14 research outputs found

    Probabilistic regular graphs

    Get PDF
    Deterministic graph grammars generate regular graphs, that form a structural extension of configuration graphs of pushdown systems. In this paper, we study a probabilistic extension of regular graphs obtained by labelling the terminal arcs of the graph grammars by probabilities. Stochastic properties of these graphs are expressed using PCTL, a probabilistic extension of computation tree logic. We present here an algorithm to perform approximate verification of PCTL formulae. Moreover, we prove that the exact model-checking problem for PCTL on probabilistic regular graphs is undecidable, unless restricting to qualitative properties. Our results generalise those of EKM06, on probabilistic pushdown automata, using similar methods combined with graph grammars techniques.Comment: In Proceedings INFINITY 2010, arXiv:1010.611

    Convergence Thresholds of Newton's Method for Monotone Polynomial Equations

    Get PDF
    Monotone systems of polynomial equations (MSPEs) are systems of fixed-point equations X1=f1(X1,...,Xn),X_1 = f_1(X_1, ..., X_n), ...,Xn=fn(X1,...,Xn)..., X_n = f_n(X_1, ..., X_n) where each fif_i is a polynomial with positive real coefficients. The question of computing the least non-negative solution of a given MSPE X=f(X)\vec X = \vec f(\vec X) arises naturally in the analysis of stochastic models such as stochastic context-free grammars, probabilistic pushdown automata, and back-button processes. Etessami and Yannakakis have recently adapted Newton's iterative method to MSPEs. In a previous paper we have proved the existence of a threshold kfk_{\vec f} for strongly connected MSPEs, such that after kfk_{\vec f} iterations of Newton's method each new iteration computes at least 1 new bit of the solution. However, the proof was purely existential. In this paper we give an upper bound for kfk_{\vec f} as a function of the minimal component of the least fixed-point μf\mu\vec f of f(X)\vec f(\vec X). Using this result we show that kfk_{\vec f} is at most single exponential resp. linear for strongly connected MSPEs derived from probabilistic pushdown automata resp. from back-button processes. Further, we prove the existence of a threshold for arbitrary MSPEs after which each new iteration computes at least 1/w2h1/w2^h new bits of the solution, where ww and hh are the width and height of the DAG of strongly connected components.Comment: version 2 deposited February 29, after the end of the STACS conference. Two minor mistakes correcte

    On the power of randomized multicounter machines

    Get PDF
    AbstractOne-way two-counter machines represent a universal model of computation. Here we consider the polynomial-time classes of multicounter machines with a constant number of reversals and separate the computational power of nondeterminism, randomization and determinism. For instance, we show that polynomial-time one-way multicounter machines, with error probability tending to zero with growing input length, can recognize languages that cannot be accepted by polynomial-time nondeterministic two-way multicounter machines with a bounded number of reversals. A similar result holds for the comparison of determinism and one-sided-error randomization, and of determinism and Las Vegas randomization

    Recursive Concurrent Stochastic Games

    Get PDF
    We study Recursive Concurrent Stochastic Games (RCSGs), extending our recent analysis of recursive simple stochastic games to a concurrent setting where the two players choose moves simultaneously and independently at each state. For multi-exit games, our earlier work already showed undecidability for basic questions like termination, thus we focus on the important case of single-exit RCSGs (1-RCSGs). We first characterize the value of a 1-RCSG termination game as the least fixed point solution of a system of nonlinear minimax functional equations, and use it to show PSPACE decidability for the quantitative termination problem. We then give a strategy improvement technique, which we use to show that player 1 (maximizer) has \epsilon-optimal randomized Stackless & Memoryless (r-SM) strategies for all \epsilon > 0, while player 2 (minimizer) has optimal r-SM strategies. Thus, such games are r-SM-determined. These results mirror and generalize in a strong sense the randomized memoryless determinacy results for finite stochastic games, and extend the classic Hoffman-Karp strategy improvement approach from the finite to an infinite state setting. The proofs in our infinite-state setting are very different however, relying on subtle analytic properties of certain power series that arise from studying 1-RCSGs. We show that our upper bounds, even for qualitative (probability 1) termination, can not be improved, even to NP, without a major breakthrough, by giving two reductions: first a P-time reduction from the long-standing square-root sum problem to the quantitative termination decision problem for finite concurrent stochastic games, and then a P-time reduction from the latter problem to the qualitative termination problem for 1-RCSGs.Comment: 21 pages, 2 figure

    Tableaux for Policy Synthesis for MDPs with PCTL* Constraints

    Full text link
    Markov decision processes (MDPs) are the standard formalism for modelling sequential decision making in stochastic environments. Policy synthesis addresses the problem of how to control or limit the decisions an agent makes so that a given specification is met. In this paper we consider PCTL*, the probabilistic counterpart of CTL*, as the specification language. Because in general the policy synthesis problem for PCTL* is undecidable, we restrict to policies whose execution history memory is finitely bounded a priori. Surprisingly, no algorithm for policy synthesis for this natural and expressive framework has been developed so far. We close this gap and describe a tableau-based algorithm that, given an MDP and a PCTL* specification, derives in a non-deterministic way a system of (possibly nonlinear) equalities and inequalities. The solutions of this system, if any, describe the desired (stochastic) policies. Our main result in this paper is the correctness of our method, i.e., soundness, completeness and termination.Comment: This is a long version of a conference paper published at TABLEAUX 2017. It contains proofs of the main results and fixes a bug. See the footnote on page 1 for detail

    Model Checking Probabilistic Pushdown Automata

    Get PDF
    We consider the model checking problem for probabilistic pushdown automata (pPDA) and properties expressible in various probabilistic logics. We start with properties that can be formulated as instances of a generalized random walk problem. We prove that both qualitative and quantitative model checking for this class of properties and pPDA is decidable. Then we show that model checking for the qualitative fragment of the logic PCTL and pPDA is also decidable. Moreover, we develop an error-tolerant model checking algorithm for PCTL and the subclass of stateless pPDA. Finally, we consider the class of omega-regular properties and show that both qualitative and quantitative model checking for pPDA is decidable

    Computing the Least Fixed Point of Positive Polynomial Systems

    Full text link
    We consider equation systems of the form X_1 = f_1(X_1, ..., X_n), ..., X_n = f_n(X_1, ..., X_n) where f_1, ..., f_n are polynomials with positive real coefficients. In vector form we denote such an equation system by X = f(X) and call f a system of positive polynomials, short SPP. Equation systems of this kind appear naturally in the analysis of stochastic models like stochastic context-free grammars (with numerous applications to natural language processing and computational biology), probabilistic programs with procedures, web-surfing models with back buttons, and branching processes. The least nonnegative solution mu f of an SPP equation X = f(X) is of central interest for these models. Etessami and Yannakakis have suggested a particular version of Newton's method to approximate mu f. We extend a result of Etessami and Yannakakis and show that Newton's method starting at 0 always converges to mu f. We obtain lower bounds on the convergence speed of the method. For so-called strongly connected SPPs we prove the existence of a threshold k_f such that for every i >= 0 the (k_f+i)-th iteration of Newton's method has at least i valid bits of mu f. The proof yields an explicit bound for k_f depending only on syntactic parameters of f. We further show that for arbitrary SPP equations Newton's method still converges linearly: there are k_f>=0 and alpha_f>0 such that for every i>=0 the (k_f+alpha_f i)-th iteration of Newton's method has at least i valid bits of mu f. The proof yields an explicit bound for alpha_f; the bound is exponential in the number of equations, but we also show that it is essentially optimal. Constructing a bound for k_f is still an open problem. Finally, we also provide a geometric interpretation of Newton's method for SPPs.Comment: This is a technical report that goes along with an article to appear in SIAM Journal on Computing
    corecore