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Abstract. We consider the model checking problem for probabilistic pushdown automata
(pPDA) and properties expressible in various probabilistic logics. We start with properties
that can be formulated as instances of a generalized random walk problem. We prove that
both qualitative and quantitative model checking for this class of properties and pPDA
is decidable. Then we show that model checking for the qualitative fragment of the logic
PCTL and pPDA is also decidable. Moreover, we develop an error-tolerant model checking
algorithm for PCTL and the subclass of stateless pPDA. Finally, we consider the class of
ω-regular properties and show that both qualitative and quantitative model checking for
pPDA is decidable.

1. Introduction

Probabilistic systems can be used for modeling systems that exhibit uncertainty, such
as communication protocols over unreliable channels, randomized distributed systems, or
fault-tolerant systems. Finite-state models of such systems often use variants of probabilistic
automata whose underlying semantics is defined in terms of homogeneous Markov chains,
which are also called “fully probabilistic transition systems” in this context. For fully
probabilistic finite-state systems, algorithms for various (probabilistic) temporal logics like
LTL, PCTL, PCTL∗, probabilistic µ-calculus, etc., have been presented in [LS82, HS84,
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CC© Creative Commons

http://creativecommons.org/about/licenses
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Var85, CY88, HJ94, ASB+95, CY95, HK97, CSS03]. As for infinite-state systems, most
works so far considered probabilistic lossy channel systems [IN97] which model asynchronous
communication through unreliable channels [BE99, ABIJ05, AR03, BS03]. A notable recent
result is the decidability of quantitative model checking of liveness properties specified by
Büchi-automata for probabilistic lossy channel systems [Rab03]. In fact, this algorithm is
error tolerant in the sense that the quantitative model checking is solved only up to an
arbitrarily small (but non-zero) given error.

In this paper we consider probabilistic pushdown automata (pPDA), which are a natural
model for probabilistic sequential programs with possibly recursive procedure calls. There is
a large number of results about model checking of non-probabilistic PDA or similar models
(see for instance [AEY01, BS97, EHRS00, Wal01]), but the probabilistic extension has so
far not been considered. As a related work we can mention [MO98], where it is shown
that a restricted subclass of pPDA (where essentially all probabilities for outgoing arcs are
either 1 or 1/2) generates a richer class of languages than non-deterministic PDA. Another
work [AMP99] shows the equivalence of pPDA and probabilistic context-free grammars.
There are also recent results of [BKS05, EY05, EY] which are directly related to the results
presented in this paper. A detailed discussion is postponed to Section 6.

Here we consider model checking problems for pPDA and its natural subclass of stateless
pPDA denoted pBPA1 and various probabilistic logics. We start with a class of properties

. . . 8?9>:=;< 8?9>:=;< 8?9>:=;< . . .
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Figure 1: Bernoulli random walk as a pBPA

that can be specified as a generalized random walk problem. To get a better intuition
about this class of problems, realize that some random walks can easily be specified by
pBPA systems. For example, consider a pBPA with just three stack symbols Z, I,D and

transitions Z
x→ IZ, Z

1−x→ DZ, I
x→ II, I

1−x→ ε, D
1−x→ DD, and D

x→ ε, where x ∈ [0, 1]

and ε denotes the empty string. A transition X
x→ w means that if the current top stack

symbol is X,then it can be replaced by w with probability x. The transition graph of this
pBPA with Z as initial stack content (see Fig. 1) is the well-known Bernoulli walk. A typical
question examined in the theory of random walks is “Do we eventually revisit a given state
(with probability one)?”, or more generally “What is the probability of reaching a given
state from another given state?” For example, it is a standard result that the state Z of
Fig. 1 is revisited with probability 1 iff x = 1/2. This simple example indicates that answers
to qualitative questions about pPDA (i.e., whether something holds with probability 1 or
0) depend on the exact probabilities of individual transitions. This is different from finite-
state systems where qualitative properties depend only on the topology of a given finite-state
Markov chain [HJ94].

The generalized random walk problem is formulated as follows: Let C1 and C2 be subsets
of the set of states of a given Markov chain, and let s be a state of C1. What is the probability
that a run initiated in s hits a state of C2 via a path leading only through the states of C1?

1This is a standard notation adopted in concurrency theory. The subclass of stateless PDA corresponds
to a natural subclass of ACP known as Basic Process Algebra [BW90].
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Let us denote this probability by P(s, C1 U C2). The problem of computing P(s, C1 U C2)
has previously been considered (and solved) for finite-state systems, where this probability
can be computed precisely [HJ94, CY95]. In Section 3, we propose a solution for pPDA
applicable to those sets C1, C2 which are regular, i.e., recognizable by finite-state automata
(realize that pPDA configurations can be written as words of the form pα, where p is
a control state and α a sequence of stack symbols). More precisely, we show that the
problem whether P(s, C1 U C2) ∼ ̺, where ∼ ∈ {≤, <,≥, >,=} and ̺ ∈ [0, 1], is decidable.
Interestingly, this is achieved without explicitly computing the probability P(s, C1 U C2).
Moreover, for an arbitrary precision 0 < λ < 1 we can compute rational lower and upper
approximations Pℓ,Pu ∈ [0, 1] such that Pℓ ≤ P(s, C1 U C2) ≤ Pu and Pu − Pℓ ≤ λ.

In Section 4, we consider the model checking problem for pPDA and the logic PCTL.
This is a more general problem than the one about random walks (the class of properties
expressible in PCTL is strictly larger). In Section 4.1, we give a model checking algorithm
for the qualitative fragment of PCTL and pPDA processes. For general PCTL formulas and
pBPA processes, an error tolerant model checking algorithm is developed in Section 4.2.
The question whether this result can be extended to pPDA is left open.

Finally, in Section 5 we prove that both qualitative and quantitative model checking for
the class of ω-regular properties is decidable for pPDA. In [EKM04], it was shown that the
qualitative and quantitative model-checking problem is decidable for pPDA and a subclass
of ω-regular properties that are definable by deterministic Büchi automata. Later, it has
been observed in [BKS05] that the technique can easily be generalized to Muller automata,
and thus the decidability result was extended to all ω-regular properties (in [BKS05], some
complexity results were also presented). The construction presented in this paper is a
slightly generalized and polished version of the algorithms given in [EKM04, BKS05], which
can now be seen as instances of a more abstract result.

In Section 6 we conclude by remarks on open problems and recent related work of
[BKS05, EY05, EY].

2. Preliminary Definitions

Definition 2.1. A probabilistic transition system is a triple T = (S,→,Prob) where S is a
finite or countably infinite set of states, → ⊆ S × S is a transition relation, and Prob is a
function which to each transition s → t of T assigns its probability Prob(s → t) ∈ (0, 1] so
that for every s ∈ S we have

∑

s→t

Prob(s → t) ∈ {0, 1}

The sum above is 0 iff s does not have any outgoing transitions.

In the rest of this paper we also write s
x→ t instead of Prob(s → t) = x. A path in

T is a finite or infinite sequence w = s0; s1; · · · of states such that si → si+1 for every i.
We also use w(i) to denote the state si of w (by writing w(i) = s we implicitly impose the
condition that the length of w is at least i+1). A run is a maximal path, i.e., a path which
cannot be prolonged. The sets of all finite paths, all runs, and all infinite runs of T are
denoted FPath , Run, and IRun, respectively2. Similarly, the sets of all finite paths, runs,
and infinite runs that start in a given s ∈ S are denoted FPath(s), Run(s), and IRun(s),
respectively.

2In this paper, T is always clear from the context.
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Each w ∈ FPath determines a basic cylinder Run(w) which consists of all runs that
start with w. To every s ∈ S we associate the probabilistic space (Run(s),F ,P) where
F is the σ-field generated by all basic cylinders Run(w) such that w starts with s, and
P : F → [0, 1] is the unique probability function such that P(Run(w)) = Πm−1

i=0 xi where

w = s0; · · · ; sm and si
xi→ si+1 for every 0 ≤ i < m (if m = 0, we put P(Run(w)) = 1).

2.1. The Logic PCTL. PCTL, the probabilistic extension of CTL, was defined in [HJ94].
Let Ap = {a, b, c, . . . } be a countably infinite set of atomic propositions. The syntax of
PCTL3 is given by the following abstract syntax equation:

ϕ ::= tt | a | ¬ϕ | ϕ1 ∧ ϕ2 | X∼̺ϕ | ϕ1 U ∼̺ϕ2

Here a ranges over Ap, ̺ ∈ [0, 1], and ∼ ∈ {≤, <,≥, >}. Let T = (S,→,Prob) be a
probabilistic transition system. For all s ∈ S, all C, C1, C2 ⊆ S, and all k ∈ N0, let

• Run(s,XC) = {w ∈ Run(s) | w(1) ∈ C}
• Run(s, C1 U C2) = {w ∈ Run(s) | ∃i ≥ 0 : w(i) ∈ C2 and w(j) ∈ C1 for all 0 ≤ j < i}
• FPathk(s, C1 U C2) = {s0; · · ·; sℓ ∈ FPath(s) |0 ≤ ℓ ≤ k, sℓ ∈ C2 and sj ∈ C1rC2 for all 0 ≤
j < ℓ}

• FPath(s, C1 U C2) =
⋃∞

k=0 FPathk(s, C1 U C2)

The set Run(s,XC) is clearly P-measurable, and the same holds for Run(s, C1 U C2) because

P(Run(s, C1 U C2)) =
∑

w∈FPath(s,C1 U C2)

P(Run(w)).

In the rest of this paper, we will usually write P(s,XC) and P(s, C1 U C2) instead of
P(Run(s,XC)) and P(Run(s, C1 U C2)), respectively.

Let ν : Ap → 2S be a valuation. The denotation of a PCTL formula ϕ over T w.r.t. ν,
denoted [[ϕ]]ν , is defined inductively as follows:

[[tt]]ν = S

[[a]]ν = ν(a)

[[¬ϕ]]ν = S r [[ϕ]]ν

[[ϕ1 ∧ ϕ2]]
ν = [[ϕ1]]

ν ∩ [[ϕ2]]
ν

[[X∼̺ϕ]]ν = {s ∈ S | P(s,X [[ϕ]]ν) ∼ ̺}
[[ϕ1 U ∼̺ϕ2]]

ν = {s ∈ S | P(s, [[ϕ1]]
ν U [[ϕ2]]

ν) ∼ ̺}
As usual, we write s |=ν ϕ instead of s ∈ [[ϕ]]ν .

The qualitative fragment of PCTL is obtained by restricting the allowed operator/
number combinations to ‘≤ 0’ and ‘≥ 1’, which will be also written as ‘= 0’ and ‘= 1’,
resp. (Observe that ‘< 1’, ‘> 0’ are definable from ‘≤ 0’, ‘≥ 1’, and negation; for example,
aU <1b ≡ ¬(aU ≥1b).)

2.2. Probabilistic PDA.

Definition 2.2. A probabilistic pushdown automaton (pPDA) is a tuple ∆ = (Q,Γ, δ,Prob)
where Q is a finite set of control states, Γ is a finite stack alphabet, δ ⊆ Q × Γ × Q × Γ∗

is a finite transition relation (we write pX → qα instead of (p,X, q, α) ∈ δ), and Prob is a

3For simplicity we omit the bounded ‘until’ operator of [HJ94].
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function which to each transition pX → qα assigns its probability Prob(pX → qα) ∈ (0, 1]
and satisfies

∑

pX→qα Prob(pX → qα) ∈ {0, 1} for all p ∈ Q and X ∈ Γ.
A pBPA is a pPDA with just one control state. Formally, a pBPA is understood as a

triple ∆ = (Γ, δ,Prob) where δ ⊆ Γ × Γ∗.

In the rest of this paper we adopt a more intuitive notation, writing pX
x→ qα instead

of Prob(pX → qα) = x. A configuration of ∆ is an element of Q × Γ∗. The set of all
configurations of ∆ is denoted by C(∆). We also assume (w.l.o.g.) that if pX → qα ∈ δ,
then |α| ≤ 2. It is easy to transform an arbitrary pair (∆, F ), where ∆ is a pPDA and F is a a
PCTL formula or ω-property, into another pair (∆′, F ′) such that ∆′ satisfies the assumption
above and ∆ satisfies F if and only if ∆′ satisfies F ′. Moreover, the transformation takes

linear time. For instance, a transition rule pX
x→ qY ZW of ∆ is transformed into two

transitions pX
x→ p′Y ′W and p′Y ′ 1→ qY Z in ∆′, where p′, Y ′ are a fresh control state and

a fresh stack symbol, respectively.
To ∆ we associate the probabilistic transition system T∆ where C(∆) is the set of states

and the probabilistic transition relation is determined as follows: pXβ
x→ qαβ is a transition

of T∆ iff pX
x→ qα is a transition of ∆ and β ∈ Γ∗.

The model checking problem for pPDA configurations and PCTL formulate (i.e., the
question whether pα |=ν ϕ for given pα, ϕ, and ν) is clearly undecidable for general valua-
tions. Therefore, we restrict ourselves to regular valuations which to every a ∈ Ap assign a
regular set of configurations:

Definition 2.3. A ∆-automaton is a triple A = (St , γ,Acc) where St is a finite set of states
s.t. Q ⊆ St , γ : St ×Γ → St is a (total) transition function, and Acc ⊆ St a set of accepting
states.

The function γ is extended to the elements of Γ∗ in the standard way. Each ∆-
automaton A determines a set C(A) ⊆ C(∆) given by pα ∈ C(A) iff γ(p, αR) ∈ Acc.
Here αR is the reverse of α, i.e., the word obtained by reading α from right to left.

We say that a set C ⊆ C(∆) is regular iff there is a ∆-automaton A such that C = C(A).

In other words, regular sets of configurations are recognizable by finite-state automata
which read the stack bottom-up (the bottom-up direction was chosen just for technical
convenience).

An important technical step is that one can reduce the model-checking problem for reg-
ular valuations to the problem for simple valuations that assign to each atomic proposition
a simple set of configurations. Loosely speaking, a set of configurations is simple if we can
decide whether a configuration belongs to the set by inspecting only its control state and
its top stack symbol.

Definition 2.4. A set of configurations C ⊆ C(∆) is simple if there is a set G ⊆ Q×(Γ∪{ε})
such that for each pα ∈ C(∆) we have that pα ∈ C iff either α = ε and pε ∈ G, or α = Xβ
and pX ∈ G.

The reason why we only need to consider simple valuations is a bisimilarity property.
Let C1, · · · , Ck ⊆ C(∆) be regular sets of configurations, and assume that all we can observe
from a configuration is whether it belongs to Ci for every 1 ≤ i ≤ k. Loosely speaking,
Lemma 2.5 below states that we can effectively construct another pPDA ∆′ and simple sets
of configurations C′

1, · · · , C′
k ⊆ C(∆) such that ∆ and ∆′ are bisimilar with respect to these

observables (in the usual definition of bisimilarity one observes transitions between config-
urations, while here we observe the configurations themselves, but otherwise the notion is



6 J. ESPARZA, A. KUČERA, AND R. MAYR

the same). The idea of the construction is to take ∆-automata A1, · · · ,Ak accepting the
sets C1, · · · , Ck, and construct ∆′ such that the following holds: If the current configuration
of ∆ is pα, then in the simulating configuration of ∆′ the topmost stack symbol stores the
states reached by the ∆-automata after reading αR from the initial state p. Although this
construction is standard (see, e.g., [EKS03]), we include an explicit proof for the sake of
completeness.

Lemma 2.5. For each pPDA ∆ = (Q,Γ, δ,Prob) and regular sets C1, · · · , Ck ⊆ C(∆) there
effectively exists a pPDA ∆′ = (Q,Γ′, δ′,Prob ′), simple sets C′

1, · · · , C′
k ⊆ C(∆′), and an

injective mapping G : C(∆) → C(∆′) such that for each pα ∈ C(∆) the following conditions
are satisfied:

• for each 1 ≤ j ≤ k we have pα ∈ Cj iff G(pα) ∈ C′
j;

• if pα
x→ qβ, then G(pα)

x→ G(qβ);

• if G(pα)
x→ s for some s ∈ C(∆′), then there is pα

x→ qβ such that G(qβ) = s.

Moreover, if C ⊆ C(∆′) is regular, then G−1(C) is also regular.

Proof. For each 1 ≤ i ≤ k, let Ai = (St i, γi,Acci) be a ∆-automaton such that C(Ai) = Ci.

Let States =
∏k

i=1

∏

p∈Q St i. For given ~s ∈ States , 1 ≤ i ≤ k, and p ∈ Q, we denote by

~s(i, p) the component of ~s which corresponds to i and p.
We put Γ′ = Γ × States . The transition function δ′ and probabilities Prob ′ are defined

as follows:

• if pX
x→ qε ∈ δ, then p(X,~s)

x→ qε for each ~s ∈ States ;

• if pX
x→ qY ∈ δ, then p(X,~s)

x→ q(Y,~s) for each ~s ∈ States ;

• if pX
x→ qY Z ∈ δ, then p(X,~s)

x→ q(Y,~t)(Z,~s) for all ~s,~t ∈ States such that γi(~s(i, r), Z) =
~t(i, r) for all 1 ≤ i ≤ k and r ∈ Q.

So, the ∆-automata A1, · · · ,Ak are simulated “on-the-fly” by storing the vector of current
states directly in the stack. Hence, the information whether a given Ai accepts the current
configuration is available in the topmost stack symbol. For every 1 ≤ i ≤ k, the underlying
set Gi of C′

i (see Definition 2.4) is defined by

Gi = {p(X,~s) | γi(~s(i, p),X) ∈ Acci} ∪ {pε | pε ∈ Ci}
The function G is defined by G(pε) = pε, and G(pX1 · · ·Xk) = p(X1, ~s1) · · · (Xk, ~sk), where
~sk(i, q) = q, and ~sj(i, q) = γi(~sj+1(i, q),Xj+1) for all 1 ≤ j < k. It follows immediately
from the definition of δ′ and Prob ′ that the parts of T∆ and T∆′ which are reachable from
pα and G(pα) are isomorphic (for every pα ∈ C(∆)).

Let C ⊆ C(∆′) be a regular set of configurations. Since some configurations of C can
be “inconsistent” in the sense that the vectors of states that are stored together with the
original stack symbols do not correspond to a valid computation of the Ai automata, the
set G−1(C) is not a simple projection of C “forgetting” the vectors of states from the stack
symbols. Fortunately, G(C(∆)) is (obviously) a regular set, so we can construct a ∆′-
automaton recognizing the set C ∩ G(C(∆)) and apply the mentioned projection.

3. Random Walks on pPDA Graphs

In this section we address the following problem. Let ∆ be a pPDA, let p1α1 be an
initial configuration, let C1, C2 be two simple sets of configurations, and let ρ be a threshold
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probability. Is the probability of executing a run p1α1; p2α2; p3α3 · · · that satisfies C1 U C2,
denoted by P(p1α1, C1 U C2), at least ρ? We show that the problem is decidable.

The plan of the section is as follows. First, we show in Lemma 3.4 that P(p1α1, C1 U C2)
is equal to a polynomial expression in the following probabilities:

• Let pX be an initial configuration (notice that there is only one symbol on the stack),
and let q be a control state q. The probability of reaching qε visiting only configurations
of C1 r C2 along the way is denoted by [pXq]

• Let pX be an initial configuration and let τ be a threshold probability. The probability
of reaching some configuration of C2 with nonempty stack, visiting only configurations of
C1 along the way, is denoted by [pX•].

Second, in Theorem 3.5, we show that the probabilities [pXq] and [pX•] are the least
solution of a system of quadratic equations. So our original problem reduces to determining
whether a polynomial expression on this least solution has at least the value ρ. Finally, we
observe in Theorem 3.7 that this question can be reduced to deciding the truth of a formula
in the first-order arithmetic of the reals (i.e., in the theory (R,+, ∗,≤)). Since this theory
is known to be decidable [Tar51], our original question is decidable.

For the rest of this section, let us fix a pPDA ∆ = (Q,Γ, δ,Prob) and two simple sets
C1, C2 ⊆ C(∆). Let G1, G2 ⊆ Q × (Γ ∪ {ε}) be the sets associated to C1, C2 in the sense of
Definition 2.4.

Definition 3.1. To simplify our notation, we adopt the following conventions:

• For each C ⊆ C(∆), let C• = C r (Q×{ε}). Observe that if C is simple, then so is C•.
• For every C ⊆ C(∆) and every β ∈ Γ∗, the symbol Cβ denotes the set {pαβ | pα ∈ C}.
• For all p, q ∈ Q and X ∈ Γ, we use [pXq] to abbreviate P(pX, C1rC2 U {qε}), and [pX•]

to abbreviate P(pX, C1 U C•
2).

• Let A be a set of finite paths which end in the same state t, and let B a set of finite or
infinite paths that start in t. Then the symbol A⊙B denotes the set of paths {v;w | v ∈
A, t;w ∈ B}.

The proof of Lemma 3.4. our first milestone, requires the following two auxiliary results:

Lemma 3.2. Let T = (S,→,Prob) be a probabilistic transition system. Let s, t ∈ S and
C1, C2 ⊆ S. Further, let A = FPath(s, (C1rC2)U {t}) and B = FPath(t, C1 U C2). Then

∑

w∈A⊙B

P(Run(w)) =
∑

w∈A

P(Run(w)) ·
∑

w∈B

P(Run(w)).

Proof. Immediate.

Lemma 3.3. For all pα ∈ C(∆) and β ∈ Γ∗ we have that P(pα, C1 U C2) is equal to
P(pαβ, C•

1β U C2β).

Proof. For every finite path w = p1α1; · · · ; pnαn of FPath(pα), let w+β denote the finite
path p1α1β; · · · ; pnαnβ of FPath(pαβ). Realize that P(Run(w)) = P(Run(w+β)), because
w and w+β execute the same transitions. One can easily verify that w ∈ FPath(pα, C1 U C2)
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iff w+β ∈ FPath(pαβ, C•
1β U C2β). From this we get

P(pα, C1 U C2) =
∑

w∈FPath(pα,C1 U C2)

P(Run(w))

=
∑

w∈FPath(pαβ,C•
1
β U C2β)

P(Run(w))

= P(pαβ, C•
1β U C2β)

Now we show how to compute P(pX1 · · ·Xn, C1 U C2) from the finite family of all [pXq],
[pX•] probabilities. First, realize that

P(pX1 · · ·Xn, C1 U C2) = [pX1•] +
∑

q∈Q

[pX1q] · P(qX2 · · ·Xn, C1 U C2)

The meaning of this equation is intuitively clear. If we repeatedly expand the probabilities
of the form P(qXj · · ·Xn, C1 U C2) in the above equation (until j becomes n), we obtain the
equation presented in the following lemma:

Lemma 3.4. For each pX1 · · ·Xn ∈ C(∆) where n ≥ 0 we have that P(pX1 · · ·Xn, C1 U C2)
is equal to

n
∑

i=1

∑

(q1,··· ,qi)∈Qi

where p=q1

[qiXi•] ·
i−1
∏

j=1

[qjXjqj+1] +
∑

(q1,··· ,qn+1)∈Qn+1

where p=q1 and qn+1ε∈C2

n
∏

j=1

[qjXjqj+1]

with the convention that empty sum is equal to 0 and empty product is equal to 1.

Proof. By induction on n. For n = 0 we have that P(pε, C1 U C2) is equal either to 1 or 0,
depending on whether pε belongs to C2 or not, resp. Now let n ≥ 1, and let β denote the
sequence X2 · · ·Xn. The set Run(pX1β, C1 U C2) is equal to

⊎

w∈FPath(pX1β,C1 U C2)

Run(w)

Let C′ = {qαβ | q ∈ Q,α ∈ Γ+}. We have that

FPath(pX1β, C1 U C2) = FPath(pX1β, C1∩C′ U C2∩C′) ⊎
⊎

q∈Q

FPath(pX1β, (C1rC2)∩C′ U {qβ}) ⊙ FPath(qβ, C1 U C2)

Now observe that for every simple set C ⊆ C(∆) we have that C ∩ C′ = C•β. Hence, the
above equation can be rewritten as follows:

FPath(pX1β, C1 U C2) = FPath(pX1β, C•
1β U C•

2β) ⊎
⊎

q∈Q

FPath(pX1β, (C1rC2)
•β U {qβ}) ⊙ FPath(qβ, C1 U C2)

Using Lemma 3.3 and Lemma 3.2, we obtain that

P(pX1β, C1 U C2) = P(pX1, C1 U C•
2) +

∑

q∈Q P(pX1β, (C1rC2)U {qβ}) · P(qβ, C1 U C2)
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This can also be written as

P(pX1β, C1 U C2) = [pX1•] +
∑

q∈Q

[pX1q] · P(qβ, C1 U C2)

Now it suffices to apply induction hypothesis to P(qβ, C1 U C2) and restructure the resulting
expression.

Now we show that the probabilities [pXq], [pX•] form the least solution of an effectively
constructible system of quadratic equations. This can be seen as a generalization of a similar
result for finite-state systems [HJ94, CY95]. In the finite-state case, the equations are linear
and can be further modified so that they have a unique solution (which is then computable,
e.g., by Gauss elimination). In the case of pPDA, the equations are not linear and cannot be
generally solved by analytical methods. The question whether the equations can be further
modified so that they have a unique solution is left open; we just note that the method used
for finite-state systems is insufficient (this is demonstrated by Example 3.6).

Let V = {〈pXq〉, 〈pX•〉 | p, q ∈ Q,X ∈ Γ} be a set of “variables”. Let us consider the
system of recursive equations constructed as follows:

• if pX 6∈ G1rG2, then 〈pXq〉 = 0 for each q ∈ Q; otherwise, we put

〈pXq〉 =
∑

pX
x
→rY Z

x ·
∑

t∈Q

〈rY t〉 · 〈tZq〉 +
∑

pX
x
→rY

x · 〈rY q〉 +
∑

pX
x
→qε

x

• if pX ∈ G2, then 〈pX•〉 = 1; if pX 6∈ G1 ∪G2, then 〈pX•〉 = 0; otherwise we put

〈pX•〉 =
∑

pX
x
→rY Z

x · (〈rY •〉 +
∑

t∈Q

〈rY t〉 · 〈tZ•〉) +
∑

pX
x
→rY

x · 〈rY •〉

The intuition behind these equations is easy to understand. For the sake of simplicity,
assume G1 = Q× Γ and G2 = ∅ (this corresponds to C1 = C(∆) and C2 = ∅). In this case,
we only have the two “long” equations. Consider the first one, the intuition for the second
one being similar. In order to reach qε from pX, the pPDA must make at least one move.

Since we assume than the transitions pX
x→ qα of a pPDA satisfy |α| ≤ 2, here are three

possible kinds of moves: moves that increase the stack length by one, moves that do not
change the stack length, and moves that decrease the stack length. The three summands in
the equations correspond to these three kinds of moves. Since no transition can be executed
when the stack is empty, the only way to reach qε by means of a length-decreasing move

is to apply a transition pX
x→ qε, if it exists (third summand). If the first transition is

length-keeping, i.e., of the form pX
x→ rY , then, after the transition, we must reach qε

from rY (second summand). Finally, if the first transition is of the form pX → rY Z, then
the pPDA must first go from rY Z to some configuration tZ along a path of configurations
having with Z as bottom stack symbol, and then from tZ to qε. Intuitively (see the next
theorem for the formal proof), the probability of reaching tZ from rY Z along such a path
is equal to the probability of reaching tε from rY , and so we get the first summand.

For given t ∈ [0, 1]| V |, p, q ∈ Q, and X ∈ Γ we use 〈pXq〉t and 〈pX•〉t to denote the
component of t which corresponds to the variable 〈pXq〉 and 〈pX•〉, respectively. The above
defined system of equations determines a unique operator F : [0, 1]| V | → [0, 1]| V | where F(t)
is the tuple of values obtained by evaluating the right-hand sides of the equations where all
〈pXq〉 and 〈pX•〉 are substituted with 〈pXq〉t and 〈pX•〉t, respectively.
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Theorem 3.5. The operator F has the least fixed-point µ. Moreover, for all p, q ∈ Q and
X ∈ Γ we have that 〈pXq〉µ = [pXq] and 〈pX•〉µ = [pX•].

Proof. Since F is monotonic and continuous, it has the least fixed point µ =
∨∞

k=0 Fk(~0),

where ~0 is the tuple of zeros. One can readily check that the tuple π of all [pXq] and
[pX•] probabilities forms a solution of the above system; this is done just by partitioning
the associated sets of runs into appropriate disjoint subsets similarly as in the proof of
Lemma 3.4. Hence, µ ≤ π. To prove that also π ≤ µ, we approximate the [pXq] and [pX•]
probabilities in the following way: For each k ∈ N0 we define

• [pXq]k =
∑

w∈FPathk(pX,C1rC2 U {qε})

P(Run(w))

• [pX•]k =
∑

w∈FPathk(pX,C1 U C•
2
)

P(Run(w))

Let πk be the tuple of all [pXq]k and [pX•]k probabilities. Clearly π = limk→∞ πk. By
induction on k we prove that πk ≤ µ for each k ∈ N0, hence also π ≤ µ as needed.

The base case (k = 0) follows immediately. We show that if [pXq]k ≤ 〈pXq〉µ and

[pX•]k ≤ 〈pXq〉µ, then also [pXq]k+1 ≤ 〈pXq〉µ and [pX•]k+1 ≤ 〈pXq〉µ. If pX 6∈ G1rG2,

then [pXq]k+1 = 〈pXq〉µ = 0. Otherwise, by applying the definitions we obtain

[pXq]k+1 =
∑

pX
x
→rY Z

x ·
∑

w∈FPathk(rY Z,C1rC2 U {qε})

P(Run(w))

+
∑

pX
x
→rY

x ·
∑

w∈FPathk(rY,C1rC2 U {qε})

P(Run(w))

+
∑

pX
x
→qε

x

and

〈pXq〉µ =
∑

pX
x
→rY Z

x ·
∑

t∈Q

〈rY t〉µ · 〈tZq〉µ +
∑

pX
x
→rY

x · 〈rY q〉µ +
∑

pX
x
→qε

x

Since
∑

w∈FPathk(rY,C1rC2 U {qε})

P(Run(w)) = [rY q]k,

we have
∑

w∈FPathk(rY,C1rC2 U {qε})

P(Run(w)) ≤ 〈rY q〉µ

by induction hypothesis. Further,
∑

pX
x
→rY Z

x ·
∑

w∈FPathk(rY Z,C1rC2 U {qε})

P(Run(w))

is surely bounded by
∑

pX
x
→rY Z

x ·
∑

t∈Q

[rY t]k · [tZq]k,
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which is bounded by
∑

pX
x
→rY Z

x ·
∑

t∈Q

〈rY t〉µ · 〈tZq〉µ

by induction hypothesis. To sum up, we have that [pXq]k+1 ≤ 〈pXq〉µ. The inequality

[pX•]k+1 ≤ 〈pX•〉µ is proved similarly.

Example 3.6. Let us consider the pBPA system ∆ of Fig. 1, and let C1 = Γ∗, C2 = {Z}.
Then we obtain the following system of equations (since ∆ has only one control state p, we
write 〈X, •〉 and 〈X, ε〉 instead of 〈pX•〉 and 〈pXp〉, resp.):

〈Z, •〉 = 1

〈Z, ε〉 = x〈I, ε〉〈Z, ε〉 + (1−x)〈D, ε〉〈Z, ε〉
〈I, •〉 = x(〈I, •〉 + 〈I, ε〉〈I, •〉)
〈I, ε〉 = x〈I, ε〉〈I, ε〉 + 1−x
〈D, •〉 = (1−x)(〈D, •〉 + 〈D, ε〉〈D, •〉)
〈D, ε〉 = (1−x)〈D, ε〉〈D, ε〉 + x

As the least solution we obtain the probabilities [Z, •] = 1, [Z, ε] = 0, [I, •] = 0, [I, ε] =
min{1, (1−x)/x}, [D, •] = 0, [D, ε] = min{1, x/(1−x)}. By applying Lemma 3.4 we further
obtain that, e.g., P(IIZ, C1 U C2) = [I, •]+ [I, ε] · ([I, •] + [I, ε] · [Z, •]) = min{1, (1−x)2/x2}.
2

In Example 3.6 it is possible to compute a closed form for the least solution of the
system of equations, but in general this is not true. However, many important properties
of the least solution are decidable, because the decision problem can be reduced to the
problem of deciding the truth of a formula in the first-order theory of the reals. For our
purposes, it suffices to consider the class of properties defined in the next theorem.

Theorem 3.7. Let Const = Q ∪ {[pXq], [pX•] | p, q ∈ Q and X ∈ Γ}, where Q is the set
of all rational constants. Let E1, E2 be expressions built over Const using ‘·’ and ‘+’, and
let ∼ ∈ {<,=}. It is decidable whether E1 ∼ E2.

Proof. We show that, due to Theorem 3.5, E1 ∼ E2 is effectively expressible as a closed
formula of (R,+, ∗,≤). Hence, the theorem follows from the decidability of first-order
arithmetic of reals [Tar51].

For all p, q ∈ Q and X ∈ Γ, let x(pXq), x(pX•), y(pXq), and y(pX•) be first order
variables, and let ~X and ~Y be the vectors of all x(pXq), x(pX•), and y(pXq), y(pX•)
variables, respectively. Let us consider the formula Φ constructed as follows:

∃ ~X : ~0 ≤ ~X ≤ ~1 ∧ ~X = F( ~X)

∧ (∀~Y : (~0 ≤ ~Y ≤ ~1 ∧ ~Y = F(~Y )) ⇒ ~X ≤ ~Y ))

∧ E1[ ~X/π] ∼ E2[ ~X/π]

Observe that the conditions ~X = F( ~X) and ~Y = F(~Y ) are expressible only using multipli-

cation, summation, and equality. The expressions E1[ ~X/π] and E2[ ~X/π] are obtained from
E1 and E2 by substituting all [pXq] and [pX•] with x(pXq) and x(pX•), respectively. It
follows immediately that E1 ∼ E2 iff Φ holds.
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Input: pX ∈ C(∆), 0 < λ < 1
Output: Pℓ, Pu

1: Pℓ := 0; Pu := 1;
2: for i = 1 to ⌈− log2 λ⌉
3: if [pX•] + ∑

qε∈C2
[pXq] ≥ (Pu − Pℓ)/2

4: then Pℓ := (Pu − Pℓ)/2
5: else Pu := (Pu − Pℓ)/2
6: fi

Figure 2: Computing Pℓ,Pu

An immediate consequence of Theorem 3.7 is the following:

Theorem 3.8. Let pα ∈ C(∆), ̺ ∈ Q ∩ [0, 1], ∼ ∈ {≤, <,≥, >} and 0 < λ < 1. It is
decidable whether P(pα, C1 U C2) ∼ ̺. Moreover, there effectively exist rational numbers
Pℓ,Pu such that Pℓ ≤ P(pα, C1 U C2) ≤ Pu and Pu − Pℓ ≤ λ.

Proof. We can assume w.l.o.g. that α = X for some X ∈ Γ. Note that P(pX, C1 U C2) ∼ ̺ iff
[pX•] + ∑

qε∈C2
[pXq] ∼ ̺ by Lemma 3.4. Hence, we can apply Theorem 3.7. The numbers

Pℓ,Pu are computable, e.g., by the algorithm of Fig. 2.

4. Model Checking PCTL for pPDAs

In this section we study the model-checking problem for PCTL formulas with regular
valuations and pPDA.

4.1. Qualitative Fragment of PCTL. We give a model checking algorithm for the qual-
itative fragment of PCTL, i.e., for the fragment in which only 0 and 1 are allowed as
probability thresholds.

Recall that in order to check if a CTL formula ϕ holds of a finite state system we
first recursively compute the sets of states that satisfy the subformulas of ϕ lying right
below ϕ in the syntax tree, and then we apply a semantic operator that gets these sets
of states as inputs and produces the set of states satisfying ϕ as output. In the case of a
PDA (no probabilities), these sets of states (they are now sets of configurations) can be
infinite. Therefore, in order to apply a similar algorithm it is necessary to prove that the
sets have a finite representation. This was done in [BEM97]: It was shown that in the case
of regular valuations the sets are always regular, and so can be finitely represented by, say,
finite automata. In this section we prove that the same property also holds for pPDA and
for the qualitative fragment of PCTL, and that the constructions showing the regularity of
the sets are effective.

By Lemma 2.5, we only need to show that if the sets of configurations satisfying the
subformulas of ϕ are simple, then the set of configurations satisfying ϕ is regular. We need
to consider four cases, corresponding to formulas of the form X=0ϕ, X=1ϕ, ϕ1 U =0ϕ2, and
ϕ1 U =1ϕ2. they are dealt with in Lemma 4.1, Lemma 4.2, and Lemma 4.3.

For the rest of this section we fix a pPDA ∆ = (Q,Γ, δ,Prob).

Lemma 4.1. Let C ⊆ C(∆) be a simple set. The sets {pα ∈ C(∆) | P(pα,XC) = 1} and
{pα ∈ C(∆) | P(pα,XC) = 0} are effectively regular.

Proof. Follows immediate from the fact that pα has only finitely many successors in the
probabilistic transition system associated to ∆..
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Lemma 4.2. Let C1, C2 ⊆ C(∆) be simple sets. The set {pα ∈ C(∆) | P(pα, C1 U C2) = 1}
is effectively regular.

Proof. Let R(pX) = {q ∈ Q | [pXq] > 0} for all p ∈ Q, X ∈ Γ. For each i ∈ N0 we define
the set Si ⊆ C(∆) inductively as follows:

• S0 = {qε | qε ∈ C2} ∪ {qXα | [qX•] = 1, α ∈ Γ∗}
• Si+1 = {pXβ | [pX•] +

∑

q∈R(pX)[pXq] = 1 and ∀q ∈ R(pX) : qβ ∈ Si}
Using Lemma 3.4, we can easily check that

⋃∞
i=0 Si = {pα ∈ C(∆) | P(pα, C1 U C2) = 1}.

To see that the set
⋃∞

i=0 Si is effectively regular, for each p ∈ Q we construct a finite
automaton Mp such that L(Mp) = {α ∈ Γ∗ | pα ∈ ⋃∞

i=0 Si}. A ∆-automaton A recognizing
the set

⋃∞
i=0 Si can then be constructed using standard algorithms of automata theory (in

particular, note that regular languages are effectively closed under reverse). The states of
Mp are all subsets of Q, {p} is the initial state, Γ is the input alphabet, the final states
are those T ⊆ Q where for every q ∈ T we have that qε ∈ C2 (in particular, note that ∅ is

a final state), and the transition function is given by T
X→ U iff for every q ∈ T we have

that [qX•] +
∑

r∈R(qX)[qXr] = 1 and U =
⋃

q∈T R(qX). Note that ∅ X→ ∅ for each X ∈ Γ.

The definition of Mp is effective due to Theorem 3.7. It is straightforward to check that
L(Mp) = {α ∈ Γ∗ | pα ∈ ⋃∞

i=0 Si}.
Lemma 4.3. Let C1, C2 ⊆ C(∆) be simple sets. The set {pα ∈ C(∆) | P(pα, C1 U C2) = 0}
is effectively regular.

Proof. Let R(pX) = {q ∈ Q | [pXq] > 0} for all p ∈ Q, X ∈ Γ. For each i ∈ N0 we define
the set Si ⊆ C(∆) inductively as follows:

• S0 = {qε | qε 6∈ C2}
• Si+1 = {pXβ | [pX•] = 0 and ∀q ∈ R(pX) : qβ ∈ Si}
The fact

⋃∞
i=0 Si = {pα ∈ C(∆) | P(pα, C1 U C2) = 0} follows immediately from Lemma 3.4.

The set
⋃∞

i=0 Si is effectively regular, which can be shown by constructing a finite automaton
Mp recognizing the set {α ∈ Γ∗ | pα ∈ ⋃∞

i=0 Si}. This construction and the rest of the
argument are very similar to the ones of the proof of Lemma 4.2. Therefore, they are not
given explicitly.

Theorem 4.4. Let ϕ be a qualitative PCTL formula and ν a regular valuation. The set
{pα ∈ C(∆) | pα |=ν ϕ} is effectively regular.

Proof. By induction on the structure of ϕ. The cases when ϕ ≡ tt and ϕ ≡ a follow
immediately. For Boolean connectives we use the fact that regular sets are closed under
complement and intersection. The other cases are covered by Lemma 4.1, 4.2, and 4.3.
Here we also need Lemma 2.5, because the regular sets of configurations must effectively be
replaced with simple ones before applying Lemma 4.1, 4.2, and 4.3.

4.2. Model Checking PCTL for pBPA Processes. In this section we consider arbitrary
PCTL properties with regular valuations, but restrict ourselves to pBPA processes. We
provide an error-tolerant model-checking algorithm. Since it is not so obvious what is meant
by error tolerance in the context of PCTL model checking, this notion is defined formally.
More precisely, we first show that for every formula there is an equivalent negation-free
formula, and then we provide a definition for negation-free formulas.
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Let T = (S,→,Prob) be a probabilistic transition system and 0 < λ < 1, let ϕ be a
PCTL formula, and let ν be a regular valuation (i.e., for every atomic proposition a the
set ν(a) of configurations is regular). We observe that there is a negation-free formula ϕ′

and a regular valuation ν ′ such that [[ϕ]]ν = [[ϕ′]]ν
′

. First, negations can be “pushed inside”
to atomic propositions using dual connectives (note that, e.g., ¬(ϕU ≥̺ψ) is equivalent to
ϕU <̺ψ). Moreover, since regular sets are closed under complement, [[¬a]]ν is also regular
for every a. We construct ϕ′ by replacing each negation ¬a by a fresh atomic proposition
b, and we extend ν to ν ′ by defining ν(b) = [[¬a]]ν .

For every negation-free PCTL formula ϕ and valuation ν we define the denotation of
ϕ over T w.r.t. ν with error tolerance λ, denoted [[ϕ]]νλ, in the same way as [[ϕ]]ν . The only
exception is ϕ1 U ∼̺ϕ2 where

• if ∼ ∈ {<,≤}, then [[ϕ1 U ∼̺ϕ2]]
ν
λ = {s ∈ S | P(s, [[ϕ1]]

ν
λ U [[ϕ2]]

ν
λ) ∼ ̺+ λ}

• if ∼ ∈ {>,≥}, then [[ϕ1 U ∼̺ϕ2]]
ν
λ = {s ∈ S | P(s, [[ϕ1]]

ν
λ U [[ϕ2]]

ν
λ) ∼ ̺− λ}

Notice that every negation-free formula ϕ satisfies [[ϕ]]ν ⊆ [[ϕ]]νλ.
An error tolerant PCTL model checking algorithm is an algorithm which, for each PCTL

formula ϕ, valuation ν, s ∈ S, and 0 < λ < 1, outputs YES/NO so that

• if s ∈ [[ϕ]]ν , then the answer is YES;
• if the answer is YES, then s ∈ [[ϕ]]νλ.

For the rest of this section, let us fix a pBPA ∆ = (Γ, δ,Prob). Since ∆ has just one (or
“none”) control state p, we write [X, •] and [X, ε] instead of [pX•] and [pXp], respectively.

We need the following obvious generalization of Lemma 4.1 (use the same proof):

Lemma 4.5. Let C ⊆ C(∆) be a simple set, ̺ ∈ [0, 1], and ∼ ∈ {≤, <,≥, >}. The set
{α ∈ C(∆) | P(α,XC) ∼ ̺} is effectively regular.

Proof. Immediate.

The following lemma presents the crucial part of the algorithm. This is the place where
we need the assumption that ∆ is a pBPA.

Lemma 4.6. Let C1, C2 ⊆ C(∆) be simple sets. For all ̺ ∈ [0, 1] and 0 < λ < 1 there
effectively exist ∆-automata A≥ and A≤ such that for all α ∈ C(∆) we have that

• if P(α, C1 U C2) ≥ ̺ (or P(α, C1 U C2) ≤ ̺), then α ∈ C(A≥) (or α ∈ C(A≤), respectively.)
• if α ∈ C(A≥) (or α ∈ C(A≤)), then P(α, C1 U C2) ≥ ̺ − λ (or P(α, C1 U C2) ≤ ̺ + λ,

respectively.)

Proof. We describe just the construction of A≥ (the ∆-automaton A≤ is constructed simi-
larly). Let S = {X ∈ Γ | [X, ε] 6= 1}. For each β ∈ S∗ we define the set Cl(β) = {α ∈ Γ∗ |
α|S = β}, where α|S is the word obtained by deleting in α all occurrences of symbols in
Γ r S. It follows directly from Lemma 3.4 that for all β ∈ S∗ and α ∈ Cl(β) we have that
P(β, C1 U C2) = P(α, C1 U C2). Further, for all n ∈ N0 and β ∈ ⋃n

i=0 S
i we define the set

Genn(β) =

{

Cl(β) if α ∈ Si ∧ i < n

{αα′ | α ∈ Cl(β), α′ ∈ Γ∗} if α ∈ Sn

We prove that for every 0 < λ < 1 there effectively exist n ∈ N0 and G ⊆ ⋃n
i=0 S

i such that
for every α ∈ Γ∗ we have that

• if P(α, C1 U C2) ≥ ̺, then α ∈ ⋃

β∈G Genn(β);
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Input: pBPA ∆, 0 < λ < 1
Output: n, κ, ν, [X, •]ℓ, [X, ε]ℓ, [X, •]u, [X, ε]u

1: S := {X ∈ Γ | [X, ε] 6= 1};
2: ν := 1; n := ∞;
3: for each X ∈ S do

4: [X, ε]ℓ := 0; [X, •]ℓ := 0; [X, ε]u := 1; [X, •]u := 1;
5: done

6: repeat

7: for each X ∈ Γ do

8: avgε := ([X, ε]u − [X, ε]ℓ)/2;
9: avg• := ([X, •]u − [X, •]ℓ)/2;
10: if [X, ε] ≥ avgε then [X, ε]ℓ := avgε;
11: else [X, ε]u := avgε;
12: if [X, •] ≥ avg• then [X, •]ℓ := avg•;
13: else [X, •]u := avg•;
14: done

15: ν := ν/2;
16: κ := max{[X, ε]u | X ∈ S};
17: if κ < 1 then n := ⌈(log(λ/3)/ log κ⌉
18: until κ < 1 and n(ν + ν(n+ 1)(1 + ν)n) ≤ λ/3

Figure 3: A part of the algorithm for pBPA

• if α ∈ ⋃

β∈G Genn(β), then P(α, C1 U C2) ≥ ̺− λ.

This suffices for our purposes, because the set
⋃

β∈G Genn(β) is clearly recognizable by an

effectively constructible ∆-automaton A≥.
The crucial part of the algorithm for computing the set G is shown in Fig. 3. The

algorithm starts by computing the set S (note that S is effectively computable due to
Theorem 3.7). For each X ∈ S, there are four rational variables [X, ε]ℓ, [X, ε]u, [X, •]ℓ,
and [X, •]u whose values are lower and upper approximations of the probabilities [X, ε] and
[X, •], resp. These variables are initialized in lines 3–5 and successively refined in lines
7–14. Note that the conditions of the if statements in lines 10 and 12 are effective due to
Theorem 3.7. The current “precision”, i.e., the difference between the upper and the lower
approximation is stored in the rational variable ν. The subtle point is the termination
condition. First, one necessary condition for termination is that κ = max{[X, ε]u | X ∈ S}
becomes less than one. This must happen eventually, because [X, ε] < 1 for every X ∈ S.
An important observation is that κ can only decrease by performing the assignment in
line 16. This means that n = ⌈log(λ/3)/ log κ⌉ also only decreases (since both λ and κ
are less than 1, we have log(λ/3)/ log κ = | log(λ/3)|/| log κ|; and if 0 < κ′ < κ < 1,
then | log κ′| > | log κ|). Therefore, we eventually find a sufficiently small ν such that
n(ν + ν(n+ 1)(1 + ν)n) ≤ λ/3.

The output of the algorithm of Fig. 3 are the (values of the) variables n, ν, κ, [X, ε]ℓ,
[X, ε]u, [X, •]ℓ, and [X, •]u where X ranges over S. For each β ∈ S∗, let Pℓ(β, C1 U C2) and
Pu(β, C1 U C2) be the lower and upper approximations of P(β, C1 U C2) obtained by using
the formula of Lemma 3.4 where [X, ε]ℓ, [X, •]ℓ, and [X, ε]u, [X, •]u are used instead of



16 J. ESPARZA, A. KUČERA, AND R. MAYR

[X, ε], [X, •], respectively. The set G is constructed as follows:

G = {β ∈ Si | 0 ≤ i < n,Pu(β, C1 U C2) ≥ ̺}
∪ {β ∈ Sn | Pu(β, C1 U C2) ≥ ̺− λ/3}

To verify that the set G has the properties mentioned above, we need to formulate two
auxiliary observations.

(a) for all β ∈ Sn and α ∈ Γ∗ we have that

|P(β, C1 U C2) − P(βα, C1 U C2)| ≤ λ/3

This follows immediately from the following (in)equalities:

P(βα, C1 U C2) = P(β, C1 U C•
2) + P(β, C1rC2 U {ε}) · P(α, C1 U C2)

P(β, C1 U C2) ≤ P(β, C1 U C•
2) + P(β, C1rC2 U {ε})

P(β, C1rC2 U {ε}) ≤ λ/3

The first two (in)equalities are obtained just by applying Lemma 3.4. The last one is
derived as follows: P(β, C1rC2 U {ε}) is surely bounded by κn (by Lemma 3.4 and the
definition of κ). Since n = ⌈log(λ/3)/ log κ⌉, we have n · log κ ≤ log(λ/3). Hence,
log κn ≤ log(λ/3), thus κn ≤ λ/3.

(b) for each β ∈ ⋃n
i=0 S

i we have that

Pu(β, C1 U C2) −P(β, C1 U C2) ≤ λ/3

Let k = length(β). A straightforward induction on k reveals that Pu(β, C1 U C2) ≤ (k +
1) · (1 + ν)k. Now we prove (again by induction on k) that

Pu(β, C1 U C2) − P(β, C1 U C2) ≤ k(ν + ν(k + 1)(1 + ν)k)

The base case (when k = 0) is immediate, because Pu(ε, C1 U C2) = P(ε, C1 U C2). Now
let β = Xβ′. By definition, Pu(Xβ′, C1 U C2) − P(Xβ′, C1 U C2) is equal to

[X, •]u + [X, ε]u · Pu(β′, C1 U C2) − ([X, •] + [X, ε] · P(β′, C1 U C2)) (4.1)

Since [X, •]u ≤ [X, •] + ν and [X, ε]u ≤ [X, ε] + ν, the expression (4.1) is bounded by

ν + [X, ε] · (Pu(β′, C1 U C2) − P(β′, C1 U C2)) + ν · Pu(β′, C1 U C2) (4.2)

By applying induction hypothesis and the facts that [X, ε] ≤ 1 and Pu(β, C1 U C2) ≤
(k + 1) · (1 + ν)k (see above), we obtain that the expression (4.2) is bounded by

ν + k(ν + ν(k + 1)(1 + ν)k) + ν(k + 1)(1 + ν)k

which is bounded by (k+1)(ν+ν(k+2)(1+ν)k+1) as required. This finishes the inductive
step.
Since n(ν + ν(n+ 1)(1 + ν)n) ≤ λ/3 and k ≤ n, we have Pu(β, C1 U C2)−P(β, C1 U C2) ≤
k(ν + ν(k + 1)(1 + ν)k) ≤ λ/3.

Now we are ready to prove that the set G has the required properties. Let α ∈ Γ∗ such that
P(α, C1 U C2) ≥ ̺, and let β = α|S . There are two possibilities:

• length(β) < n. Then Pu(β, C1 U C2) ≥ ̺, hence β ∈ G and α ∈ ⋃

β∈G Genn(β).

• length(β) ≥ n. Let β = γγ′ where length(γ) = n. Due to the observation (a) above we
have that P(γ, C1 U C2) ≥ ̺−λ/3, hence also Pu(γ, C1 U C2) ≥ ̺−λ/3, which means that
γ ∈ G and thus α ∈ ⋃

β∈G Genn(β).
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Now let α ∈ Genn(β) for some β ∈ G. Again, we distinguish two possibilities:

• length(β) < n. Then Pu(β, C1 U C2) ≥ ̺, which means that P(β, C1 U C2) ≥ ̺ − λ/3 by
the observation (b) above. Hence, P(α, C1 U C2) ≥ ̺− λ/3.

• length(β) = n. Then Pu(β, C1 U C2) ≥ ̺−λ/3, which means that P(β, C1 U C2) ≥ ̺−2λ/3
due to the observation (b). Further, for every α′ ∈ Γ we have that P(βα′, C1 U C2) ≥ ̺−λ
due to the observation (a) above. Hence, P(α, C1 U C2) ≥ ̺− λ as required.

The automaton A≤ is constructed similarly. Here, the set G is computed using the
lower approximations [X, •]ℓ and [X, ε]ℓ. Since this construction is analogous to the one
just presented, it is not given explicitly.

Theorem 4.7. There is an error-tolerant PCTL model checking algorithm for pBPA pro-
cesses.

Proof. The proof is similar to the one of Theorem 4.4, using Lemma 4.5 and 4.6 instead of
Lemma 4.1, 4.2, and 4.3. Note that Lemma 2.5 is applicable also to pBPA (the system ∆′

constructed in Lemma 2.5 has the same set of control states as the original system ∆).

5. Model Checking ω-regular Specifications

In this section we show that the qualitative and quantitative model-checking problem
for pPDA and ω-regular properties are decidable. At the very core of our result are obser-
vations leading to the definition of a finite Markov chain M∆. Intuitively, each transition
of M∆ corresponds to a sequence of transitions of the probabilistic transition system T∆

associated to ∆. This allows to reduce the model-checking problem to a problem about
M∆, which, since M∆ is finite, can be solved using well-known techniques. In [EKM04], the
Markov chain M∆ was used to show that the qualitative and quantitative model-checking
problem for properties expressible by deterministic Büchi automata is decidable. Later,
it was observed in [BKS05] that the technique can easily be generalized to deterministic
Muller automata. Thus, the decidability result was extended to all ω-regular properties.
In this paper we go a bit further, and prove the decidability of a slightly larger class. The
previous result about the ω-regular case follows as a corollary.

The section is structured as follows. Given a pPDA ∆, we first introduce the notion of
minima of a run and ∆-observing automaton. We use observing automata as specifications:
an infinite run satisfies the specification iff it is accepted by the automaton (section 5.1).
Using the notion of minima, we define the finite Markov chain M∆ (section 5.2), and
show that the probability that a run is accepted by a ∆-observing automaton is effectively
expressible in (R,+, ∗,≤) (section 5.3). Finally, we show that the model-checking problem
for ω-regular properties is a special case of the problem of deciding if a run is accepted by
a ∆-observing automaton with at least a given probability (section 5.4).

For the rest of this section, we fix a pPDA ∆ = (Q,Γ, δ,Prob).

5.1. Minima of a run. Loosely speaking, a configuration of a run is a minimum if all
configurations placed after it in the run have the same or larger stack length.

Definition 5.1. Let w = p1α1; p2α2, · · · be an infinite run in T∆. A configuration piαi is a
minimum of w if |αi| ≤ |αj | for every j ≥ i. We say that piαi is the kth minimum of w if
piαi is a minimum and there are exactly k − 1 indices j < i such that pjαj is a minimum.

We denote the kth minimum of w by mink(w).
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Sometimes we abuse language and use mini(w) to denote not only a configuration, but the
particular occurrence of the configuration that corresponds to the ith minimum.

Example 5.2. In the run w1 = (Z;DZ)ω of the pBPA shown in the introduction we have
mini(w1) = Z for every i ≥ 1. In the run w2 = Z;DZ;DDZ; . . . we have min1(w2) = Z
and mini(w2) = D for every i ≥ 2. Every odd configuration of w1 is a minimum, and every
configuration of w2 is a minimum. 2

Since stack lengths are bounded from below, every infinite run has infinitely many
minima, and so it can be divided into an infinite sequence of fragments, or “jumps”, each
of them leading from one minimum to the next.

We are interested in those properties of a run that can be decided by extracting a
finite amount of information from each jump, independently of its length. Consider for
instance the property “the control state p is visited infinitely often along the run”. It can
be reformulated as “there are infinitely many jumps along which the state p is visited”.
In order to decide the property all we need is a bit of information for each jump, telling
whether it is “visiting” or “non-visiting”. We consider properties in which this finite amount
of information can be extracted by letting a finite automaton go over the jump reading the
heads of the configurations:

Definition 5.3. Given a configuration pXα of ∆, we call pX the head and α the tail of
pXα. The set Q× Γ of all heads of ∆ is also denoted by H(∆).

More precisely, we consider automata with the set of heads as alphabet. An oracle tells
the automaton to start reading heads immediately after the run leaves a minimum (i.e., the
first head read is the one of the configuration immediately following the minimum), stop
after reading the head of the next minimum, report its state, and reset itself to an initial
state that depends on the head of the minimum.

Definition 5.4. A ∆-observing automaton is a tuple A = (A, ξ, ao,Acc) where A is finite
set of observing states, ξ : A × H(∆) → A is a (total) transition function, a0 ∈ A is an
initial state, and Acc is a set of subsets of A, also called an acceptance set.

Let w be an infinite run in T∆ and let i ∈ N. The ith observation of A over w, denoted
Obsi(w), is the state reached by A after reading the heads of all configurations between
mini(w) and mini+1(w), including mini+1(w) but not including mini(w). 4 The observation
of A on w, denoted by Obs(w), is the sequence Obs1(w)Obs2(w) . . ..

We say that an infinite run w ∈ Run(pX) is accepting if the set of states of A that
occur infinitely often in Obs(w) belongs to Acc; otherwise, w is rejecting.

Example 5.5. Figure 4 shows a ∆-observing automaton for the pBPA of the introduction
(see also Figure 1). For every infinite run w and every i ≥ 0, we have Obsi(w) = b if some
configuration of the ith jump has Z as topmost stack symbol. So a run is accepting iff it
visits configurations with head Z infinitely often. 2

For the rest of the section we fix a ∆-observing automaton A = (A, ξ, a0,Acc). Let
Run(pX,Acc) be the set of all accepting runs initiated in pX. Our aim is to show that
P(Run(pX,Acc)) is effectively definable in (R,+, ∗,≤).

4Notice that the automaton starts observing after the first minimum of the run.
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a08?9>:=;<a0 a18?9>:=;<a1 Acc = {{a1}}// Z //

I,D

��

Z,I,D

��

Figure 4: An observing automaton

5.2. The Markov chain M∆. For all pX ∈ H(∆) and all i ∈ N we define a random

variable V
(i)
pX over Run(pX). Loosely speaking, V

(i)
pX assigns to a run starting at the con-

figuration pX the head of its ith minimum, and the ith observation of the ∆-observing

automaton A. Formally, the possible values of V
(i)
pX are pairs of the form (qY, a), where

qY ∈ H(∆) and a ∈ A. There is also a special value ⊥, where ⊥ 6∈ H(∆) ×A. For a given

w ∈ Run(pX), the value V
(i)
pX(w) is determined as follows: If w is finite, then V

(i)
pX(w) = ⊥;

otherwise, V
(i)
pX(w) = (qY,Obs i(w)), where qY is the head of mini(w). Notice that the

random variables are well defined, because they assign to each run exactly one value.

Given possible values v1, . . . , vn for the variables V
(1)
pX , . . . , V

(n)
pX , we are going to prove

the following two results:

• the probability that a run satisfies V
(1)
pX = v1, . . . , V

(n)
pX = vn is expressible in (R,+, ∗,≤)

(Lemma 5.10); and

• the probability that V
(i+1)
pX = vi+1 depends only on the value of V

(i)
pX , but neither on i nor

on the value of V
(k)
pX for k < i (Lemma 5.11 and 5.12).

The second result will allow us to define the finite Markov chain M∆, while the first one
will show that its transition probabilities are expressible in (R,+, ∗,≤).

The proof of Lemma 5.10 is rather technical (as we shall, see, Lemma 5.11 and 5.12 are
easy corollaries of Lemma 5.10). We need three auxiliary lemmas. Intuitively, the first one
states that the probability of executing an infinite run from a configuration pX is equal to
the probability of executing an infinite run from pXβ such that the stack content never goes
“below” β. For every finite or infinite path w = p1α1; p2α2; · · · in T∆ and every β ∈ Γ∗, the
symbol w+β denotes the path p1α1β; p2α2β; · · · obtained from w by concatenating β to the
stack content in every configuration. Similarly, if R is a set of paths in T∆ and β ∈ Γ∗, then
[R]+β denotes the set {w+β | w ∈ R}.
Lemma 5.6. Let pX ∈ Q×Γ and β ∈ Γ∗. Then P([IRun(pX)]+β) = P(IRun(pX)).

Proof. Let Dead = Q×{ε} ∪ {qY α | qY has no transitions in δ, α ∈ Γ∗}. We have that

P([IRun(pX)]+β) = 1 − P(pXβ, C(∆)•β U Dead β)

= 1 − P(pX, C(∆) U Dead) (by Lemma 3.3)

= P(IRun(pX)).

The second lemma states that prefixing a measurable set of runs with a finite path
yields a measurable set of runs, and relates the probabilities of both sets.

Lemma 5.7. Let s0; · · · ; sn be a path in a probabilistic transition system, and let R be a
measurable subset of Run(sn). Then {s0; · · · ; sn} ⊙ R is a measurable subset of Run(s0),



20 J. ESPARZA, A. KUČERA, AND R. MAYR

and moreover P({s0; · · · ; sn} ⊙R) = Πn
i=1xi · P(R), where si

xi+1−→ si+1 for every 0 ≤ i < n.
(The ‘⊙’ operator has been introduced in Definition 3.1.)

Proof. Standard.

The third lemma shows that the probability of starting from the configuration qY
reaching the configuration qε with the observing automaton in state a is expressible in
(R,+, ∗,≤).

Definition 5.8. Let R be a P-measurable set of runs of T∆ starting at the same initial
configuration. We say that P(R) is well-definable if there effectively exist a pPDA ∆′ and
a finite family of probabilities of the form P(Run(qY, C1 U C2)), where qY ∈ H(∆′) and
C1, C2 ⊆ C(∆′) are simple sets, such that P(R) is effectively definable from this family of
probabilities using only summation, multiplication, and rational constants.

Note that if P(R) is well-definable, it can be expressed in (R,+, ∗,≤) using the results of
Section 3.

For all qY ∈ H(∆), r ∈ Q, Z ∈ Γ, and a ∈ A, let Run(qY, r, Z, a) ⊆ Run(qY ) be the
set of all runs w = s0; · · · ; sn such that s0 = qY , sn = rε, and the automaton A reaches
the state a after reading the heads of configurations s0, · · · , sn−1, rZ.

Lemma 5.9. P(Run(qY, r, Z, a)) is well-definable.

Proof. We put ∆′ = (Q×A,Γ, δ′,Prob ′) to be the synchronized product of ∆ and A, i.e.,

(p, ā)X
x→ (t, â)α is a rule of ∆′ iff pX

x→ tα is a rule of ∆ and ξ(ā, pX) = â. Let
Ā = {ā ∈ A | ξ(ā, rZ) = a}. Now we can easily check that P(Run(qY, r, Z, a)) is equal to

P( (q, a0)Y, C(∆′) U {(r, ā)ε})

We can now prove our main technical result:

Lemma 5.10. For all pX ∈ H(∆), n ∈ N, and v1, · · · , vn ∈ (H(∆)×A) ∪ {⊥}, the proba-

bility of V
(1)
pX =v1 ∧ · · · ∧V (n)

pX =vn is well-definable. In particular, for every rational constant

y there is an effectively constructible formula of (R,+, ∗,≤) which holds if and only if

P(V
(1)
pX =v1 ∧ · · · ∧ V (n)

pX =vn) = y.

Proof. By induction on n we prove that P(V
(1)
pX =v1 ∧ · · · ∧ V (n)

pX =vn) is well-definable. The

base case when n = 1 follows immediately, because P(V
(1)
pX =v1) equals either P(IRun(pX)),

1 − P(IRun(pX)), or 0, depending on whether v1 = (pX, a0), v1 = ⊥, or (pX, a0) 6= v1 6=
⊥, respectively. Observe that P(IRun(pX)) = 1 − P(pX, C(∆) U Dead), where Dead =
Q×{ε} ∪ {qY α | qY has no transitions in δ, α ∈ Γ∗}.

Now let n ≥ 2. For each 1 ≤ i ≤ n, let Sat i be the set of all runs that satisfy

V
(1)
pX =v1 ∧ · · · ∧V (i)

pX=vi. If P(Satn−1) = 0, which is decidable by induction hypothesis, then

P(Satn) = 0 as well. If P(Satn−1) 6= 0 and there is an i ≤ n− 1 such that vi = ⊥, then for
all j ≤ n−1 we have that vj = ⊥, and P(Satn) is equal either to P(Satn−1) or 0, depending
on whether vn = ⊥ or not, respectively. If P(Satn−1) 6= 0, vi 6= ⊥ for all i ≤ n − 1, and
vn = ⊥, then P(Satn) = 0. So, the only interesting case is when P(Satn−1) 6= 0 and vi 6= ⊥
for all i ≤ n. Since

P(Satn) =
P(V

(n)
pX =vn | Satn−1)

P(Satn−1)
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and P(Satn−1) is well-definable by induction hypothesis, it suffices to show that the con-

ditional probability P(V
(n)
pX =vn | Satn−1) is also well-definable. For this we use a general

result of basic probability theory saying that if A,B are events and B = ⊎i∈IBi, where I is
a finite or countably infinite index set, then

P(A | B) =

∑

i∈I P(A | Bi) · P(Bi)

P(B)

An immediate consequence of this equation is that if the probability P(A|Bi) is independent

of i, then P(A|B) = P(A|Bi). In our case, A is the event V
(n)
pX =vn, and B is Satn−1. Let

Chop = {w(0); · · · ;w(minn−1(w)) | w ∈ Satn−1}.
Observe that if y ∈ Chop, then the last configuration of y is of the form pn−1Xn−1α. We
denote the α by Stack(y). For every y ∈ Chop, let

Satn−1(y) = {y} ⊙ [IRun(pn−1Xn−1)]
+Stack(y) (5.1)

Now we can easily check that

Satn−1 =
⊎

y∈Chop

Satn−1(y)

Hence, Chop plays the role of I, and Satn−1(y) plays the role of Bi. We show that

P(V
(n)
pX =vn | Satn−1(y)) is independent of y, which means that

P(V
(n)
pX =vn | Satn−1(y)) = P(V

(n)
pX =vn | Satn−1).

By definition of conditional probability,

P(V
(n)
pX =vn | Satn−1(y)) =

P(V
(n)
pX =vn ∧ Satn−1(y))

P(Satn−1(y))
(5.2)

The denominator of the fraction in equation (5.2) is well-definable, because

P(Satn−1(y)) = P(Run(y)) · P(IRun(pn−1Xn−1))

Here we used Lemma 5.6, Lemma 5.7, and equation (5.1). Now we show that P(V
(n)
pX =vn ∧

Satn−1(y)) is also well-definable. Let R be the set of all runs satisfying V
(n)
pX =vn∧Satn−1(y),

and let vn = (pnXn, an) and α = Stack(y). Obviously, each w ∈ R starts with y. Now let
us consider what transitions can be performed from the final state pn−1Xn−1α of y.

• Obviously, transitions which decrease the stack cannot be performed, because pn−1Xn−1α
would not be a minimum then (i.e., w would not belong to R).

• If a transition of the form pn−1Xn−1α
x→ rZα is performed, then rZα must be the n-th

minimum, because the stack cannot be decreased below Z (otherwise, pn−1Xn−1α would
not be a minimum). So, if w ∈ R, we must have that rZ = pnXn and ξ(a0, rZ) = an.

• If a transition of the form pn−1Xn−1α
x→ rPQα is performed, then the stack cannot be

decreased below Q. Now there are two possibilities:

− If the stack is never decreased below P , then the configuration rPQα is the n-th mini-
mum. Hence, if w ∈ R, we must have that rP = pnXn and ξ(a0, rP ) = an.
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− If the stack is decreased below P , i.e., if a sequence of transitions is performed of
the form rPQα→∗ tQα (where the stack is never decreased to Qα except in the last
configuration), then tQα is the n-th minimum. Hence, if w ∈ R, we must have that
tQ = pnXn and the automaton A reaches an by reading the word consisting of heads
of configurations in the sequence rPQα→∗ tQα.

From the above discussion, it follows that R can be partitioned as follows:

R =
⊎

pn−1Xn−1
x
→pnXn

{y} ⊙ {pn−1Xn−1α; , pnXnα} ⊙ [IRun(pnXn)]+α

⊎

pn−1Xn−1
x
→pnXnY

Y ∈Γ

{y} ⊙ {pn−1Xn−1α; pnXnY α} ⊙ [IRun(pnXn)]+Y α

⊎

pn−1Xn−1
x
→qY Xn

q∈Q,Y ∈Γ

{y} ⊙ [Run(qY, pn,Xn, an)]+α ⊙ [IRun(pnXn)]+α

Using Lemma 5.6, Lemma 5.7, Lemma 5.9 and the above equation, we obtain that

P(V
(n)
pX =vn ∧ Satn−1(y)) = P(Run(y)) · P(IRun(pnXn)) · S

where

S =
∑

pn−1Xn−1
x
→pnXn

x +
∑

pn−1Xn−1
x
→pnXnY

Y ∈Γ

x +

∑

pn−1Xn−1
x
→qY Xn

q∈Q,Y ∈Γ

x · P(Run(qY, pn,Xn, an)) (5.3)

Equation (5.2) can now be rewritten to

P(V
(n)
pX =vn | Satn−1(y)) =

P(IRun(pnXn))

P(IRun(pn−1Xn−1))
· S (5.4)

where the meaning of S is given by equation (5.3). So, P(V
(n)
pX =vn | Satn−1(y)) is indeed

independent of y, and hence equation (5.4) also defines the probability P(V
(n)
pX =vn | Satn−1).

Loosely speaking, the following lemma proves the memoryless property required to define

a Markov chain: The probability of V
(n)
pX = vn depends only on the value of V

(n−1)
pX , not on

the values of V
(n−2)
pX , . . . , V

(1)
pX .

Lemma 5.11. The conditional probability of V
(n)
pX = vn on the hypothesis V

(1)
pX = v1 ∧

· · · ∧ V (n−1)
pX = vn−1 is equal to the probability of V

(n)
pX = vn conditioned on V

(n−1)
pX = vn−1,

assuming that the probability of V
(1)
pX = v1 ∧ · · · ∧ V (n−1)

pX = vn−1 is non-zero.

Proof. The result follows immediately from Equation (5.4) in the proof of Lemma 5.10: The

right side on the equation does not depend on the values of V
(n−2)
pX , . . . , V

(1)
pX .
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Finally, as another consequence of Lemma 5.10 we obtain that the probability of V
(n)
pX =

vn does not depend on n:

Lemma 5.12. The conditional probability of V
(n)
pX = (q′Y ′, a′) on the hypothesis V

(n−1)
pX =

(qY, a) is equal to the conditional probability of V
(2)
qY = (q′Y ′, a′) on the hypothesis V

(1)
qY =

(qY, a0), assuming that P(V
(n−1)
pX = (qY, a)) 6= 0. Moreover, the hypothesis that a run w

satisfies V
(1)
qY (w) = (qY, a0) is the same as the hypothesis that w ∈ IRun(qY ).

Proof. The first part follows immediately from the fact that n appears only as an index in
Equation (5.4). For the second, observe that, by definition, a run w starting at qY satisfies

V
(1)
qY (w)=qY if (1) it is infinite and (2) its first minimum has head qY . But (1) and the

fact that all configurations of an infinite run have length 1 or greater imply that the first
configuration of the run is also its first minimum, and so, since w starts at qY , they imply

(2). So a run w starting at qY satisfies V
(1)
qY =qY iff it is infinite, i.e., iff w ∈ IRun(qY ).

Example 5.13. In order to give some intuition for these results, and in particular for the
proof of Lemma 5.10, consider the special case in which the initial configuration is pX for
some p ∈ P,X ∈ Γ, and the observing automaton A has one single state. In this case, the

automaton always makes the same observation, and so we can write V
(n)
pX = qY instead of

V
(n)
pX = (qY, a). We wish to obtain an expression for P(V

(2)
pX =qY ). By the second part of

Lemma 5.12 we have
P(V

(1)
pX =pX) = P(IRun(pX))

and therefore
P(V

(2)
pX =qY ) = P(V

(2)
pX =qY | V (1)

pX =pX) · P(IRun(pX))

Now we can apply equation 5.3 in the proof of Lemma 5.10 and obtain

P(V
(2)
pX =qY ) = P(IRun(qY )) · S

and, by Equation 5.2

P(V
(2)
pX =qY ) =

∑

pX
x
→qY

x · P(IRun(qY )) +

∑

pX
x
→qY Z
Z∈Γ

x · P(IRun(qY )) +

∑

pX
x
→rZY

r∈Q,Z∈Γ

x · P(rZ, (Q × Γ∗)U {qε}) · P(IRun(qY )) (5.5)

Let us interpret this equation. In order to reach the second minimum at qY there are
only three possibilities for the first move. The first possibility is to move directly from pX
to qY ; in this case we must continue with any run that never terminates, since every infinite
run of the form pX; qY ; · · · necessarily has qY as second minimum. The probability of this
case is captured by the first summand of Equation 5.5. The second possibility is to move
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from pX to qY Z for some Z ∈ Γ; in this case we must continue with an infinite run in
which the stack content always has at least length 2, i.e., with a run of the form

pX; qY Z; q1α1Z; . . . ; qiαiZ; . . .

where all the α’s are nonempty. This gives the second summand. Finally, the third possi-
bility is to move from pX to rZY for some r ∈ P,Z ∈ Γ; we must then continue with a run
that eventually “pops the Z” while entering state q, i.e., with a run of the form

pX; rZY ; r1α1Y ; . . . ; rnαnY ; qY ; q1β1; . . . ; qiβi; . . .

where all the α’s and β’s are nonempty. This gives the third summand. 2

Lemma 5.11 and 5.12 allow us to define the finite Markov chain M∆.

Definition 5.14. The finite-state Markov chain M∆ has the following set of states

{(qY, a) | qY ∈ H(∆), a ∈ A,P(V
(1)
qY =(qY, a0)) > 0} ∪ H(∆) ∪ {⊥}

and the following transition probabilities:

• Prob(⊥ → ⊥) = 1,

• Prob(pX → (qY, a0)) = P(V
(1)
pX =(qY, a0)),

• Prob(pX → ⊥) = P(V
(1)
pX =⊥),

• Prob((qY, a) → (q′Y ′, a′)) = P(V
(2)
qY =(q′Y ′, a′) | V (1)

qY =(qY, a0)).

One can readily check that M∆ is indeed a Markov chain, i.e., for every state s of M∆

we have that the sum of probabilities of all outgoing transitions of s is equal to one. Observe
also that if both (qY, a) and (qY, a′) are states of M∆, then they have the “same” outgoing

arcs (i.e., (qY, a)
x→ (rZ, ā) iff (qY, a′)

x→ (rZ, ā), where x > 0).

Example 5.15. We construct the Markov Chain M∆ for the pBPA ∆ of Figure 1 and
the observing automaton A of Figure 4. In fact, as we shall see, the states and transition
probabilities of the chain depend on the value of the parameter x.

Since the pBPA has one single control state, we omit it. The set of heads is then
H(∆) = {Z, I,D} and the set of states of the observing automaton is A = {a0, a1}. In
order to determine the states of the Markov chain we have to compute the pairs (Y, a) such

that P(V
(1)
Y = (Y, a)) ≥ 0. Recall the definition of P(V

(1)
Y = (Y, a)). This is the probability

of, starting at the configuration Y , executing an infinite run such that (i) the head of the
first minimum is Y , and (ii) the first observation of A is the state a. Since the initial
configuration Y has the shortest possible length in an infinite run, (i) always holds. So

P(V
(1)
Y = (Y, a)) is the probability of executing an infinite run such that (ii) holds. Recall

that the first observation of an observing automaton is the state it reaches after reading
the sequence of heads between the first and the second minimum, excluding the first, but
including the second. In the case of the automaton A of Figure 4, the first observation is
a0 if the sequence of heads does not contain the head Z, and a1 otherwise.

The values of P(V
(1)
X = (X,a)) for X ∈ {Z, I,D} and a ∈ {a0, a1} are as follows:

P(V
(1)
X = (X,a)) =















min{2x, 2 − 2x} if X = Z and a = a1

max{0, (2x − 1)/x} if X = I and a = a0

max{0, (1 − 2x)/(1 − x)} if X = D and a = a0

0 otherwise
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These values can be obtained using the definitions, but in this simple case we can also

use more direct methods. Consider for instance P(V
(1)
Z = (Z, a1)). This is the probability

of, starting at Z, executing an infinite run and visiting again a configuration with head Z
before reaching the second minimum. Observe that all runs that start at Z are infinite, that
the only configuration they visit with head Z is Z itself, and that Z is always a minimum. So

P(V
(1)
Z = (Z, a1)) is the probability of, starting at the configuration Z, eventually reaching

Z again. This probability is equal to x · [I, ε] + (1 − x) · [D, ε], where [I, ε] and [D, ε] are
defined in Example 3.6. We get

P(V
(1)
Z = (Z, a1)) = x · [I, ε] + (1 − x) · [D, ε]

= x · min{1, (1 − x)/x} + (1 − x) · min{1, x/(1 − x)}
= min{2x, 2 − 2x}

Observe that the states of M∆ depend on x. The states are ⊥, Z, I,D and

(D,a0) if x = 0,
(Z, a1), (D,a0) if 0 < x < 1/2,
(Z, a1) if x = 1/2,
(Z, a1), (I, a0) if 1/2 < x < 1,
(I, a0) if x = 1.

The Markov chain for the cases x = 1/2 and 1/2 < x < 1 are shown in Figure 5.
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Figure 5: The Markov chain M∆ for x = 1/2 (left) and for 1/2 < x < 1 (right)

Let us obtain the transition probability from (I, a0) to itself in the case 1/2 < x < 1.

According to Definition 5.14, the probability is equal to P(V
(2)
I = (I, a0) | V (1)

I = (I, a0)),
i.e., to the probability of, assuming the first minimum has head I, reaching the second
minimum at head I again, visiting no configuration with head Z in-between. Let us see
that this probability is 1. If the first minimum is Iα for some α ∈ {Z, I,D}∗, then all
subsequent configurations of the run are of the form βα for a nonempty β (notice that we
assume that the run is infinite, because finite runs have no minima). So β must have head
I and so, in particular, the next minimum will also have head I. 2

Not every run of ∆ is “represented” in the Markov chain M∆. Consider for instance the
case x = 1/2 and its corresponding chain M∆ on the left of Figure 5. Every configuration
of the run Z; IZ; IIZ; IIIZ; . . . is a minimum, but its sequence of heads, i.e., ZIω, does not
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correspond to any path of M∆. We show, however, that the “not represented” runs have
probability 0.

A trajectory in M∆ is an infinite sequence σ(0)σ(1) · · · of states of M∆, where for
every i ∈ N0, Prob(σ(i) → σ(i + 1)) > 0. To every run w ∈ Run(pX) of ∆ we associate its
footprint, denoted σw, which is an infinite sequence of states of M∆ defined as follows:

• σw(0) = pX
• if w is finite, then for every i ∈ N we have σw(i) = ⊥;
• if w is infinite, then for every i ∈ N we have σw(i) = (piXi,Obsi(w)), where piXi is the

head of mini(w).

We say that a given w ∈ Run(pX) is good if σw is a trajectory in M∆. Our next lemma
reveals that almost all runs are good.

Lemma 5.16. Let pX ∈ H(∆), and let Good be the subset of all good runs of Run(pX).
Then P(Good) = 1.

Proof. Let Bad = Run(pX) r Good. Let Fail be the set of all finite sequences v0 · · · vi+1 of
states of M∆ such that i ∈ N0, v0 = pX, v0 · · · vi is a trajectory in M∆, and Prob(vi →
vi+1) = 0, where Prob is the probability assignment of M∆. Each y ∈ Fail determines a
set Bady = {w ∈ Bad | σw starts with y}. Obviously, Bad =

⊎

y∈Fail Bady. We prove that

P(Bady) = 0 for each y ∈ Fail. Let y = v0 · · · vi+1. By applying definitions, we obtain

P(Bady) = P(V
(1)
pX =v1 ∧ · · · ∧ V (i+1)

pX =vi+1)

=
P(V

(i+1)
pX =vi+1 | V (i)

pX=vi ∧ · · · ∧ V (1)
pX =v1)

P(V
(i)
pX=vi ∧ · · · ∧ V (1)

pX =v1)

Since P(V
(i)
pX=vi ∧ · · · ∧ V (1)

pX =v1) 6= 0, the last fraction makes sense and it is equal to

Prob(vi → vi+1)

P(V
(i)
pX=vi ∧ · · · ∧ V (1)

pX =v1)

which equals zero.

5.3. P(Run(pX,Acc)) is effectively definable in (R,+, ∗,≤). Recall that our aim is
to show that P(Run(pX,Acc)) is effectively definable in (R,+, ∗,≤). We will achieve this
in Theorem 5.22 as an easy corollary of Lemma 5.20. This lemma states that P(pX,Acc)
is the probability of, starting at pX, hitting so-called accepting bottom strongly connected
component of M∆. As usual, a strongly connected component of M∆ is a maximal set
of mutually reachable states, and bottom strongly connected components are those from
which no other strongly connected components can be reached.

Definition 5.17. Let C be a bottom strongly connected component of M∆. We say that
C is accepting if C 6= {⊥} and the set {a ∈ A | (qY, a) ∈ C for some qY ∈ H(∆)} is an
element of Acc (remember that Acc is the acceptance set introduced after Definition 5.4).
Otherwise, C is rejecting.

We say that a given pair (qY, a), where qY ∈ H(∆) and a ∈ A, is recurrent, if it belongs
to some bottom strongly connected component of M∆.

We say that a run w ∈ Run(pX) hits a pair (qY, a) ∈ H(∆)×A if there is some i ∈ N

such that the head of mini(w) is qY and Obsi(w) = a. The next lemma says that an infinite
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run eventually hits a recurrent pair. In this lemma and the next we use the following well-
known results for finite Markov chains (see e.g. [Fel66]):

• A run visits some bottom strongly connected component of the chain with probability 1.
• If a run visits some state of a bottom strongly connected component C, then it visits all

states of C infinitely often with probability 1.

Lemma 5.18. Let us assume that P(IRun(pX)) > 0. Then the conditional probability that
w ∈ Run(pX) hits a recurrent pair on the hypothesis that w is infinite is equal to one.

Proof. Let Rec denote the event that a run of Run(pX) hits a recurrent pair. Due to
Lemma 5.16, we have that

P(Rec | IRun(pX)) = P(Rec | IRun(pX) ∩ Good) (5.6)

A run belongs to IRun(pX) ∩ Good iff its footprint is a trajectory in M∆ that does not
hit the state ⊥. A run w ∈ IRun(pX) ∩ Good satisfies Rec iff its footprint hits (some)
recurrent pair (qY, a). It follows directly from the definition of M∆ that the right-hand side
of equation (5.6) is equal to the probability that a trajectory from pX in M∆ hits a bottom
strongly connected component on the hypothesis that the state ⊥ is not visited. Since M∆

is finite, this happens with probability one.

So, an infinite run eventually hits a recurrent pair. Now we prove that if this pair
belongs to an accepting/rejecting bottom strongly connected component of M∆, then the
run will be accepting/rejecting with probability one.

Lemma 5.19. The conditional probability that w ∈ Run(pX) is accepting/rejecting on the
hypothesis that the first recurrent pair hit by w belongs to an accepting/rejecting bottom
strongly connected component of M∆ is equal to one.

Proof. The argument is similar as in the proof of Lemma 5.18. Let C be a bottom strongly
connected component of M∆. By ergodicity, the conditional probability that an infinite
trajectory in M∆ hits each state of C infinitely often on the hypothesis that the trajectory
hits C is equal to one.

A simple consequence of Lemma 5.19 is:

Lemma 5.20. (cf. Proposition 4.1.5 of [CY95]) Let pX ∈ H(∆). P(pX,Acc) is equal to
the probability that a trajectory from pX in M∆ hits an accepting bottom strongly connected
component of M∆.

Example 5.21. Consider the pBPA of Figure 1 and the observing automaton of Figure 4.
P(Z,Acc) is the probability of, starting at Z, executing a run that visits configurations with
head Z infinitely often. In the case x = 1/2, the bottom strongly connected components
of M∆ are {⊥} and {(Z, a1)}, which are rejecting and accepting, respectively. Starting at
the state Z of M∆, the probability of hitting {(Z, a1)} is 1, and so P(Z,Acc) = 1. In the
case 1/2 < x < 1, the bottom strongly connected components of M∆ are {⊥} and {(I, a0)},
which are both rejecting, and so P(Z,Acc) = 0.

Since the probability of hitting a given bottom strongly connected component of a given
finite-state Markov chain is effectively definable in (R,+, ∗,≤) by the results of Section 3,
and the transition probabilities in M∆ are well-definable too, we can conclude the following:
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Theorem 5.22. P(Run(pX,Acc)) is effectively expressible in (R,+, ∗,≤). In particular,
for every rational constant y and every ∼ ∈ {≤, <,≥, >,=} there effectively exists a formula
of (R,+, ∗,≤) which holds iff P(Run(pX,Acc)) ∼ y.

5.4. Decidability of ω-regular properties. As a simple corollary of Theorem 5.22, we
obtain the decidability of the qualitative/quantitative model-checking problem for pPDA
and ω-regular properties. Recall that a language of infinite words over a finite alphabet is
ω-regular iff it can be accepted by a (deterministic) Muller automaton.

Definition 5.23. A deterministic Muller automaton is a tuple B = (Σ, B, ̺, bI ,F), where
Σ is a finite alphabet, B is a finite set of states, ̺ : B×Σ → B is a (total) transition function

(we write b
a→ b′ instead of ̺(b, a) = b′), bI is the initial state, and F ⊆ 2B is a set of

accepting sets.
An infinite word w over the alphabet Σ is accepted by B if Inf (w) ∈ F , where Inf (w)

is the set of all b ∈ B that appear infinitely often in the unique run of B over the word w.

We consider specifications given by Muller automata having H(∆) as their alphabet. It
is well known that every LTL formula whose atomic propositions are interpreted over simple
sets can be encoded into a deterministic Muller automaton having H(∆) as alphabet. Our
results can be extended to atomic propositions interpreted over arbitrary regular sets of
configurations using the same technique as in [EKS03].

Let us fix a deterministic Muller automaton B = (H(∆), B, ̺, bI ,F). An infinite run w
of T∆ is accepted by B if the associated sequence of heads of configurations in w is accepted
by B. Let Run(pX,B) be the set of all w ∈ Run(pX) that are accepted by B. We show
that Run(pX,B) is effectively expressible in (R,+, ∗,≤), and so we can decide if it is larger
than, smaller than, or equal to some threshold ρ.

Loosely speaking, we proceed as follows. We compute the synchronized product ∆′ of
∆ and B. Then, we define a ∆′-observing automaton A whose states are sets of states of
B. The automaton observes heads of ∆′, which are of the form (p, b)X, where pX is a
head of ∆ and b is a state of b. At the end of a “jump”, A returns the set of states of B
that were visited during the jump. Hence, the observation Obs(w) of the automaton on a
run w is a sequence B1B2 . . . of sets of states of B containing full information about which
states were visited in which jump. Now it is just a matter of setting the acceptance set of
A adequately: The acceptance sets of A are the sets {b1, . . . , bn} of states of A such that
the union b1 ∪ . . . ∪ bn is an element of F .

Theorem 5.24. P(Run(pX,B)) is effectively expressible in (R,+, ∗,≤). In particular, for
every rational constant y and every ∼ ∈ {≤, <,≥, >,=} there effectively exists a formula
of (R,+, ∗,≤) which holds iff P(Run(pX,B)) ∼ y. (Hence, for each 0 < λ < 1 we can
compute rationals Pℓ,Pu such that Pℓ ≤ P(pX,Acc) ≤ Pu and Pu − Pℓ ≤ λ.)

Proof. Let ∆′ = (Q×B,Γ, δ′,Prob ′) be the synchronized product of ∆ and B, i.e., (p, b)X
x→

(t, b′)α is a rule of ∆′ iff pX
x→ tα is a rule of ∆ and ̺(b, pX) = b′. Consider the ∆′-

observing automaton A = (A, ξ,I,Acc) where A = 2B , a0 = ∅, ξ(M, (p, b)Y ) = M ∪{b} for
all M ⊆ B and (p, b)Y ∈ H(∆′), and Acc is defined as follows: for every a1, . . . , an ∈ 2B ,
{a1, . . . , an} ∈ Acc iff a1 ∪ . . . ∪ an ∈ F .

It is easy to check that

P(Run(pX,B)) = P(Run((p, bI)X,Acc))
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Now it suffices to apply Theorem 5.22.

6. Conclusions

We have provided model checking algorithms for probabilistic pushdown automata
against PCTL specifications, and against ω-regular specifications represented by Muller
automata. Contrary to the case of probabilistic finite automata, qualitative properties (i.e.,
whether a property holds with probability 0 or 1), depend on the exact values of transition
probabilities.

There are many possibilities for future work. An obvious question is what is the com-
plexity of the obtained algorithms. Of course, this depends on the complexity of the corre-
sponding fragments of first order arithmetic of reals. It is known that the fragment obtained
by fixing the alternation depth of quantifiers is decidable in exponential time [Gri88], and
that the existential fragment (and hence also the universal fragment) is decidable even in
polynomial space [Can88]. The formulas constructed in Section 3 have a fixed alternation
depth, and so we can conclude that the qualitative/quantitative random walk problem is
decidable in exponential time. Actually, we can do even better—if we are interested whether
P(pX, C1 U C2) ≤ ̺, we can simply ask if there is some solution of the corresponding system
of quadratic equations (cf. Theorem 3.5) such that the component of the solution which
corresponds to P(pX, C1 U C2) is less than or equal to ̺. Obviously, the minimal solution
(i.e., the probability of P(pX, C1 U C2)) can only be smaller. Hence, the existential frag-
ment is sufficient for deciding whether P(pX, C1 U C2) ≤ ̺, and similarly we can use the
universal fragment to decide whether P(pX, C1 U C2) ≥ ̺. To sum up, the problem whether
P(pX, C1 U C2) ∼ ̺, where ∼ ∈ {<,≤, >,≥,=}, is decidable in polynomial space.

Recently, deeper results concerning the complexity of the reachability problem for pPDA
and pBPA have been presented by Etessami and Yannakakis in [EY05]. In particular, they
show that the qualitative reachability problem for pBPA processes (i.e., the question whether
a given configuration is visited with probability 1) is decidable in polynomial time. It is also
shown that the Square-Root-Sum problem (i.e., the question whether

∑n
i=1

√
ai ≤ c for a

given tuple (a1, . . . , an, c) of natural numbers) is polynomially reducible to the quantitative
reachability problem for pBPA, and to the qualitative reachability problem for pPDA. The
complexity of the Square-Root-Sum problem is a famous open problem in the area of
exact numerical algorithms. It is known that the problem is solvable in polynomial space,
but no lower bound (like NP or co-NP hardness) is known. This means that the PSPACE
upper bound for the quantitative pBPA reachability and the qualitative pPDA reachability
cannot be improved without achieving an improvement in the complexity of the Square-

Root-Sum problem.
Some of the problems which were left open in [EKM04] were solved later in [BKS05].

It was shown that the model-checking problems for PCTL and pPDA, and for PCTL∗

and pBPA, are undecidable (PCTL∗ is the probabilistic extension of CTL∗). On the other
hand, the decidability result about qualitative/quantitative model-checking pPDA against
deterministic Büchi specifications was extended to Muller automata. In the qualitative case,
the algorithm runs in time which is singly exponential in the size of a given pPDA and a
given Muller automaton. In the quantitative case, the algorithm needs exponential space.
Finally, it was shown that the model-checking problem for the qualitative fragment of the
logic PECTL∗ and pPDA processes is also decidable. The complexity bounds are essentially
the same as for Muller properties.
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The complexity of model-checking ω-regular properties (encoded by Büchi automata)
for pPDA and pBPA processes was studied also in [EY]. The complexity bounds improve
the ones given in [BKS05]. In particular, it is shown that the qualitative model-checking
problem for pPDA and Büchi specifications is EXPTIME-complete.

An interesting open problem is the decidability of the model-checking problem for
PCTL and pBPA processes, i.e., whether there is an “exact” algorithm apart from the
error-tolerant one given in Section 4.2. Another area of open problems is generated by
considering model-checking problems for a more general class of pushdown automata whose
underlying semantics is defined in terms of Markov decision processes (this model combines
the paradigms of non-deterministic and probabilistic choice).
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