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Abstract. We study Recursive Concurrent Stochastic Games (RCSGs), extending our re-
cent analysis of recursive simple stochastic games [16, 17] to a concurrent setting where the
two players choose moves simultaneously and independently at each state. For multi-exit
games, our earlier work already showed undecidability for basic questions like termination,
thus we focus on the important case of single-exit RCSGs (1-RCSGs).

We first characterize the value of a 1-RCSG termination game as the least fixed point so-
lution of a system of nonlinear minimax functional equations, and use it to show PSPACE
decidability for the quantitative termination problem. We then give a strategy improve-
ment technique, which we use to show that player 1 (maximizer) has ε-optimal randomized
Stackless & Memoryless (r-SM) strategies for all ε > 0, while player 2 (minimizer) has op-
timal r-SM strategies. Thus, such games are r-SM-determined. These results mirror and
generalize in a strong sense the randomized memoryless determinacy results for finite sto-
chastic games, and extend the classic Hoffman-Karp [22] strategy improvement approach
from the finite to an infinite state setting. The proofs in our infinite-state setting are very
different however, relying on subtle analytic properties of certain power series that arise
from studying 1-RCSGs.

We show that our upper bounds, even for qualitative (probability 1) termination, can
not be improved, even to NP, without a major breakthrough, by giving two reductions: first
a P-time reduction from the long-standing square-root sum problem to the quantitative
termination decision problem for finite concurrent stochastic games, and then a P-time
reduction from the latter problem to the qualitative termination problem for 1-RCSGs.

1. Introduction

In recent work we have studied Recursive Markov Decision Processes (RMDPs) and
turn-based Recursive Simple Stochastic Games (RSSGs) ([16, 17]), providing a number of
strong upper and lower bounds for their analysis. These define infinite-state (perfect in-
formation) stochastic games that extend Recursive Markov Chains (RMCs) ([14, 15]) with
non-probabilistic actions controlled by players. Here we extend our study to Recursive Con-
current Stochastic Games (RCSGs), where the two players choose moves simultaneously and
independently at each state, unlike RSSGs where only one player can move at each state.

A preliminary version of this paper appeared in the Proceedings of the 33rd International Colloquium on
Automata, Languages and Programming (ICALP’06).
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2 K. ETESSAMI AND M. YANNAKAKIS

RCSGs define a class of infinite-state zero-sum (imperfect information) stochastic games
that can naturally model probabilistic procedural programs and other systems involving
both recursive and probabilistic behavior, as well as concurrent interactions between the
system and the environment. Informally, all such recursive models consist of a finite col-
lection of finite state component models (of the same type) that can call each other in a
potentially recursive manner. For RMDPs and RSSGs with multiple exits (terminating
states), our earlier work already showed that basic questions such as almost sure termina-
tion (i.e. does player 1 have a strategy that ensures termination with probability 1) are
already undecidable; on the other hand, we gave strong upper bounds for the important
special case of single-exit RMDPs and RSSGs (called 1-RMDPs and 1-RSSGs).

Our focus in this paper is thus on single-exit Recursive Concurrent Stochastic Games
(1-RCSGs for short). These models correspond to a concurrent game version of multi-type
Branching Processes and Stochastic Context-Free Grammars, both of which are important
and extensively studied stochastic processes with many applications including in population
genetics, nuclear chain reactions, computational biology, and natural language processing
(see, e.g., [21, 23, 24] and other references in [14, 16]). It is very natural to consider
game extensions to these stochastic models. Branching processes model the growth of a
population of entities of distinct types. In each generation each entity of a given type gives
rise, according to a probability distribution, to a multi-set of entities of distinct types. A
branching process can be mapped to a 1-exit Recursive Markov Chain (1-RMC) such that
the probability of eventual extinction of a species is equal to the probability of termination
in the 1-RMC. Modeling the process in a context where external agents can influence the
evolution to bias it towards extinction or towards survival leads naturally to a game. A
1-RCSG models the process where the evolution of some types is affected by the concurrent
actions of external favorable and unfavorable agents (forces).

In [16], we showed that for the turned-based 1-RSSG termination game, where the
goal of player 1 (respectively, player 2) is to maximize (resp. minimize) the probability
of termination starting at a given vertex (in the empty calling context), we can decide
in PSPACE whether the value of the game is ≥ p for a given probability p, and we can
approximate this value (which can be irrational) to within given precision with the same
complexity. We also showed that both players have optimal deterministic Stackless and
Memoryless (SM) strategies in the 1-RSSG termination game; these are strategies that
depend neither on the history of the game nor on the call stack at the current state. Thus
from each vertex belonging to the player, such a strategy deterministically picks one of the
outgoing transitions.

Already for finite-state concurrent stochastic games (CSGs), even under the simple
termination objective, the situation is rather different. Memoryless strategies do suffice
for both players, but randomization of strategies is necessary, meaning we can’t hope for
deterministic ε-optimal strategies for either player. Moreover, player 1 (the maximizer)
can only attain ε-optimal strategies, for ε > 0, whereas player 2 (the minimizer) does have
optimal randomized memoryless strategies (see, e.g., [19, 12]). Another important result for
finite CSGs is the classic Hoffman-Karp [22] strategy improvement method, which provides,
via simple local improvements, a sequence of randomized memoryless strategies which yield
payoffs that converge to the value of the game.

Here we generalize all these results to the infinite-state setting of 1-RCSG termination
games. We first characterize values of the 1-RCSG termination game as the least fixed
point solution of a system of nonlinear minimax functional equations. We use this to show
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PSPACE decidability for the qualitative termination problem (is the value of the game
= 1?) and the quantitative termination problem (is the value of the game ≥ r (or ≤ r, etc.),
for given rational r), as well as PSPACE algorithms for approximating the termination
probabilities of 1-RCSGs to within a given number of bits of precision, via results for the
existential theory of reals. (The simpler “qualitative problem” of deciding whether the game
value is = 0 only depends on the transition structure of the 1-RCSG and not on the specific
probabilities. For this problem we give a polynomial time algorithm.)

We then proceed to our technically most involved result, a strategy improvement tech-
nique for 1-RCSG termination games. We use this to show that in these games player 1
(maximizer) has ε-optimal randomized-Stackless & Memoryless (r-SM for short) strategies,
whereas player 2 (minimizer) has optimal r-SM strategies. Thus, such games are r-SM-
determined. These results mirror and generalize in a very strong sense the randomized
memoryless determinacy results known for finite stochastic games. Our technique extends
Hoffman-Karp’s strategy improvement method for finite CSGs to an infinite state setting.
However, the proofs in our infinite-state setting are very different. We rely on subtle analytic
properties of certain power series that arise from studying 1-RCSGs.

Note that our PSPACE upper bounds for the quantitative termination problem for
1-RCSGs can not be improved to NP without a major breakthrough, since already for 1-
RMCs we showed in [14] that the quantitative termination problem is at least as hard as
the square-root sum problem (see [14]). In fact, here we show that even the qualitative
termination problem for 1-RCSGs, where the problem is to decide whether the value of
the game is exactly 1, is already as hard as the square-root sum problem, and moreover,
so is the quantitative termination decision problem for finite CSGs. We do this via two
reductions: we give a P-time reduction from the square-root sum problem to the quantitative
termination decision problem for finite CSGs, and a P-time reduction from the quantitative
finite CSG termination problem to the qualitative 1-RCSG termination problem.

It is known ([6]) that for finite concurrent games, probabilistic nodes do not add any
power to these games, because the stochastic nature of the games can in fact be simulated
by concurrency alone. The same is true for 1-RCSGs. Specifically, given a finite CSG (or
1-RCSG), G, there is a P-time reduction to a finite concurrent game (or 1-RCG, respec-
tively) F (G), without any probabilistic vertices, such that the value of the game G is exactly
the same as the value of the game F (G). We will provide a proof of this in Section 2 for
completeness.

Related work. Stochastic games go back to Shapley [28], who considered finite concurrent
stochastic games with (discounted) rewards. See, e.g., [19] for a recent book on stochastic
games. Turn-based “simple” finite stochastic games were studied by Condon [10]. As men-
tioned, we studied RMDPs and (turn-based) RSSGs and their quantitative and qualitative
termination problems in [16, 17]. In [17] we showed that the qualitative termination problem
for both maximizing and minimizing 1-RMDPs is in P, and for 1-RSSGs is in NP∩coNP.
Our earlier work [14, 15] developed theory and algorithms for Recursive Markov Chains
(RMCs), and [13, 3] have studied probabilistic Pushdown Systems which are essentially
equivalent to RMCs.

Finite-state concurrent stochastic games have been studied extensively in recent CS
literature (see, e.g., [7, 12, 11]). In particular, the papers [8] and [7] have studied, for
finite CSGs, the approximate reachability problem and approximate parity game problem,
respectively. In those papers, it was claimed that these approximation problems are in



4 K. ETESSAMI AND M. YANNAKAKIS

NP∩coNP. Actually there was a minor problem with the way the results on approximation
were phrased in [8, 7], as pointed out in the conference version of this paper [18], but this is
a relatively unimportant point compared to the flaw we shall now discuss. There is in fact a
serious flaw in a key proof of [8]. The flaw relates to the use of a result from [19] which shows
that for discounted stochastic games the value function is Lipschitz continuous with respect
to the coefficients that define the game as well as the discount β. Importantly, the Lipschitz
constant in this result from [19] depends on the discount β (it is inversely proportional
to 1 − β). This fact was unfortunately overlooked in [8] and, at a crucial point in their
proofs, the Lipschitz constant was assumed to be a fixed constant that does not depend
on β. This flaw unfortunately affects several results in [8]. It also affects the results of [7],
since the later paper uses the reachability results of [8]. As a consequence of this error, the
best upper bound which currently follows from the results in [8, 12, 7] is a PSPACE upper
bound for the decision and approximation problems for the value of finite-state concurrent
stochastic reachability games as well as for finite-state concurrent stochastic parity games.
(See the erratum note for [8] on K. Chatterjee’s web page [9], as well as his Ph.D. thesis.) It
is entirely plausible that these results can be repaired and that approximating the value of
finite-state concurrent reachability games to within a given additive error ε > 0 can in the
future be shown to be in NP ∩ coNP, but the flaw in the proof given in [8] is fundamental
and does not appear to be easy to fix.

On the other hand, for the quantitative decision problem for finite CSGs (as opposed to
the approximation problem), and even the qualitative decision problem for 1-RCSGs, the
situation is different. We show here that the quantitative decision problem for finite CSGs,
as well as the qualitative decision problem for 1-RCSGs, are both as hard as the square-root
sum problem, for which containment even in NP is a long standing open problem. Thus our
PSPACE upper bounds here, even for the qualitative termination problem for 1-RCSGs, can
not be improved to NP without a major breakthrough. Unlike for 1-RCSGs, the qualitative
termination problem for finite CSGs is known to be decidable in P-time ([11]). We note
that in recent work Allender et. al. [1] have shown that the square-root sum problem is in
(the 4th level of) the “Counting Hierarchy” CH, which is inside PSPACE, but it remains a
major open problem to bring this complexity down to NP.

The rest of the paper is organized as follows. In Section 2 we present the RCSG model,
define the problems that we will study, and give some basic properties. In Section 3 we
give a system of equations that characterizes the desired probabilities, and use them to
show that the problems are in PSPACE. In Section 4 we prove the existence of optimal
randomized stackless and memoryless strategies, and we present a strategy improvement
method. Finally in Section 5 we present reductions from the square root sum problem to
the quantitative termination problem for finite CSGs, and from the latter to the qualitative
problem for Recursive CSGs.

2. Basics

We have two players, Player 1 and Player 2. Let Γ1 and Γ2 be finite sets consti-
tuting the move alphabet of players 1 and 2, respectively. Formally, a Recursive Con-
current Stochastic Game (RCSG) is a tuple A = (A1, . . . , Ak), where each component
Ai = (Ni, Bi, Yi, Eni, Exi, pli, δi) consists of:

(1) A finite set Ni of nodes, with a distinguished subset Eni of entry nodes and a
(disjoint) subset Exi of exit nodes.
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Figure 1: Example (1-exit) RCSG

(2) A finite set Bi of boxes, and a mapping Yi : Bi �→ {1, . . . , k} that assigns to every
box (the index of) a component. To each box b ∈ Bi, we associate a set of call
ports, Callb = {(b, en) | en ∈ EnY (b)}, and a set of return ports, Returnb = {(b, ex) |
ex ∈ ExY (b)}. Let Calli = ∪b∈Bi

Callb, Returni = ∪b∈Bi
Returnb, and let Qi =

Ni ∪Calli ∪Returni be the set of all nodes, call ports and return ports; we refer to
these as the vertices of component Ai.

(3) A mapping pli : Qi �→ {0, play} that assigns to every vertex u a type describing how
the next transition is chosen: if pli(u) = 0 it is chosen probabilistically and if pli(u)

= play it is determined by moves of the two players. Vertices u ∈ (Exi ∪Calli) have
no outgoing transitions; for them we let pli(u) = 0.

(4) A transition relation δi ⊆ (Qi×(R∪(Γ1×Γ2))×Qi), where for each tuple (u, x, v) ∈
δi, the source u ∈ (Ni \Exi)∪Returni, the destination v ∈ (Ni \Eni)∪Calli, where
if pl(u) = 0 then x is a real number pu,v ∈ [0, 1] (the transition probability), and
if pl(u) = play then x = (γ1, γ2) ∈ Γ1 × Γ2. We assume that each vertex u ∈ Qi

has associated with it a set Γu
1 ⊆ Γ1 and a set Γu

2 ⊆ Γ2, which constitute player
1 and 2’s legal moves at vertex u. Thus, if (u, x, v) ∈ δi and x = (γ1, γ2) then
(γ1, γ2) ∈ Γu

1 ×Γu
2 . Additionally, for each vertex u and each x ∈ Γu

1 ×Γu
2 , we assume

there is exactly one transition of the form (u, x, v) in δi. Furthermore they must
satisfy the consistency property: for every u ∈ pl−1(0),

∑
{v′|(u,pu,v′ ,v

′)∈δi}
pu,v′ = 1,

unless u is a call port or exit node, neither of which have outgoing transitions, in
which case by default

∑
v′ pu,v′ = 0.

We use the symbols (N,B,Q, δ, etc.) without a subscript, to denote the union over
all components. Thus, eg. N = ∪k

i=1Ni is the set of all nodes of A, δ = ∪k
i=1δi the set of

all transitions, Q = ∪k
i=1Qi the set of all vertices, etc. The set Q of vertices is partitioned

into the sets Qplay = pl−1(play) and Qprob = pl−1(0) of play and probabilistic vertices
respectively.

For computational purposes we assume that the transition probabilities pu,v are rational,
given in the input as the ratio of two integers written in binary. The size of a RCSG is the
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space (in number of bits) needed to specify it fully, i.e., the nodes, boxes, and transitions
of all components, including the probabilities of all the transitions.

Example 1. An example picture of a (1-exit) RCSG is depicted in Figure 1. This RCSG
has one component, f , which has nodes {s, t, u1, u2, u3, u4, u5}. It has one entry node, s, and
one exit node, t. It also has two boxes, {b1, b2}, both of which map to the only component,
f . All nodes in this RCSG are probabilistic (black nodes) except for nodes u1 and u4 which
are player nodes (white nodes). The move alphabet for both players is {L,R} (for, say,
“left” and “right”). At node u1 both players have both moves enabled. At node u4, player
1 has only L enabled, and player 2 has both L and R enabled.

An RCSG A defines a global denumerable stochastic game MA = (V,Δ, pl) as follows.
The global states V ⊆ B∗×Q of MA are pairs of the form 〈β, u〉, where β ∈ B∗ is a (possibly
empty) sequence of boxes and u ∈ Q is a vertex of A. More precisely, the states V ⊆ B∗×Q
and transitions Δ are defined inductively as follows:

(1) 〈ε, u〉 ∈ V , for u ∈ Q (ε denotes the empty string.)
(2) If 〈β, u〉 ∈ V and (u, x, v) ∈ δ, then 〈β, v〉 ∈ V and (〈β, u〉, x, 〈β, v〉) ∈ Δ.
(3) If 〈β, (b, en)〉 ∈ V , with (b, en) ∈ Callb, then 〈βb, en〉 ∈ V and (〈β, (b, en)〉, 1, 〈βb, en〉) ∈

Δ.
(4) If 〈βb, ex〉 ∈ V , and (b, ex) ∈ Returnb, then 〈β, (b, ex)〉 ∈ V and (〈βb, ex〉, 1, 〈β, (b, ex)〉) ∈

Δ.

Item 1 corresponds to the possible initial states, item 2 corresponds to control staying
within a component, item 3 is when a new component is entered via a box, item 4 is when
control exits a box and returns to the calling component. The mapping pl : V �→ {0, play}
is given by pl(〈β, u〉) = pl(u). The set of vertices V is partitioned into Vprob, Vplay, where

Vprob = pl−1(0) and Vplay = pl−1(play).

We consider MA with various initial states of the form 〈ε, u〉, denoting this by Mu
A.

Some states of MA are terminating states and have no outgoing transitions. These are
states 〈ε, ex〉, where ex is an exit node. If we wish to view MA as a non-terminating
CSG, we can consider the terminating states as absorbing states of MA, with a self-loop of
probability 1.

An RCSG where |Γ2| = 1 (i.e., where player 2 has only one action) is called a maxi-
mizing Recursive Markov Decision Process (RMDP); likewise, when |Γ1| = 1 the RCSG is
a minimizing RMDP. An RSSG where |Γ1| = |Γ2| = 1 is essentially a Recursive Markov
Chain ([14, 15]).

Our goal is to answer termination questions for RCSGs of the form: “Does player 1
have a strategy to force the game to terminate (i.e., reach node 〈ε, ex〉), starting at 〈ε, u〉,
with probability ≥ p, regardless of how player 2 plays?”.

First, some definitions: a strategy σ for player i, i ∈ {1, 2}, is a function σ : V ∗Vplay �→
D(Γi), where D(Γi) denotes the set of probability distributions on the finite set of moves Γi.
In other words, given a history ws ∈ V ∗Vplay, and a strategy σ for, say, player 1, σ(ws)(γ)

defines the probability with which player 1 will play move γ. Moreover, we require that
the function σ has the property that for any global state s = 〈β, u〉, with pl(u) = play,
σ(ws) ∈ D(Γu

i ). In other words, the distribution has support only over eligible moves at
vertex u.

Let Ψi denote the set of all strategies for player i. Given a history ws ∈ V ∗Vplay of

play so far, and given a strategy σ ∈ Ψ1 for player 1, and a strategy τ ∈ Ψ2 for player 2, the
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strategies determine a distribution on the next move of play to a new global state, namely,
the transition (s, (γ1, γ2), s

′) ∈ Δ has probability σ(ws)(γ1) ∗ τ(ws)(γ2). This way, given
a start node u, a strategy σ ∈ Ψ1, and a strategy τ ∈ Ψ2, we define a new Markov chain
(with initial state u) Mu,σ,τ

A = (S,Δ′). The states S ⊆ 〈ε, u〉V ∗ of Mu,σ,τ
A are non-empty

sequences of states of MA, which must begin with 〈ε, u〉. Inductively, if ws ∈ S, then: (0)
if s ∈ Vprob and (s, ps,s′, s

′) ∈ Δ then wss′ ∈ S and (ws, ps,s′ , wss′) ∈ Δ′; (1) if s ∈ Vplay,

where (s, (γ1, γ2), s
′) ∈ Δ, then if σ(ws)(γ1) > 0 and τ(ws)(γ2) > 0 then wss′ ∈ S and

(ws, p,wss′) ∈ Δ′, where p = σ(ws)(γ1) ∗ τ(ws)(γ2).
Given initial vertex u, and final exit ex in the same component, and given strategies

σ ∈ Ψ1 and τ ∈ Ψ2, for k ≥ 0, let qk,σ,τ

(u,ex)
be the probability that, in Mu,σ,τ

A , starting at initial

state 〈ε, u〉, we will reach a state w〈ε, ex〉 in at most k “steps” (i.e., where |w| ≤ k). Let

q∗,σ,τ
(u,ex) = limk→∞ qk,σ,τ

(u,ex) be the probability of ever terminating at ex, i.e., reaching 〈ε, ex〉.
(Note, the limit exists: it is a monotonically non-decreasing sequence bounded by 1). Let

qk
(u,ex) = supσ∈Ψ1

infτ∈Ψ2
qk,σ,τ

(u,ex)
and let q∗(u,ex) = supσ∈Ψ1

infτ∈Ψ2
q∗,σ,τ

(u,ex)
. For a strategy

σ ∈ Ψ1, let qk,σ
(u,ex) = infτ∈Ψ2

qk,σ,τ
(u,ex), and let q∗,σ(u,ex) = infτ∈Ψ2

q∗,σ,τ
(u,ex). Lastly, given a strategy

τ ∈ Ψ2, let qk,·,τ
(u,ex) = supσ∈Ψ1

qk,σ,τ
(u,ex), and let q∗,·,τ(u,ex) = supσ∈Ψ1

q∗,σ,τ
(u,ex).

From, general determinacy results (e.g., “Blackwell determinacy” [26] which applies to
all Borel two-player zero-sum stochastic games with countable state spaces; see also [25]) it
follows that the games MA are determined, meaning:
supσ∈Ψ1

infτ∈Ψ2
q∗,σ,τ
(u,ex) = infτ∈Ψ2

supσ∈Ψ1
q∗,σ,τ
(u,ex).

We call a strategy σ for either player a (randomized) Stackless and Memoryless (r-SM)
strategy if it neither depends on the history of the game, nor on the current call stack. In
other words, a r-SM strategy σ for player i is given by a function σ : Qplay �→ D(Γi), which

maps each play vertex u of the RCSG to a probability distribution σ(u) ∈ D(Γu
i ) on the

moves available to player i at vertex u.
We are interested in the following computational problems.

(1) The qualitative termination problem: Is q∗(u,ex) = 1?

(2) The quantitative termination (decision) problem:
given r ∈ [0, 1], is q∗(u,ex) ≥ r? Is q∗(u,ex) ≤ r?

The approximate version: approximate q∗(u,ex) to within desired precision.

Obviously, the qualitative termination problem is a special case of the quantitative
problem, setting r = 1. As mentioned, for multi-exit RCSGs these are all undecidable.
Thus we focus on single-exit RCSGs (1-RCSGs), where every component has one exit.
Since for 1-RCSGs it is always clear which exit we wish to terminate at starting at vertex u
(there is only one exit in u’s component), we abbreviate q∗(u,ex), q

∗,σ
(u,ex), etc., as q∗u, q∗,σu , etc.,

and we likewise abbreviate other subscripts.
A different “qualitative” problem is to ask whether q∗u = 0? As we will show in Propo-

sition 3.4, this is an easy problem: deciding whether q∗u = 0 for a vertex u in a 1-RCSG can
be done in polynomial time, and only depends on the transition structure of the 1-RCSG,
not on the specific probabilities.

As mentioned in the introduction, it is known that for concurrent stochastic games,
probabilistic nodes do not add any power, and can in effect be “simulated” by concurrent
nodes alone (this fact was communicated to us by K. Chatterjee [6]). The same fact is true
for 1-RCSGs. Specifically, the following holds:
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Proposition 2.1. There is a P-time reduction F , which, given a finite CSG (or a 1-
RCSG), G, computes a finite concurrent game (or 1-RCG, respectively) F (G), without any
probabilistic vertices, such that the value of the game G is exactly the same as the value of
the game F (G).

Proof. First, suppose for now that in G all probabilistic transitions have probability 1/2.
In other words, suppose that for a probabilistic vertex s ∈ pl−1(0) (which is not an exit or
a call port) in an 1-RCSG, we have two transitions (s, 1/2, t) ∈ δ and (s, 1/2, t′) ∈ δ. In the
new game F (G), change s to a play vertex, i.e., let pl(s) = play, and let Γs

1 = Γs
2 = {a, b},

and replace the probabilistic transitions out of s with the following 4 transitions: (s, (a, b), t)
, (s, (b, a), t) , (s, (a, a), t′) and (s, (b, b), t′). Do this for all probabilistic vertices in G, thus
obtaining F (G) which contains no probabilistic vertices.

Now, consider any strategy σ for player 1 in the original game G, and a strategy σ′ in
the new game F (G) that is consistent with σ, i.e. for each history ending at an original play
vertex σ′ has the same distribution as σ (and for the other histories ending at probabilistic
vertices it has an arbitrary distribution). For any strategy τ for player 2 in the game G,
consider the strategy, F (τ), for player 2 in F (G), which is defined as follows: whenever the
play reaches a probabilistic vertex s of G (in any context and with any history) F (τ) plays
a and b with 1/2 probability each. At all non-probabilistic vertices of G, F (τ) plays exactly
as τ (and it may use the history, etc.). This way, no matter what player 1 does, whenever
play reaches the vertex s (in any context) the play will move from s to t and to t′ with
probability 1/2 each. Thus for any vertex u, the value q�,σ,τ

u in the game G is the same

as the value q
∗,σ′,F (τ)
u in the game F (G). So the optimal payoff value for player 1 in the

game starting at any vertex u is not greater in F (G) than in G. A completely symmetric
argument shows that for player 2 the optimal payoff value starting at u is not greater in
F (G) than in G. Thus, the value of the game starting at u is the same in both games.

We can now generalize this to arbitrary rational probabilities on transitions, instead of
just probability 1/2, by using a basic trick to encode arbitrary finite probability distributions
using a polynomial-sized finite Markov chain all of whose transitions have probability 1/2.
Namely, suppose u goes to v1 with probability p/q and to v2 with probability 1−p/q, where
p,q are integers with k bits (we can write both as k-bit numbers, by adding leading 0’s to p
if necessary so that it has length exactly k, same as q). Flip (at most) k coins. View this as
generating a k bit binary number. If the number that comes out is < p (i.e. 0, . . . , p − 1),
then go to v1, if between p and q (i.e., p, . . . , q − 1) then go to v2, if ≥ q go back to the
start, u. A naive way to do this would require exponentially many states in k. But we only
need at most 2k states to encode this if we don’t necessarily flip all k coins but rather do
the transition to v1, v2 or u, as soon as the outcome is clear from the coin flips. That is,
if the sequence α formed by the initial sequence of coin flips so far differs from both the
prefixes p′, q′ of p and q of the same length, then we do the transition: if α < p′ transition
to v1, if p′ < α < q′ transition to v2, and if α > q′ then transition to u. Thus, we only need
to remember the number j of coins flipped so far, and if j is greater than the length of the
common prefix of p and q then we need to remember also whether the coin flips so far agree
with p or with q.

Clearly, a simple generalization of this argument works for generating arbitrary finite
rational probability distributions p1/q, p2/q, . . . , pr/q, such that

∑r
i=1(pi/q) = 1. If q is a

k-bit integer, then the number of new states needed is at most rk, i.e. linear in the encoding
length of the rationals p1/q, . . . , pr/q.
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3. Nonlinear minimax equations for 1-RCSGs

In ([16]) we defined a monotone system SA of nonlinear min-& -max equations for 1-
RSSGs (i.e. the case of simple games), and showed that its least fixed point solution yields
the desired probabilities q∗u. Here we generalize these to nonlinear minimax systems for
concurrent games, 1-RCSGs. Let us use a variable xu for each unknown q∗u, and let x be
the vector of all xu , u ∈ Q. The system SA has one equation of the form xu = Pu(x) for
each vertex u. Suppose that u is in component Ai with (unique) exit ex. There are 4 cases
based on the “Type” of u.

(1) u ∈ Type1: u = ex. In this case: xu = 1.
(2) u ∈ Typerand: pl(u) = 0 and u ∈ (Ni \ {ex}) ∪ Returni. Then the equation is

xu =
∑

{v|(u,pu,v,v)∈δ} pu,vxv. (If u has no outgoing transitions, this equation is by

definition xu = 0.)
(3) u ∈ Typecall: u = (b, en) is a call port. The equation is x(b,en) = xen · x(b,ex′), where

ex′ ∈ ExY (b) is the unique exit of AY (b).
(4) u ∈ Typeplay. Then the equation is xu = Val(Au(x)), where the right-hand side

is defined as follows. Given a value vector x, and a play vertex u, consider the
zero-sum matrix game given by matrix Au(x), whose rows are indexed by player 1’s
moves Γu

1 from node u, and whose columns are indexed by player 2’s moves Γu
2 . The

payoff to player 1 under the pair of deterministic moves γ1 ∈ Γu
1 , and γ2 ∈ Γu

2 , is
given by (Au(x))γ1,γ2

:= xv, where (u, (γ1, γ2), v) ∈ δ. Let Val(Au(x)) be the value
of this zero-sum matrix game. By von Neumann’s minimax theorem, the value
and optimal mixed strategies exist, and they can be obtained by solving a Linear
Program with coefficients given by the xi’s.

In vector notation, we denote the system SA by x = P (x). Given 1-exit RCSG A, we
can easily construct this system. Note that the operator P : R

n
≥0 �→ R

n
≥0 is monotone: for

x, y ∈ R
n
≥0, if x ≤ y then P (x) ≤ P (y). This follows because for two game matrices A and

B of the same dimensions, if A ≤ B (i.e., Ai,j ≤ Bi,j for all i and j), then Val(A) ≤ Val(B).
Note that by definition of Au(x), for x ≤ y, Au(x) ≤ Au(y).

Example 2. We now construct the system of nonlinear minimax functional equations,
x = P (x), associated with the 1-RCSG we encountered in Figure 1 (see Example 1). We
shall need one variable for every vertex of that 1-RCSG, to represent the value of the
termination game starting at that vertex, and we will need one equation for each such
variable. Thus, the variables we need are xs, xt, xu1

, . . . , xu5
, x(b1,s), x(b1,t), x(b2,s), x(b2,t).

The equations are as follows:
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xt = 1

xs = (1/2)x(b1 ,s) + (1/4)xt + (1/4)xu1

xu5
= xu5

xu2
= x(b2,s)

xu3
= (1/2)xu2

+ (1/2)xt

x(b1,s) = xsx(b1,t)

x(b1,t) = x(b2,s)

x(b2,s) = xsx(b2,t)

x(b2,t) = xt

xu1
= Val

([
xu2

xu3

xu4
xu5

])

xu4
= Val

([
x(b2,s) xt

])

We now identify a particular solution to x = P (x), called the Least Fixed Point (LFP)
solution, which gives precisely the termination game values. Define P 1(x) = P (x), and
define P k(x) = P (P k−1(x)), for k > 1. Let q∗ ∈ R

n denote the n-vector q∗u, u ∈ Q (using
the same indexing as used for x). For k ≥ 0, let qk denote, similarly, the n-vector qk

u, u ∈ Q.

Theorem 3.1. Let x = P (x) be the system SA associated with 1-RCSG A. Then q∗ =
P (q∗), and for all q′ ∈ R

n
≥0, if q′ = P (q′), then q∗ ≤ q′ (i.e., q∗ is the Least Fixed Point, of

P : R
n
≥0 �→ R

n
≥0). Moreover, limk→∞ P k(0) ↑ q∗, i.e., the “value iteration” sequence P k(0)

converges monotonically to the LFP, q∗.

Proof. We first prove that q∗ = P (q∗). Suppose q∗ �= P (q∗). The equations for vertices
u of types Type1, T yperand, and Typecall can be used to define precisely the values q∗u in
terms of other values q∗v . Thus, the only possibility is that q∗u �= Pu(q∗) for some vertex u
of Typeplay. In other words, q∗u �= Val(Au(q∗)).

Suppose q∗u < Val(Au(q∗)). To see that this can’t happen, we construct a strategy σ for
player 1 that achieves better. At node u, let player 1’s strategy σ play in one step its optimal
randomized minimax strategy in the game Au(q∗) (which exists according to the minimax
theorem). Choose ε > 0 such that ε < Val(Au(q∗))−q∗u. After the first step, at any vertex v
player 1’s strategy σ will play in such a way that achieves a value ≥ q∗v − ε (i.e, an ε-optimal
strategy in the rest of the game, which must exist because the game is determined). Let
ε be an n-vector every entry of which is ε. Now, the matrix game Au(q∗ − ε) is just an
additive translation of the matrix game Au(q∗), and thus it has precisely the same ε-optimal
strategies as the matrix game Au(q∗), and moreover Val(Au(q∗ − ε)) = Val(Au(q∗)) − ε.
Thus, by playing strategy σ, player 1 guarantees a value which is ≥ Val(Au(q∗ − ε)) =
Val(Au(q∗)) − ε > q∗u, which is a contradiction. Thus q∗u ≥ Val(Au(q∗)).

A completely analogous argument works for player 2, and shows that q∗u ≤ Val(Au(q∗)).
Thus q∗u = Val(Au(q∗)), and hence q∗ = P (q∗).

Next, we prove that if q′ is any vector such that q′ = P (q′), then q∗ ≤ q′. Let τ ′ be
the randomized stackless and memoryless strategy for player 2 that always picks, at any
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state 〈β, u〉, for play vertex u ∈ Qplay, a mixed 1-step strategy which is an optimal strategy

in the matrix game Au(q′). (Again, the existence of such a strategy is guaranteed by the
minimax theorem.)

Lemma 3.2. For all strategies σ ∈ Ψ1 of player 1, and for all k ≥ 0, qk,σ,τ ′ ≤ q′.

Proof. By induction. The base case q0,σ,τ ′ ≤ q′ is trivial.

(1) Type1. If u = ex is an exit, then for all k ≥ 0, clearly qk,σ,τ ′

ex = q′ex = 1.
(2) Typerand. Let σ′ be the strategy defined by σ′(β) = σ(〈ε, u〉β) for all β ∈ V ∗. Then,

qk+1,σ,τ ′

u =
∑

v

pu,v qk,σ′,τ ′

v ≤
∑

v

pu,v q
′

v = q
′

u.

(3) Typecall. In this case, u = (b, en) ∈ Callb, and qk+1,σ,τ ′

u ≤ supρ qk,ρ,τ ′

en · supρ qk,ρ,τ ′

(b,ex′),

where ex′ ∈ ExY (b) is the unique exit node of AY (b). Now, by the inductive assump-

tion, qk,ρ,τ ′ ≤ q′ for all ρ. Moreover, since q′ = P (q′), q
′

u = q
′

en · q
′

(b,ex′). Hence, using

these inequalities and substituting, we get

qk+1,σ,τ ′

u ≤ q
′

en q
′

(b,ex′) = q
′

u.

(4) Typeplay: In this case, starting at 〈ε, u〉, whatever player 1’s strategy σ is, it has the

property that qk+1,σ,τ ′

u ≤ Val(Au(qk,σ′,τ ′
)). By the inductive hypothesis qk,σ′,τ ′

v ≤ q
′

v,
so we are done by induction and by the monotonicity of Val(Au(x)).

Now, by the lemma, q∗,σ,τ ′
= limk→∞ qk,σ,τ ′ ≤ q′. This holds for any strategy σ ∈ Ψ1.

Therefore, supσ∈Ψ1
q∗,σ,τ ′

u ≤ q′u, for every vertex u. Thus, by the determinacy of RCSG

games, we have established that q∗u = infτ∈Ψ2
supσ∈Ψ1

q∗,σ,τ
u ≤ q′u, for all vertices u. In other

words, q∗ ≤ q′. The fact that limk→∞ P k(0) ↑ q∗ follows from a simple Tarski-Knaster
argument.

Example 3. For the system of equations x = P (x) given in Example 2, associated with
the 1-RCSG given in Example 1, fairly easy calculations using the equations show that
the Least Fixed Point of the system (and thus the game values, starting at the different
vertices) is as follows: q∗t = q∗(b2,t) = 1; q∗u5

= 0; q∗s = q∗u1
= q∗u2

= q∗u4
= q∗(b1,t) = q∗(b2,s) = 0.5;

q∗u3
= 0.75; and q∗(b1,s) = 0.25.

In this case the values turn out to be rational and are simple to compute, but in general
the values may be irrational and difficult to compute, and even if they are rational they
may require exponentially many bits to represent (in standard notation, e.g., via reduced
numerator and denominator given in binary) in terms of the size of the input 1-RCSG or
equation system.

Furthermore, in this game there are pure optimal (stackless and memoryless) strategies
for both players. Specifically, the strategy for player 1 (maximizer) that always plays L
from nodes u1 is optimal, and the strategy for player 2 that always player L from nodes u1

and u4 is optimal. In general for 1-RCSGs, we show randomized stackless and memoryless
ε-optimal and optimal strategies do exist for players 1 and 2, respectively. However, for
player 1 only ε-optimal strategies may exist, and although optimal strategies do exist for
player 2 they may require randomization using irrational probabilities. This is the case even
for finite-state concurrent games.
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We can use the system of equations to establish the following upper bound for computing
the value of a 1-RCSG termination game:

Theorem 3.3. The qualitative and quantitative termination problems for 1-exit RCSGs can
be solved in PSPACE. That is, given a 1-exit RCSG A, vertex u and a rational probability
p, there is a PSPACE algorithm to decide whether q∗

u ≤ p (or q∗ ≥ p, or q∗ < p, etc.).
The running time is O(|A|O(n)) where n is the number of variables in x = P (x). We can
also approximate the vector q∗ of values to within a specified number of bits i of precision
(i given in unary), in PSPACE and in time O(i|A|O(n)).

Proof. Using the system x = P (x), we can express the condition q∗u ≤ c by a sentence in
the existential theory of the reals as follows:

∃x1, . . . , xn

n∧
i=1

(xi = Pi(x1, . . . , xn)) ∧
n∧

i=1

(xi ≥ 0) ∧ (xu ≤ c)

Note that the sentence is true, i.e. there exists a vector x that satisfies the constraints
of the above sentence if and only if the least fixed point q∗ satisfies them. The constraints
xi = Pi(x1, . . . , xn) for vertices i of type 1, 2, and 3 (exit, probabilistic vertex and call port)
are clearly polynomial equations, as they should be in a sentence of the existential theory
of the reals. We only need to show how to express equations of the form xv = Val(Av(x))
in the existential theory of reals. We can then appeal to well known results for deciding
that theory ([5, 27]). But this is a standard fact in game theory (see, e.g., [2, 19, 12] where
it is used for finite CSGs). The minimax theorem and its LP encoding allow the predicate
“y = Val(Av(x))” to be expressed as an existential formula ϕ(y, x) in the theory of reals
with free variables y and x1, . . . , xn, such that for every x ∈ R

n, there exists a unique y (the
game value) satisfying ϕ(y,x). Specifically, the formula includes, besides the free variables
x, y, existentially quantified variables zγ1

, γ1 ∈ Γv
1, and wγ2

, γ2 ∈ Γv
2 for the probabilities

of the moves of the two players, and the conjunction of the following constraints (recall
that each entry Au(γ1, γ2) of the matrix Au is a variable xv where v is the vertex such that
(u, (γ1, γ2), v) ∈ δ) :
zγ1

≥ 0 for all γ1 ∈ Γv
1;

∑
γ1∈Γv

1
zγ1

= 1;

wγ2
≥ 0 for all γ2 ∈ Γv

2;
∑

γ2∈Γv
2
wγ2

= 1;∑
γ1∈Γv

1
Au(γ1, γ2)zγ1

≥ y for all γ2 ∈ Γv
2;∑

γ2∈Γv
2
Au(γ1, γ2)wγ2

≤ y for all γ1 ∈ Γv
1.

To approximate the vector of game values within given precision we can do binary
search using queries of the form q∗u ≤ c for all vertices u.

Determining the vertices u for which the value q∗u is 0, is easier and can be done in
polynomial time, as in the case of the turn-based 1-RSSGs [17].

Proposition 3.4. Given a 1-RCSG we can compute in polynomial time the set Z of vertices
u such that q∗u = 0. This set Z depends only on the structure of the given 1-RCSG and not
on the actual values of the transition probabilities.

Proof. From the system of fixed point equations we have the following: (1) all exit nodes
are not in Z; (2) a probabilistic node u is in Z if and only if all its (immediate) successors
v are in Z; (3) the call port u = (b, en) of a box b is in Z if and only if the entry node en
of the corresponding component Y (b) is in Z or the return port (b, ex) is in Z; (4) a play
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node u is in Z if and only if Player 2 has a move γ2 ∈ Γu
2 such that for all moves γ1 ∈ Γu

1

of Player 1, the next node v, i.e. the (unique) node v such that (u, (γ1, γ2), v) ∈ δ, is in Z.
Only the last case of a play node u needs an explanation. If Player 2 has such a move

γ2, then clearly the corresponding column of the game matrix Au(q∗) has all the entries
0, and the value of the game (i.e., q∗u) is 0. Conversely, if every column of Au(q∗) has a
nonzero entry, then the value of the game with this matrix is positive because for example
Player 1 can give equal probability to all his moves. Thus, in effect, as far as computing
the vertices with zero value is concerned, we can fix the strategy of Player 1 at each play
vertex to play at all times all legal moves with equal probability to get a 1-RMDP; a vertex
has nonzero value in the given 1-RCSG iff it has nonzero value in the 1-RMDP.

The algorithm to compute the set Z of vertices with 0 value is similar to the case of
1-RSSGs [17]. Initialize Z to Q\Ex, the set of non-exit vertices. Repeat the following until
there is no change:

• If there is a probabilistic node u ∈ Z that has a successor not in Z, then remove u
from Z.

• If there is a call port u = (b, en) ∈ Z such that both the entry node en of the
corresponding component Y (b) and the return port (b, ex) of the box are not in Z,
then remove u from Z.

• If there is a play node u ∈ Z such that for every move γ2 ∈ Γu
2 of Player 2 there is

a move γ1 ∈ Γu
1 of Player 1 such that the next node v from u under (γ1, γ2) is not

in Z, then remove u from Z.

There are at most n iterations and at the end Z is the set of vertices u such that
q∗u = 0.

4. Strategy improvement and randomized-SM-determinacy

The proof of Theorem 1 implies the following:

Corollary 4.1. In every 1-RCSG termination game, player 2 (the minimizer) has an op-
timal r-SM strategy.

Proof. Consider the strategy τ ′ in the proof of Theorem 3.1, chosen not for just any fixed
point q′, but for q∗ itself. That strategy is r-SM and is optimal.

Player 1 does not have optimal r-SM strategies, not even in finite concurrent stochastic
games (see, e.g., [19, 12]). We next establish that it does have finite r-SM ε-optimal strate-
gies, meaning that it has, for every ε > 0, a r-SM strategy that guarantees a value of at
least q∗

u − ε, starting from every vertex u in the termination game. We say that a game is
r-SM-determined if, letting Ψ′

1 and Ψ′
2 denote the set of r-SM strategies for players 1 and

2, respectively, we have supσ∈Ψ′
1
infτ∈Ψ′

2
q∗,σ,τ
u = infτ∈Ψ′

2
supσ∈Ψ′

1
q∗,σ,τ
u .

Theorem 4.2.

(1) (Strategy Improvement) Starting at any r-SM strategy σ0 for player 1, via local
strategy improvement steps at individual vertices, we can derive a series of r-SM
strategies σ0, σ1, σ2, . . ., such that for all ε > 0, there exists i ≥ 0 such that for all
j ≥ i, σj is an ε-optimal strategy for player 1 starting at any vertex, i.e., q

∗,σj
u ≥

q∗u − ε for all vertices u.
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Each strategy improvement step involves solving the quantitative termination prob-
lem for a corresponding 1-RMDP. Thus, for classes where this problem is known to
be in P-time (such as linearly-recursive 1-RMDPs, [16]), strategy improvement steps
can be carried out in polynomial time.

(2) Player 1 has ε-optimal r-SM strategies, for all ε > 0, in 1-RCSG termination games.
(3) 1-RCSG termination games are r-SM-determined.

Proof. Note that (2.) follows immediately from (1.), and (3.) follows because by Corollary
4.1, player 2 has an optimal r-SM strategy and thus
supσ∈Ψ′

1
infτ∈Ψ′

2
q∗,σ,τ
u = infτ∈Ψ′

2
supσ∈Ψ′

1
q∗,σ,τ
u .

Let σ be any r-SM strategy for player 1. Consider q∗,σ. First, let us note that if q∗,σ =
P (q∗,σ) then q∗,σ = q∗. This is so because, by Theorem 3.1, q∗ ≤ q∗,σ, and on the other hand,

σ is just one strategy for player 1, and for every vertex u, q∗u = supσ′∈Ψ1
infτ∈Ψ2

q∗,σ
′,τ

u ≥
infτ∈Ψ2

q∗,σ,τ
u = q∗,σu .

Next we claim that, for all vertices u �∈ Typeplay, q∗,σu satisfies its equation in x = P (x).

In other words, q∗,σu = Pu(q∗,σ). To see this, note that for vertices u �∈ Typeplay, no choice

of either player is involved, thus the equation holds by definition of q∗,σ. Thus, the only
equations that may fail are those for u ∈ Typeplay, of the form xu = Val(Au(x)). We need
the following.

Lemma 4.3. For any r-SM strategy σ for player 1, and for any u ∈ Typeplay, q∗,σu ≤
Val(Au(q∗,σ)).

Proof. We are claiming that q∗,σu = infτ∈Ψ2
q∗,σ,τ
u ≤ Val(Au(q∗,σ)). The inequality follows

because a strategy for player 2 can in the first step starting at vertex u play its optimal
strategy in the matrix game Au(q∗,σ), and thereafter, depending on which vertex v is the
immediate successor of u in the play, the strategy can play “optimally” to force at most the
value q∗,σv .

Now, suppose that for some u ∈ Typeplay, q∗,σu �= V al(Au(q∗,σ)). Thus by the lemma
q∗,σu < V al(Au(q∗,σ)). Consider a revised r-SM strategy for player 1, σ′, which is identical
to σ, except that locally at vertex u the strategy is changed so that σ′(u) = p∗,u,σ, where
p∗,u,σ ∈ D(Γu

1) is an optimal mixed minimax strategy for player 1 in the matrix game
Au(q∗,σ). We will show that switching from σ to σ′ will improve player 1’s payoff at vertex
u, and will not reduce its payoff at any other vertex.

Consider a parameterized 1-RCSG, A(t), which is identical to A, except that u is a
randomizing vertex, all edges out of vertex u are removed, and replaced by a single edge
labeled by probability variable t to the exit of the same component, and an edge with
remaining probability 1 − t to a dead vertex. Fixing the value t determines an 1-RCSG,
A(t). Note that if we restrict the r-SM strategies σ or σ′ to all vertices other than u,
then they both define the same r-SM strategy for the 1-RCSG A(t). For each vertex z

and strategy τ of player 2, define q∗,σ,τ,t
z to be the probability of eventually terminating

starting from 〈ε, z〉 in the Markov chain M z,σ,τ

A(t) . Let fz(t) = infτ∈Ψ2
q∗,σ,τ,t
z . Recall that

σ′(u) = p∗,u,σ ∈ D(Γu
1) defines a probability distribution on the actions available to player 1

at vertex u. Thus p∗,u,σ(γ1) is the probability of action γ1 ∈ Γ1. Let γ2 ∈ Γ2 be any action
of player 2 for the 1-step zero-sum game with game matrix Au(q∗,σ). Let w(γ1, γ2) denote
the vertex such that (u, (γ1, γ2), w(γ1, γ2)) ∈ δ. Let hγ2

(t) =
∑

γ1∈Γ1
p∗,u,σ(γ1)fw(γ1,γ2)(t).



RECURSIVE CONCURRENT STOCHASTIC GAMES 15

Lemma 4.4. Fix the vertex u. Let ϕ : R �→ R be any function ϕ ∈ {fz | z ∈ Q}∪ {hγ | γ ∈
Γu

2}. The following properties hold:

(1) If ϕ(t) > t at some point t ∈ [0, 1], then ϕ(t′) > t′ for all 0 ≤ t′ < t.
(2) If ϕ(t) < t at some point t ∈ [0, 1], then ϕ(t′) < t′ for all 1 > t′ > t.

Proof. First, we prove this for ϕ = fz, for some vertex z.
Note that, once player 1 picks a r-SM strategy, a 1-RCSG becomes a 1-RMDP. By a

result of [16], player 2 has an optimal deterministic SM response strategy. Furthermore,
there is such a strategy that is optimal regardless of the starting vertex. Thus, for any value
of t, player 2 has an optimal deterministic SM strategy τt, such that for any start vertex z,
we have τt = arg minτ∈Ψ2

q∗,σ,τ,t
z . Let g(z,τ)(t) = q∗,σ,τ,t

z , and let dΨ2 be the (finite) set of
deterministic SM strategies of player 2. Then fz(t) = minτ∈dΨ2

gz,τ (t). Now, note that the
function gz,τ (t) is the probability of reaching an exit in an RMC starting from a particular

vertex. Thus, by [14], gz,τ (t) = (limk→∞ Rk(0))z for a polynomial system x = R(x) with
non-negative coefficients, but with the additional feature that the variable t appears as
one of the coefficients. Since this limit can be described by a power series in the variable
t with non-negative coefficients, gz,τ (t) has the following properties: it is a continuous,
differentiable, and non-decreasing function of t ∈ [0, 1], with continuous and non-decreasing
derivative, g′z,τ (t), and since the limit defines probabilities we also know that for t ∈ [0, 1],
gz,τ (t) ∈ [0, 1]. Thus gz,τ (0) ≥ 0 and gz,τ (1) ≤ 1.

Hence, since g′z,τ (t) is non-decreasing, if for some t ∈ [0, 1], gz,τ (t) > t, then for all

t′ < t, gz,τ (t
′) > t′. To see this, note that if gz,τ (t) > t and g′z,τ (t) ≥ 1, then for all t′′ > t,

gz,τ (t
′′) > t′′, which contradicts the fact that gz,τ (1) = 1. Thus g′z,τ (t) < 1, and since g′z,τ

is non-decreasing, it follows that g′z,τ (t
′) < 1 for all t′ ≤ t. Since gz,τ (t) > t, we also have

gz,τ (t
′) > t′ for all t′ < t.

Similarly, if gz,τ (t) < t for some t, then gz,τ (t
′′) < t′′ for all t′′ ∈ [t, 1). To see this, note

that if for some t′′ > t, t′′ < 1, gz,τ (t
′′) = t′′, then since g′z,τ is non-decreasing and gz,τ (t) < t,

it must be the case that g′z,τ (t
′′) > 1. But then gz,τ (1) > 1, which is a contradiction.

It follows that fz(t) has the same properties, namely: if fz(t) > t at some point t ∈ [0, 1]
then gz,τ (t) > t for all τ , and hence for all t′ < t and for all τ ∈ dΨ2, gz,τ (t

′) > t′, and thus
fz(t

′) > t′ for all t′ ∈ [0, t]. On the other hand, if fz(t) < t at t ∈ [0, 1], then there must
be some τ ′ ∈ dΨ2 such that gz,τ ′(t) < t. Hence gz,τ ′(t′′) < t′′, for all t′′ ∈ [t, 1), and hence
fz(t

′′) < t′′ for all t′′ ∈ [t, 1).
Next we prove the lemma for every ϕ = hγ , where γ ∈ Γu

2 . For every value of t, there is
one SM strategy τt of player 2 (depending only on t) that minimizes simultaneously gz,τ (t)
for all nodes z. So hγ(t) = minτ rγ,τ (t), where rγ,τ (t) =

∑
γ1∈Γ1

p∗,u,σ(γ1)gw(γ1,γ),τ (t) is a

convex combination (i.e., a “weighted average”) of some g functions at the same point t.
The function rγ,τ (for any subscript ) inherits the same properties as the g’s: continuous,
differentiable, non-decreasing, with continuous non-decreasing derivatives, and rγ,τ takes
value between 0 and 1. As we argued for the g functions, in the same way it follows that
rγ,τ has properties 1 and 2. Also, as we argued for f ’s based on the g’s, it follows that h’s
also have the same properties, based on the r’s.

Let t1 = q∗,σu , and let t2 = Val(Au(q∗,σ)). By assumption, t2 > t1. Observe that fz(t1) =
q∗,σz for every vertex z. Thus, hγ2

(t1) =
∑

γ1∈Γ1
p∗,u,σ(γ1)fw(γ1,γ2)(t1) =

∑
γ1

p∗,u,σ(γ1)q
∗,σ
w(γ1,γ2).

But since, by definition, p∗,u,σ is an optimal strategy for player 1 in the matrix game
Au(q∗,σ), it must be the case that for every γ2 ∈ Γu

2 , hγ2
(t1) ≥ t2, for otherwise player 2
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could play a strategy against p∗,u,σ which would force a payoff lower than the value of the
game. Thus hγ2

(t1) ≥ t2 > t1, for all γ2. This implies that hγ2
(t) > t for all t < t1 by

Lemma 2, and for all t1 ≤ t < t2, because hγ2
is non-decreasing. Thus, hγ2

(t) > t for all
t < t2.

Let t3 = q∗,σ
′

u . Let τ ′ be an optimal global strategy for player 2 against σ′; by [16],
we may assume τ ′ is a deterministic SM strategy. Let γ′ be player 2’s action in τ ′ at node
u. Then the value of any node z under the pair of strategies σ′ and τ ′ is fz(t3), and thus
since hγ′(t3) is a weighted average of fz(t3)’s for some set of z’s, we have hγ′(t3) = t3.
Thus, by the previous paragraph, it must be that t3 ≥ t2, and we know t2 > t1. Thus,

t3 = q∗,σ
′

u ≥ Val(Au(q∗,σ)) > t1 = q∗,σu . We have shown:

Lemma 4.5. q∗,σ
′

u ≥ Val(Au(q∗,σ)) > q∗,σu .

Note that since t3 > t1, and fz is non-decreasing, we have fz(t3) ≥ fz(t1) for all vertices

z. But then q∗,σ
′

z = fz(t3) ≥ fz(t1) = q∗,σz for all z. Thus, q∗,σ
′ ≥ q∗,σ, with strict inequality

at u, i.e., q∗,σ
′

u > q∗,σu . Thus, we have established that such a “strategy improvement” step
does yield a strictly better payoff for player 1.

Suppose we conduct this “strategy improvement” step repeatedly, starting at an arbi-
trary initial r-SM strategy σ0, as long as we can. This leads to a (possibly infinite) sequence
of r-SM strategies σ0, σ1, σ2, . . .. Suppose moreover, that during these improvement steps
we always “prioritize” among vertices at which to improve so that, among all those vertices
u ∈ Typeplay which can be improved, i.e., such that q∗,σi

u < Val(Au(q∗,σi)), we choose the
vertex which has not been improved for the longest number of steps (or one that has never
been improved yet). This insures that, infinitely often, at every vertex at which the local
strategy can be improved, it eventually is improved.

Under this strategy improvement regime, we show that limi→∞ q∗,σi = q∗, and thus, for
all ε > 0, there exists a sufficiently large i ≥ 0 such that σi is an ε-optimal r-SM strategy for
player 1. Note that after every strategy improvement step, i, which improves at a vertex
u, by Lemma 4.5 we will have q

∗,σi+1
u ≥ Val(Au(q∗,σi)). Since our prioritization assures

that every vertex that can be improved at any step i will be improved eventually, for all
i ≥ 0 there exists k ≥ 0 such that q∗,σi ≤ P (q∗,σi) ≤ q∗,σi+k . In fact, there is a uniform
bound on k, namely k ≤ |Q|, the number of vertices. This “sandwiching” property allows
us to conclude that, in the limit, this sequence reaches a fixed point of x = P (x). Note
that since q∗,σi ≤ q∗,σi+1 for all i, and since q∗,σi ≤ q∗, we know that the limit limi→∞ q∗,σi

exists. Letting this limit be q′, we have q′ ≤ q∗. Finally, we have q′ = P (q′), because
letting i go to infinity in all three parts of the “sandwiching” inequalities above, we get
q′ ≤ limi→∞ P (q∗,σi) ≤ q′. But note that limi→∞ P (q∗,σi) = P (q′), because the mapping
P (x) is continuous on R

n
≥0. Thus q′ is a fixed point of x = P (x), and q′ ≤ q∗. But since q∗

is the least fixed point of x = P (x), we have q′ = q∗.

We have so far not addressed the complexity of computing or approximating the (ε-
)optimal strategies for the two players in 1-RCSG termination games. Of course, in general,
player 1 (maximizer) need not have any optimal strategies, so it only makes sense to speak
about computing ε-optimal strategies for it. Moreover, the optimal strategies for player 2
may require randomization that is given by irrational probability distributions over moves,
and thus we can not compute them exactly, so again we must be content to approximate
them or answer decision questions about them. It is not hard to see however, by examining
the proofs of our theorems, that such decision questions can be answered using queries to
the existential theory of reals, and are thus also in PSPACE.
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5. Lower bounds

Recall that the square-root sum problem (see, e.g., [20, 14]) is the following: given
(a1, . . . , an) ∈ N

n and k ∈ N, decide whether
∑n

i=1

√
ai ≥ k.

Theorem 5.1. There is a P-time reduction from the square-root sum problem to the quan-
titative termination (decision) problem for finite CSGs.

Proof. Given positive integers (a1, . . . , an) ∈ N
n, and k ∈ N, we would like to check whether∑n

i=1

√
ai ≥ k. We can clearly assume that ai > 1 for all i. We will reduce this problem to

the problem of deciding whether for a given finite CSG, starting at a given node, the value
of the termination game is greater than a given rational value.

Given a positive integer a > 1, we will construct a finite CSG, call it gadget G(a), with
the property that for a certain node u in G(a) the value of the termination game starting
at u is d + e

√
a, where d and e are rationals that depend on a, with e > 0, and such that

we can compute d and e efficiently, in polynomial time, given a.
If we can construct such gadgets, then we can do the reduction as follows. Given

(a1, . . . , an) ∈ N
n, with ai > 1 for all i, and given k ∈ N, make copies of the gadgets G(a1),

. . . , G(an). In each gadget G(ai) we have a node ui whose termination value is di + ei
√

ai,
where di and ei > 0 are rationals that depend on ai and can be computed efficiently from
ai. Create a new node s and add transitions from s to the nodes ui, i = 1 . . . , n, with
probabilities pi = E/ei, respectively, where E = 1/(

∑n
i=1

1
ei

). It is easy to check that the

value of termination starting at s is D + E
∑n

i=1

√
ai, where D =

∑n
i=1 pidi. Note that D

and E are rational values that we can compute efficiently given the ai’s, so to solve the
square root sum problem, i.e., decide whether

∑n
i=1

√
ai ≥ k, we can ask whether the value

of the termination game starting at node s is ≥ D + Ek.
Now we show how to construct the gadget G(a) given a positive integer a. G(a) has a

play node u, the target node t, dead node z, and probabilistic nodes v1, v2. Nodes z and t
are absorbing. At u each player has two moves {1, 2}. If they play 1, 1 then u goes to v1, if
they play 2, 2 then u goes to v2, if they play 1, 2 or 2, 1 then u goes to z.

Note that we can write a as a = m2 − l where m is a small-size rational (m is approx-
imately

√
a) and l < 1 is also a small-size rational, and such that we can compute both

m and l efficiently given a. To see this note that, first, given a we can easily approximate√
a from above to within an additive error at most 1/(2a) in polynomial time, using stan-

dard methods for approximating square roots. In other words, given integer a > 1, we can
efficiently compute a rational number m such that 0 ≤ m −√

a ≤ 1/(2a). We then have

m2 ≤ (
√

a + 1/(2a))2

= a + 1/
√

a + 1/(4a2)

Since 1/
√

a + 1/(4a2) < 1, we can let l = m2 − a.
Having computed m and l, let c2 = l/4, g = m− 1− c2, and c1 = gc3, where 0 < c3 < 1

is a small-sized rational value such that c3 < 1/2g. From node v1 we move with probability
c1 to t, with probability c2 to u, and with the remaining probability to z. From node v2 we
go with probability c3 to t and 1− c3 to z. It is not hard to check that these are legitimate
probabilities.

Let x be the value at u. We have x = Val(A), where the 2×2 matrix A for the one-shot
zero-sum matrix game at u has A1,1 = c1 + c2x, A2,2 = c3, and A1,2 = A2,1 = 0. Note that
A1,1 > 0 and A2,2 > 0. If the optimal strategy of player 1 at u is to play 1 with probability
p and 2 with probability 1 − p, then by basic facts about zero-sum matrix games we must
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1 1p1

p2

A1

b1 : A1 b2 : A1

en ex

Figure 2: 1-RMC A′

have 0 < p < 1 and x = p(c1 + c2x) = (1− p)c3. So p = c3/(c1 + c2x + c3), and substituting
this expression for p in the equality x = p(c1 + c2x), we have:

c2x
2 + (gc3 + c3 − c2c3)x − g(c3)

2 = 0

So,

x =
−(gc3 + c3 − c2c3) +

√
(gc3 + c3 − c2c3)2 + 4gc2(c3)2

2c2

Note that we must choose the root with + sign to get a positive value.
The discriminant can be written as (c3)

2[(g +1− c2)
2 +4gc2]. The term (c3)

2 will come
out from under the square root, as c3, so we care only about the expression in the brackets,
which is

(g + 1 − c2)
2 + 4gc2 = (g + 1)2 + (c2)

2 − 2gc2 − 2c2 + 4gc2

= (g + 1)2 + (c2)
2 + 2gc2 + 2c2 − 4c2

= (g + 1 + c2)
2 − 4c2

= m2 − l

= a

So x = d + e
√

a, where d = −(gc3 + c3 − c2c3)/2c2 and e = c3/2c2.

Theorem 5.2. There is a P-time reduction from the quantitative termination (decision)
problem for finite CSGs to the qualitative termination problem for 1-RCSGs.

Proof. Consider the 1-RMC depicted in Figure 2. We assume p1 + p2 = 1. As shown in
([14], Theorem 3), in this 1-RMC the probability of termination starting at 〈ε, en〉 is = 1 if
and only if p2 ≥ 1/2.

Now, given a finite CSG, G, and a vertex u of G, do the following: first “clean up” G
by removing all nodes where the min player (player 2) has a strategy to achieve probability
0. We can do this in polynomial time as follows. Note that the only way player 2 can force
a probability 0 of termination is if it has a strategy τ such that, for all strategies σ of player
1, there is no path in the resulting Markov chain from the start vertex u to the terminal
node. But this can only happen if, ignoring probabilities, player 2 can play in such a way
as to avoid the terminal vertex. This can be checked easily in polynomial time.

The revised CSG will have two designated terminal nodes, the old terminal node, labeled
“1”, and another terminal node labeled “0”. From every node v of Typerand in the revised
CSG which does not carry full probability on its outedges, we direct all the “residual”
probability to “0”, i.e., we add an edge from v to “0” with probability p

v,“0” = 1−∑
w pv,w,

where the sum is over all remaining nodes w is the CSG.
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Let ε > 0 be a value that is strictly less than the least probability, over all vertices,
under any strategy for player 2, of reaching the terminal node. Obviously such an ε > 0
exists in the revised CSG, because by Corollary 4.1 (specialized to the case of finite CSGs)
player 2 has an optimal randomized S&M strategy. Fixing that strategy τ , player 1 can
force termination from vertex u with positive probability q∗,·,τu . We take ε = (minu q∗,·,τu )/2.
(We do not need to compute ε; we only need its existence for the correctness proof of the
reduction.)

In the resulting finite CSG, we know that if player 1 plays ε-optimally (which it can do
with randomized S&M strategies), and player 2 plays arbitrarily, there is no bottom SCC
in the resulting finite Markov chain other than the two designated terminating nodes “0”
and “1”. In other words, all the probability exits the system, as long as the maximizing
player plays ε-optimally.

Now, take the remaining finite CSG, call it G′. Just put a copy of G′ at the entry of
the component A1 of the 1-RMC in Figure 2, identifying the entry en with the initial node,
u, of G′. Take every transition that is directed into the terminal node “1” of G, and instead
direct it to the exit ex of the component A1. Next, take every edge that is directed into the
terminal “0” node and direct it to the first call port, (b1, en) of the left box b1. Both boxes
map to the unique component A1. Call this 1-RCSG A.

We now claim that the value q∗u ≥ 1/2 in the finite CSG G′ for terminating at the
terminal “1” iff the value q∗u = 1 for terminating in the resulting 1-RCSG, A. The reason
is clear: after cleaning up the CSG, we know that under an ε-optimal strategy for the
maximizer for reaching “1”, all the probability exits G′ either at “1” or at “0”. We also
know that the supremum value that the maximizing player can attain will have value 1 iff
the supremum probability it can attain for going directly to the exit of the component in
A is ≥ 1/2, but this is precisely the supremum probability that maximizer can attain for
going to “1” in G′.

Lastly, note that the fact that the quantitative probability was taken to be 1/2 for the
finite CSG is without loss of generality. Given a finite CSG G and a rational probability p,
0 < p < 1, it is easy to efficiently construct another finite CSG G′ such that the termination
probability for G is ≥ p iff the termination probability for G′ is ≥ 1/2.

6. Conclusions

We have studied Recursive Concurrent Stochastic Games (RCSGs), and we have shown
that for 1-exit RCSGs with the termination objective we can decide both quantitative and
qualitative problems associated with computing their values in PSPACE, using decision
procedures for the existential theory of reals, whereas any substantial improvement (even
to NP) of this complexity, even for their qualitative problem, would resolve a long standing
open problem in exact numerical computation, namely the square-root sum problem. Fur-
thermore, we have shown that the quantitative decision problem for finite-state concurrent
stochastic games is also at least as hard as the square-root sum problem.

An important open question is whether approximation of the game values, to within a
desired additive error ε > 0, for both finite-state concurrent games and for 1-RCSGs, can be
done more efficiently. Our lower bounds (with respect to square-root sum) do not address
the approximation question, and it still remains open whether (a suitably formulated gap
decision problem associated with) approximating the value of even finite-state CSGs, to
within a given additive error ε > 0, is in NP.
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In [16], we showed that model checking linear-time (ω-regular or LTL) properties for
1-RMDPs (and thus also for 1-RSSGs) is undecidable, and that even the qualitative or
approximate versions of such linear-time model checking questions remains undecidable.
Specifically, for any ε > 0, given as input a 1-RMDP and an LTL property, ϕ, it is unde-
cidable to determine whether the optimal probability with which the controller can force
(using its strategy) the executions of the 1-RMDP to satisfy ϕ, is probability 1, or is at
most probability ε, even when we are guaranteed that the input satisfies one of these two
cases. Of course these undecidability results extend to the more general 1-RCSGs.

On the other hand, building on our polynomial time algorithms for the qualitative
termination problem for 1-RMDPs in [17], Brázdil et. al. [4] showed decidability (in P-
time) for the qualitative problem of deciding whether there exists a strategy under which
a given target vertex (which may not be an exit) of a 1-RMDP is reached in any calling
context (i.e., under any call stack) almost surely (i.e., with probability 1). They then used
this decidability result to show that the qualititive model checking problem for 1-RMDPs
against a qualitative fragment of the branching time probabilistic temporal logic PCTL is
decidable.

In the setting of 1-RCSGs (and even 1-RSSGs), it remains an open problem whether
the qualitative problem of reachability of a vertex (in any calling context) is decidable.
Moreover, it should be noted that even for 1-RMDPs, the problem of deciding whether the
value of the reachability game is 1 is not known to be decidable. This is because although
the result of [4] shows that it is decidable whether there exists a strategy that achieves
probability 1 for reaching a desired vertex, there may not exist any optimal strategy for
this reachability problem, in other words the value may be 1 but it may only be attained
as the supremum value achieved over all strategies.
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