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Abstract

One-way two-counter machines represent a universal model of computation. Here we consider the
polynomial-time classes of multicounter machines with a constant number of reversals and separate the
computational power of nondeterminism, randomization and determinism. For instance, we show that
polynomial-time one-way multicounter machines, with error probability tending to zero with growing
input length, can recognize languages that cannot be accepted by polynomial-time nondeterministic
two-way multicounter machines with a bounded number of reversals. A similar result holds for the
comparison of determinism and one-sided-error randomization, and of determinism and Las Vegas
randomization.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Although randomization is by now a standard tool for making computations and commu-
nication more efficient or for building simpler systems, we are far from fully understanding
the power of randomized computing. Hence it is advisable to study randomization for
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restricted models of computation. This research has started with the study of simple models
like one-way finite automata and two-party communication protocols and continues by in-
vestigating the power of randomization for more and more complex models of
computation.

The goal of this paper is to establish new results separating randomization from deter-
minism and nondeterminism as well as to contribute to the development of proof techniques
for this purpose. The computing models considered here are multicounter machines.

To separate nondeterminism, randomization and determinism for polynomial-time com-
putation is probably the central question of theoretical computer science. Because of the
enormous hardness of this problem many researchers try to separate determinism from
randomization and randomization from nondeterminism at least for restricted models of
computations (see, for instand@;-7,9-13,15,1719,21,2325]) in order to gain further
insight into the computational power of these modes of computation.

Polynomial-time one-way multicounter machines are one of the most powerful computing
models for which one tries to separate determinism, randomization and nondeterminism. It
is awell-known fact that even one-way two-counter machines can simulate Turing machines
and so multicounter machines represent a universal machine model. We consider the stronger
model of two-way multicounter machines with a constant number of reversals.

In what follows, letmecm denote a multicounter machine andletcmdenote a one-way
mcm. If we speak about reversals we always mean the reversals of the reading head on the
input tape.

In this paper we succeed in answering most of the basic questions about the relative
power of determinism, randomization and nondeterminism for polynomial-time one-way
(two-way with a constant number of reversals) multicounter machinesLD&IC(poly)
[LNMC(poly)] be the class of languages accepted by polynomial-time one-way determin-
istic [nondeterministic] multicounter machines. 2eOMC(poly) [2cNMC(poly)] denote
the class of languages accepted by deterministic [nondeterministic] two-way mcm with a
constant number of reversals.

Definition 1. Let A be a randomized mcm with three final stadggept greject aNdgneutrat
We say thatA is aLas Vegas mcm (LVmcm)recognizing a languade if the following
conditions hold:
(i) Foreachx € L, Prol(A accepts) 2% and ProlA rejectsy) = 0.
(ii) Foreachx ¢ L, Prol(A rejectsx) 2% and ProlgA acceptsc) = 0.
We say tha#\ is aone-sided-error Monte Carlo mecm, Rmcmfor L iff
(iif) For eachx € L, ProfA acceptsy) > %
(iv) Foreachx ¢ L, Prol(A rejectsx) = 1.
We say tha# is abounded-error probabilistic mcm, BPmcm for L, if there is are such
that
(v) Foreachx € L, Prol(A acceptsr) 2% +e.
(vi) For eachx ¢ L, Prol(A rejectsy) >3 +e.

We denote by 1LVMC(poly)[1IRMC(poly), 1BPMC(poly)] the class of languages ac-
cepted by a polynomial-time one-way LVmcm [Rmcm, BPmcm]. Let 2cLVMC(poly)
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[2cRMC(poly), 2cBPMC(poly)] denote the class of languages accepted by polynomial-
time two-way LVmcm [Rmcm, BPmcm] with a constant number of reversals.

All probabilistic classes possess amplification: We can reduce the error arbitrarily by
simulating independent runs in parallel with an appropriately increased number of counters.
Here the interesting question is whether an error probability tending to zero is reachable.
Therefore for any probabilistic clagswe define the class

A* = {L(M) | M is a machine of type A with error probability tending
towards 0 with increasing input lengdth

(In the case of Las Vegas randomization we consider the probability of giving the answer
“?” as error probability.) We obtain the following separations:
(a) Bounded-error randomization and nondeterminism are incomparable, since 1BPMC
(poly) — 2cNMC(poly) # ¥ and INMC(poly)— 2cBPMC(poly)# .
(b) 1BPMC(poly) — 2cRMC(poly)# 4,
i.e., bounded error randomization with an arbitrary small error is more powerful than
one-sided-error randomization.
(c) IRMCM*(poly) — 2cLVMC(poly) # @,
i.e., one-sided-error randomization is more powerful than Las Vegas randomization, and
(d) 2cLVMC*(poly) — 2cDMC(poly) # ¥ and
2cLVMC*(20Wnlog )y _ 2cDMC(20M) £ g,
i.e., Las Vegas randomization is more powerful than determinism.
These results show a proper hierarchy between LVmcc, Rmcc and BPmcc resp. nondeter-
ministic mcc, where the weaker computation mode cannot reach the stronger mode, even
when restricting the stronger mode to one-way computations and additionally demanding
error probability approaching zero. The proof even shows that allowinglog ) reversals
on inputs of sizer does not help the weaker mode.
It is not unlikely that determinism and Las Vegas randomization are equivalent for one-
way computations. However, the separation 2cLVNEOW" 106°m)y _ 2cDMC(200)) £ ¢
also holds for @:/ logn) reversals of the deterministic machine.

2. Preliminaries

Before presenting our results we give some basic knowledge about elementary actions
that can be efficiently executed by one-way multicounter machines. Let, for any counter
C, num(C) denote the size of the counter (i.e., the nonnegative integer represented by the
unary content of the counter).

Fact 2. Let A be a Imcm with countersCy, Co, ..., Cs. Then A can compute nuidy) -
num(C>) without loosing the values nui@i;) and nuniC2) in timeO(numM(C1) - NUM(C2)).

Fact 3. Let A be a Imcm with countersCy, Co, ..., Cs. Then A can compute

num(C1) modnum(C2)



138 J. Hromkove; G. Schnitger / Theoretical Computer Science 330 (2005) 135—-144

and
num(Cy) divnum(C>)

without loosing the values nui@;) and nuniCy) in time O(num(C1)).
Let Numbexx) denote the nonnegative integer whose binary representatidh is

Fact 4. Let A be a Imcm with at lea8tcounters. If A has a word € {0, 1}* on the input
tape then A can compute and save the number Nutién time O(Numbelx)).

Lemma 5. Let A be a Imcm with at leagt countersC1, C», C3, and C4. Let a word
x € {0, 1}* be on the input tape of A. Then A can compute the integer

NumbeKx) modnum(C1)

in time O(|x| NUM(Cy)).

Proof. The computation oA is based on the fact that, for all positive integieandk,
2+t modk = 2(2' modk) modk.

Thus, if a counter contains the valuér@odnum(C), then doubling its content and
computing modulmum(C1) the ImcmA computes the value’ 2! modnum(Cy). In this
way, starting with the least significant bit @f of x = x1, ..., x, the machineA can
compute the value

(Z x,»zf—1> modnum(Cy),

i=1

as the value

(Z (xizi—l) modnun(Cl)) modnumCy). O

Lemma 6. LetAbe arandomized 1mcm with count€is Co, C3, Ca, Cs. Letn=num(C7)
andn? = num(C») for a positive integer n. Then without any movement on the input tape
A can generate and save a random prime f@r8, . . ., n°} or enter a special state saying

“| was not successful in generating a prifria time O(n°) with a probability of success
abovel — e"*/2Inn for sufficiently large n

Proof. First of all we observe thak can generate a random number fr¢f3, ..., n?}

in time O(n?). A simply computes and saves, consecutively, the val3e8122?, .. .,
2[logz (n*+1)] by doubling the previous value. For any & toss a coin in order to decide
whether 2 has to be summed to the created number. When the valisel@rger them?,
thenA stops this part of this procedure, which can be performed(irf time.
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After thatA deterministically verifies whether the generated random number{2, 3,
..., n?}is a prime by computing
m modr
forallr € {2,3, ..., n}. Following Fac3, this can be done in time @m) € O(n%).
If mis a prime, therA halts. If not,A tries again to generate a new random number, but
A does it at mosk? times. After counting:? unsuccessful attemp#sfinishes in a special
State.

The Prime Number Theorem says that there are approximaté®/In» primes smaller
thann2. Hence the probability of generating a prime in one attempt is

1
2Inn’

The probability to be not successful in2attempts is then

1 252 1 2 1Inn n2/2 Inn 2
1- =((1- Le /e, (]
( 2 |nn) (( 2 |nn) )

3. Main results

Our first two results compare nondeterminism and randomness. Let

EQ = {0"#w#w | w € {0, 1}",n € N}.

Theorem 7. EQ € 2BPMC*(poly) — 2¢N M C (poly).

Proof. First, we show thak Q €2BPMC*(poly), by describing a Imcil that accept&Q
with an error probability tending to zero with the input length. For any ingéu@ty the
1mcmM works as follows. Reading't saves the valua in a counter and the valug in
another counter (by computimg n (Fact2)). Following the strategy described in Lem®a
M generates a random prirpdrom {2, 3, . . ., n?} with a probability at least & g n?/2Inn
and stops with a probability at most’&/2 "7 without deciding about the membership of
the input inEQ.

Reading the input part (suffix)u#y the machinévl computes the values

NumbeKw) modp andNumbexy) modp

in time O(n3) by the strategy described in LemrBaSimultaneouslyM checks whether
n = |w| = |y| and if not therM rejects the input.
If Numbexw) modp = NumbeKy) modp, thenM accepts and reject otherwise.
Now, let us analyse the error probability bf. We distinguish two possibilities with
respect to the membership of the inpuEQ.
(i) Let0"#w#y € EQ, i.e.,w = y.
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ThenNumbeKw) modp = NumbeKy) modp for every positive integep and savl
accepts with certainty.
(i) Let 0"#w#y € EQ.
If n = |w| = |y| does not hold, theM rejects with certainty. When = |w| = |y|
andw ## y, thenM can err when

NumbeKw) modp = Numbexy) modp. (1)

Let us bound the number or primes leading to the wrong decisioh) Hdlds, therp
divides the number

d = |[NumbeKw) — Numbexy)|.

Butd < 2" and so there are at most- 1 different primes in the factorisation df(for
details, see for instand8]). Since, due to the Prime Number Theorem we know that
the number of primes smaller thaA at least

n?/2 Inn

for n>9, the error probability is bounded by

n—1 21Inn
<
n2/2 Inn n

Hence M is successful with a probability at least

(1 e mn) <1 2 Lﬂn)

that tends to 1 with growing.

Thus, we have proved thBQ € 2BPMC*(poly).

To show thaEQ ¢ 2cNMC(poly) we use an argument from communication complexity
theory. Assume the opposite, i.e., that there is a polynomial-time nondeterministi®mcm
that accept&€Q and uses at mostreversals in any computation. LBt havek counters
for a positive integek and letD work in time at mosk”, r € N, for any input of length
n. Consider the work oD on an input O#x#y with |x| = |y| = n. D is always in a
configuration where the content of each counter is bounded Hyach such configuration
can be represented by a sequence @Qog, ) bits and so the whole crossing sequence
on any position can be stored by&r log, n) bits. Thus,D can be simulated by a non-
deterministic communication protocol that accep@within communication complexity
O(log, n). This contradicts the well-known fact that the nondeterministic communication
complexity ofEQis inQ(n) [1,8,16] O

For showing that nondeterminism can be more powerful than bounded-error randomness,
we consider the nondisjointness problem defined by

NDIS= {x#y | x,y € {0,1}" forann € Nand3; : x; = y; = 1}.
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Theorem 8. NDIS € INMC(poly) — 2¢BPMC(poly).

Proof. By guessing a positiopwith x; = y; = 1 a nondeterministic 1mcm can accept
NDISwith one counter in linear time.

The factNDIS ¢ 2¢cBPMC(poly) can be proved by contradiction as follows. Assume
there is a 2cBPmcm that accept®IS. Then similarly as in the proof of Theorefone
can construct a sequence of bounded-error two-party protocols that &oepivithin
communication complexity @og, n). But this contradicts the result §14,22] that the
communication complexity diiDISis in Q(n). O

Observe that the lower bounds of Theorefiasd8 even work when allowing @/ logn)
reversals. Hence, Theorehshows that bounded-error randomization with error probability
approaching zero cannot be compensated for by nondeterminismanidgr) increase
of the allowed number of reversals and Theor@shows that one-way nondeterminism
cannot be compensated for by bounded-error randomization ithagn) reversals.

To separate one-sided error from Las Vegas we consider the language

NEQ= {0"#x#y | n € N, x, y € {0, 1}, x # y},

which can be viewed as a complemen&g).

Theorem 9. NEQ € 1RMC*(poly) — 2cLV M C(poly).

Proof. To recognizeEQ by a one-sided-error 1mcil one can use almost the same ran-
domized 1mcm as fAEQ. The only difference is thd#l rejects the input when it was not
successful in generating a prime. THdrrejects with certainty all inpute ¢ NEQ, and
for every inputw from NEQ Macceptsw with probability tending to zero with growing
input length.

The membership dIEQin 2cLVMC(poly) would imply the existence of Las Vegas two-
party protocols acceptinEQ within communication complexity @og, »). This would
contradict to the lower boun@(n) [20] on the Las Vegas communication complexity of
NEQ HenceNEQ ¢ 2cLVMC(poly). O

Since an one-sided-error mcm is a special version of a nondeterministic Lmcm, Theorems
7-9yield

1DMC(poly) € 1LVMC(poly) c 1IRMC(poly) ¢ INMC(poly)
and
1DMC(poly) ¢ IRMC(poly) ¢ 1BPMC(poly).

Clearly, these hierarchies may be formulated for two-way mcm machines with distinct

bounds on the number of reversals as well assfeendomized classes. The only relation

we were not able to fix is the relation between determinism and Las Vegas randomization
for polynomial-time one-way mcm. We let it as an open problem here. But, we are able to
establish the following separations between Las Vegas and determinism.
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Theorem 10. There exist a language C {0, 1, #}* such that
(i) L can be recognized by a LVmcm in ti@f&v" 1097 with one reversaland
(ii) each deterministic mecm that accepts L with a constant number of reversals must work
in time 29201,

Proof. Consider the language
L = { wittwo# - - - Hw, By #yo#t - - - #y,, | m € N-{0},
wi,y; €{0, 1" fori=1,...,manddj:w; =y;}.

First, we outline how to construct a LVmciM that acceptd in time 2v7/109m)
Letx € {0, 1, #}* be an input. Since the fact whether

x = wiHwott - - wy, #y#tytt- - #y, andx;, y; € {0, 1} fori=1,...,m

can be verified in one run d&fl from the left to the right in linear time, let us focus on the
work of M on words having this form. Similarly, as in the proof of TheoreM performs at
mostm? attempts to randomly generate a prime smaller th&rf M does not succeed, than
it will stop in the stateyneutrar If M generates a prine thenM readinguwi#wa#, . . ., #w,,#
computesn numbers

a; = NumbeKw;) modp fori =1,...,m.

All these numbersy, . . ., a, can be saved unary in a counter of siZ&#®%("+D1 The
crucial fact is thatM can reconstruct the binary representation ofaadl in time that
is linear in 21M10%(n+11 M does it when readingi#y-#, . .., #y, and compares;

with Numbeky;) modp for everyi € {1,2,...,m}. If a; # NumbeKy;) modp for all

i €{l1,...,m}, thenM rejects the inpux.

If Mfound aje(l, ..., m} such thaiz;=Numbe(y;) modp, thenM savesNumbexy;)
in a counter. Observe, that the unary representation of of the size 2. ThenM reverses
the direction of the head and movesutg in order to check whether; = y;. If w; = y;,
thenM accepix. If w; # y;, thenM finishes the computation iheutrat

Sincen = |x| = m(m + 1), M works in time £~ 1097 _Clearly,M never errs. The
following probabilistic analysis shows that the probability to regghiirai tends to zero
with the growth of the input length.

The probability thatVl stops because it was not successful in generating a prime is (as
already observed in the previous proofs and in Lerfipmeegligible. As usual, we distinguish
two cases with respect to the membership f L.

(i) Letx € L.
Thenw; # y; foralli € {1,2,..., m}. If

NumbeKw;) = Numbexy;) modp (2)

foratleastone € {1, 2, ..., m}, thenM stops in the stat@,euirar In the opposite case,
M correctly reject.
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Let us calculate the probability; that ) happens for a fixed positian Since we
have at least:3/3 Inm primes smaller tham?3 for m >9 and at mostz — 1 primes

with property @),
e M- 1 3inm
pl\m3/3 Inm =~ m2

Let pneut be the probability that?) happens for at least one positior {1, 2, ..., m}.
Clearly,

m 3lnm 3lnm
= m2  om

m
Preut< Z pi <
i=1 i

Thus, pneutis tending to zero with growing input length.

(i) Letx € L.
Now, letj be the smallest integer frofd, . .., m} such that
wj =yj.

ThenM stops ingneutraliff (2) happens for somee {1, ..., j — 1}. But the probability
of this event is at mosZi’;ll pi, which is smaller thappeyt
Thus,M is a LVmcm accepting..
To prove that 2 deterministic time is necessary to accefty a mcm with a constant
number of reversals, one can again use arguments from communication complexity theory,
because it is known that the communication complexity &f in Q(n). O

Theorem 11. 2cLVMC*(poly) — 2cDMC(poly) # @, i.e., Las Vegas randomization is
more powerful that determinism for polynomial time multicounter machines with constant
number of reversals

Proof. Consider the language

Lpad={ O" ##t#t wattwo#t - - - Hw,, #Htty #yo# - - Hym |
n € N — {0}, m =log,n/log, log, n,
wi,yi €{0,1)" fori € 1,...,mand3j: w; = y;}

which can be viewed as padding the languagéth exponentially many dummy symbols.
Now, using the same calculation as in the proof of Theotérhe result follows. [
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