6,118 research outputs found

    A survey on utilization of data mining approaches for dermatological (skin) diseases prediction

    Get PDF
    Due to recent technology advances, large volumes of medical data is obtained. These data contain valuable information. Therefore data mining techniques can be used to extract useful patterns. This paper is intended to introduce data mining and its various techniques and a survey of the available literature on medical data mining. We emphasize mainly on the application of data mining on skin diseases. A categorization has been provided based on the different data mining techniques. The utility of the various data mining methodologies is highlighted. Generally association mining is suitable for extracting rules. It has been used especially in cancer diagnosis. Classification is a robust method in medical mining. In this paper, we have summarized the different uses of classification in dermatology. It is one of the most important methods for diagnosis of erythemato-squamous diseases. There are different methods like Neural Networks, Genetic Algorithms and fuzzy classifiaction in this topic. Clustering is a useful method in medical images mining. The purpose of clustering techniques is to find a structure for the given data by finding similarities between data according to data characteristics. Clustering has some applications in dermatology. Besides introducing different mining methods, we have investigated some challenges which exist in mining skin data

    Neuro-fuzzy knowledge processing in intelligent learning environments for improved student diagnosis

    Get PDF
    In this paper, a neural network implementation for a fuzzy logic-based model of the diagnostic process is proposed as a means to achieve accurate student diagnosis and updates of the student model in Intelligent Learning Environments. The neuro-fuzzy synergy allows the diagnostic model to some extent "imitate" teachers in diagnosing students' characteristics, and equips the intelligent learning environment with reasoning capabilities that can be further used to drive pedagogical decisions depending on the student learning style. The neuro-fuzzy implementation helps to encode both structured and non-structured teachers' knowledge: when teachers' reasoning is available and well defined, it can be encoded in the form of fuzzy rules; when teachers' reasoning is not well defined but is available through practical examples illustrating their experience, then the networks can be trained to represent this experience. The proposed approach has been tested in diagnosing aspects of student's learning style in a discovery-learning environment that aims to help students to construct the concepts of vectors in physics and mathematics. The diagnosis outcomes of the model have been compared against the recommendations of a group of five experienced teachers, and the results produced by two alternative soft computing methods. The results of our pilot study show that the neuro-fuzzy model successfully manages the inherent uncertainty of the diagnostic process; especially for marginal cases, i.e. where it is very difficult, even for human tutors, to diagnose and accurately evaluate students by directly synthesizing subjective and, some times, conflicting judgments

    ISIPTA'07: Proceedings of the Fifth International Symposium on Imprecise Probability: Theories and Applications

    Get PDF
    B

    Visualization Techniques for Tongue Analysis in Traditional Chinese Medicine

    Get PDF
    Visual inspection of the tongue has been an important diagnostic method of Traditional Chinese Medicine (TCM). Clinic data have shown significant connections between various viscera cancers and abnormalities in the tongue and the tongue coating. Visual inspection of the tongue is simple and inexpensive, but the current practice in TCM is mainly experience-based and the quality of the visual inspection varies between individuals. The computerized inspection method provides quantitative models to evaluate color, texture and surface features on the tongue. In this paper, we investigate visualization techniques and processes to allow interactive data analysis with the aim to merge computerized measurements with human expert's diagnostic variables based on five-scale diagnostic conditions: Healthy (H), History Cancers (HC), History of Polyps (HP), Polyps (P) and Colon Cancer (C)

    Tracking Data Provenance of Archaeological Temporal Information in Presence of Uncertainty

    Get PDF
    The interpretation process is one of the main tasks performed by archaeologists who, starting from ground data about evidences and findings, incrementally derive knowledge about ancient objects or events. Very often more than one archaeologist contributes in different time instants to discover details about the same finding and thus, it is important to keep track of history and provenance of the overall knowledge discovery process. To this aim, we propose a model and a set of derivation rules for tracking and refining data provenance during the archaeological interpretation process. In particular, among all the possible interpretation activities, we concentrate on the one concerning the dating that archaeologists perform to assign one or more time intervals to a finding to define its lifespan on the temporal axis. In this context, we propose a framework to represent and derive updated provenance data about temporal information after the mentioned derivation process. Archaeological data, and in particular their temporal dimension, are typically vague, since many different interpretations can coexist, thus, we will use Fuzzy Logic to assign a degree of confidence to values and Fuzzy Temporal Constraint Networks to model relationships between dating of different findings represented as a graph-based dataset. The derivation rules used to infer more precise temporal intervals are enriched to manage also provenance information and their following updates after a derivation step. A MapReduce version of the path consistency algorithm is also proposed to improve the efficiency of the refining process on big graph-based datasets

    Uncertainty Management of Intelligent Feature Selection in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSN) are envisioned to revolutionize the paradigm of monitoring complex real-world systems at a very high resolution. However, the deployment of a large number of unattended sensor nodes in hostile environments, frequent changes of environment dynamics, and severe resource constraints pose uncertainties and limit the potential use of WSN in complex real-world applications. Although uncertainty management in Artificial Intelligence (AI) is well developed and well investigated, its implications in wireless sensor environments are inadequately addressed. This dissertation addresses uncertainty management issues of spatio-temporal patterns generated from sensor data. It provides a framework for characterizing spatio-temporal pattern in WSN. Using rough set theory and temporal reasoning a novel formalism has been developed to characterize and quantify the uncertainties in predicting spatio-temporal patterns from sensor data. This research also uncovers the trade-off among the uncertainty measures, which can be used to develop a multi-objective optimization model for real-time decision making in sensor data aggregation and samplin

    A review on the integration of artificial intelligence into coastal modeling

    Get PDF
    Author name used in this publication: Kwokwing Chau2005-2006 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Uncertainty in coupled models of cyber-physical systems

    Get PDF
    The development of cyber-physical systems typically involves the association between multiple coupled models that capture different aspects of the system and the environment where it operates. Due to the dynamic aspect of the environment, unexpected conditions and uncertainty may impact the system. In this work, we tackle this problem and propose a taxonomy for characterizing uncertainty in coupled models. Our taxonomy extends existing proposals to cope with the particularities of coupled models in cyber-physical systems. In addition, our taxonomy discusses the notion of uncertainty propagation to other parts of the system. This allows for studying and (in some cases) quantifying the effects of uncertainty on other models in a system even at design time. We show the applicability of our uncertainty taxonomy in real use cases motivated by our envisioned scenario of automotive development
    corecore