159 research outputs found

    Rhythmic inhibition allows neural networks to search for maximally consistent states

    Full text link
    Gamma-band rhythmic inhibition is a ubiquitous phenomenon in neural circuits yet its computational role still remains elusive. We show that a model of Gamma-band rhythmic inhibition allows networks of coupled cortical circuit motifs to search for network configurations that best reconcile external inputs with an internal consistency model encoded in the network connectivity. We show that Hebbian plasticity allows the networks to learn the consistency model by example. The search dynamics driven by rhythmic inhibition enable the described networks to solve difficult constraint satisfaction problems without making assumptions about the form of stochastic fluctuations in the network. We show that the search dynamics are well approximated by a stochastic sampling process. We use the described networks to reproduce perceptual multi-stability phenomena with switching times that are a good match to experimental data and show that they provide a general neural framework which can be used to model other 'perceptual inference' phenomena

    Analysis and design of a distributed k-winners-take-all model

    Get PDF
    The -winners-take-all (WTA) problem is to find the largest inputs from inputs. In this paper, we design and propose a novel distributed WTA model, for which no central unit is needed to realize the computation of the winners. As a result, the proposed model has the general advantages of distributed models over centralized ones, such as better robustness to faults of agents. The global asymptotic convergence of the proposed distributed model is proven. Besides, two numerical examples on networks of agents with static inputs and time-varying inputs are presented to validate the performance of the proposed model

    Reinforcement learning control of a flexible two-link manipulator: an experimental investigation

    Get PDF
    This article discusses the control design and experiment validation of a flexible two-link manipulator (FTLM) system represented by ordinary differential equations (ODEs). A reinforcement learning (RL) control strategy is developed that is based on actor-critic structure to enable vibration suppression while retaining trajectory tracking. Subsequently, the closed-loop system with the proposed RL control algorithm is proved to be semi-global uniform ultimate bounded (SGUUB) by Lyapunov's direct method. In the simulations, the control approach presented has been tested on the discretized ODE dynamic model and the analytical claims have been justified under the existence of uncertainty. Eventually, a series of experiments in a Quanser laboratory platform are investigated to demonstrate the effectiveness of the presented control and its application effect is compared with PD control

    Energy efficient hybrid computing systems using spin devices

    Get PDF
    Emerging spin-devices like magnetic tunnel junctions (MTJ\u27s), spin-valves and domain wall magnets (DWM) have opened new avenues for spin-based logic design. This work explored potential computing applications which can exploit such devices for higher energy-efficiency and performance. The proposed applications involve hybrid design schemes, where charge-based devices supplement the spin-devices, to gain large benefits at the system level. As an example, lateral spin valves (LSV) involve switching of nanomagnets using spin-polarized current injection through a metallic channel such as Cu. Such spin-torque based devices possess several interesting properties that can be exploited for ultra-low power computation. Analog characteristic of spin current facilitate non-Boolean computation like majority evaluation that can be used to model a neuron. The magneto-metallic neurons can operate at ultra-low terminal voltage of ∼20mV, thereby resulting in small computation power. Moreover, since nano-magnets inherently act as memory elements, these devices can facilitate integration of logic and memory in interesting ways. The spin based neurons can be integrated with CMOS and other emerging devices leading to different classes of neuromorphic/non-Von-Neumann architectures. The spin-based designs involve `mixed-mode\u27 processing and hence can provide very compact and ultra-low energy solutions for complex computation blocks, both digital as well as analog. Such low-power, hybrid designs can be suitable for various data processing applications like cognitive computing, associative memory, and currentmode on-chip global interconnects. Simulation results for these applications based on device-circuit co-simulation framework predict more than ∼100x improvement in computation energy as compared to state of the art CMOS design, for optimal spin-device parameters

    Recognition system for facial expression by processing images with deep learning neural network

    Get PDF
    The recognition systems of patterns in images are mechanisms that filter the information that provides an image to highlight the area of interest for the user. Usually, these mechanisms are based on mathematical transformations that allow the processor to perform interpretations based on the geometry or shape of the image. However, the strategies that implement mathematical transformations are limited, since the effectiveness of these techniques is reduced by changing the morphology or resolution of the image. This paper presents a partial solution to this limitation with a digital image processing technique based on a deep learning neural network (DNN). This technique incorporates a mechanism that allows the DNN to determine the facial expression of a person, based on the segmented information of the image of their face. By segmenting the image and processing its characteristics in parallel, the proposed technique increases the effectiveness of recognizing facial gestures in different images even when modifying their characteristics

    SELECTED PAPER ABSTRACTS, WAEA ANNUAL MEETINGS, LONG BEACH, CALIFORNIA, JULY 28-31, 2002

    Get PDF
    Teaching/Communication/Extension/Profession,

    Inference And Learning In Spiking Neural Networks For Neuromorphic Systems

    Get PDF
    Neuromorphic computing is a computing field that takes inspiration from the biological and physical characteristics of the neocortex system to motivate a new paradigm of highly parallel and distributed computing to take on the demands of the ever-increasing scale and computational complexity of machine intelligence esp. in energy-limited systems such as Edge devices, Internet-of-Things (IOT), and cyber physical systems (CPS). Spiking neural network (SNN) is often studied together with neuromorphic computing as the underlying computational model . Similar to the biological neural system, SNN is an inherently dynamic and stateful network. The state and output of SNN do not only dependent on the current input, but also dependent on the history information. Another distinct property of SNN is that the information is represented, transmitted, and processed as discrete spike events, also referred to as action potentials. All the processing happens in the neurons such that the computation itself is massively distributed and parallel. This enables low power information transmission and processing. However, it is inefficient to implement SNNs on traditional Von Neumann architecture due to the performance gap between memory and processor. This has led to the advent of energy-efficient large-scale neuromorphic hardware such as IBM\u27s TrueNorth and Intel\u27s Loihi that enables low power implementation of large-scale neural networks for real-time applications. And although spiking networks have theoretically been shown to have Turing-equivalent computing power, it remains a challenge to train deep SNNs; the threshold functions that generate spikes are discontinuous, so they do not have derivatives and cannot directly utilize gradient-based optimization algorithms for training. Biologically plausible learning mechanism spike-timing-dependent plasticity (STDP) and its variants are local in synapses and time but are unstable during training and difficult to train multi-layer SNNs. To better exploit the energy-saving features such as spike domain representation and stochastic computing provided by SNNs in neuromorphic hardware, and to address the hardware limitations such as limited data precision and neuron fan-in/fan-out constraints, it is necessary to re-design a neural network including its structure and computing. Our work focuses on low-level (activations, weights) and high-level (alternative learning algorithms) redesign techniques to enable inference and learning with SNNs in neuromorphic hardware. First, we focused on transforming a trained artificial neural network (ANN) to a form that is suitable for neuromorphic hardware implementation. Here, we tackle transforming Long Short-Term Memory (LSTM), a version of recurrent neural network (RNN) which includes recurrent connectivity to enable learning long temporal patterns. This is specifically a difficult challenge due to the inherent nature of RNNs and SNNs; the recurrent connectivity in RNNs induces temporal dynamics which require synchronicity, especially with the added complexity of LSTMs; and SNNs are asynchronous in nature. In addition, the constraints of the neuromorphic hardware provided a massive challenge for this realization. Thus, in this work, we invented a store-and-release circuit using integrate-and-fire neurons which allows the synchronization and then developed modules using that circuit to replicate various parts of the LSTM. These modules enabled implementation of LSTMs with spiking neurons on IBM’s TrueNorth Neurosynaptic processor. This is the first work to realize such LSTM networks utilizing spiking neurons and implement on a neuromorphic hardware. This opens avenues for the use of neuromorphic hardware in applications involving temporal patterns. Moving from mapping a pretrained ANN, we work on training networks on the neuromorphic hardware. Here, we first looked at the biologically plausible learning algorithm called STDP which is a Hebbian learning rule for learning without supervision. Simplified computational interpretations of STDP is either unstable and/or complex such that it is costly to implement on hardware. Thus, in this work, we proposed a stable version of STDP and applied intentional approximations for low-cost hardware implementation called Quantized 2-Power Shift (Q2PS) rule. With this version, we performed both unsupervised learning for feature extraction and supervised learning for classification in a multilayer SNN to achieve comparable to better accuracy on MNIST dataset compared to manually labelled two-layered networks. Next, we approached training multilayer SNNs on a neuromorphic hardware with backpropagation, a gradient-based optimization algorithm that forms the backbone of deep neural networks (DNN). Although STDP is biologically plausible, its not as robust for learning deep networks as backpropagation is for DNNs. However, backpropagation is not biologically plausible and not suitable to be directly applied to SNNs, neither can it be implemented on a neuromorphic hardware. Thus, in the first part of this work, we devise a set of approximations to transform backprogation to the spike domain such that it is suitable for SNNs. After the set of approximations, we adapted the connectivity and weight update rule in backpropagation to enable learning solely based on the locally available information such that it resembled a rate-based STDP algorithm. We called this Error-Modulated STDP (EMSTDP). In the next part of this work, we implemented EMSTDP on Intel\u27s Loihi neuromorphic chip to realize online in-hardware supervised learning of deep SNNs. This is the first realization of a fully spike-based approximation of backpropagation algorithm implemented on a neuromorphic processor. This is the first step towards building an autonomous machine that learns continuously from its environment and experiences
    corecore