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Abstract

The k-winners-take-all (kWTA) problem is to find the k largest inputs from N inputs. In this paper, we design and propose a
novel distributed kWTA model, for which no central unit is needed to realize the computation of the k winners. As a result,
the proposed model has the general advantages of distributed models over centralized ones, such as better robustness to faults
of agents. The global asymptotic convergence of the proposed distributed model is proven. Besides, two numerical examples on
networks of agents with static inputs and time-varying inputs are presented to validate the performance of the proposed model.
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1 Introduction

The winners-take-all (WTA) phenomenon refers to the
selection of the largest input (called the winner) from
given inputs, by which the winner tends to be activated
while the others are deactivated (Binas et al., 2014; Li
et al., 2013, 2017). As an extension of WTA, in kWTA,
the k largest inputs are selected from N inputs (Costea
and Marinov, 2011). In the past decades, several kWTA
models have been designed and analyzed. Marinov and
Calvert (2003) theoretically analyzed the computable re-
strictions on the parameters of an analog Hopfield-type
neural network model that can generate the k-WTA be-
havior for the case with successive lists of real numbers at
a given rate. By formulating the kWTA problemas linear
and quadratic programming problems, via the Karush-
Kuhn-Tucker (KKT) conditions, Liu and Wang (2008)
proposed two kWTA network models activated by dis-
continuous activation functions. Based on the formula-
tions, continuous-time kWTA models can be derived as

⋆ This work is supported by the National Natural Sci-
ence Foundation of China (61933010) and the Fun-
damental Research Funds for the Central Universities
(3102019ZDHKY13). This paper was not presented at any
IFAC meeting. Corresponding author S. Li.

Email addresses: yyzhang@jnu.edu.cn (Yinyan Zhang),
shuai.li@swansea.ac.uk (Shuai Li), binxu@gmail.com
(Bin Xu), yy2008@gpnu.edu.cn (Yong Yang).

recurrent neural network models (Hu and Wang, 2008;
Hu and Zhang, 2009; Li et al., 2013; Liu et al., 2010; Liu
and Wang, 2006; Wang, 2010; Xia and Sun, 2009), al-
though with different structure complexities. In partic-
ular, the kWTA models proposed in Li et al. (2013); Liu
et al. (2010); Liu and Wang (2006); Wang (2010); Xiao
et al. (2012) are convergent in finite time, and the model
in Wang (2010) has only a single variable. For the kWTA
model proposed in Wang (2010), it is assumed that the
threshold logic units can be implemented. For the situ-
ation that such units cannot be perfectly implemented,
the theoretical analysis on the performance of the kWTA
model was presented in Feng et al. (2015). Meanwhile,
the robustness analysis for the kWTA model with input
noises was performed in Feng et al. (2018); Sum, Leung,
and Ho (2013). Apart from the continuous-time kWTA
model models, a few discrete-time ones were also pro-
posed (Tien, 2017; Tymoshchuk, 2009). It is found that
all the aforementioned kWTA models are centralized. In
other words, they need a centralized unit to perform all
the computation.

During the past two decades, many results on distributed
control of multi-agent systems were reported (Jadbabaie
et al., 2003; Ni et al., 2017; Olfati-Saber and Murray,
2004; Wen et al., 2017; Yu et al., 2013; Zhang and Li,
2018; Zhang et al., 2019; Zhu et al., 2017). In particu-
lar, Olfati-Saber and Murray (2004) discuss several con-
sensus problems for networks of dynamic agents with
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fixed or switching topologies. Recently, kWTA models
were applied to the distributed dynamic task allocation
of robots (Jin and Li, 2018; Jin et al., 2019), where low-
pass average consensus filters are used to estimate the
centralized terms in the kWTA models, while the the-
oretical analysis on the performance of the approaches
was performed on the centralized kWTA models. To our
knowledge, there is no existing distributed kWTA model
with theoretically guaranteed performance.

In this paper, based on the existing results, we propose
a novel distributed kWTA model. One of the potential
applications of the proposed model is the distributed
task allocation. As a preliminary step, we consider the
case that the network topology is undirected connected.
Our analysis shows that the model has an invariant set,
at which the model degrades into an existing central-
ized kWTA model with global asymptotic convergence.
As a result, the performance of the proposed distributed
kWTA model is theoretically guaranteed. The difference
of the current work from Jin and Li (2018); Jin et al.
(2019) is two-fold: 1) The asymptotic convergence of the
distributed kWTA model proposed in this paper is the-
oretically proven, while in Jin and Li (2018); Jin et al.
(2019) theoretical results are not given about the cor-
responding distributed kWTA model; 2) In the current
work, we adopt a high-pass consensus filter which has
much faster response to the inputs compared with the
low-pass one adopted in Jin and Li (2018); Jin et al.
(2019). The contributions of this paper mainly include
the following: 1) A novel distributed kWTA model is pro-
posed with theoretically proven global asymptotic con-
vergence; 2) To some extent, this work provides some in-
sights about how to develop a distributed model based on
an existing centralized dynamic model via the LaSalle’s
invariance principle and consensus approaches.

2 Preliminary and problem formulation

In this section, some relevant existing results are pre-
sented and the problem investigated in this paper is de-
scribed.

2.1 Centralized kWTA

Mathematically, the kWTA can be described as follows
(Hu and Wang, 2008; Hu and Zhang, 2009; Li et al.,
2013; Liu et al., 2010; Liu and Wang, 2006; Wang, 2010;
Xia and Sun, 2009):

zi =

{

1, if ui ∈ {k largest elements of u},
0, otherwise,

(1)

where z = [z1, z2, · · · , zN ]T and u = [u1, u2, · · · , uN ]T

denote the output and input vector with the dimension
being N , respectively. If zi = 1, element i is called a
winner; if zi = 0, element i is called a loser.

Let 1 denote a N−dimensional column vector with each
element being 1. According to Theorem 4 of Liu and
Wang (2006), we have the following lemma.

Lemma 1: The solution to the following quadratic pro-
gramming problem with z being the decision variable is
the same as that to (1):

min
z∈RN

azTz − uTz

subject to 1Tz = k,

zi ∈ [0, 1], ∀i ∈ {1, 2, · · · , N},
(2)

given that 0 < 2a ≤ ũk−ũk+1 with ũk and ũk+1 denoting
the kth largest element and the k + 1th largest element
in u, respectively.

According to Theorem 1 of Xia and Sun (2009), we have
the following lemma.

Lemma 2: The output of the following continuous-time
model is globally asymptotically convergent to the solu-
tion to quadratic program (2):

state equation χ̇ = γ(−1Tz + k),

output equation z = g
(

1χ +
u

a

)

,
(3)

with χ ∈ R denoting the state variable, z ∈ R
N denot-

ing the output vector, and γ > 0 ∈ R being a design
parameter, where the array projection operator g(·) is
defined as follows:

g(xi) =







0 if xi < 0,

1 if xi > 1,

xi otherwise.

By Lemma 1 and Lemma 2, we directly have the follow-
ing corollary.

Corollary 1: Given that 0 < 2a ≤ ũk − ũk+1, the out-
put of (3) is globally asymptotically convergent to the
solution to the kWTA problem (1).

It can be easily found that the kWTA model (3) is cen-
tralized as the state variable χ needs the information of
all the outputs for all the elements in u. Such a property
is also possessed by other existing kWTA models, such
as those in (Hu and Wang, 2008; Hu and Zhang, 2009; Li
et al., 2013; Liu et al., 2010; Liu and Wang, 2006; Wang,
2010). In this paper, the proposed model that will be dis-
cussed in the next section is based on model (3) instead
of others due to the fact that model (3) is considered to
be the simplest model among the existing ones. As seen
from (3), the model has only a single state variable χ,
which is independent from the scale of the problem.
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2.2 Distributed kWTA problem

Consider an undirected connected network of N agents.
Each agent has its own output denoted by zi and input
denoted by ui. The kWTA is that the agents in the net-
work compete with their neighbors such that k winners
will be generated for which zi = 1 and the rest will be
the losers with zi = 0. As in Li et al. (2017), the Lapla-
cian matrix of the corresponding communication graph
G(V, E, W ) of the network is denoted by L, and the set
of neighbors of agent i is denoted by N(i). The kWTA
problem investigated in this paper can be described as
finding a model to solve the kWTA problem (1) through
local interactions.

3 Distributed kWTA model

In this section, the proposed distributed kWTA model
together with the corresponding theoretical analysis is
presented.

3.1 Model Description

To solve the distributed kWTA problem, we introduce
two state variables for each agent, namely xi and yi. Let
x = [x1, x2, · · · , xN ]T and y = [y1, y2, · · · , yN ]T. The
proposed kWTA model is described as follows:

state equation ǫẋ = C0(−y − z +
k1

N
) − C0Lx,

state equation ǫẏ = −L(y + z),

output equation z = g(x +
u

α
),

(4)

where ǫ, C0, and α are positive constants. In view of (4),
the proposed model is totally different from the model
in Li et al. (2017). In principle, the design of the current
model is based on the centralized model in Xia and Sun
(2009) instead of the model in Li et al. (2017).

Remark 1: For the proposed kWTA model, the state and
output of any agent i ∈ V satisfies

ǫẋi = C0(−yi − zi +
k

N
) − C0

∑

j∈N(i)

wij(xi − xj),

ǫẏi = −
∑

j∈N(i)

wij(yi − yj) −
∑

j∈N(i)

wij(zi − zj),

zi = g(xi +
ui

α
).

(5)

As seen from (5), the proposed kWTA model is dis-
tributed.

3.2 Theoretical analysis

We have the following theorem regarding the conver-
gence of the proposed kWTA model.

Theorem 1: Given that y(0) = 0, λ2min(L) ≥ 7.5C0,
where λ2min(L) denotes the second smallest eigenvalue
of L, and 0 < 2α ≤ su with su denoting the minimum
separation among the inputs, the output of kWTA model
(4) is globally asymptotically convergent to the solution
to the kWTA problem (1).

Proof: Let ϕ(x) = [ϕ1(x1), ϕ2(x2), · · · , ϕN (xN )]T with

ϕi(xi) =
∂g(xi)

∂xi







= 0 if xi < 0 or xi > 1,

= 1 if 0 < xi < 1,

∈ [0, 1], otherwise.

Clearly, with ‖ · ‖1 denoting the 1−norm, we have
ϕT(x)1 = ‖ϕ(x)‖1. Let diag(ϕ(x)) = ∂g(x)/∂x, η1 =
y + z − 11Tz/N ∈ R

N , η2 = 1Tz/N − k/N ∈ R, and
η3 = Lx ∈ R

N . Then, together with (4), we have

ǫẋ = C0(−η1 −
11Tz

N
+

k1

N
) − C0Lx

= −C0η1 − C01η2 − C0η3.
(6)

With (6) and (4), we further have

η̇2 =
1Tż

N

=
1Tdiag(ϕ(x))ẋ

N

=
1

ǫN
ϕT(x)(−C0η1 − C01η2 − C0η3)

=
1

ǫN
(−C0ϕ

T(x)η1 − C0‖ϕ(x)‖1η2 − C0ϕ
T(x)η3).

(7)
Meanwhile, for η1, with I denoting the N−by-N identity
matrix, we have

η̇1 = ẏ + ż − 11Tż

N

= −1

ǫ
L(y + z − 11Tz

N

+
11T

N
) + (I − 11T

N
)diag(ϕ(x))ẋ

= −1

ǫ
L(y + z − 11Tz

N
) − L11T

ǫN

+ (I − 11T

N
)diag(ϕ(x))ẋ.

Since the graph is undirected connected, we have the
following property (Jadbabaie et al., 2003):

L1 = 0. (8)

3



As a result, together with the definition of η1, we have

η̇1 = −1

ǫ
Lη1 + (I − 11T

N
)diag(ϕ(x))ẋ. (9)

Note that 1Tη1 = 1T(y + z− 11Tz/N) = 1Ty + 1Tz−
1Tz = 1Ty and 1Tẏ = −1TL(y + z)/ǫ = 0 due to (8).
As a result, we have 1Tη1 ≡ 0 given that y(0) = 0.
Consequently, we have

Lη1 = (L + C111T)η1 = Aη1,

where A = L+C111T where C1 > 0 is sufficiently large.
(In fact, we only need C1 ≥ λ2min(L)/N). Clearly, the
smallest eigenvalue of A satisfies λmin(A) = λ2min(L) >
0 (Jadbabaie et al., 2003), where λmin(·) and λ2min(·)
denote the smallest and second smallest eigenvalues, re-
spectively. Then, (9) can be rewritten as follows:

η̇1 = −1

ǫ
Aη1 + (I − 11T

N
)diag(ϕ(x))ẋ. (10)

Let

V1 =
ǫηT

1 η1

2
, V2 =

ǫη2
2

2
, V3 =

ǫxTLx

2
.

Calculating the time derivative of V1 along the state
trajectory of (10), we have

V̇1 = ǫηT
1 η̇1

= −ηT
1 Aη1 + ǫηT

1 (I − 11T

N
)diag(ϕ(x))ẋ.

Substituting equation (6) into the above equation yields

V̇1 = −ηT
1 Aη1 − C0η

T
1 (I − 11T

N
)diag(ϕ(x))η1

− C0η
T
1 (I − 11T

N
)ϕ(x)η2

− C0η
T
1 (I − 11T

N
)diag(ϕ(x))η3

≤ −ηT
1 Aη1 + C0‖η1‖2

2λmax

(

I − 11T

N

)

‖diag(ϕ(x))‖2

− C0η
T
1 ϕ(x)η2 +

C0η
T
1 11Tϕ(x)η2

N

+ C0‖η1‖2λmax

(

I − 11T

N

)

‖diag(ϕ(x))‖2‖η3‖2,

where ‖ · ‖2 denotes the 2-norm of a vector or a ma-
trix (for a matrix it is also call the maximum sin-
gular value) and λmax(·) denotes the largest eigen-
value of a matrix. According to Section A.1.5 of
Boyd and Vandenberghe (2004), ‖diag(ϕ(x))‖2 =
√

λmax(diagT(ϕ(x))diag(ϕ(x))) = λmax(ϕ(x)) ≤ 1

since ϕ(x) is diagonal and each diagonal element is not

larger than 1. Besides, we have λmax(I − 11T) = 1.
Thus, we have

V̇1 ≤ −ηT
1 Aη1 + C0‖η1‖2

2 − C0η
T
1 ϕ(x)η2

+
C0η

T
1 11Tϕ(x)η2

N
+ C0‖η1‖2‖η3‖2.

(11)

Note that, by Cauchy-Schwarz inequality,

ηT
1 ϕ(x) ≤ ‖η1‖2‖ϕ(x)‖2,

ηT
1 11Tϕ(x)η2 = (ηT

1 1)(1Tϕ(x))η2

≤ (‖η1‖2

√
N)(

√
N‖ϕ(x)‖2)|η2|

= N‖η1‖2‖ϕ(x)‖2|η2|,

where | · | denotes the absolute value. Together with in-
equality (11), we have

V̇1 ≤ −ηT
1 Aη1 + C0‖η1‖2

2 + C0|η2|‖η1‖2‖ϕ(x)‖2

+
C0

N
N‖η1‖2‖ϕ(x)‖2|η2| + C0‖η1‖2‖η3‖2

= −ηT
1 (A − C0I)η1 + 2C0‖η1‖2‖ϕ(x)‖2|η2|

+ C0‖η1‖2‖η3‖2.

Note that ‖ϕ(x)‖1 ≥ ‖ϕ(x)‖2
2 since each element of ϕ(x)

lies between 0 and 1. Thus, calculating the time deriva-
tive of V2 along the state trajectory of (7), we have

V̇2 = ǫη2η̇2

= η2
1

N
(−C0ϕ

T(x)η1 − C0‖ϕ(x)‖1η2 − C0ϕ
T(x)η3)

≤ η2
1

N
(−C0ϕ

T(x)η1 − C0‖ϕ(x)‖2
2η2 − C0ϕ

T(x)η3)

=
−C0‖ϕ(x)‖2

2η
2
2

N
− C0ϕ

T(x)η1η2

N
− C0ϕ

T(x)η3η2

N

≤ −C0‖ϕ(x)‖2
2η

2
2

N
+

C0|η2|‖ϕ(x)‖2‖η1‖2

N

+
C0‖ϕ(x)‖2‖η3‖2|η2|

N
.

For V3, with (6), we have V̇3 = ǫẋTLx = −C0η
T
1 Lx −

C0η21
TLx−C0‖Lx‖2

2. Recalling (8) and the symmetric-
ity of L, we have 1TL = 0. Thus, together with the def-
inition of η3, we further have

V̇3 = −C0η
T
1 Lx− C0‖Lx‖2

2

= −C0η
T
1 η3 − C0‖η3‖2

2 ≤ −C0‖η3‖2
2 + C0‖η1‖2‖η3‖2.

Consider the Lyapunov candidate function V = V1 +
NV2 + V3, which is positive definite in light of the defi-
nitions of V1, V2, and V3. The time derivative of V along
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the state trajectory of the system satisfies

V̇ = V̇1 + NV̇2 + V̇3

≤ −ηT
1 (A − C0I)η1 + 2C0‖η1‖2‖ϕ(x)‖2|η2|

+ C0‖η1‖2‖η3‖2−C0‖ϕ(x)‖2
2η

2
2

+ C0|η2|‖ϕ(x)‖2‖η1‖2 + C0‖ϕ(x)‖2‖η3‖2|η2|
− C0‖η3‖2

2 + C0‖η1‖2‖η3‖2

≤ C0

(

− ‖η1‖2
2

(

λmin(A)

C0
− 1

)

− (‖ϕ(x)‖2η2)
2

− ‖η3‖2
2 + 3‖η1‖2(‖ϕ(x)‖2|η2|) + 2‖η1‖2‖η3‖2

+ ‖η3‖2(‖ϕ(x)‖2|η2|)
)

≤ C0

(

− ‖η1‖2
2

(

λmin(A)

C0
− 1

)

− (‖ϕ(x)‖2η2)
2

2

− ‖η3‖2
2

2
+ 3‖η1‖2(‖ϕ(x)‖2|η2|) + 2‖η1‖2‖η3‖2

+ ‖η3‖2(‖ϕ(x)‖2|η2|)
)

= −C0‖η1‖2
2

(

λmin(A)

C0
− 7.5

)

− C0

(

3√
2
‖η1‖2

− ‖ϕ(x)‖2|η2|√
2

)2

− C0

(√
2‖η1‖2 −

1√
2
‖η3‖2

)2

.

Given that λmin(A) = λ2min(L) ≥ 7.5C0, we have V̇ ≤
0. Then, let V̇ = 0, and we have η1 = 0, η3 = 0, and
‖ϕ(x)‖η2 = 0. In the invariant set with η1 = 0 and
η3 = 0, equation (6) becomes

ǫẋ = −C01η2 = −C01

(

1Tz

N
− k

N

)

.

Left multiplying 1T/N on both sides of the above equa-
tion yields

ǫ ˙̄x = ǫ
1Tẋ

N
= −C0

(

1Tz

N
− k

N

)

= −C0

N
(1Tz − k),

where z = g(x + u/α), and x̄ =
∑N

i=1 xi/N denotes the
average of the elements in x. Since η3 = Lx = 0 in the
invariant set, we have x = x̄1 and, as a result,

z = g(x + u/α) = g(x̄1 + u/α).

By summarizing the above results, in the invariant set,
we have

ǫ ˙̄x = −C0

N
(1Tz − k),

z = g(x̄1 +
u

α
),

(12)

which can be rewritten as (3) with a = α, χ = x̄, and λ =
C0/(Nǫ). According to Corollary 1, given that 0 < 2α ≤
ũk− ũk+1 with ũk denoting the kth largest element ũk+1

Fig. 1. The communication graph of a network of 10 agents.
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Fig. 2. The transient behavior of state vector x during the
kWTA process with static inputs.

denoting the k + 1th largest element in u, the output of
(12) is globally asymptotically convergent to the solution
of kWTA problem (1). Then, by, LaSalle’s invariance
principle (Khalil, 2002; Xu et al., 2019), it is further
concluded that with y(0) = 0, λ2min(L) ≥ 7.5C0, and
0 < 2α ≤ ũk − ũk+1, the output of kWTA model (4)
is globally asymptotically convergent to the solution to
the kWTA problem (1). The proof is complete. 2

Remark 2: As seen from the proof of Theorem 1, the proof
of the convergence of the proposed kWTA is finally con-
verted to that of an existing one thanks to the invariance
principle. Essentially, the distributed kWTA is achieved
via properly adding additional co-states compared with
the centralized kWTA to realize the asymptotic estima-
tion of centralized terms. The design perspective could
be useful for obtaining the corresponding distributed
models for other problems. By referring to the underly-
ing principle of the design, the proposed model can also
be extended to other types of communication topologies
that are allowed in the high-pass consensus filter. The
detailed theoretical analysis will be further investigated.

Remark 3: In the proposed kWTA model (4), there are
three positive parameters ǫ, C0, and α. As seen from
(4), parameter ǫ actually scales the strength of feedback
on the state update. In the implementation of the pro-
posed model, to achieve fast convergence, the value of
ǫ should be set as small as possible but larger than 0.
According to Theorem 1, the value of C0 need to sat-
isfy λ2min(L) ≥ 7.5C0, where λ2min(L) > 0 denotes the
second smallest eigenvalue of the communication graph.
Meanwhile, we also need C0 to be larger than zero. As a
result, the setting of C0 has similar requirement as ǫ. In
practice, the measurement of signals is always with cer-
tain resolution due to the limited capability of sensors.
For example, the resolution of ultrasonic range finders of
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Fig. 3. The transient behavior of state vector y during the kWTA process with static inputs.
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Fig. 4. The transient behavior of output vector z during the kWTA process with static inputs.

HRLV-MaxSonar-EZ series is 0.001 m. In this case, when
the inputs are measurements of such ultrasonic range
finders, su = 0.001. In other words, su is determined by
the resolution of sensors that generate the inputs. Then,
we can set the value of α.

4 Numerical examples

In this section, numerical examples are provided to show
the performance of the proposed kWTA model.

4.1 Static inputs

We first consider the kWTA in an undirected connected
network of 10 agents, i.e., N = 10, with k = 3, where
the inputs to the agents are static. In other words, the
agents need to compete with each other and generate
3 winners. The communication graph is shown in Fig.
1. For convenience of illustration, in the network, each

element of the weight matrix W of the graph satisfies
wij ∈ {0, 1}. The inputs of the ten agents are static,
and they areu = [1.1, 2.5, 4, 19, 3.2, 10, 5.5, 5.2, 19.1, 8]T.
The proposed distributed kWTA model (4) is adopted
with the values of the parameters set as ǫ = 10−9,
α = 0.01, and C0 = 0.001. According to Theorem 1,
the initial values of x, i.e., x(0), are randomly set while
y(0) = 0. The simulation results are shown in Fig. 2, Fig.
3, and Fig. 4. It is found that the proposed distributed
kWTA model successfully recognizes the k winners.

4.2 Dynamic inputs

We also consider the kWTA in an undirected connected
network of 4 agents, i.e., N = 4, with k = 2, where the
inputs to the agents are time-varying. The communica-
tion graph is shown in Fig. 5, with the weights labeled
beside the edges. The inputs of the 4 agents are given as
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Fig. 5. The communication graph of a network of 4 agents.
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Fig. 6. The transient behavior of time-varying inputs to the
agents.
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Fig. 7. The transient behavior of state vector x during the
kWTA process with time-varying inputs.

follows:

ui(t) = 10 sin(4π(t + 0.2(i − 1)))

with i = 1, 2, 3, 4, which are plotted on Fig. 6. The pro-
posed distributed kWTA model (4) is adopted with the
values of the parameters set as ǫ = 10−9, α = 0.1, and
C0 = 0.01. The initial state of x is randomly generated
while y(0) is set to zero according to Theorem 1. As
seen from Fig. 7, the state variables xi reach consen-
sus in almost real time. Meanwhile, Fig. 8 shows that
the state variables yi reach bipartite consensus in almost
real time. By comparing Fig. 9 with Fig. 6, we can eas-
ily identify that the proposed kWTA can generate the
correct winners in almost real time.

5 Conclusions

In this paper, a distributed globally asymptotically con-
vergent kWTA model is proposed for a network of agents
with an undirected connected communication topology.
The behavior of the proposed kWTA model in its in-
variant set degrades into a traditional centralized kWTA
model derived from the quadratic program formulation
of the kWTA problem, by which theoretical results are
derived. Two numerical examples for the cases of static
inputs and dynamic inputs have validated the perfor-
mance of the proposed model and the theoretical results.
A potential future research direction could be the exten-
sion of the proposed method to the second-price auction
model in game theory.
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Fig. 8. The transient behavior of state vector y during the
kWTA process with time-varying inputs.
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Fig. 9. The transient behavior of output vector z during the
kWTA process with time-varying inputs.
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