
HAL Id: inria-00525388
https://hal.inria.fr/inria-00525388

Submitted on 11 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Probabilistic Regular Graphs
Nathalie Bertrand, Christophe Morvan

To cite this version:
Nathalie Bertrand, Christophe Morvan. Probabilistic Regular Graphs. Infinity (International Work-
shop on Verification of Infinite-State Systems), 2010, Singapour, Singapore. pp.77-90. �inria-00525388�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50050003?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00525388
https://hal.archives-ouvertes.fr


Submitted to:

INFINITY 10

c© N. Bertrand and C. Morvan

This work is licensed under the Creative Commons

Attribution-Share Alike License.

Probabilistic regular graphs

Nathalie Bertrand

INRIA Rennes Bretagne Atlantique

nathalie.bertrand@inria.fr

Christophe Morvan

Université Paris-Est
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Abstract. Deterministic graph grammars generate regular graphs, that form a structural extension of

configuration graphs of pushdown systems. In this paper, we study a probabilistic extension of regu-

lar graphs obtained by labelling the terminal arcs of the graph grammars by probabilities. Stochastic

properties of these graphs are expressed using PCTL, a probabilistic extension of computation tree

logic. We present here an algorithm to perform approximate verification of PCTL formulae. More-

over, we prove that the exact model-checking problem for PCTL on probabilistic regular graphs is

undecidable, unless restricting to qualitative properties. Our results generalise those of [8], on prob-

abilistic pushdown automata, using similar methods combined with graph grammars techniques.

1 Introduction

Formal methods have proven their importance in the validation of hardware and software systems. In or-

der to represent real systems more accurately, several aspects need to be reflected in the model. Recursion

and random events are examples of such extra features and lead to complex models that incorporate two

sources of complexity: probabilities and infinite state space. For each of these features independently,

verification techniques have been established.

Infinite state systems, on the one hand, cover a large range of expressive power. Among them push-

down systems offer a simple infinite framework by extending finite state systems with a stack. Despite

the fact that their configurations graph is infinite, pushdown systems enjoy several interesting properties.

In particular, the reachability problem is decidable, and the reachability set is effectively regular [3].

Moreover, monadic second order logic (MSO) [11] is decidable over the graph of configurations for

pushdown automata. Alternatively, the configurations graphs of pushdown automata can be generated by

deterministic graph grammars, introduced by Courcelle [7]. Deterministic graph grammars generate reg-

ular graphs which also have decidable MSO [7], and which characterise the same structures as pushdown

systems [6] when restricting to finite degree. We advocate that these grammars offer a simple presenta-

tion and emphasize the structural properties of graphs. Indeed, contrary to pushdown automata, graph

grammars are more robust to transformations. Precisely, many transformations of pushdown automata

affect the configurations graph, and thus its stucture-based properties. On the contrary, graph gram-

mars allow for transformations in the representations which preserve the structure. Indeed, most graph

grammar transformations presented in [5] preserve, up to isomorphism, the generated graph. Using such

representations thus seems promising in order to express structural properties of systems.

Probabilistic systems, on the other hand, also raised intensive research concerning verification, start-

ing with model-checking algorithms for Markov chains, and Markov decision processes for various log-

ics. In the last decade, models combining probabilities and infinite-state spaces have been investigated.

Examples of such models are probabilitic pushdown systems and probabilistic lossy channel systems.

These systems are finitely described and generate infinite Markov chains on which one can express prob-

abilistic properties, for example using the probabilistic extension of CTL, PCTL [9]. This logic allows

http://creativecommons.org
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2 Probabilistic regular graphs

to express, e.g., the probability of satisfying a given CTL path formula. More generally, PCTL can be

seen as a variant of CTL where the usual forall quantifier is replaced with a probabilistic comparison to

a threshold: the whole state formula is satisfied if the probability of the set of executions satisfying the

CTL path formula meets the constraint expressed by the threshold. A restricted fragment of this logic,

called qualitative PCTL is obtained when allowing values 0 and 1 only for the thresholds. In constrast,

the general case (where threshold values are arbitrary) is referred to as quantitative PCTL. The model-

checking problem for probabilistic logics over infinite Markov chains generated by probabilistic lossy

channel systems or probabilistic pushdown automata is a natural and deeply investigated issue. Con-

cerning probabilistic pushdown automata, a series of papers established fundamental model checking

results [2, 8, 10, 1], some of the most significant ones being the decidability of the model checking of

qualitative PCTL formulae, and the undecidability of the quantitative version.

In this paper, we consider a probabilistic extension of regular graphs. To this aim, we define prob-

abilistic graph grammars as graph grammars where terminal arcs are labelled with probabilities. Prob-

abilistic graph grammars hence generate infinite-state Markov chains, and form a natural generalisation

of probabilistic pushdown automata. For these models, we extend the results of [8] concerning the

model-checking of PCTL. Precisely, for probabilistic graph grammars we prove the decidability of the

qualitative PCTL model-checking ; we detail how to approximate the probability of path formula ; and

we prove the undecidability of the exact quantitative PCTL model-checking.

2 Regular graphs and probabilistic regular graphs

2.1 Hypergraphs and graphs

Let F be a ranked alphabet, and ρ : F→N its ranking function that assigns to each element of F its arity.

We denote by Fn the set of symbols of arity n. Given V an arbitrary set of vertices, a hypergraph G is a

subset of∪n≥1FnV n. The vertex set of G, denoted VG, is defined as the set VG = {v∈V |FV ∗vV ∗∩G 6= /0}.
In our setting, this set is always countable. An element of FnV n is an hyperarc of arity n, denoted by

f v1 v2 · · · vn.

Graphs form a restricted class of hypergraphs where hyperarcs have arity at most 2. Precisely, a

graph G over V is a subset of F2VV ∪F1V . For a ∈ F2, and s, t ∈V , ast ∈ G is an arc of G with source s,

target t and label a. For a ∈ F1 and s ∈V , if as is an element of G, a is referred to as the colour of vertex

s (observe that a vertex may have several colours). Dom(G), Im(G) and VG denote respectively the set

of sources, targets and vertices of G. The in-degree (resp. out-degree) of a vertex v is the number of arc

having source (resp. target) v; its degree is the sum of the in and out-degrees. The transition relation

underlying G is composed of transitions s
a−→G t for ast ∈G. A path in G is a finite sequence of transitions

v1
a1−→ v2 · · ·

an−1−−→ vn, also noted v1
a1···an⇒ G vn.

A graph morphism from G to G′, is a mapping g : VG→VG′ such that for all u,v∈VG, u
a−→G v implies

g(u)
a−→G′ g(v). Such a morphism is an isomorphism if g is a bijection, and its inverse is also a morphism.

2.2 Graph grammars

Graph grammars are a convenient tool to represent graph transformations. Starting from a hyperarc, the

axiom, and using rewriting rules, these grammars generate families of infinite graphs that enjoy interest-

ing properties (for example the decidability of MSO theory, or the fact that they generate context-free

languages). Graphs generated by graph grammars form a slight extension of the graphs of configura-

tions for pushdown automata, namely such a graph may have vertices of infinite degree (still there are
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only finitely many distinct degrees). A motivation for generating these graphs using graph grammars

rather than pushdown automata is to emphasize the structural properties of the obtained graphs, since

they are defined up to isomorphism. In particular, stochastic properties of Markov chains (like probabil-

ity of a path or a set of paths) are invariant under graph isomorphism, this justifies the use of structural

characterizations such as graph grammars.

Definition 2.1. A hypergraph grammar (HR-grammar for short), is a tuple G = (N,T,R,Z), where:

• N and T are two ranked alphabets of non-terminal and terminal symbols, respectively;

• Z ∈ N is a 0-arity non-terminal, the axiom;

• R is a set of rewriting rules assigning to each non-terminal A∈N a pair (HA, ιA) where HA is a finite

hypergraph, and ιA : {1, · · · ,ρ(A)} →֒ VHA
is an injective mapping associating to each position in

an hyperedge labelled A a vertex in HA.

Example 2.2. Figure 2.1 presents an example of a HR-grammar. Formally, it is defined by G = ({Z}0∪
{A}2 ,{V1,V2}1∪{a,d}2 ,{(HZ, ιZ),(HA, ιA)} ,Z). Non-terminal Z (resp. A) is the only arity 0 (resp. 2)

non-terminal symbol; {V1,V2} (resp. {a,d}) are the two colours (resp. arc-labels); hypergraphs HZ , HA

and injection ιA are represented in the first part of the figure. For simplicity, V1 denotes the absence of

colour V1. The injection ιA is used to identify vertices of HA with vertices of an arc labelled A in the

rewriting process defined later on.

HZ : v0 HA: ιA(1)

ιA(2) V2 V1

A a

a

d

d

a

A

Figure 2.1: An example of a graph grammar.

Remark 2.3. Note that Definition 2.1 corresponds to the classical definition of deterministic hypergraph

grammars [7, 5], since there is exactly one rewriting rule for each non-terminal symbol. Moreover, we

implicitely assume that terminal symbols have arity one or two (Markov chains are transitions systems,

thus arities greater than 2 do not make sense in this context). This way, the generated graphs are coloured

graphs (or transition systems where transitions and states are labelled).

Let G = (N,T,R,Z) be a hypergraph grammar. Given A ∈ N a non-terminal, we denote by −−→
R,A

the

rewriting relation between hypergraphs with respect to the rule (HA, ιA) ∈ R. Formally, a hypergraph

M rewrites into M′, written M −−→
R,A

M′, if there exists a hyperarc X = Av1v2 . . .vp in M such that M′ =

(M− X)∪ h(HA) where h is an injective morphism that maps ι(i) to vi and other vertices of HA to

vertices outside M. Intuitively, M′ is obtained from M by replacing X (of non-terminal label A) with

HA. The rewriting relation extends to the complete parallel rewriting relation: the rewriting of each non-

terminal simultenaously. We write M =⇒
R

M′ for the complete parallel rewriting of M into M′. In other

words, all non-terminal hyperedges of M have been replaced in M′ using their respective rewriting rules

in R. The set of all images of a graph M by =⇒
R

is denoted by R[M]. This set contains all isomorphic

graphs obtained by applying the rules of R to M. For n > 1, this notation is extended inductively into

Rn[M] =
⋃

M′∈Rn−1[M] R[M
′], it is the set of all isomorphic graphs obtained after n applications of the

complete parallel rewriting.
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Let N and T be sets of non-terminals, respectively terminals. Given h a hypergraph labelled by

N ∪T , we denote by [H] the set of terminal arcs and colours in H: [H] = H ∩ (T2 VH VH ∪T1 VH). For

G = (N,T,R,Z) a HR-grammar, the set of graphs generated by G is defined as follows:

G
ω =

{

∪n≥0[Hn] | H0 = Z∧∀n≥ 0,Hn =⇒
R

Hn+1

}

Note that if Hn =⇒
R

Hn+1, then [Hn]⊆ [Hn+1]. Thus the set G ω contains graphs which are all isomorphic.

A graph H is generated by G if it belongs to G ω . Let H ∈ G ω , for each vertex v ∈ VH , we let Lev(v)
be the level at which v is generated. Formally, Lev(v) = min{k |v ∈ [Hk]}. Furthermore, notation Can(v)

stands for the canonical image of v in the finite set of vertices
⋃

A∈N VHA
. Assuming Hk−1

R,A−−→ H ′k−1 for

some A ∈ N and v ∈ H ′k−1, Can(v) is the unique vertex in HA whose image by h is v. When vertex v is

generated in HA at the i-th position of an arc labelled by B ∈ N, we write Can(v) = (B, i)A. Observe that,

since v 6∈ Hk−1, for each j, v is distinct from ιA( j).

Example 2.4. Figure 2.1 presents an example of a HR-grammar, Figure 2.2 illustrates, starting from the

axiom Z, two successive applications of the complete parallel rewriting (which coincides here with the

rewriting of a single non-terminal) and the iteration of this process. In this example, each application

of the rewriting rules adds new vertices as well as new arcs to the graph. Observe that the names of the

vertices (except for v0 that is distinguished) are not depicted, since they are not relevant to our purpose.

Up to renaming of the vertices, there is a unique generated infinite graph.

Z

v0 v0

V2 V1

v0

V2 V1
V2 V1

V2

=⇒
R

=⇒
R

=⇒
R

ω

dd d

aA a

aa

aa

dd
aA

d

a

a

a
d

a

a

Figure 2.2: Application of successive complete parallel rewritings and the generated graph.

2.3 Basic Properties and Normal Forms for Regular Graphs

For any rule (HA, ιA), we say that the vertices ιA({1, · · · ,ρ(A)}) are the inputs of HA, and
⋃

Y∈HA∧Y (1)∈NR
VY

are the outputs of HA. In particular, output vertices belong to non-terminal hyperedges.

Given a non-terminal A ∈ N, we denote by Succ(A) the set of non-terminals appearing in HA.

Given a HR-grammar G = (N,T,R,Z) and a non-terminal hyperarc X =Av1v2 . . .vp, we introduce no-

tations Rω (resp. Rω [X ]) to denote a particular graph in G ω (resp. in (G [X ])ω with G [X ] := (N,T,R,X)).

Let G = (N,T,R,Z) and G ′ = (N′,T ′,R′,Z′) be two HR-grammars we say that G ′ is a colouring of

G if, for any graphs H ∈ G ω and H ′ ∈ G ′ω , there is a graph isomorphism between H and H ′ which also

preserves colours of H, and there is a colour in T ′1 which does not belong to T1.

We conclude these preliminaries by giving a normal form for HR-grammars.

Theorem 2.5. [5] Any regular hypergraph can be generated in an effective way by a complete outside

grammar.
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The complete outside property ensures that the only input vertices that are also outputs are vertices

of infinite degree. It also implies that each output vertex belongs to a single non-terminal hyperarc.

This property enables one to identify efficiently grammars having vertices of infinite degree, and it also

ensures that whenever there is no such vertex, inputs and outputs are distinct. In the sequel we assume

that all HR-grammars we consider are complete outside.

2.4 Probabilistic Regular Graphs

In order to obtain a probabilistic graph from one generated by a HR-grammar, we define, for each HR-

grammar G , and each graph H in G ω , the counting function # :VH×T2→N, with #(v,a)= |{v′ | v a−→ v′}|,
that associates with each pair (v,a) the number of a-labelled arcs originating from v. Observe that two

distinct vertices v and v′ in H have identical valuations for # as soon as Can(v) = Can(v′).

Definition 2.6 (Probabilistic graph grammar). A probabilistic hypergraph grammar (PHR-grammar for

short) P , is a pair (G ,µ) where G = (N,T,R,Z) is a HR-grammar, µ : T2→ [0,1] is a mapping, and for

each vertex v ∈ Rω the sum of the µ-values of all arcs from v is 1: ∑a∈T2
µ(a)#(v,a) = 1.

Remark 2.7. This definition obviously precludes vertices with infinite out-degree. In fact, it is not

straightforward to introduce a meaningful definition enabling vertices having infinite out-degree. On the

contrary, vertices with infinite in-degree are acceptable with this definition.

Proposition 2.8. Given a HR-grammar G and a mapping µ : T2→ [0,1], one can decide whether (G ,µ)
is a PHR-grammar.

Proof. From Theorem 2.5 we may assume that G is complete outside. It enables to identify vertices

of infinite out-degree. Let v be such a vertex, and a a label such that #(v,a) = +∞, it forbids (G ,µ)
to be a PHR-grammar for any value of µ(a). If there is no such vertex, from Proposition 3.13 (b) of

[5], there exists an effective colouring of G = (N,T,R,Z) with colours representing the degree of each

vertex (relative to each label). We produce a colouring representing the exact out-degree relative to each

element of T2. There are only finitely many such degrees (from the same proposition, (a)). Now from

these colours we are able to compute # at each vertex v in the grammar and therefore we may check that

∑a∈T2
µ(a)#(v,a) = 1.

Example 2.9. We consider the graph from Example 2.2. The probabilistic mapping µ , defined by µ(a)=
1
2

and µ(d) = 1
4
, yields a probabilistic regular graph. Clearly the sum of out-going edges is 1 for each

vertex of the graph.

2.5 Connection between regular graphs and pushdown automata

There is a strong connection between regular graphs and configuration graphs of pushdown automata.

Indeed restricted to finite in- and outdegrees, these graphs coincide: see, e.g., [5, Theorem 5.11]. In

particular, given a pushdown automaton, the transformation into a graph grammar which generates a

infinite regular graph isomorphic to the configuration graph of the pushdown system is straightforward

and may be adapted from the proof of Proposition 5.4 in [5]. This proposition states that the suffix graph

of any rewriting system may be generated by a one rule grammar from the non-terminal. We illustrate

this construction on the following example.

Example 2.10. Let us consider the following pushdown system

r
a−→ Br′ r′

a−→ Ar r′
b−→ Ap BAp

a−→ p.
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To match more closely [5, Proposition 5.4] it is presented as a suffix rewriting system: the state of the

pushdown automaton is on the top of the stack, and rules are applied to suffixes of the stack. For example,

when in state r, and whatever the contents of the stack, while reading an a, stack-symbol B is pushed

and the new state is r′. The transformation of this pushdown automaton into a graph grammar goes as

follows. There is a unique non-terminal X (which, hence, serves as axiom). The vertices of HX are

words: each strict suffix (distinct from the empty suffix) of the words appearing in the rewriting rules (in

the left- and right-hand sides) belongs to the image of ιX . Here r, p, r′ and Ap are the non-empty strict

suffixes and they are represented on the top line of the graph HX . For every stack symbol (here A and B),

and every non-empty strict suffix, a vertex is formed by the concatenation of the stack symbol and the

suffix. This yields new vertices, such as Br and all the ones on the bottom line of HX , but some vertices

might already be present, as Ap in this example. For each stack symbol, a non-terminal arc, labelled by

X connects these vertices: Ar,Ap,Ar′,AAp and Br,Bp,Br′,BAp, respectively. This construction ensures

that each left- and right-hand side of the rewriting rules is one vertex. It now suffices to add terminal

arcs between the vertices according to the rules. For example the a-edge from r to Br′ encodes the first

rewriting rule.

HX :
r

ι(1)
p

ι(2)
r′

ι(3)
Ap

ι(4)

Br Bp Br′ BAp Ar Ar′ AAp

a a

b

a

X

X

Notice that this construction produces several connected components. Yet, given an initial configuration

only the connected component (co-)reachable from this configuration will be relevant.

A similar transformation can be applied to any pushdown automaton in order to obtain a graph gram-

mar which generates the configuration graph of the pushdown system. This underlines the generality of

the model of graph grammars. Moreover, we argue the framework of graph grammars is more conve-

nient than the pushdown automata view. Indeed, transformations presented in Subsection 2.3 on graph

grammars do not affect the graph they generate, contrary to most transformations on pushdown automata

that affect the structure of the configuration graph.

Esparza et al. propose in [8] a model of probabilistic pushdown automata, derived from pushdown

automata by assigning weights to rules. The configuration graphs of such systems are infinite state

Markov chains. Probabilistic pushdown automata and PHR-grammar relate in the same way than push-

down automata and graph grammars do: the Markov chains defined by both models are the same. More-

over, any probabilistic pushdown automaton can be turned into a PHR-grammar which generated exactly

the same infinite state Markov chain. In this sense our model does not generalize the previous model. On

the other hand, [8] makes several syntactical assumptions on pushdown automata which do not restrict

the class of Markov chains, but make it more difficult to manipulate. Transformations of probabilistic

pushdown automata in order to fit these assumptions may alter the properties of the Markov chain. On

the contrary, transformations of PHR-grammars do not affect the Markov chain generated.
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3 Verification of probabilistic regular graphs

3.1 Markov chains and PCTL

A (discrete-time) Markov chain is a tuple M = (S,s0, p) consisting of a (possibly infinite) set S of states,

an initial state s0, and a probabilistic transition function p : S× S→ [0,1] such that for every state s,

∑s′∈S p(s,s′) = 1. For simplicity, we assume the transition system is finitely branching, i.e., in any state

s there are only finitely many states s′ with p(s,s′) > 0; the condition ∑s′∈S p(s,s′) = 1 is thus well-

defined. Given a set of atomic propositions AP, a labelled Markov chain M = (S,s0, p, ℓ) is a Markov

chain (S,s0, p) equipped with a labelling function ℓ : S→ AP.

Introduced in [9], PCTL is an extention of CTL with probabilities. It can express quantitative proper-

ties about executions in Markov chains, e.g., with probability 0.9 any sent message will be acknowledged

in the future. The syntax of PCTL is the following:

ϕ ::= tt | a | ¬ϕ | ϕ ∧ψ | X∼ρϕ | ϕ U∼ρψ

where a ∈ AP is an atomic proposition, ρ ∈ [0,1] and ∼∈ {≤,<,>,≥}. Operators X∼ρ and U∼ρ are

respectively the probabilistic next-state and until operators and generalise their nonprobabilistic counter-

parts. Recall the shortcuts in CTL for eventually (F ) and globally (G ): F ϕ ≡ ttU ϕ and G ϕ ≡¬F¬ϕ .

Their probabilistic extensions F∼ρ and G∼ρ will also be convenient in the sequel.

Let M = (S,s0, p, ℓ) be a labelled Markov chain, and s ∈ S. For a (non-probabilistic) formula φ of

CTL, we write P(s |= φ) for the measure of the set of paths in M issued from s and which satisfy φ . Note

that for V1 and V2 sets of states, the set of paths from s satisfying XV1 or V1 UV2 is clearly measurable.

The semantics of a PCTL formula ϕ over M is defined inductively:

JttK = S Jϕ ∧ψK = JϕK∩ JψK
JaK = {s ∈ S | a ∈ ℓ(s)} JX∼ρϕK = {s ∈ S | P(s |= X JϕK)∼ ρ}
J¬ϕK = S\ JϕK Jϕ U∼ρψK = {s ∈ S | P(s |= JϕKU JψK)∼ ρ}
JF∼ρϕK = {s ∈ S | P(s |= F JϕK)∼ ρ} JG∼ρϕK = {s ∈ S | P(s |= G JϕK)∼ ρ}

and we write s |= ϕ for s ∈ JϕK.

In the following, we will interpret PCTL formulae over labelled Markov chains induced by PHR-

grammar. Atoms in these formulae will be sets of vertices and will form the set of atomic propositions

AP.

Example 3.1. Considering the graph presented in Example 2.2, the probabilistic mapping given in Exam-

ple 2.9, and predicates V1 and V2 satisfied by vertices labelled by these respective colours, the following

formulae are of interest:

• ϕ1 = V1∧X≥
1
2 V2: Vertices that satisfy ϕ1 belong to V1 and with probability greater than 1

2
, their

successors in one step are in V2. In particular, vertices at a fork on the lower line of Figure 2.2

satisfy ϕ1.

• ϕ2 = v0∧V1 U > 2
3 V2: Vertex v0 satisfies ϕ2 if the probability of all paths issued from v0 that even-

tually reach V2 passing through vertices of V1 only is greater than 2
3
.

3.2 Qualitative model checking for probabilistic regular graphs

The qualitative fragment of PCTL only involves the probability thresholds 0 and 1. Let P =(N,T,R,Z,µ)
be a PHR-grammar. Up to isomorphism P generates a unique infinite state Markov chain MP (or M
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when there is no ambiguity on P). The qualitative model checking problem for probabilistic regular

graphs is, given a PHR-grammar P with initial vertex v0 and a qualitative PCTL formula ϕ , to answer

whether in MP , v0 |= ϕ . Mimicking the finite Markov chain approach, the set of vertices satisfying a

qualitative formula can be effectively computed.

Theorem 3.2. Let ϕ be a qualitative PCTL formula, and P a PHR-grammar. There is an effective

colouring P ′ in which the set {v ∈VG | v |= ϕ} is identified by a new colour.

Proof. The proof is by induction on the structure of ϕ , using the fact that the following sets of vertices

can be effectively coloured in the graph grammar: {v ∈VG | P(v,XV) = 1}, {v ∈VG | P(v,XV) = 0},
{v ∈VG | P(v,V1 UV2) = 1} and {v ∈VG | P(v,V1 UV2) = 0}.

Let us start with the two first cases: {v ∈VG | P(v,XV) = 1} and {v ∈VG | P(v,XV) = 0}. The

function Can induces a finite partition on vertices of the infinite Markov chain generated by P . Two

vertices with same image by Can have equivalent successors. By hypothesis on the grammar, for every

vertex generated at level n, all successor vertices are generated between levels n−1 and n+1. Hence, if

v is generated in HA, it is sufficient to identify in R2[A] whether all successors of v belong to V or V. One

can thus, in the hypergraphs HA (for each A ∈ N), annotate by colours the vertices which have all their

successors in V, as well as those which have no successors in V. These colours precisely correpond to the

sets {v ∈VG | P(v,XV) = 1} and {v ∈VG | P(v,XV) = 0}.
The two other cases {v ∈VG | P(v,V1 UV2) = 1} and {v ∈VG | P(v,V1 UV2) = 0} are treated simi-

larly. We detail here the colouring of {v ∈VG | P(v,V1 UV2) = 1}. For B ∈ Succ(A) and i≤ ρ(B) we let

R((B, i)A) = {A j|D(Bi,A j)> 0}. We then define inductively the sets:

• W0 = (HZ ∩V2)∪{v |Can(v) = (B, i)A and W(Bi)A = 1}, and

• Wn+1 =Wn∪{v |Can(v) = (B, i)A and W(Bi)A +∑A j∈R((B,i)A)D(Bi,A j) = 1 and R((B, i)A)⊆Wn}.
Vertices in W0 are directly winning, either because they already belong to V2 or because from Bi in

context A, the probability to win without decreasing level is 1. Vertices in Wn+1 are also almost surely

winning (i.e. satisfy V1 UV2 with probability 1) because they are winning without decreasing level (factor

W(Bi)A) or firstly decreasing level and then win from A j with probability 1 (since A j ∈Wn).

Clearly,
⋃∞

n=0Wn = {v ∈VG | P(v,V1 UV2) = 1} and the Wn’s can be iteratively computed and anno-

tated in the grammar by colours.

3.3 Probability computation for probabilistic regular graphs

We now face the problem of computing, given v0 an initial vertex in HZ and φ a CTL formula, the

probability in MP of the set of paths starting in v0 and satisfying φ : PMP
(v0 |= φ). This can be done

inductively on the structure of φ , and the difficult part amounts to computing, given V1 and V2 colours, the

probability starting in v0 to satisfy V1 UV2, written P(v0 |= V1 UV2). This subsection focuses on solving

this problem.

3.3.1 Preliminaries and notations

Without loss of generality we assume that vertices of V1 and V2 are annotated in the grammar by colours

(terminals of arity 1) and that v0 appears in HZ the hypergraph of the rewriting rule associated to the

axiom Z of P . Using the levelwise decomposition of the Markov chain MP , we show how to express

P(v0 |=V1 UV2) as a solution of a system of polynomial equations derived from the axiom and the rules.

The hypotheses we demand on PHR-grammars ensure that the first step of any path issued from a

vertex of level n either remains at level n or reaches one of the neighbour levels, n− 1 and n+ 1 (from
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Theorem 2.5, it corresponds to restricting to finite degree). This fact will enable levelwise decomposition

of paths in the Markov chain.

To compute probabilities in Markov chains generated by PHR-grammars we exploit the regularities

of the underlying graphs. For v a vertex of MP with Can(v) ∈ HA, we write M [v] for the part of MP

with underlying graph Rω [A] which contains v and no vertices of level Lev(v)− 1. Intuitively, if v has

been generated by a non-terminal A, we consider the infinite (sub-)Markov chain generated from this

non-terminal. For two vertices v and v′ of MP with Can(v) = Can(v′) ∈ HA, the isomorphism of M [v]
and M [v′] ensures that for any CTL formula φ , PM [v](v |= φ) = PM [v′](v

′ |= φ). In particular, if φ is the

formula V1 UV2, we obtain that: the probability to succeed satisfying V1 UV2 without decreasing level

is the same from v and from v′. The probability to satisfy (V1 \V2) while decreasing level of 1 is also

independent of the level, provided the initial state corresponds to a fixed canonical representant (B, i)A.

This motivates the introduction of notations for such probabilities, that are determined by the context and

are independent of the level.

Let A,B ∈ N be non-terminals such that B ∈ Succ(A). Starting in state v, with Can(v) = (B, i)A,

each successor state belongs to R2[A], the sub-graph obtained from non-terminal A by two successive

complete parallel rewritings. Given i≤ ρ(B) and j ≤ ρ(A) we introduce:

• D(Bi,A j) as the probability from v′, with Can(v′) = (B, i)A, to reach v such that Lev(v) = Lev(v′)−
1 and v = ιA( j) satisfying along the path: (V1 \V2)∩ (Lev ≥ Lev(v′));

• W(Bi)A as the probability from v′, with Can(v′) = (B, i)A, to fulfill (V1∩Lev ≥ Lev(v′))UV2.

(Here Lev ≥ k denotes that the current level is greater than a given natural k.)

As explained before, D(Bi,A j) and W(Bi)A do not depend on v′ and v but only on their images by

Can. Moreover, D(Bi,A j) expresses the probability to decrease level by one while satisfying a given

property and W(Bi)A is the probability to win, i.e., to fulfill V1 UV2 without decreasing level. This

justifies the chosen notations.

The levelwise decomposition of paths is given by vertices belonging (when generated) to non-

terminal. Thus, given A,B,C,D ∈ N such that B,D ∈ Succ(A) and C ∈ Succ(B), we introduce notations

for some probabilities that can be computed directly in any portion R2[A] of the Markov chain.

• p(Bi)A is the probability in R2[A] from v with Can(v) = (B, i)A to fulfill V1 UV2 without visiting

any v′ = ιA( j) nor v′ with Can(v′) ∈ {(C,k)B,(B,h)A}.
• p(Bi,Dh)A is the probability in R2[A] from v with Can(v) = (B, i)A to fulfill G (V1 \V2) and reach v′

with Can(v′) = (D, j)A before any v′′ such that Can(v′′)∈ {(B, l)A,(D,h′)A} and Lev(v′′) = Lev(v).

• ←−p (Bi,A j) is the probability in R2[A] from vertex v with Can(v) = (B, i)A to reach v′ with v′ = ιA( j)
and Lev(v′) = Lev(v)−1 and satisfy G (V1 \V2) without seeing any v′′ ∈ {(C,k)B,(B, l)A,(D,h)A}.

• −→p (Bi,Ck)A is the probability in R2[A] from v with Can(v) = (B, i)A to reach v′ with Can(v′) =
(C,k)B satisfying G (V1 \V2) without visiting any v′′ = ιA( j) nor v′′ ∈ {(C,k′)B,(B,h)A}.

Intuitively, there are several alternatives for paths starting in v (with Can(v) = (B, i)A) and for which

V1 UV2 is not falsified: either they satisfy V1 UV2 without visiting any vertex at some position on a non-

terminal hyperarc, or they satisfy GV1 \V2 and reach some vertex v′ at a given position on a non-terminal

hyperarc. The above probabilities split these cases according the first v′ encountered: v′ can be at the

level of v (at the h-th position in hyperarc D), or at levels n− 1 (thus of the form ιA( j)) or n+ 1 (at the

k-th position in hyperarc C). As argued before, p(Bi)A, p(Bi,D j)A, ←−p (Bi,A j), and −→p (Bi,Ck)A can be

computed directly in R2[A], obtained from HA, HB, and HE for all E ∈ Succ(A)∪Succ(B).

Example 3.3. We compute these probabilities on Example 2.2: p(A2)A = a, p(A1,A2)A = a,←−p (A2,A1)=
d and −→p (A1,A2)A = 0.
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3.3.2 Computation of P(v0 |=V1 UV2)

Theorem 3.4. The D(Bi,A j)’s and W(Bi)A’s satisfy the following equations:

D(Bi,A j) =
←−p (Bi,A j)+∑

Dh

p(Bi,Dh)A ·D(Dh,A j)+∑
Ck

−→p (Bi,Ck)A ·∑
Bℓ

D(Ck,Bℓ) ·D(Bℓ,A j) (1)

W(Bi)A = p(Bi)A +∑
Dh

p(Bi,Dh)A ·W(Dh)A +∑
Ck

−→p (Bi,Ck)A

(

W(Ck)B +∑
B j

D(Ck,B j) ·W(B j)A

)

. (2)

Moreover, if we add the following constraints:

• if Bi /∈ (V1 \V2) then D(Bi,A j) = 0 for every A j, and

• if Bi ∈V2 then W(Bi)A = 1, and if Bi /∈ (V1∪V2) then W(Bi)A = 0;

the D(Bi,A j)’s and W(Bi)A’s form the least solution of this system of polynomial equations.

Proof. The correctness of Equations 1 and 2 is proved by partitioning the set of paths issued from vertex

v with Can(v) = (B, i)A.

Precisely, concerning Equation 1, any path from v with Can(v) = (B, i)A to v′ = ιA( j) (and Lev(v′) =
Lev(v)−1) satisfying GV1 \V2 falls in exactly one of the following cases:

• either it goes directly from v to v′ without leaving v’s level;

• or it reaches vertex v′′ with Can(v′′) = (D,h)A and Lev(v′′) = Lev(v), and then goes from v′′ to v′;

• or it reaches some vertex v′′ with Can(v′′) = (C,k)B and Lev(v′′) = Lev(v)+1, and then returns to

v’s level at vertex v(3) with Can(v(3)) = (B, ℓ)A and from there finally reaches v′.

This case distinction is illustrated on Figure 3.1 where plain arrows represent paths in R2[A] (as presented

earlier) and dotted arrows represent recursive probabilities to decrease level.

A

A j

B

Bi

BℓBℓ

D

DhDh

C

CkCk←−p (Bi,A j)

−→p (Bi,Ck)

p(Bi,Dh)

D(Ck,Bℓ)

D(Dh,A j)

D(Bℓ,A j)

HA

HB

Figure 3.1: Illustration of Equation (1) for D(Bi,A j).

For Equation 2, the reasoning is similar. Any path issued from v satisfying V1 UV2 without visiting

vertices of level smaller than Lev(v):
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• either satisfies V1 UV2 without visiting any other non-terminals (and hence at v’s level)

• or reaches a vertex v′ with Can(v′) = (D,h)A and Lev(v′) = Lev(v) and from then on satisfies

V1 UV2 without decreasing level

• or goes to vertex v′ with Can(v′) = (C,k)B and Lev(v′) = Lev(v)+1, and from there either satisfies

V1 UV2 without going back to verticesat v’s level, or reaches some v′′ with Can(v′′) = (B, ℓ)A and

Lev(v′′) = Lev(v) and from v′′ satisfy V1 UV2 without decreasing level.

These partitions of the set of paths issued from vertex v with Can(v) = (B, i)A justify Equations 1 and 2.

The system of equations defines an operator F : [0,1]n→ [0,1]n where n is the number of variables

appearing in the system. The valuation F (ν) of the variables is obtained by evaluating each equation

the right-hand side where each variable is substituted with its value in ν . This operator is monotonic

and continuous, and hence admits a unique least fixed-point, which is eventually reached by iterating

F on the null-valuation which assigns 0 to all variables. Note that the convergence towards the least

fixed-point might require infinitely many iterations.

To prove that the D(Bi,A j)’s and W(Bi)’s form the least solution of the system, we consider the

probabilities approximated by truncating the paths at length k. Precisely, let D(Bi,A j)
k be the probability-

mass of D(Bi,A j) restricted to paths of length at most k, ; similarly let W(Bi)
k
A be the probability-mass

of paths of length at most k in W(Bi)A. As k tends to infinity, those probabilities tend to D(Bi,A j) and

W(Bi)A, respectively. It is thus sufficient to prove that, for any k ∈ N, D(Bi,A j)
k and W(B j)A are no

greater than the least solution of the system. This is easily done by induction on k.

Recall that our goal is to compute P(v0 |= V1 UV2). This probability can be expressed using the

D(Bi,A j)’s and W(Bi)A’s:

P(v0 |=V1 UV2) = p(v0)Z + ∑
Ai∈Succ(Z)

−→p (v0,Ai)Z W(Ai)Z, (3)

where

• p(v0)Z is the probability in HZ from v0 to fulfill V1 UV2 without visiting any vertex v′ with Can(v′)=
(A, i)Z for some A ∈ Succ(Z);

• −→p (v0,Ai)Z is the probability in HZ from v0 to v′ with Can(v′) = (A, i)Z while satisfying G (V1 \V2)
and without visiting any vertex v′′ such that Can(v′′) = (B, j)Z (for some B∈ Succ(Z)) in between.

Example 3.5. We illustrate the computation of P(v0 |=V1 UV2) on our running example. Since Can(v0)=
(A,1)Z and v0 /∈ V2, p(v0)Z = 0 and −→p (v0,A1) = 1. From Equation 3 we deduce P(v0 |= V1 UV2) =
W(A1)Z . Let us detail some steps of the computation.

W(A1)Z = aW(A2)Z +a
(

W(A1)A +D(A1,A1)W(A1)Z +D(A1,A2)W(A2)Z

)

= aW(A1)A +aD(A1,A1)W(A1)Z,

since W(A2)Z = 0. The probability W(A2)A is easily computed: W(A2)A = a. Then D(A1,A1) is the

least solution of a quadratic equation:

aD(A1,A1)
2−D(A1,A1)+ad = 0.

Letting that a = 1
2

and d = 1
4
, we get D(A1,A1) = 1−

√
3

2
. Finally

W(A1)Z =
aW(A1)A

1−aD(A1,A1)
=

a3

(1−a−aD(A1,A1))(1−aD(A1,A1))
W(A1)Z =

2

3
(2
√

3−3)≈ 0.31.
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Note that the exact computation of the solutions of the system may not always be performed. Indeed,

in general, the equations are polynomials (of arbitrary degree) in the variables. However, similarly as in

[8], approximate values for the solutions can be computed.

Theorem 3.6. Let P = (N,T,R,Z,µ) be a PHR-grammar, and v0 a vertex in HZ . For ρ ∈ Q∩ [0,1]
and ∼∈ {≤,<,≥,>}, it is decidable whether P(v0 |=V1 UV2)∼ ρ . Moreover, given 0 < λ < 1, one can

compute ρ1,ρ2 ∈Q such that ρ1 ≤ P(v0 |=V1 UV2)≤ ρ2, and ρ2−ρ1 ≤ λ .

Proof. Deciding P(v0 |=V1 UV2)∼ ρ is equivalent to deciding p(v0)Z +∑Ai∈Succ(Z)
−→p (v0,Ai)ZW(Ai)Z ∼

ρ . Using Equations 1 and 2, the decidability of the first order arithmetics of reals [12] yields the de-

cidability of our problem. An iterative application of the decision algorithm allows to compute in a

dichotomic way the desired approximations ρ1 and ρ2.

3.4 Undecidability of quantitative model checking

In this subsection, we give a proof of the undecidability of the exact quantitative PCTL model-checking

problem for PHR-grammars. Since PHR-grammars generalise probabilistic pushdown automata, this re-

sult is a consequence of the undecidability of quantitative PCTL model-checking for probabilistic push-

down automata [2]. We however adapt the proof presented in [2] to graph grammars, which, in our

opinion, enable a simpler exposition.

The undecidability is proved by a reduction of Post Correspondance Problem (PCP). Recall that an

instance of the PCP is a sequence of pairs of words ((ui,vi))i≤n over a fixed alphabet Σ, and the problem

is to determine whether there is an integer k, and a sequence (iℓ)ℓ≤k such that ui1ui2 . . .uik = vi1vi2 . . .vik .

The quantitative model-checking problem of PCTL for PHR-grammars is the following:

Instance: A PHR-grammar P , and a PCTL formula ϕ .

Question: Is ϕ valid on MP?

Theorem 3.7 ([2]). The quantitative model-checking problem of PCTL for PHR-grammars is undecid-

able.

Proof. This result is a consequence of [2] but we give here a direct proof. Let ((ui,vi))i≤n be a sequence

of pairs of words on Σ = {0,1}. From this instance of PCP, we define the following PHR-grammar:

P = (N,T,R,Z,µ), where:

• N = {Z}0∪{Newi | i≤ n}2;

• T = {s,green,red}1∪{a,b}2;

• µ(a) = 0.5,µ(b) = 1;

and the set R = (HB, ιB)B∈N of rewriting rules is depicted below:

HZ :

green

1

1

(Newi)i∈[n]

HNewi
:

ι(2)

ι(1)

s

Cui
(|ui|) Cui

(2) Cui
(1) Cui

(0)

Cvi
(|vi|) Cvi

(2) Cvi
(1) Cvi

(0)

(Newi)i∈[n]
0.5

0.5

0.5

0.5

0.5

0.5

0.5 0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5 0.5
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Colours green, and red label vertices as follows. For each i≤ n, k ≤ |ui|, and k′ ≤ |vi|,

Cui
(k) =

{

green if ui(k) = 1

red if ui(k) = 0
, Cvi

(k′) =

{

green if vi(k
′) = 0

red if vi(k
′) = 1

Consider the following PCTL formula:

ϕ0 = S∧ (ttU = 1
2 Green)

where Green and S are atomic propositions corresponding to vertices labelled respectively by green and

s, terminals of arity 1. We claim that ϕ0 is valid on MP if and only if there is a solution to the Post

instance ((ui,vi))i≤n.

In the infinite graph generated by P , each vertex labelled s is connected to the origin (labelled green

in HZ) via a sequence of ui’s on the lower branch, and of vi’s on the upper branch (with the same indices).

Let I =(I0, I1, · · · , Im) be a sequence of indices in {1, · · · ,n}, and consider vI the s-vertex corresponding to

this sequence. The probability to reach red from vI is the following: P(vI |= ttU Red) = 1
2
(upath+vpath)

with

upath = ∑
j≤m

∑
k≤|u j|

1

2(∑ℓ< j|uIℓ
|)+k

(u j(k) = 0) and vpath = ∑
j≤m

∑
k′≤|v j|

1

2(∑ℓ< j|vIℓ
|)+k

(v j(k
′) = 1).

The only situation where P(vI |= ttU Red) = 1
2

(and hence P(vI |= ttU Green) = 1
2
) occurs when the

same sequence of letters appear in upath and vpath (from the unicity of the binary expansion).

4 Conclusion

In this paper we introduced probabilistic regular graphs, as graphs generated by graph grammars where

terminal arcs are labelled with probabilities. Results concerning the model-checking of probabilistic

pushdown automata extend to this context. Precisely, both the approximate PCTL and qualitative PCTL

model checking problems are decidable, whereas the exact quantitative model-checking problem is un-

decidable.

We believe that our model of PHR-grammars offers a major benefit compared to pushdown systems:

it focuses on structural aspects whereas configurations graphs of pushdown automata emphasise com-

binatorial aspects. Furthermore in order to identify classes of infinite state systems with a decidable

quantitative PCTL model checking we believe that structural restrictions on the grammar might prove

worth studying. A natural extension of our work is to extend the positive results to graphs where infinite

in-degree in allowed. Another research direction is to try to climb up the Caucal hierarchy, like [4], and

pursue our work on higher-order pushdown systems.

References
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