710 research outputs found

    BioDiVinE: A Framework for Parallel Analysis of Biological Models

    Full text link
    In this paper a novel tool BioDiVinEfor parallel analysis of biological models is presented. The tool allows analysis of biological models specified in terms of a set of chemical reactions. Chemical reactions are transformed into a system of multi-affine differential equations. BioDiVinE employs techniques for finite discrete abstraction of the continuous state space. At that level, parallel analysis algorithms based on model checking are provided. In the paper, the key tool features are described and their application is demonstrated by means of a case study

    Cellular Automata Models of Road Traffic

    Full text link
    In this paper, we give an elaborate and understandable review of traffic cellular automata (TCA) models, which are a class of computationally efficient microscopic traffic flow models. TCA models arise from the physics discipline of statistical mechanics, having the goal of reproducing the correct macroscopic behaviour based on a minimal description of microscopic interactions. After giving an overview of cellular automata (CA) models, their background and physical setup, we introduce the mathematical notations, show how to perform measurements on a TCA model's lattice of cells, as well as how to convert these quantities into real-world units and vice versa. The majority of this paper then relays an extensive account of the behavioural aspects of several TCA models encountered in literature. Already, several reviews of TCA models exist, but none of them consider all the models exclusively from the behavioural point of view. In this respect, our overview fills this void, as it focusses on the behaviour of the TCA models, by means of time-space and phase-space diagrams, and histograms showing the distributions of vehicles' speeds, space, and time gaps. In the report, we subsequently give a concise overview of TCA models that are employed in a multi-lane setting, and some of the TCA models used to describe city traffic as a two-dimensional grid of cells, or as a road network with explicitly modelled intersections. The final part of the paper illustrates some of the more common analytical approximations to single-cell TCA models.Comment: Accepted for publication in "Physics Reports". A version of this paper with high-quality images can be found at: http://phdsven.dyns.cx (go to "Papers written"

    Traffic at the Edge of Chaos

    Full text link
    We use a very simple description of human driving behavior to simulate traffic. The regime of maximum vehicle flow in a closed system shows near-critical behavior, and as a result a sharp decrease of the predictability of travel time. Since Advanced Traffic Management Systems (ATMSs) tend to drive larger parts of the transportation system towards this regime of maximum flow, we argue that in consequence the traffic system as a whole will be driven closer to criticality, thus making predictions much harder. A simulation of a simplified transportation network supports our argument.Comment: Postscript version including most of the figures available from http://studguppy.tsasa.lanl.gov/research_team/. Paper has been published in Brooks RA, Maes P, Artifical Life IV: ..., MIT Press, 199

    Human behavior as origin of traffic phases

    Full text link
    It is shown that the desire for smooth and comfortable driving is directly responsible for the occurrence of complex spatio-temporal structures (``synchronized traffic'') in highway traffic. This desire goes beyond the avoidance of accidents which so far has been the main focus of microscopic modeling and which is mainly responsible for the other two phases observed empirically, free flow and wide moving jams. These features have been incorporated into a microscopic model based on stochastic cellular automata and the results of computer simulations are compared with empirical data. The simple structure of the model allows for very fast implementations of realistic networks. The level of agreement with the empirical findings opens new perspectives for reliable traffic forecasts.Comment: 4 pages, 4 figures, colour figures with reduced resolutio
    corecore