searches for flavor violating processes have been essential for the theoretical developments in Particle Physics. After the detection of neutrino oscillations, the most clear experimental evidence for new physics at present comes from lepton flavor violation (LFV) in the neutrino sector. Whereas a new window to physics beyond the Standard Model (SM) and even beyond neutrino masses can be opened if a positive signal from LFV processes in the charge sector is observed by ongoing or future facilities. The upper limits on these kind of processes serve as a very powerful probe to test new models of neutrino masses. In this thesis we analyze the LFV phenomenology generated by two models that induce neutrino masses through different mechanisms. In the first case, we investigate LFV in the the singlet-triplet scotogenic model in which neutrinos acquire non-zero masses at the 1-loop level. In contrast to the most popular variant of this setup, the singlet scotogenic model, this version includes a triplet fermion as well as a triplet scalar, leading to a scenario with a richer dark matter phenomenology. Taking into account results from neutrino oscillation experiments, we explore some aspects of the LFV phenomenology of the model. In particular, we study the relative weight of the dipole operators with respect to other contributions to the LFV amplitudes and determine the most constraining observables. We show that in large portions of the parameter space, the most promising experimental perspectives are found for LFV 3-body decays and for coherent μ-e conversion in nuclei. Given that in recent years several observables associated to semileptonic b→s processes have been found to depart from their predicted values in the SM, including a few tantalizing hints of lepton flavor universality violation. In the second work we consider an existing model with a massive Z' boson that addresses the anomalies in b→s transitions and extend it with a non-trivial embedding of neutrino masses. We analyze LFV effects induced by the non-universal interaction associated to the b→s anomalies and by the new physics associated to the neutrino mass generation, and determine the expected ranges for the most relevant observables
    corecore