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Abstract

Cardiovascular diseases remain the leading cause of deaths worldwide, and this
number is expected to progressively grow with the ageing of the population. Non-
invasive markers with strong mortality predictive value are needed to reduce the inci-
dence of fatal endpoints.

Chronic heart failure (CHF) describes the condition where the heart is not able to
pump enough blood to meet the demands of the body. It is commonly agreed that CHF
patients may experience progressive symptomatic worsening, leading to pump failure
death (PFD), or su�er from malignant arrhythmic events predisposing to sudden car-
diac death (SCD). A major electrophysiological feature responsible for the generation
of malignant arrhythmias is an increased dispersion of repolarization, representing aug-
mented spatio-temporal heterogeneities of ventricular repolarization. The response of
this dispersion to variations in heart rate, i.e. dispersion of repolarization restitution,
has also been demonstrated to be linked with higher arrhythmic risk leading to SCD.
On the other hand, worsening of CHF leading to PFD is reported to be manifested
as a withdrawal of the response of the ventricles to autonomic stimulation, and as
an abnormal sympathovagal balance. With the advent of implantable cardioverter
de�brillators (ICDs), and cardiac resynchronization therapy (CRT), the most popular
devices used in the clinical practice to prevent SCD and PFD, respectively, accurate
risk strati�cation has become very relevant. Speci�cally, being able to predict the
potential outcome (SCD, PFD or others) that a CHF patient may su�er is of great
importance. The electrocardiogram (ECG) signal is a cheap, non-invasive tool, which
contains important information regarding the electrical activity of the heart.

The main objective of this thesis is to develop ECG-derived risk markers charac-
terizing ventricular repolarization restitution to improve the prediction of SCD and
PFD in CHF patients. This objective has been addressed by using, on the one hand,
time-interval indices like the QT interval and the Tpe interval, since the dynamics of
these intervals (relationship between these intervals and the preceding RR interval val-
ues) are related to the repolarization restitution and its dispersion, respectively, and,
on the other hand, morphological indices. To use the morphological information of
the T-wave, an innovative methodology that allows for the comparison of two di�erent
shapes, and the quanti�cation of their di�erences, has been developed.

In chapter 2 a fully automated algorithm was developed to estimate the slope
and curvature of the QT/RR and Tpe/RR regression patterns from 24-h Holter ECG
recordings of 651 CHF patients. Then, the modulation of the circadian pattern of the
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ii Abstract

slope and curvature of QT and Tpe dynamics was studied and their SCD and PFD
predictive value was assessed. Finally, the classi�cation performance of the analysed
marker with the strongest predictive value, individually and in combination with two
other previously proposed ECG risk markers re�ecting electrophysiological and auto-
nomic mechanisms, was investigated using two- and three-class �Support Vector Ma-
chine� classi�ers. Results demonstrated that dispersion in repolarization restitution,
quanti�ed through the slope of the Tpe interval dynamics, is a strong and independent
predictor of both SCD and PFD, with steeper slopes indicative of an arrhythmogenic
substrate predisposing to SCD and �atter slopes indicating mechanical heart fatigue
predisposing to PFD. However, the slope of the repolarization restitution, quanti�ed
via the slope of the QT/RR relationship, as well as the curvature parameters of the two
relationships, were not associated with any mode of cardiac death. The circadian pat-
tern modulated these markers, with signi�cantly higher values during the day than at
night. Finally, classi�cation results proved that the combination of ECG-derived risk
markers re�ecting complementary information improves the discrimination between
SCD, PFD and other outcomes. Results suggest that the slope of the Tpe dynamics
could be included in the clinical practice as an adjunct tool to stratify patients accord-
ing to their risk of su�ering SCD or PFD and, thus, improve the bene�t from ICD or
CRT treatment.

Asymmetric, �at and notched T-waves have been shown to be associated with ar-
rhythmic events and SCD. However, T-wave morphology abnormalities that may be
relevant for SCD and PFD prediction are disregarded when assessing time-interval
indices only. Therefore, in chapter 3 we developed a novel methodology to compare
the morphology of two T-waves and we proposed and assessed the ability of new ECG-
derived markers to quantify T-wave morphological variability. First, the performance
of two algorithms, Dynamic Time Warping (DTW) and Square-Root Slope Function
(SRSF) in removing (warping) time-domain variability was compared. Then, morpho-
logical indices were proposed and their robustness against noise was evaluated in a set
up with synthetically generated signals. Next, an electrophysiological cardiac model
(ECGSIM) was used to investigate the relation between the T-wave morphology vari-
ability indices and the morphological changes at cellular level. Finally, the T-wave
morphological variations produced by a tilt test in ECG recordings were quanti�ed by
using the proposed markers and their correlation with heart rate and other traditional
markers was studied. Our results showed that SRSF was able to separate temporal and
amplitude variations of the T-wave. Also, the proposed T-wave morphological vari-
ability markers proved to be robust against additive Laplacian noise and demonstrated
to re�ect variations in the dispersion of repolarization at cellular level in simulation
and actual ECG recordings. In conclusion, the proposed indices quantifying morpho-
logical variations in the T-wave have demonstrated a great potential to be used for
arrhythmic risk prediction.

In chapter 4, dispersion of repolarization restitution was explored using the mor-
phological variability indices presented in chapter 3. Under the assumption that the
T-wave morphology re�ects dispersion of repolarization, we hypothesized that restitu-
tion of the T-wave morphology would re�ect dispersion of repolarization restitution.
Thus, we calculated the slope of the T-wave morphology restitution and we assessed
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its SCD and PFD predictive value. The circadian modulation and classi�cation per-
formance were also assessed, using the methods described in chapter 2. Results showed
that dispersion of repolarization restitution quanti�ed through the slope of the T-wave
morphology restitution was speci�cally associated with SCD, with no relation to PFD
risk. The SCD risk prediction was superior to that from the slope of the Tpe dynamics
shown in chapter 2. The circadian pattern also modulated restitution of the T-wave
morphology, with signi�cantly higher values during the day than at night. Finally,
classi�cation results were also improved when using a combination of ECG-derived
risk markers, with similar performance as those obtained in chapter 2. In conclusion,
the slope of the T-wave morphology restitution could be used in the clinical practice
as a tool to target a high SCD-risk population that could largely bene�t from ICD
implantation.

Although deriving an individual index with strong predictive value is still desirable,
SCD and PFD events are a result of a combination of multiple mechanisms. There-
fore, using a score that integrates several risk factors might improve prediction even
further. Then, in chapter 5 clinical and ECG-based models to speci�cally predict SCD
and PFD risk, respectively, were proposed and their predictive values were compared.
Subsequently, combined risk models including clinical and ECG-derived markers were
developed to optimally predict SCD and PFD risk. The clinical, ECG-based and com-
bined risk models were shown to improve SCD and PFD risk prediction, as compared
to individual markers. For SCD, the combination of clinical and ECG-derived vari-
ables substantially improved risk prediction as compared to the use of only one or the
other type of characteristics. In contrast, PFD risk prediction was already optimal
for the ECG-derived model and the combination with clinical variables did not add
PFD prognostic information. Our results con�rm the need for a multi-factorial index,
including information from complementary mechanisms, to optimize SCD and PFD
risk strati�cation.

In conclusion, two ECG-derived indices re�ecting dispersion of repolarization resti-
tution have been proposed in this thesis and their SCD and PFD predictive value has
been proved. Each index exploits di�erent information from the T-wave, one using
the Tpe interval and the other using the overall T-wave morphology. For the quanti�-
cation of di�erences in the morphology of the T-wave, a robust methodology, based
on time-warping, has been developed.

Keywords: Chronic Heart Failure; Classi�cation; Electrocardiogram; Risk Predic-
tion; Pump Failure Death; Repolarization Restitution; Sudden Cardiac Death; Time-
Warping; T-wave Processing





Resumen y Conclusiones

Las enfermedades cardiovasculares siguen siendo la mayor causa de muertes en todo
el mundo, y se espera que el número de casos crezca progresivamente en los próximos
años con el envejecimiento de la población. Por ello, se necesitan marcadores no
invasivos con alta capacidad de predicción de muerte para reducir la incidencia de
estos eventos fatales.

La insu�ciencia cardiaca crónica (CHF, del inglés �Chronic Heart Failure�) describe
la condición por la cual el corazón no es capaz de bombear su�ciente sangre para al-
canzar las demandas del cuerpo. Se ha demostrado que los pacientes con CHF pueden
experimentar un empeoramiento progresivo de los síntomas, pudiendo llegar a pro-
ducirse la muerte por fallo de bomba (PFD, del inglés �Pump Failure Death�), o sufrir
eventos arrítmicos malignos que lleven a la muerte súbita cardiaca (SCD, del inglés
�Sudden Cardiac Death�). Uno de los factores electro-�siológicos con mayor in�uencia
en la generación de arritmias malignas es el aumento de la dispersión de la repolar-
ización, o la variación espacio-temporal en los tiempos de repolarización. También se
ha demostrado que la respuesta de esta dispersión a variaciones en el ritmo cardiaco, es
decir, la dispersión de la restitución de la repolarización, está relacionada con mayor
riesgo arrítmico y de SCD. Por otro lado, el empeoramiento de CHF se mani�esta
con una reducción de la respuesta de los ventrículos a la estimulación autonómica, y
con un balance simpato-vagal anormal. Con la llegada de los de�briladores cardiover-
sores implantables (ICDs, del inglés �Implantable Cardioverter De�brillators�), y de
la terapia de resincronización cardiaca (CRT, del inglés �Cardiac Resynchronization
Therapy�), los dos dispositivos más popularmente usados en la práctica clínica para
prevenir SCD y PFD, respectivamente, la estrati�cación de riesgo se ha vuelto muy
relevante. Especí�camente, ser capaces de predecir el evento potencial que un pa-
ciente con CHF podría sufrir (SCD, PFD u otras causas) es de gran importancia. La
señal de electrocardiograma (ECG) es un método barato y no invasivo que contiene
información importante acerca de la actividad eléctrica del corazón.

El objetivo principal de esta tesis es desarrollar marcadores de riesgo derivados del
ECG que caractericen la restitución de la repolarización ventricular para mejorar la
predicción de SCD y PFD en pacientes con CHF. Para ello, se han utilizado, por un
lado, índices basados en intervalos temporales, como los intervalos QT y Tpe, ya que las
dinámicas de estos intervalos están asociadas con la restitución de la repolarización, y
con su dispersión, respectivamente, y, por el otro lado, índices basados en la morfología
de la onda T. Para utilizar la información de la morfología, se ha desarrollado una
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vi Resumen y Conclusiones

metodología innovadora que permite la comparación de dos formas diferentes, y la
cuanti�cación de sus diferencias.

En el capítulo 2 se desarrolló un algoritmo completamente automático para esti-
mar la pendiente y la curvatura de las dinámicas de los intervalos QT y Tpe a partir
de registros ECG Holter de 24 horas de 651 pacientes con CHF. A continuación,
se estudió la modulación del patrón circadiano de las estimaciones propuestas, y se
evaluó su valor predictivo de SCD y PFD. Finalmente, se estudió la capacidad de
clasi�cación del marcador analizado con mayor valor predictivo, individualmente y en
combinación con otros dos marcadores de riesgo de ECG previamente propuestos, que
re�ejan mecanismos electro-�siológicos y autonómicos. Los resultados demostraron
que la dispersión de la restitución de la repolarización, cuanti�cada a partir de la pen-
diente de la dinámica del intervalo Tpe, tiene valor predictivo de SCD y de PFD, con
pendientes altas indicativas de sustrato arrímico predisponiendo a SCD y pendientes
planas indicativas de fatiga mecánica del corazón predisponiendo a PFD. Sin embargo,
la pendiente de la restitución de la repolarización, cuanti�cada como la pendiente de
la relación QT/RR, así como los parámetros de curvatura de las dos relaciones, no
mostraron asociación con ningún tipo de muerte cardiaca. El patrón circadiano mod-
uló estos parámetros, con valores signi�cativamente mayores durante el día que durante
la noche. Finalmente, los resultados de clasi�cación probaron que la combinación de
los marcadores de riesgo derivados del ECG que re�ejan información complementaria
mejora la discriminación entre SCD, PFD y otros pacientes. Nuestros resultados sug-
ieren que la pendiente de la dinámica del intervalo Tpe podría incluirse en la práctica
clínica como herramienta para estrati�car pacientes de acuerdo a su riesgo de sufrir
SCD o PFD y, por lo tanto, aumentar el bene�cio del tratamiento con ICDs o CRT.

Considerando estos resultados, postulamos a continuación que la morfología de la
onda T contiene información adicional, no tenida en cuenta al usar únicamente índices
basados en intervalos temporales. Por lo tanto, en el capítulo 3 desarrollamos una
metodología para comparar la morfología de dos ondas T, y propusimos y evaluamos
la capacidad de nuevos marcadores derivados del ECG para cuanti�car variaciones en
la morfología de la onda T. Primero, comparamos la capacidad de eliminar la variabil-
idad en el dominio temporal de dos algoritmos, �Dynamic Time Warping� (DTW) y
�Square-root Slope Function� (SRSF). Luego, se propusieron índices morfológicos y se
evaluó su robustez ante la presencia de ruido aditivo con señales generadas sintética-
mente. A continuación, se utilizó un modelo electro�siológico cardiaco para investigar
la relación entre los índices de variabilidad morfológica de onda T y los cambios mor-
fológicos a nivel celular. Finalmente, se cuanti�caron las variaciones en la morfología
de la onda T producidas por una prueba de tabla basculante en registros de ECG con
los marcadores propuestos y se estudió su correlación con el ritmo cardiaco y otros mar-
cadores tradicionales. Nuestros resultados mostraron que SRSF fue capaz de separar
las variaciones en el tiempo y en la amplitud de la onda T. Además, los marcadores
propuestos de variabilidad morfológica probaron ser robustos frente a ruido aditivo
Laplaciano y demostraron re�ejar variaciones en la dispersión de la repolarización a
nivel celular en simulación y en registros de ECG reales. En conclusión, los índices
propuestos que cuanti�can variaciones morfológicas de la onda T han demostrado un
gran potential para ser usados como predictores de riesgo arrítmico.
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En el capítulo 4, se exploró la restitución de la repolarización ventricular usando
los índices de variabilidad morfológica presentados en el capítulo 3. Bajo la hipótesis
de que la morfología de la onda T re�eja la dispersión de la repolarización, hipoteti-
zamos que la restitución de la morfología de la onda T re�ejaría la dispersión de la
restitución de la repolarización. Por lo tanto, calculamos la pendiente de la restitución
de la morfología de la onda T y evaluamos su valor predictivo de SCD y PFD. También
estudiamos, como en el capítulo 2, la modulación del patrón circadiano y la capacidad
de clasi�cación. Los resultados mostraron que la dispersión de la restitución de la re-
polarización cuanti�cada a través de la pendiente de la restitución de la morfología de
la onda T, estaba asociada especí�camente con SCD, sin ninguna relación con PFD.
El patrón circadiano también moduló la restitución de la morfología de la onda T, con
valores signi�cativamente mayores durante el día que durante la noche. Finalmente,
los resultados de clasi�cación también mejoraron al utilizar una combinación de mar-
cadores de riesgo derivados del ECG. En conclusión, la pendiente de la restitución de
la morfología de la onda T podría usarse en la práctica clínica como herramienta para
de�nir una población de alto riesgo de SCD que podría bene�ciarse de implantación
con ICDs.

Finalmente, aunque lo deseable es encontrar un índice individual con alto valor
predictivo, los eventos de SCD y PFD son el resultado de una múltiple cadena de
mecanismos. Por lo tanto, la predicción podría mejorarse todavía más si se usara
un marcador que integrara varios factores de riesgo. En el capítulo 5 se propusieron
modelos clínicos, basados en el ECG y otros combinando ambos tipos de variables,
para predecir especí�camente riesgo de SCD y de PFD. Además, se comparó tu valor
predictivo. Los modelos clínicos, basados en ECG y combinado demostraron mejorar
la predicción de SCD y de PFD, comparado con los marcadores individuales. Para
SCD, la combinación de variables clínicas y derivadas del ECG mejoró sustancialmente
la predicción de riesgo, comparado con el uso de uno de los dos tipos de variables. Sin
embargo, la predicción de riesgo de PFD demostró ser óptima al utilizar el modelo
derivado del ECG, ya que la combinación con variables clínicas no añadió ninguna
información predictiva de PFD. Nuestros resultados con�rman la necesidad de utilizar
un índice multi-factorial, que incluya información de mecanismos complementarios,
para optimizar la estrati�cación de riesgo de SCD y de PFD.

En conclusión, en esta tesis se han propuesto dos índices derivados del ECG, que
re�ejan dispersión de la restitución de la repolarización, y se ha demostrado su valor
predictivo de SCD y PFD. Cada índice explota información diferente de la onda T,
uno utiliza el intervalo Tpe y el otro utiliza la morfología completa de la onda T. Para
la cuanti�cación de las diferencias en la morfología de la onda T, se ha desarrollado
una metodología robusta que se basa en la re-parametrización en el tiempo.

Palabras clave: Clasi�cación; Electrocardiograma; Insu�ciencia Cardiaca Crónica;
Muerte por Fallo de Bomba; Muerte Súbita Cardiaca; Predicción de Riesgo; Procesado
de Onda T; Re-parametrización Temporal; Restitución de la Repolarización;
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1.1 Motivation

Cardiovascular diseases remain the leading cause of deaths worldwide, with more
than 17 million cases in 2015 and this number being expected to grow to >23.6 million
by 2030 [1, 2]. More than 3 million of these deaths occurred before the age of 60
and could have largely been prevented [3]. The main causes underlying these deaths
include high blood pressure, smoking, diabetes, lack of exercise, obesity, high blood
cholesterol, poor diet, and excessive alcohol consumption, among others. These �gures
do justify any e�ort to reduce the incidence of cardiovascular diseases, including means
to improve prediction, diagnosis and treatment.

1



2 Chapter 1. Introduction

1.2 The Heart

1.2.1 Electrophysiology

The heart is a muscular organ the size of a large �st whose primary function is
to pump oxygen-rich blood throughout the body. Its anatomy is divided into two
�mirrored� sides, left and right, which support di�erent circulatory systems but which
pump in a synchronized, rhythmic manner. Each side of the heart consists of two
chambers, the atrium where the blood enters and the ventricle where the blood is
forced into further circulation [4]. During each cardiac cycle (heart beat), the atria
contract in diastole to �ll the ventricles, which, then, contract during systole to supply
blood to the lungs and the systemic circulation. The wall of the heart is called the
myocardium and is primarily composed of muscle cells (myocytes) that produce me-
chanical force during contraction of the heart [5]. Contraction of the atria and ventri-
cles is triggered by a wave of electrical excitation (depolarization) spreading through
the myocardium of these chambers. The depolarization wave re�ects movement of
charge across the myocyte membranes, which results in an electrical current spreading
through the heart. Following systole, cardiac muscle returns to a resting state and this
is associated with reversal of the movement of charge across the myocyte membranes.
This second wave of electrical activity is termed cardiac repolarization [6]. In this
section, the electrical activity across the membrane of an isolated cardiac myocyte,
and the electrical propagation throughout the heart are described.

Cellular Electrical Activity

At rest, the membrane potential, i.e. the voltage di�erence between the inside and
the outside of the cell, is negative. A large enough stimulation of the myocardial cell
is able to elicit an action potential (AP), which is a representation of the electrical
activity of a single cell. The myocardial AP has 5 phases (numbered 0-4), which are
shown in Fig. 1.1 [7, 8]:

� Phase 4 corresponds to the resting membrane potential and describes the mem-
brane potential when the cell is not being stimulated (-85 to -95 mV in ventricular
myocardium).

� Phase 0 corresponds to the depolarization phase where an initial fast upstroke
results due to the opening of the fast inward sodium (Na`) channels. This
opening causes a rapid increase in the membrane conductance to Na` and thus a
rapid in�ux of Na` ions into the cell, i.e. a Na` current. The ability of the cell to
open the fast Na` channels during phase 0 is related to the membrane potential
at the moment of excitation. If the membrane potential is at its baseline (about
-85 mV), all the fast Na` channels are closed, and excitation will open them all,
causing a large in�ux of Na` ions. If, however, the membrane potential is less
negative, some of the fast Na` channels will be in an inactivated state insensitive
to opening, thus causing a lesser response to excitation of the cell membrane and
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Figure 1.1: (a) Action potential of a ventricular myocyte, with indication of its phases. (b) Illustration
of the ionic currents underlying the di�erent AP phases. From [9].
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a lower maximum potential. For this reason, if the resting membrane potential
becomes too positive, the cell may not be excitable and conduction through the
heart may be delayed.

� Phase 1 represents an initial and brief repolarization and occurs with the inac-
tivation of the fast Na` channels. The transient net outward current causing the
small downward de�ection of the AP is mainly due to the movement of potassium
(K`) ions, carried by the transient outward potassium current Ito1. Particularly
the transient outward potassium current Ito1 contributes to the �notch� of some
ventricular myocyte APs.
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� Phase 2, also called �plateau� phase of the cardiac AP, is sustained by a balance
between inward movement of Ca2` through L-type calcium channels and outward
movement of K` through the slow delayed recti�er potassium channels, IKs. This
plateau phase prolongs the AP duration (APD) and distinguishes cardiac APs
from the much shorter APs found in nerves and skeletal muscle.

� Phase 3, the �rapid repolarization� phase, the L-type Ca2` channels close, while
the slow delayed recti�er (IKs) K

` channels are still open. This ensures a net
outward current, corresponding to a negative change in membrane potential,
thus allowing more types of K` channels to open. These are primarily the rapid
delayed recti�er K` channels (IKr) and the inwardly rectifying K` current, IK1.
This net outward, positive current (equal to loss of positive charge from the cell)
causes the cell to repolarize. The delayed recti�er K` channels close when the
membrane potential is restored to about -80 to -85 mV, while IK1 remains con-
ducting throughout phase 4, contributing to set the resting membrane potential.

Electrical Activity of the Heart

Cardiac depolarization is triggered by an electrical pulse generated in the sinoatrial
(SA) node, situated near the entry of the superior vena cava into the right atrium
(Figure 1.2). This electrical pulse, then, spreads through the atria, triggering their
contraction, late in diastole. The atria and ventricles, however, are separated by a
non-conducting �bre septum, so the depolarization wave cannot penetrate this bar-
rier. In order to activate ventricular contraction, the wave must be transmitted into
the ventricles by the specialized cardiac conducting system. In a normal heart, the
only route by which the depolarizing wave can enter the ventricular conducting sys-
tem is through the atrioventricular (AV) node (Figure 1.2). In order to allow the
ventricles to �ll with blood following atrial contraction, the AV node initially delays
the spread of the depolarization wave, and, after this short delay, the depolarizing
signal is transmitted into the ventricles via the bundle of His. The bundle of His lies
in the interventricular septum, and divides into right and left bundle branches. The
right and left bundle branches transmit the depolarizing signal into the muscle mass of
the right and left ventricles, respectively. The interventricular septum is the �rst part
of the ventricular muscle mass to depolarize, and it does so by movement of current
across the septum, from the left towards the right bundle branch. As septal depo-
larization is taking place, the depolarizing wave begins to spread rapidly to the book
of the right and left ventricles. In the walls of the ventricles, depolarization spreads
from the terminal �bers of the conducting system outwards from the inner layer (en-
docardium) towards the outer surface of the heart (epicardium), and also back along
the ventricular wall to the atrioventricular groove [6].

Cardiac repolarization is not truly propagated between cells. However, cardiac
myocytes repolarize at di�erent rates, depending on their anatomical location within
the heart. Research over the past two decades has suggested that signi�cant di�er-
ences exist in the time course of repolarization of endocardial, epicardial and mid-
myocardial cells that comprise the ventricular myocardium [10�13]. These di�erences
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Figure 1.2: Electrical conducting system of the heart. The morphology and timing of action potentials
from di�erent regions of the heart and the related cardiac cycle of the electrocardiogram as measured
on the body surface. From [5].

in repolarization time, i.e. dispersion of repolarization, are critical, when they become
substantially augmented, for the genesis of a malignant arrhythmogenic substrate [14],
and is the key concept of this thesis.

Dispersion of Repolarization

Di�erent studies in the literature have provided evidence that myocytes near the
epicardium have shorter APD at normal heart rates than myocytes near the endo-
cardium [15, 16] and there is the notion that epicardial repolarization occurs earlier
than endocardial repolarization. However, other studies have demonstrated that in
some cases epicardial repolarization occurs later, not earlier, than endocardial repo-
larization [17]. Also, some studies show that mid-myocardial cells are the last cells
to repolarize and, then, full repolarization of the mid-myocardium would mark the
end of the repolarization of the heart [10, 18]. This contribution of mid-myocardial
cells to regional dispersion of repolarization has been controversial [19�21]. Rather
than contiguous layers of cells in the myocardium, di�erent laboratories have shown
that isolated islands of delayed repolarization exist across the ventricular wall [22,23].
In any case, it is clear that repolarization time di�erences, or dispersion of repolar-
ization, not only exist between cells of di�erent chambers of the heart (i.e. atria,
ventricles, nodal tissue) [24,25], but also between myocytes of di�erent regions within
the ventricular wall, e.g. epicardium versus endocardium [16, 26�31], or apex versus
base [30,32�39].
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Figure 1.3 (a) shows a schematic diagram of the ventricles. Figure 1.3 (b) presents
the APs from three myocytes in the left ventricle, located near the base endocardium
(1), epicardium (2) and apex endocardium (3). Vertical lines indicate the correspond-
ing repolarization time and, thus, the time di�erence between them re�ects their dis-
persion of repolarization. As it can be observed, the depolarization wave travels from
1 (endocardium) to 3 (epicardium) and the repolarization time increases as we move
from 3 (epicardium) to 1 (endocardium).

The repolarization time of a cardiac myocyte is in�uenced by the time required
for the impulse to propagate to and depolarize that myocyte, i.e. conduction velocity,
and the myocyte's intrinsic APD. Therefore, spatial dispersion of repolarization in the
ventricles is in�uenced by dispersion of conduction velocity and the spatial dispersion
of APD, i.e. the di�erence between the APDs of di�erent myocytes [14]. Such diver-
sity in the electrophysiological characteristics of cellular ionic properties can strongly
in�uence the arrhythmia vulnerability [14].

Repolarization Restitution

Repolarization restitution refers to mechanisms whereby the electrical recovery
(repolarization) respond to a variation in the heart rate [41�44]. At fast heart rates,
repolarization becomes faster while at slow heart rates repolarization is slower [45,46].

The APD restitution (APDR) curve represents the APD as a function of the pre-
ceding RR interval (inverse of the heart rate) and is usually almost �at for RRs longer
than 1 s and steeper for shorter RRs [46, 47]. Figure 1.3 (c) shows the APDR curves
of the three myocytes selected in panel (a). The green curve corresponds to cell 3,
with the minimum APD, the blue curve corresponds to cell 2, repolarizing when half
the ventricle is repolarized and the other half is still depolarized, and the pink curve
corresponds to cell 1, and, thus, the last cell to repolarize. The slope of the curves
at a given RR interval value, denoted by α1, α2 and α3, re�ect the change in APDs
1, 2 and 3, respectively, as a response to the change in RR. As it will be discussed
later, several studies have shown that the steepness of the APDR curves is relevant to
arrhythmogenesis [48�51].

Dispersion of Repolarization Restitution

The above-mentioned phenomenon of dispersion produced by electrophysiological
di�erences across the wall of the ventricle and between ventricles has also a dependence
on heart rate, with the dispersion decreasing as heart rate increases [52].

This concept is illustrated in Figure 1.3 (c). Due to dispersion of repolarization
and of restitution kinetics, the three curves exhibit di�erences in range and slope.
The restitution kinetics of the repolarization times along the ventricle is also hetero-
geneous. As it will be discussed, several studies have proved that increased dispersion
of repolarization restitution facilitates arrhythmia development [53,54].
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Figure 1.3: Schematic diagram showing the hypothesis of this thesis: estimation of dispersion of repo-
larization restitution, and the slope of total repolarization restitution, from the ECG. (a): Schematic
diagram of the ventricles, with selected base-endocardial (1), epicardial (2), and apico-endocardial
(3) ventricular myocytes. (b): Action potentials, generated with ECGSIM [40], from cells 1, 2 and
3, and the resulting ECG beat. Vertical lines indicate the corresponding repolarization times. The
QT and Tpe intervals are also shown. (c): Action potential duration restitution curves from cells 1, 2
and 3. Black dots indicate the slopes of cells 1 and 2, α1 and α2, respectively, at a given RR interval
value. Quanti�cation of dispersion of repolarization restitution and the slope of total repolarization
restitution, for a speci�c RR value, from the Tpe and QT intervals is de�ned in terms of α1 and α2.
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1.2.2 Modulation by the Autonomic Nervous System

The Autonomic Nervous System (ANS) is a division of the peripheral nervous sys-
tem that in�uences the function of internal organs, like the heart [55]. The ANS reg-
ulates cardiovascular functions such as the heart rate, the blood pressure or the respi-
ratory rate, and it consists of two branches, the sympathetic and the parasympathetic
systems, that work in a delicately tuned, yet opposing fashion in the heart [56, 57].
In other words, increasing the activity of one system while simultaneously decreasing
the activity of the other results in very rapid and precise control of the function of the
heart [58].

Each system is dominant under certain conditions. The sympathetic system pre-
dominates during emergency ��ght-or-�ight� reactions and during exercise. The overall
e�ect of the sympathetic system under these conditions is to prepare the body for stre-
nous physical activity. More speci�cally, sympathetic nervous activity increases the
heart rate and the myocardial contractility to increase the stroke volume, which is
the amount of blood pumped every beat [59]. Given the ability to modulate both
cardiac rate and stroke volume, the sympathetic nervous system provides an impor-
tant remote mechanism to rapidly meet short-term changes in the body needs. The
parasympathetic system regulates �rest and digest� functions, predominating during
quiet, resting conditions [60]. The overall e�ect of the parasympathetic system under
these conditions is to conserve and store energy and to regulate basic body func-
tions such as heart rate and respiration [58]. Under normal physiological conditions,
parasympathetic stimulation inhibits sympathetic activation and its e�ects at rest and
during exercise [60], by reducing heart rate and AV nodal conduction, and causing va-
sorelaxation [60].

1.3 Electrocardiogram

1.3.1 De�nition and Waveforms

The ECG describes the electrical activity of the heart measured on the body surface
by attaching a set of electrodes to the skin. The electrodes are positioned so that the
spatio-temporal variations of the cardiac electrical �eld are su�ciently well-re�ected.
For an ECG recording, the di�erence in voltage between a pair of electrodes is referred
to as a lead. The voltage variations measured by the leads are caused by the APs of
the excitable cardiac cells as they contract. The resulting heartbeat in the ECG is
manifested by a series of waves whose morphology and timing convey information
that can be used for diagnosing diseases associated with disturbances of the heart's
electrical activity [5].

To record a standard ECG, 10 electrodes are placed in standardized positions on
the patient's body. The information obtained allows the analysis of the movement of
electrical forces through the heart from 12 di�erent perspectives around the organ. In
this way, the ECG recording can provide information about disease processes a�ecting
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di�erent anatomical regions of the organ and can allow the detection of changes in the
pattern of spread of electrical forces through the heart in disease. For now, we need
to understand how an individual ECG lead re�ects cardiac electrical events.

In any ECG lead, the �at line recorded when no net current is �owing in its direction
is termed the isoelectric line. It is important to realize that all of the leads on the ECG
recording system are set up in such a way that depolarizing current moving towards
a lead produces a positive de�ection on the ECG signal above the isoelectric line,
while depolarizing current moving away from the lead produces a negative de�ection
below the isoelectric line. In contrast, repolarizing current has the opposite polarity to
depolarizing current. Therefore, repolarizing current moving towards a lead produces
a negative de�ection on the signal, while repolarizing current moving away from the
lead produces a positive de�ection [5]. Figure 1.2 illustrates how the APs of di�erent
cardiac cells generate the ECG signal, in this example viewed by an exploring electrode
which is positioned on the chest.

As described in section 1.2.1, the atrial depolarization wave not only spreads down-
wards and to the left but also outwards towards the front of the chest. As this depo-
larizing current is moving towards the chest leads, it produces a positive de�ection on
the ECG signal, which is the P wave of atrial depolarization. Then, the ventricular
depolarizing current is �rst released from the left bundle branch of the conducting sys-
tem into the interventricular septum, to the right bundle branch. This septal current
is moving away from the chest and, therefore, produces an initial negative de�ection in
this lead (Q wave). To understand what happens next in the recording, it is important
to appreciate that the magnitude of the electrical signal generated by the depolariz-
ing muscle is directly proportional to the mass of muscle generating it. What this
means is that the more muscle present, the more electrical signal generated and the
more amplitude the ECG signal re�ects. The left ventricle has a much greater mus-
cle mass than the right one and, thus, dominates the electrical signal of ventricular
depolarization in all leads. Therefore, after release of the depolarization wave from
the conducting system into the main muscle mass of the ventricles, the endocardial to
epicardial movement of current in the left ventricle overwhelms all other signals and,
as it is moving towards the chest, it produces a strong positive de�ection in this lead
(R wave). Depolarization terminates with the dominant vector pointing away from
the electrode, and thus a wave with negative polarity is produced in the ECG, the S
wave. The group of these three waves is known as the QRS complex, with its mor-
phology di�ering predictably in the ECG leads depending on their position relative to
the heart [5].

When ventricular depolarization is complete, there is a brief period when no cur-
rent is �owing and the recording returns to the isoelectric line. This period ends with
the onset of ventricular repolarization. The de�ection produced on the ECG by ven-
tricular repolarization is again dominated by the signal from the left ventricle. As
the repolarizing wave is moving away from the chest, it produces a positive de�ection.
This de�ection is termed T wave. Note that the T-wave has a very di�erent morphol-
ogy to the QRS complex. Cardiac repolarization spreads relatively slowly through
the myocardial muscle mass, outside the conducting system. Hence, the T-wave is



10 Chapter 1. Introduction

considerably longer in duration and, therefore, broader on the ECG signal than the
QRS complex. In non-diseased hearts, the polarity of the QRS complex and the T-
wave tend to be concordant. Also, atrial repolarization produces a relatively weak
electrical signal which is buried in the QRS complex and is generally not detectable
on a standard 12-lead ECG [5].

1.3.2 Leads

Standard Leads

Since the �ow of depolarization and repolarization through the myocardium is a
three dimensional process, it is important to realize that each of the leads of the ECG
recording system examines the movement of the electrical waves through the heart
in one plane only. In fact, based on the plane in which electrical events in the heart
are analysed, the 12 leads of the ECG can be divided into two groups of six. The
six frontal leads examine the �ow of depolarization and repolarization through the
heart in the vertical, or frontal, plane (Figure 1.4 (left)), while a second group of six
leads, the chest leads, also referred to as the precordial leads, V1 to V6, examine these
electrical events in the horizontal or transverse plane [5] (Figure 1.4 (right)).

The frontal leads can be further divided in two groups of three, the standard limb
leads, leads I, II and III, and the augmented vector leads, aVR, aVL and aVF. By
taking a representative frontal section through the chest, the perspective of each of
these leads on cardiac electrical events can be understood. To remember the position
of all 6 of the frontal leads relative to the heart, lead I is used as the reference point.
Lead I looks directly at the heart from the patients left hand side and de�nes zero
degrees. Lead II looks at the heart at an angle 60˝ further clockwise from lead I, while
lead III is positioned a further 60˝ clockwise from lead II. aVL looks at the heart from
the left (L is for left), but at 30˝ anticlockwise from lead I. aVR looks at the right
side of the heart (R is for right), and, just like aVL, it is 30˝ above the horizontal
relative to lead I. As aVL and aVR are set at 30˝ o� the horizontal plane, they can
be thought as the left and right Wings or �vings� of the ECG. aVF looks straight up
at the inferior surface of the heart and is, therefore, at 90˝ clockwise from lead I. aVF
can be thought of as looking straight up at the heart from the feet (F is for feet) [5].

The 6 chest leads, V1 to V6, are placed on the surface of the chest wall in an arc,
from V1 in the 4th right intercostal space to the right of the sternum, to lead V2 in
the fourth left intercostal space to the left of the sternum, and then at roughly equal
intervals, to lead V6 in the �fth left intercostal space in the mid-axillary line. If we take
a representative transverse section through the chest, it can be appreciated that, with
the heart in anatomical position, the atria lie posterior to the ventricles and the right
ventricle lies somewhat anterior to the left in this plane. Leads V1 and V2, therefore,
face the surface of the right ventricle. However, note they also face the much larger
muscle mass of the interventricular septum. Then, these leads are strongly in�uenced
by electrical events in this structure and V1 and V2 are, therefore, often referred to as
the septal leads. V3 and V4 face the anterior wall of the left ventricle, while V5 and
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Figure 1.4: The six frontal (left) and horizontal (right) plane leads provide a three-dimensional
representation of cardiac electrical activity. From [5].

V6 face the lateral wall of the left ventricle [5].

Only eight from these twelve acquired leads are independent. Then, it would be
su�cient, as an example, to only consider the six precordial leads and two augmented
vector leads to represent all the information from the twelve standard leads [5].

Orthogonal Leads

As mentioned above, the electrical �ow through the heart is a three-dimensional
process. Then, it is interesting to construct three orthogonal leads containing the
electric information in the right-left axis (X ), head-to-feet axis (Y ), and front-back
axis (Z ). For such a lead system, the ECG interpretation is not con�ned to �ndings
in individual leads, but additional information is acquired through the visualization
of a three-dimensional loop together with its projection onto the XY-, XZ-, and YZ-
planes, as seen in Figure 1.5. Since a loop is traced out by the tip of the vector that
describes the dominant direction of the electrical wavefront during the cardiac cycle,
this particular type of recording is referred to as a vectorcardiogram (VCG) [5].

Pairs of electrodes positioned along mutually perpendicular lines on the body sur-
face may, at �rst glance, appear to produce leads that are orthogonal [61]. Based on
mathematical modeling as well as on experimental results, however, it has been found
that additional electrodes are required in order to account for the geometry of the
human torso. The corrected orthogonal leads, known as the Frank lead system after
its inventor [62], are obtained as linear combinations of seven electrodes positioned on
the chest, back, neck, and left foot. The resulting leads X, Y, and Z view the heart
from the left side, from below, and from the front [5].
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Figure 1.5: A vectorcardiographic loop and its projection onto the three orthogonal planes. From [5].

Synthesized Leads

It is possible to compute an orthogonal base composed of three leads from the stan-
dard 12-lead ECG, if the Frank lead system is not available [5]. Two main methodolo-
gies have been proposed, like the Dower's inverse transformation [63], and the Kors's
inverse transformation [64], which has, so far, proven to be the best agreement with
the original Frank leads, expressed in diagnostic terms [5]. An alternative option to
derive an orthogonal base is to exploit the ECG signal statistics, rather than repre-
senting the spatial electric wavefront. For that purpose, in this thesis we have applied
a statistical signal processing technique called Principal Component Analysis (PCA).

The objective of PCA is to condense the information provided by a set of possibly
correlated variables into uncorrelated variables. PCA is used in ECG signal processing
to emphasize temporal and morphological properties, or to extract noisy interferences,
from the characteristic waveforms [65].

One way of implementing PCA is by applying singular value decomposition (SVD)
using the eight independent standard leads to obtain eight new transformed leads.
Let the data matrix X be of nxp size, where n is the number of samples and p is the
number of leads, 8 in this case. Now, let the training data matrix L be of mxp size,
where m is the number of samples selected to calculate and learn the directions of
maximal variance. If we now perform SVD of L, we obtain a decomposition

L “ UΣVT , (1.1)
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where Σ is the diagonal matrix of singular values, and U and V are matrices of
left and right eigenvectors, respectively. The eigenvectors are called principal axes or
principal directions of the data. Projections of the data onto the principal axes are
called principal components. Then, the principal components are given by:

Pc “ XV (1.2)

The spatial meaning of PCA can be interpreted as the translation of the information
to other coordinate system such that the principal coordinate (principal component)
represents the direction of maximum variance, the second coordinate the direction of
the second component of maximum variance, etc. Then, the obtained principal compo-
nents re�ect the level of morphological variability present in the ECG signal segment
selected for the construction of matrix L. When the eigenvalue associated with the
�rst principal component is signi�cantly higher than the others, the segment presents
low morphological variability. In contrast, a large similarity among the eigenvalues
indicates a great variability [65].

1.3.3 Detection and Delineation

The detection process consists of detecting the occurrence time of the heartbeats,
while delineation consists of determining the boundaries of each wave within the heart-
beat [5].

Single-lead Delineation

Single-lead delineation identi�es the wave boundaries of a lead, independently from
the others. In this thesis, an automatic method based on the wavelet transform (WT)
has been used [66]. WT describes the signal in both time and frequency domains.
Therefore, it allows the representation of wave features at di�erent levels (scales)
depending on their frequency content. This representation is proportional to the signal
derivative when the proper wavelet mother function is used. Then, for example, a zero-
crossing represents a peak in the original signal. QRS complex needs a di�erent scale of
that used to characterize P and T waves, because its frequency content is substantially
di�erent [66].

First, QRS complex �ducial point (QRS complex gravity center) is detected and,
then, Q, R and S waves are separately delineated. Finally, P and T waves are delin-
eated by sliding the analysis window [66]. Signal to noise ratio (SNR) constitutes a
drawback in single-lead delineation because if the noise level is high it is di�cult to
correctly place the wave boundaries.

Multi-lead Delineation

The main problem with single-lead delineation is that it marks annotation points
on a signal that is very dependent on the location where the electrode has been placed,
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i.e. it provides a local information waveform onset and end. Then, the number of onset
and end points is equal to the number of analysed leads. From these marks, it can be
observed that in some leads a particular wave starts signi�cantly earlier than in other
leads. However, the onset and end of the electrical heartbeat is unique and, therefore,
it is convenient to �nd a single mark that robustly indicates this phenomenon, which
is achieved with multi-lead delineation.

� Single-lead-and-rules delineation: This method consists of selecting an an-
notation mark among the marks obtained using single-lead delineation in each
heartbeat. If the mark is the onset of a wave, all the onset marks from all the
leads are sorted and the �rst one (which marks the position of the �rst recorded
electrical change) is chosen. A protection criteria which states that k leads must
have their onset mark within a δ time interval needs to be accomplished. k and δ
values are chosen depending on the delineated wave and the number of available
leads. If the mark is the o�set of a wave, the algorithm works similarly but the
last annotation mark over leads is chosen. If the mark corresponds to the wave
peak, the median criteria is used instead, i.e. all the marks are sorted and the
one in the middle is selected. If the protection criteria is not accomplished, the
mark is rejected [67].

� 3D Delineation: This method considers three orthogonal leads [68]. Their
canonical representation can be expressed as:

srns “ rxrns, yrns, zrnss
T
, (1.3)

where xrns, yrns and zrns may be any of the three orthogonal or synthesized
leads. If the canonical representation is plotted in the coordinate system, a
spatial wave similar to a loop can be obtained. Then, WT is applied, obtaining
[66]:

wsrns “ rwx,srns, wy,srns, wz,srnss
T
, (1.4)

where wsrns de�nes a second spatial loop, which is the wavelet transformation of
srns. The parameter s is the scale (frequency band) at which the transformation

is performed. The direction u “ rux, uy, uzs
T

de�nes the vector onto which
the loop should be projected to obtain a 1-D signal with maximal SNR in the
selected area and, then, optimal to delineate [68]. The lead resulting from the
projection of srns onto such direction is calculated as:

drns “
sT rnsu

}u}
, (1.5)

while the projection of wsrns is obtained in an analogous way, by replacing srns
with wsrns in the above equation. Next, the single-lead delineation technique
explained in section 1.3.3 is performed, by considering that the projected lead
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has been obtained to delineate a speci�c point (the delineation of the peak of
a waveform would require a di�erent projected lead than the delineation of the
end of a waveform).

1.4 Chronic Heart Failure

1.4.1 Concept and Diagnosis

The amount of blood pumped to the body at any time is based on the demand
that the cells in the body have for oxygen. As an example, if the body starts doing
exercise, the demand increases. The heart is able to respond, pumping more blood
to meet these new demands. Heart failure (HF) describes the condition where the
heart is not able to pump enough blood to meet the demands of the body [69]. The
two main types of HF are acute heart failure and chronic heart failure (CHF). Acute
heart failure develops suddenly and symptoms are initially severe, but may only last
for a brief time and improve rapidly. CHF is more common and symptoms appear
slowly over time and worsen gradually [69]. In this thesis, we used ECG recordings
from healthy subjects and patients with CHF.

The total amount of blood pumped by the heart every minute is the cardiac output,
and it is usually given in litres of blood per minute. The normal cardiac output is
around 5 litres per minute. Cardiac output can be expressed as the product of the
stroke volume and the heart rate (in beats per minute). In CHF, cardiac output is low
because the heart is not able to pump as much blood per minute as the healthy heart.
This is usually because there is a lowered stroke volume, or a lower amount of blood
pumped out of the heart with each contraction. Usually CHF is considered a secondary
disease, meaning that it is caused by a pre-existing or underlying disease that already
a�ects cardiac output. Speci�cally, these diseases are those that cause the death of
cardiac myocytes. When these muscle cells die, the heart gets weaker and pumps
less blood. Then, the stroke volume decreases, and, hence, the cardiac output [70].
When the cardiac output goes down, the heart either contracts harder and increases
stroke volume, or beats faster and increases heart rate. In the early stages of CHF,
these methods can help in compensating for decreased supply, but, over time, those
surviving muscle cells become overworked because they are constantly trying to either
beat faster or contract harder. In addition, to do either of those things, those cells need
more oxygen and, since the oxygen supply is low, more muscle cells tend to die. As a
result, stroke volume decreases even more, leading to an increment in the contraction
and heart rate, which worsens CHF. Also, maintained compensation of low cardiac
output can produce irreversible structural changes in the heart, like enlargement of
the cardiac muscle, and these structural changes may a�ect the electrophysiological
properties of the heart [69].

The �rst group of methods to diagnose CHF is imaging, by taking an X-ray of
the chest area. With imaging, the doctors are able to visualize the current state of
the heart, to look for any sign of enlargement, where the heart is bigger than normal
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due to the structural changes [71]. Another imaging technique normally applied is the
echocardiogram, which uses sound waves, instead of electromagnetic radiation. The
transducer sends sound waves towards the heart, and then receives the echo. This
can be translated into an image, or a real-time video, which allows the evaluation of
the left ventricular ejection fraction (LVEF), which is the percentage of blood ejected
from the left ventricle with each beat [72,73].

The second group is based on blood test, to search for certain substances in the blood
that are secreted or associated with CHF, like the B-type Natriuretic Peptide (BNP).
BNP is secreted by the ventricles in response to the excessive contraction of the muscle
cells and changes in pressure in the ventricles. BNP levels below 100 pg/ml of blood
indicates no CHF. BNP levels between 100 and 300 pg/ml might suggest the presence
of CHF. Between 300 and 900, it might be considered mild-to-moderate CHF and,
then, above 900 pg/ml would indicate a severe case of CHF [74,75].

The last group is the classi�cation system, which describes the severity of the
symptoms. The �rst classi�cation system is based on a stress test, which is also known
as the New York Heart Association (NYHA) Functional Classi�cation [76]. This test
looks at how well the patient responds to physical exertion, because with more activity
and exertion the body demands more blood. Therefore, depending on how well the
heart can respond to increasing demands by increasing activity, the severity of CHF
can be determined. Patients in class I have no limitation to physical activity. The
stress test does not cost any out of the ordinary fatigue, palpitations or shortness
of breath. Patients in class II experience some limitation to physical activity. The
patient might be comfortable at rest, but any normal physical activity results in some
symptoms of CHF. Patients in class III have a marked limitation of physical activity,
but still no symptoms at rest. Finally, patients in class IV have a complete inability
to undertake any physical activity without feeling no symptoms [76]. Furthermore,
those symptoms even occur at rest. A second classi�cation system is the �American
Heart Association Stages of HF�, which is more de�ned at the objective level by the
amount of structural heart disease that is present in each patient [77].

1.4.2 Treatment

In the early stages of CHF, the patients might not even have symptoms and they
might only have risk factors for CHF. This means that they probably have some kind
of pre-existing condition that might, if left unchecked, lead to CHF in the future, or
lead to worsening CHF if it is already present. At this stage, patients are still able to
go about their daily lives. Some examples of risk factors might include hypertension,
high blood pressure, coronary artery disease or diabetes. An early stage treatment
that is recommended is exercise. With exercise, the cardiovascular �tness increases.
This increases the e�ciency of the heart and, then, the cardiac output increases. In
addition to exercise, another lifestyle change that might be recommended is a change
in diet, and reducing salt intake is a common and important change, since it reduces
blood pressure, increasing the cardiac output. This decreases the chances of the heart
to start compensating, and making structural changes to the ventricles. Medications
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are also usually prescribed, like angiotensin-converting-enzyme (ACE) inhibitors and
angiotensin receptor blockers (ARBs), which are vasodilators that reduce blood pres-
sure, and beta-blockers, which inhibit the activation of the sympathetic nervous system
and prevent the heart rate to increase, and cause, again, structural changes [69].

In the late stages of CHF, when the symptoms associated with CHF have started
to appear, a di�erent set of medications is recommended for treatment. These med-
ications are aimed at treating and controlling these symptoms, which have already
started to a�ect the quality life of the patient [69].

Nevertheless, a CHF patient may get to the point where medications and lifestyle
changes help but are not enough, and the patient is symptomatic almost all the time.
Then, treatment is derived to implantation of medical devices or surgery. There are a
few types of medical devices that can be used, the ventricular assist device (VAD), the
cardiac resynchronization therapy (CRT) and the implantable cardioverter de�brilla-
tors (ICDs). The VAD takes control of the pumping for the ventricle of the patient.
There is a small tube that attaches to the ventricle that needs help. Then, blood,
instead of exiting to the artery, is rerouted to the VAD. The VAD, then, pumps it
out through the next tube, which connects with the artery and, then, leaves the heart.
Implantable VADs are usually reserved for people that are either waiting for a heart
transplant, or as a long-term solution for those that cannot have heart transplants.
CRT consists of a small pacemaker implanted in the chest, and, then, some electrical
wires go from the pacemaker to both the left and the right ventricles. In CHF, the
left and right ventricles may beat at di�erent rates, making the heart less e�cient to
pump. The pacemaker sends signals via the electrical wires at the same time, to tell
both ventricles to pump at the same time, leading to a normal and e�cient pump-
ing action. If the patient in CHF su�ers from life-threatening arrhythmia, the ICD
can deliver a shock that resets the heart to a normal rhythm. Surgery involves the
implantation of stents, coronary artery bypass, or, eventually, a complete heart trans-
plantation. This last option is limited to patients that are considered at end-stage
CHF, or where other medical treatments in surgery have failed [69].

1.4.3 Principal Outcomes

The mode of death in patients with CHF is frequently di�cult to determine. It is
commonly agreed that CHF patients may experience progressive symptomatic worsen-
ing, leading to pump failure death (PFD), or su�er from sudden cardiac death (SCD)
[69]. SCD is the primary cause of death for the majority of patients with mild-to-
moderate CHF, while PFD is more common among patients with advanced symp-
toms [78�81]. Then, diagnostic tools should be able to predict the potential outcome
that a CHF patient may su�er, and, then, treatment should be oriented to speci�-
cally ease, or correct, the symptoms of each mode of cardiac death (CD). Particularly
relevant for the patient with CHF is the possibility that further myocardial necrosis,
coupled with previous myocardial damage, may produce enough additional pump dys-
function that if sudden death does not occur, myocardial failure will rapidly develop.
How do patients with CHF die from PFD or SCD?
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Sudden Cardiac Death

SCD generally refers to an unexpected death from a cardiovascular cause in a per-
son with or without preexisting heart disease. The speci�city of this de�nition varies
depending on whether the event was witnessed. However, most studies include cases
that are associated with a witnessed collapse, death occurring within 1 hour of an
acute change in clinical status, or an unexpected death that occurred within the last
24 hours [82]. Although it is still di�cult to understand the underlying mechanisms
leading to SCD, it is commonly presumed that many are related to arrhythmias [81].
A cardiac arrhythmia is a variation in the normal heart rate and/or rhythm that is
not physiologically justi�ed [83,84]. The mechanisms responsible for cardiac arrhyth-
mias are generally divided into three major categories, a vulnerable myocardium, a
triggering factor and a modulator [84�86].

� Vulnerable myocardium: It is the substrate for arrhythmogenesis, meaning
that when triggering factors appear, they can lead to malignant arrhythmias
potentially ending in SCD [87]. A major, if not the major, electrophysiological
feature responsible for the vulnerability of the myocardium in human CHF ap-
pears to be an increased dispersion of repolarization [88�90]. A heart that is
totally homogeneous electrically, i.e. all cells are at the same stages of depolar-
ization and repolarization and conduct normally without delay or block, very
probably cannot develop ventricular arrhythmias. However, even in the normal
state, these conditions do not exist, because, in the healthy heart, dispersion of
repolarization allows e�cient contraction and relaxation, as described in section
1.2.1 [91]. Under pathological conditions like CHF, dispersion can become ex-
treme and promote the formation of a unidirectional block of a normal wave of
electrical excitation [83, 88, 92�94]. A unidirectional block is a pathological fail-
ure of cardiac impulse conduction in one direction, while conduction is possible
in the opposite direction [95]. Thus, pockets of cells that may be temporarily
unable to conduct the normal �ow of electrical activity in the heart, increase
the spatial dispersion of repolarization and, eventually, create a substrate for
arrhythmia [83,96�100].

� Triggering factor: Although the unidirectional block can increase the risk of
arrhythmia, it is not su�cient. Since a triggering mechanism is still required [83].
Automaticity is the property of cardiac cells to generate spontaneous APs. As
explained in section 1.2.1, the SA node normally displays the highest intrinsic
rate. All other pacemakers are referred to as subsidiary or latent pacemakers
because they take over the function of initiating excitation of the heart only
when the SA node is unable to generate impulses or when these impulses fail to
propagate [84]. Ventricular myocardial cells do not display spontaneous diastolic
depolarization or automaticity under normal conditions, but can develop these
characteristics when depolarized, resulting in the development of repetitive im-
pulse initiation [101]. Then, once an ectopic activation is triggered, it can be
maintained by a regenerative circuit of electrical activity around the unidirec-
tional block, a phenomenon known as reentry [84].
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� Modulator: Among the modulating factors, the ANS is the most relevant one.
In pathological states such as CHF [102], sympathetic stimulation predominates
over parasympathetic stimulation [60]. Dispersion of repolarization can become
enhanced and ventricular automaticity can be reinforced [103, 104]. Changes in
autonomic nerve function can signi�cantly a�ect reentry mechanisms, either by
facilitating the appearance of a spontaneous ectopic activation, or by creating a
vulnerable substrate along which the arrhythmia may be maintained.

Pump Failure Death

As mentioned in section 1.4.1, sympathetic activity increases during CHF to com-
pensate for the low cardiac output. If the heart is capable of adapting to these rapid
sympathetic strikes, and avoid ventricular arrhytmias, it is still burdened by other
factors. On the one hand, the constant activation of the sympathetic nervous system
may break the sympathovagal balance. As described in section 1.2.2, the sympathetic
and parasympathetic branches work in an antagonistic manner. Thus, if the sympa-
thetic system is systematically activated to compensate for the lowered cardiac output,
the parasympathetic activity is systematically inactivated, breaking the homeostatic
balance. On the other hand, in response to increased demands for cardiac output,
the heart adapts through compensatory hypertrophy of myocytes [105, 106] and by
increasing the myocite contractility. These short-term adaptive responses to maintain
cardiac output eventually become maladaptive [105,107], leading to myocyte dropout,
or apoptosis, and a progressive deterioration in myocardial function [108]. Therefore,
patients in later stages of CHF are characterized by a withdrawal of vagal activity [57]
and a reduction in the response of the ventricle to autonomic innervation [57].

1.4.4 Mortality Prediction Using Clinical Markers

With the advent of ICDs and CRT, accurate risk strati�cation has become very
relevant. Several clinical markers have been proposed in the literature to risk-stratify
patients according to their most probable outcome (SCD or PFD) and, then, facilitate
the treatment decision-making process.

Based on the results of multiple clinical trials, LVEF is currently the only rec-
ommended tool to identify patients at higher risk of SCD that would bene�t from
a prophylactic ICD [109�112]. However, LVEF as standalone risk strati�er has ma-
jor limitations: (i) the majority of SCD cases occur in patients with preserved or
moderately reduced LVEF, (ii) only relatively few patients with reduced LVEF will
bene�t from an ICD (most will never experience a threatening arrhythmic event, oth-
ers have a high risk for PFD), (iii) a reduced LVEF is a risk factor for both SCD and
PFD [113]. Several other clinical markers have been proposed in the clinical practice,
like age, gender (75% of SCD events occur in men with an annual incidence of 3 to 4
times higher than in women [94,114]), hypertension, dilated cardiomyopathy [94,115],
intraventricular conduction block, elevated serum cholesterol, glucose intolerance, de-
creased vital capacity, smoking, diabetes mellitus [116,117], relative weight, ischaemic
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heart disease [118], previous myocardial infarction [119] and heart rate [94]. PFD
is also characterized by older age, lower heart rate and previous myocardial infarc-
tion [119, 120]. In addition, mortality rates increase the higher the NYHA class, but
the proportion of patients dying from SCD is highest among those with less severe
CHF (NYHA class II and III) [82]. However, none of these techniques has unequiv-
ocally demonstrated the e�cacy when applied alone or in combination with LVEF.
Apart from their limited sensitivity, most of them are risk factors for both SCD and
PFD [113].

Considering the multiple mechanisms involved in cardiac mortality, it seems un-
likely that a single test will prove adequate for all patients. Then, risk models based
on a set of clinical variables have been proposed and evaluated in CHF patients for
speci�c SCD and PFD prediction [121�124]. These risk scores are a critical �rst step
to serve as a quick screen to identify subgroups that might bene�t from further eval-
uation [125]. Then, additional risk models based on ECG-derived indices re�ecting
di�erent mechanisms like ANS imbalance and electrophysiological dysfunctions could
add complementary information and improve risk strati�cation by re�ning the clinical-
based risk subgroups.

1.4.5 Mortality Prediction Using the ECG

The overall goal of the analysis of the ECG signal is to obtain information about the
structure and function of the heart. Being able to extract and interpret the important
information contained within the ECG waveforms and intervals can provide improved
predictive tools to better stratify CHF patients according to their risk of su�ering
from SCD or PFD and, then, optimize the treatment. As already mentioned, the
repolarization phase is critical in the inducibility of arrhythmogenic substrates, and an
imbalanced ANS can be associated with electrical and/or mechanical malfunctioning of
the heart. In the following, commonly used ECG-derived markers re�ecting ventricular
repolarization or autonomic conditions are described:

� QT interval: It is measured from the beginning of the QRS complex to the
end of the T-wave (Figure 1.3 (b)). It is a measure of the total duration of
ventricular depolarization and repolarization. Prolongation of the QT interval
may be caused by an increase in the duration of depolarization (for example, in
bundle branch block) or lengthening of the total time taken for repolarization,
and is the most traditional ECG marker for arrhythmic risk prediction [126].

� QT interval dynamics: As described in section 1.2.1, cardiac repolarization
adapts to heart rate. This critical feature ensures that with increasing heart rate,
the myocardium remains constantly excitable, i.e. completely repolarized, before
the next depolarization wave enters. This prevents incomplete repolarization and
the subsequent possibility for re-entrant tachycardia. Experimental results have
revealed that the APD restitution kinetics described in section 1.2.1 may pro-
vide relevant information for ventricular arrhythmic risk strati�cation [51, 127].
Speci�cally, individual APDR curves have been reported to play an important
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role in the development of ventricular arrhythmias, with steeper slopes of APDR
curves (higher values of α in Figure 1.3 (c)) being suggested to be linked to
life-threatening arrhythmia [128, 129]. However, although shallow slopes (lower
values of α in Figure 1.3 (c)), have been reported to re�ect smaller APD dis-
turbances that eventually return to a stable activation [47], they have also been
related to a perpetuation of electrical instabilities [46]. At the ECG level, the
slope of the relationship between the QT and RR intervals, which would quan-
tify the velocity of adaptation of ventricular repolarization to changes in heart
rate, has been suggested as an arrhythmic risk predictor, with increased slopes
indicating higher arrhythmic risk [130�133]. Following the hypothesis illustrated
in Figure 1.3, and assuming that depolarization duration is almost constant with
heart rate (for RR interval values above 0.6 s), the QT/RR slope could to some
extent be related to the slope of the APDR curve from the last cell to repolarize,
i.e. α1 in panel (c).

� QRS-T angle: It measures the di�erence in mean vectors of depolarization and
repolarization in the vectorcardiogram. It characterizes a secondary dispersion of
repolarization whereby repolarization abnormalities following changes in ventric-
ular conduction are highlighted, in the absence of primary action potential mor-
phology heterogeneity [134]. It has been found associated with SCD [135,136].

� Tpe interval: It is measured from the Tpeak to the Tend (Figure 1.3 (b)). It
provides a measure of dispersion of repolarization during the last stages of ven-
tricular repolarization [137], which have been shown to be more critical for devel-
oping malignant arrhythmias than the T-wave width [138] after acute myocar-
dial infarction [139], in patients with left ventricular systolic dysfunction [140],
in patients with hypertrophic cardiomyopathy [141] and in the general popula-
tion [142].

� Tpe interval dynamics: Heterogeneities in the ventricle as a result of CHF lead
to spatial di�erences in the restitution properties, which makes APDR curves
present spatial variations [143]. Restitution dispersion is a measure of that spa-
tial variation and can be quanti�ed by taking the di�erence between the respec-
tive slopes, ∆α “ α1 ´ α2 (Figure 1.3 (c)). Recent studies have suggested that
increments in such dispersion (higher values of ∆α) are associated with greater
propensity to su�er from malignant ventricular arrhythmias [54, 129]. Quanti�-
cation of dispersion of repolarization restitution commonly uses invasive meth-
ods. As a non-invasive alternative, Mincholé at al. developed a methodology to
estimate ∆α from the surface ECG as the slope of the Tpe interval dynamics
and proved that it was strongly correlated with the dispersion of repolarization
restitution at tissue level [144].

� Regional Restitution Instability Index (R2I2): It is another estimation of
dispersion of repolarization restitution from the surface ECG. For each avail-
able lead, the standard deviation of the QT/TQ gradient slopes are taken as
a measure of APD dispersion in each lead, where TQ is the interval between
the T wave peak of a beat and the Q wave peak of the following beat. The
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mean of this was then taken as the R2I2 (no units) [145]. This novel index was
shown to predict ventricular arrhythmic risk, or death, in patients with ischemic
cardiomyopathy [145].

� T-wave alternans (TWA): It is a repeating ABABAB pattern in the mor-
phology and amplitude of the ST-segment and/or T-wave and has long been
recognized and linked to arrythmogenesis [146]. It has been postulated to re�ect
spatio-temporal dispersion of repolarization [147�149] and arises from beat-to-
beat alternation of membrane voltage or intracellular calcium, underlying APD
alternans at an ionic level [150�154]. Higher levels of TWA have been shown to
indicate greater risk for arrhythmias under di�erent conditions [148,155,156].

� Heart rate variability (HRV): It is the beat-to-beat variation in either heart
rate or the duration of the RR interval [157]. A reduced HRV is associated
with poorer prognosis for a wide range of clinical conditions while, conversely,
robust periodic changes in RR interval are often a hallmark of health [158].
A major portion of these temporal changes in heart rate occur synchronous
with respiration and, therefore, are referred to as respiratory sinus arrhythmia.
HRV has been shown to provide an indirect assessment of cardiac autonomic
activity [157].

� QT interval variability: Common used variables of beat-to-beat QT interval
variability (QTV) include the standard deviation (SDQT) or variance of QTV
(QTvar) [159, 160], QT interval variance normalized to the square mean QT in-
terval (QTVN) [161] and Poincaré plot-based, short-term variability [162, 163].
Additionally, the QT variability index (QTVi), quantifying the QT interval
variability-to-HRV ratio is often calculated [161,164,165]. Frequency domain pa-
rameters quantifying QTV have also been explored [166�168]. The variability of
the QT interval has been related to the activity of the sympathetic tone [164,169].
Progressive rises in QT variability are associated with worsening functional sta-
tus in patients with CHF [161] and enhanced arrhythmic risk [170,171].

� Heart rate turbulence (HRT): It describes the short-term �uctuation in
the RR interval that follows a ventricular premature beat (VPB) [172]. In nor-
mal subjects, heart rate initially brie�y accelerates and subsequently decelerates
compared with the pre-VPB rate, before returning to baseline. This dynamics
may be altered in pathophysiological conditions [173]. Two phases of HRT, the
early heart rate acceleration and late deceleration, are quanti�ed by 2 parameters
termed turbulence onset (TO) and turbulence slope (TS) [174]. The initial heart
rate acceleration is triggered by transient vagal inhibition in response to the
missed barore�ex a�erent input due to hemodynamically ine�cient ventricular
contraction. A simpathetically mediated overshoot of arterial pressure is respon-
sible for the subsequent heart rate deceleration through vagal recruitment [175].
Its proven clinical signi�cance lies in its ability to predict mortality, PFD and
SCD following myocardial infarction and many other cardiac diseases [173,176].
A model-based HRT detector, involving an index that characterizes HRT shape,
was shown to outperform TO and TS in predicting cardiac death [177].
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� Deceleration Capacity: It expresses the ability of the ANS to decelerate the
heart rate [178, 179]. Beat-to-beat heart rate regulation is achieved through
the rapid vagus nerve activity, which can change the heart rate substantially,
even within one cardiac cycle [179]. Deceleration capacity was found to be
linked to increased post-myocardial infarction mortality [179] and to increased
HF diagnosis [180]. Then, a reduced deceleration capacity has been hypothesized
to be linked to a diminished vagal modulation on the heart [179], based on
previous clinical and experimental studies indicating a cardioprotective role of
vagal activity [181]. Two additional methodologies to compute the deceleration
capacity have been recently proposed [178].

� Periodic Repolarization Dynamics: It assesses the sympathetic e�ect on
ventricular repolarization and was shown to predict mortality in survivors of
acute myocardial infarction [182]. It integrates the spatio-temporal information
of each T-wave into a single vector, T ˝. Then, the angle dT ˝ between successive
repolarization vectors is used as an estimate of the instantaneous repolarization
instability. The index of periodic repolarization dynamics is then computed from
the quanti�cation of the low-frequency (ď0.1Hz) periodic patterns in dT ˝ [182].

1.5 Objectives and Structure of the Document

The main objective of this thesis is to develop ECG-derived risk markers related
with ventricular repolarization restitution, and with its dispersion, to improve the
prediction of SCD and PFD in CHF patients. The content of the thesis is organized
as follows:

� Chapter 1: In the present chapter, we introduce the electrical activity of healthy
hearts and of hearts from patients with chronic heart failure. Di�erent causes
underlying SCD and PFD in the context of CHF and the clinical need for non-
invasive markers with high predictive value are described. Also, a variety of
ECG-derived risk markers recently proposed in the literature for risk prediction
in CHF are presented.

� Chapter 2: In this chapter, ventricular repolarization restitution and its dis-
persion are explored using traditional ECG-derived markers based on temporal
intervals, namely the QT interval and the Tpe interval. As mentioned, the dy-
namics of these intervals are related to the repolarization restitution and its
dispersion, respectively. Numerous studies have reported that steeper restitu-
tion slopes and increased dispersion of repolarization restitution indicate higher
arrhythmic risk [54, 128, 129], but there are no previous studies assessing the
SCD and PFD predictive value of ECG markers estimating those two concepts.
Therefore, a fully automated method to estimate repolarization restitution and
its dispersion from 24-h Holter ECG recordings from 651 CHF patients is pre-
sented and the SCD and PFD predictive value is evaluated. Three di�erent
estimations of the dispersion of repolarization restitution are compared and the
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in�uence of the circadian modulation is evaluated. Finally, SCD and PFD risk
strati�cation in combination with two other ECG-derived markers quantifying
TWA and HRT is assessed. From the results of this chapter an ECG-derived
index with strong capacity to predict both SCD and PFD is proposed. This
could help deriving CHF patients to their most bene�cial treatment, accord-
ing to their risk of su�ering from SCD or PFD. The research described in this
chapter generated the following publications:

� J. Ramírez, A. Mincholé, J. Bolea, P. Laguna and E. Pueyo. Prediction of
sudden cardiac death in chronic heart failure patients by analysis of restitu-
tion dispersion. XL International Conference on Computing in Cardiology,
Zaragoza, Spain, 1-4, 2013.

� J. Ramírez, P. Laguna, A. B. De Luna, M. Malik and E. Pueyo. QT/RR and
T-peak-to-end/RR curvatures and slopes in chronic heart failure: Relation
to sudden cardiac death. J Electrocardiol, 2014;47:842-848.

� J. Ramírez, I. Cygankiewicz, P. Laguna, M. Malik and E. Pueyo. Circadian
pattern and sex di�erences of QT/RR and T-peak-to-end/RR curvatures
and slopes in chronic heart failure patients. XLI International Conference
on Computing in Cardiology, Boston (MA), U.S.A., 173-176, 2014.

� J. Ramírez, V. Monasterio, A. Mincholé, M. Llamedo, G. Lenis, I. Cy-
gankiewicz, A. B. De Luna, M. Malik, J. P. Martínez, P. Laguna and E.
Pueyo. Automatic SVM classi�cation of sudden cardiac death and pump
failure death from autonomic and repolarization ECG markers. J Electro-
cardiol, 2015;48:551-557.

Also, this work was awarded with the following prizes:

� Rosanna Degani Young Investigator Award for the best written and oral
presentation. Prediction of sudden cardiac death in chronic heart failure
patients by analysis of restitution dispersion. XL International Conference
on Computing in Cardiology, Zaragoza, Spain, 2013.

� Jos Willems Young Investigator Finalist. Prediction of sudden cardiac
death by analysis of restitution dispersion. 30th Annual conference of the in-
ternational society for computerized electrocardiology. Jacksonville, Florida
(USA), 2014.

� Michael Ringborn Young Investigator Award for the best oral presentation.
DeltaAlpha repolarization dispersion. 12th STAFF Studies Symposium.
MIT Endicott House, Dedham, MA (USA), 2014.

� Chapter 3: Based on the results from chapter 2, the hypothesis that the mor-
phology of the T-wave would contain additional information disregarded when
using time-interval indices only was postulated. In this chapter, a novel method-
ology was developed to quantify indices capable of extracting morphological in-
formation independently from disturbances in temporal or amplitude domains,
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or noise. Speci�cally, the ability of two new ECG-derived markers, dw, and da,
and their non-linearly restricted versions, dNLw and dNLa , to quantify single-lead T-
wave morphological variability was assessed. The point-wise variability between
the temporal domains of di�erent T-waves, or the amount of warping needed to
remove the time domain variability, is measured by dw, while da quanti�es the
point-wise amplitude variability after time warping, or the amplitude variabil-
ity after removing the temporal domain variability. The markers dNLw and dNLa
quantify the strictly non-linear warping and amplitude levels within dw and da,
respectively. First, the performance of two warping algorithms was compared.
Then, the robustness of dw, da, d

NL

w and dNLa against noise was evaluated in a
simulated set-up with synthetically generated signals. Next, an electrophysiolog-
ical cardiac model was used to investigate the relation between dw, da, d

NL

w and
dNLa and the morphological changes of the AP at cell and tissue level. Finally,
T-wave morphological variations produced by a tilt test in ECG recordings were
quanti�ed using dw, da, d

NL

w and dNLa , and their correlation with heart rate, the
QT and Tpe intervals and the T-wave width and amplitude were also studied. As
a conclusion, the performance of the proposed methodology is discussed and the
potential of the proposed markers as risk predictors is presented. The research
described in this chapter generated the following publications:

� J. Ramírez, M. Orini, J. D. Tucker, E. Pueyo and P. Laguna. Variability of
ventricular repolarization dispersion quanti�ed by time-warping the mor-
phology of the T-waves. IEEE Transactions on Biomedical Engineering,
2016; DOI: 10.1109/TBME.2016.2614899.

� J. Ramírez, M. Orini, J. D. Tucker, E. Pueyo and P. Laguna. An index for
T-wave pointwise amplitude variability quanti�cation. XLIII International
Conference on Computing in Cardiology, Vancouver, Canada, 49-52, 2016.

Also, this work was awarded with the following prize:

� Mortara mobility fellowship. An index for T-wave pointwise amplitude vari-
ability quanti�cation. Computing in Cardiology. XLIII International Con-
ference on Computing in Cardiology, Vancouver, Canada, 2016.

� Chapter 4: In this chapter, dispersion of repolarization restitution was explored
using the morphological indices presented in chapter 3. Under the assumption
that the T-wave morphology re�ects dispersion of repolarization, we hypothe-
sized that the restitution of the T-wave morphology would re�ect dispersion of
repolarization restitution. The SCD and PFD predictive value of the quanti-
�ed T-wave morphology variation after a change in heart rate was evaluated.
Additionally, its circadian modulation, its robustness and its classi�cation per-
formance in combination with the same ECG-derived risk markers quantifying
TWA and HRT used in chapter 2 were studied. From the results in this chapter,
a second ECG-derived index speci�cally associated with SCD and with higher
predictive value than the Tpe dynamics and other clinical and ECG-derived
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indices was proposed. The following manuscript has been submitted with the
results presented in this chapter:

� J. Ramírez, M. Orini, A. Mincholé, V. Monasterio, I. Cygankiewicz, A. B.
De Luna, J. P. Martínez, E. Pueyo and P. Laguna. T-wave Morphology
Restitution Predicts Sudden Cardiac Death in Patients with Chronic Heart
Failure. Submitted to Journal of the American Heart Association.

Also, this work was awarded with the following prize:

� Michael Ringborn Young Investigator Award for the best oral presentation.
T-wave morphological restitution evaluated by time-warping metrics and
its value to predict sudden cardiac death and pump failure death. 14th

STAFF Studies Symposium. Bled, Slovenia, 2016.

� Chapter 5: Although deriving an individual index with strong predictive value
is still desirable, SCD and PFD events are a result of a combination of failing
mechanisms. Therefore, using a score that integrates several risk factors with
individual predictive power might improve prediction even further. Then, in
this chapter two ECG-based models that include markers assessing di�erent
arrhythmogenic and autonomic mechanisms to speci�cally predict either SCD or
PFD were proposed. Their predictive value was compared to a model composed
of commonly used clinical markers. Two optimal risk models combining ECG
and clinical markers were �nally proposed. As a conclusion, the performance
of the ECG-based models, compared to that of the clinical models, and the
improvement achieved by the combined model, are discussed. The following
manuscript has been submitted with the results presented in this chapter:

� J. Ramírez, M. Orini, A. Mincholé, V. Monasterio, I. Cygankiewicz, A.
B. De Luna, J. P. Martínez, E. Pueyo and P. Laguna. Improvement of
Sudden Cardiac Death and Pump Failure Death Prediction by Including
ECG-derived Markers to a Clinical Model. Submitted to Heart Rhythm.

� Chapter 6: It presents the main conclusions of the thesis and discusses future
methodological directions.
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2.1 Introduction

As introduced in chapter 1, patients with mild-to-moderate CHF (NYHA classes
II and III) represent a high-risk population for SCD and PFD [183]. ICDs have been
shown to reduce SCD mortality [184], while CRT reduces PFD in CHF patients [185].
The cost e�ectiveness of these treatments is, however, limited, with a relatively small
number of patients receiving appropriate ICD shocks or bene�ting from an accurate
CRT during follow-up [183, 185]. Then, �nding e�ective techniques for risk strati�ca-
tion still remains a relevant clinical problem.

As described in section 1.2.1, APDR curves containing steep slopes are associated
with malignant arrhythmias [128, 129], meaning that a big repolarization change as a
response to a heart rate change can be arrhythmogenic. The QT interval is the most
extensively used index of ventricular repolarization for arrhythmic risk prediction [126],
and the slope of the QT interval dynamics, which we hypothesized it re�ects the slope
of the APDR curve from the last cell to repolarize, has been proposed as an arrhythmic
risk predictor in numerous studies [130�133].

Additionally, increased dispersion of repolarization restitution, invasively quanti-
�ed by ∆α, has been suggested to be a potent arrhythmogenic substrate, with in-
crements in such dispersion being associated with greater propensity to su�er from
malignant arrhythmias [54,129]. The main limitation on the usability of ∆α as a risk
index is that its quanti�cation usually requires invasive procedures. The Tpe interval
re�ects dispersion of repolarization and, thus, the slope of the Tpe interval dynamics
would be a surrogate of the dispersion of repolarization restitution, estimated from
the ECG, as hypothesized in the introduction, and as demonstrated in previous stud-
ies [144].

The relationship between the QT and Tpe intervals and the underlying heart rate
(HR) has been previously quanti�ed, after adjustment for hysteresis e�ects, selecting
among ten biparametric �xed regression equations the one with the lowest residual
�tting error, and evaluating the slope of the regression at the average heart rate
change [130, 144]. In addition, the pattern of these relationships do not necessarily
follow a linear regression [186], and, then, a recent study proposed a subject-dependent
equation, with an additional parameter accounting for the curvatures of the regression
patterns, after compensation for the hysteresis e�ects, and evaluated the slope of the
regression in RR = 1s [187].

Also, the circadian pattern has shown to be a strong modulator of ventricular
repolarization, with previous studies demonstrating that the slope of the QT interval
dynamics is steeper during the day than at night in healthy subjects [188�190], and
associated with higher risk of cardiac death [191] and total mortality [192].

Finally, although invasive and non-invasive markers have been proposed as SCD
and/or PFD predictors, including LVEF [193], TWA [156], or autonomic indices such
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as HRT [176], they do not provide a high enough sensitivity (Se)/speci�city (Sp) ratio.
Then, if such indices re�ect di�erent underlying physiological phenomena, they might
add complementary information to each other and, consequently, a combined index
might improve the capability for risk-strati�cation of patients.

In this chapter, we, �rst, developed a fully automated algorithm to calculate the
slope of the QT and Tpe intervals dynamics in 24-h ECG recordings from 651 CHF
patients, using a �xed biparametric regression, and evaluated at the average heart rate
change as in [130,144], and using a subject-dependent tri-parametric regression, eval-
uated at the average heart rate change and at RR = 1 s, as in [187]. The curvature of
the QT/RR and Tpe/RR regressions were also calculated as in [187]. Then, we stud-
ied the modulation of the circadian pattern on the proposed parameters re�ecting QT
and Tpe dynamics, and we assessed their SCD and PFD predictive value. Finally, we
studied the classi�cation performance of the parameter with strongest predictive value,
individually and in combination with two other ECG-derived risk markers quantifying
TWA [156] and HRT [176].

2.2 Methods

2.2.1 The MUSIC Study

Study Population

The study population included 651 consecutive patients with symptomatic CHF
corresponding to NYHA classes II and III enrolled in the MUerte Súbita en Insu�-
ciencia Cardiaca (MUSIC) study, a prospective, multicenter study designed to assess
risk predictors for cardiovascular mortality in ambulatory patients with CHF [122]. A
two- or three-lead 24-hour Holter ECG sampled at 200 Hz was recorded in each patient
at enrolment using ELA Medical equipment (Sorin Group, Paris, France). Baseline
demographic and clinical data in sinus rhythm were available for the analysis. The
MUSIC study included patients with both reduced and preserved LVEF, ranging from
10% to 70%. Patients with preserved LVEF were included if they had CHF symp-
toms, a prior hospitalization for CHF or objective CHF signs con�rmed by chest X-ray
and/or echocardiography. Patients were excluded if they had recent acute coronary
syndrome or severe valvular disease amenable for surgical repair. Patients with other
concomitant diseases expected to reduce life-expectancy were also excluded. The study
protocol was approved by the institutional investigation committees and all patients
signed informed consent. No medications were withdrawn during Holter monitoring.
The clinical characteristics of the studied patients and medications are listed in Table
2.1.
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Variables
Overall population ∆αTpe ď 0.022 0.022 ă ∆αTpe ă 0.028 ∆αTpe ě 0.028

p-value
pn “ 651q pn “ 285q pn “ 59q pn “ 307q

Clinical

Age [years] 63˘12 61˘12 63˘11 64˘12 0.006

Gender [men] 464 (71.3%) 226 (79.3%) 41 (69.5%) 197 (64.2%) <0.001

NYHA class III 115 (17.7%) 51 (17.9%) 8 (13.6%) 56 (18.2%) 0.682

LVEF ď 35% 356 (54.7%) 152 (53.3%) 34 (57.6%) 170 (55.4%) 0.789

Ischemic etiology 327 (50.2%) 152 (53.3%) 25 (42.4%) 150 (48.9%) 0.248

Diabetes 244 (37.5%) 95 (33.3%) 22 (37.3%) 127 (41.4%) 0.130

Beta-blockers 455 (69.9%) 210 (73.7%) 41 (69.5%) 204 (66.4%) 0.159

Amiodarone 61 (9.4%) 22 (7.7%) 3 (5.1%) 36 (11.7%) 0.123

ARB or ACE 576 (88.5%) 253 (88.8%) 53 (89.8%) 270 (87.9%) 0.898

ECG-derived

Median RR [s] 0.85˘0.12 0.85˘0.12 0.86˘0.13 0.84˘0.12 0.669

RR range [s] 0.42˘0.15 0.43˘0.14 0.45˘0.13 0.42˘0.15 0.816

QRS ą 120 ms 262 (40.2%) 112 (39.3%) 23 (39.0%) 127 (41.4%) 0.858

NSVT and ą 240
168 (25.8%) 80 (28.1%) 15 (25.4%) 73 (23.8%) 0.490

VPBs in 24 h

IAAě3.7µV 153 (24.1%) 69 (28.8%) 18 (31.6%) 66 (22.0%) 0.280

TSď2.5ms/RR 281 (47.1%) 121 (45.3%) 20 (36.4%) 140 (50.9%) 0.106

Data are presented as absolute frequencies and percentages and as mean ˘ standard deviation.
ACE = angiotensin-converting enzyme; ARB = angiotensin receptor blocker; IAA = Index of

Average Alternans; LVEF = left ventricular ejection fraction; NYHA = New York Heart
Association; NSVT = Non-sustained Ventricular Tachycardia; TS = Turbulence Slope; VPB =

Ventricular Premature Beat; Signi�cant di�erences are indicated in bold.

Table 2.1: Characteristics of patients in the overall population and in each of the three risk groups
de�ned by ∆αTpe.

Follow-up Period

Follow-up visits were conducted on an outpatient basis every 6 months, for a median
of 44 months (range 28-51). Information about deceased patients was obtained from
medical records, patients' physicians, and relatives. In each case, the attempt was
made to determine the nature of death. Total mortality was divided into non-cardiac
and CD, and the latter was further subdivided into PFD and SCD. SCD was de�ned as
(i) a witnessed death occurring within 60 min from the onset of new symptoms, unless a
cause other than cardiac was obvious; (ii) an unwitnessed death (ă24 h) in the absence
of pre-existing progressive circulatory failure or other causes of death; or (iii) a death
during attempted resuscitation. Deaths occurring in hospitals as a result of refractory
progressive end-stage CHF were de�ned as PFD. Patients lost to follow-up were
censored in survival analysis. Patients who underwent cardiac transplantation were
de�ned as PFD at the time of surgery, according to previously published CHF studies
[121, 194]. Endpoints were reviewed and classi�ed by the MUSIC Study Endpoint
Committee.



2.2 Methods 31

2.2.2 ECG Pre-processing

Preprocessing of the ECG signals was performed using custom-written software
and included low pass �ltering at 40 Hz to remove electric and muscle noise, cubic
splines interpolation for baseline wander removal, and ectopic beats detection.

PCA (section 1.3.2) was applied over the two-or-three available ECG leads to
emphasize the energy of the T-wave and improve its delineation [195]. Then, in this
thesis, the PCA training matrix, LT, was built by only considering the samples from
the T-waves on each lead. First, a single-lead-and-rules delineation technique (section
1.3.3) was applied to select the samples from the T-wave and compute the matrix
LT. Then, the �rst principal component was computed and delineated using a single-
lead technique (section 1.3.3) [66]. From the delineation marks, the RR, QT and Tpe
interval series were obtained and subsequently interpolated at a sampling frequency
of FS = 1 Hz using a fully automated method.

2.2.3 Dispersion of Repolarization Restitution from the Tpe

Interval Dynamics

Theoretical Hypothesis

The Tpe interval re�ects di�erences in the time for completion of repolarization
by di�erent cells along the ventricle [137, 144]. Therefore, the Tpe interval may be
expressed in terms of APDs as follows (Figure 1.3 (b)):

Tpe « APD1 ´APD2 ´∆AT, (2.1)

where APD1 corresponds to the last cell to repolarize, and APD2 is the cell with
the minimum APD among those which are currently repolarizing at the T-wave peak
instant [144]. ∆AT represents the activation time delay between the two cells associ-
ated with APD1 and APD2, and hardly changes with RR for RR intervals above 600
ms [50]. Therefore, changes in the Tpe interval under variations of the RR interval,
measured at di�erent steady-state heart rate levels, can be estimated as:

BTpe

BRR
«
BAPD1

BRR
´
BAPD2

BRR
, (2.2)

where B∆AT/BRR has been neglected, under the premise that RR intervals above 600
ms are considered [144].

If we let α1 and α2 denote the slopes of APDR curves at the regions corresponding
to APD1 and APD2, respectively (Figure 1.3 (c)):

αi “
BAPDi

BRR
, i “ t1, 2u, (2.3)
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the spatial di�erence ∆α = (α1 - α2) (see Figure 1.3), which measures dispersion of
repolarization restitution, can be estimated from the ECG by introducing (2.3) into
(2.2), resulting in [144]:

∆αTpe “
BTpe

BRR
(2.4)

Applicability of the Hypothesis to 24-h ECG Recordings

Each value of the APDR curve represents a stationary state corresponding to a spe-
ci�c RR value, and, therefore, the ECG measurement proposed to estimate dispersion
of repolarization restitution should in principle be computed using ECG segments of
stable heart rate [51]. However, these types of segments are di�cult to get in clinical
practice, provoking that the Tpe values not only depend on the preceding RR value,
but on a history of RR values. Thus, ventricular repolarization presents a memory
lag dependency on RR that should be compensated for to estimate ∆αTpe [196]. To
overcome this limitation, an approach was recently proposed [130, 197] to model the
dependence of the Tpe interval on a history of previous RR intervals, and, then, to
compensate for the Tpe memory lag. The model shown in Fig. 2.1 was used to char-
acterize the Tpe dependence on RR [130,197]. The input xRR “ rxRRp1q, ¨ ¨ ¨ , xRRpNqs
and output yTpe “ ryTpep1q, ¨ ¨ ¨ , yTpepNqs denote the RR and Tpe series of each record-
ing, where N is the length of the series.

xRR
h

zRR
gkp¨,aq

ŷ
Tpe

+
y
Tpe

v

Figure 2.1: Block diagram describing the [RR,Tpe] relationship consisting of a time-invariant FIR
�lter (impulse response h) and a nonlinear function gkp¨,aq. v accounts for the output estimation
error. From [144].

The impulse response h =rhp1q, ¨ ¨ ¨ ,hpLqsT includes information about the memory
of the system, i.e. a characterization of the in�uence of a history of previous RR
intervals on each Tpe measurement. Therefore, zRR(n) represents a surrogate of xRR(n)
with the memory e�ect of Tpe compensated for. The length L of vector h was set to
300 samples, which widely exceeds the Tpe and QT memory lag for the data population
used in this study [196]. In vector notation, zRR is the convolution between the input
vector xRR and the impulse response h. The function gkp¨,aq represents the relationship
between the RR interval and the Tpe interval at steady-state conditions. This function
has been evaluated by using both bi- and tri-parametric equations:

� Regression �tting with biparametric equations: Ten di�erent biparametric re-
gression models were considered for gkp¨,aq, where a = ra0, a1s

T in this case, and
the one that best �ts the data of each subject was identi�ed [130].
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Linear: ŷTpe “ a0 ` a1zRR
Hyperbolic: ŷTpe “ a0 `

a1
zRR

Parabolic: ŷTpe “ a0pzRRq
a1

Logarithmic: ŷTpe “ a0 ` a1lnpzRR)
Inverse logarithmic: ŷTpe “ lnpa0 ` a1zRR)

Exponential: ŷTpe “ a0 ` a1.e
´zRR

Arctangent: ŷTpe “ a0 ` a1arctagpzRR)
Hyperbolic tangent: ŷTpe “ a0 ` a1tghpzRR)

Hyperbolic arcsine: ŷTpe “ a0 ` a1arcsinhpzRR)
Hyperbolic arccosine: ŷTpe “ a0 ` a1arccoshpzRR).

� Regression �tting with tri-parameter equation: we used a three-parameter equa-
tion, where, now, a = ra0, a1, γ

TpesT , and the third parameter accounts for the
curvature of the Tpe/RR regression and acts as an extra level of �tting. Note
that, in this case, k is, then, unique. Then, the data of each subjects were �tted
with a non-linear regression function of the form [187]:

ŷTpe “ a0 ` a1p1´ zγ
Tpe

RR
q (2.5)

The estimated output pyTpe(n) was de�ned as

pyTpepnq “ gkpzRRpnq,aq (2.6)

in which the optimum values of the FIR �lter response h, vector a, and optimal
function gk (in the bi-parametric case) were searched for by minimizing the di�erence
between the estimated output pyTpe(n) and the system output yTpe(n), for each subject
independently using the whole ECG recording [197]. In the three-parameter case, γTpe

was optimized such that the regression leaded to the lowest residual error by using
the so-called �golden-cut� algorithm [187, 198]. The optimization algorithm seeks to
minimize the following function:

Jph,aq “ }yTpe ´ pyTpe}
2 ` β2}Dh}2 (2.7)

where D is a regularization matrix that penalizes the fact that h deviates from hav-
ing an exponential decay [199] and β is the regularization parameter whose value was
obtained by using the �L-curve� criterion [200]. With the computed value for β, the
optimum values h and a in (2.7) were determined by using a �quasi-Newton� opti-
mization technique described in [201], subject to two constraints: the sum of the h
components is 1, to ensure normalized �lter gain, and all the components of h are
non-negative, to give a physiological plausible interpretation [197].

Finally, depending on the option chosen for the �tting equation (bi-parametric or
tri-parametric), the estimate of dispersion of repolarization restitution derived in (2.4)
can be replaced with the following equations:
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∆α “ α1 ´ α2 “
BAPD1

BRR
´
BAPD2

BRR
«∆αTpe “

BgkpzRR, ra0, a1s
T q

BzRR

ˇ

ˇ

ˇ

ˇ

zRR“zRR

, (2.8)

«∆Tpe

|zRR“zRR or 1 s
“ ´a1γ

Tpezγ
Tpe
´1

RR

ˇ

ˇ

ˇ

ˇ

zRR“zRRor 1s

,(2.9)

when using the bi-parametric option [130] and evaluating the derivative at the mean
zRR value, zRR, of the recording, or when using the tri-parametric option [187] and
additionally evaluating the derivative at RR = 1 s. Then, ∆αTpe, ∆Tpe

|zRR“zRR
and

∆Tpe

|zRR“1 are three di�erent estimations of the same concept, i.e. dispersion of repolar-

ization restitution. The only di�erence lies on the regression equation used for their
calculation and the point at which the slope is evaluated.

2.2.4 Repolarization Restitution from the QT Interval Dynam-

ics

A similar analysis can be done to estimate the slope of the QT interval dynamics:

α1 “
BAPD1

BRR
«∆αQT “

BgkpzRR, ra0, a1s
T q

BzRR

ˇ

ˇ

ˇ

ˇ

zRR“zRR

, (2.10)

«∆QT

|zRR“zRR or 1 s
“ ´a1γ

QTzγ
QT
´1

RR

ˇ

ˇ

ˇ

ˇ

zRR“zRRor 1s

, (2.11)

where now h, a, and the optimal function gk in the bi-parametric case are calculated
using the QT series. Again, ∆αQT, ∆QT

|zRR“zRR
and ∆QT

|zRR“1 are three di�erent esti-

mations of the same concept, i.e. repolarization restitution slope, where their only
di�erence is the regression equation used for their calculation and the point at which
they are evaluated.

Figure 2.2 illustrates the regression of the QT/RR relationship, where the lineal
and curved regression equations are plotted in green and red, respectively.

2.2.5 Circadian Modulation

Following previous results reporting day and night di�erences in repolarization
dynamics in healthy subjects [188�190], and associated with increased arrhythmic
risk [191, 192], we evaluated the circadian modulation of the eight parameters pro-
posed in this chapter in 24-h hour Holter recordings from CHF patients. For the
characterization of the circadian modulation of these parameters, we divided the 24-h
ECG recordings into 6-hour segments (�00-06h�;�06-12h�;�12-18h�;�18-24h�). Then, in
each 6-hour segment, we derived ∆αQT, ∆QT

|zRR“zRR
, ∆QT

|zRR“1, γ
QT, ∆αTpe, ∆Tpe

|zRR“zRR
,

∆Tpe

|zRR“1 and γTpe, following the methodology described in the previous section.



2.2 Methods 35

Figure 2.2: QT/RR regression pattern. Green line shows the linear regression equation (γ “ 1), and
red line shows equation (2.5), with γ “ 2.5. Vertical lines indicate both points of evaluation of the
slope, at zRR “ zRR, and at zRR “ 1.

2.2.6 T-wave Alternans and Heart Rate Turbulence Indices

As explained in section 1.4.5, TWA re�ect dispersion of repolarization [147�149],
and the HRT indicate the short- and long-term responses of the heart rate to a
VPB [174, 175]. These indices re�ect di�erent electrophysiological and autonomic
mechanisms and, thus, we hypothesized that their combination with the index with
highest predictive value among those proposed in this chapter would improve SCD
and PFD classi�cation.

The index of average alternans (IAA), an index re�ecting the average TWA activity
during a 24-h period, was computed by automatic ECG analysis [156]. The analysis
was performed on every ECG recording in 3 steps: (a) selection of signal segments
(of 128 beats with a 50% overlap between adjacent segments) that were suitable for
automatic analysis, (b) estimation of TWA amplitude in those segments with a multi-
lead scheme that combines periodic component analysis with the Laplacian likelihood
ratio method, and (c) computation of the average of all segments' TWA amplitudes
[156].

TS, a parameter measuring the turbulence slope of HRT, was calculated as in [176],
considering patients having at least 1 VPB during the 24-h ECG recording. Details
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on TS calculation can be found in [176].

2.2.7 Statistical Analysis

The Spearman's correlation coe�cient was used to quantify the strength of the
linear correlation. A p-value ă0.05 was considered as statistically signi�cant. Data
were analysed by using version 22.0 of SPSS software. When plotting boxplots, the
central mark is the median, the edges of the box are the 25th and 75th percentiles,
and the whiskers extend to the most extreme data points not considered as outliers.
The notches represent the 95% con�dence interval of the median, calculated as q2 ˘
1.57pq3´q1q{

?
n, where q2 is the median, q1 and q3 are the 25th and 75th percentiles,

respectively, and n is the number of subjects. Therefore, if the sample is small, the
notches might extent beyond the end of the box in some cases. Computations were
executed using Matlab 7.10.0 (2010a), Intel Core i7-2600 CPU, 3.40GHz, 8.00 GB
RAM.

Quantitative Statistical Di�erences between Populations

Two-tailed Mann-Whitney U test and Fisher exact tests were used for univariate
comparison of quantitative and categorical data, respectively. Although the Student's
t-test is the standard test to determine if the means of two populations are equal,
assuming equal variance, it should only be applied when the test statistic follows a
normal distribution. When this condition does not hold, an alternative test is the
Mann-Whitney U test. This test assesses, instead, if the medians of two populations
are equal. Then, it is a non-parametric test used to determine if it is equally likely
that a randomly selected value from one sample will be less than or greater than a
randomly selected value from a second sample. Unlike the Student's t-test, it does
not require the assumption of normal distributions. However, it is nearly as e�cient
as the t-test on normal distributions [202]. When using multiple comparisons (as
when evaluating the e�ect of the circadian modulation in di�erent segments of the
ECG recording) Mann-Whitney U signed rank paired test with Bonferroni correction
was applied. The Fisher's exact test was used for categorical data that result from
classifying objects in two di�erent ways. It is used to examine the signi�cance of the
association (contingency) between the two kinds of classi�cation [203].

Survival Analysis

Survival analysis is a collection of statistical procedures for data analysis, for which
the outcome variable of interest is time until an event occurs. It is the study of time
between entry into observation and a subsequent event. Common events studied are
death, disease, relapse, and recovery. Most survival analyses consider a key analytical
problem called censoring. It occurs when some information about individual survival
time is available, but the exact survival time is unknown. Three reasons of censoring
are: When a person does not experience the event before the study ends, when a
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person is lost to follow-up during the study period, and when a person withdraws
from the study because of an event di�erent from the one under study, i.e. dies from
a di�erent mode of death. The survival function gives the probability that a person
survives longer than some speci�ed time t. In contrast, the hazard function gives
the instantaneous potential per unit time for the event to occur, given the individual
has survived up to time t. The Hazard ratio (HAR) is akin to relative risk. It is an
estimate of the ratio of the hazard function in the two risk groups [204].

Clinical trials commonly record the length of time from study entry to an endpoint
for two di�erent risk groups. These data are commonly depicted with a Kaplan-Meier
curve. A plot of the Kaplan-Meier estimate of the survival function is a series of
horizontal steps of declining magnitude which, when a large enough sample is taken,
approaches the true survival function for that population. The opposite holds for the
hazard function. The value of the survival function between successive distinct sampled
observations is assumed to be constant. An important advantage of the Kaplan-Meier
curve is that the method can take into account some types of censored data. On the
plot, small vertical tick-marks indicate losses, where a patient's survival time has been
censored [205].

The Cox proportional hazards model is a regression method for survival data. It
provides an estimate of the HAR and its con�dence interval (CI). There are two
assumptions about the Cox proportional hazard model: the HARs of two people are
independent of time, and are valid only for time-independent covariates. This means
that the hazard functions for any two individuals at any point in time are proportional.
In other words, if an individual has a risk of death at some initial point in time that
is twice as high as that of another individual, then at all later times the risk of death
remains twice as high [206]. The log-rank test calculates a test statistic for testing a
null hypothesis that the survival curves are the same for all groups, in other words,
to test a null hypothesis where there is no di�erence between the populations in the
probability of an event at any time point. For each time point the observed number
of deaths in each group and the number expected if there has been no di�erence, are
calculated. The number of expected is calculated as the proportion of subjects who are
at risk at a given time point multiplied by the total number of events at that point.
The log-rank test is based on the same assumptions as the HAR that the survival
probabilities are the same for subjects early and late in the study, and the events
happen at the time speci�ed [204,207].

Hazard probability was estimated in this thesis by using Kaplan-Meier methods
with a comparison of cumulative events by using log-rank tests. The association of
measurements with SCD or PFD endpoints was determined by univariate and multi-
variate Cox proportional hazard analyses. Patients who died from causes other than
SCD or PFD, respectively, were censored at the time of death.

Classi�cation

The receiver operating characteristic (ROC) curves were used to identify the op-
timal cut-o� points. A ROC is a graphical plot which illustrates the performance of
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a binary classi�er system as its discrimination threshold is varied. It is created by
plotting the fraction of true positives out of the positives (sensitivity) vs. the fraction
of false positives out of the negatives (1-speci�city), at various threshold settings [208].
If a classi�er system is optimal at some threshold, its associated ROC curve would
approach to the upper left corner (as a logarithmic function), pointing at the maxi-
mized sensitivity and speci�city. If, on the contrary, there is no threshold optimizing
the classi�cation, its ROC curve would follow a diagonal line. Then, the area under
the ROC curve (AUC) provides information about the separation of the ROC curve
from the diagonal, indicating the potential classi�cation ability of the system. Mini-
mal Euclidean distance from the ROC curve to the upper-left corner was applied to
select the threshold, with an AUC ą0.55 required for setting the classi�cation cut-o�
point.

A classi�er was implemented based on a two- and three-class support vector ma-
chine (SVM) in the form of C-support vector classi�cation [209]. The SVM classi�er
was optimized by quadratic programming [201] and the selected kernel for the prox-
imity mapping was the inhomogeneous �rst order polynomial mapping [210]. Other
more complex kernels were tested, but they increased complexity without improving
the discriminative power of the SVM. We used the prtools toolbox [211] from Matlab
to train and test the SVM models.

To train the SVM models, 5-fold cross validation was performed [212]. C-SVM
classi�cation adds a penalty parameter, C, in the optimization. Increasing C makes
the optimization to attempt a stricter separation beteen modes of CD. Equivalently,
reducing C towards 0 produces a smoother decision boundary at the expense of increas-
ing the probability of misclassifying a patient (that would be treated as an outlier).
The decision boundary of the SVM classi�er was con�gures in two ways. The �rst

con�guration set a high value of C, de�ned as C1 “

´

1´
ˇ

ˇ

ˇ

pLp´Lmq
pLp`Lmq

ˇ

ˇ

ˇ

¯

, where C1 repre-

sents the theoretical maximum of C that guarantees convergence of the optimization
and Lp (Lm) is the number of positive (negative) samples [211]. The value of C used
for the second con�guration (C2) (theoretical minimum value of C that guarantees
convergence) was estimated by the �leave-one-out� error of the �1-Nearest Neighbour�
rule [213]. In order to perform three-class classi�cation, three two-class classi�ers be-
tween each of the three classes (SCD, PFD, others) and the remaining two classes
were computed. Each two-class classi�er returned a score for each observation that
could be interpreted as the probability of belonging to each class. Then, the �nal
output class was chosen as the one associated with maximum score over the two-class
classi�ers [209].

The performance of the classi�er was evaluated in terms of Se, Sp and the Cohen's
Kappa coe�cient (κ) from a confusion matrix. κmeasures pairwise agreement between
the expected and the true modes of CD, correcting for expected chance agreement.
When there is no greater agreement than that which would be expected by chance,
κ is zero. When there is total agreement, κ is one [214]. To calculate Se and Sp for
each mode of death, that particular mode of death was de�ned as a positive event
and all other modes of death as well as survival outcome were de�ned as a negative
event. The �nal values of Se, Sp and κ were calculated as the mean of each individual
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measurement of the cross-validation.

2.3 Results

2.3.1 Clinical Characteristics and Cardiac Events of the Study

Population

The study population consisted of the total 651 CHF patients with sinus rhythm
(462 men, 188 women) aged 18 to 89 years (mean 63 ˘ 12 years). The majority of
patients (82%) were in heart failure NYHA class II, while the remaining 18% were in
NYHA class III. LVEF ranged from 10% to 70% with a mean of 37% ˘ 14%. The
detailed characteristics of the study population are shown in Table 2.1. No medications
were withdrawn during Holter monitoring in any of the patients. Table 2.2 summarizes
the number of cardiac deaths in the study population during the follow-up period.

Endpoint
Overall population ∆αTpe ď 0.022 0.022ă ∆αTpe ă0.028 ∆αTpe ě0.028

p-value
pn “ 651q pn “ 285q pn “ 59q pn “ 307q

CD 122 (18.7%) 56 (19.6%) 4 (6.8%) 62 (20.2%) 0.047

SCD 55 (8.4%) 15 (5.3%) 2 (3.4%) 38 (12.4%) 0.003

PFD 67 (10.3%) 41 (14.4%) 2 (3.4%) 24 (7.8%) 0.006

Data are presented as absolute frequencies and percentages. CD = cardiac death;
PFD = pump failure death; SCD = sudden cardiac death; Signi�cant di�erences

are indicated in bold.

Table 2.2: Cardiac events during follow-up in the overall population and in each of the three groups
de�ned by ∆αTpe.

2.3.2 Association of Repolarization Restitution Estimates with

Clinical Data

The histograms of ∆α (a), ∆|zRR“zRR (b), ∆|zRR“1 (c) and γ (d) for QT/RR (green)
and Tpe/RR (blue) regression patterns, and their 25th, 50th and 75th percentiles are
shown in Figure 2.3. The histograms were calculated using 50 equally spaced bins.

Table 2.3 shows the correlation coe�cients between the parameters under study
and the median RR and the range of RR. No correlation was found between γQT and
∆QT

|zRR“1 and median RR. The markers ∆αQT and ∆QT

|zRR“zRR
, on the contrary, showed

a weak signi�cant correlation with median RR. Although no correlation was found
between γQT, ∆QT

|zRR“1 or ∆QT

|zRR“zRR
and RR range, ∆αQT did show a signi�cant cor-

relation. Regarding the Tpe/RR relationship, no correlation was found between γTpe,
∆αTpe and ∆Tpe

|zRR“zRR
and median RR. The index ∆Tpe

|zRR“1, on the contrary, showed

a weak signi�cant correlation with median RR. No correlation was found between
γTpe, ∆Tpe

|zRR“1, ∆αTpe or ∆Tpe

|zRR“zRR
with RR range (Table 2.3). A signi�cant weak

correlation was found between ∆αTpe and ∆αQT (ρ=0.293, p<0.001).
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(c) (d) γTpe 25th percentile: -1.358
γTpe 50th percentile: -0.002
γTpe 75th percentile: 2.192

∆Tpe
zRR=1 25th percentile: 0.002

∆Tpe
zRR=1 50th percentile: 0.016

∆Tpe
zRR=1 75th percentile: 0.040

∆αTpe 25th percentile: 0.012
∆αTpe 50th percentile: 0.025
∆αTpe 75th percentile: 0.044

∆QT
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∆QT
zRR=1 75th percentile: 0.234

∆QT
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zRR=zRR
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γQT 25th percentile: -0.920
γQT 50th percentile: 0.230
γQT 75th percentile: 1.533

∆αQT 25th percentile: 0.157
∆αQT 50th percentile: 0.199
∆αQT 75th percentile: 0.254

Figure 2.3: Histogram of ∆α (a), ∆|zRR“zRR
(b), ∆|zRR“1 (c) and γ (d) for QT/RR (green) and

Tpe/RR (blue) regression patterns using 50 equally spaced bins.

Variable
Median RR RR range

ρ p ρ p

γQT -0.042 0.290 0.039 0.327

∆QT

|zRR“1
0.016 0.683 -0.025 0.526

∆QT

|zRR“zRR
0.325 ă0.001 0.026 0.518

∆αQT -0.428 ă0.001 -0.290 ă0.001

γTpe -0.044 0.267 0.064 0.105

∆Tpe

|zRR“1
-0.104 0.008 -0.021 0.595

∆Tpe

|zRR“zRR
0.015 0.713 -0.018 0.646

∆αTpe -0.023 0.560 -0.029 0.467

Signi�cant di�erences are indicated in bold.

Table 2.3: Correlation of γQT, ∆QT

|zRR“1
, ∆QT

|zRR“zRR
, γTpe, ∆Tpe

|zRR“1
, and ∆Tpe

|zRR“zRR
with median

RR and RR range.

Mann-Whitney U-test showed that there were no signi�cant di�erences in the me-
dian values of the QT/RR and Tpe/RR parameters between women and men. No
signi�cant di�erences in the median values of the slope of the Tpe dynamics were
found between LVEFď35% and LVEFą35% groups or between NYHA classes II and
III. However, signi�cant di�erences in ∆αQT were found between LVEFď35% and
LVEFą35% groups (p<0.001), and between NYHA classes II and III (p=0.028).
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2.3.3 Circadian Modulation

Figure 2.4 shows the circadian modulation of the eight parameters de�ning the
dynamics of the QT (top) and Tpe (bottom) intervals. As shown, the slope of the
QT/RR relationship was signi�cantly higher during day than at night when quanti�ed
using ∆αQT (a) and ∆QT

|zRR“zRR
(b). The curvature and ∆QT

|zRR“1, however, were not

signi�cantly modulated by the circadian pattern (c) and (d). Regarding the Tpe
dynamics, the slope, quanti�ed as ∆αTpe and as ∆Tpe

|zRR“zRR
, was signi�cantly higher

during evening, as compared to night (e) and (f). ∆αTpe
|zRR“1 was not signi�cantly

modulated by the circadian pattern (g). The curvature of this regression showed to be
signi�cantly higher during early morning, as compared to night, and during evening,
as compared to afternoon (h).

Table 2.4 shows the median (interquartile range (IQR)) values of the curvature and
slope parameters of the QT/RR and Tpe/RR regression patterns in the �00-06� and
�12-18� segments, but distinguishing between women and men. As shown, only ∆αQT

in the night segment was signi�cantly higher in women than in men.

Women Men p-value

∆αQT

�00-06� 0.185 (0.10) 0.187 (0.11) 0.807

�12-18� 0.178 (0.12) 0.165 (0.09) 0.029

∆QT

|zRR“zRR

�00-06� 0.178 (0.12) 0.175 (0.12) 0.718

�12-18� 0.150 (0.14) 0.146 (0.12) 0.710

∆QT

|zRR“1

�00-06� 0.133 (0.17) 0.148 (0.17) 0.536

�12-18� 0.130 (0.17) 0.146 (0.17) 0.154

γQT

�00-06� -0.116 (3.66) -0.045 (3.68) 0.359

�12-18� -0.097 (5.93) -0.028 (4.77) 0.586

∆αTpe

�00-06� 0.024 (0.04) 0.019 (0.04) 0.093

�12-18� 0.017 (0.05) 0.014 (0.03) 0.378

∆Tpe

|zRR“zRR

�00-06� 0.018 (0.05) 0.018 (0.04) 0.902

�12-18� 0.015 (0.05) 0.016 (0.04) 0.637

∆Tpe

|zRR“1

�00-06� 0.014 (0.04) 0.012 (0.03) 0.794

�12-18� 0.006 (0.05) 0.012 (0.04) 0.228

γTpe

�00-06� -0.004 (3.15) -0.005 (2.05) 0.627

�12-18� -0.007 (4.13) -0.008 (2.48) 0.926

Signi�cant di�erences are indicated in bold

Data are represented as median (IQR).

Table 2.4: Gender di�erences for day and night values of QT/RR and Tpe/RR curvature and slope.
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2.3.4 Survival Analysis

Figure 2.5 shows the boxplots of the QT/RR and Tpe/RR parameters, IAA and TS,
in the group of SCD victims, PFD victims and in the rest of patients. No statistical
di�erences (illustrated with *) were found in median between SCD victims and in
others, or in PFD victims and in others for any of the QT/RR regression parameters,
γQT, ∆QT

|zRR“1, ∆αQT and ∆QT

|zRR“zRR
. In addition, no statistical di�erences were found

between the median value of γTpe in SCD victims and in others, and in PFD victims and
in others. However, we found that ∆αTpe, ∆Tpe

|zRR“1 and ∆Tpe

|zRR“zRR
, were signi�cantly

higher in SCD victims and signi�cantly lower in PFD victims, as compared, in each
case, with the rest of patients (Figure 2.5). No signi�cant di�erences were found in
IAA values for any of the comparisons (Figure 2.5, panel (e)). In contrast, TS values
were signi�cantly lower in SCD and PFD victims as compared, in each case, with
the rest of patients (Figure 2.5, panel (i)). Figure 2.6 shows the Tpe/RR regression
pattern of a SCD victim (a) and of a survivor (b), whose slopes approximately coincide
with the median values of each subgroup.

According to the AUCs, the three Tpe/RR slope parameters, ∆αTpe, ∆Tpe

|zRR“1 and

∆Tpe

|zRR“zRR
, separated SCD victims from the rest of patients, and also PFD victims

from the rest of patients (Figure 2.7). The optimal thresholds for ∆αTpe based on ROC
curve analysis (closest point to the upper-left corner) were ∆αTpe=0.028 for SCD and
∆αTpe=0.022 for PFD (marked with red dots in �gure 2.7). The cut-o� points 0.023
and 0.005 showed to be optimal for SCD and PFD, respectively, for ∆Tpe

|zRR“1. Finally,

regarding ∆Tpe

|zRR“zRR
, these thresholds were 0.030 and 0.021, respectively (Figure 2.7).

Although ∆αQT was not strictly signi�cantly di�erent in the group of SCD victims, it
was borderline signi�cant (AUC=0.54; 95% CI 0.46-0.62). Then, we also calculated
its optimal threshold for further analysis. We found that its optimal cut-o� point
was ∆αQT=0.228. IAA was previously reported to be associated with SCD when
dichotomized at 3.73µV [156]. Similarly, TS was previously proved to predict both
SCD and PFD victims when dichotomized at 2.5 ms/RR [176]. Then, we used these
thresholds in our analysis.
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(dotted cyan), in the classi�cation of SCD and PFD victims. Red dots indicate the selected thresholds.

Table 2.1 shows the percentage of patients in the three groups de�ned by ∆αTpe
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with the categorical variables described in the �rst column. For continuous variables,
data represents mean˘standard deviation. Upon comparison of clinical variables,
signi�cant di�erences were found for age and gender between the three groups, showing
that patients with ∆αTpe ď0.022 were more frequently men, and younger than the rest
of patients. No signi�cant di�erences were found in any case for LVEF, NYHA class
or any of the other covariates listed in Table 2.1.

Table 2.2 shows the percentage of patients in the three groups de�ned by ∆αTpe

with the modes of death de�ned in the �rst column. As it can be observed, SCD was
signi�cantly higher in the ∆αTpe ě0.028 group as compared to the two other groups,
while PFD was signi�cantly higher in the ∆αTpe ď0.022 group as compared to the rest
of patients. In the evaluation of gender di�erences, the population was divided into
women and men groups. ∆αTpe ě0.028, ∆Tpe

|zRR“zRR
ě0.030 and ∆Tpe

|zRR“1 ě0.023 did

not predict SCD in women. Regarding PFD, ∆αTpe ď0.022, ∆Tpe

|zRR“zRR
ď0.021 was

also not predictive in women, but ∆Tpe

|zRR“1 ď0.005 remained predictive.

Table 2.5, �rst column, shows the univariate HAR and 95 % CI of the markers
signi�cantly associated with SCD (upper sub-table), and PFD (bottom sub-table). As
it can be seen, the three Tpe/RR slope parameters were signi�cantly associated with
increased SCD risk, and with increased PFD risk when dichotomized with their respec-
tive thresholds, speci�c for each outcome (Table 2.5). The dichotomized parameter
∆αQT ě0.228 was also associated with signi�cantly increased SCD risk in univariate
Cox analysis.

Figure 2.8 shows Kaplan-Meier probabilities of SCD (top panels) and PFD (bottom
panels) for the three risk groups de�ned by ∆αTpe (left panels), ∆Tpe

|zRR“1 (middle

panels) and ∆Tpe

|zRR“zRR
(right panels). The high SCD risk group is illustrated in dashed

red, the high PFD risk group is plotted in dotted green, and group formed by the
remaining patients, corresponding to the low CD risk group, is shown in solid blue.
The p-value was calculated using the log-rank test. Patients with ∆αTpe ě0.028 had
an estimated 4-year SCD rate of 14% vs 6% in patients with 0.022ă ∆αTpe ă0.028 and
vs 4% in patients with ∆αTpe ď0.022. Patients with ∆αTpe ď0.022 had an estimated
4-year survival rate from PFD of 15% vs 4% in patients with 0.022ă ∆αTpe ă0.028
and vs 10% in patients with ∆αTpe ě0.028. Figure 2.9 shows the SCD probability
curves for the high- (dashed red), and low-SCD (solid blue) risk groups de�ned by
∆αQT.
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Univariable Multivariable

HAR (95% CI) p-value HAR (95% CI) p-value

SCD

Gender [men] 2.14 (1.05-4.38) 0.037 2.27 (1.06-4.85) 0.035

NYHA class III 2.21 (1.23-3.95) 0.008 1.95 (1.03-3.68) 0.039

LVEFď35% 2.35 (1.30-4.25) 0.005 1.87 (0.98-3.55) 0.057

RR range [per 1 SD inc] 0.75 (0.57-0.98) 0.035 0.97 (0.71-1.31) 0.826

NSVT and > 240
2.08 (1.22-3.57) 0.008 1.25 (0.68-2.29) 0.468

VPBs in 24h

IAAě3.7µV 2.34 (1.32-4.13) 0.004 2.14 (1.21-3.79) 0.009

TSď2.5 ms/RR 2.64 (1.45-4.80) 0.001 2.26 (1.23-4.17) 0.009

Below variables added one at

a time to the multivariate model

∆αTpe ě 0.028 2.61 (1.47-4.62) 0.001 2.92 (1.59-5.33) 0.001

∆Tpe

|zRR“1
ě 0.023 1.90 (1.12-3.24) 0.018 2.26 (1.30-3.93) 0.004

∆Tpe

|zRR“zRR
ě 0.030 2.60 (1.52-4.46) 0.001 2.98 (1.71-5.20) <0.001

∆αQT ě 0.228 1.79 (1.06-3.04) 0.031 1.57 (0.88-2.80) 0.126

PFD

Age [per 1 SD inc] 1.46 (1.12-1.90) 0.006 1.18 (0.90-1.54) 0.231

NYHA class III 2.55 (1.52-4.28) <0.001 2.47 (1.42-4.30) 0.001

LVEFď35% 1.83 (1.10-3.04) 0.021 1.50 (0.85-2.67) 0.165

Diabetes 1.85 (1.15-2.99) 0.012 1.66 (0.99-2.76) 0.053

Beta-blockers 2.08 (1.28-3.36) 0.003 0.74 (0.43-1.25) 0.258

Amiodarone 2.09 (1.09-3.98) 0.026 1.35 (0.63-2.90) 0.440

ARB or ACE inhibitors 2.05 (1.12-3.76) 0.020 0.36 (0.18-0.71) 0.003

RR range [per 1 SD inc] 0.61 (0.47-0.78) <0.001 0.81 (0.61-1.08) 0.145

NSVT and > 240
2.15 (1.32-3.50) 0.002 1.54 (0.92-2.58) 0.103

VPBs in 24h

TSď2.5 ms/RR 4.98 (2.70-9.17) <0.001 4.51 (2.42-8.39) <0.001

Below variables added one at

a time to the multivariate model

∆αTpe ď 0.022 1.97 (1.21-3.22) 0.007 2.11 (1.26-3.54) 0.005

∆Tpe

|zRR“1
ď 0.005 2.19 (1.36-3.54) 0.001 2.03 (1.24-3.33) 0.005

∆Tpe

|zRR“zRR
ď 0.021 1.83 (1.11-3.02) 0.018 1.86 (1.10-3.15) 0.020

ACE=angiotensin-converting enzyme; ARB=angiotensin receptor blocker; CI=
con�dence interval; HAR=hazard ratio; IAA=index of average alternans; LVEF=
left ventricular ejection fraction; NSVT=Non-sustained ventricular tachycardia;
NYHA=New York Heart Association; SCD=sudden cardiac death; SD=standard

deviation; TS=turbulence slope; VPB=Ventricular premature beat;
Statistically signi�cant values are marked in bold.

Table 2.5: Association of ∆αTpe, ∆Tpe

|zRR“1
, ∆Tpe

|zRR“zRR
, and ∆αQT with SCD and PFD in univariate

and multivariate Cox analysis.
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Figure 2.9: Probability curves of SCD for ∆αQT.

Multivariable Cox analysis was constructed by adjusting for the variables that were
signi�cantly associated with SCD or PFD in univariate analysis. Then, for SCD, mul-
tivariable Cox analysis was adjusted for gender, NYHA class, LVEF, range of RR
and non-sustained ventricular tachycardia (NSVT) and more than 240 VPBs in 24
h. For PFD, the adjusted variables were age, NYHA class, LVEF, diabetes, beta-
blockers, amiodarone, ARB or ACE inhibitors, range of RR, NSVT and more than
240 VPBs in 24 h (Table 2.5). The QT/RR and Tpe/RR dichotomized indices that
were signi�cantly associated with SCD or PFD in univariate analysis were included
one at a time in the SCD multivariable model. Results showed that ∆αTpe ě0.028,
∆Tpe

|zRR“1 ě 0.023, and ∆Tpe

|zRR“zRR
ě 0.030, and ∆αTpe ď0.022, ∆Tpe

|zRR“1 ď 0.005, and

∆Tpe

|zRR“zRR
ď 0.021 remained signi�cantly associated with increased SCD and PFD

risk, respectively, after adjustment for signi�cant clinical and other ECG-derived co-
variables (Table 2.5). In fact, ∆αTpe ě0.028 and ∆Tpe

|zRR“zRR
ě 0.030 were the variables

most strongly associated with SCD, while ∆αTpe ď0.022 was the variable most signif-
icantly associated with PFD among the Tpe/RR slope parameters (Table 2.5). The
dichotomized marker ∆αQT ě0.228, however, lost its signi�cant association with in-
creased SCD risk. Then, the time to SCD event was approximately doubled among
patients with ∆Tpe

|zRR“1 ă0.023 in comparison to those with ∆Tpe

|zRR“1 ě 0.023 and tripled

among patients with ∆αTpe ă 0.028 or ∆Tpe

|zRR“zRR
ă 0.030 in comparison to those with

∆αTpe ě 0.028 or ∆Tpe

|zRR“zRR
ě 0.030 (Table 2.5). Similarly, the time to PFD event

was approximately doubled in the low risk groups de�ned by the three indices of slope,
as compared to the high risk groups (Table 2.5).

2.3.5 Classi�cation

Based on the results showing that ∆αTpe was the index with highest joint SCD
and PFD predictive value among those proposed in this chapter, we chose it for the
classi�cation study, in combination with IAA and TS.
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Two-class Classi�cation of Cardiac Death Mode Using one ECG Index

Using the individual dichotomized variables for classi�cation of SCD vs. the rest of
patients, IAAě3.73µV was the risk marker with maximum value of κ. For classi�cation
of PFD vs. the rest of patients, TSď2.5 ms/RR was the ECG index with maximum
κ (Table 2.6).

SCD PFD

Se (%) Sp (%) κ Se (%) Sp (%) κ

∆αTpe+ 65.1 56.0 0.07 63.0 57.4 0.08

IAA+ 40.7 77.4 0.10 75.6 24.1 0

TS+ 67.1 54.7 0.07 79.0 56.6 0.14

∆αTpe+ represents ∆αTpe ě0.028 for SCD and

∆αTpe ď0.022 for PFD. IAA+ represents

IAAě3.73 µV for SCD. TS+ represents

TSď2.5 ms/RR for both SCD and PFD.

Table 2.6: Two-class classi�cation performance for SCD vs the rest of patients and PFD vs. the rest
of patients individually using ∆αTpe, IAA and TS. The optimal risk marker for each mode of cardiac
death is indicated in bold.

Two-class Classi�cation of Cardiac Death Mode Using a Combination of
ECG Indices

The study sub-population consisted of those 597 patients with computable values of
IAA and TS (the other patients did not have any VPB, or segment suitable for TWA
analysis). In this sub-population, during the 4-year follow up, 134 (22%) patients
died. Of these, 111 (19% of the total sample) were CD victims and 23 (4%) non-CD
victims. Among CD victims, 49 (8% of the total sample) were categorized as SCD
and 62 (10%) as PFD.

Table 2.7 shows the Se, Sp and κ values for SCD and PFD classi�cation using two-
class SVMs. As indicated, the combination of ∆αTpe and IAA showed the maximum
value of κ for both con�gurations (C1 and C2, respectively) of the SVM two-class
classi�er for separating SCD from the rest of patients.

Regarding the separation of PFD from the rest of patients, ∆αTpe and TS was the
combination of risk markers with the maximum κ for the �rst con�guration (C1), while
∆αTpe, TS and IAA was the preferred combination for the second con�guration (Table
2.7). Then, since a classi�er with higher Sp value is preferred, we selected ∆αTpe and
TS as the optimal combination for separating PFD from the rest of patients.

Three-class Classi�cation of Cardiac Death Mode Using a Combination of
ECG Indices

Table 2.8 summarizes the performance of the two con�gurations of the SVM three-
class classi�er for separating SCD from PFD and from the rest of patients in the
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Combination Con�guration
SCD PFD

Se (%) Sp (%) κ Se (%) Sp (%) κ

∆αTpe and TS
C1 12.2 98.4 0.14 48.3 82.8 0.22

C2 28.0 81.0 0.03 42.6 73.5 0.07

∆αTpe and IAA
C1 12.2 98.5 0.15 11.7 89.3 0

C2 52.7 71.3 0.10 57.8 48.2 0.02

TS and IAA
C1 38.0 81.4 0.10 55.9 78.6 0.19

C2 73.1 45.0 0.05 50.5 71.1 0.08

∆αTpe, IAA and TS
C1 12.2 98.0 0.13 46.7 83.2 0.21

C2 52.9 69.5 0.09 74.2 53.6 0.11

Table 2.7: Two-class classi�cation performance for SCD, PFD and others (non-cardiac death and
survivors) using SVM. The optimal combination for each mode of cardiac death is indicated in bold.

overall population, in patients with LVEFď35% and in patients with LVEFą35%. The
combination of risk markers with the highest κ when evaluating the overall population,
the group formed by patients with LVEFď35%, and patients with LVEFą35% was
TS and IAA, using the �rst con�guration of the classi�er. However, the combination
of ∆αTpe, IAA and TS was the one with the highest κ using the second con�guration
of the classi�er.

The performance of the three-class classi�er using the optimal combination of risk
markers for each con�guration in the sub-populations de�ned by the NYHA class is
shown in (Table 2.9).

2.4 Discussion

In this chapter, a fully automated method was presented to estimate repolarization
restitution slope and its dispersion from the QT and Tpe intervals dynamics, respec-
tively, in 24-hour ambulatory ECG recordings from 651 CHF patients. The main
result is that the slope of the Tpe/RR regression pattern is able to identify three sub-
populations of CHF patients, with steeper slopes indicating higher SCD risk, �atter
slopes being associated with PFD risk and middle slopes suggesting low CD risk. For
the best of our knowledge, no other single ECG-derived marker has shown independent
capacity for such risk strati�cation. The restitution of total ventricular repolarization,
however, estimated as the relationship between the QT interval and the underlying
HR, was not associated with any mode of cardiac death. Additional results showed
that the circadian pattern modulated the curvatures and slopes, with signi�cantly
higher values during the day than at night. Finally, the combination with other ECG
risk markers, IAA and TS, to classify a population of CHF patients into SCD victims,
PFD victims and others improved risk strati�cation.
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Combination Con�guration Sample population
SCD PFD

κ
Se (%) Sp (%) Se (%) Sp (%)

∆αTpe and TS

C1

Overall population 12.2 98.4 6.7 97.8 0.09

LVEFą35% 6.7 98.8 20.0 95.9 0.16

LVEFď35% 11.4 98.3 24.4 91.0 0.12

C2

Overall population 10.0 91.9 58.1 65.6 0.09

LVEF>35% 0.0 92.9 45.0 69.3 0.05

LVEFď35% 44.2 73.0 70.0 71.5 0.17

∆αTpe and IAA

C1

Overall population 6.2 98.5 3.3 98.1 0.04

LVEFą35% 13.3 99.2 5.0 97.1 0.11

LVEFď35% 11.4 98.0 4.7 99.3 0.10

C2

Overall population 50.7 72.2 6.7 86.9 0.02

LVEFą35% 6.7 93.6 30.0 64.5 0.01

LVEFď35% 45.0 74.7 22.8 77.6 0.04

TS and IAA

C1

Overall population 20.0 89.4 24.9 88.8 0.15

LVEF>35% 30.0 94.0 35.0 81.3 0.17

LVEFď35% 18.6 84.6 16.9 91.0 0.13

C2

Overall population 46.7 66.7 38.1 76.6 0.10

LVEFą35% 6.7 92.0 55.0 49.7 0.03

LVEFď35% 69.3 49.2 15.0 92.1 0.12

∆αTpe, IAA and TS

C1

Overall population 12.2 98.0 6.7 97.6 0.09

LVEFą35% 0.0 99.6 20.0 94.3 0.11

LVEFď35% 11.4 98.0 21.9 92.8 0.11

C2

Overall population 50.9 73.1 48.3 75.5 0.13

LVEFą35% 10.0 95.6 50.0 64.9 0.08

LVEFď35% 45.4 73.7 67.5 72.2 0.17

Table 2.8: Three-class classi�cation performance for SCD, PFD and others (non-cardiac death and
survivors) in the overall population, in patients with LVEFď35% and in patients with LVEFą35%.
The optimal combination for each con�guration (C1 and C2, see text) and mode of cardiac death is
indicated in bold.

Combination Sample population
SCD PFD

κ
Se (%) Sp (%) Se (%) Sp (%)

TS and IAA (C1)

Overall population 20.0 89.4 24.9 88.8 0.15

NYHA II 2.9 96.8 14.4 91.0 0.03

NYHA III 36.7 96.8 32.0 89.1 0.30

∆αTpe, IAA and TS (C2)

Overall population 50.9 73.1 48.3 75.5 0.13

NYHA II 20.0 84.8 31.4 81.4 0.05

NYHA III 36.7 85.7 24.0 71.3 0.09

Table 2.9: Three-class classi�cation performance for SCD, PFD and others (non-cardiac death and
survivors) in the overall population, in patients in NYHA class II and in patients in NYHA class III
for the optimal combination for each con�guration (C1 and C2, see text).
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2.4.1 Dispersion of Repolarization Restitution Distinguishes

Three Groups of Risk

Cox regression analysis and Kaplan-Meier cumulative survival analysis con�rmed
the ability of the slope of the Tpe/RR relationship to separate CHF patients in three
risk sub-populations, with patients presenting steeper slopes being more prone to
su�er from SCD, patients with �atter slopes being more likely to su�er from PFD,
and patients with intermediate slope values being at low CD risk during follow-up.
Upon con�rmation by further investigations, such a di�erentiation could be of great
clinical signi�cance in the diagnosis and treatment of CHF patients.

Upon the comparison among the three Tpe/RR slope parameters, ∆αTpe was the
Tpe/RR slope parameter most strongly associated with SCD and PFD risk, possibly
because its calculation is less sensitive to outliers (see Figures 2.6 and 2.10). The fact
that the index ∆αTpe remained signi�cant after clinical and other ECG-derived vari-
ables, like IAA ot TS, indicates that this marker contains complementary information
and, thus, its inclusion in a combined predictive model is recommended to help re�n-
ing two SCD and PFD high-risk populations. The SCD and PFD predictive capacity
of ∆αTpe cannot be attributed to HR-related di�erences, since the correlation analysis
between ∆αTpe and median RR and RR range was not signi�cant (Table 2.3).

If our initial hypothesis of ∆αTpe being related to increased dispersion of repolar-
ization restitution is proven, our results associating elevated ∆αTpe with SCD would
be in agreement with [54] and [53], where an increase in dispersion of repolarization
restitution was associated with greater propensity to su�er from ventricular tachy-
cardia/�brillation. On the other hand, previous studies have reported a reduction
in dispersion of repolarization restitution in end-stage failing hearts as compared to
non-failing hearts for cycle lengths greater than 0.5 s [22] and greater than 1 s [215].
Again, under the hypothesis of ∆αTpe being to some extent related to dispersion of
repolarization restitution, those reported di�erences could serve to support our ob-
servations linking lower values of ∆αTpe with PFD. Therefore, �atter Tpe/RR slopes
may indicate a failure of the ventricle myocites response to changes in HR. However,
further studies are needed to con�rm the value of the Tpe/RR slope variable as SCD
and PFD risk strati�er and to elucidate its underlying mechanisms.

2.4.2 Repolarization Restitution is not Associated with Mor-

tality

Regarding the QT/RR relationship, we did not �nd any signi�cant association be-
tween QT/RR curvatures or slopes and SCD or PFD, as opposed to previous results in
other patient populations reporting association between QT/RR slopes and arrhyth-
mic risk [130�133]. However, other study using the same population of this chapter
reported that increased slopes of QT dynamics were associated with increased risk of
total mortality but with no signi�cant relation to SCD [216]. The correlation results
indicated that the slope of the QT/RR regression pattern was highly correlated with
the RR median, range of RR, NYHA class, LVEF and even ∆αTpe, suggesting that
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this index does not carry signi�cant additional information to that already provided
by these markers. It is not surprising, then, that this marker did not remain signi�cant
when adjusting for a multivariable model (Table 2.5).

Considering the initial hypothesis of this chapter where ∆αQT would re�ect the
slope of the APDR curve corresponding to the last cell to repolarize, our results
con�rm that is the spatial heterogeneity, i.e. dispersion, rather than the restitution
of the total repolarization phase, which sets the vulnerability for malignant cardiac
arrhythmia.

2.4.3 Risk-strati�cation Improves by Combining ECG Risk Mark-

ers

The combination of ∆αTpe and IAA showed to be the one with the best performance
in two-class SVM classi�cation of SCD vs. the rest of patients, with a value of κ higher
than that obtained when using the markers individually. This result con�rmed the
hypothesis that ∆αTpe and IAA add complementary information and, consequently,
their combination would improve the strati�cation of CHF patients at risk of SCD,
with higher values of ∆αTpe and IAA indicating higher propensity to su�er from a
SCD event.

Regarding two-class classi�cation of PFD vs. the rest of patients, TSď2.5 ms/RR
was the dichotomized individual risk marker with the highest association with this
mode of CD, presenting a value of κ higher than that of ∆αTpe ď0.022. When com-
bining ECG indices, the combination of ∆αTpe, TS and IAA was the one with the
highest κ coe�cient for the second con�guration of the classi�er, but not improving
the performance of TS individually, indicating that the classifying performance of the
combined index was merely due to the power of TS. For the �rst con�guration of
the classi�er, ∆αTpe and TS showed a notably higher κ value than the individual TS
marker. This is concordant with the fact that ∆αTpe was also associated with PFD,
although to a lesser extent than with SCD. This combination would, then, be recom-
mended for PFD classi�cation, with lower values of TS and ∆αTpe indicating higher
propensity to su�er from PFD outcome.

In the three-class classi�cation of SCD, PFD and others (i.e. survivors and non-
cardiac death victims), the combination of TS and IAA showed to be the one with
the best performance for the �rst con�guration of the classi�er, while ∆αTpe, IAA and
TS was the best one for the second con�guration. Considering the higher Sp values
in the identi�cation of SCD and PFD for the �rst con�guration of the classi�er, the
combination of TS and IAA would more robustly distinguish CHF patients at no risk
of SCD or PFD. ∆αTpe, IAA and TS achieved higher Se (at the expense of lower Sp)
in the second con�guration of the classi�er, indicating that ∆αTpe, IAA and TS would
be capable of more powerfully identifying CHF patients at SCD or PFD risk.

To assess to which extent our results would vary when applied to populations of
CHF patients with depressed or preserved LVEF or with di�erent NYHA classes, we
evaluated our SVM classi�ers in these sub-populations. Normally, predicting CD risk
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in patients with preserved LVEF (LVEFą35%) is a tricky task since LVEFď35% is a
traditional indicator of cardiac risk [113]. Our classi�cation results indicate that the
combination of ∆αTpe, IAA and TS in a three-class classi�er is able to stratify CHF
patients with preserved LVEF in SCD risk, PFD risk and low CD risk (Table 2.8). On
the contrary, our results indicate that the classi�cation of mode of CD in a population
of patients in NYHA class III is easier than in patients in NYHA class II, which is
not surprising considering that the CHF pathology is more advanced and, then, the
symptoms indicating SCD or PFD risk may be enhanced (Table 2.9).

Our combination results indicate that improved risk strati�cation of CHF patients
can be achieved based on the combination of ECG risk markers. The three markers
investigated in the present study provide complementary information for identi�cation
of SCD and PFD. The index ∆αTpe and the index IAA are both indicative of processes
related to ventricular repolarization and the two of them have shown strong association
with SCD. Regarding IAA, autonomic neurotransmitters decompensation and changes
in myocardial substrate can lead to elevated levels of TWA, serving as arrhythmogenic
factors. Clinical studies have shown the value of high TWA magnitudes as a marker of
increased risk for ventricular taquarrhythmias in CHF patients [150, 156]. Regarding
TS, HRT is a recently recognized electrocardiographic phenomenon re�ecting minute
hemodynamic disturbance caused by a VPB. Lower TS (HRT slope) values would
re�ect a reduced barore�ex mediated response of the sinus node to this disturbance
and thus poor regulation properties of the ANS. Several clinical studies have estab-
lished that HRT is a strong and independent risk predictor of PFD and, to a lesser
extent, SCD [217]. The results in this chapter are in line with the fact that abnormal
repolarization patterns are more strongly related with arrhythmic risk while indices
re�ecting cardiac autonomic modulation are more likely to predict PFD and, thus, the
combination of all of them would allow for improved separation of the two modes of
cardiac death.

2.4.4 The Circadian Pattern Modulates Repolarization Resti-

tution

We found that the QT/RR and Tpe/RR slopes were signi�cantly higher during the
day than at night (Figure 2.4). In the case of the dynamics of the Tpe interval, this
modulation was only signi�cant when quantifying with ∆αTpe and ∆Tpe

|zRR“zRR
. These

results may suggest that the evaluation of the slope at the average heart rate range
[130,144] may be more capable of capturing the dynamics of ventricular repolarization
restitution than when evaluating at zRR “ 1s [187]. Our results are in agreement with
previous studies suggesting that there is a higher incidence of cardiac arrhythmias and
SCD in the morning hours [218].

2.4.5 Technical Considerations

The values of slopes showed higher inter-individual variability, with larger vari-
ability of ∆Tpe

|zRR“1 as compared to ∆Tpe

|zRR“zRR
and ∆αTpe. A possible reason for this
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variability is presented in Figure 2.10, which shows an example of a Tpe/RR regres-
sion pattern with a very negative slope (PFD victim) (when evaluated at zRR “ 1 s)
(a) and with a very positive slope (survivor) (also when evaluated at zRR “ 1 s) (b).
Parameters from Eq. (2.5) have been optimized in order to minimize the residual error
by �tting the Tpe and RR data. If there are no Tpe data in zRR “ 1 s, Tpe values
must be extrapolated for the analysis, thus, due to the curvature, producing higher
absolute values of the slope when evaluated at zRR “ 1 s than when evaluated at the
averaged RR interval. Although evaluation of the slope at zRR “ 1 s allows assessing
this characteristic of the Tpe/RR patterns at the same heart rate for all patients, the
recordings of many patients of this study did not contain RR values around 1 s, which
led to substantial extrapolation of the ∆Tpe

|zRR“1 measurements. This fact may also

explain the di�erences in the circadian modulation between the evaluation of the Tpe
dynamics at zRR “ zRR or zRR “ 1, as discussed before.
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Figure 2.10: Tpe/RR regression pattern (blue) and the �tted regression curvature (red) with negative
(a) and positive (b) slope.

2.4.6 Limitations

This study used fully automated ECG measurements that are likely to su�er impre-
cision, especially when applied to abnormal ECGs in CHF patients. A retrospective
study of this kind may only be hypothesis generating. Prospective studies are needed
to verify that the observations presented here have a role in SCD and PFD prediction
in CHF patients. Both tachycardia and bradycardia cases were likely included. The
de�nition of SCD and PFD used in this study was the same as in other similar studies
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but might not be uniform in respect of the underlying pathophysiology. The number
of SCD and PFD victims was relatively low not only in comparison with survivors but
also with victims of other modes of death. This might have imposed some limitations
on the statistical comparisons. Further investigations on the applicability of the de-
�ned cut-o� point and on the extension of the analysis to other CHF and non-CHF
populations are needed to con�rm the prognostic value of the proposed index. Future
studies may include the splitting of the data into training and test sets so that the
thresholds developed in the training set could be evaluated in the test set. Also, further
studies may aim at separately analysing patients with and without ventricular con-
duction defects to assess potential di�erences in their QT/RR and Tpe/RR regression
patterns. Finally, the classi�cation regularization parameters C1 and C2 were selected
as two extreme cases, but intermediate values should have also been investigated.

2.5 Conclusions

In this chapter, we estimate ventricular repolarization restitution, and its disper-
sion, from the slope of the QT and Tpe interval dynamics. We demonstrate that
steeper Tpe/RR slopes are indicative of an arrhythmogenic substrate predisposing to
SCD and �atter slopes re�ect mechanical heart fatigue leading to PFD. The informa-
tion contained in these slopes was complementary to that from two indices quantifying
TWA and HRT since their combination improved SCD and PFD risk strati�cation.
Nevertheless, the slopes of the QT interval dynamics were not associated with higher
risk of SCD or PFD. The curvature parameter helped �tting the QT/RR and Tpe/RR
regressions but did not show predictive value. We also conclude that these parameters
are modulated by the circadian pattern and, thus, the time of the day should be con-
sidered when using ECG recordings shorter than 24 hours. Our results suggest that
the slope of the Tpe dynamics could be included in the clinical practice as an adjunct
tool to stratify patients according to their risk of su�ering SCD or PFD and, thus,
improve the bene�t from ICD or CRT treatment.
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3.1 Introduction

The T-wave re�ects the spatio-temporal dispersion of repolarization of the ven-
tricular myocytes [219]. The morphology of this wave depends on the repolarization
sequence of the ventricle, as well as on the characteristics (morphology, APD, etc) of
the APs of the ventricular myocytes. Thus, if any of the ionic exchanges during ven-
tricular repolarization is not produced normally, it will be re�ected on the morphology
of the T-wave [220�222]. As demonstrated in the previous chapter, steeper slopes of
the Tpe dynamics, re�ecting enhanced spatio-temporal dispersion of repolarization
restitution, are related to the generation of ventricular arrhythmias that could lead
to SCD [223], while �atter slopes indicate mechanical heart fatigue predisposing to
PFD. Then, the hypothesis of this chapter is that the information contained in the
morphology of the T-wave may provide a stronger prediction than that obtained when
using the Tpe interval only. Although there are T-wave morphology indices recently
proposed in the literature, like the total cosine R-to-T descriptor, the morphology
dispersion index or the T-wave residuum [224], they still lack su�cient superiority
and they require the information provided by the VCG, which could also become a
restriction in the clinical practice.

In addition, variations in the temporal domain, or misalignments between T-waves,
might complicate the comparison and corrupt the measurement of variability. Linear
and non-linear temporal re-parameterization (warping) techniques have been used to
overcome this limitation, align ECG waves and measure amplitude di�erences with
improved accuracy [225�227]. However, the warping information has never been used
as a marker to assess the variability in the temporal domain.

The main objective of the study presented in this chapter is to propose and assess
the ability of two ECG-derived markers, dw, and da, and their non-linearly restricted
versions, dNLw and dNLa , to quantify single-lead T-wave morphological variability. The
variability between the temporal domains of di�erent T-waves, or the amount of warp-
ing needed to remove the time domain variability, is measured by dw, while da quanti-
�es the amplitude variability after time warping, or the amplitude variability after re-
moving the temporal domain variability. The markers dNLw and dNLa quantify the strictly
non-linear warping and amplitude levels within dw and da, respectively. First, we com-
pared the performances of two warping algorithms, Dynamic Time Warping (DTW)
and Square-Root Slope Function (SRSF) in removing time domain variability. Next,
the robustness of dw, da, d

NL

w and dNLa against noise in a simulated set up was evalu-
ated and compared to that of dx and dy, two morphological variability markers already
present in the literature [228, 229]. Then, an electrophysiological cardiac model was
used to investigate the relation between dw, da, d

NL

w and dNLa and the morphological
changes of the APs at cellular level. Finally, the T-wave morphological variations pro-
duced by a tilt test in real ECG are quanti�ed using dw, da, d

NL

w and dNLa , and their
correlation with the RR, the QT and Tpe intervals, and the T-wave width (TW) and
T-wave amplitude (TA) is also studied.
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3.2 Methods

3.2.1 Mathematical Framework

Time-warping Algorithms

To exemplify the process of T-wave morphology comparison, consider two T-waves,
frptrq “ rfrptrp1qq, ..., frptrpNrqqs

J and fsptsq “ rfsptsp1qq, ..., fsptspNsqqs
J, where

tr “ rtrp1q, ..., trpNrqs
J, and ts “ rtsp1q, ..., tspNsqs

J, and Nr and Ns are the total
duration of tr and ts, respectively, as illustrated in Figure 3.1(a). We take frptrq as
the reference T-wave and fsptsq as the T-wave to be compared with respect to frptrq.

Figure 3.1: Diagram illustrating the computation of dw and da. (a): Reference T-wave (solid blue)
and a T-wave presenting both time and amplitude variability (shorter duration and larger amplitude)
(dashed red). (b): Applying eq. (3.2) we obtain their respective square-root slope functions. (c):
Optimizing eq. (3.3) with the DP algorithm, we get γ˚ptrq, the warping function that optimally
relates tr and ts. (e): The re-parameterization of fsptsq using γ˚ptrq leads to rfs ˝ γ˚sptrq, the
warped T-wave with no remaining time domain variability, and only presenting amplitude variability.
(d): Square-root slope functions of the reference (solid blue) and warped (dashed red) T-waves.

Let γptrq be the warping function that relates tr and ts, such that the composition
rfs ˝ γsptrq “ fspγptrqq denotes the re-parameterization or time domain warping of
fsptsq using γptrq, i.e. fspγptrqq represents the amplitude values of fsptsq if its
temporal vector was tr.

The most traditional algorithm for time domain warping is DTW [230], which
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performs a sample-to-sample projection of two T-waves that aims at minimizing the
Euclidean distance between them. In particular, the DTW algorithm �nds the optimal
warping function, γ˚

W
ptrq, as:

γ˚
W
ptrq “ arg min

γptrq

p}fr ptrq ´ fs pγ ptrqq}q . (3.1)

DTW leads to a warping function that can be used to remove the time domain
variability present in the original T-waves. However, this metric has some limitations.
Since it is not symmetric (}frptrq ´ fspγptrqq} ‰ }fsptsq ´ frpγ´1ptsqq}), it is not
a proper distance and can lead to degenerate results if frptrq and fsptsq present
variations in the amplitude domain (�pinching e�ect�) [231], as it will be shown in
this chapter. To address this, the SRSF was proposed [228, 229] to solve the warping
in a geometrical space by warping, instead, the SRSF transformation of the original
functions. This transformation is de�ned as the square-root of the derivative of fptq,

q
f
ptq “ sign

´

9f ptq
¯

c

ˇ

ˇ

ˇ

9f ptq
ˇ

ˇ

ˇ
. (3.2)

The SRSF of frptrq and fsptsq, qfr pt
rq and qfspt

sq, respectively, are shown in
Figure 3.1 (b). Now, the SRSF optimal warping function is the one that mini-
mizes the Euclidean distance between the SRSF of frptrq and fspγptrqq, qfr pt

rq

and qrfs˝γspt
rq “ qfspγpt

rqq
a

9γptrq, respectively [228,229]:

γ˚
TW
ptrq “ arg min

γptrq

´
›

›

›
qfr pt

rq ´ qrfs˝γs pt
rq

›

›

›

¯

(3.3)

“ arg min
γptrq

´
›

›

›
qfr pt

rq ´ qfs pγ pt
rqq

a

9γ ptrq
›

›

›

¯

.

The dynamic programming algorithm was used to obtain the solution of both the
DTW and the SRSF optimizations [232]. The optimal warping function, γ˚

TW
ptrq,

that optimally warps frptrq and fsptsq using SRSF is shown in Figure 3.1 (c). The
warped T-wave, fspγ˚ptrqq is shown in Figure 3.1 (e), together with the reference
T-wave, frptrq, while their corresponding SRSFs are shown in Figure 3.1 (d).

Dynamic Programming Algorithm

Let frptrq “ rfrptrp1qq, ..., frptrpNrqqs
T and fsptsq “ rfsptsp1qq, ..., fsptspNsqqs

T ,
be two given functions and we want to solve for:

γ˚ ptrq “ arg min
γptrq

p}fr ptrq ´ fs pγ ptrqq}q , (3.4)
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where γptrq is a function that matches each point in fspγptrqq with each point in
frptrq, and γ˚ptrq is the optimal warping function. We can solve a discrete approxi-
mation of this problem using dynamic programming. To decompose the large problem
into several sub-problems, we de�ne a local cost function:

E pτ1, τ2;γq “ }fr pτ q ´ fs pγ pτ qq} τ1 ď τ ď τ2, (3.5)

so that the original cost function is simply Eptrp1q, trpNrq;γq. A necessary condi-
tion for applying dynamic programming to such problems is that the cost function
is additive in time. Consider the 2D time coordinates grid formed by rtr, tss, with
size Nr ˆ Ns. We will conveniently view γ as a graph in this grid from rtrp1q, tsp1qs
to rtrpNrq, t

spNsqs, such that the slope of this graph is always strictly positive. Let
rtrpaq, tspbqs be a point on the grid. Since we have a constraint on the slope of the
graph, there are only certain nodes, Nab, that are allowed to go to rtrpaq, tspbqs:

Nab “ t
“

trpa1q, tspb1q
‰

|trp1q ď trpa1q ă trpaq, tsp1q ď tspb1q ă tspbqu (3.6)

De�ne Lpa1, b1; a, bq as a straight line with strictly positive slope joining the nodes
rtrpa1q, tspb1qs and rtrpaq, tspbqs. This sets up the local optimization problem:

”

tr
˚

pa1q, ts
˚

pb1q
ı

“ arg min
ptrpa1q,tspb1qqPNab

`

E
`

trpa1q, trpaq;L
`

a1, b1; a, b
˘˘˘

, (3.7)

Let Hptrpaq, trpbqq be the minimum cumulative cost needed to reach the point
rtrpaq, tspbqs, de�ned as:

H ptrpaq, tspbqq “E
´

tr
˚

pa1q, trpaq;L
`

a1, b1; a, b
˘

¯

` H
´

tr
˚

pa1q, ts
˚

pb1q
¯

. (3.8)

This minimization problem is solved sequentially for each node rtrpaq, tspbqs, start-
ing from rtrp1q, tsp1qs, and with Hptrp1q, tsp1qq “ 0, and increasing a and b until
the node rtrpNrq, t

spNsqs is reached. Tracing the path created by the set of pairs

trtr
˚

p1q, ts
˚

p1qs, ..., rtr
˚

pNrq, t
s˚pNsqsu provides a discrete version of the optimal con-

tinuous γ. It is important to highlight that the dynamic programming algorithm
provides the exact optimal warping function for each node, i.e. the warping function
found can never be a local optimum of the objective function, and, therefore, the
validity of dw and da will not be compromised.

Markers of Morphological Variability

The level of warping may be di�erent under various situations and it re�ects impor-
tant information regarding time domain variability. If γ˚ptrq “ tr, then the functions
are perfectly aligned, so it makes sense to use the di�erence between γ˚ptrq and tr
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to quantify the variability between each T-wave time domain. We de�ne two metrics,
dx and dw, that quantify the level of warping needed to optimally align any two T-
waves. The index dx was initially proposed in [229] and quanti�es the projection of
the SRSF transformation of the optimal warping function, qγ˚ pt

rq, onto the SRSF
transformation of tr:

dx “ arccos

˜

1

Nr

Nr
ÿ

n“1

qγ˚ pt
r pnqq

¸

“ arccos

˜

1

Nr

Nr
ÿ

n“1

a

9γ˚ ptr pnqq

¸

, (3.9)

where the SRSF transformation of tr is a vector of ones and, thus, has been omitted.
Also, since the optimal warping function has always a positive slope, the sign of its
derivative is always one (see equation 3.2).

The second metric, dw, is de�ned in the original domain and measures the average
of the absolute di�erence value between γ˚ptrq and tr:

dw “
1

Nr

Nr
ÿ

n“1

|γ˚ ptr pnqq ´ tr pnq |. (3.10)

Figure 3.1 shows the value of dw quantifying the time domain variability between
frptrq and fsptsq.

Once the time domain variability has been compensated for by optimally warping
fsptsq, the remaining variability is merely amplitude variability, as shown in Figure
3.1 (e). Therefore, we can de�ne two markers of amplitude variability, that are in-
dependent from the underlying time domain variability, one calculated in the SRSF
domain, dy, and another calculated in the original domain, da:

dy“sign peyq ¨
}

vy
hkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkj

qfr pt
rq ´ qfs pγ

˚
TW
ptrqq ¨

b

9γ˚
TW
ptrq }

›

›qfr pt
rq
›

›

ˆ 100,

ey“
Nr
ÿ

n“1

vypnq. (3.11)

da“sign peaq ¨
}

va
hkkkkkkkkkkkkkikkkkkkkkkkkkkj

fr ptrq ´ fs pγ˚
TW
ptrqq }

}fr ptrq}
ˆ 100,

ea“
Nr
ÿ

n“1

vapnq. (3.12)

Figure 3.1 shows the value of da, measuring the amplitude variability between
frptrq and fsptsq.
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Extracting Non-linear T-wave Morphological Variability

The proposed markers contain information about linear and non-linear di�erences
in both time and amplitude, respectively. Isolating the strictly non-linear variability
information might provide additional understanding on the di�erent sources generating
the morphology of the T-wave.

Figure 3.2 (a), shows the optimal warping function from Figure 3.1 (c). As ex-
plained in equation (2.4), the marker dw is calculated as the mean deviation of γ˚ptrq
from tr, marked in yellow in Figure 3.2 (a). By �tting γ˚ptrq with a linear regression,
γ˚l pt

rq, (black dashed line), and measuring the mean deviation of γ˚ptrq with re-
spect to this regression, we can have a quanti�cation of the level of non-linear warping
(dashed cyan region). This can be expressed as:

dNLw “
1

Nr

Nr
ÿ

n“1

|γ˚ ptr pnqq ´ γ˚l pt
r pnqq |, (3.13)

where γ˚l pt
rq is the linear �tting of γ˚ptrq using the least absolute residual method

[233] (Figure 3.2 (a)). The linear warping can be quanti�ed by measuring the mean
deviation of γ˚l pt

rq from tr (non-dashed region in Figure 3.2 (a).

Regarding da, normalizing the warped T-waves, we can quantify non-linear ampli-
tude di�erences not due to homogeneous scaling, and possibly caused by heterogeneous
dispersion of repolarization times:

dNLa “

›

›

›

›

fr ptrq

}fr ptrq }
´

fs pγ˚ ptrqq

}fs pγ˚ ptrqq }

›

›

›

›

ˆ 100. (3.14)

This is depicted in Figure 3.2 (b). Panel (b.1) shows the reference, frptrq (solid
blue), and studied, fsptsq (dashed red), T-waves with only amplitude variability (we
assumed γ˚ptrq “ tr in this example for clarity). Panel (b.2) shows the remaining
non-linear amplitude variability after normalization.

3.2.2 Mean Warped T-wave

From a set of I T-waves, tfs1pt
s
1q,f

s
2pt

s
2q, ...,f

s
Ipt

s
Iqu with temporal and amplitude

variability it is possible to calculate a mean warped T-wave that is an optimal represen-
tative average both in temporal and amplitude domains. Consequently, we will itera-
tively search for the optimal mean warped T-wave in the SRSF domain, qkptrq, where
k is the iteration, that minimizes the average of the di�erence between qkptrq and
each of the SRSF transformations of the set of T-waves, tqfs1 pt

s
1q, qfs2 pt

s
2q, ..., qfsI pt

s
Iqu.

Therefore, we initialize qk“1ptrq as the average of tqfs1 pt
s
1q, qfs2 pt

s
2q, ..., qfsI pt

s
Iqu and,

then, for iteration k, we look for the optimal set of tγ˚
k

1 pt
rq,γ˚

k

2 pt
rq, ...,γ˚

k

I pt
rqu that

minimizes:
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Figure 3.2: Calculation of the non-linear warping and amplitude information. (a): The area between
γ˚ptrq and tr (yellow region) represents the total warping information, quanti�ed by dw, while the
area between γ˚ptrq and γ˚l pt

rq represents the non-linear warping information (dashed cyan region),
quanti�ed by dNLw . (b.1): Reference, frptrq (solid blue), and studied, fsptsq (dashed red), T-waves

with only amplitude variability pγ˚ptrq “ trq. (b.2): Normalized reference, frptrq
}frptrq}

, and studied,

fspγ˚ptrqq

}fspγ˚ptrqq}
, T-waves.

γ˚
k

i ptrq “ arg min
γipt

rq

´
›

›

›
qk ptrq ´ qfsi pγiq pt

rq

›

›

›

¯

, (3.15)

i“ 1, ..., I.

The updated SRSF transformation of the mean warped T-wave can be calculated
as:

qk`1 ptrq “
1

I

I
ÿ

i“1

q
rfsi ˝γ

˚k

i s
ptrq (3.16)

We repeated eq. (3.15) and (3.16) until the di�erence between the energies of
qk`1ptrq and qkptrq was lower than 0.1%.

The �nal mean warped T-wave can be obtained by transforming qkptrq back to
the original domain [228,229]. Considering equation 3.2, the following holds:

signpqkptrqq “ sign
´

9f ptrq
¯

(3.17)

Also, by squaring equation 3.2:

qkptrq2 “
ˇ

ˇ

ˇ

9f ptrq
ˇ

ˇ

ˇ
“

9f ptrq sign
´

9f ptrq
¯

(3.18)
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Then, solving for 9f ptrq, and using the relation from equation 3.17:

9f ptrq “ qkptrq2signpqkptrqq “ qkptrq
ˇ

ˇq̄kptrq
ˇ

ˇ (3.19)

Finally, integrating equation 3.19:

f ptr pnqq “
1

I

I
ÿ

i“1

fsi pt
s
i p1qq `

n
ÿ

l“1

qk ptr plqq
ˇ

ˇqk ptr plqq
ˇ

ˇ (3.20)

When the morphology of the set of T-waves is very homogeneous, the morphology
of the mean warped T-wave will be very similar and representative of the set. However,
if the morphologies in the set are heterogeneous, like when a large portion of T-waves
are biphasic or S-shaped while another portion is monophasic, the mean warped T-
wave morphology will resemble the dominant T-wave shape, in case there exists one,
or the arithmetic T-wave mean (after warping), if the di�erent populations have the
same weight. Therefore, it would be advisable to include a pre-processing step to
remove any undesired T-wave morphology prior the computation of the mean warped
T-wave.

3.2.3 Separating Time and Amplitude Components

In this section, we performed two simulations, one to compare the performances
of DTW and SRSF in removing time domain variability, and another to evaluate the
accuracy of the morphology markers to capture the simulated time and amplitude
variability under the presence of additive Laplacian noise.

Let the T-wave from a reference noise-free cardiac beat, sampled at 1 kHz, be
the reference T-wave, frptrq. This reference cardiac beat was obtained from the �rst
principal component, calculated as described in section 1.3.2, over the 8-standard leads
recorded at supine position from a healthy subject.

Comparison of Dynamic Time Warping and Square-Root Slope Function
Warping Algorithms

T-wave amplitude variability was modelled by multiplying the deviations from the
iso-electric line of each i-th T-wave by a sinusoidally evolving factor in the following
way:

fsi pt
rq “ fr ptrq ¨

ˆ

1` 0.25 ¨ sin

ˆ

π pi´ 1q

I ´ 1

˙˙

, (3.21)

i“ 1, ..., I,

T-wave time domain modulation was introduced by modifying the temporal domain
of frptrq to induce T-wave asymmetry, but without altering the width of the T-wave,
according to the following equation:
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tsi “ trp1q ` ptrpNrq ´ t
rp1qq .

ˆ

tr ´ trp1q

trpNrq ´ trp1q

˙αpiq

αpiq “

ˆ

0.45pi´ 1q

I ´ 1
` 0.8

˙

, i “ 1, ..., I (3.22)

where i is the heart beat index.

Evaluation of the Performance of the Morphology Markers

The accuracy of dx, dw, dy, da, d
NL

w and dNLa in capturing linear and non-linear T-
wave time and amplitude variations was assessed by simulating controlled variations
in the T-wave duration and amplitude under the presence of di�erent levels of additive
noise.

The non-linear T-wave amplitude variability was modelled by adding a sinusoidal
wave, of period 0.25 times Nr and amplitude function of each beat, to frptrq in the
following way:

fNLi ptrq “ fr ptrq ` c piq ¨ sin

ˆ

2π
1

4Nr
tr
˙

, (3.23)

c piq “ 150. sin

˜

π
`

I
2 ` i´ 1

˘

I

¸

, i “ 1, ..., I,

Then, the T-wave linear amplitude variability was modelled by multiplying the
deviations from the iso-electric line of fNLi ptrq by a factor sinusoidally modulated
across beats:

fs
i pt

r
q“ fNLi ptrq ¨

˜

1` 0.15 ¨ sin

˜

π
`

I
2 ` i´ 1

˘

I

¸¸

. (3.24)

Next, linear variations in the duration of the T-wave were simulated according to:

tli “ γi pt
rq , i “ 1, ..., I (3.25)

where now γipt
rq is the operator that up- and downsamples tr according to the sam-

pling factor, αpiq:

α piq “
0.6 ¨ pi´ 1q

pI ´ 1q
` 0.7, i “ 1, ..., I (3.26)

when simulating large time variations (like those found under appreciably di�erent
RR values, which for a reference RR “ 1 s, would produce an RR spanning from
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RR “ 0.7 s (85 bpm) to RR “ 1.3 s (46 bpm), representing a heart rhythm change
after moving from activity to relax, as an example, [158]) and:

α piq “
0.2 ¨ pi´ 1q

pI ´ 1q
` 0.9, i “ 1, ..., I (3.27)

when simulating small time variations (like those found when analizing short-term
variability, which for a reference RR “ 1 s, would produce an RR spanning from
RR “ 0.9 s (66 bpm) to RR “ 1.1 s (54 bpm), representing the beat-to-beat heart
rate variability under stationary conditions [158]).

Non-linear variations in the temporal domain of the T-wave were introduced by
adding a sinusoidal modulation of period Nr and linearly varying amplitude, guaran-
teeing a monotonic increasing function:

tsi “ t
l
i ` d piq

Nr
Nsi

¨ sin

ˆ

2π
1

Nr
tli

˙

, (3.28)

d piq “
30 pi´ 1q

I ´ 1
´ 15, i “ 1, ..., I

where Nsi is, now, the duration of tli.

The re-parameterized i-th T-wave was, then, obtained using:

fs
i pt

s
i q “ f

s
i

ˆ

γi pt
r
q ` d piq

Nr

Nsi

¨ sin

ˆ

2π
1

Nr
γi pt

r
q

˙˙

. (3.29)

The i-th modulated cardiac beat was obtained by transforming frptrq to fsi pt
s
i q.

A simulated ECG signal was obtained by concatenating the I “ 300 modulated car-
diac beats. This led to a 300-beat ECG signal which was �ltered as explained in
section 1.3.2, and the T-waves were selected using the known delimitation marks. The
morphological average of the 300 T-waves, fptrq, was obtained with the algorithm
explained in section 3.2.2, and this mean warped T-wave was chosen as the reference
for comparison.

The reference drx “ rd
r
xp1q, ..., d

r
xpIqs, d

r
w “ rd

r
wp1q, ..., d

r
wpIqs, d

r
y “ rd

r
yp1q, ..., d

r
ypIqs,

dra “ rd
r
ap1q, ..., d

r
apIqs, d

NL
r

w “ rdNL
r

w p1q, ..., dNL
r

w pIqs and dNL
r

a “ rdNL
r

a p1q, ..., dNL
r

a pIqs
series were obtained by comparing each fsi pt

s
i q with fpt

rq, following the procedure ex-
plained in section 3.2.1. Before applying the warping algorithm, the reference and the
studied T-waves were aligned according to their gravity centres, so that γ˚ptrq is only
dependent on changes in the T-wave morphology, and not on global shifts. The center
of gravity was calculated as the shift in tsi that o�ered the maximum cross-correlation
between fr and fsi . In case fr and fsi had di�erent polarities, fs was inverted to
match the polarity of fr.

Then, zero mean Laplacian noise was iteratively added to the simulated ECG sig-
nal, such that the SNR was, in decibels (dBs): SNR “ t5, 10, ..., 35u. The estimated
dSNRx “ rdSNRx p1q, ..., dSNRx pIqs, dSNRw “ rdSNRw p1q, ..., dSNRw pIqs, dSNRy “ rdSNRy p1q, ..., dSNRy pIqs,
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dSNRa “ rdSNRa p1q, ..., dSNRa pIqs, dNL
SNR

w “ rdNL
SNR

w p1q, ..., dNL
SNR

w pIqs and dNL
SNR

a “ rdNL
SNR

a p1q, ..., dNL
SNR

a pIqs
series were obtained by comparing the T-waves from the noisy modulated ECG signal
with their mean warped T-wave. The normalized relative errors were, then, calculated
as:

ed pSNRq “

g

f

f

e

řI
i“1 pd

SNR piq ´ dr piqq
2

řI
i“1 pd

r piqq
2

ˆ 100, (3.30)

where d P tdx, dw, dy, da, d
NL

w , dNLa u. The noise generation and relative error measure-
ment steps were repeated 50 times to have robust relative error values.

3.2.4 Electrophysiological Model

The relation between changes in myocardial repolarization dynamics and the mor-
phological variability markers was explored using an electrophysiological model [234].
This model presents a formalization of the forward problem in which action potentials
at M ventricular sites are projected onto the body surface.

The transmembrane potentials, vptq “ rv1ptq, ..., vM ptqs, of M “ 257 sources
(nodes), each one located at a given point on the epi- and endocardium, were gen-
erated for each node m by using the analytical expression proposed in [235], and
already used for similar purposes in [236,237]:

vm ptq “ am ¨ dm ptq ¨ rm ptq ` v0, m “ 1..M,

dm ptq “
1

1` e´αmpt´δmq
. (3.31)

rm ptq “

ˆ

1´
1

1` e´βmpt´ρmq

˙

¨

ˆ

1´
1

1` e´µmpt´ρmq

˙

.

In these expressions, δm and ρm are the depolarization and repolarization times,
and αm, βm and µm describe the upslope during repolarization, and the leading and
trailing downslope during repolarization, respectively, at node m. am is the amplitude
of the transmembrane potential and v0 is the resting potential. The values of the
parameters were obtained by �tting vmptq with the transmembrane potential of each
node provided by ECGSIM [40] for a normal male. Figure 3.3 shows the analytical
expressions dm ptq (a), rm ptq (b) and the transmembrane potential vm ptq (c), for
m “100.

A L-lead ECG beat, with L “ 8, was generated by using the model proposed and
validated in [234]. This model is derived from the equivalent surface source model [238],
assuming that the sources are of the double layer type. The ECG potential (one for
each of the L leads considered) on the body surface can be expressed as:

φ ptq “ Av ptq , (3.32)
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Figure 3.3: Analytical expressions dm ptq (a), rm ptq (b) and the transmembrane potential vm ptq (c),
for m “100. Vertical lines indicate the depolarization time, δm, (dashed black) and repolarization
time, ρm, (dotted red).

where matrixA has size p8ˆMq and re�ects the complexity of the torso (geometry and
conductivity). Each row of A expresses the linear weighting of all action potentials,
vptq, for each standard lead [234].

In [234], the author pointed out that it was possible to link the shape of the T-wave
in each lead to the transmembrane potential using equation (3.32). In fact, making
the further approximation that the only di�erence across di�erent vmptq functions is
the repolarization time ρm, i.e., vmptq “ vpt ´ ρmq, then the repolarization time of

each node may be expressed as ρm “ ρ`∆ρm, where ρ “
řM
m“1 ρm{M is the average

repolarization time, and ∆ρm ! ρ is the deviation (di�erence) of repolarization times
at cardiac site m, with standard deviation σ, from the mean repolarization time, with
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řM
m“1 ∆ρm “ 0.

Next, principal component analysis was performed over the ECG leads and the �rst
principal component was preprocessed and delineated using a single-lead technique
[66]. The extracted T-wave was considered as the reference T-wave in this simulation
study.

Figure 3.4: Diagram illustrating the hypothesis of this thesis: the dispersion of repolarization changes
with RR. Di�erent action potential duration restitution curves from di�erent ventricular cells are
plotted. σ indicates the standard deviation of the dispersion of repolarization at each value of RR
interval.

We assessed the morphological variability re�ected on the j-th T-wave using dw,
da, d

NL

w and dNLa , where j “ 1, ..., 5 is the level of variation in ρm at each situation,
under four scenarios:

1. Lengthening of the mean repolarization time, ρ, according to the following equa-
tion:

ρ pjq “ ρ` 25 ¨ pj ´ 1q , j “ 1, ..., 5 (3.33)

where ρpjq is in ms. This is equivalent to move from a beat with σ1 to other beat
with σ2 “ σ1 and di�erent ρ, if ρ is varying with the RR interval (see Figure
3.4).

2. Increasing the dispersion of repolarization by modifying σ, using the following
equation:

∆ρm pjq “∆ρm p1` 0.2 pj ´ 1qq , j “ 1, ..., 5

σ pjq “

g

f

f

e

1

M ´ 1

M
ÿ

m“1

p∆ρm pjq ´ ρq
2
, (3.34)
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where ∆ρmpjq and σpjq are in ms. This is equivalent to move from a beat with
σ1 to a beat with σ2 ‰ σ1 and same ρ (see Figure 3.4).

3. In the third scenario we combined simulations 1 and 2.

4. Progressive variations of the epicardial APDs, de�ned as the di�erence between
the maximum repolarization and depolarization slopes, (by only modifying the
repolarization times, ρm, of epicardial nodes) towards the mean endocardial
APD. This emulates the reduction in the dispersion of repolarization after re-
ducing the spatial dispersion of Iks current as reported in [222].

PCA was performed on the resulting ECG leads, and the �rst principal component
was preprocessed and delineated using a single-lead technique [66]. The subsequent
dwpjq, dapjq, d

NL

w pjq, and d
NL

a pjq series were obtained for each scenario by comparing
the resulting j-th T-wave with the reference T-wave. Their gravity centres were also
aligned to make γ˚ptrq only dependent on changes in the T-wave morphology, and not
on global shifts.

3.2.5 ECG recordings

The Tilt Table Test

ECG signals recorded during a tilt table test were studied since it is a standard
procedure that induces variations in the modulation of the autonomic nervous sys-
tem, i.e. heart rate, and in the repolarization features, i.e. T-wave morphology [144].
Therefore, our objective was to evaluate the ability of dw, da, d

NL

w and dNLa to cap-
ture the T-wave morphological changes induced by the orthostatic stress, and their
interaction with changes in the heart rate. ECG recordings from 17 healthy subjects
(age 28.5˘2.8 years, 11 males) with no previous medical history related to cardio-
vascular diseases, acquired at the University of Zaragoza (ANS-UZ database) were
analysed [144]. Each recording consisted of 8 ECG leads, sampled at 1 KHz, acquired
during a 13-min head-up tilt test (4-min supine, 5-min at 70˝, 4-min supine).

Preprocessing of the ECG signals included low-pass �ltering at 40 Hz with a but-
terworth �lter of order 6 to remove electric and muscle noise but still allow QRS
detection, cubic splines interpolation for baseline wander removal and ectopic beats
detection. A single-lead-plus-rules delineation technique [67] (section 1.3.3) was ap-
plied over all leads in the ECG record to delimitate the T-waves. Then, PCA was
calculated lead-wise over the selected T-waves to emphasize the T-wave components,
improve its delineation and enhance morphological di�erences [65]. Finally, the �rst
principal component was further delineated using a single-lead technique [66], and
the T-waves were con�ned from the T-wave onset and T-wave end delineation marks.
Then, each T-wave was further low-pass �ltered at 20 Hz, using a butterworth �lter
of order 6, to remove remaining out-of-band high frequency components that could
potentially corrupt the T-wave shape. The �ltered T-waves were visually checked for
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artefacts related to onset/end �ltering discontinuities, observing no issues in this re-
spect. The reference and the studied T-waves were also aligned according to their
gravity centres before applying the warping algorithm.

We assumed stationarity in three windows, early supine (ES), Tilt (TL), and late
supine (LS), as done in [239]. These windows had a length of 20 beats and �nished
30 s before any transition during the tilt test. Then, for each subject and window,
we calculated the RR, QT, TW, and Tpe interval values as the di�erences between
subsequent QRS �ducial points, T-wave end and QRS complex onset, T-wave end and
T-wave onset, and T-wave end and T-wave peak, respectively, from the annotation
marks calculated in delineation step [66]. Similarly, the TA values were obtained from
the T-wave amplitude values. Finally, for each subject and window, we calculated the
median RR, QT, TW, Tpe and TA values. In addition, the mean warped T-wave of
the 20 T-waves in each window and subject was calculated following the algorithm
explained in section 3.2.2.

Analysis of Long-term T-wave Morphological Variability

To evaluate the variations of the T-wave produced by the orthostatic stress, we
compared each mean warped T-wave with the other two ((LS - ES), (TL - ES) and
(LS - TL)), and we calculated the di�erence between each median RR, Tpe, TW, QT
and TA values and the other two, obtaining three values of dw, da, d

NL

w , dNLa , ∆RR,
∆Tpe, ∆TW, ∆QT and ∆TA per subject.

We also calculated for each subject the mean warped T-wave among 20 T-waves
from the beginning of the recording, and we compared it with every T-wave along the
recording, creating two series, xdwpiq and xdapiq, where i is the beat index. The RR
series, xRRpiq was also calculated.

Analysis of Short-term T-wave Morphological Variability

To evaluate the variability of the T-wave at steady-state conditions, we calculated
the median absolute deviation of QT, TW, Tpe and TA with respect to their median
value, for each subject and window [240]. Regarding the proposed morphological
markers, we calculated the median of the 20 absolute values of dw, da, d

NL

w and dNLa ,
obtained when comparing each T-wave in the window with its mean warped T-wave.
Finally, we measured the SNR value of the T-waves in the window, de�ned as the
ratio between the root mean squared values of their arithmetic mean T-wave and
the di�erence between each T-wave and this arithmetic mean T-wave, in decibels.
Therefore, we assumed that noise level was higher than the variability itself. This
de�nition can be argued at situations where the T-wave variability is high, as compared
to noise. However, for Holter ECG records at stationary conditions, it is expected to
have low T-wave variability and high noise levels. Then, for general cases, this will be
an appropriate assumption when estimating correlation for the whole range of SNR.
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3.3 Results

3.3.1 Separating Time and Amplitude Components

Comparison of Dynamic Time Warping and Square-Root Slope Function
Warping Algorithms

Figure 3.5 shows an example of DTW (eq. (3.1)) and SRSF (eq. (3.3)) warping
algorithms for i “ 200 in the �rst simulation study. Panel (a) shows frptrq (solid
blue) and fs

200
pts

200
q (dashed red), where the simulated amplitude scaling (by a factor

of 1.2) and temporal asymmetry (αp200q “ 1.1) can be appreciated. The black dotted
lines illustrate the pointwise warping re�ected by γ˚

W
ptrq (depicted on panel (e)). The

resulting warped fs
200
pγ˚

W
ptrqq is shown in panel (b). Panels (c) and (d) show the

same process, but using the SRSF warping algorithm. It can be observed how DTW
produces a singularity, or unintuitive warping, leading to a degenerate warped T-wave.
This occurs because DTW compares amplitude values, rather than match the features
of both T-waves (up-/downslopes, peaks, etc). For instance, in panel (a), γ˚

W
ptrq

has matched the peak of frptrq to the �rst point found in fs
200
pts

200
q with the same

amplitude value, without considering if this point is also the peak. SRSF is based on
the comparison of two transformed functions that are proportional to the derivative of
the original signals so that, together with its built-in regularization term,

a

9γ˚
TW
ptrq,

SRSF achieves a feature-to-feature warping (green dotted lines, panels (c) and (e)),
leading to a warped fs

200
pγ˚

TW
ptrqq that is just a scaled version of frptrq, as expected.

Therefore, γ˚
TW
ptrq has proved to perform better than γ˚

W
ptrq, and, then, was the

chosen methodology in the rest of the work.

Performance of the Morphology Markers

Figure 3.6 shows six examples of the linear and non-linear time and amplitude
simulations of the T-wave. The reference T-wave, frptrq is displayed in solid blue
in every panel, and the simulated T-wave, fsi pt

s
i q is plotted in dashed red, for i “

t1, 60, 120, 180, 240, 300u.

The comparison of the noise robustness of the T-wave amplitude and time vari-
ability markers, dy and da, and dx and dw, is shown in �gure 3.7, panels (a) and (b),
respectively. As observed, the markers dw and da are more robust against noise than
dx and dy, respectively. Then, the preferred morphological variability markers and,
thus, chosen for the rest of the study, were dw and da. The mean˘standard deviation
of the relative error between dSNRa and dra, d

SNR

y and dry, d
SNR

x and drx, and d
SNR

w and drw
is displayed for di�erent values of SNR.

Figure 3.8 shows the evolution of drw (a), dra (b), d
NL
r

w (c), and dNL
r

a (d) series as the
linear and non-linear time and amplitude modulations induced in the T-wave change.
The evolution of d20w , d

20

a , d
NL

20

w , and dNL
20

a is illustrated in red.

Figure 3.9 shows the relative error between dSNRw and drw (a), dSNRa and dra (b),
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Figure 3.7: Relative error between (a) reference and estimated dw (solid blue) and dx (dashed red),
and (b) reference and estimated da (solid blue) and dy (dashed red), under the presence of additive
Laplacian noise.

3.3.2 Electrophysiological Model

Figure 3.10, panels (a), show the simulation of the �rst scenario described in sec-
tion 3.2.4, i.e. lengthening of the mean repolarization time, ρ. Panels (b) illustrate
the simulation of the second scenario, i.e. an increment of the dispersion of action
potential repolarization times, σ. Panels (c) show the combined simulation of ρ and
σ variation. Panels (d) show the simulation results of the fourth scenario described in
section 3.2.4. Panels (a.1), (a.2) and (a.3) illustrate the range between the minimum
and the maximum APD, with respect to ρ (a.1), σ (b.1) and ρ (c.1). Panel (d.1) shows
an endocardial action potential, which does not change. Panels (a.2), (b.2) and (c.2)
illustrate the mean action potential. The horizontal bars represent the correspond-
ing range between the minimum and the maximum repolarization time. It should be
noted that they are located slightly away from the mean repolarization time to avoid
overlapping with the neighbouring horizontal bars, but it is only a matter of display.
Panel (d.2) shows an epicardial action potential and the result of progressively increas-
ing its duration (each color represents a di�erent duration). Panels (a.3-d.3) show the
principal component as a result of the projection of the modi�ed action potentials.
Panels (a.4-d.5) show the values of dw (circle) and dNLw (triangle), and of da (circle)
and dNLa (triangle), respectively in the four simulations.

3.3.3 ECG recordings

Analysis of Long-term T-wave Morphological Variability

Figure 3.11, left column, shows the boxplots of ∆RR (a.1), ∆QT, ∆TW and ∆Tpe
(a.2), ∆TA (a.3), dw and dNLw (a.4) and da and d

NL

a (a.5) values, measured for (LS-ES),
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Figure 3.8: Evolution of dw, da, dNLw and dNLa with respect to the level of linear and non-linear time
and amplitude modulations in a noise-free scenario (solid blue) and under the presence of additive
Laplacian noise with SNR = 20 dB (dashed red), when simulating large temporal variations, as in
eq.(3.26).

(TL-ES) and (LS-TL).

Table 3.1 shows the correlation coe�cient, when comparing LS-ES, TL-ES, and
LS-TL, between (i) dw and da, and between dNLw and dNLa ; (ii) dw and dNLw and each
of the repolarization markers measuring time intervals, ∆QT, ∆TW and ∆Tpe; (iii)
da and d

NL

a and the repolarization marker measuring amplitude di�erences, ∆TA; and
(iv) dw, d

NL

w , da and d
NL

a and ∆RR.

The median (solid blue) and median + median absolute deviation (dotted red) of
the resulting xRRpiq, xdwpiq and xdapiq series, calculated across subjects, are reported
in Figure 3.12. Table 3.2 shows the median (IQR) values of xRRpiq, xdwpiq and xdapiq
in the three windows.
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eq.(3.26) and (3.27), respectively. Non-linear time variations and linear and non-linear amplitude
changes are the same in all situations.

r LS-ES TL-ES LS-TL

dw vs. da -0.53 -0.07 0.23

dNLw vs. dNLa 0.72 0.77 0.69

dw vs. ∆QT 0.55 -0.38 0.69

dNLw vs. ∆QT 0.36 -0.36 0.18

dw vs. ∆TW 0.81 -0.60 0.71

dNLw vs. ∆TW 0.70 -0.34 0.44

dw vs. ∆Tpe 0.65 0.10 -0.16

dNLw vs. ∆Tpe 0.45 0.75 -0.60

da vs. ∆TA 0.95 0.87 0.88

dNLa vs. ∆TA -0.41 -0.43 0.28

dw vs. ∆RR 0.55 -0.41 0.63

dNLw vs. ∆RR 0.54 -0.45 0.26

da vs. ∆RR -0.07 0.55 0.28

dNLa vs. ∆RR 0.36 -0.40 0.44

Table 3.1: Spearman's correlation coe�cient, r, in the long-term analysis. Signi�cant correlations are
indicated in bold.
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Figure 3.10: Performance evaluation using an electrophysiological cardiac model. (a.1-5): Increments
of the mean repolarization time, ρ. (b.1-5): Increments of the standard deviation of the dispersion
of repolarization, σ. (c.1-5): Combined variation of ρ and σ. (d.1-5): Progressive variations of the
epicardial APDs. (a.1-c.1): Range between the minimum and the maximum APD with respect to the
variation. (a.2-c.2): Mean action potentials with respect to the variation. (d.1-2): Simulated action
potential of endocardial and epicardial cells, respectively. (a.3-d.3): ECG beats corresponding to the
modi�ed action potentials. (d.4-d.5): dw and da values (circles) and dNLw and dNLa values (triangles).
Each color indicates a level of variation. Horizontal bars represent the range between the minimum
and the maximum repolarization time.

Early Supine Tilt Late Supine

xRR [s] 1.01 (0.1) 0.77p0.2q˚ 1.06p0.2q:

xdw [ms] 1.30 (1.1) 6.64p3.3q˚ 1.97p2.3q˚:

xda [%] -2.99 (7.9) -9.36 (31.6) -4.03 (17.8)

* Indicates signi�cantly di�erent (pă 0.01) with
respect to Early Supine. : Indicates signi�cantly
di�erent with respect to Tilt.

Table 3.2: Temporal evolution of the median (interquartile range), calculated across subjects, of RR,
dw and da during a Tilt test.
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Figure 3.11: Left column, boxplots of ∆RR (a.1), ∆QT, ∆TW and ∆Tpe (a.2), ∆TA (a.3), dw
and dNLw (a.4) and da and dNLa (a.5) values, across subjects, between the three windows along the
recording. Right column, boxplots of the mean values of RR (b.1), median absolute deviation of QT,
TW and Tpe (b.2) and TA (b.3), and mean dw and dNLw (b.4) and da and dNLa (b.5) values at the
three windows. ˚ indicates statistically signi�cant di�erences with respect to the leftmost boxplot.
˚˚ indicates statistically signi�cant di�erences between the central and rightmost boxplots. It should
be noted that left and right panels have di�erent scale.

Analysis of Short-term T-wave Morphological Variability

Figure 3.11, right column, shows the boxplots of the mean values of RR (b.1),
median absolute deviation values of QT, TW and Tpe (b.2) and TA (b.3) with respect
to their median value, dw and dNLw (b.4) and da and d

NL

a (b.5) at the three windows.

Table 3.3 shows the correlation coe�cient between dw, d
NL

w , da and dNLa , and the
median RR and SNR values for each window separately and when pooling them into
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Figure 3.12: Median (blue) and median + median absolute deviation (red) of the RR (top panel),
dw (middle panel) and da (bottom panel) series during a Tilt test, calculated across subjects. The
mean warped T-wave of 20 T-waves from the beginning of the recording is selected as the reference
T-wave for the computation of the dw and da series. Vertical lines indicate the start and end of the
change in the table tilt.

a single group ES+TL+LS.

r ES TL LS ES+TL+LS

dw vs. SNR -0.68 -0.60 -0.61 -0.70

dNLw vs. SNR -0.61 -0.55 -0.81 -0.74

dw vs. RR -0.16 -0.54 -0.14 -0.37

dNLw vs. RR 0.01 -0.40 -0.01 -0.30

da vs. SNR -0.93 -0.71 -0.83 -0.85

dNLa vs. SNR -0.90 -0.69 -0.86 -0.84

da vs. RR -0.17 -0.17 -0.09 -0.39

dNLa vs. RR -0.19 -0.41 -0.28 -0.41

Table 3.3: Spearman's correlation coe�cient, r, in the short-term analysis. Signi�cant correlations
are indicated in bold.

3.3.4 Computational Time

As a reference for computational time estimation, the calculation of dw and da when
comparing two T-waves took 1.31 seconds with the personal computer and software
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described in section 2.2.7. The computation of the mean warped T-wave was slower,
needing 47 seconds to calculate the mean warped T-wave of a set of 20 T-waves. It
should be advised that the algorithm has not been optimized in terms of computational
time, since the current time is not considered a bottle neck for the technology to be
used in clinical practice.

3.4 Discussion

In this chapter, we introduced four novel ECG-derived indices, dw and da, that in-
dependently quantify T-wave morphological variability in the temporal and amplitude
domains, respectively, and dNLw and dNLa , that isolate the non-linear information present
within dw and da, respectively. We evaluated the accuracy of dw, da, d

NL

w and dNLa un-
der the presence of additive Laplacian noise. We investigated the relationship between
dw, da, d

NL

w and dNLa and the induced morphological variations at cardiac cellular level
and we evaluated the extent of T-wave time and amplitude changes produced by a tilt
test in real ECG, and the correlation of dw, da, d

NL

w and dNLa with the heart rate and
with well-known time and amplitude-based repolarization markers.

3.4.1 Square-root Slope Function Outperforms Dynamic Time

Warping in Removing Temporal Variability

The warping algorithm is expected to selectively compensate for the time do-
main variability, so in our �rst simulation (section 3.2.3), the resulting warped T-
wave should be a scaled version of the original frptrq. However, this is only ob-
tained using SRSF (Figure 3.5, right panels), because DTW (left panels) provides a
warped T-wave di�erent from the expected one. We, thus, have supported previous
studies reporting the limitations of DTW [228, 229, 241]. Since it is not symmetric
(}frptrq ´ fspγptrqq} ‰ }fsptsq ´ frpγ´1ptsqq}), it is not a proper distance and leads
to degenerate results if frptrq and fsptsq present variations in the amplitude domain
(�pinching e�ect�) [231]. The SRSF metric, however, is a proper distance, and over-
comes the limitations of DTW [228,229,241].

3.4.2 The Markers dw and da Are More Robust than dx and dy

The relative error values of dx and dy are higher than those from dw and da for
every value of SNR (Figure 3.7). This is because the SRSF transformation used
for the calculation of dx and dy (equations 3.9 and 3.11) highlights the high-frequency
components of the signal, resulting in less robust estimates against additive broadband
noise (derivative transformation in equation 3.2). Therefore, dw and da were chosen as
the preferred markers of time and amplitude variability, given their superior robustness
against noise and their physiological interpretation (they are both calculated in the
original domain).
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3.4.3 The Markers dw and dNLw , and da and dNLa Independently

Capture Time and Amplitude Variability

The evaluation of the accuracy of dw, da, d
NL

w and dNLa in detecting linear and
non-linear modulations of the T-wave time domain and amplitude, respectively, in
a simulated ECG signal under the presence of additive Laplacian noise con�rmed
that the four markers were able to robustly and independently capture both modes
of variation, with no coupling between the di�erent sources of variability, i.e. the
evolution of dw and dNLw was independent from that of da and dNLa (Figure 3.8). The
values of relative error remained lower than 20% for SNR “ 20 dB, indicating that
these markers can be robustly used in ambulatory Holter ECG (Figure 3.9). When
the simulated time domain variations were small, the relative error increased for low
SNR because noise dominates over time domain variations of the T-wave.

3.4.4 The Markers dw, dNLw , da and dNLa Re�ect Variations in

Dispersion of Repolarization

The assessment of the relationship between T-wave time and amplitude variations
and morphological changes at cardiac cellular level using an electrophysiological car-
diac model [234] showed that a variation in the mean repolarization time, ρ, provoked
a shift in the T-wave but with no signi�cant T-wave temporal or amplitude varia-
tion (Figure 3.10, (a.3)). Therefore, dw, d

NL

w , da and dNLa were equal to zero for every
ρpjq ((a.4)-(a.5)). On the contrary, increments of the dispersion of action potential
repolarization times, σ, produced an increment in the range of the APD (b.1) and in
the range between the minimum and the maximum repolarization time (b.2). This
led to an homogeneous increment in the amplitude and to a linear and non-linear
increment of the width of the T-wave, which was re�ected in higher values of dw, d

NL

w

and da, while d
NL

a remained zero (panels (b.3)-(b.5)). The combined variation of ρ
and σ produced values of dw, d

NL

w , da and dNLa very similar to those of scenario 2.
Progressive increments in the epicardial repolarization time provoked heterogeneous
changes in the morphology of the T-wave (d.3) and eventually, when the mean epi-
cardial repolarization time was longer than the mean endocardial repolarization time,
its inversion. Panels (d.4)-(d.5) illustrate that da followed the increment in amplitude
variability (due to the T-wave inversion), while dw measured the asymmetry present
in the T-wave when its amplitude was close to zero. In this case, both dNLw and dNLa
captured the non-linear time and amplitude, respectively, variations induced by the
simulation. These results suggest that dw, d

NL

w , da and d
NL

a mainly represent changes in
spatio-temporal dispersion of repolarization rather than in its mean, with dNLw and dNLa
being only sensitive to the variations of spatio-temporal dispersion of repolarization
times re�ected as non-linear morphological changes of the T-wave.

The purpose of the long-term analysis was to evaluate the ability of the proposed
markers to capture the T-wave morphological changes induced by the orthostatic
stress, and their interaction with changes in the heart rate. We, then, assumed a
similar situation to that from scenario 3) in section 3.2.4, i.e. variations in repolariza-
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tion dispersion as a result of variations in heart rate, but in actual ECG records. The
orthostatic stress produced signi�cant decrements of the RR, QT, TW and TA values
(Figure 3.11). Regarding Tpe, 13 subjects re�ected a shorter Tpe during TL, while this
interval increased for the other 4 subjects. The proposed markers supported these re-
sults, showing signi�cant increments in linear and non-linear temporal and amplitude
variations after an orthostatic stress. The correlation analysis (Table 3.1) showed that
dw was correlated with ∆RR, ∆QT and ∆TW, whereas dNLw was only correlated with
∆Tpe. These results may indicate that the orthostatic stress produces a change in
heart rate, inducing linear variations in the QT and TW intervals, which dominate in
dw. The strong correlation between dNLw and ∆Tpe suggests that dNLw is mainly related
to variations in the dispersion of repolarization, independently from changes in heart
rate. Regarding the amplitude markers, da was highly correlated with ∆TA, whereas
dNLa was completely uncorrelated to it, therefore re�ecting information not contained
in ∆TA. It can be observed in Figure 3.12 how the dw series follows opposite dynamic
to the RR series, with signi�cantly higher values during the Tilt, con�rming that an
orthostatic challenge provokes an increment in the time domain di�erences of the T-
waves. The adaptation of the values of dw to those of RR is slow, indicating that
this series is also a�ected by the memory present in ventricular repolarization. The da
series, however, shows that, in median, the T-wave amplitude decreases during Tilt,
but the variability is very large, so the di�erences between stages are not signi�cative
(Table 3.1).

The purpose of the short-term analysis was similar to that from scenario 2) in
section 3.2.4, i.e. evaluation of the variations in repolarization dispersion at stable
heart rate. Results showed that the variability of QT and Tpe intervals, and TA was
signi�cantly higher during TL than ES or LS. This was supported by the values of
dw, da and dNLw , which re�ected signi�cantly increased variability in TL as compared
to supine (Figure 3.11). There was a weak negative correlation between dw, da, d

NL

w

and dNLa , and the median RR (Table 3.3), indicating that the short-term changes in
dispersion of repolarization, re�ected on the ECG through linear and non-linear T-
wave morphological variations, increase at shorter RR interval values. This may be
in corcondance with studies reporting steeper slopes of repolarization restitution at
shorter RR values (Figure 3.4) [53]. The correlation values with respect to the SNR
indicate that beat-to-beat analysis should be done on clean recordings.

Considering the results of this work, the proposed methodology and morphologi-
cal variability markers might provide additional information to that o�ered by time-
interval markers, which may eventually lead to an improved prediction.

3.4.5 Technical Considerations

Warping of time domain has often been used in the ECG signal to compensate
for the missalignments before measuring amplitude di�erences, or to quantify time
interval variabilities, like those from the QT interval, using linear [161, 171, 242] and
non-linear [243] time warping. The most common algorithm for non-linear time warp-
ing is DTW [243], but it fails when the two observed functions also present amplitude
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variabilities [231]. To prevent this problem, the derivative DTW was proposed [244].
This modi�cation aligns the derivative of the observed functions, rather than their
amplitude values. The SRSF used in this work makes the norm to be minimized in
equation (3.3) to become a proper distance and overcome the �pinching e�ect�, as ex-
plained in [228,229,231]. Also, a novel technique to allow for warping in both temporal
and amplitude domains has been recently proposed to enable complex adaptations to
the morphology of the waveform [227]. The novelty of this work is based on the extrac-
tion of indices from the warping information and from the warped signals to quantify
the amount of morphological variability.

We applied principal component analysis to obtain a lead projected onto the direc-
tion of maximal energy of the T-wave. However, the selection of the lead does not a�ect
the technicalities of the proposed algorithm, since this methodology can be applied to
any single lead, which is its main advantage with respect to other methodologies that
require the vectorcardiogram, or the information of more than one lead [224].

3.4.6 Limitations

There are several aspects that could in�uence the estimation reliability of the pro-
posed indices. First, due to the high sensitivity of the warping function, erroneous
extraction of the morphology of the T-wave, due to excessive noise or delineation er-
rors, will lead to incorrect values of dw and dNLw , and an incorrect warping. Therefore,
the markers da and dNLa could also be a�ected, coupling, in some way, the robustness
and sensitivity of the indices. Second, although the proposed markers capture many
T-wave morphologies, there can appear extreme morphological variations which will
lead to meaningless interpretations of dw, da, d

NL

w and dNLa . However, we have not
found any such extreme variation in the analysed T-waves, since even for biphasic
or S-shaped T-waves we still obtained interpretable results. Next, we selected the
�rst principal component as the lead capturing the direction of maximal variation of
the repolarization gradient. Although we assumed that a projection of the maximal
energy onto this component also implied a maximal projection of the repolarization
variability, given the physiological additive generation of the ECG signals, this may
not always be guaranteed. Finally, this �rst principal component may be dominated
by precordial lead T-waves, which have the highest amplitude and, therefore, in this
study, the algorithm did not capture the morphological variation re�ected in other
leads.

3.5 Conclusion

In this chapter, we introduced two ECG-derived markers, dw and da, and their non-
linearly restricted versions, dNLw and dNLa , to quantify single-lead T-wave morphological
variability by time-warping metrics. Our �ndings demonstrate that variations in the
dispersion of repolarization, re�ected in the ECG through changes in the temporal
and amplitude organization of the T-wave, can be robustly captured by dw and da,
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respectively, with dNLw and dNLa measuring the heterogeneous T-wave variations. In the
next chapter we will evaluate the potential of the proposed markers of T-wave time
and amplitude variability to be used as arrhythmic risk predictors.
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4.1 Introduction

Figure 4.1 (a), shows a diagram of the hypothesis presented in this chapter. The
di�erent curves represent the relationship between di�erent ventricular APDs com-
puted at steady-state and the corresponding RR values at which those APDs were
measured, i.e. the dynamic APDR curves. The morphology of the T-wave re�ects
the distribution of the repolarization sequence along the ventricle [220�222]. Then,
the dispersion of the restitution curves at a certain RR value (RR1) is re�ected in the
ECG as a certain T-wave morphology (solid blue T-wave). Dispersion of the restitu-
tion curves at a di�erent RR (RR2) may have a di�erent distribution (in the �gure,
this concept is illustrated as an increased separation of the restitution curves), corre-
sponding in the ECG with a di�erent T-wave morphology (dashed red T-wave). Then,
based on previous evidences [53, 54], our hypothesis is that higher variations in the
dispersion of repolarization restitution will be manifested as higher variations in the
T-wave morphology per increment in the RR interval, i.e. steeper slopes of T-wave
morphology restitution, and this will be related with an increased arrhythmic risk.

Therefore, in this chapter we developed a fully automated algorithm to calculate
the slope of the T-wave morphology restitution using the methodology that quanti�es
the morphological di�erences between T-waves [245], described in the previous chapter.
Then, we studied the modulation of the circadian pattern on this slope and we assessed
its SCD and PFD predictive value. Finally, we studied the classi�cation performance,
individually and in combination with the two ECG-derived indices quantifying TWA
and HRT used for the same objective in chapter 2.

4.2 Methods

4.2.1 Study Population

We used the 24-h ECG recordings from the MUSIC study (section 2.2.1) for the
assessment of the predictive value and classi�cation performance, of the T-wave mor-
phology restitution in 651 CHF patients.

4.2.2 ECG Pre-processing

Preprocessing of the ECG signals was performed using custom-written software
and included low pass �ltering at 40 Hz to remove electric and muscle noise, cubic
splines interpolation for baseline wander removal, and ectopic beats detection.

PCA (section 1.3.2) was applied over the two-or-three available ECG leads to
emphasize the energy of the T-wave and improve its delineation [195]. As previously
described, the PCA training matrix, LT, was built by only considering the samples
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from the T-waves on each lead. First, a single-lead-and-rules delineation technique
(section 1.3.3) was applied to select the samples from the T-wave and compute the
matrix LT. Then, the �rst principal component was computed and delineated using a
single-lead technique (section 1.3.3) [66]. From the delineation marks, the RR interval
series was obtained and the T-waves were selected using the known delimitation marks.

4.2.3 Dispersion of Repolarization Restitution from the T-wave

Morphology

Automatic quanti�cation of the T-wave morphology restitution was performed on
every ECG recording in 4 steps:

1. Selection of T-waves: First, the histogram of the RR series was calculated
during the entire 24-h recording, and it was divided into bins of 10 ms wide.
Then, only the bins having at least 50 values were selected (bins above the
horizontal dotted line in Figure 4.1 (b)). Next, two RR bins, distributed sym-
metrically around the median RR (Figure 4.1 (b), green arrow), were chosen as
those de�ning the maximum intra-subject RR range, ∆RR, for the study (Fig-
ure 4.1 (b), blue and red bins, respectively). These two bins would correspond
to RR1 and RR2 in panel (a). Then, the T-waves corresponding to the beats
associated with the RR intervals within these two bins were considered for the
analysis.

2. Mean warped T-waves: The methodology described in the previous chapter
(section 3.2.2) was applied to calculate the mean warped T-waves of those T-
waves selected from each RR bin (Figure 4.1 (c)). These mean warped T-waves
are representatives of the average T-wave morphology at each RR. Based on our
assumption, they would, then, re�ect the dispersion of repolarization at each RR
(panel a).

3. Quanti�cation of the T-wave morphological di�erences: The morpho-
logical di�erences between both mean warped T-waves were quanti�ed using the
morphological variability indices proposed in the previous chapter [245]. Before
applying the methodology, the gravity centres of both signal-averaged T-waves
were also aligned to make the optimal warping function, γ˚

TW
ptrq, only dependent

on changes in the T-wave morphology, and not on global shifts. Figure 4.1 (d.1),
shows both mean warped T-waves, where their morphological di�erence can be
appreciated, and panel (d.2) shows γ˚

TW
. As a reminder, the separation of this

function from the diagonal, quanti�ed by dw and dNLw [245], measures the mor-
phological di�erences in the time domain between the two mean warped T-waves.
Note that, as explained in chapter 3, if this line corresponded to the diagonal,
no temporal transformation would be needed meaning that the morphological
di�erences would be non-existent. Panel (d.3) shows the warped mean T-waves.
The amplitude di�erence between these warped T-waves would be quanti�ed by
da and d

NL

a .
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Figure 4.1: Quanti�cation of the T-wave morphology restitution. (a) Diagram illustrating the hy-
pothesis underlying the proposed methodology: changes in the dispersion of repolarization with RR
are re�ected as a variation in the morphology of the T-wave with RR. (b): RR histogram with bins of
RR=10 ms. Green bin shows the median RR interval value. Blue and red bins indicate the RR values
de�ning the maximum intra-subject range. (c): Mean warped T-waves of those T-waves associated
with the RR values selected in (b). (d) Quanti�cation of the morphological di�erence between both
mean warped T-waves using the methodology from chapter 3. (e) The indices of T-wave morphology
restitution are calculated as the quanti�cation of the T-wave morphological di�erence using the mor-
phological variability markers from chapter 3, normalized by the di�erence between the RR values of
both bins, ∆RR.
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4. Computation of the indices of T-wave morphology restitution: The
indices TMRd, where d P tdw, d

NL

w , da, d
NL

a u, were calculated by dividing any of
the morphological markers presented in the previous chapter by ∆RR (Figure
4.1 (e)). The markers TMRd, then, are a measure of the T-wave morphological
change per RR increment and were estimated in analogy to a restitution slope.

4.2.4 Circadian Modulation

As described in chapter 2, we evaluated the circadian modulation of TMRd in 24-h
hour Holter recordings from CHF patients. For the characterization of the circadian
modulation of these parameters, we divided the 24-h ECG recordings into 6-hour seg-
ments. Then, in each 6-hour segment, we derived TMRd, following the methodology
described in the previous section.

4.2.5 Comparison with other ECG Risk Markers

We used the markers ∆αQT, ∆αTpe, IAA and TS, computed in chapter 2, for the
comparison with the morphological restitution indices proposed in this chapter.

4.2.6 Statistical Analysis

Two-tailed Mann-Whitney and Fisher exact test were used for univariate compari-
son of quantitative and categorical data, respectively. Correlation was evaluated with
Spearman's correlation coe�cient. ROC curves were used to test the ability to pre-
dict the endpoint and to set cut-o� points for risk-strati�cation. Survival probability
was estimated by Kaplan-Meier methods with a comparison of cumulative events per-
formed by using log-rank tests. Patients who died from causes not included in the
endpoints were censored at the time of death. Univariate and multivariate Cox regres-
sion analyses were performed to determine the predictive value of the risk markers.
For multivariate analysis, only the clinical and ECG-derived variables with signi�cant
association with SCD in univariate analysis were included in the model. Then, the
morphological restitution indices proposed in this chapter were added one at a time
into the model. A classi�er was also implemented based on a two- and three-class
SVM, as done in chapter 2.

4.2.7 Robustness Evaluation

To evaluate the robustness of TMRd, we repeated the calculation in the even and
odd hours, and in the �rst and last 12 h of the ECG recordings, separately, and
we computed the Spearman correlation coe�cient and the Kendall's W coe�cient
of concordance. Bland-Altman was also used to visualize the possible bias that the
calculation of TMRd in di�erent ECG segments may introduce.
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4.3 Results

4.3.1 Association with Clinical Data

The histogram of TMRdw , TMRd
NL
w , TMRda , and TMRd

NL
a is shown in Figure

4.2 and their 25th, 50th, and 75th percentiles are speci�ed in each panel.
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Figure 4.2: Histogram of TMRdw (a), TMRdNLw (b), TMRda (c) and TMRdNLa (d) using 50 equally
spaced bins.

Table 4.1 shows the correlation coe�cients between the parameters under study and
the median RR and the range of RR. As observed, the markers of restitution of the time

domain morphological variability, TMRdw and TMRd
NL
w , presented a signi�cantly

weak correlation with the range of RR. The correlation between these two markers
was ρ “ 0.557 (p<0.001), the correlation between the markers of restitution of the

amplitude domain morphological variability, TMRda and TMRd
NL
a , was ρ “ ´0.094

(p=0.017). The correlation between TMRdw and TMRda was ρ “ 0.091 (p=0.021),

and between TMRd
NL
w and TMRd

NL
a was ρ “ 0.280 (p<0.001).

Mann-Whitney U-test showed that TMRdw and TMRda (in absolute value) were
signi�cantly higher in women (p<0.001) and (p=0.004), respectively. The index
TMRda was the only marker of restitution of morphological variability being sig-
ni�cantly di�erent in patients with depressed LVEF, as compared to patients with
preserved LVEF (p<0.001), showing lower absolute values in the latter. Similarly,
this index was the only marker with signi�cant di�erences between NYHA classes
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Variable
Median RR RR range

ρ p ρ p

TMRdw -0.008 0.847 -0.287 <0.001

TMRd
NL
w -0.107 0.006 -0.365 <0.001

TMRda 0.095 0.016 0.094 0.017

TMRd
NL
a -0.004 0.916 -0.088 0.024

Signi�cant di�erences are indicated in bold.

Table 4.1: Correlation of TMRdw , TMRdNLw , TMRda and TMRdNLa with median RR and RR range.

(p=0.020), presenting higher absolute values in patients in NYHA class III.

4.3.2 Circadian Modulation

Figure 4.3 shows the circadian modulation of the four parameters de�ning the T-
wave morphology restitution. As shown, the restitution of the amplitude variations of
the T-wave, quanti�ed by TMRda , was signi�cantly higher, in absolute values, during
all day segments (early morning, afternoon and evening), as compared to night (c).
The restitution of the parameters quantifying time and non-linear amplitude variations
was not signi�cantly modulated by the circadian pattern.

Table 4.2 shows the median (IQR) values of the parameters de�ning the T-wave
morphology restitution in the �12-18� and �00-06� segments, but distinguishing between
women and men. As shown, the four markers re�ecting restitution of the T-wave
morphology were signi�cantly higher in women than in men during day and during
night.
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Figure 4.3: Circadian pattern of TMRdw (a), TMRdNLw (b), TMRda (c), and TMRdNLa (d). *
indicates signi�cant di�erences with respect to �00-06�.
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Women Men p-value

TMRdw

�12-18� 0.058 (0.04) 0.044 (0.03) <0.001

�00-06� 0.048 (0.04) 0.038 (0.03) <0.001

TMRd
NL
w

�12-18� 0.021 (0.02) 0.018 (0.01) 0.012

�00-06� 0.018 (0.01) 0.016 (0.01) 0.004

TMRda

�12-18� -0.093 (0.16) -0.042 (0.16) <0.001

�00-06� -0.067 (0.15) -0.017 (0.12) <0.001

TMRd
NL
a

�12-18� 0.025 (0.04) 0.022 (0.04) 0.071

�00-06� 0.023 (0.04) 0.018 (0.03) 0.005

Signi�cant di�erences are indicated in bold

Data are represented as median (IQR).

Table 4.2: Gender di�erences for day and night values of the parameters de�nind the T-wave mor-
phology restitution

4.3.3 Survival Analysis

Figure 4.4 shows the boxplots of TMRdw (a), TMRd
NL
w (b), TMRda (c) and

TMRd
NL
a (d) in the group of SCD victims, PFD victims and in the rest of patients. As

shown, TMRdw was the only marker with signi�cantly higher values in SCD (p<0.001)
and CD (p=0.029) victims, as compared to non-SCD and non-CD victims, respectively.
The values of TMRdw were not signi�cantly di�erent in the group of PFD victims. The

three other indices, TMRd
NL
w , TMRda and TMRd

NL
a , were not signi�cantly di�erent

in any of the three groups (SCD victims, PFD victims or non-CD patients).

According to the AUC, TMRdw separated SCD victims from the rest of patients
(p<0.001) (Figure 4.5). The optimal threshold, based on ROC curve analysis, was
TMRdw “ 0.040. Therefore, patients were dichotomized into TMRdw<0.040 and
TMRdw ě0.040 groups. Of the 651 patients studied, 340 (52%) were included in the
TMRdw<0.040 group and 311 (48%) in the TMRdw ě0.040 group.

Table 4.3 shows the percentage of patients in the two risk groups de�ned by
TMRdw , with the categorical variables described in the �rst column. For continu-
ous variables, data are represented as mean ˘ standard deviation. Upon comparison
of clinical variables, patients in the TMRdw ě0.040 group, as compared to patients
in the TMRdw<0.040 group, were more frequently women, more frequently had is-
chaemic etiology, showed lower values of median RR, RR range, QRS width and TS,
and higher values of ∆αQT and ∆αTpe.

Table 4.4 shows the percentage of patients in the two groups de�ned by TMRdw ,
with the modes of death de�ned in the �rst column. As it can be observed, SCD was
signi�cantly higher in the TMRdw ě 0.040 group as compared to the other group.
There was no signi�cant association between TMRdw ě 0.040 and CD or PFD.
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Figure 4.4: Boxplot of TMRdw (a), TMRdNLw (b), TMRda (c) and TMRdNLa (d) for SCD, PFD
victims and survivors of CD. * Indicates statistical signi�cance between each outcome and the group
formed by the other two. The dotted horizontal line illustrates the optimal threshold for SCD.

Univariate Cox analysis revealed that TMRdw ě 0.040 was the variable with the
highest hazard ratio among those associated with SCD (Table 4.5). Univariate Cox
analysis con�rmed that no signi�cant association was found between TMRdw ě 0.040
and CD or PFD. The only clinical and ECG-derived indices with signi�cant association
with SCD were gender, NYHA class, LVEF, TSď 2.5 ms/RR, IAAě3.7µV, NSVT
and more than 240 VPBs in 24 h, and the range of RR. The duration of the QRS
complex was not associated with increased SCD risk. Figure 4.6 shows Kaplan-Meier
probabilities of SCD for the two groups de�ned by TMRdw . The high SCD risk group
is illustrated in dashed red, and the low SCD risk group is shown in solid blue. Patients
with TMRdw ě 0.040 had an estimated 4-year SCD rate of 13% vs 4% in patients
with TMRdw ă 0.040. Table 4.6 shows the univariate hazard ratios of TMRdw for
SCD risk prediction in the overall population and when dividing according to di�erent
clinical variables. As observed, TMRdw ě 0.040 was not signi�cantly associated with
SCD in women, in NYHA class III, in patients with preserved LVEF or in patients
under treatment with amiodarone. The association with SCD was signi�cant in both
ischemic and non-ischemic patients.

Multivariate Cox proportional hazard models were constructed by adjusting for
the variables that were signi�cantly associated with SCD in univariate analysis. The
variables that remained signi�cant were gender, NYHA class, TS, IAA and ∆αTpe.
When adding TMRdw ě 0.040 to the multivariate model, it was the variable most
signi�cantly associated with SCD risk, followed by gender (Table 4.5). As observed, the
time to SCD event was approximately tripled among patients with TMRdw ă 0.040
in comparison to those with TMRdw ě 0.040.
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Figure 4.5: ROC curve for TMRdw in the classi�cation of SCD victims. Red dot indicates the
selected threshold.

4.3.4 Classi�cation

Two-class Classi�cation of Cardiac Death Mode Using one ECG Index

Using the individual dichotomized variable for classi�cation of SCD vs. the rest of
patients, TMRdw ě0.040 showed a value of κ of 0.08, with a Se of 75.1% and a Sp of
52.4%. For classi�cation of PFD vs. the rest of patients, TMRdw ă 0.040 showed a
Se of 59.6% and a Sp of 59.0% (κ=0.04).

Two-class Classi�cation of Cardiac Death Mode Using a Combination of
ECG Indices

The combination of TMRdw and TS showed the maximum value of κ for both
con�gurations (C1 and C2, respectively) of the SVM two-class classi�er for separating
SCD from the rest of patients. Regarding the separation of PFD from the rest of
patients, IAA and TS was the combination of risk markers with the maximum κ for
the �rst con�guration (C1), while TMRdw , TS and IAA was the preferred combination
for the second con�guration (Table 4.7). Then, since a classi�er with higher Sp value
is preferred, we selected IAA and TS as the optimal combination for separating PFD
from the rest of patients.
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Variable
Overall population TMRdw<0.040 TMRdw ě0.040

p-value
(n = 651) (n = 340) (n = 311)

Clinical variables

Age [years] 64(17) 63(18) 66(17) 0.155

Gender [men] 464 (71%) 263 (77%) 201 (65%) <0.001

NYHA class III 115 (18%) 62 (18%) 53 (17%) 0.758

LVEF ď 35% 356 (55%) 190 (56%) 166 (53%) 0.529

Ischemic etiology 327 (50%) 153 (45%) 174 (56%) 0.006

Diabetes 244 (38%) 119 (35%) 125 (40%) 0.195

Beta-blockers 455 (70%) 237 (70%) 218 (70%) 0.932

Amiodarone 61 (9%) 27 (8%) 34 (11%) 0.226

ARB or ACE inhibitors 576 (89%) 303 (89%) 273 (88%) 0.624

ECG variables

Median RR [s] 0.86 (0.18) 0.86 (0.17) 0.84 (0.21) 0.027

RR range [s] 0.42 (0.22) 0.45 (0.20) 0.37 (0.21) <0.001

QRS ą 120 ms 262 (40%) 152 (45%) 110 (35%) 0.016

NSVT and ą 240
168 (26%) 87 (26%) 81 (26%) 0.929

VPBs in 24 h

IAA ě 3.7µV 153 (24.1%) 74 (22.3%) 79 (26.1%) 0.267

TSď2.5ms/RR 281 (47.1%) 125 (39.8%) 156 (55.1%) <0.001

T-wave restitution parameters

∆αTpe 0.025 (0.03) 0.020 (0.03) 0.032 (0.04) <0.001

∆αQT 0.199 (0.10) 0.188 (0.08) 0.215 (0.10) <0.001

ACE = angiotensin-converting enzyme; ARB = angiotensin receptor blocker;
IAA = Index of maximum alternans; LVEF = left ventricular ejection

fraction; NSVT = Non-sustained ventricular tachycardia; NYHA = New York
Heart Association; TMRdw=T-wave Morphological Restitution; TS=turbulence

slope; VPB=ventricular premature beat; Signi�cant di�erences
are indicated in bold.

Table 4.3: Characteristics of patients in the overall population and in each of the two risk groups
de�ned by TMRdw .

Endpoint
Overall population TMRdw ă 0.040 TMRdw ě 0.040

p-value
pn “ 651q pn “ 340q pn “ 311q

CD 122 (18.7%) 55 (16.2%) 67 (21.5%) 0.088

SCD 55 (8.4%) 16 (4.7%) 39 (12.5%) <0.001

PFD 67 (10.3%) 39 (11.5%) 28 (9.0%) 0.366

Data are presented as absolute frequencies and percentages. CD = cardiac death;
PFD = pump failure death; SCD = sudden cardiac death; Signi�cant di�erences

are indicated in bold.

Table 4.4: Cardiac events during follow-up in the overall population and in each of the three groups
de�ned by TMRdw .

Three-class Classi�cation of Cardiac Death Mode Using a Combination of
ECG Indices

Table 4.8 summarizes the performance of the two con�gurations of the SVM three-
class classi�er for separating SCD from PFD and from the rest of patients in the
overall population, in patients with LVEFď35% and in patients with LVEFą35%. The
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Univariable Multivariable

HAR (95% CI) p-value HAR (95% CI) p-value

Clinical variables

Gender [men] 2.14 (1.05-4.38) 0.037 2.85 (1.32-6.14) 0.008

NYHA class III 2.21 (1.23-3.95) 0.008 2.63 (1.40-4.95) 0.003

LVEFď35% 2.35 (1.30-4.25) 0.005 1.95 (1.03-3.70) 0.041

ECG variables

RR range [per 1 SD inc] 0.75 (0.57-0.98) 0.035 1.13 (0.83-1.55) 0.429

NSVT and > 240
2.08 (1.22-3.57) 0.008 1.37 (0.75-2.50) 0.314

VPBs in 24h

IAAě3.7µV 2.34 (1.32-4.13) 0.004 2.36 (1.33-4.20) 0.003

TSď2.5 ms/RR 2.64 (1.45-4.80) 0.001 1.70 (0.91-3.17) 0.095

∆αTpe ě 0.028 2.61 (1.47-4.62) 0.001 2.42 (1.32-4.44) 0.004

TMRdw ě 0.040 2.81 (1.57-5.02) 0.001 2.94 (1.57-5.53) 0.001

CI=con�dence interval; HAR=hazard ratio; IAA=index of average alternans; LVEF=
left ventricular ejection fraction; NSVT=Non-sustained ventricular tachycardia;
NYHA=New York Heart Association; SCD=sudden cardiac death; SD=standard

deviation; TS=turbulence slope; VPB=Ventricular premature beat;
Statistically signi�cant values are marked in bold.

Table 4.5: Association of TMRdw with SCD in univariate and multivariate Cox analysis.
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Figure 4.6: Probability curves of SCD for TMRdw .

combination of risk markers with the highest κ when evaluating the overall population,
patients with LVEFą35% and patients with LVEFď35% was TS and IAA using the
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Hazard ratio (95% CI) p-value

Overall population (n=651) 2.81 (1.57-5.02) 0.001

Female population (n=187) 2.56 (0.53-12.31) 0.252

Male population (n=464) 3.19 (1.70-5.97) <0.001

NYHA class II (n=536) 3.22 (1.57-6.60) 0.001

NYHA class III (n=115) 2.32 (0.84-6.39) 0.104

LVEFď35% (n=356) 3.27 (1.64-6.56) 0.001

LVEF>35% (n=295) 2.10 (0.72-6.15) 0.175

amiodarone (n=61) 1.73 (0.32-9.44) 0.528

No amiodarone (n=590) 2.97 (1.60-5.52) 0.001

Ischemic (n=327) 2.52 (1.17-5.43) 0.018

Non ischemic (n=324) 2.97 (1.21-7.29) 0.017

CI = con�dence interval; SCD = sudden cardiac death; NYHA
= New York Heart Association;LVEF = left ventricular ejection
fraction; NSVT = Non-sustained ventricular tachycardia; VPB
= Ventricular premature beat; SD = standard deviation;
Statistically signi�cant values are marked in bold.

Table 4.6: Association of TMRdw with SCD in univariate Cox analysis in di�erent populations.

Combination Con�guration
SCD PFD

Se (%) Sp (%) κ Se (%) Sp (%) κ

TMRdw and TS
C1 10.2 97.8 0.11 31.4 85.8 0.12

C2 48.9 70.6 0.07 74.2 53.4 0.10

TMRdw and IAA
C1 8.2 97.6 0.08 17.6 83.9 0.01

C2 42.9 72.8 0.07 56.3 46.5 0.01

TS and IAA
C1 38.0 81.4 0.10 55.9 78.6 0.19

C2 73.1 45.0 0.05 50.5 71.1 0.08

TMRdw , IAA and TS
C1 10.2 97.6 0.11 30.1 87.7 0.11

C2 22.9 82.7 0.02 74.2 53.8 0.10

Table 4.7: Two-class classi�cation performance for SCD, PFD and others (non-CD and survivors)
using SVM. The optimal combination for mode of cardiac death is indicated in bold.

�rst con�guration of the classi�er. However, the combination of TMRdw and TS was
the preferred for the second con�guration.

TS and IAA, in the �rst con�guration (C1), also showed the highest values of κ in
patients in NYHA class II and in NYHA class III. For the second con�guration (C2),
TMRdw , and TS was the combination with the highest κ values in NYHA class II and
in NYHA class III (Table 4.9).

4.3.5 Robustness Evaluation

Figure 4.7 shows the Bland-Altman plot of TMRdw calculated in the even and
odd hours (a) and in the �rst and second 12 h (b). Spearman's correlation coe�cient
between TMRdw calculated in the even and the odd hours was 0.7333 (p<0.001),
while Kendall's W coe�cient of concordance was 0.8666. These values were 0.5284
(p<0.001) and 1 for the calculation in the �rst and second 12 h.
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Combination Con�guration Sample population
SCD PFD

κ
Se (%) Sp (%) Se (%) Sp (%)

TMRdw and TS

C1

Overall population 8.2 98.5 6.3 97.0 0.07

LVEFą35% 20.0 95.3 5.0 91.9 0.06

LVEFď35% 5.7 98.0 2.2 98.6 0.06

C2

Overall population 40.2 79.8 27.8 86.2 0.11

LVEF>35% 43.3 72.2 35.0 77.6 0.06

LVEFď35% 42.1 74.1 38.1 74.9 0.12

TMRdw and IAA

C1

Overall population 8.2 97.8 1.7 99.8 0.06

LVEFą35% 20.0 95.7 0 99.2 0.06

LVEFď35% 2.9 97.6 0 99.3 0.02

C2

Overall population 38.9 72.6 8.2 90.5 0.05

LVEFą35% 36.7 70.6 20.0 79.9 0.04

LVEFď35% 44.6 72.4 6.9 93.8 0.07

TS and IAA

C1

Overall population 20.0 89.4 24.9 88.8 0.15

LVEF>35% 30.0 94.0 35.0 81.3 0.17

LVEFď35% 18.6 84.6 16.9 91.0 0.13

C2

Overall population 46.7 66.7 38.1 76.6 0.10

LVEFą35% 6.7 92.0 55.0 49.7 0.03

LVEFď35% 69.3 49.2 15.0 92.1 0.12

TMRdw , IAA and TS

C1

Overall population 10.2 97.8 6.3 97.4 0.08

LVEFą35% 20.0 96.1 0 92.7 0.02

LVEFď35% 5.7 97.0 2.2 98.6 0.04

C2

Overall population 22.9 83.1 50.9 67.3 0.11

LVEFą35% 43.3 77.8 45.0 68.5 0.08

LVEFď35% 42.1 74.8 33.1 76.6 0.11

Table 4.8: Three-class classi�cation performance for SCD, PFD and others (non-CD and survivors)
in the overall population, in patients with LVEFď35% and in patients with LVEFą35%. The optimal
combination for each con�guration (C1 and C2, see text) and mode of cardiac death is indicated in
bold.

Combination Sample population
SCD PFD

κ
Se (%) Sp (%) Se (%) Sp (%)

TS and IAA (C1)

Overall population 20.0 89.4 24.9 88.8 0.15

NYHA II 2.9 96.8 14.4 91.0 0.03

NYHA III 36.7 96.8 32 89.1 0.30

TMRdw and TS (C2)

Overall population 40.2 79.8 27.8 86.2 0.11

NYHA II 45.7 70.5 39.4 80.3 0.10

NYHA III 53.3 65.8 28.0 79.8 0.18

Table 4.9: Three-class classi�cation performance for SCD, PFD and others (non-CD and survivors)
in the overall population, in patients in NYHA class II and in patients in NYHA class III for the
optimal combination for each con�guration (C1 and C2, see text).

4.4 Discussion

In this chapter, a fully automated method was presented to estimate dispersion of
repolarization restitution from the slope of the restitution of the T-wave morphology
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Figure 4.7: Bland-Altman plot of TMRdw calculated in the even and odd hours (a) and in the �rst
and last 12 hours (b). The red horizontal dashed lines indicate the mean ˘ 2 SD of the di�erence
between TMRdw in the even and the odd hours, and in the �rst and last 12 hours, respectively.

in 24-hour ambulatory ECG recordings of 651 CHF patients. The main result is that
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the slope of the restitution of the T-wave morphological variations in the temporal
domain, quanti�ed by TMRdw , speci�cally predicts SCD, with no association with
PFD. TMRdw was the strongest predictor of SCD, independently to clinical vari-
ables like the LVEF or the NYHA class, other ECG-derived risk indices, such as the
T-wave alternans, the QRS duration or the HRT, and other restitution indices like
∆αQT and ∆αTpe. The restitution of other markers of T-wave morphology variability,
however, was not associated with any mode of cardiac death. Finally, the combination
of TMRdw , TS and IAA improved SCD, PFD and non-CD risk strati�cation.

4.4.1 Dispersion of Repolarization Restitution from the T-wave

Morphology Predicts SCD with no Association with PFD

Cox regression analysis and Kaplan-Meier cumulative event analysis con�rmed the
ability of the slope of the T-wave morphology restitution to separate CHF patients
in two risk subpopulations, with patients presenting steeper slopes being more prone
to su�er from SCD, and patients with �atter slopes being at low SCD risk during
follow-up. Upon con�rmation by further investigations, such a speci�c prediction of
SCD risk could be of great importance to de�ne a high SCD risk population that could
be highly bene�ted from an ICD implantation.

Although in the previous chapter we demonstrated that the four morphological
variability markers, dw, da, d

NL

w and dNLa , re�ected variations in the dispersion of ven-
tricular repolarization, the index dw was the only marker with signi�cant SCD pre-
dictive value when normalizing by ∆RR. One possible explanation to the amplitude
variability indices can be that the variation in the T-wave amplitude with changes in
heart rate is highly heterogeneous across subjects (see, for example, the histogram in
Figure 4.2), and, therefore, not related to a particular endpoint. In fact, there were
subjects whose T-wave amplitude decreased at higher RR interval values, whereas
there were others whose amplitude increased. Regarding dNLw , although there was a
trend showing that increased ranges of RR produced increased non-linearities in the T-
wave morphology, these increments were not, themselves, signi�cantly higher in SCD
victims than in the rest of patients (Figure 4.4). Our results suggest that variations in
the distribution of the repolarization times along the ventricle, predisposing to SCD,
are merely manifested as alterations in the temporal domain of the T-wave, rather
than in the amplitude.

Also, the value of dw itself showed to be signi�cantly higher in SCD victims as
compared to the rest of patients, but also signi�cantly lower in PFD victims than in
the rest of patients (Figure 4.8 (a)). However, when normalizing by ∆RR and, then,
obtaining TMRdw , the signi�cant PFD prediction was lost. This could be explained by
evaluating the signi�cant predictive value of ∆RR itself. We, in fact, found that ∆RR
was signi�cantly lower in CD victims, i.e. both SCD and PFD victims (Figure 4.8
(b)). Therefore, the T-wave morphological variation per RR increment was increased
in SCD victims, but also in PFD victims, losing its statistical signi�cance.

Regarding the comparison with clinical and other ECG-derived indices, TMRdw

showed the highest hazard ratio in both univariate and multivariate Cox analyses
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Figure 4.8: Boxplot of dw (a) and ∆RR (b) for SCD, PFD victims and survivors of CD. * Indicates
statistical signi�cance between each outcome and the group formed by the other two.

(Table 4.5). This suggests that TMRdw contains speci�c information on arrhyth-
mia not included in other variables like the LVEF, the NYHA class, the TWA, the
QRS duration of the HRT. However, sub-population analysis (Table 4.6) showed that
the prognostic value of TMRdwě0.040 was mostly due to its association with SCD
in patients with depressed LVEF. Importantly, the combination of LVEFď35% and
TMRdwě0.040 in a single score resulted in a 60% increase in the hazard ratio, sug-
gesting that TMRdw captures information related to the electrophysiological substrate
that complements systolic function markers and improves prediction. Also, it must be
noted that the lack of association of TMRdw with SCD in some of the sub-populations
in Table 4.6 may be due to their small size.

The performance of our proposed TMRdw index can be compared with that from
∆αTpe, characterizing the Tpe interval dynamics. Although the index ∆αTpe showed to
be related to increased SCD risk (chapter 2) [246], TMRdw demonstrated a stronger
association with SCD risk than ∆αTpe in a multivariate analysis. This strengthens the
hypothesis that the quanti�cation of the overall T-wave morphological variations is
a better estimate of the total spatio-temporal dispersion of repolarization restitution
than interval-based markers, and, thus, provides improved arrhythmic risk predic-
tion. Future studies will be needed to assess the relation between TMRdw and other
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restitution indices, such as the recently proposed R212 index [145,247].

4.4.2 Risk Strati�cation Improves by Combining ECG Risk

Markers

The combination of TMRdw and TS showed to be the one with the best perfor-
mance in two-class SVM classi�cation of SCD vs. the rest of patients, with a value
of κ higher than that obtained when using the markers individually. This indicates
that TMRdw and TS add complementary information and, consequently, their combi-
nation would improve the strati�cation of patients at risk of SCD, with higher values
of TMRdw and lower values of TS indicating higher propensity to su�er from a SCD
event. It is surprising that is TS, and not IAA, the index with optimal SCD clas-
si�cation performance when combined with T-wave morphology restitution (TMR),
considering that ∆αTpe and IAA was the optimal combination in chapter 2. This
could mean that the information contained in TMRdw and in IAA is not completely
complementary.

Regarding two-class classi�cation of PFD vs. the rest of patients, the combination
of TMRdw , TS and IAA was the one with the highest κ coe�cient for the second
con�guration of the classi�er, but, as with ∆αTpe, not improving the performance of
TS individually. For the �rst con�guration of the classi�er, TS and IAA improved the
κ value from the individual TS marker. This combination is concordant with the fact
that TMRdw was not associated with PFD, and its κ value for classifying PFD vs.
the rest of patients was very low.

In the three-class classi�cation of SCD, PFD and the rest of patients, the combina-
tion of TS and IAA showed, as in chapter 2, to be the one with the best performance
for the �rst con�guration of the classi�er, while TMRdw and TS was the best one
for the second con�guration. According to the preference of maximizing the Sp, we
would, then, recommend the combination of TS and IAA using the �rst con�guration
for an optimal classi�cation.

When dividing the population into preserved and depressed LVEF and into NYHA
classes II and III, our results con�rmed that the classi�cation is easier in patients with
depressed LVEF and NYHA class III.

The combination results in this chapter indicate that SCD risk is produced by
abnormal repolarization patterns and by imbalanced autonomic modulation, while
the latter would be the main indicator of PFD.

4.4.3 The Circadian Pattern Modulates T-wave Amplitude Resti-

tution

We found that the restitution of the T-wave amplitude variations was signi�cantly
higher during the day than at night (Figure 4.3). These results suggest that the
variations in the temporal domain of the T-wave, which are those with predictive
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value, are independent from the time of the day, while the circadian modulation of
repolarization is mainly re�ected as variations in the amplitude of the T-waves.

4.4.4 Technical Considerations

It is well-known that the repolarization response to changes in heart rate is not
immediate and a time lag exists in the adaptation of repolarization (section 2.2.3) [130].
This hysteresis was compensated for the calculation of ∆αQT and ∆αTpe as described
in chapter 2, but using the same methodology to compensate for the memory of the
T-wave morphology is not straightforward. To overcome this di�culty, we calculated
an average of, at least, 50 T-waves recorded at the same RR, but at di�erent time
instants, i.e. di�erent history of RR. Thus, we expected a signi�cant reduction of the
hysteresis e�ect.

The computation of TMRdw does not require a minimum recording duration. How-
ever, a wide RR range is recommended to ensure an appreciable variation in the mor-
phology of the T-wave. In addition, the methodology requires sinus rhythm. TMRdw

was computable in all patients available for the study, and there were no artifacts
or unusable portions of the Holter ECGs limiting its measurement. Also, in contrast
with beat-to-beat repolarization metrics, TMRdw is not a�ected by VPBs and it only
requires waveforms from few beats at di�erent RR intervals to be computed.

Regarding the robustness of TMRdw , we showed that there was a strong correlation
and concordance between the TMRdw indices, computed at even and odd hours and
at the �rst and last 12 hours, indicating that the index is repeatable and independent
from the ECG segments considered for its evaluation. These results also re�ect that
TMRdw is not in�uenced by the circadian pattern, as discussed before.

4.4.5 Limitations

Prospective studies are needed to verify that the observations presented here have
a role in SCD prediction in CHF patients. This study only considered consecutive
patients, so the number of SCD victims was low and this has limited the possibility
of performing further statistical analyses. Since this is a retrospective study, further
investigations on the applicability of the de�ned cut-o� point and on the extension
of the analysis to other CHF and non-CHF populations are needed to con�rm the
prognostic value of the proposed index. Next, although the T-wave morphology is
related to the lead con�guration, spatial dependency of TMRdw is limited because
TMRdw measured changes within a mathematically constructed lead that represents
global repolarization.

4.5 Conclusion

Dispersion of repolarization restitution, quanti�ed from Holter ECG recordings
through the slope of the T-wave morphology restitution, is a strong and indepen-
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dent predictor of SCD, with steeper slopes indicative of an arrhythmogenic substrate
predisposing to SCD. No association was found between the slope of the T-wave
morphology restitution and PFD. Regarding the source of T-wave morphological vari-
ability, only those variations in the temporal domain of the T-wave, quanti�ed by
TMRdw , re�ected higher arrhythmic risk. T-wave amplitude and strictly non-linear
temporal variations were independent from the mode of death. TMRdw showed higher
predictive value than other clinical variables like the LVEF, or the NYHA class, and
other ECG-derived indices like the TWA, the QRS duration or the HRT. Again, the
combination of TMRdw with other ECG-derived risk markers improved SCD risk pre-
diction. The variations in the temporal domain of the T-wave are not in�uenced by
the circadian pattern, but this modulation should be taken into account when mea-
suring the restitution of the T-wave amplitude. Our results suggest that the slope of
the T-wave morphology restitution could be used in the clinical practice as a tool to
target a high SCD-risk population that could largely bene�t from ICD implantation.
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5.1 Introduction

As explained in chapter 1, CHF is a complex clinical syndrome that can result
from a number of functional or structural cardiac disorders, impairing the ventricle's
ability to �ll with or eject blood [248]. A common �nding in CHF patients is a chronic
sympathetic over-activity [249], a risk factor for both SCD and PFD [250,251]. Initial
sustained sympathetic activation increases the vulnerability to ventricular arrhythmias
by enhancing the spatio-temporal dispersion of repolarization [252], and the ventricu-
lar response to heart rate changes [253]. As demonstrated by the results in this thesis,
this phenomena is manifested in the ECG-derived markers presented in this document
as increased values of IAA, ∆αTpe and TMRdw . Enduring sympathetic activation,

109
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however, ends up provoking withdrawal of vagal activity [57] and a weakened ventric-
ular response [254], which are manifested as lower values of ∆αTpe and TS. Considering
the interaction of multiple factors in both SCD and PFD, and the classi�cation results
of the combination of ∆αTpe and TMRdw with IAA and TS (chapters 2 and 4), the
combination of indices re�ecting complementary cardiac mechanisms rather than the
use of individual markers could improve SCD and PFD risk strati�cation.

Risk models based on a set of clinical variables have been proposed and evaluated
in CHF patients for speci�c SCD and PFD prediction [121�123]. These risk models
are an important �rst step to serve as a quick screen to identify subgroups that might
bene�t from further evaluation for speci�c risk strati�cation [125]. In this chapter,
we hypothesized that additional risk models based on ECG-derived indices re�ect-
ing di�erent mechanisms like ANS imbalance and repolarization instability could add
complementary information for improving the speci�city of SCD and PFD risk strat-
i�cation.

Then, in this chapter we developed new risk models that integrate clinical indices
with ECG-derived markers to speci�cally predict SCD and PFD and eventually im-
prove the prognostic value of current strati�cation tools in CHF.

5.2 Methods

5.2.1 Study Population

We used the 651 ECG recordings from the MUSIC study for the evaluation of the
optimal SCD and PFD risk models in CHF patients.

5.2.2 Clinical and ECG-derived Parameters

The clinical variables used in this study are listed in Table 5.1. For the derivation of
the risk models from the Holter recordings, we used the ECG-derived markers studied
in this thesis. This includes ∆αQT and ∆αTpe, re�ecting repolarization restitution, and
being associated with SCD when dichotomized at 0.228 and 0.028, respectively [246],
as described in chapter 2. Also, in that chapter, ∆αTpe was shown to be related to PFD
when dichotomized at 0.022 [246]. Then, IAA, the index re�ecting spatio-temporal
dispersion of repolarization, and associated with SCD when categorized at 3.7µV [156].
In addition, TS, measuring the sympathovagal balance [173,174], and predicting SCD
and PFD when dichotomized at 2.5 ms/RR [174, 176]. Finally, TMRdw , re�ecting
dispersion of repolarization restitution, and associated with SCD when dichotomized
at 0.040.

5.2.3 Statistical Analysis

In order to create the prediction models, the univariate association between each
variable and SCD and PFD risk was �rst evaluated. Those variables associated with
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each endpoint at p<0.05 were included as candidate variables into three multivariable
models: a clinical model (including clinical variables only), an ECG model (including
ECG-derived variables only), and a combined model (combining clinical and ECG-
derived risk markers). Backwards stepwise regression was then performed and a re-
tention criteria of p<0.05 was used to identify the variables for our prediction models.
Based on the 4-year follow-up, the β-coe�cients for each variable retained in the �nal
multivariable model were used when constructing the prediction models [121].

Finally, prediction models for SCD and PFD were calculated. The SCD and PFD
prediction models were de�ned according to the following equation:

SE
M
“

I
ÿ

i“1

βixi, (5.1)

where S denotes the score, M denotes the model, either the clinical (�Cli�), the ECG-
based (�ECG�), or the combined (�Com�); E denotes the endpoint, SCD or PFD; I is
the number of dichotomized variables retained in the multivariable model, βi is the
coe�cient of the i-th dichotomized variable; and xi is the i-th dichotomized variable
(i.e. xi takes the value 0 when the variable is below the de�ned cut-o� point and 1
when it is above, see Table 5.2).

The AUC was calculated and the ability of each prediction model to separate
patients who experience a speci�c outcome from those who do not was quanti�ed. SCD
and PFD probabilities were estimated by Kaplan-Meier methods with a comparison
of cumulative events performed by using log-rank tests. Based on the risk scores, the
population was divided in three groups: Low-risk (�rst and second quintiles (Q1-Q2)),
middle-risk (third and fourth quintiles (Q3-Q4)) and high-risk (�fth quintile (Q5)).
HARs were calculated using the low risk group as a reference. Patients who died from
causes not included in the endpoints were censored at the time of death. A p-value
<0.05 was considered statistically signi�cant. Statistical analysis was performed using
SPSS version 22.0 (SPSS, Inc. Chicago IL).

5.3 Results

5.3.1 Association of Variables with SCD and PFD

As shown in Table 5.1, SCD victims were more frequently men (p=0.048), were in
NYHA class III (p=0.047) and had low LVEF (p=0.010), while PFD victims were more
frequently older than the rest of patients (p=0.013), were more frequently diabetic
(p=0.009), in NYHA class III (p=0.001), were not under treatment with beta-blockers
(p=0.012) and also had low LVEF (p=0.044). Ischaemic aetiology was not associated
with SCD or PFD.

Regarding the ECG-derived risk markers, SCD victims more frequently had higher
∆αTpe (p=0.002), ∆αQT (p=0.041), IAA (p=0.008) and TMRdw (p=0.001), while
lower TS (p=0.004). PFD victims more frequently showed lower RR range (pă0.001),
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Variable
Survivors SCD PFD non-cardiac death

(n = 503) (n = 55) (n = 67) (n = 26)

Clinical variables

Age [years] 63p18q˚ 67 (12) 69p17q˚ 71 (15)

Gender [men] 351 (70%) 46p84%q˚ 49 (73%) 18 (69%)

Diabetes 175p35%q˚ 24 (44%) 34p51%q˚ 11 (42%)

NYHA class III 68p14%q˚ 16p29%q˚ 21p31%q˚ 10p39%q˚

Ischemic etiology 239p48%q˚ 33 (60%) 39 (58%) 16 (62%)

ARB or ACE inhibitors 451 (90%) 45 (82%) 54p81%q˚ 26 (100%)

Beta-blockers 366p73%q˚ 39 (71%) 37p55%q˚ 13p50%q˚

Amiodarone 38p8%q˚ 6 (11%) 11p16%q˚ 6p23%q˚

LVEF ď 35% 252p50%q˚ 40p73%q˚ 45p67%q˚ 19 (73%)

ECG variables

Median RR [s] 0.86 (0.18) 0.85 (0.21) 0.85 (0.21) 0.83 (0.17)

RR range [s] 0.43p0.21q˚ 0.37 (0.25) 0.33p0.16q˚ 0.35 (0.25)

QRS ą 120 ms 195 (39%) 25 (46%) 32 (48%) 10 (39%)

NSVT and ą 240
113p23%q˚ 22p40%q˚ 27p40%q˚ 6 (23%)

VPBs in 24 h

∆αTpe ě 0.028 230 (46%) 38p69%q˚ 24 (36%) 15 (58%)

∆αTpe ď 0.022 220 (44%) 15p27%q˚ 41p61%q˚ 9 (35%)

∆αQT ě 0.228 165 (33%) 26 (47%) 24 (36%) 12 (46%)

IAAě3.7µV 107p22%q˚ 22p42%q˚ 15 (23%) 9 (35%)

TSď2.5ms/RR 186p40%q˚ 33p67%q˚ 49p79%q˚ 13 (57%)

TMRdw ě0.040 229p46%q˚ 39p71%q˚ 28 (42%) 15 (58%)

ACE = angiotensin-converting enzyme; ARB = angiotensin receptor blocker;
HR = Heart Rate; IAA = Index of Average Alternans; LVEF = left ventricular

ejection fraction; NSVT = Non-Sustained Ventricular Tachycardia;
NYHA = New York; Heart Association; PFD = Pump Failure Death; SCD = Sudden

Cardiac Death; TMRdw = T-wave Morphology Restitution; TS = Turbulence
Slope; VPB = Ventricular Premature Beat; *p<0.05 for comparison against the

group formed by the other modes of death.

Table 5.1: Characteristics of patients according to their outcome.

∆αTpe (p=0.003) and TS values (pă0.001), while a higher rate of NSVT and more
than 240 VPBs in 24 h (p=0.014). The QRS duration was not associated with SCD
or PFD.

5.3.2 Predictors of SCD and PFD

The de�nition of the dichotomized variables, xi, introduced in the Cox analysis is
presented in Table 5.2. Tables 5.3 and 5.4 show the risk markers that signi�cantly
contributed to SCD and PFD prediction, respectively, in univariate and multivari-
ate analyses. In the univariate analysis, SCD was related to male gender, NYHA
class III, LVEFď35%, ∆αTpe ě0.028, ∆αQT ě0.228, IAAě3.7µV, TSď2.5 ms/RR and
TMRdw ě0.04 (Table 5.3). Similarly, PFD was associated with age, diabetes, NYHA
class III, absence of treatment with beta-blockers, LVEFď35%, reduced RR range,
NSVT and more than 240 VPBs in 24 h, ∆αTpe ď0.022 and TSď2.5 ms/RR (Table
5.4).
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Dichotomized variable De�nition

xg 1, if male gender; 0, otherwise

xNYHA 1, if NYHA class III; 0, otherwise

xDiab 1, if diabetic; 0, otherwise

xβ 1, if treatment with beta-blockers; 0, otherwise

xLVEF 1, if LVEFď35%; 0, otherwise

xNSVT 1, if NSVT and >240 VPBs/24-h; 0, otherwise

x
∆αSCD

Tpe
1, if ∆αTpe ě0.028; 0, otherwise

x
∆α

Tpe
PFD

1, if ∆αTpe ď0.022; 0, otherwise

x
∆αQT

1, if ∆αQT ě0.228; 0, otherwise

xIAA 1, if IAAě3.7µV; 0, otherwise

xTS 1, if TSď2.5ms/RR; 0, otherwise

x
TMRdw

1, if TMRdw ě0.040; 0, otherwise

IAA = Index of Average Alternans; LVEF = left ventricular ejection fraction; NSVT =
Non-Sustained Ventricular Tachycardia; NYHA = New York Heart Association; PFD =
Pump Failure Death; SCD = Sudden Cardiac Death; TMRdw = T-wave Morphology

Restitution; TS = Turbulence Slope; VPB = Ventricular Premature Beat.

Table 5.2: De�nition of the dichotomized variables used to build the SCD and PFD risk models.



114 Chapter 5. Specific SCD and PFD Risk Models

R
is
k
m
a
r
k
e
r
s

U
n
iv
a
r
ia
t
e

C
lin
ic
a
l
M
u
lt
iv
a
r
ia
t
e

E
C
G
M
u
lt
iv
a
r
ia
t
e

C
o
m
b
in
e
d
M
u
lt
iv
a
r
ia
t
e

H
A
R
(9
5
%

C
I)

p
H
A
R
(9
5
%

C
I)

β
p

H
A
R
(9
5
%

C
I)

β
p

H
A
R
(9
5
%

C
I)

β
p

C
lin
ic
a
l
v
a
r
ia
b
le
s

G
e
n
d
e
r
[m
e
n
]

2
.1
5
9
(1
.0
1
2
-4
.6
0
6
)
0
.0
4
6

2
.2
4
8
(1
.0
5
0
-4
.8
1
4
)
0
.8
1
0

0
.0
3
7

-
-

-
2
.7
5
0
(1
.2
7
6
-5
.9
2
7
)
1
.0
1
2

0
.0
1
0

N
Y
H
A
c
la
ss

III
2
.1
8
9
(1
.1
7
7
-4
.0
7
1
)
0
.0
1
3

2
.2
2
1
(1
.1
8
9
-4
.1
5
0
)
0
.7
9
8

0
.0
1
2

-
-

-
2
.4
9
9
(1
.3
2
8
-4
.7
0
2
)
0
.9
1
6

0
.0
0
5

L
V
E
F
ď
3
5
%

2
.3
3
5
(1
.2
3
8
-4
.4
0
3
)
0
.0
0
9

2
.1
6
5
(1
.1
4
6
-4
.0
9
2
)
0
.7
7
2

0
.0
1
7

-
-

-
1
.9
9
7
(1
.0
5
2
-3
.7
9
2
)
0
.6
9
2

0
.0
3
5

E
C
G
v
a
r
ia
b
le
s

∆
α
T
p
e
ě

0
.0

2
8

2
.6
7
6
(1
.5
2
4
-4
.7
0
0
)
0
.0
0
1

-
-

-
2
.3
6
5
(1
.3
2
9
-4
.2
1
0
)
0
.8
6
1

0
.0
0
3

2
.5
5
0
(1
.4
4
0
-4
.5
1
5
)
0
.9
3
6

0
.0
0
1

∆
α
Q
T
ě

0
.2

2
8

1
.9
2
1
(1
.0
9
7
-3
.3
6
4
)
0
.0
2
2

-
-

-
N
.S
.

N
.S
.

N
.S
.

N
.S
.

N
.S
.

N
.S
.

IA
A
ě
3
.7
µ
V

2
.3
3
5
(1
.3
2
1
-4
.1
2
8
)
0
.0
0
4

-
-

-
2
.3
7
7
(1
.3
3
9
-4
.2
2
1
)
0
.8
6
6

0
.0
0
3

2
.2
7
1
(1
.2
7
8
-4
.0
3
5
)
0
.8
2
0

0
.0
0
5

T
S
ď
2
.5
m
s/
R
R

2
.6
4
1
(1
.4
5
3
-4
.8
0
2
)
0
.0
0
1

-
-

-
2
.1
8
0
(1
.1
9
3
-3
.9
8
6
)
0
.7
8
0

0
.0
1
1

N
.S
.

N
.S
.

N
.S
.

T
M
R
d
w
ě
0
.0
4
0

2
.9
2
9
(1
.5
7
6
-5
.4
4
5
)
0
.0
0
1

-
-

-
2
.1
9
3
(1
.1
6
2
-4
.1
4
0
)
0
.7
8
5

0
.0
1
5

2
.8
8
3
(1
.5
3
1
-5
.4
2
9
)
1
.0
5
9

0
.0
0
1

A
C
E
=
a
n
g
io
te
n
sin

-c
o
n
v
e
rtin

g
e
n
z
y
m
e
;
A
R
B
=
a
n
g
io
te
n
sin

re
c
ep
to
r
b
lo
ck
e
r;
H
A
R
=
H
a
z
a
rd

R
a
tio

;
H
R
=
H
e
a
rt

R
a
te
;
IA
A
=
In
d
e
x
o
f
A
v
e
ra
g
e

A
lte

rn
a
n
s;
L
V
E
F
=
le
ft
v
e
n
tric

u
la
r
e
je
c
tio

n
fra

c
tio

n
;
N
S
V
T
=
N
o
n
-S
u
sta

in
e
d
V
e
n
tric

u
la
r
T
a
ch
y
c
a
rd
ia
;
N
Y
H
A
=
N
e
w
Y
o
rk

H
e
a
rt

A
sso

c
ia
tio

n
;

P
F
D
=
P
u
m
p
F
a
ilu

re
D
e
a
th
;
S
C
D
=
S
u
d
d
e
n
C
a
rd
ia
c
D
e
a
th
;
T
M
R
d
w

=
T
-w
a
v
e
M
o
rp
h
o
lo
g
y
R
e
stitu

tio
n
;
T
S
=
T
u
rb
u
le
n
c
e
S
lo
p
e
;
V
P
B
=

V
e
n
tric

u
la
r
P
re
m
a
tu
re

B
e
a
t;
*
p
<
0
.0
5
fo
r
c
o
m
p
a
riso

n
a
g
a
in
st

th
e
g
ro
u
p
fo
rm

e
d
b
y
th
e
o
th
e
r
m
o
d
e
s
o
f
d
e
a
th
.

T
a
b
le
5
.3
:
U
n
iva

ria
b
le
a
n
d
m
u
ltiva

ria
b
le
p
red

icto
rs

o
f
S
C
D
.



5.3 Results 115

R
is
k
m
a
r
k
e
r
s

U
n
iv
a
r
ia
t
e

C
li
n
ic
a
l
M
u
lt
iv
a
r
ia
t
e

E
C
G
M
u
lt
iv
a
r
ia
t
e

C
o
m
b
in
e
d
M
u
lt
iv
a
r
ia
t
e

H
A
R
(9
5
%

C
I)

p
H
A
R
(9
5
%

C
I)

β
p

H
A
R
(9
5
%

C
I)

β
p

H
A
R
(9
5
%

C
I)

β
p

C
li
n
ic
a
l
v
a
r
ia
b
le
s

A
g
e
[p
e
r
1
S
D
in
c
.]

1
.3
7
8
(1
.0
4
7
-1
.8
1
3
)

0
.0
2
2

N
.S
.

N
.S
.

N
.S
.

-
-

-
N
.S
.

N
.S
.

N
.S
.

D
ia
b
e
te
s

2
.0
1
1
(1
.2
2
1
-3
.3
1
2
)

0
.0
0
6

1
.8
4
2
(1
.1
1
2
-3
.0
4
9
)
0
.6
1
1

0
.0
1
8

-
-

-
1
.6
9
7
(1
.0
2
2
-2
.8
1
8
)
0
.5
2
9

0
.0
4
1

N
Y
H
A
c
la
ss

II
I

2
.8
9
2
(1
.7
0
9
-4
.8
9
6
)
<
0
.0
0
1

2
.3
0
5
(1
.3
4
2
-3
.9
5
9
)
0
.8
3
5

0
.0
0
2

-
-

-
1
.9
7
2
(1
.1
5
4
-3
.3
7
0
)
0
.6
7
9

0
.0
1
3

B
e
ta
-b
lo
ck
e
rs

0
.4
9
8
(0
.3
0
2
-0
.8
2
3
)

0
.0
0
7

1
.8
5
9
(1
.1
1
8
-3
.0
9
1
)
0
.6
2
0

0
.0
1
7

-
-

-
N
.S
.

N
.S
.

N
.S
.

L
V
E
F
ď
3
5
%

1
.7
9
2
(1
.0
5
2
-3
.0
5
3
)

0
.0
3
2

1
.7
6
8
(1
.0
3
4
-3
.0
2
6
)
0
.5
7
0

0
.0
3
7

-
-

-
N
.S
.

N
.S
.

N
.S
.

E
C
G
v
a
r
ia
b
le
s

∆
R
R
[p
e
r
1
S
D
in
c
.]

0
.5
8
7
(0
.4
5
1
-0
.7
6
4
)
<
0
.0
0
1

-
-

-
0
.7
5
3
(0
.5
6
6
-1
.0
0
0
)
-0
.2
8
4

0
.0
5
0

N
.S
.

N
.S
.

N
.S
.

N
V
S
T
a
n
d
m
o
re

2
.0
3
4
(1
.2
2
0
-3
.3
9
1
)

0
.0
0
6

-
-

-
N
.S
.

N
.S
.

N
.S
.

N
.S
.

N
.S
.

N
.S
.

th
a
n
2
4
0
V
P
B
s
in

2
4
-h

∆
α
T
p
e
ď

0
.0

2
2

2
.0
6
8
(1
.2
3
5
-3
.4
6
2
)

0
.0
0
6

-
-

-
2
.1
7
4
(1
.2
9
8
-3
.6
4
2
)

0
.7
7
7

0
.0
0
3

2
.2
1
9
(1
.3
2
0
-3
.7
3
0
)
0
.7
9
7

0
.0
0
3

T
S
ď
2
.5
m
s/
R
R

4
.9
7
5
(2
.6
9
8
-9
.1
7
2
)
<
0
.0
0
1

-
-

-
4
.1
3
2
(2
.1
6
5
-7
.8
8
4
)

1
.4
1
9

<
0
.0
0
1

4
.1
6
0
(2
.2
2
5
-7
.7
7
9
)
1
.4
2
5

<
0
.0
0
1

A
C
E
=
a
n
g
io
te
n
si
n
-c
o
n
v
e
rt
in
g
e
n
z
y
m
e
;
A
R
B
=
a
n
g
io
te
n
si
n
re
c
e
p
to
r
b
lo
ck
e
r;
H
A
R
=
H
a
z
a
rd

R
a
ti
o
;
H
R
=
H
e
a
rt

R
a
te
;
IA
A
=
In
d
e
x
o
f
A
v
e
ra
g
e

A
lt
e
rn
a
n
s;
L
V
E
F
=
le
ft
v
e
n
tr
ic
u
la
r
e
je
c
ti
o
n
fr
a
c
ti
o
n
;
N
S
V
T
=
N
o
n
-S
u
st
a
in
e
d
V
e
n
tr
ic
u
la
r
T
a
ch
y
c
a
rd
ia
;
N
Y
H
A
=
N
ew

Y
o
rk

H
e
a
rt

A
ss
o
c
ia
ti
o
n
;

P
F
D
=
P
u
m
p
F
a
il
u
re

D
e
a
th
;
S
C
D
=
S
u
d
d
en

C
a
rd
ia
c
D
e
a
th
;
T
M
R
d
w

=
T
-w
a
v
e
M
o
rp
h
o
lo
g
y
R
e
st
it
u
ti
o
n
;
T
S
=
T
u
rb
u
le
n
c
e
S
lo
p
e
;
V
P
B
=

V
e
n
tr
ic
u
la
r
P
re
m
a
tu
re

B
e
a
t;
*
p
<
0
.0
5
fo
r
c
o
m
p
a
ri
so
n
a
g
a
in
st

th
e
g
ro
u
p
fo
rm

e
d
b
y
th
e
o
th
e
r
m
o
d
e
s
o
f
d
e
a
th
.

T
a
b
le
5
.4
:
U
n
iv
a
ri
a
b
le
a
n
d
m
u
lt
iv
a
ri
a
b
le
p
re
d
ic
to
rs

o
f
P
F
D
.



116 Chapter 5. Specific SCD and PFD Risk Models

5.3.3 Prediction models

When only adjusting for the clinical variables, all factors remained signi�cant after
backward stepwise selection for SCD prediction in multivariate Cox analysis (Table 5.3.
When adjusting for the ECG-derived markers, ∆αQT ě0.228 lost its signi�cance to the
model. When adjusting for both clinical and ECG-derived markers, ∆αTpe ě0.028,
IAAě3.7µV, TMRdw ě0.04 and the three clinical variables remained signi�cantly
associated with SCD (Table 5.3). Therefore, the �nal SCD clinical, SSCD

Cli
, ECG, SSCD

ECG
,

and combined, SSCD

Com
, prediction models were:

SSCD
Cli

“ 0.810xg ` 0.798xNYHA ` 0.772xLVEF (5.2)

SSCD
ECG

“ 0.861x∆αTpe
SCD

` 0.866xIAA ` 0.780xTS ` 0.785xTMRdw

SSCD
Com

“ 1.012xg ` 0.916xNYHA ` 0.692xLVEF ` 0.936x∆αTpe
SCD

` 0.810xIAA ` 1.059xTMRdw .

Regarding PFD risk prediction, all clinical variables excepting age remained signif-
icant when adjusting for clinical factors (Table 5.4). When adjusting for ECG-derived
markers, NSVT and more than 240 VPBs in 24-h lost its signi�cance to the model.
The clinical and ECG-derived risk markers that remained signi�cant when computing
the combined PFD prediction model were diabetes, NYHA class III, ∆αTpe ď0.022
and TSď2.5ms/RR. Clinical, ECG, and combined models speci�c for PFD were:

SPFD
Cli

“ 0.611xDiab ` 0.835xNYHA ` 0.620xβ ` 0.570xLVEF (5.3)

SPFD
ECG

“´0.284∆RR` 0.777x∆αTpe
PFD

` 1.419xTS

SPFD
Com

“ 0.529xDiab ` 0.679xNYHA ` 0.797x∆αTpe
PFD

` 1.425xTS,

where each increment unit in ∆RR corresponds to one standard deviation.

5.3.4 SCD and PFD prediction

Figure 5.1 shows the ROCs and AUCs for the clinical (solid blue), ECG (dashed
red), and combined (dotted-dashed black) prediction models for SCD (a) and PFD
(b). According to ROC analysis, ECG-derived markers provided a more accurate
prediction of both SCD and PFD with respect to clinical markers. Accuracy further
increased for SCD prediction when combining clinical and ECG-derived markers.

Figure 5.2 shows the results of Kaplan-Meier analyses. SCD probability for the
high-risk group was higher in the ECG- than in the clinical model and it further
increased in the combined model (Figure 5.2 (a)-(c)). Moreover, in the combined
model, SCD probability for the low-risk group was lower than in the ECG and clinical
models, therefore further increasing the distance between the curves for low and high
risk group. Regarding PFD, the distance between low- and high-risk groups was
signi�cant for all three models, but larger for the combined one (Figure 5.2 (d)-(f)).
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Figure 5.3 shows the univariate HARs of the low- (blue square), middle- (green cir-
cle) and high-risk (red diamond) groups when compared to the low-risk group for SCD
(a) and (b), and PFD (c) and (d) risk, using the models speci�c for each endpoint.
* Indicates p<0.005 with respect to the low risk group. ** indicates p<0.05 with
respect to the low risk group. Both SCD and PFD prediction improved when clinical
and ECG markers were integrated into the combined model, with median HARs for
the high SCD risk group equal to 4, 9 and 14 (panel (a)) for clinical, ECG and com-
bined models, respectively, and median HARs for the high PFD risk group equal to
4, 11 and 13 (panel (d)) for clinical, ECG and combined models, respectively. Impor-
tantly, panels (b)-(c) show that models designed to predict SCD did not predict PFD
and models designed to predict PFD did not predict SCD, therefore demonstrating
speci�city, on top of sensitivity, in the prediction of the designated mode of death.
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Figure 5.1: ROC curves for the clinical (solid blue), ECG (dashed red) and combined (dotted black)
speci�c risk models in the classi�cation of SCD (a) and PFD (b) victims.

5.4 Discussion

In this chapter, risk models combining clinical and ECG-derived markers were
proposed to speci�cally predict SCD and PFD in CHF patients. The ECG-derived
markers were those studied in this thesis, re�ecting di�erent repolarization and auto-
nomic mechanisms. In mild-to-moderate CHF patients the inclusion of ECG-derived
indices quantifying dispersion of repolarization, dispersion of repolarization restitution
and autonomic condition into a clinical model signi�cantly improves SCD predictive
value. In contrast, the combination of these ECG-derived indices already reaches the
maximum PFD predictive value, with no improvement when also including clinical
variables. This indicates a possible new strategy to identify CHF patients speci�cally
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Figure 5.2: Probability curves of the three risk groups, low (solid blue), middle (dotted green) and
high (dashed red) de�ned in the clinical (left), ECG (middle) and combined (right) speci�c risk models
for SCD (top) and PFD (bottom).

at risk of arrhythmias or mechanical fatigue, that would or would not bene�t from
therapy with ICD or CRT.

In a multivariate analysis, the clinical variables that predicted SCD were male
gender, NYHA class III and LVEFď35%. Previous studies have also shown that men
have higher SCD risk than women [114, 255], while the contribution of the NYHA
class to SCD risk is still unclear [94, 118]. Impaired LVEF is at present the only risk
factor considered for ICD implantation in high SCD risk patients, but its speci�city
is insu�cient [256].

Diabetes, NYHA class III, absence of treatment with beta-blockers and LVEFď35%
predicted PFD in a multivariate analysis. These results agree with previous �ndings
reporting the relation between end-stage CHF and low cardiac output and LVEF,
diabetes due to increased congestion as well as advanced stages of NYHA class [257].
Also, treatment with beta-blockers, or limiting neuro-hormonal activation has been
shown to be especially important in retarding CHF progression [258,259].

The ECG variables that independently predicted SCD were ∆αTpe, IAA, TS and
TMRdw . SCD is a multifactorial event and our results con�rm that SCD risk is re-
�ected by increased dispersion of repolarization restitution [53,54], increased variability
of temporal dispersion of repolarization [260] and baroreceptor-heart rate re�ex sensi-
tivity [174,261]. More importantly, this con�rms our hypothesis that a combination of
ECG markers that capture complementary information about arrhythmic substrates
would improve SCD prediction. The performance of the ECG-derived model in pre-
dicting SCD can be compared to that using the markers individually. In chapter 2 we
demonstrated that patients in the high-SCD risk group (∆αTpe ě 0.028) showed a 14%
SCD probability after the follow-up period, and a HAR of 3, while in chapter 4 these
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Figure 5.3: Hazard ratios of SCD (A and B) and PFD (C and D) for the three risk groups, low (blue
square), middle (green circle) and high (red diamond) risk groups de�ned in the clinical, ECG and
combined speci�c models. * and ** indicate p<0.05 and p<0.005 with respect to the low risk group,
respectively.

values were 13% and 3 for patients with TMRdw ě 0.040. The high-risk group of
the ECG-derived model reaches a 26% SCD probability, with a HAR of 9, con�rming
the bene�t of combining risk markers. Future studies could include promising indices
assessing dispersion of repolarization from the ECG [262] into the proposed models.

The ECG variables that independently predicted PFD were ∆αTpe, TS and the
range of RR. This indicates that PFD is also characterized by baroreceptor-heart rate
re�ex sensitivity [174, 261]. However, lower values of ∆αTpe indicative of higher PFD
risk suggest that PFD victims experience a reduction in the ability of the ventricles
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to adapt to changes in heart rate, as opposed to SCD victims [22]. Again, when
comparing with the performance of individual markers, patients with ∆αTpe ď 0.022
had 15% PFD probability and a HAR of 2. The high-PFD risk group of the PFD ECG-
derived model achieves a 26% PFD probability, and a HAR of 12, also con�rming the
need for using a combined score in mortality prediction, rather than individual markers
only.

The ECG models for SCD and PFD showed better prognostic value than the
clinical models. The combination of clinical and ECG-derived markers synergistically
improved the prognostic values for both SCD and PFD. However, in the case of
PFD prediction, the improvement achieved by the integration of clinical and ECG-
derived markers was only marginal with respect to the results of the ECG model. This
suggests that clinical variables do not contain complementary information for PFD
risk prediction to that within the ECG markers. More importantly, both ECG and
combined risk models demonstrated high sensitivity (association with the designated
mode of death) and speci�city (no association with the alternative mode of death)
for SCD and PFD prediction. In contrast, the clinical risk model for SCD prediction
lacked speci�city and predicted PFD in addition to SCD (Figure 5.3).

5.4.1 Technical Considerations

We applied an iterative algorithm to validate the thresholds of the ECG-derived
variables when building the risk scores and the optimal thresholds were the same as
those proposed in the literature.

5.4.2 Limitations

Prospective studies are needed to verify that the observations presented here have
a role in SCD and PFD prediction in CHF patients. This study only considered
consecutive patients, so the number of SCD and PFD victims was relatively low and
this has limited the possibility of performing further statistical analyses. In addition,
the risk scores proposed in this work were elaborated in sinus rhythm. Therefore, they
may not be applicable in CHF patients with other rhythms. Only standard clinical
variables were available for this study. The assessment of clinical and combined models
integrating further variables needs further investigation.

5.5 Conclusion

In this chapter, we demonstrate that two risk prediction models that combine indices
describing clinical as well as novel ECG-based measures of electrophysiological and
autonomic abnormalities improve SCD and PFD risk prediction, as compared to in-
dividual markers. For SCD, the combination of clinical and ECG-derived variables
substantially improved risk prediction as compared to the use of only one or the other
type of variables. In contrast, PFD risk prediction for the ECG-derived model was
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already satisfactory and only marginally improved with the integration of clinical in-
formation.
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6.2 Conclusion

6.3 Future Work

6.1 Summary and Discussion

The main objective of this thesis was to �nd ECG-derived markers of ventricular
repolarization restitution to improve the prediction of SCD and PFD. This objec-
tive has been faced using, on the one hand, time-interval indices and, on the other
hand, morphological indices. To use the morphological information of the T-wave, we
have developed an innovative methodology that allows the comparison of two di�erent
shapes, and the quanti�cation of their di�erences.
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6.1.1 The Quanti�cation of Dispersion of Repolarization Resti-

tution from the ECG Predicts Mortality

This thesis started by evaluating whether the dispersion of repolarization resti-
tution, estimated from the slope of the Tpe/RR relationship, was associated with
increased arrhythmic risk, leading to SCD in CHF patients. Not only we found that
the Tpe/RR slope was related to SCD, but we proved that this index also indicated
increased PFD risk. For the best of our knowledge, no previous ECG-derived index
has been able to risk-stratify CHF patients into three risk bands: steeper slopes indi-
cating high SCD risk, �atter slopes indicating high PFD risk and middle slope values
indicating low CD risk.

We also quanti�ed the dispersion of the repolarization restitution using the overall
morphology of the T-wave, rather than just considering the Tpe interval. Then, we
calculated two mean warped T-waves, one representative of the T-wave morphology
at short RRs, and another representative of the T-wave morphology at long RRs.
Then, we compared them using our proposed warping methodology, normalizing by
the variation in RR. We found that TMRdw , the normalized dw, was the only mor-
phological marker signi�cantly associated with SCD. This suggests that the variations
in the dispersion of repolarization restitution are mainly re�ected on the ECG as vari-
ations in the temporal domain of the T-wave. When comparing the predictive value of
TMRdw and the slope of the Tpe dynamics, we found that TMRdw outperformed the
interval-based index. This con�rms our hypothesis suggesting that the quanti�cation
of the overall T-wave morphology, rather than just the Tpe interval, provides addi-
tional information re�ecting the distribution of dispersion of repolarization, critical
for the prediction of SCD. Surprisingly, TMRdw did not show PFD predictive value.
We are still uncertain about the signi�cance of these results. One possible explanation
may be that the lack of ventricle response to autonomic innervation, manifested in
victims of PFD, is mainly re�ected on the last phase of repolarization. Then, the Tpe
interval captures this information, but it is hidden in TMRdw because of considering
the overall T-wave morphology. A logical future work is to repeat the calculus of
TMRdw but by only considering the morphology of the T-wave from the peak to the
end.

6.1.2 The Quanti�cation of Repolarization Restitution from

the ECG does not Predict Mortality

Considering that the QT interval is the most traditional index of ventricular re-
polarization for arrhythmic risk prediction [126], and its dynamics extensively used
associated with arrhythmogenicity [130�133], we evaluated the predictive value of the
slope of the QT dynamics. However, we did not �nd any association between this index
and any mode of CD. These results may suggest that, as previously stated [17, 263],
the last stages of repolarization, quanti�ed by the Tpe interval, are those with higher
arrhythmic vulnerability. Then, our results demonstrate that the intrinsic heterogene-
ity of repolarization along the ventricle is more critical for SCD risk than the response
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of the total repolarization wave to variations in heart rate.

6.1.3 The Combination of Indices Quantifying Di�erent elec-

trophysiological and Autonomic Mechanisms Improves

Prediction

After demonstrating that the slope of the Tpe dynamics and TMRdw strongly
predicted SCD and PFD, we used classi�cation analysis to separate CHF patients ac-
cording to their risk of su�ering from these cardiac events, using baseline information.
This means that, in contrast with survival analysis, we did not use the time-to-death
information for classi�cation. Using two- and three-class SVM classi�ers, we con-
�rmed the risk-strati�cation potential of both indices. When introducing two other
ECG-derived predictors of SCD and PFD, like the IAA or TS, the risk-strati�cation
was signi�cantly improved. This indicates that the three indices are re�ecting dif-
ferent and complementary underlying mechanisms. IAA measures spatio-temporal
dispersion of repolarization, TS re�ects sympathovagal balance, and the slope of the
Tpe dynamics and TMRdw quantify dispersion of repolarization restitution.

The results from the last chapter also demonstrate the importance of joining the
individual predictive power of ECG-derived markers re�ecting complementary mech-
anisms into a single combined score with optimal capacity of predicting SCD and
PFD. As explained in the introduction, SCD is the result of a series of failing mech-
anisms that might be harmless when occurring isolated, but fatal when occurring
together. These mechanisms have di�erent sources, being mainly electrophysiologi-
cal, autonomic, anatomic, or even genetic. This means that if a person has a genetic
predisposition for SCD, and su�ers a cardiac disease that leads to CHF, the subject
might experience some physical damage a�ecting the correct electrical conduction by,
for example, increasing the dispersion of repolarization. Then, if by any reason the
heart rate increases, it could trigger a malignant arrhythmia, that will be maintained
due to the already vulnerable myocardium. Therefore, using an index that contains
information about the dispersion of repolarization, its adaptation to changes in heart
rate, and other clinical, genetic and demographic variables, may be very e�ective for
preventing the arrhythmic event and the SCD.

6.1.4 Methodological Contribution

The quanti�cation of the T-wave morphological variation was not straightforward
and, therefore, we had to conceive a methodology and propose morphology variabil-
ity markers to face this task. For that, we had to, �rst, demonstrate that our pro-
posed methodology was robust against any noise level possibly found in actual ECG
recordings, and, second, to prove that the variations in the proposed indices quan-
tifying T-wave morphology variability were meaningful, i.e. related to variations in
the dispersion of ventricular repolarization. Therefore, we adapted a mathematical
framework proposed for statistical data [228,229] to solve our problem. The basic idea
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of this methodology is to separate both temporal and amplitude sources of variability
when working in a transformed domain, the SRSF. Then, the �rst step is to warp the
T-wave with a warping algorithm capable of removing the strictly temporal variability,
so that the remaining variability is amplitude.

In this thesis we have compared SRSF and DTW algorithms and we have demon-
strated that SRSF is independent from the amplitude values of the T-waves and, thus,
this warping algorithm does not experience the �pinching e�ect�, as DTW does. This
is specially important when analysing actual ECG recordings, where there is high
variability in both temporal and amplitude domains. In order to cope with the �pinch-
ing e�ect�, DTW adds some penalties into its minimization equation, but, then, the
warping function might be highly dependent on these constraints. SRSF includes a
regularization term in its optimization equation which avoids this limitation. After
separating both sources of variability, we quanti�ed them, with dw and dNLw , and da and
dNLa measuring the temporal and amplitude variability levels, respectively, which were
proved to be associated with variations in the dispersion of repolarization, using an
electrophysiological cardiac model, and using actual ECG recordings. Therefore, the
methodological contribution of this thesis is a robust and strong framework to compare
the morphology of di�erent T-waves, where the quanti�cation of morphological vari-
ability using our proposed indices re�ects changes in the dispersion of repolarization.

6.1.5 Clinical Signi�cance

The ECG recording is a very fast, easy, non-invasive and cheap method of evalu-
ating the autonomic and electric condition of the heart. We have used the last wave
of the ECG signal, the T-wave, to extract information re�ecting the repolarization
phase of the ventricles. Using that information, we have shown in this thesis that it
is possible to speci�cally improve prediction of SCD and PFD risk in a 4-years follow-
up period. With the contribution of this thesis, we have shed more light into the
phenomena of malignant ventricular arrhythmias, and the relation between ventric-
ular repolarization and the ANS innervation. Then, using an every-day ambulatory
recording, a clinician could diagnose the current state of the heart of a patient using
the values of our proposed indices, ∆αTpe and TMRdw . Based on the result of the
diagnostic, and considering that ∆αTpe separates SCD potential victims from PFD
potential victims, and from survivors of CD, while TMRdw re�nes the SCD risk pop-
ulation, the clinician may derive the potential SCD victim for an ICD implantation,
or the potential PFD victim for CRT.

6.1.6 Main Limitations

First, this thesis used fully automated ECG measurements that are likely to su�er
imprecision, especially when applied to abnormal ECGs in CHF patients. Prospective
studies are needed to verify that the observations presented here have a role in SCD
and PFD prediction in CHF patients. Second, the de�nition of SCD and PFD used
in this study was the same as in other similar studies but might not be uniform in
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respect of the underlying patho-physiology. Both tachycardia and bradycardia cases
were likely included. The number of SCD and PFD victims was relatively low not
only in comparison with survivors but also with victims of other modes of death. This
might have imposed some limitations on the statistical comparisons. Next, future
studies may include the splitting of the data into training and test sets so that the
thresholds developed in the training set could be evaluated in the test set. Further
investigations on the applicability of the de�ned cut-o� point and on the extension
of the analysis to other CHF and non-CHF populations are needed to con�rm the
prognostic value of the proposed index.

Regarding the warping methodology, due to the high sensitivity of the warping
function, erroneous extraction of the morphology of the T-wave, due to excessive noise
or delineation errors, will lead to incorrect values of dw and dNLw , and an incorrect
warping. Therefore, the markers da and dNLa could also be a�ected, coupling, in some
way, the robustness and sensitivity of the indices. Also, although the proposed markers
capture many T-wave morphologies, there can appear extreme morphological varia-
tions which will lead to meaningless interpretations of dw, da, d

NL

w and dNLa . However,
we have not found any such extreme variation in the analysed T-waves, since even for
biphasic or S-shaped T-waves we still obtained interpretable results. Next, we selected
the �rst principal component as the lead capturing the direction of maximal variation
of the repolarization gradient. Although we assumed that a projection of the maximal
energy onto this component also implied a maximal projection of the repolarization
variability, given the physiological additive generation of the ECG signals, this may
not always be guaranteed. Finally, this �rst principal component may be dominated
by precordial lead T-waves, which have the highest amplitude and, therefore, in this
study, the algorithm did not capture the morphological variation re�ected in other
leads.

6.2 Conclusion

This thesis proposes and proves that two ECG-derived markers of dispersion of
repolarization restitution, ∆αTpe and TMRdw , predict SCD or PFD in a population
of CHF patients. The index ∆αTpe is calculated using the Tpe interval, while TMRdw

uses the overall morphology of the T-wave. For the quanti�cation of the T-wave
morphological variability, a novel signal processing technique based on time-warping
has also been proposed in this thesis. The predictive value of the proposed markers
may help clinicians to better diagnose the CD risk of a patient and, then, to better
decide the speci�c treatment the patient would require.

6.3 Future Work

Some of the possible straightforward future research lines derived from the devel-
opment presented in this thesis are:
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� The cellular and sub-cellular mechanisms that could explain the origin of the dif-
ferent observed patterns in the analysed ventricular repolarization indices remain
to be elucidated. An electrophysiological modelling investigation is proposed to
be carried out to better understand APDR dynamics and their eventual relation-
ship with arrhythmic risk and SCD, and with ventricular response to autonomic
innervation and PFD risk.

� The morphological index dw was basically computed as the average separation
of the optimal warping function from the reference temporal domain. However,
this optimal warping function carries much more information, i.e. non-linearities,
speci�c manifestations of the �rst and last phases of repolarization, etc, that we
suggest to explore in future studies.

� The indices ∆αTpe and TMRdw have been measured on the �rst principal com-
ponent when applying PCA to the available leads. Then, we assumed that the
T-waves in this �rst principal component carried the principal morphological
variation re�ecting the variations in ventricular repolarization. However, the
two other principal components may still carry important physiological informa-
tion. Then, we propose to extend the morphological analysis to the application
on the VCG. For that, the warping method must be extended to a 3-D coordi-
nate system, and the morphological indices would account for the morphological
variation in the three coordinates. Then, we would have a clearer information
of the spatial variation of ventricular repolarization dispersion.

� As suggested in the previous section, to only account for the last phase of repo-
larization, we suggest to repeat the calculus of TMRdw , but only considering the
T-wave morphology contained from its peak to its end. Then, based on the SCD
and PFD predictive value of ∆αTpe, the risk stratifying ability of the new-de�ned
TMRdw might improve.

� The methodological framework proposed in this thesis is not restricted to the
T-wave and may be applied to quantify morphological variability in other wave-
forms. For example, it could be used to quantify the variations in the overall
depolarization and repolarization waves in the ventricles, through the compari-
son of the morphology of the QRS-T complex. Another option could be to apply
this framework to the QRS complex, as an alternative measure of ischemia, which
is manifested in the ECG as a widening of this complex.

� T-wave alternans are de�ned as an alternant pattern in the amplitude and mor-
phology of the T-wave. Then, we suggest to explore if the morphology variability
markers dw and da are capable of following this alternant variation, and test if
they capture additional information not contained in the current methods of
quantifying this phenomenon.

� Along the thesis we have evaluated the MUSIC database, which consists of a
complete study population of CHF patients. A reasonable future work is to
validate the predictive value of the indices proposed in this thesis, ∆αTpe and
TMRdw in di�erent study populations to assess their reproducibility.
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