
Theoretical Computer Science 330 (2005) 135–144
www.elsevier.com/locate/tcs

On the power of randomized multicounter
machines�

Juraj Hromkoviča,∗, Georg Schnitgerb

aDepartment of Computer Science, Swiss Federal Institute of Technology ETH Zurich, ETH Zentrum, RZ F2,
CH-8092 Zurich, Switzerland

bInstitut für Informatik, Johann Wolfgang Goethe University, Robert Mayer Straße 11–15, 60054 Frankfurt am
Main, Germany

Abstract

One-way two-counter machines represent a universal model of computation. Here we consider the
polynomial-time classes of multicounter machines with a constant number of reversals and separate the
computational power of nondeterminism, randomization and determinism. For instance, we show that
polynomial-time one-way multicounter machines, with error probability tending to zero with growing
input length, can recognize languages that cannot be accepted by polynomial-time nondeterministic
two-way multicounter machines with a bounded number of reversals. A similar result holds for the
comparison of determinism and one-sided-error randomization, and of determinism and Las Vegas
randomization.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Problem complexity; Randomness; Determinism; Nondeterminism; Multicounter machines

1. Introduction

Although randomization is by now a standard tool for making computations and commu-
nication more efficient or for building simpler systems, we are far from fully understanding
the power of randomized computing. Hence it is advisable to study randomization for

� The work of this paper has been supported by the DFG Projects HR 14/6-1 and SCHN 503/2-1. This is an
essentially revisited and extended version of results presented at ICALP’03.

∗ Corresponding author.
E-mail address:jh@cs.rwth-aachen.de(J. Hromkovič).

0304-3975/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.09.015

http://www.elsevier.com/locate/tcs
mailto:jh@cs.rwth-aachen.de

136 J. Hromkovič, G. Schnitger / Theoretical Computer Science 330 (2005) 135–144

restricted models of computation. This research has started with the study of simple models
like one-way finite automata and two-party communication protocols and continues by in-
vestigating the power of randomization for more and more complex models of
computation.

The goal of this paper is to establish new results separating randomization from deter-
minism and nondeterminism as well as to contribute to the development of proof techniques
for this purpose. The computing models considered here are multicounter machines.

To separate nondeterminism, randomization and determinism for polynomial-time com-
putation is probably the central question of theoretical computer science. Because of the
enormous hardness of this problem many researchers try to separate determinism from
randomization and randomization from nondeterminism at least for restricted models of
computations (see, for instance,[2–7,9–13,15,17–19,21,23–25]) in order to gain further
insight into the computational power of these modes of computation.

Polynomial-time one-way multicounter machines are one of the most powerful computing
models for which one tries to separate determinism, randomization and nondeterminism. It
is a well-known fact that even one-way two-counter machines can simulate Turing machines
and so multicounter machines represent a universal machine model.We consider the stronger
model of two-way multicounter machines with a constant number of reversals.

In what follows, letmcmdenote a multicounter machine and let1mcmdenote a one-way
mcm. If we speak about reversals we always mean the reversals of the reading head on the
input tape.

In this paper we succeed in answering most of the basic questions about the relative
power of determinism, randomization and nondeterminism for polynomial-time one-way
(two-way with a constant number of reversals) multicounter machines. Let1DMC(poly)
[1NMC(poly)] be the class of languages accepted by polynomial-time one-way determin-
istic [nondeterministic] multicounter machines. Let2cDMC(poly) [2cNMC(poly)] denote
the class of languages accepted by deterministic [nondeterministic] two-way mcm with a
constant number of reversals.

Definition 1. Let A be a randomized mcm with three final statesqaccept, qreject andqneutral.
We say thatA is aLas Vegas mcm (LVmcm)recognizing a languageL if the following
conditions hold:
(i) For eachx ∈ L, Prob(A acceptsx) � 1

2 and Prob(A rejectsx) = 0.
(ii) For eachx �∈ L, Prob(A rejectsx) � 1

2 and Prob(A acceptsx) = 0.
We say thatA is aone-sided-error Monte Carlo mcm, Rmcmfor L iff
(iii) For eachx ∈ L, Prob(A acceptsx) � 1

2.
(iv) For eachx �∈ L, Prob(A rejectsx) = 1.
We say thatA is abounded-error probabilistic mcm, BPmcm for L, if there is anε such
that
(v) For eachx ∈ L, Prob(A acceptsx) � 1

2 + ε.
(vi) For eachx �∈ L, Prob(A rejectsx) � 1

2 + ε.

We denote by 1LVMC(poly)[1RMC(poly), 1BPMC(poly)] the class of languages ac-
cepted by a polynomial-time one-way LVmcm [Rmcm, BPmcm]. Let 2cLVMC(poly)

J. Hromkovič, G. Schnitger / Theoretical Computer Science 330 (2005) 135–144 137

[2cRMC(poly), 2cBPMC(poly)] denote the class of languages accepted by polynomial-
time two-way LVmcm [Rmcm, BPmcm] with a constant number of reversals.

All probabilistic classes possess amplification: We can reduce the error arbitrarily by
simulating independent runs in parallel with an appropriately increased number of counters.
Here the interesting question is whether an error probability tending to zero is reachable.
Therefore for any probabilistic classA we define the class

A∗ = {L(M) | M is a machine of type A with error probability tending

towards 0 with increasing input length}.
(In the case of Las Vegas randomization we consider the probability of giving the answer
“?” as error probability.) We obtain the following separations:
(a) Bounded-error randomization and nondeterminism are incomparable, since 1BPMC∗

(poly) − 2cNMC(poly) �= ∅ and 1NMC(poly)− 2cBPMC(poly)�= ∅.
(b) 1BPMC∗(poly) − 2cRMC(poly) �= ∅,

i.e., bounded error randomization with an arbitrary small error is more powerful than
one-sided-error randomization.

(c) 1RMCM∗(poly) − 2cLVMC(poly) �= ∅,
i.e., one-sided-error randomization is more powerful than LasVegas randomization, and

(d) 2cLVMC∗(poly) − 2cDMC(poly) �= ∅ and
2cLVMC∗(2O(

√
n log2 n)) − 2cDMC(2o(n)) �= ∅,

i.e., Las Vegas randomization is more powerful than determinism.
These results show a proper hierarchy between LVmcc, Rmcc and BPmcc resp. nondeter-
ministic mcc, where the weaker computation mode cannot reach the stronger mode, even
when restricting the stronger mode to one-way computations and additionally demanding
error probability approaching zero. The proof even shows that allowing o(n/ logn) reversals
on inputs of sizen does not help the weaker mode.

It is not unlikely that determinism and Las Vegas randomization are equivalent for one-
way computations. However, the separation 2cLVMC∗(2O(

√
n log2 n)) − 2cDMC(2o(n)) �= ∅

also holds for o(n/ logn) reversals of the deterministic machine.

2. Preliminaries

Before presenting our results we give some basic knowledge about elementary actions
that can be efficiently executed by one-way multicounter machines. Let, for any counter
C, num(C) denote the size of the counter (i.e., the nonnegative integer represented by the
unary content of the counter).

Fact 2. Let A be a 1mcm with5 countersC1, C2, . . . , C5. Then A can compute num(C1) ·
num(C2) without loosing the values num(C1) and num(C2) in timeO(num(C1) ·num(C2)).

Fact 3. Let A be a 1mcm with5 countersC1, C2, . . . , C5. Then A can compute

num(C1) modnum(C2)

138 J. Hromkovič, G. Schnitger / Theoretical Computer Science 330 (2005) 135–144

and

num(C1) div num(C2)

without loosing the values num(C1) and num(C2) in timeO(num(C1)).

Let Number(x) denote the nonnegative integer whose binary representation isxR.

Fact 4. Let A be a 1mcm with at least3 counters. If A has a wordx ∈ {0, 1}∗ on the input
tape, then A can compute and save the number Number(x) in timeO(Number(x)).

Lemma 5. Let A be a 1mcm with at least4 countersC1, C2, C3, and C4. Let a word
x ∈ {0, 1}∗ be on the input tape of A. Then A can compute the integer

Number(x) modnum(C1)

in timeO(|x| num(C1)).

Proof. The computation ofA is based on the fact that, for all positive integersi andk,

2i+1 modk = 2(2i modk) modk.

Thus, if a counter contains the value 2i modnum(C1), then doubling its content and
computing modulonum(C1) the 1mcmA computes the value 2i+1 modnum(C1). In this
way, starting with the least significant bit ofx1 of x = x1, . . . , xn the machineA can
compute the value(

n∑
i=1

xi2
i−1
)

modnum(C1),

as the value(∑(
xi2

i−1
)

modnum(C1)
)

modnum(C1). �

Lemma 6. LetAbea randomized1mcmwith countersC1, C2, C3, C4, C5.Letn=num(C1)

andn2 = num(C2) for a positive integer n. Then without any movement on the input tape,
A can generate and save a random prime from{2, 3, . . . , n2} or enter a special state saying
“ I was not successful in generating a prime” in timeO(n5) with a probability of success
above1 − e−n2/2 lnn for sufficiently large n.

Proof. First of all we observe thatA can generate a random number from{2, 3, . . . , n2}
in time O(n2). A simply computes and saves, consecutively, the values 20, 21, 22, . . . ,

2
⌈
log2

(
n2+1

)⌉
by doubling the previous value. For any 2i A toss a coin in order to decide

whether 2i has to be summed to the created number. When the value 2j is larger thenn2,
thenA stops this part of this procedure, which can be performed in O(n2) time.

J. Hromkovič, G. Schnitger / Theoretical Computer Science 330 (2005) 135–144 139

After thatA deterministically verifies whether the generated random numberm ∈ {2, 3,

. . . , n2} is a prime by computing

m modr

for all r ∈ {2, 3, . . . , n}. Following Fact3, this can be done in time O(nm) ⊆ O(n3).
If m is a prime, thenA halts. If not,A tries again to generate a new random number, but

A does it at mostn2 times. After countingn2 unsuccessful attemptsA finishes in a special
state.

The Prime Number Theorem says that there are approximatelyn2/2 lnn primes smaller
thann2. Hence the probability of generating a prime in one attempt is

1

2 lnn
.

The probability to be not successful in 2n2 attempts is then

(
1 − 1

2 lnn

)2n2

=
((

1 − 1

2 lnn

)2 lnn
)n2/2 lnn

�e−n2/2 lnn. �

3. Main results

Our first two results compare nondeterminism and randomness. Let

EQ = {0n#w#w | w ∈ {0, 1}n, n ∈ N}.

Theorem 7. EQ ∈ 2BP MC∗(poly) − 2cNMC(poly).

Proof. First, we show thatEQ ∈2BPMC∗(poly), by describing a 1mcmM that acceptsEQ
with an error probability tending to zero with the input length. For any input 0n#w#y the
1mcmM works as follows. Reading 0n it saves the valuen in a counter and the valuen2 in
another counter (by computingn ·n (Fact2)). Following the strategy described in Lemma6
M generates a random primep from {2, 3, . . . , n2} with a probability at least 1− e−n2/2 lnn

and stops with a probability at most e−n2/2 lnn without deciding about the membership of
the input inEQ.

Reading the input part (suffix) #w#y the machineM computes the values

Number(w) modp andNumber(y) modp

in time O(n3) by the strategy described in Lemma5. Simultaneously,M checks whether
n = |w| = |y| and if not thenM rejects the input.

If Number(w) modp = Number(y) modp, thenM accepts and reject otherwise.
Now, let us analyse the error probability ofM. We distinguish two possibilities with

respect to the membership of the input inEQ.
(i) Let 0n#w#y ∈ EQ, i.e.,w = y.

140 J. Hromkovič, G. Schnitger / Theoretical Computer Science 330 (2005) 135–144

ThenNumber(w) modp = Number(y) modp for every positive integerp and soM
accepts with certainty.

(ii) Let 0n#w#y ∈ EQ.
If n = |w| = |y| does not hold, thenM rejects with certainty. Whenn = |w| = |y|

andw �= y, thenM can err when

Number(w) modp = Number(y) modp. (1)

Let us bound the number or primes leading to the wrong decision. If (1) holds, thenp
divides the number

d = |Number(w) − Number(y)|.
But d < 2n and so there are at mostn − 1 different primes in the factorisation ofd (for
details, see for instance[8]). Since, due to the Prime Number Theorem we know that
the number of primes smaller thann2 at least

n2/2 lnn

for n�9, the error probability is bounded by

n − 1

n2/2 lnn
<

2 lnn

n
.

Hence,M is successful with a probability at least

(
1 − e−n2/2 lnn

)(
1 − 2 lnn

n

)

that tends to 1 with growingn.
Thus, we have proved thatEQ ∈ 2BPMC∗(poly).
To show thatEQ /∈ 2cNMC(poly) we use an argument from communication complexity

theory. Assume the opposite, i.e., that there is a polynomial-time nondeterministic mcmD
that acceptsEQ and uses at mostc reversals in any computation. LetD havek counters
for a positive integerk and letD work in time at mostnr , r ∈ N, for any input of length
n. Consider the work ofD on an input On#x#y with |x| = |y| = n. D is always in a
configuration where the content of each counter is bounded bynr . Each such configuration
can be represented by a sequence of O(kr log2 n) bits and so the whole crossing sequence
on any position can be stored by O(ckr log2 n) bits. Thus,D can be simulated by a non-
deterministic communication protocol that acceptsEQ within communication complexity
O(log2 n). This contradicts the well-known fact that the nondeterministic communication
complexity ofEQ is in �(n) [1,8,16]. �

For showing that nondeterminism can be more powerful than bounded-error randomness,
we consider the nondisjointness problem defined by

NDIS= {x#y | x, y ∈ {0, 1}n for ann ∈ N and∃j : xj = yj = 1}.

J. Hromkovič, G. Schnitger / Theoretical Computer Science 330 (2005) 135–144 141

Theorem 8. NDIS∈ 1NMC(poly) − 2cBPMC(poly).

Proof. By guessing a positionj with xj = yj = 1 a nondeterministic 1mcm can accept
NDISwith one counter in linear time.

The factNDIS /∈ 2cBPMC(poly) can be proved by contradiction as follows. Assume
there is a 2cBPmcm that acceptsNDIS. Then similarly as in the proof of Theorem7 one
can construct a sequence of bounded-error two-party protocols that acceptNDIS within
communication complexity O(log2 n). But this contradicts the result of[14,22] that the
communication complexity ofNDIS is in �(n). �

Observe that the lower bounds of Theorems7and8even work when allowing o(n/ logn)

reversals. Hence, Theorem7shows that bounded-error randomization with error probability
approaching zero cannot be compensated for by nondeterminism and o(n/ logn) increase
of the allowed number of reversals and Theorem8 shows that one-way nondeterminism
cannot be compensated for by bounded-error randomization with o(n/ logn) reversals.

To separate one-sided error from Las Vegas we consider the language

NEQ= {0n#x#y | n ∈ N, x, y ∈ {0, 1}n, x �= y},
which can be viewed as a complement ofEQ.

Theorem 9. NEQ∈ 1RMC∗(poly) − 2cLV MC(poly).

Proof. To recognizeEQ by a one-sided-error 1mcmM one can use almost the same ran-
domized 1mcm as forNEQ. The only difference is thatM rejects the input when it was not
successful in generating a prime. ThenM rejects with certainty all inputsw /∈ NEQ, and
for every inputw from NEQ Macceptsw with probability tending to zero with growing
input length.

The membership ofNEQin 2cLVMC(poly) would imply the existence of Las Vegas two-
party protocols acceptingNEQwithin communication complexity O(log2 n). This would
contradict to the lower bound�(n) [20] on the Las Vegas communication complexity of
NEQ. Hence,NEQ /∈ 2cLVMC(poly). �

Since an one-sided-error mcm is a special version of a nondeterministic 1mcm, Theorems
7–9 yield

1DMC(poly) ⊆ 1LVMC(poly) ⊂ 1RMC(poly) ⊂ 1NMC(poly)

and

1DMC(poly) ⊂ 1RMC(poly) ⊂ 1BPMC(poly).

Clearly, these hierarchies may be formulated for two-way mcm machines with distinct
bounds on the number of reversals as well as for∗-randomized classes. The only relation
we were not able to fix is the relation between determinism and Las Vegas randomization
for polynomial-time one-way mcm. We let it as an open problem here. But, we are able to
establish the following separations between Las Vegas and determinism.

142 J. Hromkovič, G. Schnitger / Theoretical Computer Science 330 (2005) 135–144

Theorem 10. There exist a languageL ⊆ {0, 1, #}∗ such that
(i) L can be recognized by a LVmcm in time2O(

√
n logn) with one reversal, and

(ii) each deterministic mcm that accepts L with a constant number of reversals must work
in time2�(n).

Proof. Consider the language

L = { w1#w2# · · · #wm##y1#y2# · · · #ym | m ∈ N-{0},
wi, yi ∈ {0, 1}m for i = 1, . . . , m and∃j : wj = yj }.

First, we outline how to construct a LVmcmM that acceptsL in time 2(
√

n/ logn).
Let x ∈ {0, 1, #}∗ be an input. Since the fact whether

x = w1#w2# · · · wm##y1#y2# · · · #ym andxi, yi ∈ {0, 1}m for i = 1, . . . , m

can be verified in one run ofM from the left to the right in linear time, let us focus on the
work ofM on words having this form. Similarly, as in the proof of Theorem7M performs at
mostm2 attempts to randomly generate a prime smaller thanm3. If M does not succeed, than
it will stop in the stateqneutral. If M generates a primep, thenM readingw1#w2#, . . . , #wm#
computesmnumbers

ai = Number(wi) modp for i = 1, . . . , m.

All these numbersa1, . . . , am can be saved unary in a counter of size 22m�log2(m+1)�. The
crucial fact is thatM can reconstruct the binary representation of allais in time that
is linear in 22m�log2(m+1)�. M does it when readingy1#y2#, . . . , #ym and comparesai

with Number(yi) modp for every i ∈ {1, 2, . . . , m}. If ai �= Number(yi) modp for all
i ∈ {1, . . . , m}, thenM rejects the inputx.

If M found aj∈{1, . . . , m} such thataj=Number(yi) modp, thenM savesNumber(yj)

in a counter. Observe, that the unary representation ofyj is of the size 2m. ThenM reverses
the direction of the head and moves towj in order to check whetherwj = yj . If wj = yj ,
thenM acceptx. If wj �= yj , thenM finishes the computation inqneutral.

Sincen = |x| = m(m + 1), M works in time 2O(
√

n logn). Clearly,M never errs. The
following probabilistic analysis shows that the probability to reachqneutral tends to zero
with the growth of the input lengthn.

The probability thatM stops because it was not successful in generating a prime is (as
already observed in the previous proofs and in Lemma6) negligible.As usual, we distinguish
two cases with respect to the membership ofx in L.
(i) Let x ∈ L.

Thenwi �= yi for all i ∈ {1, 2, . . . , m}. If

Number(wi) ≡ Number(yi) modp (2)

for at least onei ∈ {1, 2, . . . , m}, thenM stops in the stateqneutral. In the opposite case,
M correctly rejectsx.

J. Hromkovič, G. Schnitger / Theoretical Computer Science 330 (2005) 135–144 143

Let us calculate the probabilitypi that (2) happens for a fixed positioni. Since we
have at leastm3/3 lnm primes smaller thanm3 for m�9 and at mostm − 1 primes
with property (2),

pi �
m − 1

m3/3 lnm
<

3 lnm

m2 .

Let pneut be the probability that (2) happens for at least one positioni ∈ {1, 2, . . . , m}.
Clearly,

pneut�
m∑

i=1
pi <

m∑
i=1

3 lnm

m2 = 3 lnm

m
.

Thus,pneut is tending to zero with growing input length.
(ii) Let x ∈ L.

Now, let j be the smallest integer from{1, . . . , m} such that

wj = yj .

ThenM stops inqneutraliff (2) happens for somei ∈ {1, . . . , j − 1}. But the probability
of this event is at most

∑j−1
i=1 pi , which is smaller thanpneut.

Thus,M is a LVmcm acceptingL.
To prove that 2�(n) deterministic time is necessary to acceptL by a mcm with a constant

number of reversals, one can again use arguments from communication complexity theory,
because it is known that the communication complexity ofL is in �(n). �

Theorem 11. 2cLVMC∗(poly) − 2cDMC(poly) �= ∅, i.e., Las Vegas randomization is
more powerful that determinism for polynomial time multicounter machines with constant
number of reversals.

Proof. Consider the language

Lpad= { 0n ###w1#w2# · · · #wm##y1#y2# · · · #ym |
n ∈ N − {0}, m = log2 n/ log2 log2 n,

wi, yi ∈ {0, 1}m for i ∈ 1, . . . , m and∃j : wj = yj }
which can be viewed as padding the languageL with exponentially many dummy symbols.
Now, using the same calculation as in the proof of Theorem10 the result follows. �

References

[1] A.V. Aho, J.E. Hopcroft, M.Yannakakis, On notions of information transfer in VLSI circuits, in: Proceedings
of the 15th Annual ACM STOCS, ACM, 1983, pp. 133–139.

[2] L. Babai, Monte Carlo algorithms in graph isomorphism techniques, Research Report no. 79-10, Département
de mathématiques et statistique, Université de Montréal, 1979.

[3] M. Dietzfelbinger, M. Kutylowski, R. Reischuk, Exact lower bounds for computing Boolean functions on
CREW PRAMs, J. Comput. System Sci. 48 (1994) 231–254.

144 J. Hromkovič, G. Schnitger / Theoretical Computer Science 330 (2005) 135–144

[4] P. Ďuriš, J. Hromkoviˇc, K. Inone, A separation of determinism, Las Vegas and nondeterminism for picture
recognition, in: Proceedings of the IEEE Conference on Computational Complexity, IEEE, 2000, pp. 214–228.
Full Version: Electronic Colloquium on Computational Complexity, Report no. 27, 2000.

[5] P.Ďuriš, J. Hromkoviˇc, J.D.P. Rolim, G. Schnitger, LasVegas versus determinism for one-way communication
complexity, finite automata and polynomial-time computations, in: Proceedings of the STACS‘97, Lecture
Notes in Computer Science, Vol. 1200, Springer, Berlin, 1997, pp. 117–128.

[6] R. Freivalds, Projections of languages recognizable by probabilistic and alternating multitape automata,
Inform. Process. Lett. 13 (1981) 195–198.

[7] J. Gill, Computational complexity of probabilistic Turing machines, SIAM J. Comput. 6 (1977) 675–695.
[8] J. Hromkovič, Communication Complexity and Parallel Computing, Springer, Berlin, 1997.
[9] J. Hromkovič, Communication protocols—an exemplary study of the power of randomness, in: P. Pardalos,

S. Kajasekaran, J. Reif, J. Rolim (Eds.), Handbook on Randomized Computing, Vol. 2, Kluwer Publisher,
Dordrecht, 2001, pp. 533–596.

[10] J. Hromkovič, M. Sauerhoff,Tradeoffs between nondeterminism and complexity for communication protocols
and branching programs, in: Proceedings of the STACS 2000, Lecture Notes in Computer Science, Vol. 1770,
Springer, Berlin, 2000, pp. 145–156.

[11] J. Hromkovič, G. Schnitger, On the power of Las Vegas II, Two-way finite automata, in: Proceedings of the
ICALP’99, Lecture Notes in Computer Science, Vol. 1644, Springer, Berlin, 1999, pp. 433–443 (extended
version: Theoret. Comput. Sci. 262 (2001) 1–14).

[12] J. Hromkovič, G. Schnitger, On the power of Las Vegas for one-way communication complexity, OBDD’s
and finite automata, Inform. Comput. 169 (2001) 281–296.

[13] J. Hromkovič, G. Schnitger, On the power of randomized pushdown automata, in: Proceedings of the
DLT’2001, Lecture Notes in Computer Science, Vol. 1770, Springer, Berlin, 2002, pp. 262–271.

[14] B. Kalyanasundaram, G. Schnitger, The probabilistic communication complexity of set intersection, SIAM
J. Discrete Math. 5 (4) (1992) 545–557.

[15] J. Kaneps, D. Geidmanis, R. Freivalds, Tally languages accepted by Monte Carlo pushdown automata, in:
RANDOM‘97, Lecture Notes in Computer Science, Vol. 1269, pp. 187–195.

[16] E. Kushilevitz, N. Nisan, Communication Complexity, Cambridge University Press, Cambridge, 1997.
[17] I. Macarie, On the structure of log-space probabilistic complexity classes, Technical Report TR-506, Dept.

of Computer Science, University of Rochester, 1994.
[18] I. Macarie, M. Ogihara, Properties of probabilistic pushdown automata, Technical Report TR-554, Dept. of

Computer Science, University of Rochester, 1994.
[19] I.I. Macarie, J.I. Seiferas, Strong equivalence of nondeterministic and randomized space-bounded

computations, Manuscript, 1997, Later version: Amplification of slight probabilistic advantage at absolutely
no cost in space, Inform. Process. Lett. 72 (1999) 113–118.

[20] K. Mehlhorn, E. Schmidt, Las Vegas is better than determinism in VLSI and distributed computing, in:
Proceedings of the 14th ACM STOC‘82, ACM, 1982, pp. 330–337.

[21] Ch. Papadimitrou, M. Sipser, Communication complexity, in: Proceedings of the 14th ACM STOC, ACM,
1982, pp. 196–200; also in J. Comput. System Sci. 28 (1984) 260–269.

[22] A.A. Razborov, On the distributional complexity of disjointness, Theoret. Comp. Sci. 106 (2) (1992)
385–390.

[23] M. Sauerhoff, On nondeterminism versus randomness for read-once branching programs, Electronic
Colloquium on Computational Complexity TR 97 - 030, 1997.

[24] M. Sauerhoff, On the size of randomized OBDDs and read-once branching programs fork-stable functions,
in: Proceedings of the STACS‘99, Lecture Notes in Computer Science, Vol. 1563, Springer, Berlin, 1999, pp.
488–499.

[25] A.C. Yao, Some complexity questions related to distributed computing, in: Proceedings of the 11th ACM
STOC, ACM, 1979, pp. 209–213.

	On the power of randomized multicounter machines62626262
	Introduction
	Preliminaries
	Main results
	References

