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ABSTRACT 
 
 

 
Sharad, Mrigank. .Ph.D., Purdue University, December 2014.Energy Efficient Hybrid 
Computing Systems Using Spin Devices. Major Professor: Kaushik Roy. 

Emerging spin-devices like magnetic tunnel junctions (MTJ's), spin-valves and 

domain-wall magnets (DWM) have opened new avenues for spin-based logic design. 

This work explored potential computing applications which can exploit such devices 

for higher energy-efficiency and performance. The proposed applications involve 

hybrid design schemes, where charge-based devices supplement the spin-devices, to 

gain large benefits at the system level. As an example, lateral spin valves (LSV) 

involve switching of nano-magnets using spin-polarized current injection through a 

metallic channel such as Cu. Such spin-torque based devices possess several 

interesting properties that can be exploited for ultra-low power computation. Analog 

characteristic of spin current facilitate non-Boolean computation like majority 

evaluation that can be used to model a neuron. The magneto-metallic neurons can 

operate at ultra-low terminal voltage of ~20mV, thereby resulting in small computation 

power. Moreover, since nano-magnets inherently act as memory elements, these 

devices can facilitate integration of logic and memory in interesting ways. The spin 

based neurons can be integrated with CMOS and other emerging devices leading to 

different classes of neuromorphic/non-Von-Neumann architectures. The spin-based 
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designs involve ‘mixed-mode’ processing and hence can provide very compact and 

ultra-low energy solutions for complex computation blocks, both digital as well as 

analog. Such low-power, hybrid designs can be suitable for various data processing 

applications like cognitive computing, associative memory, and current-mode on-chip 

global interconnects. Simulation results for these applications based on device-circuit 

co-simulation framework predict more than ~100x improvement in computation 

energy as compared to state of the art CMOS design, for optimal spin-device 

parameters. 
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1. INTRODUCTION 

1.1 Emerging Post-CMOS device technologies 

1.1.1 Exploration of novel-technologies for substituting and augmenting CMOS 
 

Over the past three decades silicon MOSFET scaling enabled us to design systems with 

lowest energy-consumption along with high-performance. However, today, MOSFET 

scaling faces several impending challenges, like, high leakage-power, high on-chip power 

density, and device parameter-variations [118-122].Continuing the growth that the 

semiconductor industry has enjoyed for decades may therefore necessitate exploration of 

technologies (devices, interconnect, and integration-techniques) beyond the industry 

mainstays of Silicon and CMOS. To truly leverage the potential of the new devices, we 

may not view them merely as drop-in replacements. Rather, we should seize the 

unprecedented opportunity to explore novel application-regimes, where the unique 

characteristics of the emerging-devices can be leveraged to assist and augment CMOS.  

Future ICs may involve heterogeneous-integration of CMOS with novel device-

technologies to achieve specific performance matrices for general-purpose as well as 

application-specific computing-platforms [123].  For instance, several non-volatile device 

technologies, like MRAM [125] and PCRAM [126], have been identified as forerunners  
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for replacing CMOS for on-chip memory, that can overcome the major bottlenecks of 

SRAM, namely, leakage and scalability [118].  Meeting both, power and performance 

requirements, in future multi-core processors may require hetero-integration of CMOS 

with emerging device-technologies like, TFETs [127], for low-power sub-threshold 

operations. With technology-scaling, degradation of performance and energy-efficiency 

of global no-chip interconnects has also motivated extensive research for alternate 

technology solutions. Hetero-integration of on-chip optical links [128]] as well as novel 

interconnect technologies like graphene and   carbon nano-tube (CNT) [129] with CMOS 

has been extensively studied to explore solution to such design issues.  With further 

innovation and progress in nano-technology and material science, research on such 

heterogeneous integration for different components of computing hardware is expected to 

expand further [124]. 

 

1.1.2 Search for alternate computing paradigms and their technology solutions 

Apart from the research for technology-solutions to the critical design-challenges faced 

by CMOS based Von-Neumann hardware, recent years have seen growing interest in 

design-implementation of alternate, non-Boolean computing-models.   CMOS transistors, 

being on/off switches, are an ideal match to the abstractions of switching functions and 

Boolean logic, which form the underpinnings of modern computing. However, traditional 

computing models (Boolean logic, von Neumann architecture) are highly inefficient - 

requiring orders of magnitude more energy-consumption for performing tasks that 

humans routinely perform, such as visual-recognition, semantic-analysis, and reasoning. 

Non-Boolean computation models like neural-networks [130],can algorithmically 
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outperform Von-Neumann architecture for such cognitive computation. Cognitive 

computing-schemes in general employ feature-extraction from sensory data followed by 

pattern-matching based on memorized information. ASIC implementation of such non-

Boolean computing schemes has gained widespread attention in last few years, especially, 

for mobile-computing platforms [131].  However, CMOS based implementations for such 

computing-models prove to be highly inefficient in terms of power and area-complexity, 

thereby limiting the scale, computing-power and sophistication of actual computing 

algorithms implemented [132]. These design challenges stems from the inefficiency in 

modeling the fundamental non-Boolean computing primitives in such schemes using 

CMOS transistors. The research on energy-efficient hardware for non-Boolean 

computing models has therefore fueled great interest in emerging device-technologies 

that can offer operational characteristics more suitable for direct mapping of such non-

Boolean computing primitives [142], [143].  

 

1.2 Emerging spin-devices for computing-hardware 

Among different post-CMOS device technologies under exploration, different genres of 

spin-devices, based on nano-scale magnets, have been identified as one of the potential 

candidates for future memory and logic design [125].  In fact spin-based on-chip memory 

may be one of the most suitable replacements for SRAM in near future. Although the 

promise of spin-devices for on-chip memory applications is well accepted, their potential 

for logic-computation is relatively less established [133]. The target of this research is to 

explore the potential applications of emerging spin-devices in Boolean as well as Non-

Boolean computing hardware.  In this work we first discuss the prospects and potential 
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design-techniques for spin-based Boolean-logic.  Following this, our work on spin-based 

non-Boolean computing is presented, which shows that the specific characteristics of 

emerging spin-devices can be highly attractive for the implementation of energy-efficient 

non-Boolean computing-systems.  This research also explores the possible advantages of 

spin devices in the design of low-power global on-chip interconnects. The following 

sections of this chapter give a brief overview of recent work in the field of spin-based 

memory and logic devices and links it to the work presented in this thesis. 

1.2.1 Spin Devices for on-Chip Memory 

Among different potential applications, the prospects of spin-devices for on-chip memory 

have been found to be most promising [125].  In a nano-scale magnetic-layer, the 

direction of magnetization vector can be regarded as information similar to charge as 

information in MOSFETs. Moreover, magnets can retain its magnetization without any 

external assistance or in other words magnets are non-volatile.  

 

Figure 1.1(a)Magnetic Tunneling Junction (MTJ), (b) Spin-transfer Torque MRAM 
(STT-MRAM) with access scheme 
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The basic data-storage device in an MRAM is a magnetic tunnel junction (MTJ), shown 

in fig. 1a [25].  It constitutes of two nano-magnetic layers separated by a tunneling barrier 

in the form of MgO. The resistance of an MTJ is high when the layers possess the same 

spin-polarity and vice-versa.  A current-based sense-amplifier is typically used to 

distinguish between the two resistance states, in order to read the stored data-bit [30].   

Magnetization of one of the two magnetic layers in an MTJ is fixed while that of the 

other can be switched by the application of charge-current of appropriate polarity across 

the two terminal device [25].  Such current-based switching of nano-magnets is governed 

by spin transfer torque (STT) effect [32].  The spin-polarization effect of magnets on 

charge current has been known since long. Charge current in a non-magnetic material has 

normally zero spin polarization due to random orientation of large number of electron-

spins. However, after passing through a nano-magnet, majority of electrons, constituting 

the charge-current, acquire spin-polarity parallel to that of the magnet. Such a spin-

polarized current can exert ‘spin-torque’ on another magnet, causing it to change its spin-

orientation [134]. Spin-torque based magnetization switching offers several advantages, 

like scalability, energy-efficiency and  higher performance, as compared to magnetic-

field based switching, that has been widely used for MRAM previously [32, 135].   

                          Spin Transfer torque  Magnetic Random Access Memory (STT-MRAM) 

offers several attractive features like non-volatility, high area-density, zero-leakage and 

reasonable read-write characteristics in terms of speed and performance [31]. Recent 

progress in current-induced spin-torque based switching-mechanisms for nano-magnets 
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have paved the way for further improvements in write performance and energy for 

MRAM [136], thereby enhancing the suitability of this technology for on-chip memory.  

1.2.2 Spin Devices for Boolean Logic 

Although promising for memory applications, the promise of spin devices for logic 

computation is relatively less established [136].   Until recently, nano-magnet logic 

(NML) was the only predominant spin-based computation scheme under exploration 

[137], [138]. It employs dipolar coupling between nano-magnets to perform logic 

computation and offers interesting features like non-volatility, zero leakage and 

compactness [137]. However, magnetic field based Bennett clocking used in NML 

requires pulsed current transmission through metal lines that makes it inefficient in terms 

of computation energy [138].  Theoretical possibility of alternate strategy for Bennett 

clocking in NML have been proposed recently [139], that makes use of anisotropic strain 

induced by multiferroic layers to turn magnets to hard axis. If successful, such a scheme 

could boost up the prospects of NML scheme and would make it attractive for low 

performance electronics like those used in biomedical implants [139]. 

Recent experiments on spin torque in device structures like lateral spin valve (LSV) [4], 

[5] (fig.2a), domain wall magnets (DWM) [6], [7], and magnetic tunnel junctions (MTJ), 

have opened new avenues for spin-based computation. Several logic schemes have been 

proposed using such devices. Hybrid design schemes using MTJ have been explored that 

aim to club memory with logic and can possibly benefit from reduced memory-data 

traffic [12].  Such schemes can be useful for programmable logic design, where the MTJ 

based memory cells can offer low-leakage and high density [140].   
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             Although MJT based memory elements may facilitate energy-efficient read-

access for programmable-logic cells, the write operation through such a two-terminal, 

high-resistance vertical spin valve can take order of magnitude more energy than a 

CMOS-gate [143]. Hence, logic schemes employing switching of 2-terminal MTJs, may 

not offer any significant advantage over CMOS. Recently, the application of multi-

terminal STT-switches have been proposed for digital logic design [16], [18]. Such a 

device, shown in fig. 1b, offers separate terminals for read and write operations. In the 

device shown in fig. 1b, the free-layer is a part of an extended nano-magnetic strip, which 

may have multiple spin-domains of opposite polarities. The transition regions between 

such opposite-polarity domains is called ‘domain-wall’ (fig. 1b). A domain-wall can be 

moved along a nano-strip using STT-effect, resulting from charge-current flow along the 

strip. Such a current-induced domain-wall motion can be used for ‘writing’ into the free-

layer of an MTJ. The low resistance, magnetic write-path in such a tree terminal device 

allows much smaller write voltages, as compared to a 2-terminal MTJ. At the same time, 

it also facilitates efficient sensing through the fixed-layer, similar to a 2-terminal device. 

Such a low power device can therefore be more efficient for logic design employing 

magnetization-switching [144].   

MTJ-based logic styles involve conversion between spin and charge as state variables for 

read-write operations. Recently, use of STT in lateral spin valve (LSV) has been 

proposed to realize All Spin Logic (ASL) that avoids such inter-conversions [9]. An  
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Figure 1.2(a) Lateral spin valve with non-local spin injection, (b) ASL full adder based 
on spin majority evaluation 

 

LSV (fig. 2a) constitutes of multiple magnets interconnected using non-magnetic 

channels (like Copper) [3]. In such a multi-terminal device, spin-polarized current 

injected into the channel through a set of ‘input-magnets’ can affect the state of one or 

more ‘output-magnets’.Use of STT in LSVs can therefore facilitate higher degree of spin 

current manipulation for logic-design. ASL employs cascaded LSV’s interacting through 

spin torque, to realize logic gates and larger blocks like compact full adders [9, 12], based 

on spin majority evaluation (fig. 2b).  The ASL gates being fully metallic, can allow 

ultra-low voltage operation, leading the possibility of energy-efficient switching at gate-

level [10].  However, to assess the best performance achievable for a proposed logic style, 

for a given set of device-parameters, it is important to evaluate the scheme at circuit and 

system 

 

1.2.3 Spin Devices for Non-Boolean Computing 

Most of the spin based computation schemes proposed so far have been centered on 

modeling digital logic gates using nano-magnetic devices. A wider perspective on  
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Figure 1.3 Overview of the proposed research – devices, circuits, architectures, and 
simulation framework 

 

application of spin torque devices, however, would involve, not only exploring possible 

combination of spin and charge devices but, searching for computation models which can 

derive maximum benefits from such heterogeneous integration. We noted that ultra-low 

voltage, current-mode operation of magneto-metallic devices like LSV’s and DWM’s can 

be used to realize analog summation/integration and thresholding operations with the 

help of appropriate circuits, and, can be used to model energy efficient “neurons” [26]-

[28]. Such device-circuit co-design can lead to ultra-low power neuromorphic 

computation architectures, suitable for different data processing applications. The 
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proposed hybrid design scheme can open a new frontier for spin torque based analog and 

digital computing. Inspired by this vision, we investigated spin-based non-

Boolean/neuromorphic computing (Fig.3) that spans from the device-level to architecture 

and applications.  

                As a part of this work we proposed different spin-device-models that can mimic 

the neuron-functionality and can offer an energy efficient mapping for non-Boolean 

computing primitives used in such hardware model.  Different genres of spin devices, 

like lateral spin valves, domain wall magnets and spin-torque based oscillators have been 

explored for such computing models. We explored designs that can maximally leverage 

the energy benefits of the spin-neurons at the system level.  This involved integration of 

the proposed spin-devices with CMOS and other devices like CMOS-compatible 

memristors, that can help emulate network-level functionality. Physics-based device 

simulation has been developed for characterization of the proposed spin-device-models. 

Device-circuit co-simulation is used for exploring such heterogeneous designs in-order to 

evaluate system level functionality and performance.  

 

1.2.4 Application of spin-torque switches in the design of global on-chip 

interconnects 

 

This work identifies global-on-chip-interconnect design as another potentially attractive 

application of emerging high-speed spin-torque switches. With the scaling of CMOS 

technology, energy-efficiency and performance of the on-chip global-interconnect 

degrades [100]. As a result the design of low power and high-speed on-chip global 
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interconnects can be a major bottleneck for emerging chip-multi-processors (CMP) that 

employ extensive inter-processor and memory to processor communication.In this work, 

we explore the potential of low-voltage, magneto-metallic spin-torque (ST) switches for 

ultra-low energy and high-performance interconnect design [103]. Recently demonstrated 

high-speed spin-torque switching phenomena based on spin-orbital (SO) coupling effects 

may be conducive to the design of ultra-low voltage, low-current and high-speed nano-

magnetic switches [103]. We present analysis for device and circuit-level optimization of 

current-mode interconnect design using such switches and compare its performance with 

conventional CMOS interconnects proposed in literature. 

 

1.3 Thesis Organization 

The goals of the proposed research are to (i) establish computing applications (for which 

CMOS implementations are energy-inefficient) enabled by advances in the physics of 

spin device technologies, (ii) synergistically explore spin devices, circuit and system 

design in a regime where the devices are integrated with CMOS to augment its 

capabilities, (iii) bring together expertise from the device, circuits, architecture, and 

applications to holistically solve challenges of the beyond-CMOS era. 

        Rest of the thesis is organized as follows.  Spin-torque-based Boolean computing 

scheme (previously proposed in literature) is provided in chapter-2.  All Spin Logic 

scheme proposed in [9]  is discussed in detail along with its limitations and design 

challenges. Some circuit methods for improving the energy and performance metrics of 

ASL are also proposed. Chapter 3 introduces the concept of non-Boolean computing with 
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spin devices.  Spin-based device-models proposed in this work for such computing 

schemes are presented.  Chapter 4-6 present different design examples of such spin-based 

non-Boolean computing systems, which essentially employ hybrid circuit designs with 

spin-neurons. . Associative computing architecture based on proposed STO-devices and 

coupling scheme is presented in chapter 7.  Chapter 8 describes the potential application 

of high-speed spin torque switches in global interconnect design. Conclusions and future 

work are given in chapter 9. 
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2. BOOLEAN LOGIC WITH SPIN TORQUE: ALL SPIN LOGIC 

2.1 All Spin Logic Using Lateral Spin Valves 

All Spin Logic (ASL) gates employ multiple nano-magnets interacting through spin-

torque using non-magnetic channels. Compactness, non-volatility and ultra-low voltage 

operation are some of the attractive features of ASL, while, low switching-speed (of 

nano-magnets as compared to CMOS gates) and static-power dissipation can be 

identified as the major bottlenecks.  In this chapter we explore design techniques that 

leverage the specific device characteristics of ASL to overcome the inefficiencies and to 

enhance the merits of this technology, for a given set of device parameters. 

         Fig. 1a shows a lateral spin valve (LSV) structure, which consists of an ‘injecting 

magnet’ (m1) and a ‘receiving’ magnet (m2) connected through a non-magnetic channel. 

Electrons constituting charge current, after passing through m1 get left spin-polarized. 

Spin-polarized charge-current is modeled as a four-component quantity, one charge 

component IC and three spin components (Isx, IsyIsz) [9-11].The charge component relates 

to the number of electrons constituting the current. The spin components however, denote 

the effective spin orientation of the current. In a normal charge current, the overall spin 

current is close to zero, because of random orientations of constituent electron spins. 

However, due to the effect of spin-momentum exchange, electrons after passing through . 
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Figure 2.1(a) Lateral spin valve (LSV) with local spin injection, (b) Lateral spin valve 
(LSV) with non-local spin injection (c) ASL NAND gate (d) ASL full adder(e) 
Simulation waveforms for FA evaluation. 
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a magnet acquire a spin polarity parallel to that of the magnet (in this case m1) [10]. As a 

result spin-polarized charge current is generated that has a non-zero spin component 

depending upon the spin orientation of the input magnet m1. If the spin components of the 

resulting current are strong enough, they can flip the spin-polarity of the receiving 

magnet m2,through which they pass [4].  This effect resultsfrom spin-momentum 

exchange between the spin-polarized current and the receiving magnet, and, is termed as 

spin-transfer torque (STT).  

        Experiments have shown two possible mechanisms for STT induced switching of m2 

under the influence of spin-current injected through m1. The first method employs direct 

injection of the spin polarized charge-current into m2 (fig. 1a). This implies that the 

charge component IC, as well as the spin components (Isx, IsyIsz) of the current injected by 

m1pass through m2 and the spin components exert torque on it, causing it to flip.  

        The second method for STT switching in LSV employs only the spin components of 

the input current. In this method, the charge component of the input current flows into the 

ground (fig. 1b).  The spin components however result in accumulation of one kind of 

spin (left spin in this case) under the input magnet m1. This results in spin-potential 

difference across the metal channel, causing a spin diffusion current flow, which flips the 

receiving magnet m2. Note that, in this case the overall flow of electrons across the 

channel, i.e., the net charge-current is zero.Owing to the separation of the spin diffusion 

current responsible for nano-magnet switching, from the charge current flow, this 

phenomena is regarded as ‘non-local’ STT [11]. 
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           The use of non-local spin-torque in LSV’s facilitates higher degree of spin current 

manipulation for computing. Non-local spin transport in metal channel can be used to 

cascade multiple LSV units to realize logic gates.  Analog characteristics of current mode 

switching employed in LSV’s can facilitate non-Boolean computation like majority 

evaluation. Hence, LSV’s with multiple input magnets can be used to design spin 

majority gates. In [9] authors proposed ‘all spin logic’ (ASL) scheme that employed 

cascaded LSV’s interacting through unidirectional, non-local spin current [3, 4, 9-11]. 

Interestingly, such spin majority gates can be used to realize compact structures for logic 

blocks (such as adders, as shown in fig. 2d) that find bulky representation in CMOS 

circuits. Fig 1c and fig. 1d depict ASL NAND gate [9], and, ASL full-adder (fig. 1d, e) 

using just five nano-magnets [12].  In the following section we present the 4 component 

spin-circuit simulation model for ASL. 

 

2.2 For Component Spin Circuit Model for ASL 

In order to simulate the neuron model, which is based on the lateral spin valve structure 

shown in fig. 1a, we need to self-consistently solve both the transport and the magnet 

dynamics equations. In our model, the channel spin transport is based on the spin 

diffusion model developed by Valet–Fert [145], The magnet-channel interface is modeled 

based on the interface model developed by Brataaset al. [146]. Both these models are 

well established and are used for spin transport in long channels [10].The spin diffusion 

formulation yields four component conductance matrices Gmagnet, Glead,Gint and Gch for the 

elements of nano-magnets, supply leads, magnet-channel interface and the non-magnetic 

channel, respectively. The four components are the charge and the three spin 
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components. The conductance matrices relate four component voltage drop and current 

flow between different circuit nodes,     

[ ]4 4
, , , , , ,z x yz x y

c c c c c c c c
G V V V VI I I I ×

⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦
                       (2.1)  

 

The non-magnetic channel and lead elements are modeled as π-conductance matrices 

with shunt Gsh and Gse as shunt and series components, respectively [11]. 

 

 

 

 

 

Here, gsh = (A/ρλ)tanh(l/2λ) and gse=(A/ρλ)csch(l/λ),l is the length of the contact, A is the 

area of the contact, ρ is the resistivity and λ is the spin-flip length. These conductance 

matrices are obtained by solving spin-diffusion equation as shown in [11]. Contact-

magnet-channel interface can be described through the matrix Gint. 
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Figure 2.2(a) Fabricated LSV structure in [3], (b) Depiction of structure in fig.2 a, (c) 
Spin circuit model based on spin diffusion model for the device in fig. 2a 

 

state, to be evaluated self consistently with magnet dynamics. Note that the elements of 

Gsh are responsible for the decay of spin current along the channel due to spin diffuse 

scattering [11].  

         TheNano-magnet dynamics is captured by solving the Landau-Lifshitz-Gilbert 

equation (eq.4), self-consistently with spin diffusion.  

                                

1 ( )s
s

dm dmm H m m m I
dt dt qN

γ α= − × + × − × ×                (2.4) 

Here m is the magnetization vector, α is the damping constant, NSis the number of spins 

in the magnet, γ isgyromagnetic ratio, ISisthespin-current, which is obtained by the 

transport framework and H is the effective magnetic field given by eq. 5 
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Figure 2.3(a) Calculated spin-valve signal vs input current closely matches the 
experimental results in [15]. STT induced switching of output nano-magnet. (b) 
Corresponding time evaluation of spin torque acting on the nano-magnet. (d)Self 
consistent solution for spin transport and LLG 

 

                                           HFREE =HEXT +Hkz-HD x                                               (2.5) 

Where, HEXT is the external field (normally zero for ASL operation), Hk is the internal 

uniaxial anisotropy field (along easy axis direction, z) and HD is the demagnetization 

fields (along out of the plane direction, x) acting on the free-layer [10]. This simulation-

framework has been benchmarked with experimental data on LSV’s [10-12]. This 

approach leads to the mapping of a spin device structure, involving nano-magnets 
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interacting through non-local spin transport, into an equivalent “spin-circuit” [10]. The 

circuit model for the lateral spin valve is shown in fig. 2c. 

              Fig.3a is plotted using this model which shows the output voltage per unit input 

current for the LSV in [3] and matches closely with the experimental data. The device 

parameters used are as provided in [11]. Fig. 3b shows the switching of output magnet. 

Fig. 3c depicts the corresponding time evaluation of spin torque acting upon the output 

magnet. Fig. 3d summarizes the simulation framework used in this work. The spin circuit 

approach, discussed above. 

 

2.3 Prospects and Challenges of All Spin Logic 

The critical current required for STT induced switching scales down with magnet 

dimensions. As a result the ASL scheme could potentially benefit from aggressive device 

scaling in terms of computation energy as well as area density [11].  Analysis presented 

in [12] suggested the use of clocking in ASL circuits for lower computation energy. It 

was also shown that current-mode Bennett clocking in ASL along with hard-axis 

switching could achieve speed-performance comparable to CMOS. The design challenges 

associated with ASL can be broadly classified into categories : first, the issues related to 

material and device fabrication, and the second, those related to circuit techniques. 

Among the first, the limited spin-diffusion-length (λ) of metal channels connecting the 

nano-magnets can be identified as a major bottle neck for ASL. It restricts the distance 

over which spin signal, can be reliably transmitted [11].  Spin polarization strength of the 

current, decays exponentially with the distance travelled along the non-magnetic 
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channel.The strength of input spin signal (VIN) after propagating a distance ‘x’ (VX) is 

given by eq. 6. 
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Where, λ is the spin-diffusion length (SDL) that indicates the distance over which spin 

signals decay, R is the magnet resistance, P is the input-interface polarization and RS is 

the channel resistance over a unit spin-flip length. Note that, Copper andgraphene have 

been shown to offer relatively high spin-flip length (SFL, λ) (~1µm and ~5µm 

respectively) [9], [145]. 

              The other important concern is the quality of interface between the nano-

magnets and the non-magnetic channel, which determines the efficiency of spin-injection. 

An ideal magnet-channel interface would spin-polarize all the electrons injected through 

it into the channel, leading to ~100% spin injection. However, an imperfect interface can 

significantly lower the spin-injection efficiency due to spin-flip processes associated with 

different sources of impurities at the interface. In this work we have assumed ideal spin-

channel interfaces for the input and the output magnet-channel interface.   As stated 

earlier, high spin-polarization constant-P (close to 1) is favorable for the input interface 

and vice-versa [11].    

                 This work targets to explore the second category of design issues with stated 

above, namely circuit design techniques, assuming the optimal device and technology 
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parameters available. Although, ultra-low voltage operation for an ASL device may seem 

conducive to low energy switching, the overall energy-efficiency for complex ASL logic 

blocks may be limited by the large static current requirement for each gate and relatively 

low switching speed of magnets as compared to CMOS [33].  In this work we propose 

some design techniques to enhance the performance, energy-benefits and density of ASL, 

exploiting specific features of the device.          

2.4 Pipelined, stacked ASL for low power high density and high performance 

Performance for a large ASL block can be enhanced by the use of two-phase pipelining. 

Since a nano-magnet preserves its state upon removal of supply voltage, ASL can 

facilitate fine-grained pipelining, without the need of additional latches. However, this 

comes at the cost of power and area overhead, resulting from the clocking transistors that 

are used to turn the supply on and off for a given logic stage. In this work be analyze the 

pros and cons of pipe-line ASL design. We propose a 3-D integration scheme for ASL 

which can exploit a pipelined ASL design to realize ultra-high density and low power 

computational blocks. In the following sections these concepts are elaborated. 

2.4.1 Two Phase Piplelined ASL 

In this section operation of 2-phase pipelined ASL is described. Following this a brief 

discussion on device level optimization is given. 

2.4.1.1 Device Operation 

Fig. 4 shows three ASL stage connected using 2-phase pipelined scheme. The magnets 

m1 and m3 are driven by clock, whereas m2 is driven by an inverted clock. When the clock 
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is high, m1 and m3 act as transmitting magnets. They receive charge current from a 

clocked transistor (not shown in the figure). The injected charge current induces a spin- 

 

Figure 2.4Three ASL stages connected using 2-phase pipelined scheme 
 

diffusion current on the transmitting (high-P) side of m1 and m3, which in turn, is 

absorbed by the receiving magnets’ low-P side (low-P side of m2 as shown in the figure). 

Thus, the data stored in m1 is transferred to m2 and that stored in m3 is transferred to the 

next magnet (not shown in the figure). During this phase, m2 is not connected to the 

supply and hence does not receive any charge current. When the clock goes low, the 

magnets m1 and m3 turn into receivers and are kept in the floating state. For m3, m2 acts as 

the transmitter. Thus, the information stored in m2 during the high-clock phase is 

transferred to m3 during the low clock phase.  
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Figure 2.5ASL full adders connected using 2-phase pipelining scheme 
 

The same scheme can be extended to an arbitrary pipelined logic design. Fig. 5 shows 

two ASL full adders connected using the pipelining scheme described above. Here, 

pipelining-granularity has been taken as a single FA.  Note that a single ASL-FA 

evaluation corresponds to two magnet switching delays. Current is supplied 

simultaneously to all the five magnets in a FA. First Cout evaluates, based on the values of 

the inputs A, B and Cin. This is followed by the evaluation of SUM, which depends upon 

the state of Cout and the three inputs. In the same clock phase, the result of Cout and SUM 

is transmitted to the next stage FA, which is in a floating state.  In this example, the clock 

pulse width must be at least as wide as three magnet switching delays. A finer pipe-line 

granularity would involve decomposing one FA evaluation two steps, namely, 

Coutevaluation and SUM evaluation.  

          Note that, in contrast to pipelines CMOS, a 2-phase pipelined ASL does not require 

any additional latch, as each of the nano-magnets itself acts as a latch and hence, 

facilitates fine-grained pipelining of a large logic block. 
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2.4.1.2 Device Operation 

The device operation for 2-phase pipelining can be optimized by appropriate choice of 

device structure and operating conditions. Fig. 6a depicts the spin-diffusion model for 

ASL device. The device elements, namely, the metal channel, the nano-magnets and the 

magnet-channel interface are modelled as four component conductance elements, one 

charge conductance and three spin conductance’s (Gse, Gsh: series and shunt conductance 

of metal channel, Gint : magnet-interface conductance) [9-11].  As mentioned earlier, the 

charge component of the spin-polarized current injected into the channel through the 

high-P side of the transmitter magnet passes into the ground lead. In the pipelined 

scheme, since the receiving magnet is in floating state, there is no charge current flow in 

the channel and through the receiving magnet. A part of the spin component of the input 

current is also lost to the ground, whereas the rest is absorbed by the receiving magnet. 

Increasing the length of the ground lead increases its charge resistance, as well as, its spin 

resistance. Hence, for a given input current Icharge, the spin current Ispin, absorbed by the 

receiving magnet increases with increasing ground resistance Rg (fig. 6b). The ratio of 

Ispinand Ichargecan be defined as the non-local spin-injection efficiency (NLSE). Note that, 

experimentally ~20% efficiency for non-local spin injection has been demonstrated (with 

P~0.5) [10]. In this work we used 25% NLSE in simulations.  
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Figure 2.6 (a) Spin diffusion model for an ASL device showing an input magnet and an 
output magnet connected using a metal channel, (b) Plot showing increase in non-local 
spin injection efficiency with increasing ground resistance for 15x30x1nm3  output 
magnet. 

 

Scalability of nano-magnets in ASL is also tightly coupled to the value of Rg. For a given 

input current, scaling down the area of a receiving magnet, lowers its conductive 

interface with the metal channel, thereby resulting in lower spin current absorption. 

However, as the density of spin-current absorption remains constant, a constant switching 

speed is maintained (fig. 7b).Benefit of nano-magnet scaling however, can be obtained 

by simultaneously scaling of Rg. As explained above, by reducing Rg along with the 

magnet area, the spin injection efficiency is maintained, and hence value of spin injection 

in enhanced, leading to faster switching (fig 7b).  
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Figure 2.7 (a) Scaling of magnet area maintains a constant switching speed for a given 
input current and a fixed Rg 

 

Figure 2.7b  (b)  Up-scaling of Rg with reducing magnet area leads to faster switching 
 

The ultimate scaling of nano-magnets in an ASL device will be therefore governed by the 

scalability of the ground lead (or via).              

          An important consideration for a pipelined ASL design is the choice of clock 

period. For a nano-magnet, switching energy, Esw, can be expressed as in eq. (7) 

                                                        Esw = Tsw x Isw x V                                            (2.7) 
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Where,Tsw is the switching time, Iswis the input current and V is the terminal voltage. The 

minimum spin-polarized current required to switch the state of the magnet from one of its 

stable state to another is determined by the critical field ܪ஼ , of the magnet given by eq. 

8: 

஼ܪ                                                       ൌ 2 ௄ೠ 
ெೞ
                                                      (2.8) 

Here, Kuis the uniaxial anisotropy constant and Msis the saturation magnetization of the 

magnet [10]. For the spin-current ISW to be able to switch the magnet of volume V, the 

spin-torque equivalent field,Hsw(eq. 9) must be greater than Hc. 

ௌௐܪ                                             ൌ  ௌௐ 2ܫ
ஜಳ ௤
ெೄ௏|ఊ|

                                               (2.9) 

 

Where, µBis the Bohr Magneton, qis the electron charge,γ is the gyromagnetic ratio 

[145].  Beyond the critical switching current, the nano-magnet switching timeTsw is 

inversely proportional to the switching current to the first order (fig. 8a) [11].   Since, 

higher Isw requires higher V, faster switching speed incurs linearly higher switching 

energy, as shown in fig. 8b. Thus, for low-energy operation it is desirable to operate the  

pipelined ASL with a low frequency clock. However, in presence of thermal noise, the 

probability of correct switching of nano-magnets reduces steeply with reducing current.  

Fig. 9 shows the plot for the probability of correct evaluation vs. Isw/Icr, where Icr is the 

critical current required to switch the nano-magnet in a long enough time.  Stochastic-

LLG has been employed to determine this trend [9]. It involves an additional thermal 

noise field h fx,y,z(t)   in the LLG equation (eq. 5).   
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Figure 2.8 (a) Nano-magnet switching current increases linearly with switching 
frequency, (b) Switching energy for ASL device increases linearly with switching speed, 
(c) comparison of ASL switching energy at two different switching speeds with low 
voltage 15nm CMOS switching energy 
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hfx,y,z(t)    is Gaussian distributed, with zero mean and standard deviation (σ) given by eq. 

10 [9].   

ଶߪ                                   ൌ ఈ
ଵାఈమ

ଶ௄ಳ ் 
|ఊ|ெೄ ௏

                                                (2.10) 

This observation implies that, apart from the performance requirement, thermal noise 

related bit-error rate plays critical role in determining the lower limit of switching energy 

achievable for pipelined ASL. 

 

Figure 2.9Switching probability vs. Isw/Icr 
 

Fig. 8c shows the comparison of switching energy for ASL inverter at two different 

switching speeds with low voltage 15nm CMOS inverter. The charge-current input into 

the input magnet of the ASL inverter (m1) must produce sufficient spin-current injection 

into the output magnet (m2) , required for a specific switching speed.  For the ASL 

device parameters given in fig. 8c, the spin-injection efficiency (the ratio of spin-current 

input into m2 to charge current input into m1) was found to be ~25% (as discussed earlier, 

further improvement in this value might be possible by employing larger ground 

resistance, which would reduce the loss of spin current into the ground lead).  For a 

500MHz 8x8 multiplier, the switching delay for each full adder is required to be ~100ps. 
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From the results given in fig. 8c, it is evident that, for such a computing block, standard, 

non-clocked ASL gates operating at ~100ps gate delays may consume up to two orders of 

magnitude larger switching energy as compared to a low voltage 15nm CMOS design. 

 

2.4.2 Pipelined Multiplier Design 

We analyzed 8-bit carry save multiplier (fig. 10) design with ASL, using the 2-phase 

pipelining scheme described above. The corresponding layout is shown in fig. 10.  The 

layout has been done using just two metal layers. This is because, due to limited spin 

diffusion length of metal channels, routing of spin signal though longer via’s (more than 

two metal layers) becomes challenging(fig. 11), and may require insertion of additional 

buffer magnets. 

         Each pipelined stage constitutes of a parallel bank of full adders. Each such stage 

receives current from a clocked CMOS transistor. The transistors belonging to the 

alternate stages are driven by complementary clock phases (clk and clkb) in order to 

implement 2-phase pipelining, as depicted in fig. 12. Owing to comparatively large 

resistance of the transistors, for a given switching delay, the drain to source voltage 

required is significantly larger than the voltage directly applied to the nano-magnets in 

the non-pipelined case.   

             Minimum area for the ASL multiplier is obtained when the area of the clocked 

transistors (Area_Tx) equals that of the ASL array (Area_spin). For this case the area for 

the 8-bit multiplier was estimated to be ~50x lower than that of a 15nm CMOS design.  

But for the minimum area case, the drain to source voltage required was found to be 

around ~160mV for 500MHz operation, and resulted in ~9x higher power consumption 
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as compared to CMOS.  The supply voltage and hence the power consumption can be 

reduced by increasing the size (number of fingers) of the clocked transistors (fig. 12a).  

Note that, scaling down the supply voltage and scaling up the transistor widths by the 

same factor maintains the level of supplycurrent per gate.As a result static power 

involved in ASL computation is lowered (fig .12b). However, due to  

 

Figure 2.10ASL layout for 8-bit carry save multiplier 
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Figure 2.11Spin injection efficiency vs. channel length 
 

increase in the width of the clocked transistors, the dynamic clocking power increases 

(fig. 12b). Fig. 12 b shows that for the minimum area case (i.e., transistor area = ASL 

area), dynamic clocking power is negligibly small as compared to the static power. But, 

with increasing transistor width (and hence Area(Tx)), and reducing supply voltage, the 

two components become comparable ( for Area(Tx) = 15x Area(spin), the two 

components were found to be equal in simulation). Fig. 12c shows the plot for area 

saving obtained by the ASL multiplier over 15nm CMOS multiplier for increasing 

transistor width. The corresponding trend for power saving is shown in fig. 12 d.  The 

power optimal design point can be identified as the saturation point of the total power 

(the sum of the dynamic and static power components) as shown in fig. 12b. At this point, 

the pipelined ASL design obtained ~5x lower area and 3x smaller power as compared to 

a 15nm CMOS design. Needless to say that, the area corresponds to transistors used for 

clocking the ASL gates.  
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Figure 2.12(a) Supply voltage needed for pipelined ASL (for 300MHz operation) reduces 
with increasing Area(Tx), (b) Higher transistor width and lower supply voltage leads to 
reduction in static power but the dynamic clocking power increases. (c) Area benefit of 
pipelined ASL over 15nm CMOS design reduces with increasing Tx area (as expected). 
(d) Power consumption of pipelined ASL reduces with increasing Tx area and reaches a 
minima, but saturates after a certain point due to increase in dynamic power consumption. 

 

From the foregoing discussion, it is apparent that in the pipelined ASL scheme, 

application of standard CMOS transistors for clocking leads to stringent tradeoff between 

power and area-efficiency, thereby eschewing the overall benefits of 2-phase clocking. 

However, despite achieving poor energy-efficiency, the minimum area ASL using 

standard CMOS transistors provides advantage in terms of robustness. For the non-

pipelined design, the operating speed is determined by the critical delay path in the 

multiplier block (~16 full-adders delays, 8 for the multiplier-block and 8 for the merging 

part in the carry-save multiplier architecture). Hence, for achieving high frequency 

operation, current per magnet must be increased. Simulation results show that, (after 

including the overhead due to buffering magnets in the pipelined case) a non-pipelined 
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8x8 multiplier requires more than ~12x higher current injection to achieve the same 

performance as the pipelined design. However, since there are no transistors, the voltage 

required is also significantly low (~20mV, for optimized input-lead and ground resistance 

of ~35Ω). As a result, non-pipelined case consumes only ~1.8X higher power than the 

minimum area pipelined design. But, the main bottleneck of the non-pipelined design is 

the high current requirement, leading to unreliably high current density (~108 A/cm2) in 

the metal leads. This amounts to ~0.5 mA of input current for each 15x30x1nm3 magnet 

(with parameters given in fig. 10c) for ~60ps switching time, to achieve ~500MHz 

throughput. The pipelined design however could use ~40µA of current for each magnet 

for 1ns switching time for the same throughput. 

 

2.4.3 3-D ASL for ultra-high density and low power computation blocks 

 

As described in an earlier section, use of clocked transistors in pipelined ASL 

necessitates the use of higher voltage levels. This increases the power consumption as 

compared to the ideal case (with zero on resistance transistors). 3-D ASL design depicted 

in fig. 13 however, can overcome this disadvantage. The proposed 3-D ASL design 

constitutes of multiple ASL layers stacked vertically. In such a design, each horizontal, 2-

D layer performs computation independently. Nano-magnets in multiple 2-D layers 

sharing the same 2-D coordinates can be supplied charge current through a common via. 

A spin-scattering layer can be deposited on the top of each magnet in order to prevent 

spin current interaction along the vertical vias.  
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Figure 2.133-D ASL can be constructed by stacking 2-D ASL layer along the vertical 
direction. All the ASL layers in the vertical direction are supplied current using the same 
CMOS transistors. 

 

In the original design, a group of nano-magnets, belonging to a particular logic stage in a 

pipeline, were clocked using a single, large transistor. For the 3-D design, the same 

transistor can supply current to that particular group of magnets in all the vertical stacks. 

Since, the overall resistance of the metallic vias is negligibly small as compared to the 

transistor, there is no significant increase in the supply voltage as compared to the one 

layer, pipelined ASL case (fig. 13).  This implies that, the total power consumption 

remains the same as that for one layer design. Thus the effective power saving as well as 

area benefit over CMOS is enhanced by a factor of N(V1/VN), where V1 and VN are the  
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Figure 2.14 Power saving for stacked ASL vs. number of stacked layers for minimum 
area case. 

 

voltages required to supply the same amount of current per-magnet for single and N-layer 

stacks respectively. Based on layouts, for minimum area case (when clocking transistor 

area equals ASL area), ~1µm wide 15nm transistor could supply current to 6 full-adders 

(FA) in parallel for 500MHz operation (total ~1mA of current). 10 stacked ASL layers 

offer ~ 350Ω resistance per supply lead (i.e. per magnet). This corresponds to ~11Ω load-

resistance (350Ω x 5x 6 for 6-FAs) per-µm of transistor width. Due to the finite increase 

in the load-resistance, VNincreases with N, thereby limiting the overall power saving for 

larger N. This trend is shown in fig. 14. For N= 10, VN was found to be ~210mV (as 

opposed to ~160mV for single, non-stacked pipe-lined ASL layer), thereby providing a 

factor of ~7.6 reduction in power as compared to the non-stacked case. As compared to 

the non-stacked, non-pipelined case, the overall power-saving was therefore ~15 (note 

that pipe-lining alone provided ~2x improvement in power saving with minimum area 

transistor).    
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                                It would be expected that for the stacked ASL, increasing the CMOS 

area should improve the power saving further, due to reduction in the required supply 

voltage. Notably, for the minimum area case, the dynamic power dissipated in switching 

the transistor was found to be ~100x smaller than the static power in the ASL. Hence 

there is a significant amount of room for trading of power saving with CMOS area, by 

increasing the transistor widths. The maximum power saving can be obtained for the case 

when the supply lead resistance become dominant as compared to the CMOS resistance. 

For the minimum area case, the ration between the transistor resistance and the supply-

lead resistance was found to be ~ 3.5:1. Hence, ideally using much larger transistors (say 

~10x larger), the required supply voltage can be further reduced by a factor of ~3 or more, 

resulting in ~98% (~50x) overall power saving as compared to the standard, non-clocked 

ASL.  Note that, this would increase the dynamic power by a factor of ~10, however it is 

still small enough to be ignored as compared to the static power. Apart from loss in area 

efficiency, the use of larger transistors may complicate the routing of current from the 

transistors to the ASL devices. It is therefore advantageous to use methods that trade of 

dynamic power involved in clocking with the static power in ASL, without significantly 

increasing the CMOS area, as discussed in the next section. 

 

2.4.4 Choice of transistor characteristics and operating point 
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Figure 2.15 Three pipeline stages of ASL, depicting ON and OFF currents of the 
clocking transistors. 

 

As discussed earlier, based on simulations we estimated that CMOS transistor of 1µm 

width was required for 5 ASL-FAs (10-stackes) at 500MHz, 0.7V clock, with the total 

terminal voltage of ~220mV. Considering ~5fF/µm switched capacitance offered by 

15nm CMOS, this evaluates to ~0.5fJ capacitive switching energy per FA-stack. The 

static current of ~35µA flowing through each supply lead implies ~40fJ of switching 

energy per FA-stack ( usingTsw= 1ns, V ~230mV). The supply voltage for ASL can be 

further reduced by increasing the gate drive voltage of the clocked transistor. Another 

effective method that can be used in parallel is to drastically reduce the threshold voltage 

of the driving transistors. Assuming linear region operation of the transistors,  

                                                    Id ~ (Vgs-Vt) Vds                                                      (2.11) 

Let’s compare the results for nominal value VgsandVt   (say 0.7V and 0.3V) respectively, 

with the case of 2xVgs(1.4V), and an ultra-scaled Vt(say ~0.1V). The ratio for the two 

cases obtained using eq. 11 is ~3.25. This would allow an effective reduction of ~3x in 

Vds. leading to ~12fJ of energy-dissipation due to static-current per FA-stack (as opposed 

to ~40fJ with Vgs ~0.7V and Vt ~0.3V). The 4-fold increase in dynamic switching power 
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still leads to ~2fJ of energy per FA-stack.  Hence the static power, leading to ~3x power 

saving over the stacked ASL with minimum size-transistors with original biasing 

conditions. This implies ~50x power saving over standard ASL, with minimum area 

clocking transistors.  

                         Assuming that 1.4V gate-to source voltage is within reliability limits of 

the ultra-low Vt clocking transistors, an important concern can the increase in leakage 

current due to the aggressive scaling of Vt. The standard expression for source to drain 

subthreshold leakage is given by eq. 12 

௟௘௔௞ܫ                                                ൌ ௢ܫ exp ቀ
ି௤௏೟
௠௞்

ቁ                                                 (2.12) 

           Where, m is a dimensionless ideality factor typically ~1.2 [146]. The off-state 

leakage current would further increase by about ten times for every 0.1-V reduction of Vt. 

For a standard CMOS IC, this would imply exponential increase in leakage power. 

However, for ASL, static current is inherently used in logic computation during the active 

clock cycle. Hence, even a drastic increase in off-state leakage current of the transistors 

does not significantly alter the overall power numbers as long as the ON/OFF ratio for 

the transistor current is significantly lessthan ~10. This is evident from the simple 

expression for energy-dissipation due to static current in clocked ASL, given by eq. 13 

 
௦௧௔௧௜௖ܧ                                            ൌ ܸ  ௖ܶ௟௞ ሺ0.5 ܫைே ൅  ைிி ሻ                               (2.13)ܫ 0.5 
  

Where, V is the supply voltage and Tclk is the clock period.  
 

An important concern with the use of transistors with poor Ion/Ioffratio can be the 

robustness of the logic operations. Fig. 15 depicts an exemplary ASL pipeline with one 

magnet per-stage. The off-state leakage-current (Ioff) injected into the channel  
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Figure 2.16Stochastic LLG simulation plots for magnet dynamics under the application 
of ON-current and different levels of-OFF currents. 

 

through the high-P side of a receiving magnet (m2) can disturb the state of a transmitting 

magnet (m3) in the next stage. Hence a safe limit for Ion/Ioffratio  must be maintained.   

The switching speed of a nano-magnet increases linearly with switching current [10].  

Hence, a factor of ~10X reduction in current can be expected to increase the switching 

delay by the same amount, thereby providing a sufficient disturb-margin. Fig. 16 shows 

the simulation of nano-magnet dynamics under the application of ON-current 

(corresponding to 3ns switching time) and three different levels of OFF-current.  

Stochastic Landau-Lifshitz –Gilbert (LLG) equations (eq. have been used to capture the 
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effect of thermal noise [9]. The plots show that an Ion/Ioffratio of ~10 may provide 

sufficient robustness for error-free logic flow in pipelined ASL. Note that a much lower 

read-disturb margin (read to write current ratio of 2 to 3) is commonly used in magnetic 

random access memory (MRAM). However, in ASL heating effects can be more 

prominent due to continuous injection of bias currents.    

 

2.5 Performance Summary 

 

Table-2 depicts the benefits of the design techniques presented in this work. As 

mentioned before, the key feature of ASL is its compactness, whereas, the energy-

inefficiency resulting from relatively larger magnet-switching delay can be identified as 

the down-side of it. In a non-pipelined ASL design, achieving 500MHz operation for an 

8x8 multiplier would mandate ~120ps switching-speed for individual magnets, requiring 

untenably high current-levels for magnets. This would result in large static-power in the 

ASL device (which is the only power component for a non-clocked, non-pipelined ASL) 

as shown in the figure. Introduction of minimum area clocking-transistors for 2-phase 

pipelining can help reduce the magnet-switching time (and hence the current-levels), 

leading to large reduction in power-dissipation in the device. 

                As mentioned before, the switching speed of a nano-magnet is proportional to 

the switching-current. Hence, the I2R power-dissipation(I = current, R = device 

resistance)in the ASL device bears a quadratic dependence upon the switching-speed. 

The use of relatively high-resistance transistors however requires significantly higher 

voltage (~150mV as compared ~20mV), and leads to significant static-power dissipation 
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across the transistors. Such a minimum area design barely offers any energy benefits over 

non- 
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pipelined ASL, but does improve the reliability of the design by reducing the current 

injection for a given circuit performance by more than an order of magnitude. Area can 

be traded-off with power by increasing the size of the clocking transistors. This reduces 

the associated I2R dissipation in the transistors. However, this results in increase in 
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dynamic power consumption due to increased switched capacitance. We proposed the 

design of 3-D ASL that can enhance both energy-efficiency and area-density, by sharing 

a common CMOS substrate with multiple ASL layers. The energy efficiency is improved 

 

Figure 2.17 Comparing energy-efficiency of proposed pipelined, stacked ASL scheme 
with standard ASL 

 

by a factor proportional to the number of layers, as discussed before. Finally, we explored 

an alternate method for trading of the dynamic power dissipation with its static 

counterpart in the stacked ASL design. We employed large overdrive voltage for the 

clock transistor to achieve minimal ON-resistance for the transistors. We also proposed to 
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use drastically scaled threshold voltage for the transistors for the same purpose, 

exploiting the leakage tolerance of ASL. These methods led to ~98% improvement in 

energy efficiency over standard non-clocked ASL (fig. 17) and ~99.8%  improvement in 

effective area density. Close to two orders of magnitude improvement in switching-

energy for ASL may render it comparable (or possibly better, with further improvement 

in  ASL device characteristics like spin injection efficiency,  efficient magnet-channel 

interface, low contact-resistances and impurity-scattering  and high-spin diffusion length) 

to low voltage 15nm CMOS, as discussed in section 3.1.The most attractive feature of 3D 

ASL is evidently the ultra-high area-density. The prospects of achieving ~1000x higher 

logic density as compared to CMOS may be a motivating factor for the on-going research 

and experiments in this field. 
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3. NON BOOLEAN COMPUTING WITH SPIN TORQUE 

3.1 Motivation 

Most of the spin-torque based computation schemes proposed so far have been focused 

on digital logic, and, their benefits over robust and high performance CMOS remains 

debatable. Ultra-low voltage, current-mode operation of magneto-metallic spin-torque 

devices can potentially be more suitable for non-Boolean computation schemes like, 

neural networks, which involve analog processing.  

The fundamental processing element (PE) of such non-Boolean hardware can be regarded 

as  ‘neuron’ owing to its functional resemlance to the  processing elements in the 

biological brain. Such a computing unit or neuron essentially performs analog summation 

of a  number ofinputs recevied and mulitplied by input-weights called ‘synapses’,  

followed by comparison with a threshold (fig. 1). A large number of such neurons can be 

interconnected in different ways to realize different classes of non-Boolean computing 

architectures that can be functionally much superior to the conventional Von-Neumann 

designs for a certain class of applications. Such prospects have encouraged numerous 

design attempts in past that aimed to achieve the neural terms of power consumption as 

well as area. For instance, a digital CMOS implementation of a 
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Figure 3.1Thresholding neuron as a neural computation unit with input weights Wi, called 
synapses. 

 
neural computing unit would employ multipliers to emulate weights, and adders and 

comparators tofunctionality using CMOS transistors [19-23]. However, realization of 

such a functionality using conventional CMOS design incurs prohibitively high cost 

interms of power consumption as well as area. For instance, a digital CMOS 

implementation of a neural computing unit would employ multipliers to emulate weights, 

and adders and comparators to perform the summation and the thresholding operations 

respectively. Such a bulky design would fail to leaverage the algorithmic and structural 

benefits of the non-Boolean computing architectures altogether. It has been argued that 

analog CMOS circuits, owing to their compactness, can be better suited for such tasks 

[24]. However, large static power consumption in such circuits eschews the energy 

benefits of non-Boolean designs realized using analog and mixed-signal CMOS. Despite 

continual algorithmic developments achieved in the field of non-Boolean computing in 
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recent years, the aforementioned design bottelcecks have illuded the parallel effors for its 

efficient hardware mapping. 

        The emerging spin-torque devices may hold the key to this bottleneck. As 

mentioned earlier, low voltage current-mode switching of spin-torque devices can be 

exploited to obtain the critical analog functionality of summation and thresholding, 

needed for non-Boolean computing. However, a comprehensive solution to this research 

problem would involve, not only evolving spin-device models for ‘neurons’, but to 

explore efficient ways of integrating such devices into suitable circuits and architectures 

to assess the overall implementation feasibility and system-level benefits.   In this work 

we plan to explore different device structures for "spin-neurons" and compare them with 

respect to computation efficiency, fabrication ease, reliability and compatibility to hetero-

integration.  

        In the following sections, we first present the analysis of neural networks using 

analog CMOS neurons and estimate its performance. Following this we introduce the 

proposed spin device models for neurons that can out-perform conventional CMOS 

circuit models for neurons by orders of magnitude. 

3.2 Neural Networks with resistive memory synapses and CMOS neurons. 

3.2.1 Resistive memory as synaptic network 

The input synapses in an analog neural-network hardware can be visualized as resistive 

conduits with different conductance’s (preferably programmable), connecting the analog 

input levels to the neuron circuit. In recent years several device solutions have been 

proposed for fabricating CMOS compatible, nano-scale programmable resistive elements, 
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generally categorized under the term ‘memristor’[39-45]. Continuous range of resistance 

values obtainable in these devices can facilitate the design of multi-level, non-volatile  

 

Figure 3.2Neural Computing with resistive cross-bar array : a memristors connecting a 
set of horizontal and in- metal lines can be programmed by applying writing pulses across 
the two lines[45]. For computing, inputs are applied to the horizontal lines and the current 
mode summationsare obtained along the in-plane lines. 

 

memory [38-40].  Such devices can be integrated into metallic crossbars to obtain high 

density resistive crossbar networks (RCN) [39-45] (fig. 2). The Resistive-Crossbar 

Network (RCN) technology can be exploited for implementing non-Boolean computing 

architectures like neural networks, where the memory elements can be used as compact 

weights or synapses.[5, 11].  

            Fig. 1 depicts a resistive crossbar network and its analogy with the non-Boolean 

processing module discussed earlier. The RCN constitutes of memristors (Ag-Si) with 

conductivity gij, interconnecting two sets of metal bars (ith horizontal bar and jth in-plane 
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bar). The horizontal bars shown in the figure receive input currents/voltages.  Assuming 

the outward ends of the in-plane bars grounded, the current coming out of the jthin-plane 

bar can be visualized as the dot product of the inputs Viand the cross-bar conductance 

values gij(fig. 1).  An RCN can therefore, directly evaluate the weighted summation of 

analog inputs and hence provides an efficient model for synapse or weighted input 

connections for a neural network. Each of the in-plane bars in fig. 8 therefore can be 

input to an analog unit that can provide the essential neural functionality of thresholding.    

         Several design schemes for non-Boolean/neuromorphic hardware based on RCN 

have been proposed in literature [69,70] that would employ analog CMOS circuits to 

perform the thresholding task (fig. 1).  In the following sub-section we analyze the design 

and performance of such an analog CMOS neuron circuit. Fig. 2b depicts an ideal circuit-

model for a neuron with step transfer-function; 

                                             Y = sign (ΣWiIi  +bi)                                                       (3.1) 

where, Iidenote theith input to the neuron, Wi the corresponding synapse-weight and bi the 

neuron-bias. The input-weights (that can be positive or negative) can be realized using 

compact programmable memristors. The synapse-weights are implemented using 

programmable conductance elements Gi(which can potentially have negative values).  

Input voltages Vi applied to the synapses result in a current ΣGi Vi, , which can be either 
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positive or negative, depending upon the set of inputs and the weights.  The 

 

Figure 3.3(a)  A feed-forward Neural Network constituting of multiple neurons, (b) an 
ideal circuit model for step-transfer function neuron, (c) an analog CMOS realization 
neuron., (d) input vector generation from character images using method described in [9], 
(e) |Σ(Gi Vi )p | and |Σ(Gi Vi )p | values for 26 output neurons for character-recognition 
operation, (f) ΔVGi vs. number of neurons. 

  



52 

 

neuron-output, acting as a current-dependent binary voltage-source, assumes a high (+1) 

or a low (-1) value, depending upon the sign of the total current.  It is important to note 

the essential input characteristics provided by the idea neuron model. The input port 

provides a fixed potential (in this case, ground potential) and offers small input 

impedance (ideally zero).   This essentially implies that there is negligible change in the 

voltage potential at the input port. Note that any significant deviation in the input 

potential from a desired value would result in a net current of ΣGi (Vi-Vin), where Vin is 

the non-zero input potential. This would cause erroneous network outputs when Vin 

varies randomly for different neurons.    

                  A practical CMOS circuit design to implement the ideal neuron model  

presented in fig. 2b is given in fig. 2c. An operation amplifier (OPAMP) is used at the 

first stage of the circuit, which, for a sufficient amplification-gain, forces its two inputs to 

remain close to each other. Thus, by applying a fixed voltage on one of the two inputs 

(ground-potential Vg), the other input, (which is used as the neuron-input terminal) is also 

clamped to the same potential. Assuming Vg=0, the output voltage of the OPAMP can be 

visualized as   Vo =  (1/GR)ΣGi (Vi),  which can be positive or negative. The result is 

compared with zero using a comparator. For an appropriate choice of GRthe output 

voltage swing can be made sufficiently large so that a simple inverter can be used as a 

comparator in the second stage.  

            This example shows that the conventional circuit model of neuron employs an 

OPAMP for providing a low-impedance (fixed-voltage) input-node for linear summation 

of input-currents, and for transimpedance conversion of the current-mode summation, to 
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yield the neuron output. Thus the energy-efficiency and the performance of such a neuron 

model would be limited by the characteristics of the OPAMP, which is a power and area 

consuming circuit.  

              The summation term in eq. 1 can be divided into its positive (Σ(GiVi)p ) and 

negative (Σ(Gi Vi)n )constituents.  The result of the sign operation is determined by the 

difference between these two terms ( |Σ(Gi Vi)p| -|Σ(Gi Vi)n| ), which is essentially Σ(Gi 

Vi) .  

           In this work, we used  the network parameters for a 2-layer feed-forward neural 

network for character recognition.  The output layer of the network has 26 neurons, each 

corresponding to one of the 26-alphabetic characters.  In order to obtain the network 

weights and hence the corresponding physical values of conductance elements 

Gi’s ,Matlab neural-network tool box was used. The inputs for training were obtained by 

extracting edge features from 16x16 pixel hand-written alphabetic characters.  The edge-

map were obtained by performing pixel-wise addition along four different direction in an 

input image ( horizontal, vertical, and +/- 45o) , and concatenating the resulting four 

vectors to form a single analog vectors.  The network was trained using steepest gradient 

descent algorithm. For the training purpose, the step transfer-function of the spin-neuron 

was approximated by a 6th order sigmoid function.  

                 Fig. 2e shows the plot for  |Σ(Gi Vi)p| and |Σ(Gi Vi)n| for the 26-neurons for 

the case when the input character belongs to the particular nodes. Note that in the basic 
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neuron operation defined by eq. 1, the output for a given computing step is independent 

of the previous state of the neuron and hence does not require any rest operation. Ideally, 

eq.1 depends upon only upon the sign of the net input, determined by Σ(GiVi), and hence 

an infinitesimal positive or negative value of this sum triggers the change in the neuron’s 

state. However, for a practical hardware |Σ(Gi Vi)|  must be larger than a  

 

Figure 3.4(a) Bandwidth of CMOS neuron circuit vs. supply voltage, (b) power 
consumption vs. supply voltage, (c)  energy-dissipation per computing operation of 
CMOS neuron vs. supply voltage, (d) energy-delay product  vs. supply voltage. 
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minimum  value to flip the state of the neuron from one of the two binary levels to the 

other, depending upon the sign of the summation. This enforces |Σ(Gi Vi)| tobe greater 

than a non-zero constant for a practical computing circuit or a device. This minimum 

non-zero value, |Σ(Gi Vi)min|  defines the threshold of the neuron.  Results show that 

Σ(Gi Vi)  can be less than 10% of the total positive and negative current ( denoted by 

|Σ(Gi Vi)p| +|Σ(Gi Vi)n|) flowing through the synapses. Thus, the resolution required for 

the neuron for correct operation can be defined as the ratio given in eq. 2 

   ΔVGi= ( |Σ(Gi Vi )p| - |Σ(Gi Vi )n|)/ |Σ(Gi Vi )p| + |Σ(Gi Vi )n| x 100                (3.2) 

              Fig. 1f shows that ΔVGifor a neuron reduces with increasing number of inputs.  

For neurons with larger than ~25 inputs, this value can be lower than ~5%. This translates 

to stringent constraints upon the variations in the input voltage of the neuron. As 

mentioned above, any random variation in the bias voltage of the input port would result 

in deviation from the ideal neuron equation, resulting in computing errors.    

              Results show that after considering 10% σ variations in the input weights, we are 

left with less than 3% tolerance for the variation in the input node-voltage. For OPAMP 

supply as well as the binary-input level of + 0.5 V in 45nm technology, this would 

translate to ~30mV of tolerance. Notably, the random offsets in an OPAMP can be few 

tens of millivolts. The sizing and gain of the OPAMP must be large enough to meet the 

offset requirements.  With the aforementioned constraints, we obtained the power-

consumption, delay, energy (per-operation) and energy-delay product for a 25-input 
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CMOS neuron-circuit shown in fig. 2c, for different supply voltages (rail to rail). The 

results are given in fig. 4 a-d.  At the optimal point, power-consumption and the 

bandwidth (delay-1) were found to be around ~70µW and ~100MHz respectively. This 

provided an optimal energy-dissipation of ~0.7pJ per-neuron per-cycle.  The energy-

delay-product can be obtained as ~3.5e-21 J-s.    The maximum current per-synapse used 

for this case was ~3µA.  Notably variability-related design constraints may become 

increasingly more stringent at lower technology nodes for conventional analog circuits, 

leading to heightened design challenges.    

                  Thus, due to significant static-power dissipation and scalability limitations 

pertaining to analog CMOS neuron models, the energy benefits of RCN as a non-Boolean 

computing tool are significantly undermined.   We next present the design and analysis of 

spin-torque based neuron and discuss its energy-benefits over CMOS model discussed 

above. 

3.3 Spin based neuron models 

We noted that ultra-low voltage, current-mode operation of magneto-metallic devices like 

lateral spin valves (LSV) and domain wall magnets (DWM) can be used to realize analog 

summation/integration and thresholding operations with the help of appropriate circuits, 

and, can be used to model  energy efficient “neurons”  [27]-[29]. Such device-circuit co-

design can lead to ultra-low power neuromorphic computation architectures, suitable for 

different data processing applications. In the following sections spin neuron models 

proposed as a part of this work are presented. 
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3.3.1 Spin neuron using LSV 

Ultra-low voltage, current-mode switching phenomena in magneto-metallic LSV’s can be 

used to model energy efficient ‘neurons’ as described below. 

3.3.1.1 Bipolar Spin Neuron 

Fig 5a shows our proposed device structure for bipolar spin neuron [26, 29]. It constitutes 

of an output magnet m4with MTJ based read-port (using a reference magnet m5), and two 

anti-parallel input magnets m1 andm2,with their‘easy-axis’ parallel to that of m4. A 

 

Figure 3.5(a) Device structure for bipolar spin neuron using LSV, (b) device model for 
unipolar spin-neuron using LSV, (c) simulation waveforms for bipolar spin neuron. 
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preset-magnetm3, with an orthogonal easy-axis, is used to implement current-mode 

Bennett-clocking (BC). A current pulse input through m3, presets the output magnet, m1, 

along its hard-axis. The preset pulse (fig. 5c) is overlapped with the synchronous input 

current pulses (I1 and I2 )received through the magnets m1 and m2. After removal of the 

preset pulse, m4switches back to its easy-axis. The final spin-polarity of m4depends upon 

the sign of the difference ΔI, between the current inputs through m1and m2. 

               As mentioned earlier, a neuron receives external stimulus and inputs from other 

neurons through synapses. The conductivity of a synapse (or weight) can be either 

positive (excitatory) or negative (inhibitory). Transfer-function of an artificial neuron can 

be expressed as the sign-function of sum of inputs received through multiple synapses. In 

the proposed device, the neuron functionality is realized by connecting the positive and 

the negative synapses to its two complementary inputs. The output magnet, in effect, 

evaluates the sign function with the help of current-mode Bennett-clocking described 

above [9]. 

3.3.1.2 Unipolar Spin Neuron (USN) 

Fig. 5b shows the device structure for unipolar spin neuron based on LSV [26, 29]. In this 

case, a single input magnet, m1, receives the difference of current from positive and 

negative synapses. This implies that the subtraction between the two current components 

is carried out in charge-mode, outside the neuron device. As this device receives only the 

difference ΔI between the two current components. 

        The minimum value of ΔI that can be correctly detected by the LSV-neurons, 

determines the resolution of the device. As explained earlier, a smaller ΔI allows smaller 
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input current levels, leading to smaller power dissipation. The lower limit on the 

magnitude of the resolvable current input ΔI for the LSV-based neurons (hence, on 

current per-input for the neuron),for deterministic switching, is imposed by the thermal-

noise in the output magnet, and, imprecision in Bennett-Clocking (like misalignment). 

We estimated the resolution of the spin neurons by including such non-ideal effects. 

Stochastic LLG was used to assess the effect of thermal noise and ~10o of misalignment 

for the hard-axis magnet was included (fig. 6a).  As for spin-torque  

 

Figure 3.6 Due to noise in the neuron-magnet and imprecise BC (leading to mz≠0 during 
preset), larger ΔI (hence, current for inter-neuron signaling) is required for correct 
switching, than the ideal case. Minimum input current level can be determined on the 
basis of bit   error rate (BER) resulting from these effects. (transients show correct 
switching for 10000 runs with ΔI =1.5µA  for 60x20x1 nm3 magnet,  i.e., BER<0.01%), 
(b) resolution of spin-neuron vs. magnet size estimated using stochastic LLG simulations 
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Figure 3.7(a) spread in switching time (hard-axis to easy axis relaxation) for two different 
magnet areas (with 20% variation), showing larger time spread for  larger area, under 
same ΔI., (b) effect of magnet scaling on easy-axis relaxation time. 

 

switching between easy axis (without hard-axis assist), the input current ΔI required for 

deterministic switching with current-mode Bennett clocking also reduces with the size of 

the output magnet (fig. 6b).  Transient results for a highly scaled  output magnet 

(20x60x1nm3)  is depicted in fig. 6a , showing the possibility of ~1µA resolution.   

              The switching time for the proposed spin neuron is mainly determined by the 

time taken for hard-axis to easy-axis transition, after the removal of the assist pulse. Fig. 

7a shows the effect of area variation upon the switching time, depicting that scaling down 

the output-magnet in fact reduces the spread in switching time for the same current (same 

is true for spread in other critical magnet parameters like Ms and α). This is because, a 

smaller magnet with higher critical field Hc  shows a faster response to the spin current ΔI.  
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                   The 4-component spin-circuit model described in chapter-2 has been used for 

the LSV neurons. Several other non-idealities like the effect of spin-scattering at an 

imperfect magnet-channel interface and in the metal channel have not been considered in 

this work.  Non-local spin-injection can also be used for the LSV-based neuron model 

described above. In that case, the MTJ can cover the entire free-layer and the input 

current flows into a ground lead located below the output magnet [28]. However, the 

spin-injection efficiency for the non-local case is expected to be significantly lower, as 

opposed to the local case, as discussed in chapter-2.  

                              Next, we present spin neuron based on domain wall magnet (DWM). 

3.3.2 Spin neuron using Domain Wall Magnet (DWM) 

3.3.2.1 Domain wall magnet: simulation-model 

 

Figure 3.8A domain wall magnet strip with three spin domains 
 

A domain wall magnet (DWM) constitutes of multiple nano-magnetic domains separated 

by non-magnetic regions called domain wall (DW) (fig 8). The DW can be moved along 

a magnetic nano-strip using current injection [31].  For instance, in fig. 8, electrons 

passing from the right-spin domain-1 to the left spin domain-2 are right-spin polarized. 

These spin-polarized electrons exert spin- torque on the regions of domain-2 close to the 
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domain wall and subsequently result in reversal of spin polarity of those regions in 

domain-2. This effectively moves the DW between domain-1 and domain-2 towards right 

in fig..8. This phenomenon can be employed to switch the spin-polarity of a particular 

region in the magnetic nano-strip. Some of the spin-domains in such a nano-magnetic 

strip can be selectively stabilized while others can be designed to be switchable through 

current induced domain wall motion.  

            In the following subsections we describe the modeling of spin-torque induced 

domain wall motion which has been employed to model spin-neuron in this work.  

Modeling of domain wall dynamics consists of two parts, first, the simulation of spin-

polarized current transport along the magnetic nano-strip and second, the solution of 

magnetization dynamics in the nano-strip. 
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3.3.2.1.1 Spin-polarized current-transport along the magnetic nano-strip 

 

Figure 3.9(a) nicro-magnetic, multi-domain simulation model for domain wall magnet, 
with a magnetic-nano-strip divided into small nano-magnetic grids, (b) self-consistent 
simulation of spin-transport and magnetization dynamics, as proposed in [31]. 

 

Figure 9 illustrates the magnetic nano-strip we have considered for transport calculation. 

The structure consists of a matrix of nano-magnets (mi,j) obtained by dividing the nano-

strip into a two dimensional (x‐z) square grids. For example, in a nano-magnet strip with 

dimensions200nmx60nmx10nm (length:200nm and width:60nm) a grid size of 

10x10x10nm3 results is total 120 square grids. Each grids has separate magnetization 

vectors as shown in fig. 9. Each nano-magnet is modeled as a Π conductance‐network 

[10, 31] with shunt and series components, G0F and GF (Four Component Spin Transport 

model), respectively using Valet‐Fert diffusion model [66] and interface model by 

Brataas [65]. Note that both GF and G0F are matrices with 4x4 elements as shown: 
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                                                      (3.3) 

where  A’ is the magnet area, ρ is the resistivity, l is the length. Note that gshz is the shunt 

component in z‐direction, gse[x,y,z] are series conductances in x,y and z directions[31].  Г is 

given as  

                                                      Г = 1-r1rr*                                                             (3.4) 

where rl and rr reflection coefficient of left and right spin respectively. Figure 10 shows 

the equivalent network of resistors corresponding to the magnetic nano-strip. I‐V 

relations are solved for each elemental magnet using I=GV. Both I and V contain 1x4 

elements, where one component corresponds to charge (VC, IC) and other three 

correspond to three spin components, one for each direction: (VX, IX) for x, (VY, IY) for 

yand (VZ, IZ) for z. By solving KCL at all the nodes, one can estimate spin‐voltages and 

spin‐currents at nodes 1 through N for a given voltage (V) across the nano-magnet strip.  
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Figure 3.10Basic equations and models used in the simulation framework, illustrating the 
circuit representation of the Four Component Spin Transport Model for spin diffusion 
and LLG for magnetic dynamics. The current, voltage and conductance metrics for each 
elemental nano-strip has been shown. 

 
 

Spin‐currents exert torque on the elemental nano-magnets and are given as inputs to the 

magnetic dynamics calculation, which is presented next. 

3.3.2.1.2 Domain Wall Dynamics Using 2D LLG with Spin‐Torque 

The magnetic dynamics of each nano-magnet can be described by the LLG equation (Eq. 

5), where m is the magnetization vector.  

         ௗ௠
ௗ௧

ൌ ߨ െ ܪ x ݉|ߛ| ൅  x ݉ ߙ  ௗ௠
ௗ௧
െ  ଵ

௤ேೞ
݉ xሺ mx ܫ௦ሻ                        (3.5) 

Where H is given as: 

ܪ                     ൌ   ஽ூ௉ܪ  ൅ ா௑ܪ   ൅  ܪ஽ெ஺ீ  ൅ ܪ௄௨                                  (3.6) 

Where, HDIP (eq. 7) is the dipolar field, HEX is the exchange field (eq. 8) ,HDMAG is the 

demagnetization field (eq. 9) and HKu is the anisotropy field (eq. 10). 
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Where, MS is the saturation magnetization, A is the exchange energy coefficient, Ku is the 

anisotropy energy constant. ISis the spin‐current which can be obtained from spin 

transport calculation described earlier. LLG contains three terms on the right side, where 

the first one is related to the dynamics under magnetic field (H), the next one is related to 

the damping torque term and the third is related to spin‐current (IS). Since each square 

grid is modeled as a magnet, we need to solve LLG for each magnet with a given total 

magnetic field H and spin‐current IS. Moreover, every square grid is coupled to its 

neighbors and as a result LLG of each magnet need to be solved self‐consistently with 

LLGs of neighboring magnets. In the given example, we have considered 120 square 

grids and hence 120 LLGs need to be solved self‐consistently.  

Once the magnetization of each grid is calculated, the magnetization information is given 

as input to Four Component Spin Transport model for calculating spin‐currents and 

spin‐torque at the next time‐instant. The steps (LLG and spin‐transport) are repeated for 

every time‐step (~psec) until the simulation time is completed.  We have benchmarked 

the proposed simulation framework with experimental demonstration of DW movement. 

Figure 11 illustrates the average DW velocity with current density and shows good match 

with experimental data in [5]. 
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Figure 3.11(a) Fig. 2.Domain wall magnet (b) DW velocity as a function of current 
density with experimental data in [5] 
 

3.3.2.2 Spin Neuron based on Domain Wall Magnet 

 

Figure 3.12(a) Spin neuron based on domain wall magnet (b) micro-magnetic simulation 
for neuron switching. 

 
 



68 

 

 

Figure 3.13 (a) micro-magnetic simulation plot for DWM neuron with free layer size 
~48x16x1.5nm3 with an input current of ~2µA and total simulation time of ~2ns 
(snapshots at equal time steps for the 1.5ns simulation time have been presented) (b) 
scaling of switching current threshold with free-layer size. 

 
 

Recent experiments have achieved switching current-density of less than ~107A/cm2 for 

nano-scale DWM strips, and, a switching time of less than 1ns [13, 14]. The current 

threshold as well as the switching time of DWM may scale down with device-dimensions 

[15]. Thus, it might be possible to design a DWM switch with highly scaled dimensions 

(say 20x60x2nm3) that achieve a switching current threshold of the order of 1µA [16, 18]. 

Such low-resistance, low-current magneto-metallic switches can operate with small 

terminal voltages and can be suitable for analog-mode, non-Boolean computing 

applications. Such a DWM based spin-neuron structure is shown in fig. 12. It constitutes 

of a thin and short (16x48x1.5 nm3) nano-magnet domain, d2(domain-2) connecting two 

anti-parallel nano-magnet domains of fixed polarity, d1(domain-1) and d3(domain-3).  

Domain-1 forms the input port, whereas, domain-3 is grounded.  Spin-polarity of the 

DWM free-layer (d2) can be written parallel to d1or d3by  



69 

 

 

Figure 3.14 OOMMF simulation results for neuron switching 
 

injecting a small current along it from d1to d3 and vice-versa.  A magnetic tunnel junction 

(MTJ) formed between a fixed polarity magnet m1 and d2 is used to read the state of d2. 

The effective resistance of the MTJ is smaller when m1 and d2 have the same spin-

polarity and vice-versa (Rparallel~5kΩ and Ranti-parallel~15kΩ).Thus, the neuron can detect 

the polarity of the current flow at its input node. Hence it acts as an ultra-low voltage and 

compact current-comparator that can be employed in energy efficient current-mode data 

processing [26]. A non-zero current threshold for DW motion would result in a small 

hysteresis in the neuron switching characteristics. It is desirable to reduce the threshold to 

get closer to the step transfer function of an ideal comparator. Fig. 13 shows that for  
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Figure 3.15(a) Dynamic CMOS latch for sensing the neuron MTJ, (b)  For thicker tunnel 
oxide (Tox), the peak transient read current (Iread) reduces and read time (Tread) increases. 
(c) Plot comparing DWM switching threshold (Isw) for different switching time (Tsw), 
with that of  Iread Vs. Tread, show that sufficiently large read disturb margin is available for a 
wide range of Iread. 

 
highly scaled free-layer (domain-2) size used in this work, a switching current threshold 

of the order of ~1µA may be achievable. Fig. 14 shows the micro-magnetic simulation 

plot obtained from OOMMF for such a scaled device. The effect of thermal noise has 

been incorporated by employing stochastic LLG [9].  

               Note that a DWN-based neuron employs a homogenous magnetic write-path 

and hence does not suffer from non-idealities like interface and channel-spin scattering 

that limit spin-injection efficiencies in devices based on lateral spin valves [29].   We 

employ dynamic CMOS latch for reading the MTJ (fig. 15), which results in only a small 

transient current drawn from the output port (domain-3) of the DWM neuron, which can 

be kept below its switching threshold. Additionally, the time domain threshold for 
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domain wall motion also helps in preventing read disturb from the small transient current 

[10].   

                Application of similar DWM-based device structure for digital logic design has 

been proposed earlier in [16]. However in such a scheme non-volatility of the DWM 

switch is critical, as the free-layer is required to store the logic information for half a 

clock cycle. Moreover, the domain-wall between the free-domain and the two fixed 

domains must be stabilized in absence of input current to preserve the logic state. This is 

generally achieved by incorporating notches at the boundary of the fixed and the free 

domain [31]. The use of notch can increase the switching current threshold significantly.  

In the neuron operation however, the non-volatility of the free-layer is inconsequential, as 

the CMOS latch is used to transfer the spin-mode information into full-swing voltage 

levels, while the input current is present. Thus the need of stabilizing the DW in absence 

of input current can be mitigated. This can facilitate lower switching current as compared 

to that used in [16]. 

            Further improvement in switching current may be possible by the application 

spin-orbital assisted domain-wall switching [103], which has been predicted to achieve an 

order of magnitude reduction in critical switching current for current-induced DW-

motion in nano-scale magnetic nano-strip [103]. In this work we employ a current 

threshold of ~1.5µA for 1.5 ns switching-speed based on the simulation results for the 

DWM neuron free-domain size of 48x16x1.5nm3, which corresponds to the current-

density of 5MA/cm2. This dimension of the free-domain would offer an effective 

resistance of ~200Ω.  
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3.3.3 Neural Network with Spin Neurons 

 

Fig. 16 shows a spin-neuron with inputs synapses connected to domain-1. Domain-3 is 

connected to the ground potential.  Due to low-resistance of the magneto-metallic write-

path of the neuron, in absence of any input signal, the input terminal of the neuron is also 

clamped to the ground potential. This naturally fulfills the requirement of low impedance 

input-node along with a fixed input potential for the neuron device. Assuming  a neuron 

with ~25 inputs and a  maximum current of  ~3µA per input, |Σ(Gi Vi)p| +|Σ(Gi Vi)n| and  

Σ(Gi Vi)  come close to ~40µA and ~3µA.  This implies an overall current-flow of ~3µA 

in and out of the DWM neuron (with resistance ~200Ω), which would result in a 

fluctuation of ~0.6mV at the input node. Thus even for input voltages as small as 30mV, 

the percentage fluctuation in the input-node-voltage can be less than ~2%.  Moreover, it 

should be noted that, this fluctuation (positive or negative) is caused by the input itself. 

The net input-current injected into the neuron changes the input voltage in the direction 

determined by the larger of positive and negative current components (ie., according to  

the direction of the current flow at the neuron input). Hence it may not affect the final 

outcome unless it is large enough to reduce the current (difference between the positive 

(Σ(GiVi)p) and the negative (Σ(Gi Vi)n) components)  injected into the neuron below its 

switching threshold (in this case designed to be ~2µA).  

            The state of the neuron’s free layer (domain-2) can be detected using a high-

resistance voltage-divider formed between a reference MTJ and the neuron MTJ, with 

the help of the  CMOS latch in  fig. 15. Thus the spin-neuron simultaneously provides  
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Figure 3.16(a) Spin-neuron connected with input synapses, (b) neural-network circuit 
using  spin-neurons 

 

 

transimpedance conversion for the input-current, thereby realizing the complete neuron 

equation in a single device.  

              The energy dissipation for the spin neuron has two components. First, the 

switching energy due to the static current flow between the input voltages and the neuron. 

These components equal to the product of the total input-current flowing across the 

synapses, the input-voltage levels and the neuron switching time. For an average of 

~40µA of current flow across input voltage levels of +30mV for 1ns switching time, this 

component evaluates to ~1.2fJ. The noise considerations in the state of the art on-chip 

supply distribution schemes may limit the minimum input voltage levels that can be used.  
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Even for + 100mV of input levels, which might be more easily achievable, the first 

energy component is limited to ~4fJ, which is more than two orders of magnitude less 

than that obtained for the CMOS neuron.   The second component of energy-dissipation 

in the spin-neuron can be ascribed to the MTJ-based read operation which was found to 

be ~0.5fJ of energy dissipation comes from the latch’s operation. Thus the total energy-

dissipation in a spin-neuron for ~1ns switching speed can be close to 1fJ. This leads to 

the possibility of three to four order of magnitude improvement in energy-delay product 

as compared to a conventional CMOS implementation.  Apart from ultra-high energy 

efficiency, another attractive feature of the spin-neurons is their compactness. In the 

CMOS layer a compact CMOS inverter replaces an area consuming OPAMP. Hence, 

spin neurons can facilitate higher integration density for neural-network circuits.  

             A 3x3 neural-network circuit using spin neurons is shown in fig. 16b. The 

network has two conductances (that can be implemented using multi-level spintronic 

memristors)Gi+ and Gi- for each input ini. When an input is high (logic ‘1’), a voltage 

signal +ΔV and -ΔV are applied to the conductances Gi+ and Gi- respectively, resulting in 

proportional current flow into the input terminal of the neuron, as shown in fig. 4b. The 

net current due to the ith input ini ,injected into the jth neuron, therefore, can be written as 

ΔV(Gii+-Gii-). Thus, the input weights needed for the neurons can be obtained by 

programming Gi+ and Gi- to appropriate states. 

The write path of the neuron is connected to ground. Using Kirchhoff’s law it can be 

visualized that the net current   flowing into the input node of the neurons is given by the 

following equation: 

                                       Isum = ΣΔV((ini(Gij+ - Gij-) )                                               (3.11) 
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This expression is essentially same as the term within the braces in eq.1. The sign 

function over the current-mode summation is carried out by the spin-neurons, thus 

realizing the energy-efficient neural-network functionality.  At the level of network-

design, another noticeable advantage of spin-neurons is ultra-low energy-dissipation in 

cross-bar interconnects in the synapse network shown in fig. 16b.  This results from the 

ultra low-voltage operation of entire network, facilitated by the spin neurons. Notably, 

the LSV bases spin neurons with ~1.5µA switching current threshold and ~2ns switching 

time would also result in similar energy figures.  

 

3.4 Summary 

In conclusion, memristor based resistive cross-bar memory can be a very attractive option 

for non-boolean/neuromorphic as well programmable Boolean computing hardware. 

However, application of conventional analog circuits with resistive-memory  may lead to 

energy inefficient and complex design. However, magneto-metallic spin neurons can be 

ideally suited for memristor based computing, as they act as fast, compact, low voltage, 

and ultra low energy current-mode thresholding elements. Spin neurons can also be 

combined with other deivces operating as synpases, to realize neural network hardware. 

For instance, non-programmable synapses can be realized with CMOS transistors of 

different dimentions. Similarly multi-level MTJs can also be used as compact 

programmble weights in a corss bar network. A fully spin-mode neuron-synapse unit can 

also be formed by using DWM as prograamble input synapse and LSV as the neuron unit. 
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In the subsequent chapters we present different design examples for neural hardware with 

spin neurons with different circuit-integration schemes. 
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4. HYBRID NEURAL NETOWRK DESIGN USING SPIN NEURON 
AND MAGNETIC DOMAIN WALL SYNAPSE 

In this chapter we present the spin based neuron-synapse model. First we discuss the 

application of domain wall magnet as a synapse. Following this, the neuron model is 

described which is based on the lateral spin valve structure discussed in chapter 3. 

Application of the proposed device in spin-CMOS hybrid  neural network design is 

described and the overall performance is discussed.  

 

4.1 Domain Wall Magnet as Synapse 

As mentioned earlier, domain wall can be moved along a magnetic nano-strip by 

application of magnetic field or by injection of charge current along the nano-strip.  

Application of DWM in the design of non-volatile memory and logic design has been 

explored by several authors. In the present work, we propose the use of DWM as synapse, 

where its programmable spin injection strength is used for implementing spin-mode 

weighting operation. Fig. 1a shows a domain wall magnet interfaced with the non-

magnetic channel of a neuron.  

                   In order to write the weight into the DWM, current is injected along the 

length of the domain wall as shown in fig. 1a. Under this condition the channel is kept  
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Figure 4.1(a) Spin polarization strength current injected through DWM as a function of 
DW location, (b) Fig. 2 Magnetization state of the DWM at equal time intervals after 
starting of DWM motion. 
 

in a floating state. A thin MgO layer incorporated at the top and bottom surface of the 

DWM reduces the fringe current passing through the parallel path provided by the 

floating channel and the input lead, during the write operation. The interface oxide also 

imparts an effective resistance to the input lead of the DWM that makes it dominate the 

parasitic resistance of the signal-routing metal- lines. During computation, the input 

current is injected into the channel through the domain wall in the vertical  direction.  Fig. 

1b shows the plot for spin polarization of current passing into the channel through the 

DWM vs. domain wall location for different charge current values. It can be observed 
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that, spin polarization strength of the charge current reaching the channel is proportional 

to the offset of the domain wall location from the centre. For the extreme left location of 

the domain wall, the charge current reaching the metal channel is maximally up-spin 

polarized and vice-versa. The net polarization is reduced to zero for the central location 

of the domain wall, as equal amount of up and down spin electrons are injected into the 

channel in this case. 

                In the simplest case, the two extreme locations of the domain wall can be 

employed for implementing programmable binary weights. Neural networks with binary 

weights can be applied for logic synthesis and pattern recognition applications  However, 

network with binary weight may require larger number of neurons for a given operation, 

as compared to a network with higher number of weight levels depending upon the size 

of the exhaustive training set. Larger number of weight levels can be obtained by 

employing longer DWM stripes that can facilitate better quantization of domain wall 

location.  It has been shown that incorporation of nano-scale notches in the DWM strips 

can enhance the stability of DW at the notch sites [31]. The incorporation of notches 

along the length of the DWM synapse can help in achieving higher writing accuracy. In 

this work we incorporate DWM synapses with a cross section area of 350x80nm2. 

Notches etched at 22nm interval along the 350nm long DWM strip can provide 16 levels 

of weight.  Fig. 1b shows the magnetization state of the DWM at equal time intervals 

after the application of 250psec voltage pulse train.      

4.2 Spin based Neuron model 

Transfer function of an ‘integrate’ and ‘fire’ neuron is given by eq. 1.  
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                                              ( )i iY f w I b= +∑                                                  
(4.1) 

              Here, wi and Ii are the weights and corresponding inputs and b is the neuron bias. 

The bias can be chosen to be zero. It however aids in training convergence and can be 

easily implemented by an additional synapse magnet which is driven by a clock. The 

function f(x) is given by eq.2 and approximates a step transfer function for a sufficiently 

large N. 

                                               ( ) 1( )( ) 1 oN x tf x e
−− −= +                                            (4.2) 

              Here t denotes the threshold of the neuron. It can be inferred that a higher |t| 

would require a larger value of |x| to switch the neuron. For a given set of normalized 

weights Wi, this translates to larger levels of the input signals Ii. For the spin based neuron 

model, this implies larger input current per synapse and hence higher power consumption. 

Therefore, switching threshold of the output nano-magnet needs to be reduced. We 

incorporate current-mode Bennett-clocking to achieve this. The device structure for the 

neuron with three inputs is shown in fig. 2. The ‘firing-magnet’ forms the free layer of an 

MTJ. The two anti-parallel, stable polarization states of a magnet lie along its easy axis 

(fig. 2). The direction orthogonal to the easy axis is an unstable polarization state for the 

magnet and is referred as its hard axis [10, 13]. The preset-magnet shown in fig. 2 has its 

easy axis orthogonal to that of the neuron magnet (MTJ free-layer which is in contact 

with the channel). In the beginning of a clock-period, current-pulse injected through the 

preset-magnet forces the neuron-magnet to the hard-axis configuration (fig. 3). As soon 

as the hard-axis biasing-pulse goes low, the free-layer makes transition to the easy-axis 

polarity governed by the polarity of net spin-polarization of the channel-current flowing  
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Figure 4.2 LSV-based neuron-model (with non-local spin injection) with three inputs 
(DWM synapses). The free layer of the neuron-MTJ is in contact with the channel and its 
polarity, after preset, is determined by spin polarity of combined input-current in the 
channel region just below it. 

 

under it. As a result, the firing-magnet, i.e., the free layer of the MTJ acquires either 

parallel or anti-parallel polarization with respect to the fixed-layer. Note that, summation 

of the ‘spin-weighted’ input currents (eq. 1),received through multiple DWM synapses, 

takes place in the metal-channel. Whereas, the symmetric step-transfer function upon the 

summed spin-current (eq. 2), is realized with the help of Bennett-clocking of the neuron-

magnet [9]. Note that, in this work non-local spin injection has been used for the LSV 

neuron. However, local spin injection  can also be used, as discussed in chapter-3, for 

higher spin-injection efficiency. 

          When the clock is low, a CMOS-based detection unit (discussed later) reads the 

state of the neuron MTJ.  For a parallel configuration, it generates a high output whereas 

for the anti-parallel configuration, it settles to a low value.  Hence, the detection unit 

converts the spin-mode information of the neuron magnet’s state into a charge-mode  
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Figure 4.4(a) Increase in spin injection efficiency and switching speed through scaling of 
ground lead for a fixed current input (b) Reduction in switching time with combined 
scaling of neuron magnet for a fixed current input. 

 

The detection scheme, employs dynamic CMOS latch discussed later, involves negligibly 

small transient current flow through the high resistance MTJ stack.     

Performance metrics of the neuron-device, like, spin injection efficiency (for the non-

local case), switching energy and switching-speed can be improved by the appropriate 

choice of magnet parameters, device geometry and operating conditions. Non-local spin 

injection efficiency in the device can be defined as the ratio of spin current Is, injected 

into the output magnet and the net spin polarized charge current in the channel under the 

neuron MTJ. As discussed in chapter 2, for non-local spin injection,  the spin components 

of the combined synapse current gets divided between the output magnet and the ground 

lead (fig. 2). Thus the spin injection efficiency for a given charge current input is 

enhanced by increasing the resistance of the ground lead (fig. 4a). 

            Smaller volume for the output magnet, along higher coercive field Hk leads to 

higher switching speed for a given spin current (fig. 4b) [9]. It also leads to faster easy  
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Figure 4.5(a) Increase in easy-axis restoration speed with Hk  and reducing magnet 
volume (for spin current of 0.5 µA) (b) Hard-axis switching time and switching energy vs. 
switching current. 

 

axis restoration (fig. 5a). In order to maintain the spin injection efficiency, resistance of 

the ground lead needs to be scaled up proportionately.   

          Hard-axis switching-energy is a significant portion of the energy dissipation per-

neuron, per-cycle. Fig. 5b shows that, the hard-axis switching current increases with 

switching speed (~direct proportionality [11]). Hence for a given terminal-voltage, the 

switching-energy remains almost constant. In the present work, the hard axis biasing 

current is supplied through a transistor operating between a small terminal voltage. In 

order to allow a small transistor width and hence, lower clocking power, it is favorable to 

choose the smallest possible value for switching current and hence maximum possible 

preset pulse width for a given operating frequency. In this work we employed preset-

current pulse of amplitude 300µA and pulse width 0.5ns.  

              A center-surround layout for a neuron with 12 input synapses is shown in fig. 6. 

Spin-polarized charge current inputs from DWM synapses combine in the channel and  
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Figure 4.6 Centre-surround layout of the proposed neuron-synapse unit. Spin-weighted 
current inputs from DWM synapses combine in the central region of the 2-D metal 
channel, where the neuron is located 

 

Figure 4.7(a) Channel spin potential of a 16 input neuron under firing condition (b) 
Channel spin potential under non-firing conidtion 

 

flow into the ground lead located near the neuron MTJ. Spin polarization strength of 

charge current decays exponentially with the distance travelled along the non-magnetic  
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channel. Thus, the channel-length between the synapses and the neuron must be within 1-

2 times spin flip length (λ) [10]. This imposes a limit on the number of input synapses for 

the structure shown in fig. 6. For copper channel (λ~ 1µm) up to ~32 synapses can be 

combined directly. For graphene channel (λ~ 6µm) this number can be increased.  

                 Figure. 7 depicts the plot for spin potential in the central-region of the channel, 

surrounding the output magnet of a 16 input neuron, under firing and non-firing 

conditions. It shows that, in case of a firing event, the entire channel is dominantly at a 

positive spin-potential and vice-versa. 

 

4.3 Spin-CMOS hybrid Neural Network 

Due to small spin diffusion length of metal channels, spin-mode signaling cannot be used 

for network connectivity. Hence, in this work the spin-based neuron-synapse modules are 

interconnected through charge-mode signaling using CMOS. The spin-mode ‘firing’ 

information is converted into charge-mode signal using the dynamic CMOS latch, shown 

in fig. 8a.  It compares the effective resistance of the MTJ units in its two load branches. 

The firing MTJ of the neuron unit connects to one of the loads, whereas, a reference MTJ 

is connected to the other.  

       The latch drives a distributed set of current source transistors which in turn supply 

charge current to all receiving neurons through the respective input magnets (DWM ) (fig. 

8b).  The source terminal of the current source transistors and the ground lead of the spin 

based neuron modules are biased at V+ΔV and V volts respectively.  Hence, the synapse 

current flows across a small terminal voltage of ΔV. In the present work, values of V and 

ΔV are chosen to be 800mV and 30mV respectively. The CMOS units operate between  
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Figure 4.8(a) Differential MTJ latch (b) Inter-neuron current-mode signaling using 
deep triode current source (DTCS) transistor. 

 

800mV and 0V. Biasing of the spin modules between two relatively high DC levels 

proves advantageous as compared to direct application of a small supply voltage of 

magnitude ΔV. This is because, application of differential DC supply can mitigate the 

impact of I-R voltage drop along the supply lines. It can also be exploited to reject the 

common-mode noise in the dual supply lines. Moreover, generation of clean DC levels 

below 100mV is challenging in the state of art CMOS technology, whereas a regulated 

voltage supply of higher magnitude can be distributed with less than 0.1% fluctuation .   

                For supplying a current of 5µA per synapse (across a drain to source voltage 

of 30mV) for 16 receiving neurons, the required source transistor width in 45nm 

technology is around 2.5µm. In order to minimize the impact of synapse current 

mismatch, distributed source transistors are used.  

               Fig. 9 depicts the correspondence between the proposed spin-CMOS hybrid 

ANN and the biological neural network. The spin potential of the 2-D metal-channel 

(which is analogous to neuron cell body) depicted in fig. 9, can be related to the  
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Figure 4.9Correspondence of the spin-CMOS Hybrid ANN to biological neural 
network 

 

electrochemical potential in biological-neuron’s cell-body. Inter-neuron communication 

in the present design is realized using ultra-low voltage current transmission, which is 

somewhat   similar to the natural mechanism. However, the aim of the proposed model is 

not to mimic the biological neural network in terms of functionality, but to evolve a 

model for artificial-neural-network suitable for computational hardware.  

 

latch axon (CMOS detection unit )

nucleolus
(neuron MTJ)

biological neural network

Spin-CMOS hybrid neural network
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4.4 Network Simulation 

 

Figure 4.10(a) Barcode generation for horizontal edges in alphanumeric characters, (b) 
Effect of style variation on horizontal bar code, (c) Output waveforms for numeric 
character recognition character is depicted in fig. 12a. The solid lines denote the 
magnetization state of the neuron magnets whereas the dashed lines indicate the 
corresponding MTJ evaluation. 
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In this section we describe the network simulation for character recognition as a 

benchmark application. Impact of process variation upon network performance is 

assessed. We also compare the performance of the proposed spin-CMOS hybrid ANN 

with that of a state of art CMOS ANN design. 

               We simulated character recognition as a benchmark application for the proposed 

spin-CMOS hybrid design. The overall process for character recognition can be divided 

into two steps, namely, edge extraction and pattern matching. For edge extraction, 

column wise pixels form the binary image along four directions - horizontal, vertical and 

+ 45o are fed to the first stage neurons.   These neurons generate a high output if the 

number of non-zero pixels along a particular column (or equivalently the spin current 

input Iinto the neuron) is higher than the neuron threshold. Note that, a desirable threshold 

for a neuron is set by applying a bias input to it. The horizontal edge extraction process 

for different input is shown in fig. 10a.  Fig. 10b shows the effect of variation in the 

handwriting style for the numeral ‘3’ on the horizontal bar code. It shows that, significant 

variations in writing style translate to slight variations in the barcode pattern which can 

be tolerated by an ANN. Variation tolerance can be enhanced by training with different 

styles of input characters. The resultant four binary patterns form a 1-D representation of 

the input character. This pattern is fed to the output stage of the network for classification. 

The output neurons correspond to the 36 alpha numeric characters. The output evaluation 

for numeric characters is shown in fig. 10c. 
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4.5 Variation Analysis 

As described earlier, variation aware circuit design techniques, like, the use of distributed 

and matched current source transistors, can reduce the effect of CMOS process variation 

upon network performance significantly. The impact of nano-magnet parameter variation 

upon system performance however, needs to be assessed while modeling an ANN with 

nano-scale devices.   

 

Figure 4.11(a) DWM cross section area showing LER(b) Combined effect of LER, and 
programming inaccuracy upon DWM weight. 

 

              The critical DWM parameters, having impact on computation accuracy, can be 

identified as, interface oxide thickness, cross section area and domain wall locations. 

Variation in oxide thickness can lead to mismatch in the effective resistance of the DWM 

input leads. This leads to difference in charge current injection for different synapses, 

which in turn introduces errors in weights. However, since the interface oxides are 

generally grown through atomic layer deposition (ALD), their thickness can be precisely 
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controlled. Cross section area variation in the DWM synapse leads to variation in spin 

polarization of the input charge current. Inaccuracy in domain wall programming directly 

translates to imprecision in synapse weights.  

               The effect of writing inaccuracy in the domain wall synapse is captured in the 

 

Figure 4.12(a) Near threshold noise reduction for higher anisotropy barrier, (b) Range of 
spin current injection into neuron magnet vs. average synapse current for a neuron with 
16 synapse (c) Scatter plot for easy axis relaxation time under parameter variation and 
varying input current. 

 

simulation framework by imposing random shifts in domain wall location (fig. 11a). 

Impact of process variation like line-edge roughness (LER) is incorporated in terms of  

random variations in the DWM cross section area (fig. 11a). Fig. 11b shows the 

superimposed effects of inaccurate writing and geometrical imperfection upon DWM 

weight. The neuron magnet is highly scaled in order to achieve fast easy axis restoration 

and lower switching current. It is therefore expected to be prone to thermal noise and 

magnet parameter variations. Fig. 12a depicts the effect of thermal noise on neuron 

transfer characteristics. Under very small input spin current, the easy axis restoration can 
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be non-deterministic due to thermal noise. Impact of the noisy transition zone on  overall 

network performance can be ignored as long as it correspond to a small fraction (1-5%) 

of the range of spin current injection Is. The range of Is in turn depends linearly on 

average synapse current (fig. 12b). Hence, noise  

 

 

Figure 4.13(a) Impact of process variation on spin current input to neuron magnets, (b) 
1000 point simulation for 15% 3σ variations, (c) Monte Carlo results for a neuron under 
combined process variations. 

 

determines the limit to which the average synapse current can be lowered to reduce the 

overall power consumption.   
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            Since, Bennett clocking places the neuron switching threshold at origin,  

irrespective of the magnet parameters, the impact of output-magnet parameter variations 

upon the device transfer characteristics is significantly mitigated. Parameter variation 

however, affects the dynamic switching characteristic of the neuron. Easy axis relaxation 

time for neuron magnet spreads with increased parameter variations, which limits the 

maximum operating frequency for reliable operation. Fig. 12c shows the scatter plot for 

neuron switching time for two different sizes of the output magnet. The input current has 

been varied over two orders of magnitude (20µA to 0.1µA) corresponding to the 

variation in synapse currents for different input combinations. 25% 3σ variation has been 

applied for critical magnet parameters. It is evident that lower volume and higher Hk (for 

a constant switching energy barrier) results in lower spread and hence, facilitates higher 

operating frequency.  

Fig. 13a shows the effect of increasing process variation upon the spin current delivered 

to the output neurons corresponding to the numeric characters. A negative value of spin 

current for firing neuron and a positive value of spin current for a non-firing neuron 

denotes an error. The resulting false negatives (FN) and false positives (FP) are shown in 

the figure.  

                     Network simulations show that, among different device parameters 

considered, domain wall location has the maximum impact upon network performance. 

This is because it bears a direct relation to the synapse weight. As mentioned earlier, 

incorporation of nano-scale notches along the DWM length can achieve improved 

programming accuracy. Fig. 21b shows the plot for 1000 simulation points for the 

network under combined 15% 3σ variations for DWM and neuron magnets. Monte Carlo  
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Figure 4.14 Tables depicting the performance of the proposed spin-CMOS hybrid 
neural network, as compared to CMOS 
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simulation results for a neuron given in fig. 21 c depicts that it retains accuracy up to 

more than 18% 3σ variations. Note that 18% variation in a 16 level synapse weight 

implies a programming error of 3 levels. 

4.6 Design Performance 

In order to establish a comparison with state of art CMOS technology we implemented 

the same network architecture in CMOS 45nm technology in two different ways, digital 

and analog. For the digital design, programmable latches were used to store synapse  

weights and full adders were employed to implement neuron . For the analog design,    

memristive synapses were employed. Resistance values in the range of 10kΩ to 200kΩ 

were used to emulate memristors. In this design analog current-summers were employed 

for modeling the neuron. The area was estimated based on the cross bar architecture for 

memristive neural network.     

Table-I  in fig. 14 compares the two designs with the proposed spin based neural network. 

The digital implementation consumes large area as well as power due to bulky neuron 

and synapse units. For a digital neuron with 16 4-bit inputs (as used in this work), the 

critical path for neuron unit consists of ~16 full adders. With 0.8V of supply voltage a 

latency of ~0.4ns was obtained for the digital neuron, for which power dissipation of each  

neuron was found to be ~0.7mW,  leading  to ~65mW total power for 500MHz 

throughput. Note that, a fully parallel implementation for the digital ANN was chosen for 

the purpose of comparison. Area for the digital design can be reduced through sequential 

processing using smaller number of neuron units, but power consumption is expected to 

remain almost constant for a given throughput.  For the analog design analog CMOS 

OPAMP were employed as neuron circuits (as described in chapter 3). For a ~200MHz 
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bandwidth, the power consumption for the analog neuron circuit  was ~0.2mW, leading 

to ~22mW of total power for the entire network. Thus the analog design achieved smaller 

area and power as compared to the fully parallel digital design, however, at the cost of 

smaller throughput  (200MHz as compared to ~500MHz for digital design).  

Power consumption for the spin neuron was found to be dominated by the static 

component, resulting from current-mode computing in the neurons. For 16-input neurons, 

~20µA current per input (with effectively normalized weights) led to around 25µA 

effective spin-current  (positive or negative depending upon input combination), in the 

neuron channel. Assuming ~20% non-local spin-injection efficiency from the channel to 

the output magnet, this would provide ~5µA of spin current to the output magnet. This 

was found to suffice for deterministic current-mode Bennett-clocking of an output 

magnet of size ~30x40x1nm2. With ~25mV of DC supply bias for the neuron circuits, 

this led to ~7µW static power per neuron. After including the overhead due to CMOS 

latch and clocking, the overall power for the entire network was estimated to be only 

~0.75mW for 500MHz throughput.  The spin-CMOS hybrid implementation thus 

achieves both, low power as well as small area, comparable to that of the analog ANN.  

The power and area benefits of the proposed design can be ascribed to simple and 

compact spin devices that operate at ultra-low supply-voltages and mimic the neuron 

operation. Both, low energy consumption, as well as compactness is conducive to 

integration of large number of neurons for programmable computational-networks for 

cognitive and Boolean computation.  Note that, the use of neuron-model with local spin-

injection would further improve the power savings achieved by the proposed spin based 

neural network. 
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Table-2 provides some relevant design details. Finally table 3 enlists some of the critical 

device parameters used in the simulation. 

 

4.7 Summary 

In conclusion, spin device phenomena like, majority evaluation, hard-axis switching, and 

adjustable spin polarization strength of domain wall magnets, clubbed with appropriate 

clocking scheme can lead to an energy efficient model for neuron-synapse unit. The 

localized, ultra-low voltage operation of neuron-synapse units, assisted with efficient 

circuit and architecture level design strategies for inter-neuron signaling and power 

gating can facilitate high degree of integration. The proposed spin-CMOS hybrid ANN 

design can be suitable for low power, programmable computation architecture for 

cognitive as well as Boolean applications. Note that, in this chapter we have employed 

LSV neuron with non-local spin injection. Local spin injection can also be used for 

higher spin-injection efficiency and hence  power savings. The application presented in 

this chapter used a simple binary input in the form of alpha-numeric characters, however, 

analog spin based neural network can also compute with analog inputs. The application 

of spin-CMOS hybrid neural network for analog image processing application is 

presented in the next chapter.  
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5. SPIN-CMOS HYBRID CELLULAR NEURAL NETWORK FOR 
ANALOG IMAGE PROCESSING 

In chapter we present the application of ‘spin-neuron’, proposed earlier, in an ‘on-sensor’ 

image processing architecture.  We show that, the spin neurons can be integrated with 

CMOS transistors to arrive at spin-CMOS hybrid processors (PE). In such a PE, the 

analog-mode computation can be carried out with the help of the neurons, at ultra-low 

energy cost. Apart from ultra-low voltage operation, the fast switching of the neuron-

magnets also help in reducing the computation energy 

5.1 Cellular Neural Network (CNN) : Mathematical model 

Cellular neural network (CNN) can be regarded as a fusion of artificial neural network 

(ANN) and cellular automata [48-49]. It borrows the basic information processing 

functionality, i.e., the ‘integrate and fire’ operation upon weighted inputs, from neural 

networks. The concept of computation based on neighborhood influence, on the other 

hand, is akin to cellular automata. This class of computation has been found to be highly 

suitable for several image processing applications, which essentially involves processing 

of pixel neighborhoods in a parallel fashion. 

                   Fig. 1 shows a cellular neural network array with 3x3 rectangular 

neighborhoods. Each cell is connected to its eight surrounding neighbors through a 3x3  
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Figure 5.1CNN architecture with 3x3 neighbourhood connectvity 
 

feedback-weight template A. A(0,0) denotes the self feedback term. The feed-forward 

template of a cell, B (or the input-weight template), determines the connectivity to the 

neighborhood inputs. In a CNN, each neuron performs integrate and fire operation upon 

the weighted combination of its neighborhood inputs and outputs in a recursive manner. 

The standard expression for a CNN cell state is given by eq. 1 [48]. 
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Where, x(t) is the cell state at time t, A and B are the feedback and feedforward template 

defined above, u(t)  is the input to cell from its 3x3 neighborhood N and z is the cell-bias. 
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The cell output is denoted by y(t) which is related to the cell state x(t) with a non-linear 

transferfunction. Time domain dicretization of the CNN state equation leads to eq. 2.   
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(5.2) 

Discrete time CNN (DTCNN) employs a step transfer function given by eq. 3. 
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            Application of a step transfer function limits the value of a cell output y(i,j) to 

binary levels of f’(x). The input u(i,j), however, can assume continuous values 

corresponding to the range of pixel intensity. 

 

Figure 5.2Bipolar Spin neuron based on LSV (with local spin-injection) 
 

                In the spin-CMOS hybrid PE proposed in this work, the two input magnets (m2 

and m3) of the neuron device shown in fig. 2 are used to realize the inter-neuron 

connectivity through A and B templates respectively.  All the neighbouring outputs 
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y(i,j)(/inputs u(i,j) ) linked to a neuron with positive  A(i,j)’s (/B(i,j)’s) connect to one of 

the inputs, say m2, whereas, those, associated with negative terms in the template 

matrices, connect to the other input  m3. The circuit techniques employed to realize a 

DTCNN processor (PE) with the spintronic neuron is described in the next.          

 

5.2 DTCNN architecture with Spin Neurons 

In this section we describe the design of spin-CMOS hybrid PE that implements the 

DTCNN functionality for on-sensor image processing. The inputs signal u(i,j) for a cell, 

is the associated photo-sensor input.  Transistors of weighted dimensions are used as 

deep-triode region current sources (DTCS), to implement A and B templates. The neuron 

in a PE, receives sensor input signals and outputs of its neighbouring PE’s through the 

DTCS’s in the form of charge current. The current mode signals combine in the metal 

channel of the neuron, where the Bennett clocking of the output magnet realized, eq. 3. A 

dynamic-CMOS detection unit however, converts the bipolar spin information pertaining 

to the state of the neuron-magnet, into unipolar voltage-level. Hence, the final PE output 

is given by eq. 3. The circuit operation corresponding to these step are described in the 

following paragraphs.  

                Fig. 3 shows a photodiode that converts the illumination intensity received at a 

pixel into a voltage signal. The transistor M1first presets the photodiode capacitance to 

Vdd-Vt, where Vdd is the supply voltage and Vtis the threshold voltage of the transistor. 

The capacitance is then discharged by the photodiode current, rate of discharge being 

proportional to the incident illumination intensity [54]. At the end of discharge period of 

a fixed duration, the transistor M2 samples the photodiode voltage. The sampled voltage  
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Figure 5.3(a) Circuit for B-template realization   (b) deep-triode region characteristics of 
the DTCS transistor M3driven by the sampled photo-sensor voltage 

 
 

at the gate of M3 ranges from Vdd-Vt to 0V, corresponding to the illumination intensity at 

the pixel. M3supplies input current to the neurons located in the 3x3 neighborhood of the 

pixel through separate and weighted fingers, with dimensions corresponding to the 

elements of the B template. A second DC level Vdd-ΔV is used in the design, in order to 

exploit the low-voltage operation of the spintronic neurons.  It connects to the lead 

terminal of the neurons as shown in fig. 3a. The current supplied by M3 therefore, flows 

through a small terminal voltage ΔV, which can be of the order of ~10mV. Note that, 

since the resistance of M3 is significantly higher than that of the magneto-metallic 

neurons, it accounts for most of the ΔV-voltage drop. Fig. 3b shows that the output 

current of M3 is a fairly linear function of the sampled gate voltage for the deep-triode 

region operation.           
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              Fig. 4 shows the circuit scheme used to realize the A-template. The 

corresponding simulation waveforms are shown in fig. 5. When the clock is low, output  

 

Figure 5.4CMOS detection unit senes the state of the neuron magnet and transmits 
current mode signal to the neighboring neurons through a deep triode current source 
transistor. 

 

of the dynamic-CMOS latch is precharged to Vdd.  The latch is activated at the positive 

edge of the clock signal. The two load branches of the latch are connected to he detection 

terminal, D, of the neuron and a reference MTJ respectively. The latch compares the 

difference between the effective resistances in its two load branches through a transient 

discharge current. It drives negligible static current into the high resistance  neuron-MTJ 

stack. For the anti-parallel state of the neuron-MTJ ( which can be regarded as the ‘firing 

state’), the latch drives the DTCS transistor Ms shown in the figure. Ms, in turn, supplies 

current to the neighbouring neurons through separate weighted fingers corresponding to 

the A template.  After a time delay that is sufficient for the latch to evaluate and settle to 

its final value, the neuron device receives the preset current through a clock driven 
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DTSCS. Note that, a delayed preset pulse with respect to the clock edge ensures that the 

latch evaluates correctly according to the neuron-MTJ state stored in the previous  

 

Figure 5.5Simulation waveform for DTCNN operation of the spin-CMOS hybrid PE 
 

evaluation cycle. Once evaluated, the latch can not change its state until it is precharged 

again, despite the flipping of the neuron MTJ. At the positive edge of the clock, the 

latches in all the PE’s evaluate simeltaneously and conditionally drive their respective 

DTCS outputs. Hence, a neuron recieves input currents from its neighbors, during the 

period when the clock is high.As soon as the preset signal goes low, the neuron magnet 

settles to one of its stable states, depending upon the overal spin current received through 

its inputs. Thus, the recursive operation of DTCNN PE, given by eq. 2 is realized by the 

application of an appropriate clocking scheme. Note that, the current supplied by the 
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DTCS outputs of the latches also flow across the two supply levels, Vdd and Vdd-ΔV, as 

shown in fig. 4. 

 

Figure 5.6(a)  Layout of the CMOS circuit (90 nm tehnology)  in the PE showing that the 
source transistors occupy larger portion of the PE area. (b) DTCNN templates for edge 
detection and halftoning 

 

Fig. 6 shows the layout for the CMOS circuitry employed in the spin-CMOS hybrid PE. 

It shows that a major portion of the PE area is occupied by the triode-region source-

transistors (M3 in fig.3a and Ms in fig. 4 ).  As mentioned earlier, in order to realize non-

overlapping inter-neuron connectivity, we employed separate fingers in the source 

transistors. Moreover, a matched layout of the fingers was considered. Fig. 5 shows the 

values of A and B templates for two common applications, halftoning and edge detection. 

As mentioned before, for an application specific design, the fingers of DTCS’s are 

weighted according to the templates. In the simplest case, for a given connectivity, 

number of fingers equal to the weight (matrix element) magnitude can be chosen. The 
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sign of the weight, determines the connectivity, to one of the complementary input of the 

corresponding neuron. 

As discussed before, application of current mode Bennett-clocking reduces the required 

amount of current injection for a neuron, per- input, to few microamperes. Hence, the 

multi-finger DTCS transistors can supply the required current even at a small terminal 

voltage ΔV.  Hence, two DC supply levels separated by a difference of ~20mV can be 

chosen. This achieves reduced static power consumption for current-mode inter-neuron 

signalling.  

               As long as input currents of the neurons are large enough to overcome the 

impact of thermal noise in the neuron-magnet, the precision of computation achievable, 

with the proposed scheme, is limited, mainly, by the supply noise. As the  accuracy of on-

chip DC supply regulation, in the state of art technology is limited to ~0.1%, high 

precicion imaging applications may seem out of scope of the proposed design. However, 

the use of dual supply rails proposed in this work may significantly compensate this 

disadvantage. Differential supply lines can significantly mitigate the impact of the noise 

sources, that lead to common-mode fluctuations. Hence a thorough modelling and 

analysis of this effect needs to be considered, in order to assess the noise tolerance of the 

proposed scheme. In the present work, we have included the effect of supply and process 

variations,  and we discuss these in the next section  on simulation framework.    

5.3 Application Simulation 

In the following sub-sections we present simulation results for some common image 

processing applications like edge detection, halftoning and digitization. 
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5.3.1 Feature Extraction 

Edge detection (fig. 7a) is one of the most common image processing step, applied in 

most vision applications.  As an example, motion detection  (fig. 7b) employs comparison  

 

Figure 5.7 (a) Result of edge detection from a grey-scale image, (b) Motion detection on 
the basis of  temporal difference in edge maps. 

 

between the edge maps of a still background, sampled one after the other. This can be 

achieved by employing extra storage registers per PE to store a sequence of edge maps. 

5.3.2 Halftone compression and sensing 

Halftoning is a process in which a grey scale image is recorded as (or compressed into) a 

binary image, with just two levels, in a way such that important details in the image are 

preserved. Several algorithms for decompressing halftone images have been proposed in 

literature. This technique can be used for sensing, storing and transmitting images in 
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bandwidth limited sytems. Simulation result for halftoning of a statellite image is shown 

in fig. 8. Fig. 9 shows the halftoned image of Lenna along with the effect of reduction in 

ΔV upon the halftone output.  With decreasing ΔV the effect of noise becomes 

increasingly more prominent. 

 

Figure 5.8Simulation results for halftoned image of a satellite picture 

 

Figure 5.9(a) Halftone of Lenna (b) effect of reduction in ΔV upon the output, with 0.1% 
supply noise. 
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5.3.3 Digitization 

Successive-approximation-register (SAR) analog-to-digital converter (ADC) is one of the 

most common data converters employed for on-sensor image quantization (fig 10a) [64]. 

The data conversion algorithm employed in an SAR-ADC can be explained as follows. 

To begin the conversion, the approximation register is initialized to the midscale (i.e., all 

but the most significant bit is set to 0). At every cycle a digital to analog converter (DAC) 

produces an analog level corresponding to the digital value stored in the register, and, a 

comparator compares it with the input sample. If the comparator output is high, the 

current bit (MSB) remains high, else it is turned low and the next bit is turned high. The 

process is repeated for all the bits. At the end of conversion, the SAR stores the digitized 

value for the pixel intensity, which can be read out in a column-wise manner from the 

sensor array. In a cicuit implementation of SAR-ADC, most of the power consumption 

results form the comparator and the DAC units. The SAR unit consists of a bank of  

 

 

Figure 5.10(a) SAR ADC block diagram (b) compact and low power SAR ADC using 
spintronic neuron. 
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CMOS latches and a simple control logic, which consumes negligible power as compared 

to the analog units. 

          As the SAR-ADC essentially employs recursive evaluation, akin to the CNN 

equation, the PE circuit decribed in the previous section can be easily extended to realize  

 

Figure 5.11Simulation result of spin-CMOS hybrid 8 bit-SAR-ADC and the effect of 
lowering ΔV upon the output, with 0.1% supply noise. 

 

a compact and low power N-bit SAR-ADC. In the schematic diagram for the proposed 

ADC, shown in fig. 10b,  the DTCS M1 converts the sampled output of the photo sensor 

into a current signal, that is injected into one of the inputs of a three input neuron.  The 

SAR simply consists of a bank of N CMOS latches, which in turn drive N different 

fingers of the DTCS M2. The multiple fingers of M2 are binary weighted and hence, it 

acts as a compact DAC and injects current into the second complementary input of the 

neuron. Current mode Bennett-clocking of the neuron, using the third input (a preset 
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magnet, not shown in fig. 15b)), at the beginning of each conversion stage, realizes the 

comparator operation. Note that, in the proposed  ADC design, the analog computation 

current flows across the two supply levels, i.e., across a small terminal voltage ΔV, 

thereby resulting in small power consumption. Moreover, in each frame, the current flow 

is restricted to the small period of conversion just after the data is sampled.  

                  Fig. 11 shows the simulation results for an 8-bit SAR-ADC based on the 

proposed scheme. Degradation in image quality due to supply noise can be perceived. 

Note that, in this work we have not considered any coupling between the two supply 

levels and independent noise sources have been used in simulation. Hence a thorough 

analysis of the proposed differential supply scheme would be need to assess the 

computation precision, achievable by the proposed hardware. 

5.4 Design Performance 

Fig. 12 depicts the architecture for on-sensor image processing [64]. Such a design 

employs PE’s integrated on each of the photo-cell. The output of the photo-detectors are 

directly processed by the PE’s and the result is read out column-wise.  

                     In such an architecture, the total energy dissipation per-input frame can be 

expressed as the sum of computation energy (Ecomp), the read-out energy (Eread) and the 

energy that is wasted in the form of leakage current (Eleak).  

                                        tot comp read leakageE E E E= + +
                                           (5.4) 

Ecomp can be expressed as a sum of neuron-preset-energy, (the energy associated with 

current mode Bennett-clocking), Epreset, the energy associated with current mode inter-

neuron signaling, Eevl,   and the dynamic switching energy in the PEs’, Edynamic(including 

the clocking power). A first order expression for these components can be derived using 
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the design parameters, namely, the two supply levels Vdd and Vdd-ΔV, the read-out 

voltage Vread, the preset time Tpre, the evaluation time Ievl, the effective switched 

capacitance in a PE, CPE, the bit-line capacitance CBL, the word-line capacitance CWL, 

 

Figure 5.12An on-sensor image processing architecture contains PE’s embedded into the 
pixel locations, and an addressing arrangement for reading out the PE outputs in a 
column-wise manner 

 

number of cells in the array NxN, the switching activity factor, α, and the number of 

iteration required per-frame for a given operation, M:  
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            The read-out energy, in the case of column-wise read-out can be obtained using 

the effective bit-line capacitance that is switched to read out K bit data per PE from the 

entire N x N frame, 
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Eleak can be ignored, as there are well known gating techniques that can make the leakage 

power for the PE’s negligibly small during the read-out period. The results given in table-

1, based on the design parameters in table-2 and table-3, in fig. 13,  indicate that for the 

proposed architecture, Ecomp is of the same order as Eread. Hence, the energy component, 

related to static power consumption due to analog-mode computation, can become 

comparable to that associated with dynamic power consumption in the peripheral digital-

circuits.    

            As described earlier, the advantage of using the proposed spin-CMOS hybrid 

scheme for analog computation comes from two main factors. The first, static current 

flow across a small voltage ΔV, and the second,  pulsed operation of the spintronic 

neurons with a narrow pulse-clock. Although, gating of analog modules in low frame rate 

image processing architectures have been proposed, gating of analog circuits for high 

frame rates can be challenging. Moreover, it might not be possible to gate analog cirucits 

with a pulse-width of a few nano-seconds, which is possble with the spintronic 

neurons.Comparison with on-sensor image processing designs for feature extraction, 

given in table-IV, shows more than two orders of magnitude improvement in 

computation energy. Note that, the effect of technology scaling has been included 

through a   mutiplicative factor of  S2 , where, S is the ratio of the technology scale 

between the reference design and the presented work (90nm CMOS).Table-4 compares 

the performance of the proposed SAR-ADC with some recent CMOS designs. Note that 

ADC is one of the few  
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Figure 5.13 Tables for performance comparison 

Vdd 900mV CPE 6fF
ΔV 20mV N 256
(Ievl) 60µA M, K :  

Ipre 120µA ADC 8 , 8
Tevl 12ns Edge det. 3 , 1
Tpre 2ns halfton 4,  1
CBL 200fF CBL

200fF

Vread 100mV α 0.5

Ku2 (biaxial
anisotropy)

2x106 erg/cm3

Magnet
Size
(nm3)

neuron 60x20x1

DWM 350x80x10

Hk ( coercively) 5KOe

Ms( saturation 
magnetization)

500emu/cm3

polarization
constant

High: 0.9 
Low: 0.1

Damping 
coefficient

0.007

Channel 
material

Cu

Channel spin 
flip length

1µm

resistivity 7Ω-nm

Frame
rate:  
10000 fps

Ecomp Eread Power

8- bit
quantization

13nJ 8nJ 180µW

Edge
detect.

4nJ 1nJ 40µW

Halfton. 6nJ 1nJ 50µW

Design Performance for 256x256 array Design Parameters (90nm CMOS )

Magnet-Parameters

Table-I Table-II

Table-III

Ref
8 bit

CMOS
tech.

Fs Power
(W)

Spintronic
ADC (W)

FOM**
ratio

[35] 0.18µ 370KHz 32 µ 0.04µ 133

[36] 0.18µ 500kh 7.75µ 0.06µ 32

[37] 0.25µ 100KHz 31µ 0.012µ 40

[38] 90nm 10M 70µ 1µ 70

[39] 90nm 20Mhz 290µ 4µ 72

Table-V
Comparison of the proposed ADC with state of art CMOS design

CMOS
Tech
(T)

Fps 
(frame 
rate)

N 
( # PE)

Power FOM* FOM(proposed
)/ FOM (given)

[45] 0.35µ 2000 32x32 600µW 3.4x103 253

[4] 0.6µ 100k 1x1 85µW
(per PE)

1.1x103 200

[31] 0.25µ 4000 128x128 20mW 3.2x103 470

[46] 0.35µ 2000 160x120 25mW 1.5x103 560

[47] 0.35µ 100 1 0.06µW 1.66x103 500

Table-VI
Comparison  with CMOS designs for feature extraction

*FOM = 
(S2) x(#PE x Fps )/Power

**FOM =  (S2) /Power      S : technology 
scaling ratio
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analog modules for which power consumption reduces with scaling. Results show that 

the spin-CMOS hybrid ADC can achieves ~30x low power consumption, as compared to 

some of the latest designs. In this work we have assumed two supply sources Vdd and 

Vdd- ΔV. It can be assumed that charge supplied by the higher supply, is restored in the 

second source, and, can be utilized by other circuit components in a large-scale, 

heterogenous architecture. Effect of supply noise needs a more thorough analysis. Supply 

routing techniques, that can exploit the differential supply scheme employed in this work 

to mitigate the effects of supply noise, need to be explored.  

              Though, high precision computation  on analog images may seem challanging 

with the technology limits associated with supply noise, the proposed scheme can be 

highly suitable for several low-level and middle-level analog image processing 

applications, for which, the conventional mixed signal designs consume large amount of 

power. 

5.5 Summary 

In this work we explored the application of the proposed spins, in on-sensor image 

processing applications. It was shown that a spin-CMOS hybrid PE can handle analog 

processing functionality in an highly energy-efficient manner.  The theoritical analysis 

presented, showed that, substituting some of the conventional analog processing units in 

an image acquision and processing hardware, by the spintronic neuron, can achieve ultra 

low power computation. This can facilitate the design of very high integration density 

hardware for sensory signal acquisition and processing.  
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6. ULTRA-LOW ENERGY ASSOCIATIVE COMPUTING 
ARCHITECTURE WITH SPIN NEURONS 

6.1 Introduction 

As discussed in chapter 3, resistive crossbar memory (RCM) can be highly suitable for 

non-Boolean data-processing applications like associative computing.  Owing to the 

direct use of nano-scale memory array for associative computing, it can provide very high 

degree of parallelism, apart from eliminating the overhead due to memory read. 

Associative computing of practical complexity with RCM is essentially analog in nature, 

as it involves evaluating the degree of correlation between inputs and the stored data. As 

a result, most of the designs for associative hardware using RCM’s proposed in recent 

years, involved analog CMOS circuits for the processing task. Recent experiments on 

analog-computing with of multi-level Ag-Si memristors employed analog operational 

amplifiers for current-mode processing. However, as we showed in the last chapter, 

application of multiple analog blocks for large scale RCM may lead to power hungry 

designs, due to large static power consumption of such circuits. This can eclipse the 

potential energy benefits of RCM for non-Boolean computing. Moreover, with 

technology scaling, the impact of process variations upon analog circuits becomes 

increasingly more prominent, resulting in lower resolution for signal amplification and 

processing. Hence, conventional analog circuits may fail to exploit the RCM technology 

for energy efficient, non-Boolean computing.  
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The solution to this bottleneck may lie with alternate device technologies that can provide 

a better fit for the required non-Boolean, analog functionality, as compared to CMOS 

switches. Recent experiments on spin-torque devices have demonstrated high-speed 

switching of scaled nano-magnets with relatively small current density [13-14]. 

Application of emerging spin-torque switching techniques like, those with spin-orbital 

coupling assist [104], may facilitate the design of low-current nano-scale spintronic 

switches. Such magneto-metallic devices can operate at ultra-low terminal voltages and 

can implement current-mode summation and comparison operations, at ultra-low energy 

cost. Such current-mode spin switches or ‘neurons’ can be exploited in energy-efficient 

analog-mode computing. In this chapter we present the design of RCM based analog 

associative memory using such “spin neurons”. The spin neurons form the core of hybrid 

processing elements (PE) that are employed in RCM based associative modules and 

achieve more than two orders of magnitude lower computation energy as compared to 

conventional mixed-signal (MS) CMOS circuits. Application of spin neurons to RCM 

can therefore greatly enhance its prospect as a non-Boolean computation tool 

6.2 Computing with RCM 

6.2.1 Multi-level RCM 

Although, the basic concept of using spin-neurons for RCM-based computing can be 

applicable to different resistive memory technologies, in this work, we use the devices for 

CMOS compatible Ag-Si memristors [104]. Fig. 1 depicts an RCM network. It 

constitutes of memristors (Ag-Si) with conductivity gij, interconnecting two sets of metal 

bars (ith horizontal bar and jth in-plane bar). High precision, multi-level write techniques 

for isolated memristors have been proposed and demonstrated in literature that can  
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Figure 6.1A Resistive crossbar network used for evaluating  correlation between inputs 
and stored data 

 

 

Figure 6.2(a) A resistive memory cell with access transistors, (b) transient change in 
resistance for different magnitude of programming current. 

 

achieve more than 8-bit write-accuracy [104]. In a crossbar array, consisting of large 

number of memristors, write voltage applied across two cross connected bars for 

programming the interconnecting memristor also results in sneak current paths through 

neighboring devices. This disturbs the state of unselected memristors. To overcome the 
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sneak path problem, application of access transistors (fig. 2a), and diodes have been 

proposed in literature that facilitate selective and disturb free write operations [105]. 

 

Figure 6.3a  A resistive memory array with multi-level programming periphery 
 

Methods for programming memristors without access transistors have also been 

suggested, but using such techniques, only a single device in an array can be programmed 

at a time [106]. Such schemes can be applicable only if programming speed is not a 

major concern. 

          Fig.3a depicts a possible array-level schematic of multi-level writing scheme for 

memristors, using adjustable pulse-width [107]. The memristor-cells to be written are 

selected by choosing the corresponding set of the word-line, the source-line and the bit 

line.  For infrequent write operations, a single write unit can be shared among large 

number of rows, as shown in fig. 3a. However, for maximum write-speed, each row can  
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Figure 6.3b Simulation results for feed-back-based write show that higher write precision 
can be obtained by employing higher resolution comparator and longer write time. These 
trends have been obtained using analytical model for memristors [1].       

 

have a dedicated programming cell. This would allow writing of one column at a time, by 

selecting a particular world line.      

         In order to accomplish the write operation, a constant current can be injected into 

the selected cell and the voltage developed on the source line is compared with a 

comparator threshold. The threshold, in turn, is set proportional to the target resistance, 

by using a compact switched capacitor digital to analog converter (DAC). The current 

source is disconnected as soon as the accessed memristor acquires the target resistance 

value. As shown in fig.2a, lower value of write current results in slower ramp in the 
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resistance value and hence, allows more precise tuning. Analytical model for memristor 

have been used for simulation in this work [107]. Experimentally it has been observed 

that memristive devices (including Ag-Si) do exhibit a finite write threshold for an 

applied current/voltage, below which there is negligible change in the resistance value 

[108].  As described in the following sections, application of spin-based neurons in RCM 

facilitates ultra-low voltage (and hence low current) operation of the memristors for 

computing and hence, can achieve reduced read-disturb for the array. 

         The write-precision in method described above, is mainly limited by random offset 

of the comparator, inaccuracy in the current source and the DAC. Larger accuracy would 

entail higher design-complexity for these blocks and lower write-speed (fig. 3b). 

6.2.2 Associative Computing Using Multi-Level RCM 

Memory based pattern-matching applications generally apply some form of feature 

reduction technique to extract and store only the essential ‘patterns’ or ‘features’ 

corresponding to different data samples.  The extracted patterns can be represented in the 

form of analog vectors that can be stored along individual columns of the RCM as shown 

in fig.1. In order to compute the correlation between an input and the stored patterns, 

input voltages Vi (or currents Ii) corresponding to the input feature can be applied to the 

horizontal bars.  Assuming the outward ends of the in-plane bars grounded, the current 

coming out of the jthin-plane bar can be visualized as the dot product of the inputs Viand 

the cross-bar conductance values gij(fig. 1). Hence, an RCM can directly evaluate 

correlation between an analog input vector and a number of stored patterns. This 

technique can be exploited in evaluating the degree of match (DOM) between an input 

and the stored patterns, the best match being the pattern corresponding to the highest  
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Figure 6.4400 test images of 40 individuals, and the feature reduction method used in this 
work [109]. 

 

correlation magnitude (∑iVigij).   Fig. 4 depicts the feature extraction step for human face-

images. In this work, we have used 10 different face-images for 40 individuals, for 

generating 40 stored data patterns. For an individual, each of the 10 face-images were 

normalized and down sized from 128x96, 8-bit pixels to 16x8, 5-bit pixels. Pixel wise 

average of the 10 reduced images was taken to generate 128-element (16x8), 32 level 

analog patterns (5-bit pixel values) corresponding to the 40 individual faces. The limit of 

image down-sizing was identified as the scaling factor below which matching accuracy 

for the 400 test images dropped significantly below the value achieved using the full size 

image (fig. 5a).  For each set of downsizing factor and bit-size, current-mode correlation 

outputs were obtained using SPICE model of RCM.       

        Variations in input source as well as memristor values were incorporated to obtain 

realistic values for the current-outputs. For a given set of stored images, classification  
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Figure 6.5(a) Training accuracy reduces with image down-sizing, (b) similar trend is 
obtained for the reducing WTA , (c) dot-products output form the RCM depciting the 
results for best-match and the second-best match for all 40-template faces when 
corresponding inut images are provided as input. 3 % σvariation has been used for 32-
level analog memristors. A matching accuracy of ~90% was achieved in simulations. 
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Figure 6.6A standard CMOS solution for associative memory module using binary 
treewinner-take-all circuit. 

 

accuracy also depends upon the resolution of the detection unit used to determine the 

DOM figures for all the stored patterns. A resolution (minimum distinguishable 

difference between analog dot-products outputs) of 4% (5-bit) was chosen based on the 

observation that up to this value, the classification accuracy remained close to that 

achievable using ideal comparison (fig. 5b). 
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Resolving ~4% difference among the current-mode dot product results requires a 

precision of 5-bits for the detection unit, responsible for identifying the winning pattern. 

Fig. 6 shows a conventional mixed-signal-CMOS solution for the  

 

Figure 6.7Design trends for CMOS BT-WTA obtained using SPICE simulation : (a) 
higher resolution mandates larger cell area (b) for a given bias current,  performance 
trades off with resolution and power consumtion. These results were obtained using 
SPICE simulation of BT-WTA in [112], with σVT = 10mV for minimum sized transistors. 

 

detection unit. It constitutes of regulated current mirrors as the input stage  that offer low 

input-impedence and a near constant DC bias to the RCM. Following this, a winner-take-

all (WTA) circuit receives the current inputs and determines the ‘winner’. Several 

versions of WTA circuits have been proposed in literature, that can be classified into two 

broad catagories, current-conveyer WTA  (CC-WTA) [111], and binary tree WTA (BT-

WTA) [18], the later being more suitable for large number of inputs [111, 112]. BT-WTA 

employs a binary tree of 2-input comparison stages which involve copying and 

propagating the larger of the two current inputs to the output (fig 6)  [112]. 

           In general, the use of such analog WTA circuits leads to large static power 

consumption. Infact, the power consumption of an analog WTA unit can be several times 
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larger than the RCM itself. Morevoer, the performance of such current-mirror based 

circuits is limited by random mismatches in the constituent transistors and other non-

idealites like, channel length modulation, that introduce mismatch in different current 

paths [113]. In order to maintain a sufficiently high resolution, larger transistor 

dimensions (both length as well as width) and hence, larger cell area is needed. This is 

evident from some recent designs [111] -- although the designs used scaled technology,  

significantly larger channel lengths were used for such circuits. This leads  to increased 

parasitic capacitances and hence, lower operating  frequency (fig. 7) for a given static 

power.  Higher frequency and resolution can be achieved at the cost of increased input 

currents, ie., at the cost of larger power consumption [113]. Special techniques to 

enhance the precision of current mirrors have been proposed in literature [111], but they 

introduce significant overhead in terms of  power consumption and area complexity. 

Voltage-mode processing can also be employed in RCM, however it incurrs additional 

overhead due to current to voltage conversion and subsequent amplifications.  This incurs 

larger mismach, non-linearity and power consumption.  

           The above discussion suggests that the conventional mixed-signal CMOS design 

techniques may not be able to leaverage the emerging nano-scale resistive memory 

technology for memory based computing.  This motivates us to look towards alternate 

device technologies that can be more suitable for this purpose.  In the next section we 

descirbe the spin based neuron model that can lead to efficient computing hardware based 

on RCM. 
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6.3 Associative memory module using spin neurons in RCM 

In the following subsections, we first describe the design of RCM based correlation unit 

and its interfacing with domain-wall neurons (DWNs) (fig. 8) presented in chapter-3. 

This is followed by circuit level description of spin-CMOS hybrid-PE based on DWN 

that achieves the WTA functionality at ultra-low energy cost. We assumed that regulated  

 

Figure 6.8(a) Spin neuron based on domain wall magnet (b) micro-magnetic 
simulation for neuron switching. 
 

DC voltages with 1mV accuracy are available [115]. It was shown in chapter 3, that 

aggressive device-scaling can achieve low switching current (~1µ) and fast switching 

speed (~1ns) for the DWN. Towards the end of this chapter, the impact DWN threshold 

on overall performance is presented.  

 

6.3.1 Network Design 

Fig. 9a depicts the DWNs with their input (d1 terminals) connected to RCM outputs. A 

DC voltage, V, is applied to the d3 terminals of all the DWNs (access transistors are not 

shown for simplicity). Owing to the small resistance of the DWN devices, this effectively 

biases output ends of the RCM (connected to d1 terminals) to the same voltage. As 

described in section-2, in order to perform associative matching of an input face-image 
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with the data stored in the RCM, the input image is down sized to 16x8, 5-bit pixels. 

Each of the 128 digital values needs to be converted into analog voltages/current levels, 

to be applied to the RCM input. The low voltage operation of DWN can be exploited to 

implement, compact and energy efficient current-mode DAC using binary weighted 

deep-triode current source (DTCS) PMOS transistors, as shown in fig. 9a. A DC supply  

 

Figure 6.9(a) RCM with a single DTCS input and three receiving DWN, (b) non-linear 
characteristics of DTCS resulting due to series combination with Gs 

 

ofV+∆V is applied to the source terminals of the DTCS, where ∆V is ~50mV. Such a low 

value of drain to source voltage for the DTCS provide linear Id (drain-current)-Vgs(gate 

to source voltage) characteristics that can be exploited for analog-mode driving. 

Ignoring the parasitic resistance of the metal crossbar, the drain to source voltage of the 

DTCS-DAC can be approximated to ∆V.  The current Iin(i), supplied by the ith DAC can 

thus be written as ∆V.GT(i)GTS/(GT(i)+ GTS)), where GT(i)is the data dependent 

conductance of the ith DAC and GTSis the total conductance (of all the Ag-Si memristors, 

(including the ON resistance of the access transistors if present) connected to a horizontal 
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bar. Dummy memristors are added for each horizontal input bar such that GTS is equal for 

all horizontal bars). As a result, the current input through a memristor connecting the ith 

input bar to the jth output bar (in-plane) can be written as 

I(i,j)=∆V.GT(i)GTS/(GT(i)+GTS)(G(i,j)/GTS), where, G(i,j) is the programmed conductance 

of the memristor.  For accurate dot-product evaluation, the current I(i,j) should be  

 

Figure 6.10(a) degradation in detection margin for a given input due to non-linearity (for 
low GTS) and parasitic voltage drops (for high GTS), (b) degradation in detection margin 
for the same input, for reducing ∆V, due to parasitic voltage drops. 

 

proportional to the product of GT ( ie, the DTCS conductance, proportional to the input 

data) and G(i,j). Hence, a low value of GTS (i.e. higher resistance values of the memristors) 

introduces non-linearity in the DTCS-DAC characteristics (fig. 9b). This leads to 

reduction in the detection margins (difference between the best and the second best match) 

for the current-mode dot product outputs for different input images (fig. 10a). As a result, 

the overall matching accuracy of the network reduces for a given WTA resolution. 

Ideally, choosing the lowest possible range of values for the memristor resistances (say 

200Ω-6.4K Ω, no access transitor being used) would largely overcome the non-linearity 
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(fig. 10b). However, for higher G(i,j), voltage drop in the metal lines due to parasitic 

resistances result in corruption of the current signals, once again, leading to degradation 

in the detection-margin. Hence, the optimal range for the conductance values was found 

based on the maximum achievable read-margin, as shown in fig. 10a. The Ag-Si 

memristors can be programmed to low resistance value of ~100Ω. The design parameters 

like the image compression factor, data bit-width etc, discussed earlier,  were therefore 

determined based on the simulation of RCM model, in order to ensure resolvable 

detection margin.            .    

           The range of current output from the DTCS-DAC needed is mainly determined by 

the choice of WTA resolution.  If the DWN’s are designed to have a threshold of ~1µA, 

the maximum value of the dot-product output must be greater than 32µA for a 5 bit 

resolution for the WTA (described later).  This in turn, translates to the required range of 

DAC output current. For 128 element input vectors and 5 bit resolution for the WTA, the 

maximum value for DAC output required  was found to be ~10 µA. This range of current 

can be obtained using different combination of DTCS sizing and the terminal voltage, ∆V.  

For a required amount of DAC current, it is desirable to push ∆V to the minimum 

possible value, in order to reduce the static power consumption in the RCM. This would 

imply, exploiting the low-voltage operation of the DWNs to the maximum possible 

extent. The minimum value of ∆V is limited mainly by the parasitic voltage drops that 

degrades the detection margin and hence the matching accuracy (fig. 10b). For this 

design (RCM of size 128x40)  ∆V of 30mV (with regulated DC supply of 1mV precision 

[115]) was found to be sufficient to preserve the matching accuracy close to the ideal 

case (with no-parasitic). The proposed technique effectively biases the RCM across a 



131 

 

small terminal voltage (∆V), thereby ensures that the static current flow in RCM takes 

place across a small terminal voltage of ~30mV (between two DC supplies V and V+∆V). 

              Above, we noted that the application of DWN in the RCM offers the benefit of 

ultra low voltage operation that reduces the static power consumption resulting from 

current-mode, analog computing. Next, we describe the design of spin-CMOS hybrid 

WTA that performs the winner selection task with negligible static power consumption.  

6.3.2 WTA design 

The DWN device essentially acts as a low voltage, high speed, high resolution current-

mode comparator and hence can be exploited in digitizing analog current levels at ultra 

low energy cost [24]. The proposed WTA, algorithmically depicted in fig. 11, exploits 

this fact and clubs a digitization step with a parallel ‘winner-tracking’ operation. 

The first half of the flowchart can be identified as the standard algorithm for successive 

approximation register (SAR) ADC [24]. The data conversion algorithm employed in an 

SAR-ADC can be explained as follows. To begin the conversion, the approximation 

register (that stores the digitization result) is initialized to the midscale (i.e., all but the 

most significant bit is set to 0). At every cycle a digital to analog converter (DAC) 

produces an analog level corresponding to the digital value stored in the SAR and a 

comparator compares it with the analog input using an analog comparator. If the 

comparator output is high, the current bit remains high, else it is turned low and the next 

lower bit is turned high. The process is repeated for all the bits. At the end of conversion, 

the SAR stores the digitized value corresponding to the analog input.  
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Figure 6.11WTA algorithm used in this work 
 

 

Figure 6.12Block diagram for SAR operation of the WTA circuit 
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The circuit realization of this operation using DWN’s is shown in fig. 12.Output currents 

of the RCM columns (in this case 40 columns storing the pattern vectors of 40 face-

images) are received by individual DWN input nodes that are effectively clamped at a 

DC supply V, as described earlier. Each DWN has an associated DTCS-DAC, which is 

driven by the corresponding successive approximation register. The drain terminals of the  

 

Figure 6.13Circuit operation for the tracking part of the WTA algorithm. 
 

DTCS transistors are a DC voltage V-ΔV. In each conversion cycle, the DWN device 

essentially compares the RCM output and the DAC output (and hence acts as the 

comparator of the SAR block). The comparison result is detected by the latch described 

in chapter 3, and the result is used to modify the SAR logic using the scheme described 

above (though pass-gate based multiplexers P, driven by a global controller). In the 
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overall scheme, the component of RCM output current sunk by the DTCS in the ADC’s 

flow through across a DC level of 2∆V.  Note that for a neuron resistance of ~100Ω , the 

current injection into it towards the final conversion steps (more MSB’s) will be less than 

5µA ( note, only the difference between DAC output and the dot-product output enters 

the neuron). This leads to a voltage drop of less than 0.6mV which is small as compared 

to 30mV used in this work. 

           The second half of the WTA algorithm operates in parallel with the first (i.e., the 

ADC operation). It can be explained with the help of the corresponding circuit diagram 

shown in fig. 13. Results of the first ADC conversion step obtained from the SAR are 

directly transferred to the tracking registers (TR) shown in the figure through the pass-

gate multiplexing switch (PGS). Thus, at this stage, all the TR’s with a high output 

correspond to the ADC results with MSB = ‘1’. Let us now, consider the second cycle 

operation. 

The detection line (DL) is first pre-charged to Vdd and the set of discharge registers (DR), 

driving it are cleared to low output. Next, if for at least one of the SAR’s with high MSB, 

the second MSB also evaluates to ‘1’, the corresponding DR is driven high by the 

associated AND gate. Thus, DL is discharged to ground and the write of all the TR’s is 

enabled. All the TR’s for which both, the first and second the MSB’s evaluated to ‘1’, 

stay high, but the rest are set to low. In simple terms, if at least one of the SAR’s (5-bit) 

evaluated to ‘11000’ in the second conversion cycle, the DL is discharged and all the 

TR’s with SAR value ‘11000’ stay high, while those with SAR value ‘10000’ are set to 

low. In case all SAR’s evaluated to ‘10000’ in the second cycle, no change is made to the 

TR values. Thus, at the end of conversion cycle, if only one of the TR’s remains high, it is  
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Figure 6.14(a) Degradation in matching accuracy with increasing number of templates for 
single step matching (for a given WTA resolution), (b) 2-level search tree obtained using 
K-mean clustering, (c) matching accuracy vs. size of the middle node for a training set 
with 3000 images, (d) computation energy for different number of middle nodes obtained 
using K-means clustering for 3000 images. 



136 

 

identified as the winner and the corresponding SAR value is effectively the degree of 

match (DOM). In case a random image is input to the hardware, the proposed scheme 

will still identify the ‘winning’ pattern. But if the DOM is lower than a predetermined 

threshold, the winner is discarded, implying that the input image does not belong to the 

stored data set.   

           The winner-tracking circuitry described above is fully digital and does not 

consume any static power. Moreover, owing to the global digital control, it is easily 

scalable with the number of inputs as well as the required bit precision. For the data set of 

400 individual images ( with 40 mean templates stored in the array), the propsoed WTA 

design of 5-bit resolution resulted in ~90% matching accuracy. 

          The overall power consumption in the proposed design is drastically reduced as 

compared to a MS-CMOS realization (described in section-2), due to two main reasons. 

First, the power consumption in the RCM itself is significantly lowered due to low 

voltage operation, and second, the fully digital WTA avoids any additional static power 

consumption. Note that the proposed WTA implemented in MS-CMOS would result in 

large power consumption, resulting from conventional ADC’s. The low-voltage current-

mode switching characterisitcs of DWN however, provides a compact and ultra low 

power digitization technique. 

6.3.3 Large Scale Associative Computing System Using Spin-RCM Associative 

Modules 

The hybrid associative module described above can be used to realize a generic, large-

scale data-mining system, using appropriate synthesis techniques. As an example, let us 

consider the design of a face recognition module with large number of stored images. 
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Using additional image data set in [110], we created a set of ~3000 images of ~200 

individuals.  

 

 

Figure 6.15(a) Hierarchical HTM architecture, (b) HTM-based associative computing 
architecture based on the proposed spin-based hardware. 
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         Fig.14 a shows that with increasing number of individual images, the matching 

accuracy reduces steeply, for direct, 1-step matching operations. Higher matching 

accuracy for a large data set can be obtained adopting a two-step search. K-means 

clustering can be used to design such a network [116]. Using this method, N mean-

images are obtained from the actual 3000 images that are stored at first-stage RCM 

module (called the middle-node). The input image is first compared with these N mean-

images in the middle-node. Depending upon the result of first-stage matching, the input-

image is routed to one of the N ‘leaf’-nodes, i.e., the RCM modules that store the actual 

images (that can include the means of images of the same individuals). Note that, the 

total number of images in all the N leaf nodes maybe lower than the actual number of 

images used in the K-means clustering algorithm to form the network. This is because, 

the images of the same persons may be averaged and combined if they fall into the same 

leaf-node. Fig. 14b pictorially depicts the two-step associative matching procedure 

described above.  

         The optimum choice of N depends upon the computation accuracy as well as overall 

computation energy. For small values of N, matching accuracy is low (fig. 14c). For large 

values of N, computation energy starts increasing due to larger size of the leaf nodes as 

well as larger energy overhead due to data-communication (fig. 14d). Computation 

energy plots for two different cases are depicted in fig. 14d. While considering the energy 

dissipation only due to the RCM-based computation, the optimal number of leaf-nodes (N) 

was found to be  higher. However, as will be discussed later, for larger number of nodes, 

energy dissipation due to data communication starts dominating. Hence, while 

considering both the energy components, namely, computation energy and data 
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communication energy, the optimum value of N was found to be lower (fig. 14d). For the 

computation load considered in this work, the optimum number of leaf nodes was found 

to be ~16, where each leaf node stored around ~40 image templates. Note that the energy-

dissipation due to data transport can be drastically reduced by the use of recently 

proposed spin-torque based interconnect technique [24]. 

            Fig.15 depicts a possible hybrid associative computing hardware based on the 

proposed scheme. The RCM blocks store the templates corresponding to the different 

nodes in a multi-level search tree. The input signal can be obtained directly from an 

image-sensor input using energy-efficient spin-torque interconnect. The CMOS units are 

responsible for routing the data and control signals. In order to access the area and data-

transmission overhead, memristor cells as well as CMOS-WTA modules were laid out in 

45nm CMOS technology. Minimum-sized access transistors were employed for the 

layout of the schematic shown in fig. 3a. The area density per-cell is mainly limited by 

access transistors. The larger cell-area can, however, be exploited for wider metal-cross-

bars. This would reduce the parasitic resistance of the metal lines, thereby allowing a 

larger array size and lower voltage for computing. The area of the CMOS-WTA was 

found to be slightly larger than the cross-bar networks of size 40x128 (128 being the 

input bus-width).  This corresponds to an area of ~700µm2 in a 45nm technology node. 

The area of the proposed design can be compared with that of mixed analog-digital 

CMOS WTA presented in [111]. The design presented in this work would consume 

~0.018 mm2 for 40 input WTA.  For 45nm CMOS this would translate to ~1200µm2 , 

assuming linear scaling of the proposed design with technology node. However, analog 

designs do not necessarily scale down with technology node, due to matching 
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considerations and increased process-variations [113]. The area estimated for a 5-bit 

resolution, 40-input WTA at 45 nm technology node was larger than ~0.005mm2, which 

is ~7x higher than that achieved by the proposed design. 

6.4 Performance and Prospects 

In order to compare the performance of the proposed design with state of the art mixed 

signal (MS) CMOS design, we simulated two different CMOS BT-WTA topologies 

proposed in [112] and [111] respctively, using 45nm CMOS technology models. The first 

design is the standard BT-WTA, whereas, the second is a recently proposed modification. 

We also simulated a 45nm digital CMOS design that employed multiply and accumulate 

operations for evaluating the correlation between the 5-bit 128 element digital templates 

and input features of the same size.  

           Simulations for MS-CMOS designs show that the power consumption for the 

WTA unit dominates the total power. On the other hand, for the proposed scheme, there 

is negligible static power consumption in the WTA operation. However, since, the static 

power consumption in RCM is also significantly lowered, it becomes comparable to the 

dynamic switching power in the WTA. This is evident from the trend shown in fig. 16a. 

It also shows that the static power consumption in the DWN-based design can be 

significantly reduced by futher lowering the DWN switching threshold. However, the 

dynamic power remains almost constant and starts to dominate for reduced DWN 

thresholds.  

         Plot in fig. 16b shows the impact of transistor process variations upon MS-CMOS 

designs. The power-delay products are plotted for a WTA resolution of 4%. Note that in 

the proposed WTA, the impact of transistor-variations in the   DTCS-DAC is limited to 
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just a single step, whereas, the MS-CMOS circuits suffer more due to the cumulative 

effect of multiple transistors in the signal path. As discussed in section-2, with larger 

variations, the accuracy and resolution of MS-CMOS circuits like, current-mirrors  

 

Figure 6.16(a) Power consumption of the proposed design ( for  1-step matching for 40 
individual templates) swith its static and dynamic components, for different values of 
DWN threshold, (b) ratio of power-delay (PD) product of MS-CMOS and the proposed 
design for increasing transistor variations. 

 

decreases steeply, necessitating the use of larger devices, which impairs the circuit 

performance.  

             Table in fig. 17 compares the proposed spin-CMOS design with MS-CMOS 

designs in [111] and [112], and with the 45 nm digital CMOS design. The device 

parameters for the proposed design used for table in fig. 17 are given in table of fig. 18. 

The results shown are for σVT =5mV for minimum sized transistors, which is a near ideal 

case for MS-CMOS circuits. Results for three different WTA resolutions are given which 

show similar energy benefits of the proposed scheme, even for smaller WTA resolution. 

For analog designs, lower resolution constrain allows smaller transistors and hence, better 

performance. Power consumption for the DWN based design, also reduces with 
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resolution. Lower WTA resolution allows smaller DAC currents, resulting in reduced 

static power and lower switched capacitance for the smaller WTA blocks, leading to 

reduced dynamic power.    

 

Figure 6.17 Table for comparison between the proposed design and CMOS hardware, 
analog and digital 

 

Most interestingly, results for comparison with 45nm digital hardware shows ~1000x  

lower computing energy for the proposed design. Note that, this comparison does not 

include the overhead due to memory read in the digital design. As discussed earlier, 

digital hardware in general  prove inefficient for the class of computation considered in 

this work. Another important point to be noted is that, the use of MS-CMOS circuits in 

RCM barely perform ~10x better than the digital implementation and hence, achieve far 

less energy efficiency as compared to the proposed design. Thus, ultra-low energy analog 

computing using spin neurons can significantly enhance the prospect of RCM technology 

for computational hardware.   

spin-
CMOS 
PE

[ 18 ] [ 17  ]
45nm
Digital 
CMOS

Power  5-bit 65µW 5.5mW 8mW 4mW
4-bit 45µW 2.9mW 5.0mW 2.8mW
3-bit 32µW 2.3mW 3.2mW 1.2mW

Frequency 100 MHz 50MHz 50MHz 2.5MHz

Energy 5-bit 1 160 215 2460
4-bit 1 140 221 2300
3-bit 1 155 210 1100
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As discussed above, the basic AAM unit discussed in this work can be extended to a 

more generic, large scale data-mining architecture. The proposed design scheme can be 

applicable to a wide class of non-Boolean computing architectures that also include 

different categories of neural networks. For instance, the spin-RCM based  correlation  

 

Figure 6.18 Table for design parameters used in this work 
 

modules presented in this work can provide energy efficient hardware solution to 

convolutional neural networks that are attractive for cognitive computing tasks, but 

involve very high computational cost. 

6.5 Summary 

Emerging RCM technology holds great potentials for non-Boolean computing hardware. 

However, conventional mixed signal CMOS circuits may fail to leverage the benefits of 

RCM due to their large power consumption and poor scalability. We showed that the 

critical analog functionality needed in RCM based computing tasks can be provided by  
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magneto-metallic "spin-neurons" at ultra-low energy cost. The resulting design can 

achieve more than two orders of magnitude lower energy consumption as compared to 

analog CMOS design 
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7. ENERGY-EFFICIENT AND ROBUST ASSOCIATIVE 
COMPUTING WITH INJECTION-LOCKED DUAL PILLAR 

SPIN-TORQUE OSCILLATORS 

7.1 Introduction 

In this chapter we propose the application of nano-scale Spin Torque Oscillators (STO) 

for building energy-efficient processing blocks for associative computing [92-99]. STOs 

are based on magnetic spin-valves that constitute of a ‘fixed’ and a ‘free’ magnetic-layer 

[92]. The spin-polarity of the free-layer (FL) can be set into sustained oscillations by 

injecting charge-current through the device, under appropriate bias conditions and device 

configurations. An input-dependent shift in the bias state of a set of phase-synchronized 

STOs can be employed for pattern-matching applications [92, 93]. However, the choice 

of the device-configuration and the synchronization-technique, can heavily impact the 

design-feasibility and the overall benefits of STO-based computing modules.   

                     We propose the application of three-terminal, Dual-Pillar-STO (DP-STO) 

for associative computing [93]. DP-STO offers an ultra-low-voltage, low-resistance 

biasing-path leading to low-biasing power. It also provides a high-resistance output-port, 

providing large output voltage-swing (corresponding to the free-layer (FL) 

magnetization-state), thereby, minimizing the overhead for sensing the spin-mode 

oscillations. Injection-locking is used for robust and low-power synchronization that can 

offer high-immunity to device-noise and parameter-variations [99].  
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We employ the injection locked DP-STO-arrays in modeling energy-efficient hybrid 

circuits for hamming-distance (HD) evaluations required for associative-computing. 

Apart from low-power operation, DP-STO proves amenable for robust injection-locking 

due to the isolation between input and the output RF signal that it offers. The above 

factors combined together render DP-STO an attractive technology for realizing, large-

scale and ultra-low-energy associative-computing blocks. 

7.2 Dual Pillar Spin torque Oscillator for low power operation 

In this section we first present the standard, 2-Terminal-STO (2T-STO) and the basic 

design-conflicts associated with its application in low power associative computing. 

Following this, DP-STO is presented as an alternative device that can overcome the 

limitations of 2T-STO for computing applications. 

7.2.1 2Terminal-STO: 

A standard 2T-STO [6, 7], shown in fig. 1a, has two ferromagnetic layers separated by 

either a thin non-magnetic metal (Giant Magneto Resistance-GMR device) or a thin 

insulating oxide (Tunneling Magneto Resistance-TMR device). layer. The ferromagnetic 

layers have two stable spin-polarization states, depending upon magnetic anisotropy [1]. 

The magnetization of one of the layers is fixed, while that of the other (free-layer) can be 

influenced by a charge current passing through the device or by an applied magnetic field. 

The high-polarity fixed magnetic-layer spin-polarizes the electrons constituting the 

charge-current, which in turn exert spin transfer torque (STT) on the free-layer [2]. The 

dynamics of the free-layer is governed by Landau-Lifshitz-Gilbert equation (LLG) [8], as 

shown in fig.1. It includes a precession term induced by a static magnetic field 
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Heff(applied perpendicular to the magnetization-plane), a current-induced STT term and 

an intrinsic damping torque which opposes the STT-induced deflection in the free-layer  

 

Figure 7.1(a) 2-T STO, (b) different torque terms acting on the free-layer, in presense of a 
charge-current-J, and and external magnetic field Heff , (c) LLG governinig the free-layer 
magnetization m (γ is the Gyromagnetic ratio, α is the damping  constant, h is the Plank-
constant, tm is the FL-thickness, Ms is the saturation magntization of the magnet, P is the 
polarization constant and mp is the spin-polarization of the fixed-layer), (d) self-consistent 
solution of LLG and NEGF spin-transport for modelling STO, (e) frequency versus bias 
current plot benchmarked with the experimental data presented in [148]. 
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magnetization. For a given static magnetic field, the free-layer can achieve sustained 

spin-precession at an angle φ (formed with the plane of ground-state magnetization), at 

which the STT and the damping torque balance out each other. (Fig 1(a)) [6-8]. The 

resistance of the spin-valve can be expressed as a function of relative angle (θ) between 

the spin-polarization of the two ferromagnetic layers as: 

                                      
cos

2 2
P AP P APR R R RR θ+ −⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠                                    
(7.1) 

              Where, RP and RAP denote the resistance when the two layers are parallel (θ = 0) 

and antiparallel (θ = 180).  The absolute resistance of a GMR device is much smaller than 

that of a TMR device (less than ~1 ohm). A GMR-STO, being fully metallic, can be 

operated with very low voltage ( ~10 mV). However, the sensed signal amplitude is very 

low which requires complex sensing circuitry to amplify the signal, leading to high power 

consumption [93]. On the other hand, though the TMR based STO can provide large 

amplitude output signals, due to the high-resistance tunnel junction, it requires a large 

bias voltage, leading to energy inefficiency at the device level. We proposed a Dual-

Pillar-STO that can overcome the aforementioned bottleneck and can be suitable for 

energy-efficient computing [93]. 

7.2.2 Dual-Pillar-STO 

A Dual-Pillar-STO (DP-STO) [93], shown in fig. 2b,  clubs the best of a GMR and a 

TMR-based STO and hence, overcomes the limitations of both the 2-terminal devices. 

The three-terminal DP-STO employs an extended free layer magnet-m1. Towards the 
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right it forms a low-resistance GMR interface with one fixed magnet layer-m2, and, a 

TMR interface with another fixed magnet layer-m3. A simple CMOS  

 

Figure 7.2(a) Conventional 2T-STO (FRL: free-layer, FXL: fixed layer, ox: oxide), (b) 
DP-STO with perpendicular polarizer and associated biasing and sensing circuits,  m1 is 
the free layer with dimensions: 44x22x2 nm3, (c) micro-magnetic OOMMF simulation 
plots for DP-STO, (d) freq. vs. DC bias current for DP-STO in fig. 4b. 
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Figure 7.3(a) increase in output swing with TMR, (b) Effect of tox on MTJ output swing 
 

interface circuitry for biasing the DP-STO and sensing the oscillations is also shown in 

Fig 4b. Input bias current which sets the free layer in oscillation is applied between 

terminals T1 and T2 using transistor M1 (dashed line in Fig 2b). Owing to the low 

resistance magneto-metallic GMR channel, the bias-current can be applied through  

transistor M1, with a very small drain-to-source voltage, ΔV, (transistor operating in deep 

triode region). This current induces spin torque on the portion of free layer in  

contact with GMR interface and sets the magnetization of the free layer into sustained 

oscillations. Fig. 2c shows the plots for room temperature micro-magnetic simulations for 

DP-STO with perpendicular-polarizer, biased with ~100µA DC current.   

               The spin-state of the oscillating free-layer can be sensed  by injecting a small 

read-current into the magnetic-tunnel junction (MTJ) formed between the free-layer m1 

and a fixed , reference-layer m3 (fig. 2b). The resistance ratio of an MTJ is defined in 

terms of tunnel magneto-resistance ratio (TMR) as: (RAP-RP)/RPx100, where RAPand 

RPare the anti-parallel and  the parallel-state resistances of the MTJ respectively. For a 
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TMR of ~200%, a voltage swing of ~V/3can obtained using the voltage divider (where V 

is the supply-voltage). Such an output swing can be directly detected by a simple CMOS 

inverter. Higher TMR may provide higher output-swing and hence better robustness (fig. 

3a). High oxide thickness (tox) for the MTJ provides higher absolute resistance for the 

voltage-divider, minimizing the read-current and hence the static-power associated with 

the sensing-operation. However, too high value for MTJ resistance diminishes the output-

swing for high-frequency operation, due to low-pass filtering effect (fig.3b).  

Table-7.1 Comparison of power consumption for 2T-STO and DP-STO 

 

              Thus, a DP-STO leads to low biasing power due to low voltage GMR port and at 

the same time provides large output signal through the high resistance TMR port [93]. 

The latter is conducive to compact and low power CMOS interface for sensing the output 

signal. For a TMR of ~200% and higher a simple CMOS inverter may be used for 

sensing the output. Table-I compares the power consumption of DP-STO with two 

terminal STOs based on GMR and TMR devices [93]. It shows that for GMR STO, the 

STO-type GMR TMR DP

Bias-
voltage

30mV 0.7V 30mV

Bias power 2.7µW 63µW 2.7µW

Sensing 
power

2.5mW 0.14µW 0.14µW

TMR(/GMR) 20% 200% 200% 

common parameters

Free-layer size : 22x44x2nm3

:α: 0.01    ; A = 20pJ/m  ; Ms : 400emu/cc, 
DC bias : 100µA (perpendicular polarizer)
Bias frequency : ~5GHz ; Eb : 40KBT
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sensing power dominates due the requirement of large amplification. On the other hand, 

for TMR STO, the biasing power is dominant because of larger biasing-voltage required 

for the high resistance device.  THE DP-STO on the other hand achieves low power for 

biasing as well as sensing. 

              Multiple DP-STOs can be phase synchronized through electrical [94] or 

magnetic coupling techniques [95-96]. Dynamics of phase-synchronous DP-STOs can be 

utilized in associative pattern-matching operations as discussed in the next section. For a 

practical associative pattern-matching hardware integration of a large number of STOs 

might be essential. The DP-STO can facilitate such a large-scale integration, due the 

simplified CMOS-interface and low-power operation it offers. 

7.3 Associative computing using synchronized STOs 

Associative pattern-matching operation can be achieved using arrays of synchronized 

STOs by exploiting their input-dependent locking characteristics[92]. The 

synchronization can be achieved through magnetic-interaction between the STO-free-

layer, or by using different forms of electrical-connectivity. Fig 4(a) shows the transient 

plot of two coupled STOs (solid and dashed lines) lock over time. In Fig. 4(b) current 

through one of the STOs is kept constant at 100μA and the current through the second 

STO is increased from 90 μA to 120 μA. Constant current through the first STO 

generates a constant frequency of oscillation, whereas, the frequency of the second device 

increases with its input current. When the frequencies of STOs are far apart, they oscillate 

independently.  They acquire phase and frequency-lock when their frequencies lie in 

‘locking-range’, as depicted in Fig 4(b). The locking range can be defined as the  
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Figure 7.4(a) Transient-plot of phase-frequency locking between two STOs coupled 
using dipolar-interaction, (b) frequency locking range of two STOs using mono-domain 
simulation, matched closely with multi-domain micro-magnetic simulations (c)   averager 
and peak-detector circuit for detecting edge-map, (d) transient response of edge-detection 
circuit for locked and unlocked case. 

 
maximum difference between the DC biases of the two STOs for which phase-lock is 

retained. 

            Coupled STOs can be used to evaluate the degree of match between two analog 

vectors. Fig. 4c shows the circuit for an STO-based associative-module (AM) that 

achieves this functionality [117]. In this circuit, all the STOs are coupled and are biased 

with the same DC input. This enforces phase-locked oscillation of all the STOs in the  



154 

 

 

Figure 7.5(a) Image-data-set used in simulation: pixel values corresponding to the 
individual images were stored as 1-D analog templates, (b) integrator outputs for a 
particular input image compared with all the other template images. 

 

AM. To compute the associative matching between two analog vectors of N elements, 

current-inputs proportional to the element-wise difference of the two vectors are injected 

into N coupled STOs. If the two vectors closely match each other, the inputs to the STOs 

are too small to bring them out of the locking range. The STOs therefore retain phase and 

frequency lock. On the other hand, if the two vectors are significantly different, the inputs 

to the STOs are large in magnitude resulting in loss of locking.  The circuit shown in fig. 

4c performs a capacitive summation of the individual STO waveforms of the AM, and 

applies the sum to an integrator formed by a diode-capacitor combination [117].  In the 

case of phase-locked waveform, the summation results in a regular sinusoidal waveform 

which leads to fast charging of the integrator output (fig. 4d). On the other hand, in the 

case of un-locked STOs, the summation is an irregular and low amplitude waveform 

which leads to lower or negligible charging of the output. Thus the case of match 
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between an input-vector and a template-vector can be identified by comparing the 

integrator output.  

              In order to simulate the matching operation for 16x16 pixel images in fig. 5a. 

The pixel-wise difference between the images and the stored templates were injected into 

the STOs in different AMs with 8-STOs each (requiring 256/8 = 32 clusters in total). The 

integrator outputs of all the associative modules were summed and the result was 

considered as the degree of match (DOM). Higher value of the integrator output implied 

closer match and vice-versa.  

                Next we compare two different coupling mechanisms for STOs, namely, 

magnetic and electrical, for associative computing, with respect to variation and noise 

tolerance. 

7.4 Synchronization mechanisms for STOs 

The mechanism for STO-phase-synchronization employed for associative computing, can 

play an important role in robustness and design-feasibility.  In the following sub-sections 

we discuss and compare two different synchronization techniques for STOs , namely, 

magnetic-coupling and injection-locking. 

7.4.1 Magnetic Coupling 

Magnetic coupling may be achieved through spin-wave interaction [96] or dipolar-

coupling [94, 95].  Spin-wave coupling may involve interaction through exchange as well 

as dipolar fields of oscillating magnetic domains, through a shared magnetic-substrate or 

channel . Dipolar interaction on the other hand, can facilitate locking of physically 

isolated DP-STNOs lying in close proximity.   In this work we employ dipolar-field 

interaction for coupling multiple DP-STNOs. 
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Figure 7.6Micro-magnetic simulation plots for a 3x3 STO array with dipolar coupling (a) 
for locked case, (b) unlocked case; evolution of average magnetization for the cluster (c) 
in Fig.6a, (d) in fig. 6b. 

 

            Fig. 6a and fig. 6b show the micro-magnetic simulation plots for the locked and 

the un-locked cases for dipolar-field coupled STOs respectively. In fig. 6a, showing the 

locked case, the inputs are small and hence fail to disturb the locking due to a common 

DC bias and near-neighbor dipolar-filed interaction. The average magnetization for this 

case is shown in fig. 6c. The inputs in the case of the unlocked oscillations, shown in fig. 

6b are large enough to overcome the locking, resulting in irregular average waveform, as 

shown in fig. 6d.       
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Figure 7.7(a) FFT of 9 magnetically coupled STOs with identical device parameters, (b) 
overlapped transient waveforms with same DC bias and integrator output (deep-blue 
curve), (c) FFT of 9 magnetically coupled STOs with 20%  spread in Ms and α , (d) STO 
waveforms and integrator output corresponding to part-c. 

 

          We estimated the impact of parameter variation by introducing Gaussian spread in 

the critical STO parameters like the saturation magnetization Ms and the Gilbert damping 

constant α. These parameters can have significant spread across multiple device-samples 

and hence it is important to evaluate the impact of spread in these parameters upon the 

dynamics of coupled STOs. Towards this end, we simulated associative pattern-matching 

circuitry based on 9-coupled STOs as described in section-II.  Fig. 7 shows that there is 

effectively no locking for 20% spread in these parameters, for a cluster of 9 coupled 
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STOs. The integrator outputs for the case of parameter-spread are also compared with 

that of the ideal case. 

            The associative matching operation was simulated for the image-set in fig. 5, as 

describe in section-III.  Multiple clusters of magnetically coupled 9-STOs were used to 

evaluate the DOM (which are effectively the integrator outputs of the individual clusters) 

for groups of 9 pixels each. The DOM of individual AMs (formed by the 9-STO clusters) 

were merged to get the overall DOM for the entire image. Fig. 8 a shows the effect of 

parameter variation on the AM outputs. It shows results for four different degrees of 

parameter variations. For the ideal case (with zero parameter variations), the best match-

case (when the input image matches the template) is clearly distinguishable from the non-

matching cases and hence can be easily detected by a coarse-comparator. With the 

addition of ~10% parameter variation, the best-match case was still correct (i.e, obtained 

the highest value), but it is too close to the rest of the outputs to be reliability detected. 

For further higher variations, the best-matching result was found to be incorrect. Fig. 8b 

shows the difference between the best and the second best matches with increasing 

parameter variations. The thick lines denote correct match (i.e., the best match being the 

correct template), whereas the thinner lines connect the points with wrong match. The 

plot shows that, even for zero-temperature simulations the AM based on magnetically 

coupled STO fails to perform correctly beyond 5% variations in α and Ms.  Stochastic 

Landau-Lifshitz-Gilbert (LLG) formulation was used to incorporate the effect of thermal 

noise in the STO-dynamics [93]. The corresponding transient plots for AM outputs are 

given in fig. 9, which show that the best match case was indistinguishable beyond 2% 

parameter variation. 
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Figure 7.8(a) integrator outputs for three different degrees of parameter-spread using 
zero-temperature simulation, (b) % difference between the best and the second-best 
match of the integrator output, for increasing % variations. 

 

The reason behind the high sensitivity of magnetic-coupling to parameter-variations and 

thermal noise can be visualized by observing the LLG equations  governing the dynamics 

of coupled STOs (assuming mono-domain behavior for each STO ) .   



160 

 

dm
dt ൌ    െ

|γ|mxHୣ୤୤ ൅ α  ൬m x 
dm
dt ൰   ൅  

                                                      |γ| ቚ ୦
ஜ౥ୣ
ቚ J
୲ౣ M౩

P ൫m x m୮ x m൯                                         (7.2) 

            Here, m is magnetization of the free-layer of the STO, γ is the Gilbert 

gyromagnetic ration, α  the damping constant, tm  is free-layer thickness,  P is a constant 

proportional to effective spin polarization of the fixed magnet and mpis the magnetization 

vector of the fixed magnet.  Heffis the effective magnetic field acting on the STO-free 

layer whose components are expressed in eq.3: 

௘௙௙ܪ                                         ൌ ௘௫௧ܪ  ൅ ܪ௔௡௜ ൅  ܪெ ൅ ܪ௜௡௧  ൅                                  ௡௢௜௦௘ܪ   (7.3) 

            Here, Hext  denotes an external magnetic field, Hani corresponds to the free-layer’s 

anisotropy field, HM is the magnetostatic field which is proportional to the component of 

the free-layer magnetization along its easy-axis. Hint denotes the effective magnetic field 

experienced by the STO-free layer due to its interaction with the neighboring free-layers. 

(Note that the field due to fixed reference layers in single pillar STO and DP-STO act as 

static fields and can be coupled with Hext). Hnoise denotes the noise-term that models the 

thermal fluctuations.  The first term in the LLG equation denotes the ‘precession term’ 

resulting from a static applied-field. The second term denotes the ‘damping-term’ 

whereas the third corresponds to the spin-torque term.  As mentioned earlier, steady 

oscillation of the STO free-layer is effected when the spin-torque term cancels out the 

damping term. Note that, this condition is determined by critical device parameters like 

Ms, α and P, all of which can vary significantly from device to device. As a result, the 

oscillation frequency and phase of the individual STO free-layers are sensitive to these  
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 Figure 7.9Integrator waveform for best and second-best match for  magnetic coupling. 
 

parameter variations for a given DC bias current J.  This affects the robustness of the 

dipolar-filed interaction determined by the field-term Hint.  Hint is proportional to 

∑ ௜݉௜ܥ
ே
௜ୀଵ  , where mi   denote the magnetization of N neighboring free-layers (to which 

the STO –free-layer is coupled) and Ci  denote the corresponding coupling-strength, 

dependent upon geometry and device parameters [92]. For dipolar coupling used in this 

work Ci is simply dependent upon the dipolar filed of the ith neighbor and its special 

coordinate with the STO under consideration [95, 96]. Both Ci as well as ݉௜ are affected 

by the parameter spread as well as the stochastic thermal noise in the individual free-

layers.  Thus, the individual oscillation frequencies (without coupling) as well as the 

magnetic interactions based on dipolar or exchange interactions (in case of spin-wave 
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coupling) are inherently prone to thermal noise and parameter variations. This leads to 

weaker-coupling strength and higher susceptibility to these effects.  

            The foregoing analysis indicates that it might be challenging to build robust 

associative modules with magnetically coupled STOs due their weak immunity to 

thermal noise and parameter-variations. We explored an alternate coupling mechanism 

for STOs that can possibly offer higher robustness. This method, based on RF-injection 

locking is discussed next. 

7.4.2 Injection Locking 

In order to establish electrical locking a common RF signal can be injected into a larger 

number of oscillators [94]. If the RF frequency is close to that of the bias frequency of the 

STOs (determined by the DC bias), they acquire phase-lock to the injected signal. Fig. 

10a pictorially depicts this scheme for two STOs. In this circuit, both the STOs are biased 

with identical DC voltages, along with identical AC signals.  

              The frequency of the AC signal is chosen to be close to that of the STO 

oscillation produced with the DC bias alone.   For a significantly wide range of AC 

amplitudes of the global RF signal, the STOs were found to phase lock with it, at a 

constant phase-difference (same for all STOs). The phase difference among the different 

STOs however was close to zero under ideal conditions (zero noise and parameter 

variations). This implied an effective mutual synchronization and phase-locking among 

the STOs. Fig. 10b shows the circuit for injection locked DP-STO clusters. In this 

scheme, a global RF voltage-signal is used to drive the gates of biasing transistors 

associated with each DP-STO in the cluster. For RF injection, there is no significant 
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Figure 7.10(a) Two STOs with electrical coupling, (b) transient waveforms for the  two 
STOs showing acquisition of phase-lock, (c) table showing increase in DC and AC 
locking range with increase in AC amplitude. 
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Figure 7.11Oscillation frequency vs. DC bias for an injection locked STO, showing 

locking range 

 

Figure 7.12Increase in locking range with the strength of injection locking , locking 
strength on the x-axis is proportional to the amplitude of RF injection signal. 
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Figure 7.13Transient plots for 8 electrically coupled STOs with 5% parameter variation 
and thermal noise for different AC amplitudes. 

 

overhead in terms of static power as long as the AC signals has effectively zero DC 

component. The CV2 power (switched capacitance power) dissipated for such an AC 

drive was found to be negligible as compared to the static power due to DC-biasing.. 

The DC locking range of an injection locked STO can be defined as the maximum 

difference between the DC inputs of the two STOs for which the phase-lock is retained. 

The table in fig. 11 depicts the locking range of an injection locked STO (STO2). STO1 

is biased a fixed DC current (110µA) along with a RF signal of frequency ~9.5GHz. 

STO2 is biased with the same RF signal, however, the DC bias for STO2 is swept from 

90µA and 125µA.  STO2 retains lock to the injected RF signal for DC biases between 

100µA-115 µA, thereby, offering a locking range of ~15µA.  The locking range can be 
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improved by increasing the strength of RF-injection, as shown in fig. 12. Thus, the effect 

of parameter variation and thermal noise can be suppressed by applying stronger RF-bias 

to the injection locked STOs.  

 

Figure 7.14Effect of increasing RF injection on integrator output. 
 

The effect of increasing RF bias on the STO-transient is shown in fig. 13. The figure 

shows the output signals for 8 injection locked DP-STOs, biased with a DC current of 

~200µA. The plots show reduction in jitter and phase noise with increase in the 

amplitude, thereby leading to stronger phase synchronization. The effect of increasing 

AC bias on the locking of 8 electrically coupled STOs is shown in fig. 9, under 5% 

parameter variation and thermal noise. The solid-line corresponds to the reference AC 

signal (normalized ). The oscillation waveforms for the 8 STOs are plotted using dotted 

lines.  

          Fig. 14 shows the output of the integrator circuit for the injection-locked STOs. 

The increase in the output value results from stronger synchronization and hence cleaner 
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averaged waveform (obtained by adding the individual STO-waveforms). The injection-

locking method depends upon the spin-torque term, specifically the RF component of the 

bias current J in eq2. The RF component of J, namely, JRF  is a global signal which is not  

 

Figure 7.15Integrator waveform for best and second-best match for electrical coupling 
 

affected by the noise of individual magnets.  A stronger JRF effectively suppresses the 

impacts of thermal noise and parameter spread in the dynamics of individual STOs, 

resulting in stronger injection locking to the external RF signal. Thus, stronger RF-bias 

improves the tolerance to parameter variation and thermal noise.  These results indicate 

the superiority of the electrical coupling method over the magnetic coupling techniques. 

The key factor behind this advantage is the use of a common global RF signal in the case 
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of electrical coupling, which is not influenced by the thermal noise and parameter 

variations of individual STOs. 

 

Figure 7.16(a) waveforms for electrically single-pillar coupled STOs, (b) waveforms for 
electrically 2-dual-pillar coupled STOs 

 

             The integrator outputs for the best and the second-best match for AM based on 

electrically coupled STOs are shown in fig. 15. The plots show that the associative 

modules could provide distinguishable outputs for up to ~20 % parameter variations, for 

room-temperature simulations. We used this method to couple up to 32 STOs. No 

significant degradation in variation tolerance was observed with increasing number of 

STOs. In contrast, the number of STO that can be synchronized through magnetic-

coupling is strongly dependent upon geometrical constraints of a physical design.  The 

maximum number of STOs in a magnetically coupled cluster may be therefore limited to 

9 for a configuration such as shown in fig. 6. Moreover, the effect of thermal noise and 

parameter variation on individual bias frequencies and the coupling interaction degrades 

the synchronization strength for such a coupling scheme as discussed earlier. However, 
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injection locking provides an additional degree of freedom , namely the RF injection 

amplitude, that can be tuned to achieve desirable degree of synchronization for STO-

based associative cluster discussed in section-III.          

            Apart from low power consumption, another important advantage offered by DP-

STO is higher robustness for injection-locking. As mentioned earlier, the proposed 

electrical-coupling method results in a finite but constant phase difference between the 

global RF signal and the coupled STOs. For a 2-terminal STOs this results in a distorted 

output, due the mixing of the RF bias and the STO’s own oscillations (which have a 

constant phase offset). The corresponding plots are shown in fig. 16a. As a result of this 

distortion the amplitude of the summed output of an STO cluster is found to be 

significantly lower (~50%) and has lower noise immunity. The DP-STO on the other 

hand provides isolated paths for the RF bias and the sensed output which is a clean 

sinusoid, as shown in fig. 16b. Thus, these advantages of DP-STO may be attractive for 

the implementation of robust and low-power associative modules.  

7.5 Summary 

We analyzed the impact of parameter-variation and thermal-noise on magnetic and 

electrical coupling mechanisms for STOs for their prospective application in non-

Boolean/associative computing. Results indicate that the injection-locking can be 

significantly more robust as compared to magnetic coupling techniques. We proposed 

and analyzed low-power Dual-Pillar STO for low power and compact CMOS interface. 

We observed that DP-STO can better exploit the electrical coupling technique by due to 

separation between the biasing RF signal and its own RF output. 
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8. EXPLORING  SPINTRONIC SWITCHES FOR ULTRA LOW 
ENERGY GLOBAL INTERCONNECTS 

8.1 Introduction 

The ever increasing demand for higher computing-capabilities has necessitated the 

integration of multiple processing cores and larger memory-blocks, resulting in 

increasingly busy inter-chip links and complex, power-hungry input/output (I/O) 

interfaces for microprocessors [100]. The same is true with respect to on-chip global 

interconnects like, multi-byte buses and connection-networks for on-chip memory-read 

and long-distance inter-block links. Moreover, with the scaling of CMOS technology, 

energy efficiency and performance of the on-chip global-interconnect degrades due to 

increase in per-unit length resistance of long metal-lines [149]. As a result, the design of 

inter-chip and on-chip global interconnects has emerged as a major challenge for high-

speed computing systems. 

                Solutions at technology, circuit, and system level have been explored to address 

the aforementioned design challenges pertaining to interconnects [149-155]. For instance, 

the use of current-mode signaling for long distance links has been shown to offer reduced 

power consumption and enhanced bandwidth [151] (fig. 1). This is because current-mode 

transmission reduces the voltage swing on the metal-lines, thereby reducing the  
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Figure 8.1(a) Voltage-mode interconnect that involves capacitive switching and offers 
high input impedance to the link (b) current-mode interconnect with a low input-
impedance receiver 

 
capacitive switching power. Also, the receiver for current-mode links are designed to 

provide minimal input impedance to the transmission line (as opposed to voltage-mode 

links, which provide high impedance capacitive-load). This results in higher bandwidth, 

as compared to voltage-mode signaling. Increased bandwidth alleviates the need of 

equalization at the receiver end to a significant extent. However, analog-based current-

mode transceivers are more complex than simple inverters, used for voltage-mode links, 

and add significantly to static-power consumption as well as area complexity, at the I/O 

interfaces [151, 152]. As a technology solution, use of optical interconnects for inter-chip 

[153, 154] as well as on-chip data links [155], has been proposed. However, optical 

modulators (at the transmitting side) and receivers consume large amount of power and 

area that can eschew their overall benefits [155].   

              In this work we propose an alternate technology solution that can potentially 

lead to ultra-low energy, high-speed data links with highly simplified I/O interfaces. 

Recent experiments have shown that spin-polarity of nano-scale magnets can be flipped 



172 

 

at sub-nanosecond speed using small charge currents [156-160]. Application of current-

induced spin-torque switching of nano-magnets for memory and logic-design has been 

proposed in literature [159, 26, 16]. In this work we explore the possibility of applying 

such nano-scale spin-torque switches to the design of ultra low-voltage, current-mode on-

chip and inter-chip transmission links. Magneto-metallic spin-torque devices, like 

domain-wall magnet [26], and spin-valves [9], can act as ideal receivers for current-mode 

signals, owing to their small resistance and the possibility of low-current high-speed 

switching [156, 12]. Such low resistance receiver ports can allow ultra-low voltage 

biasing of the entire communication link, thereby reducing the static power consumption 

(resulting from direct current-paths between supply rails) due to current-mode signaling. 

Moreover such devices can facilitate easy conversion of current-mode signal into full-

swing on-chip voltage levels, through the use of magnetic tunnel junctions (MTJ). As a 

result, nano-scale spin torque devices can lead to very compact and highly energy-

efficient on-chip and inter-chip interconnects for large-scale parallel-computing systems. 

8.2 Spin-Torque Switch for Current mode Interconnect 

 

Figure 8.2(a) Spin neuron based on domain wall magnet (b) micro-magnetic simulation 
for neuron switching. 
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Figure 8.3 (a) Switching time vs. input current for given DWM parameters, (b) micro-
magnetic simulation plots for 20µA input current. 

 
 

In this section we describe design of current mode interconnect using spin-torque switch 

based on domain wall magnet (discussed in earlier chapters as spin neuron).A brief 

discussion on the applicability of other spin-torque devices is given in a later section.   

Recent experiments have achieved domain-wall (DW) motion in magnetic nano-strips 

with a critical current density of the order of 106A/cm2 [156-158]. Spin-orbit coupling in 

multi-layer PMA nano-strips can further reduce the switching current, for a given 

switching time [103]. Such mechanisms can also mitigate the Walker breakdown 

phenomena, observed for large-current injection in DWM strips, which has been known 

to limit the maximum achievable speed for domain wall motion [103]. Thus, scaled  

magnetic nano-strips can be employed to design low-current, high-speed, magneto-

metallic switches applicable to high-speed current-mode signal processing. 
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The device structure for such a domain-wall-switch (DWS) is shown in fig. 2a. It 

constitutes of a thin and short magnetic domain, d2 (‘free-domain’) connecting two anti-

parallel magnetic domains of fixed polarity, d1 (domain-1) and d3 (domain-3) (fixed 

through exchange coupling to larger magnets [5]). Domain-1 forms the input port. Spin-

polarity of the free-domain (d2) can be written parallel to d1 or d3 by injecting charge 

current along it from d3to d1and vice-versa. Thus, the DWS can detect the polarity of the 

current flow into its input node. Hence, it acts as an ultra-low-voltage and compact 

current comparator [26] that can be employed for recovering data from a bipolar, current-

mode signal received at its input.  Fig. 3a shows that aggressive scaling of the DWS free 

layer can achieve low current, high speed switching. As mentioned earlier, application of 

emerging spin-torque phenomena like spin-orbital coupling can be exploited for lowering 

the amount of current required for a given switching speed [103]. 

 

Figure 8.4(a) COMSOL simulation for temperature rise in the DWS device for different 
device dimensions, (b) plot showing temperature profile along the device for a small 
input current of ~1μA. 
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The upper limit upon the permissible current density and hence upon the switching speed 

may be determined by the Joule-heating effect in the DWS. The effect of Joule heating in 

the device was simulated using finite-element simulation through COMSOL [161]. The 

thin and short central free-domain of the device is the most critical portion with respect to 

current driven heating (fig.4a). Plot in fig. 4 shows that the heating in the device can be 

reduced by choosing larger contact area of the two fixed domains. Also, shorter free 

domain results in smaller heating. Thus, the current handling capacity of the device can 

be increased by appropriate structural optimization.     

          In order to read the state of the free domain d2 of the DWS, an MTJ formed 

between a fixed polarity magnet m1 and d2 is employed. The effective resistance of the 

MTJ is smaller when m1 and d2 have the same spin-polarity and vice-versa. A large ratio 

between these two resistance states, defined in terms of tunnel-magnetoresistance-ratio 

(TMR) can facilitate simplified read operation. A simple CMOS inverter can be 

employed to convert the spin-mode information received by the DWS into binary voltage 

levels.  

 

8.3 Interconnect Design using DWS 

Owing toits low-resistance (~100Ω), current-mode switching channel, the DWS can act 

as an ideal current-mode receiver and can simultaneously facilitate low-voltage (~50mV) 

biasing of the entire transceiver-link, as shown in Fig. 5a.  On the transmitter-side linear 

region transistors biased at a source potential of +/- ΔV , relative to the DWS  are used for 

supplying the data dependent current. The use of small ΔV (~50mV) achieves low static 

power dissipation per-bit.  Signaling-energy of the proposed interconnect can be  
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Figure 8.5 (a) Interconnect design using UDWS, (b) transient simulation plots for DWS-
based interconnect at 2Gbps signaling-speed 

 

optimized by the appropriate choice of signaling voltage ΔV and the driver-size (fig. 6a). 

For increasing driver size, dynamic switching power increases while, the required ΔV and 

hence, the static power reduces. For a given signaling speed, the signaling-current 

increases with interconnect-length due to frequency dependent attenuation of the signal. 

For longer data-link the total channel resistance increases, requiring further increase in 

signaling voltage and hence, the signaling energy (fig. 6b).  

                          At the receiver-end, the MTJ associated with the DWS free-layerallows 

conversion of the spin-mode information into binary-on-chip voltage-levels through a 



177 

 

resistive voltage-divider that it forms with a reference MTJ. The ratio of parallel and anti-

parallel spin-states of an MTJ is defined in terms of tunnel magneto-resistance ratio  

 

Figure 8.6(a) Dynamic and static energy components for the proposed interconnect vs. 
bandwidth of sensing node vs ΔV (minimum dynamic power corresponds to minimum 
size transistor in 45nm CMOS),(b)energy-dissipation as a function of channel length, (c)  
bandwidth of sensing node vs tox, (b) TMR vs. tox, (d) static-power in the MTJ vs. node 
bandwidth. 

 

(TMR) [26]. A TMR of ~200% (corresponding to resistance ratio of ~4) can provide a 

voltage swing close to VDD/3 for at the voltage divider output that can be sensed by a 

minimum-size CMOS inverter (fig. 5a). Thus the DWS can acts as a high-gain 

(converting ~20µA of switching current-signal into digital voltage levels), ultra-low 

power, and compact trans-impedance amplifier (TIA) that can facilitate the design of 

energy-efficient current-mode global interconnects [102].   Simulation-waveforms for 
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MTJ-based transimpedance conversion are shown in fig. 5b.  Depending upon the target 

signaling-frequency, the oxide thickness tox of the MTJ can be optimized for minimizing 

sensing-current and hence, the associated static-power (fig. 6c). With increasing tox, the 

static current in the read-path reduces, but the bandwidth at the voltage-divider output 

reduces (fig. 6d).  Note that decoupled read-write paths in the DWS allow high values of 

tox that can help achieve high-TMR along with low sensing-power, without sacrificing 

write-energy [102]. 

8.4 Performance and Prospects 

In the proposed interconnect-design, the energy consumption per-bit transmitted can be 

evaluated as the sum of the components related to static power dissipation across the 

transmission line Eint, and the components resulting from the power consumption in the 

conversion circuit Econv, at the receiver. The dynamic switching power for the small-size 

digital driver at the transmitter can be negligibly small as compared to the 

aforementioned components.   

            The DWS facilitates ultra-low voltage biasing of the entire transmission link, such 

that the static current flows across a small terminal voltage of 2∆V. A 10 mm long on-

chip interconnect (parameters given in [151]) would offer a resistance of ~500Ω and an 

effective capacitance of ~2.5pF. Transmission of data at 2Gbps (data-period Td =0.5 ns) 

speed over such a link may require a current-amplitude (Id) of ~20µA in order to be able 

to switch the DWS. This current magnitude can be supplied by minimum size driving 

transistors (with effective resistance of ~1kΩ in 45nm CMOS technology) with a ∆V of 

~30mV. The component Eintcan be therefore calculated as Eint = 2∆V x Id  xTd, which 

evaluates to ~0.6fJ. The power consumption in the detection unit can be minimized with 
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the optimal choice of tox as discussed earlier. A TMR of 200% was used for the MTJs. 

For 2Gbps operation, the power consumption in the optimized detection circuit was  

 

Figure 8.7(a) Switching time vs. switching current for two different anisotropy barriers, 
(b) power consumption in current-mode signaling and in driver and receiver circuits 
(including MTJs) increases linearly with signaling frequency, signaling (involving DWS 
switching) accounts for smaller power consumption as compared to driver and receiver 
circuits for wide range of DWS energy barrier (Eb). The oxide thickness of MTJ has been 
reduced for increasing frequency, in order to allow faster sensing. 

 

found to be ~0.8µW. This translates to a value of ~0.4fJ for Econv. Thus, the overall 

energy dissipated per-bit can be ~1fJ which is around two order of magnitude less than 

that reported in a recent mixed-signal CMOS implementation [102].                 

           As mentioned earlier, DWS switching current and hence the signaling power can 

be reduced by using lower anisotropy barrier (fig. 7) or by employing a device structure 

with spin-orbit coupling. As mentioned earlier, the later method can also be conducive to 

high domain wall velocities of the order of ~1000m/s [103]. Such device -optimizations 

may facilitate more than 10GHz signaling with less than 100µA current, provided 

simultaneous requirements of device scaling and reduced current density (as 
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demonstrated for relatively larger devices) are achieved.   

          The proposed spin-CMOS hybrid interconnect can be compact and area-efficient as 

compared to conventional mixed signal CMOS current-mode I/O interfaces.  Thus the 

spin-torque based I/O interfaces can emerge as a very attractive solution to the design 

challenges associated with on-chip and inter-chip interconnects.  Other spin-torque 

switches can also be employed in the proposed scheme. In the following sections we 

introduce alternate spin-torque device structures that can be suitable for the design of 

current-mode interconnects 

8.5 Alternate spin devices for interconnect design 

8.5.1 Interconnect design using Bipolar Domain Wall switch 

A 3-terminal, bipolar domain wall switch (BDWS) is shown in fig. 8a.Our proposed 

device consists of two fixed-domains of opposite magnetization (domain-2 and domain-3) 

that act as micromagnetic simulation plots for the BDWS at three-time stepsinput-ports 

and to polarize the input currents. The third domain (domain-1) is a free-domain.  The 

spin-polarity of the current injected into the free-domain is the difference between the 

current inputs I1 and I2entering through the two inputs. The free-domain can switch 

parallel to either of the two fixed input domains depending on which of the two inputs 

currents is larger and hence, this device acts as a current-comparator. The minimum 

difference between the two inputs the BDWS can detect depends on the critical current 

density for domain-wall shift in the free-domain. A difference of few micro-amperes may 

be detected using a 15x2 nm2 domain cross-section, with a critical current density of the 

order of 106 A/cm2. Micro-magnetic simulation results for two inputs of 5µA and 10µA 

are given in fig. 8c. Spin-orbital coupling can be applied to the free-layer for achieving 
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enhanced DW-motion and hence higher switching-speed in the free-domain.   The state 

of free-domain (domain-3) is read through the MTJ formed at its top. 

 

Figure 8.8(a) BDWS based on domain-wall-switching, with a possible spin-orbital 
coupling (SO) coupling applied to the free layer (b) top-view of the device, (c)  micro-
magnetic simulation plots for the bipolar DWS. 

 

Fig. 9 depicts the circuit for a current-mode data interconnect employing an STS-based 

receiver. At the transmitter end, a linear region PMOS transistor M1 is driven by a 

voltage-mode data-signal. Its source terminal is connected to a DC-voltage V+ΔV , where 

V is 0.5V and ΔV can be less than ~50mV. On the receiver side, the DWS is biased at a 

voltage V, as shown in the figure. A bias transistor, M2, on the receiver-end injects a 

constant DC current (with half the amplitude of the input signal) into one of the two 

inputs of the DWS, which gets subtracted from the data-signal entering into the other 

input. This results in data-dependent flipping of the DWS free-domain. The received data 
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can be detected using a high-resistance voltage divider formed between the SWS-MTJ 

and a reference-MTJ, as show in fig. 9. A high TMR for the MTJ can 

provide a voltage-swing large enough to be sensed by a simple CMOS inverter. 

 

Figure 8.9Circuit for on-chip and inter-chip interconnect using BDWS; DTCS width ~0.2 
 

8.5.2 Interconnect using switches based on Lateral Spin Valve 

Recently high-speed switching of nano-magnets in spin-valves (SV) has been 

demonstrated [160, 9]. High-speed magnetization switching can be obtained with the help 

of combined in-plane and out-of plane spin-torque. This phenomenon may involve 

current-injection through a fixed-layer with easy-axis orthogonal to that of the free-layer. 

Such a fixed-layer injects orthogonal-spins into the free-layer that lower the effective 

energy-barrier for switching. The use of this phenomenon in lateral spin valve (LSV) was 

proposed in [9] to implement current-mode Bennett-Clocking (CBC). Although, both, 

unipolar as well as bipolar device models for LSV switches may be employed [26], in 

this chapter we limit our discussion to the later.                     



183 

 

Fig. 10a shows the device structure for bipolar spin neuron. It constitutes of an output 

magnet m1with MTJ based read-port (using a reference magnet m5), and two anti-parallel 

input magnets m2 andm3,with their‘easy-axis’ parallel to that of m1. A preset- 

 

Figure 8.10(a) Bipolar LSV-switch for high-speed interconnect design, (b)10Gps 
Switching of Bipolar LSV switch with Ih = 100µA, I1-I2 = {0, 50µA), free-layer size: 
30x15x1nm3. 

 

magnetm4, with an orthogonal easy-axis, is used to implement current-mode Bennett-

clocking (CBC).   A current pulse input through m4, forces the output magnet, m1, along 

its hard-axis. The preset is overlapped with the input current pulses received through the 

magnets m2 and m3. In presence of sufficiently strong input current-pulses, m1switches 

back to its easy-axis depending upon the input. The spin-polarity of m1under a given 

current input depends upon the sign of the difference ΔI, between the current inputs 

through m2and m3.  In order to operate the BLSV switch as an interconnect device, one of 

the two complementary inputs can be fixed to reference value, whereas the other input 

can receive the data signal with two levels, above and below the reference input. The 

data-dependent spin-state of the output magnet can be detected using a magnetic tunnel 

junction formed at its top.  Fig. 3b shows the transient simulation plots for a BLSV 
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switch with a free-layer size of 30x15x1 nm3, for 10Gbps input data. High-injection 

efficiency for the input interface has been assumed (~90%).   

8.6 Summary 

In this work we proposed to explore a novel technology solution for on-chip and inter-

chip interconnect design using spin-torque switches. Magneto-metallic spin-torque 

switches act as ideal, low-impedance current-mode receivers, allow ultra-low-voltage 

biasing of the I/O interconnect and facilitate easy conversion from spin to charge using an 

MTJ interface. As a result, the proposed technique for high-speed current-mode 

interconnect design can be highly compact and more than two orders of magnitude 

energy-efficient and, as compared to state of the art technology solutions for on-chip 

(global) and inter-chip data links. The proposed technique can provide an attractive 

technology solution to the inter-connect bottleneck faced by high performance computing 

systems.  In future we plan to do more rigorous analysis and comparison of different 

spin-device device models used in this work for interconnect design. This will include, 

analysis for scalability, reliability and  variation tolerance. Accurate modeling of 

interconnects will also be required to estimate the advantages of the proposed schemes 

more accurately. 
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9. CONLCUSION AND FUTURE WORK 

9.1 Conclusion 

Current-induced spin-torque switching of nano-magnet, as a phenomenon, is widely 

accepted to be very useful for on chip-memory memory design. However, benefits of 

spin-torque devices for computational hardware are still being explored. Several device-

models and circuit-design techniques have been proposed for applying spin-torque 

devices like spin-valves and domain-wall-magnets in computational hardware. However, 

most of them have been focused on digital logic.  Ultra-low voltage, current-mode 

switching of magneto-metallic spin-torque devices can potentially be more suitable for 

non-Boolean computation schemes that can exploit current-mode analog-processing. 

Such schemes may not essentially be projected as drop-in replacement of CMOS.  But 

such techniques can certainly be attractive for enhancing the functionality of CMOS by 

assisting it in tasks where is does not fare well. As a part of our work we proposed device 

models for ‘spin-neurons’ that can act as the fundamental building blocks of such non-

Boolean computing blocks. Device circuit co-design for different classes of non-Boolean-

architectures using spin-torque based neuron models in spin-CMOS hybrid circuits show 

that the spin-based non-Boolean designs can achieve large energy savings for generic  
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Computing applications like, image-processing, data-conversion, cognitive-computing, 

pattern matching and programmable-logic and global interconnect circuits as compared to 

state of art CMOS designs. 

9.2 Future Work 

Following tasks have been planned to be accomplished as future work: 

 

9.2.1 Modeling and analysis spin-torque based clocking latches : 

Emerging spin-torque (ST) phenomena may lead to ultra-low-voltage, high-speed nano-

magnetic switches. Such current-based-switches can be attractive for designing low-

swing global-interconnects like clocking-networks.  We propose the design of such 

interconnects using functionality-enhanced ST-switches. For clocking-networks, Spin-

Hall-Effect (SHE) can be used to produce an assist-field for fast ST-switching using 

global-mesh-clock with less than 100mV swing. The ST-switch acts as a compact-latch, 

written by ultra-low-voltage input-pulses. The data is read using a high-resistance tunnel-

junction. Owing to low-voltage, current-mode operation, the proposed scheme can 

achieve low-power for clocking. 

 

9.2.2 Modeling and analysis of spin-torque based current sensor for MRAM: 

Spin-Transfer-Torque Magnetic Random Access Memory (STT-MRAM) is a promising 

candidate for future on-chip memory, owing to its high-density, zero-leakage and energy 

efficiency. In a conventional STT-MRAM cache write operations consume larger energy 

as compared to read, due to relatively large write-current requirement. In recent years 
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novel spin-torque based write schemes have been proposed for MRAM that can bring 

large reduction in write energy, such that the read-energy now becomes dominant. 

Conventional read schemes based on CMOS sense amplifiers may not offer 

commensurate reduction in  read energy, owing to their poor scalability and limited speed. 

We propose a spin-torque based sensing technique for MRAM that employs nano-scale 

spin-torque switches for low-voltage, low current read-operations in STT-MRAM. Such a 

sensing-scheme can achieve improved-scalability, simplified-design for read peripherals, 

high-speed read-operations and 90% lower read energy. As a result more than ~80% 

reduction in overall energy can be obtained for STT-MRAM based caches. 

 

9.2.3 Spiking Neural Network (SNN) for cognitive computing: 

With special circuit techniques the spin-memristor crossbar design can be used to model 

bio-mimicking spiking neural networks [90]. We expect to achieve more than three 

orders of magnitude reduction in computation energy due to low power operation of the 

spin neurons. 

 

9.2.4 Exploring on-chip (global) interconnect topologies for spin-based design: 

The proposed spin-torque switches can be applicable to ultra low energy interconnect 

design for long distance on-chip and inter-chip signaling. However, appropriate 

interconnect topologies need to be explored that can maximally leverage the spin-torque 

switches.  More rigorous device as well as circuit level analysis will also be performed 

along with the topology/system level design-exploration. 
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9.2.5 Physics based modeling of Memristors : 

As discussed in the last chapter, developing physics based device model for memristor is 

essential to  assess some important performance metrics for resistive crossbar based 

designs. We plan to benchmark physical models for some chosen memristive devices 

with the corresponding experimental data. Following this, compact device models will be 

generated form the calibrated physical model to facilitate large scale circuit level 

simulations. 

 

9.2.6 Exploring the feasibility of ultra-low voltage supply distribution for the 

proposed spin-based hybrid computing scheme: 

Some of the applications explored so far and of those to be explored in future, may not 

require very precise voltage levels. For instance simple image processing applications 

like edge detection half-toning etc, and,SNN-based cognitive computing circuits may be 

able to operate with noisy supply. However others like ADC, mixed-mode computing 

blocks (like filters) and threshold logic would require precise supply generation. We plan 

to explore two specific techniques towards this end. First, modeling of power supply grid 

with dedicated on-chip voltage regulators will be considered and the resulting energy and 

area overhead will be estimated. Second, we plan to explore  the use of trench capacitor 

for decoupling power supplies in order reduce the requirement of excessive regulation. 

Trench capacitors are fully CMOS compatible and their application as decoupling 

capacitors has been proposed earlier [89]. Trench capacitors can achieve more than two 

order of magnitude higher capacitance per unit area. Hence their use can be conducive to 

lower supply noise.  
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