28 research outputs found

    Personalized noninvasive imaging of volumetric cardiac electrophysiology

    Get PDF
    Three-dimensionally distributed electrical functioning is the trigger of mechanical contraction of the heart. Disturbance of this electrical flow is known to predispose to mechanical catastrophe but, due to its amenability to certain intervention techniques, a detailed understanding of subject-specific cardiac electrophysiological conditions is of great medical interest. In current clinical practice, body surface potential recording is the standard tool for diagnosing cardiac electrical dysfunctions. However, successful treatments normally require invasive catheter mapping for a more detailed observation of these dysfunctions. In this dissertation, we take a system approach to pursue personalized noninvasive imaging of volumetric cardiac electrophysiology. Under the guidance of existing scientific knowledge of the cardiac electrophysiological system, we extract the subject specific cardiac electrical information from noninvasive body surface potential mapping and tomographic imaging data of individual subjects. In this way, a priori knowledge of system physiology leads the physiologically meaningful interpretation of personal data; at the same time, subject-specific information contained in the data identifies parameters in individual systems that differ from prior knowledge. Based on this perspective, we develop a physiological model-constrained statistical framework for the quantitative reconstruction of the electrical dynamics and inherent electrophysiological property of each individual cardiac system. To accomplish this, we first develop a coupled meshfree-BE (boundary element) modeling approach to represent existing physiological knowledge of the cardiac electrophysiological system on personalized heart-torso structures. Through a state space system approach and sequential data assimilation techniques, we then develop statistical model-data coupling algorithms for quantitative reconstruction of volumetric transmembrane potential dynamics and tissue property of 3D myocardium from body surface potential recoding of individual subjects. We also introduce a data integration component to build personalized cardiac electrophysiology by fusing tomographic image and BSP sequence of the same subject. In addition, we develop a computational reduction strategy that improves the efficiency and stability of the framework. Phantom experiments and real-data human studies are performed for validating each of the framework’s major components. These experiments demonstrate the potential of our framework in providing quantitative understanding of volumetric cardiac electrophysiology for individual subjects and in identifying latent threats in individual’s heart. This may aid in personalized diagnose, treatment planning, and fundamentally, prevention of fatal cardiac arrhythmia

    Prediction of Cardiac Death Risk by Analysis of Ventricular Repolarization Restitution from the Electrocardiogram Signal

    Get PDF
    Las enfermedades cardiovasculares siguen siendo la mayor causa de muertes en todo el mundo, y se espera que el número de casos crezca progresivamente en los próximos años con el envejecimiento de la población. Por ello, se necesitan marcadores no invasivos con alta capacidad de predicción de muerte para reducir la incidencia de estos eventos fatales.La insuficiencia cardiaca crónica (CHF, del inglés "Chronic Heart Failure") describe la condición por la cual el corazón no es capaz de bombear suficiente sangre para alcanzar las demandas del cuerpo. Se ha demostrado que los pacientes con CHF pueden experimentar un empeoramiento progresivo de los síntomas, pudiendo llegar a producirse la muerte por fallo de bomba (PFD, del inglés "Pump Failure Death"), o sufrireventos arrítmicos malignos que lleven a la muerte súbita cardiaca (SCD, del inglés "Sudden Cardiac Death"). Uno de los factores electro-fisiológicos con mayor influencia en la generación de arritmias malignas es el aumento de la dispersión de la repolarización, o la variación espacio-temporal en los tiempos de repolarización. También se ha demostrado que la respuesta de esta dispersión a variaciones en el ritmo cardiaco, es decir, la dispersión de la restitución de la repolarización, está relacionada con mayor riesgo arrítmico y de SCD. Por otro lado, el empeoramiento de CHF se manifiesta con una reducción de la respuesta de los ventrículos a la estimulación autonómica, y con un balance simpato-vagal anormal. Con la llegada de los defibriladores cardioversores implantables (ICDs, del inglés "Implantable Cardioverter Defibrillators"), y de la terapia de resincronización cardiaca (CRT, del inglés "Cardiac Resynchronization Therapy"), los dos dispositivos más popularmente usados en la práctica clínica para prevenir SCD y PFD, respectivamente, la estratificación de riesgo se ha vuelto muy relevante. Específicamente, ser capaces de predecir el evento potencial que un paciente con CHF podría sufrir (SCD, PFD u otras causas) es de gran importancia. La señal de electrocardiograma (ECG) es un método barato y no invasivo que contiene información importante acerca de la actividad eléctrica del corazón.El objetivo principal de esta tesis es desarrollar marcadores de riesgo derivados del ECG que caractericen la restitución de la repolarización ventricular para mejorar la predicción de SCD y PFD en pacientes con CHF. Para ello, se han utilizado, por un lado, índices basados en intervalos temporales, como los intervalos QT y Tpe, ya que las dinámicas de estos intervalos están asociadas con la restitución de la repolarización, y con su dispersión, respectivamente, y, por el otro lado, índices basados en la morfología de la onda T. Para utilizar la información de la morfología, se ha desarrollado una metodología innovadora que permite la comparación de dos formas diferentes, y la cuantificación de sus diferencias.En el capítulo 2 se desarrolló un algoritmo completamente automático para estimar la pendiente y la curvatura de las dinámicas de los intervalos QT y Tpe a partir de registros ECG Holter de 24 horas de 651 pacientes con CHF. A continuación, se estudió la modulación del patrón circadiano de las estimaciones propuestas, y se evaluó su valor predictivo de SCD y PFD. Finalmente, se estudió la capacidad de clasificación del marcador analizado con mayor valor predictivo, individualmente y en combinación con otros dos marcadores de riesgo de ECG previamente propuestos, que reflejan mecanismos electro-fisiológicos y autonómicos. Los resultados demostraron que la dispersión de la restitución de la repolarización, cuantificada a partir de la pendiente de la dinámica del intervalo Tpe, tiene valor predictivo de SCD y de PFD, con pendientes altas indicativas de sustrato arrímico predisponiendo a SCD y pendientes planas indicativas de fatiga mecánica del corazón predisponiendo a PFD. Sin embargo, la pendiente de la restitución de la repolarización, cuantificada como la pendiente de la relación QT/RR, así como los parámetros de curvatura de las dos relaciones, no mostraron asociación con ningún tipo de muerte cardiaca. El patrón circadiano moduló estos parámetros, con valores significativamente mayores durante el día que durante la noche. Finalmente, los resultados de clasificación probaron que la combinación de los marcadores de riesgo derivados del ECG que reflejan información complementaria mejora la discriminación entre SCD, PFD y otros pacientes. Nuestros resultados sugieren que la pendiente de la dinámica del intervalo Tpe podría incluirse en la práctica clínica como herramienta para estratificar pacientes de acuerdo a su riesgo de sufrir SCD o PFD y, por lo tanto, aumentar el beneficio del tratamiento con ICDs o CRT.Considerando estos resultados, postulamos a continuación que la morfología de la onda T contiene información adicional, no tenida en cuenta al usar únicamente índices basados en intervalos temporales. Por lo tanto, en el capítulo 3 desarrollamos una metodología para comparar la morfología de dos ondas T, y propusimos y evaluamos la capacidad de nuevos marcadores derivados del ECG para cuantificar variaciones en la morfología de la onda T. Primero, comparamos la capacidad de eliminar la variabilidad en el dominio temporal de dos algoritmos, "Dynamic Time Warping" (DTW) y "Square-root Slope Function" (SRSF). Luego, se propusieron índices morfológicos y se evaluó su robustez ante la presencia de ruido aditivo con señales generadas sintéticamente. A continuación, se utilizó un modelo electrofisiológico cardiaco para investigarla relación entre los índices de variabilidad morfológica de onda T y los cambios morfológicos a nivel celular. Finalmente, se cuantificaron las variaciones en la morfología de la onda T producidas por una prueba de tabla basculante en registros de ECG con los marcadores propuestos y se estudió su correlación con el ritmo cardiaco y otros marcadores tradicionales. Nuestros resultados mostraron que SRSF fue capaz de separarlas variaciones en el tiempo y en la amplitud de la onda T. Además, los marcadores propuestos de variabilidad morfológica probaron ser robustos frente a ruido aditivo Laplaciano y demostraron reflejar variaciones en la dispersión de la repolarización a nivel celular en simulación y en registros de ECG reales. En conclusión, los índices propuestos que cuantifican variaciones morfológicas de la onda T han demostrado un gran potential para ser usados como predictores de riesgo arrítmico.En el capítulo 4, se exploró la restitución de la repolarización ventricular usando los índices de variabilidad morfológica presentados en el capítulo 3. Bajo la hipótesis de que la morfología de la onda T refleja la dispersión de la repolarización, hipotetizamos que la restitución de la morfología de la onda T reflejaría la dispersión de la restitución de la repolarización. Por lo tanto, calculamos la pendiente de la restituciónde la morfología de la onda T y evaluamos su valor predictivo de SCD y PFD. También estudiamos, como en el capítulo 2, la modulación del patrón circadiano y la capacidad de clasificación. Los resultados mostraron que la dispersión de la restitución de la repolarización cuantificada a través de la pendiente de la restitución de la morfología de la onda T, estaba asociada específicamente con SCD, sin ninguna relación con PFD. El patrón circadiano también moduló la restitución de la morfología de la onda T, con valores significativamente mayores durante el día que durante la noche. Finalmente, los resultados de clasificación también mejoraron al utilizar una combinación de marcadores de riesgo derivados del ECG. En conclusión, la pendiente de la restitución de la morfología de la onda T podría usarse en la práctica clínica como herramienta para definir una población de alto riesgo de SCD que podría beneficiarse de implantación con ICDs.Finalmente, aunque lo deseable es encontrar un índice individual con alto valor predictivo, los eventos de SCD y PFD son el resultado de una múltiple cadena de mecanismos. Por lo tanto, la predicción podría mejorarse todavía más si se usara un marcador que integrara varios factores de riesgo. En el capítulo 5 se propusieron modelos clínicos, basados en el ECG y otros combinando ambos tipos de variables, para predecir específicamente riesgo de SCD y de PFD. Además, se comparó su valor predictivo. Los modelos clínicos, basados en ECG y combinado demostraron mejorar la predicción de SCD y de PFD, comparado con los marcadores individuales. Para SCD, la combinación de variables clínicas y derivadas del ECG mejoró sustancialmente la predicción de riesgo, comparado con el uso de uno de los dos tipos de variables. Sinembargo, la predicción de riesgo de PFD demostró ser óptima al utilizar el modelo derivado del ECG, ya que la combinación con variables clínicas no añadió ninguna información predictiva de PFD. Nuestros resultados confirman la necesidad de utilizar un índice multi-factorial, que incluya información de mecanismos complementarios, para optimizar la estratificación de riesgo de SCD y de PFD.En conclusión, en esta tesis se han propuesto dos índices derivados del ECG, que reflejan dispersión de la restitución de la repolarización, y se ha demostrado su valor predictivo de SCD y PFD. Cada índice explota información diferente de la onda T, uno utiliza el intervalo Tpe y el otro utiliza la morfología completa de la onda T. Para la cuantificación de las diferencias en la morfología de la onda T, se ha desarrollado una metodología robusta que se basa en la re-parametrización en el tiempo.<br /

    From medical images to individualized cardiac mechanics: A Physiome approach

    Get PDF
    Cardiac mechanics is a branch of science that deals with forces, kinematics, and material properties of the heart, which is valuable for clinical applications and physiological studies. Although anatomical and biomechanical experiments are necessary to provide the fundamental knowledge of cardiac mechanics, the invasive nature of the procedures limits their further applicability. In consequence, noninvasive alternatives are required, and cardiac images provide an excellent source of subject-specific and in vivo information. Noninvasive and individualized cardiac mechanical studies can be achieved through coupling general physiological models derived from invasive experiments with subject-specific information extracted from medical images. Nevertheless, as data extracted from images are gross, sparse, or noisy, and do not directly provide the information of interest in general, the couplings between models and measurements are complicated inverse problems with numerous issues need to be carefully considered. The goal of this research is to develop a noninvasive framework for studying individualized cardiac mechanics through systematic coupling between cardiac physiological models and medical images according to their respective merits. More specifically, nonlinear state-space filtering frameworks for recovering individualized cardiac deformation and local material parameters of realistic nonlinear constitutive laws have been proposed. To ensure the physiological meaningfulness, clinical relevance, and computational feasibility of the frameworks, five key issues have to be properly addressed, including the cardiac physiological model, the heart representation in the computational environment, the information extraction from cardiac images, the coupling between models and image information, and also the computational complexity. For the cardiac physiological model, a cardiac physiome model tailored for cardiac image analysis has been proposed to provide a macroscopic physiological foundation for the study. For the heart representation, a meshfree method has been adopted to facilitate implementations and spatial accuracy refinements. For the information extraction from cardiac images, a registration method based on free-form deformation has been adopted for robust motion tracking. For the coupling between models and images, state-space filtering has been applied to systematically couple the models with the measurements. For the computational complexity, a mode superposition approach has been adopted to project the system into an equivalent mathematical space with much fewer dimensions for computationally feasible filtering. Experiments were performed on both synthetic and clinical data to verify the proposed frameworks

    Cardiac Arrhythmias

    Get PDF
    This book is useful for physicians taking care of patients with cardiac arrhythmias and includes six chapters written by experts in their field. Chapter 1 discusses basic mechanisms of cardiac arrhythmias. Chapter 2 discusses the chronobiological aspects of the impact of apnoic episodes on ventricular arrhythmias. Chapter 3 discusses navigation, detection, and tracking during cardiac ablation interventions. Chapter 4 discusses epidemiology and pathophysiology of ventricular arrhythmias in several noncardiac diseases, methods used to assess arrhythmia risk, and their association with long-term outcomes. Chapter 5 discusses the treatment of ventricular arrhythmias including indications for implantation of an AICD for primary and for secondary prevention in patients with and without congestive heart failure. Chapter 6 discusses surgical management of atrial fibrillation

    Cardiac Electrophysiological Changes during High Intensity Focused Ultrasound Ablation.

    Full text link
    Atrial fibrillation (AF), the most common cardiac arrhythmia, is characterized by disorganized electrical activities that cause atrial quivering and uncoordinated contraction. AF significantly affects the quality of life for patients and increases the risk of stroke. Ultrasound ablation surgery has been proposed a decade ago as a treatment for AF. By focusing ultrasound energy at a narrow spot, rapid temperature rises along with tissue necrosis are generated. In this thesis, we investigated high-intensity focused ultrasound (HIFU), an ablation technology being used to eliminate arrhythmogenic foci for treatment of AF. During HIFU ablation, little is known regarding the detailed characteristics of cellular electrophysiological (EP) changes. The first part of the thesis aims to characterize EP changes during HIFU corresponding with temperature increases. Langendorff-perfused intact rabbit heart model stained with di-4-ANEPPS, a fluorescent dye sensitive to the membrane voltage changes, was used. Simultaneous optical mapping and infrared imaging were employed to measure epicardial EP and temperature during HIFU application. The results revealed the temperature-dependent spatiotemporal characteristics of HIFU-induced EP changes including changes of action potential (AP) amplitude, duration, and electrical activation. Temperature dosage criterion for generating irreversible tissue physical and AP changes were obtained. Intra-procedural imaging is important for guiding cardiac ablation for AF. However, it is difficult to obtain intra-procedural correlation of thermal lesion with AP changes in tissue transmural plane. The second part is to develop parametric ultrasound imaging techniques for transmural lesion and AP detection during ablation. Perfused canine ventricular wedge was used. Simultaneous optical mapping and high frequency ultrasound imaging of the same tissue trasnsmural plane were performed during HIFU. Tissue transmural EP changes were characterized and the AP changes were spatiotemporally correlated between optical and ultrasound images. The results show that parametric ultrasound imaging using cumulative extrema of ultrasound parameters (log-normal and Rayleigh) can detect HIFU lesions and surrounding AP amplitude changes. Overall, the information obtained from this thesis enhances our understanding of the EP mechanisms of HIFU ablation and can help promote the development of effective HIFU ablation strategies. Ultrasound parametric imaging provides a promising technique to identify lesion transmurality which is important in clinical ablations.PHDBiomedical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/100027/1/ziqiwu_1.pd

    Advances in Electrocardiograms

    Get PDF
    Electrocardiograms have become one of the most important, and widely used medical tools for diagnosing diseases such as cardiac arrhythmias, conduction disorders, electrolyte imbalances, hypertension, coronary artery disease and myocardial infarction. This book reviews recent advancements in electrocardiography. The four sections of this volume, Cardiac Arrhythmias, Myocardial Infarction, Autonomic Dysregulation and Cardiotoxicology, provide comprehensive reviews of advancements in the clinical applications of electrocardiograms. This book is replete with diagrams, recordings, flow diagrams and algorithms which demonstrate the possible future direction for applying electrocardiography to evaluating the development and progression of cardiac diseases. The chapters in this book describe a number of unique features of electrocardiograms in adult and pediatric patient populations with predilections for cardiac arrhythmias and other electrical abnormalities associated with hypertension, coronary artery disease, myocardial infarction, sleep apnea syndromes, pericarditides, cardiomyopathies and cardiotoxicities, as well as innovative interpretations of electrocardiograms during exercise testing and electrical pacing

    N on - Invasive Feto - Maternal Well - Being Monitoring: A Review of Methods

    Get PDF

    Does insecure attachment lead to (mis)wired brains? Emotion, cognition, and attachment: an outlook through psychophysiological pathways

    Get PDF
    2346, 2360, 2560The evolutionary-based attachment theory (Bowlby, 1969, 1973, 1980) asserts that approach/attachment or avoidance/withdrawal tendencies may reflect distinct regulation strategies underlying individual differences in attachment styles. The influence of the internal working models of attachment on emotion and cognition, and more recently, on its psychophysiological underpinnings has been a central focus of research. Despite the endeavours at clarifying this modulatory influence in behaviour, inconsistent results have prevented definite answers. Aiming at contributing to the current knowledge in the filed, and embedded in a psychophysiological framework, the present thesis brings together findings of empirical studies focusing on the regulation abilities in attentional bias towards emotion information. Following an integrative approach, these studies coupled behavioural responses with measures of skin conductance, heart rate, and eye movements. Findings of these studies converge to show distinctive features between regulation strategies deployed by insecure attached individuals when processing threat-related information on visual attention tasks, as measured by behavioural (Study I), sympathetic (Study II), and eye movement (Study III) responses. Taken together these findings point up the evolutionary value of the attachment behavioural system, providing support for fundamental distinctions between insecure attachment styles, both at a behavioural and physiological level. Considering recent advances emerging in the filed, results are discussed within in a comprehensive and all-encompassing approach.Fundamentada num cenário evolucionista, a teoria da vinculação (Bowlby, 1969, 1973, 1980) considera que comportamentos de aproximação/evitamento reflectem estratégias de regulação subjacentes a diferenças individuais nos estilos de vinculação. Neste âmbito, a natureza dos modelos internos dinâmicos têm sido um foco central na investigação, tendo sido dada particular atenção à sua influência nos processos emocionais e cognitivos e, mais recentemente, às suas bases psicofisiológicas. Contudo, apesar de vários estudos terem examinado estas questões, a ausência de dados consistentes acerca dos mecanismos que poderão contribuir para esta influência estão ainda por conhecer de modo consistente. Visando contribuir para o conhecimento neste campo, a presente tese reúne um conjunto de estudos empíricos que, numa perspectiva psicofisiológica, focam a acção das estratégias de regulação associadas aos estilos de vinculação insegura – ansiosa e evitante –, nos enviesamentos atencionais no processamento de informação emocional. Numa abordagem integrativa, estes estudos combinam respostas comportamentais com medidas fisiológicas: condutância da pele; frequência cardíaca; e movimentos oculares. Utilizando tarefas de atenção visual, os resultados destes estudos apoiam a hipótese de que os estilos de vinculação insegura estão relacionados com estratégias de regulação específicas no processamento de estímulos potencialmente ameaçadores, avaliadas através de respostas comportamentais (Estudo I), do sistema nervoso simpático (Estudo II), e dos movimentos oculares (Estudo III). Globalmente, os resultados corroboraram o valor evolutivo do sistema comportamental de vinculação, dando suporte para diferenças entre os estilos de vinculação insegura, tanto a nível comportamental como fisiológico. Considerando progressos científicos emergentes, os resultados são discutidos numa abordagem compreensiva e abrangente

    Extraction and Detection of Fetal Electrocardiograms from Abdominal Recordings

    Get PDF
    The non-invasive fetal ECG (NIFECG), derived from abdominal surface electrodes, offers novel diagnostic possibilities for prenatal medicine. Despite its straightforward applicability, NIFECG signals are usually corrupted by many interfering sources. Most significantly, by the maternal ECG (MECG), whose amplitude usually exceeds that of the fetal ECG (FECG) by multiple times. The presence of additional noise sources (e.g. muscular/uterine noise, electrode motion, etc.) further affects the signal-to-noise ratio (SNR) of the FECG. These interfering sources, which typically show a strong non-stationary behavior, render the FECG extraction and fetal QRS (FQRS) detection demanding signal processing tasks. In this thesis, several of the challenges regarding NIFECG signal analysis were addressed. In order to improve NIFECG extraction, the dynamic model of a Kalman filter approach was extended, thus, providing a more adequate representation of the mixture of FECG, MECG, and noise. In addition, aiming at the FECG signal quality assessment, novel metrics were proposed and evaluated. Further, these quality metrics were applied in improving FQRS detection and fetal heart rate estimation based on an innovative evolutionary algorithm and Kalman filtering signal fusion, respectively. The elaborated methods were characterized in depth using both simulated and clinical data, produced throughout this thesis. To stress-test extraction algorithms under ideal circumstances, a comprehensive benchmark protocol was created and contributed to an extensively improved NIFECG simulation toolbox. The developed toolbox and a large simulated dataset were released under an open-source license, allowing researchers to compare results in a reproducible manner. Furthermore, to validate the developed approaches under more realistic and challenging situations, a clinical trial was performed in collaboration with the University Hospital of Leipzig. Aside from serving as a test set for the developed algorithms, the clinical trial enabled an exploratory research. This enables a better understanding about the pathophysiological variables and measurement setup configurations that lead to changes in the abdominal signal's SNR. With such broad scope, this dissertation addresses many of the current aspects of NIFECG analysis and provides future suggestions to establish NIFECG in clinical settings.:Abstract Acknowledgment Contents List of Figures List of Tables List of Abbreviations List of Symbols (1)Introduction 1.1)Background and Motivation 1.2)Aim of this Work 1.3)Dissertation Outline 1.4)Collaborators and Conflicts of Interest (2)Clinical Background 2.1)Physiology 2.1.1)Changes in the maternal circulatory system 2.1.2)Intrauterine structures and feto-maternal connection 2.1.3)Fetal growth and presentation 2.1.4)Fetal circulatory system 2.1.5)Fetal autonomic nervous system 2.1.6)Fetal heart activity and underlying factors 2.2)Pathology 2.2.1)Premature rupture of membrane 2.2.2)Intrauterine growth restriction 2.2.3)Fetal anemia 2.3)Interpretation of Fetal Heart Activity 2.3.1)Summary of clinical studies on FHR/FHRV 2.3.2)Summary of studies on heart conduction 2.4)Chapter Summary (3)Technical State of the Art 3.1)Prenatal Diagnostic and Measuring Technique 3.1.1)Fetal heart monitoring 3.1.2)Related metrics 3.2)Non-Invasive Fetal ECG Acquisition 3.2.1)Overview 3.2.2)Commercial equipment 3.2.3)Electrode configurations 3.2.4)Available NIFECG databases 3.2.5)Validity and usability of the non-invasive fetal ECG 3.3)Non-Invasive Fetal ECG Extraction Methods 3.3.1)Overview on the non-invasive fetal ECG extraction methods 3.3.2)Kalman filtering basics 3.3.3)Nonlinear Kalman filtering 3.3.4)Extended Kalman filter for FECG estimation 3.4)Fetal QRS Detection 3.4.1)Merging multichannel fetal QRS detections 3.4.2)Detection performance 3.5)Fetal Heart Rate Estimation 3.5.1)Preprocessing the fetal heart rate 3.5.2)Fetal heart rate statistics 3.6)Fetal ECG Morphological Analysis 3.7)Problem Description 3.8)Chapter Summary (4)Novel Approaches for Fetal ECG Analysis 4.1)Preliminary Considerations 4.2)Fetal ECG Extraction by means of Kalman Filtering 4.2.1)Optimized Gaussian approximation 4.2.2)Time-varying covariance matrices 4.2.3)Extended Kalman filter with unknown inputs 4.2.4)Filter calibration 4.3)Accurate Fetal QRS and Heart Rate Detection 4.3.1)Multichannel evolutionary QRS correction 4.3.2)Multichannel fetal heart rate estimation using Kalman filters 4.4)Chapter Summary (5)Data Material 5.1)Simulated Data 5.1.1)The FECG Synthetic Generator (FECGSYN) 5.1.2)The FECG Synthetic Database (FECGSYNDB) 5.2)Clinical Data 5.2.1)Clinical NIFECG recording 5.2.2)Scope and limitations of this study 5.2.3)Data annotation: signal quality and fetal amplitude 5.2.4)Data annotation: fetal QRS annotation 5.3)Chapter Summary (6)Results for Data Analysis 6.1)Simulated Data 6.1.1)Fetal QRS detection 6.1.2)Morphological analysis 6.2)Own Clinical Data 6.2.1)FQRS correction using the evolutionary algorithm 6.2.2)FHR correction by means of Kalman filtering (7)Discussion and Prospective 7.1)Data Availability 7.1.1)New measurement protocol 7.2)Signal Quality 7.3)Extraction Methods 7.4)FQRS and FHR Correction Algorithms (8)Conclusion References (A)Appendix A - Signal Quality Annotation (B)Appendix B - Fetal QRS Annotation (C)Appendix C - Data Recording GU
    corecore