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Abstract

The non-invasive fetal ECG (NIFECG), derived from abdominal surface electrodes, offers

novel diagnostic possibilities for prenatal medicine. Despite its straightforward applicability,

NIFECG signals are usually corrupted by many interfering sources. Most significantly, by the

maternal ECG (MECG), whose amplitude usually exceeds that of the fetal ECG (FECG) by

multiple times. The presence of additional noise sources (e.g. muscular/uterine noise, electrode

motion, etc.) further affects the signal-to-noise ratio (SNR) of the FECG. These interfering

sources, which typically show a strong non-stationary behavior, render the FECG extraction

and fetal QRS (FQRS) detection demanding signal processing tasks.

In this thesis, several of the challenges regarding NIFECG signal analysis were addressed.

In order to improve NIFECG extraction, the dynamic model of a Kalman filter approach was

extended, thus, providing a more adequate representation of the mixture of FECG, MECG, and

noise. In addition, aiming at the FECG signal quality assessment, novel metrics were proposed

and evaluated. Further, these quality metrics were applied in improving FQRS detection and

fetal heart rate estimation based on an innovative evolutionary algorithm and Kalman filtering

signal fusion, respectively. The elaborated methods were characterized in depth using both

simulated and clinical data, produced throughout this thesis. To stress-test extraction algorithms

under ideal circumstances, a comprehensive benchmark protocol was created and contributed

to an extensively improved NIFECG simulation toolbox. The developed toolbox and a large

simulated dataset were released under an open-source license, allowing researchers to compare

results in a reproducible manner. Furthermore, to validate the developed approaches under

more realistic and challenging situations, a clinical trial was performed in collaboration with

the University Hospital of Leipzig. Aside from serving as a test set for the developed algorithms,

the clinical trial enabled an exploratory research. This enables a better understanding about the

pathophysiological variables and measurement setup configurations that lead to changes in the

abdominal signal’s SNR. With such broad scope, this dissertation addresses many of the current

aspects of NIFECG analysis and provides future suggestions to establish NIFECG in clinical

settings.
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And now for something completely different.

– Monty Python’s Flying Circus (1971)

1
Introduction

1.1 Background and Motivation

Prenatal cardiac monitoring is an aspect of utmost importance in early detection of fetal

distress. Currently, electronic fetal heart monitoring is used on the majority of pregnancy

episodes in the developed world, whereby the analysis of fetal heart rate (FHR) is often used

to identify risk situations for both mother and fetus [129, 365]. The main reasons for this

monitoring is to rule out eventual environmental or congenital conditions that may lead to

fetal/newborn morbidity or even death. Every year, about one out of 125 babies are born with

some form of congenital heart defect (CHD) [13], which is the most common birth defect and

the leading cause of birth defect-related deaths. An estimated 2.65 million stillbirths occurred

worldwide in 2008, of which 98% occur in countries of low and middle income, with more than

45% during the intrapartum period [49, 242]. These stillbirth rates varied from 2 per 1000

(Finland) to 40 per 1000 (Nigeria and Pakistan) [242]. During 2014 in Germany, the rate of

stillbirths was 5.4 per 1000 stillbirths and neonatal (i.e. during the newborn’s first week of

life) deaths [73]. The early and more effective detection of abnormal fetal health state can help

obstetrics and pediatric cardiologists to prescribe proper medications in time, or to consider the

necessary precautions during delivery or after birth [362].

Fetal heart monitoring is not only useful for diagnosing and monitoring CHD fetuses, but

it also may improve the diagnosis of other heart-related pathologies such as hypoxia, growth

restriction and anemia. Such complications can happen prior to or during birth and may

have long lasting effects on the newborns health, if exposure is prolonged (e.g. cerebral palsy

is related to cerebral hypoxia and birth complications). As mothers progressively decide to

postpone their first pregnancy, there is a higher risk for the fetal health [143, 306]. Indeed,

increasing the effectiveness and reducing costs of prenatal monitoring on risk pregnancies is a

priority for both developed and underdeveloped worlds.
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1.1. BACKGROUND AND MOTIVATION

The standard technique for perinatal assessment of the developing heart is the cardiotocogram
(CTG). Despite being the most available mean of surveillance, CTG only provides time-averaged

mechanical information about the fetal heart. Furthermore, CTG’s interpretation is subjective

and lacks consensus amongst experts/guidelines on its interpretation. These problems in CTG’s

usage have lead to high false-positive rates in the detection of pathological patterns [298].

Therefore, instead of producing a decrease in perinatal morbidity/mortality, CTG was made

accountable for an increase in unnecessary obstetric interventions (e.g. cesarean delivery) and

in instrumental vaginal deliveries [41].

Limitations on the current techniques have instigated the pursuit for alternative fetal monitor-

ing methods over the last few decades. Particularly, because of its potential to furnish prenatal

diagnostic information, the so-called non-invasive fetal electrocardiogram (NIFECG) (see Fig. 1.1)

has become the focus of several studies [51, 92, 310, 333, 365]. Due to its higher temporal,

frequency, and spatial resolution, the NIFECG enables the monitoring of fetal QRS (FQRS)
complexes in a beat-to-beat manner. Therefore, the use of sophisticated FHR/fetal heart rate
variability (FHRV) techniques is possible. FHRV parameters provide important indices in de-

termining the functional state of the autonomic nervous system (ANS) and have been associated

with diverse pathological conditions such as hypoxia (i.e. the deprivation of an adequate oxygen

supply – see Hutter et al. [196] for a complete review) and growth restriction [188]. Beyond FHR

and FHRV information, the fetal electrocardiogram (FECG) may allow a deeper characterization

of the electrophysiological activity (i.e. heart electrical conduction) by means of morphological

analysis of FECG’s signal waveform. Such a morphological analysis provides additional insights

that cannot be obtained through CTG. In contrast to CTG, NIFECG can be measured using

regular electrocardiogram (ECG) surface electrodes attached to the maternal abdomen. This

straightforward recording scheme provides considerable advantages regarding the recording

effort, which makes NIFECG a suitable technique for the ubiquitous monitoring of risk preg-

nancies. Amongst those benefits is the non-requirement of an expert supervision during data

collection1, consequent long-term recording capability of NIFECG technique, and its relative

low-cost.

Unfortunately, non-invasively recorded FECG signals are usually corrupted by many interfer-

ing noise sources, most significantly by maternal electrocardiogram (MECG) whose amplitude is

usually much greater than those of the FECG. The generally low signal-to-noise ratio (SNR) of

the resultant FECG makes the extraction (i.e. methods for separating the FECG from abdominal
electrocardiogram (abdECG) measurements) and subsequent detection of the FQRS complexes a

challenging task. Several contributions in the literature have focused on this canonical source

separation problem (see [92, 365]), however slight progress has been made. Moreover, due to

the lack of randomized clinical trials available, little is known about the nature of the NIFECG

signal and its real diagnostic value. Despite its outstanding potential, the real diagnostic value

of current NIFECG approaches have not been demonstrated to date. Consequently, its use in

clinical practice is yet restricted.

1 CTG, on the other hand, often requires medical experts to reposition the ultrasound probe.
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1.2. AIM OF THIS WORK
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Figure 1.1: Abdominal signal containing FECG signal

1.2 Aim of this Work

The focus of this doctoral work is to tackle the problem of low SNR in NIFECG recordings

using suitable signal processing algorithms. The topic is here divided into three main aspects,

which are addressed in this dissertation, as follows:

• Several extraction methods have been proposed in the literature. Focus of this work is

to evaluate these methods. Particular focus is put on improving the existing Extended
Kalman Filter (EKF) algorithm, suggested by Sameni et al. [370]. To that end, the Kalman

filter’s dynamical model is extended to better characterize the varying signal quality of

the NIFECG and better meet the statistical assumptions made on its noise content.

• Fetal signal quality estimation is of great importance in order to improve the specificity

of FQRS/FHR detection algorithms. For this purpose, state-of-the-art adult signal quality

indices are adapted and novel metrics derived. The output of those individual metrics can

be then combined using machine learning techniques to classify segments of extracted

NIFECG according to their quality.

• Previously suggested FQRS and FHR detection methodologies are often based on simple

adaptations of adult ECG techniques. In this work, a novel offline algorithm based on

evolutionary computing is used to deal with inaccurate FQRS detections. Meanwhile, a

Kalman filter approach is used on estimating window-based FHRs online.

1.3 Dissertation Outline

In Chapter 2, the clinical background on the NIFECG and factors that may influence the

fetal cardiac activity are described. Further in Chapter 3, the current technical state-of-the-

art on prenatal monitoring is presented. Also in this chapter, an overview on the NIFECG

signal processing is provided, including important mathematical concepts of the Kalman filter,

relevant for the novel methodologies developed on the following chapter. In Chapter 4, novel
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1.4. COLLABORATORS AND CONFLICTS OF INTEREST

and improved methods for treating noisy NIFECG data, following the aspects presented in the

previous section, are described in depth. Chapter 5 summarizes the collected and simulated

data materials that are used throughout this work for validating the suggested methodologies.

The results of applying the methods from Chapter 4 using the databases provided in Chapter 5

are exhibited in Chapter 6. The results are further discussed in Chapter 7 and last conclusions

are drawn for future works in Chapter 8.

1.4 Collaborators and Conflicts of Interest

This thesis was written at the Institut für Biomedizinische Technik (IBMT) at the TU Dresden.

During the development of this work, some collaborators have provided valuable help to the

project. This section aims at summarizing the role of each partner. First, our clinical partners

from the University Hospital of Leipzig (Prof. Holger Stepan, Dr. Alexander Jank, Dr. Claudia

Schmieder, Sophia Schröder, Susanne Fritze and Julia Kage) were responsible for recording

abdominal signals (shown in Chapter 5) and helped us define interesting clinical applications

and scenarios where the NIFECG could supply valuable information.

In cooperation with Dr. Niels Wessel and Dr. Maik Riedl from the Cardiovascular Physics

Department at the Humboldt University of Berlin, the highest score in the Physionet/Computing
in Cardiology Challenge (PCINC) 2013 was achieved. Due to their expertise in filtering and

analyzing heart rate variability (HRV) both during the PCINC 2013 and thereafter, a continuous

exchange of ideas occurred.

From 2013 onwards, a new cooperation with the University of Oxford (United Kingdom)

and the Emory University (United States of America) was established. In this partnership,

together with Prof. Gari Clifford, Prof. David Clifton, Dr. Julien Oster and Dr. Joachim Behar, a

comprehensive open-source simulation toolbox and large simulated database of NIFECG signals

was developed (shown in Chapter 5). In addition, along with Dr. Alistair E. W. Johnson the

first place award at the PCINC 2014 was obtained on the topic accurate beat detection from

multimodal signals. Lastly, together with Dr. Lisa Stroux and the clinical partners in Leipzig a

new recording protocol was implemented, which is currently being carried out (see Chapter 7).
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Obstetrician 1: Get the EEG, the BP monitor, and the AVV.

Obstetrician 2: And get the machine that goes “ping!”.

Obstetrician 1: And get the most expensive machine - in case the administrator comes.

– Monty Python’s The Meaning of Life (1983) - Part I: The Miracle of Birth

2
Clinical Background

During a healthy pregnancy, a series of adaptations occur to both mother and fetus bodies.

The aim of fetal monitoring is to evaluate if these changes are related to physiological or

pathological conditions during the pregnancy. This chapter provides background information

on the current clinical state of fetal monitoring, on which this doctoral work is built. With that

in mind, Section 2.1 provides information about the fetal development that are relevant for

fetal monitoring. Meanwhile, Section 2.2 describes some complications that may benefit from

novel monitoring techniques. Background information on current approaches to interpreting

the available information about the fetal heart is presented in Section 2.3.

2.1 Physiology

The duration of a normal human pregnancy spans approximately 280 days (40 weeks),

counted from the onset of the last normal menstrual period onwards [361]. In Germany, 90% of

births occur between 37 and 42 weeks [72]. During pregnancy, several changes to both fetus

and mother’s body take place, which are briefly described in the next few sections.

2.1.1 Changes in the maternal circulatory system

The arterial blood pressure (BP) of a healthy resting adult is on average around 120/80 mmHg

[382, Chap.28], where the first value represents the systolic BP, while the second the diastolic BP.

These values vary depending on age, sex, circadian rhythm, posture, respiration and modulation

input from the ANS [382]. Changes in BP can occur slowly, e.g. during body changes due to

pregnancy, or suddenly with postural changes (e.g., orthostatic maneuvers) [415].

Amongst the various adaptations that take place during physiological pregnancies, in this

work focus is given to changes on the cardiovascular system. In this regard, throughout

the gestation the maternal cardiovascular system is responsible for providing oxygen to and
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2.1. PHYSIOLOGY

Table 2.1: Maternal cardiovascular changes during pregnancy [372, 385, 415]. Upward arrow
(↑) indicate an increase, while downward (↓) a decrease.

Parameter Normal value Change during pregnancy

Plasma volume 5− 6 L ↑ 30− 50 %

Blood pressure 120/80 mmHg ↓ small and temporary

Cardiac output 5− 7 L/min ↑ 35− 45 %

Stroke volume 70− 100 mL ↑ 10− 20 %

Heart rate 70− 105 bpm ↑ 20− 25 %

Vascular resistance 600− 900 dyn·s·cm−5 ↓ 35− 40 %

removing waste products to/from the unborn baby and, thus, several modifications of this

system’s parameters and function follow (see Table 2.1 [415]). Already at early stages of

pregnancy, a maternal metabolic and endocrine increase occurs due to the growing need for

oxygen and nutrients for supplying both fetus and maternal organs. During this period, the

maternal blood volume, stroke volume, and heart rate increase [385, Chap.11]. The growth

rate of these physiological variables depend on the size and number of fetuses [388]. On early

gestational weeks, the vascular resistance around arterioles and veins decrease induced by

hormonal changes [385]. Thus, during the first two trimesters, there is a slight decrease in BP

(diastolic around −5 to −15 mmHg). The systolic pressure returns to normal values shortly after

its decrease, whereas the circadian rhythm for BP remains unchanged during gestation [415].

2.1.2 Intrauterine structures and feto-maternal connection

The placenta (see Figure 2.1) is an organ responsible for connecting mother and fetus. Placen-

tal size, shape, and position1 vary on each individual pregnancy. During the fetal development,

this feto-maternal organ adapts itself to the needs of the growing embryo. In early pregnancy,

the placenta serves as a barrier between embryo and maternal arterial blood. By the end of

the fourth weeks of gestation (WOG), the placenta is fully developed to allow the exchange of

substances between mother and fetus [415]. Along the second half of pregnancy, the supply

and transport function takes over which are crucial for the fetal development [385, Chap.1]. At

this point, oxygen, nutrients, and hormones (endocrine function) are delivered by the umbilical

cord to the fetus, whilst waste products such as carbon dioxide return to the maternal blood

stream. Additionally, the placenta circulation system works as a barrier that selectively separates

the maternal and fetal circulatory systems from one another, where many substances in the

maternal blood are passed on to the fetus, but e.g. bacterias are not [289, 415].

Fetal and umbilical BPs are considerably lower than the maternal arterial pressure, with

mean aortic pressure around 28 mmHg at 20 weeks and increasing to 45 mmHg towards the

1 Possible positions are e.g. anterior (between fetus and abdomen), posterior (between fetus and spine), sideways
(on either side) or fundal (on top of the maternal cervix). In rare cases, placenta bipartita or placenta praevia
positions may occur. The first occurs when the placenta is constricted into occupying two sectors. The second is
when the placenta is situated right on top of the internal cervical mouth of the uterus.

6



2.1. PHYSIOLOGY

Maternal circulatory system Fetal circulatory system
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Figure 2.1: Feto-maternal circulatory system. In detail left (umbilical cord and ductus veno-
sus), middle (foramen ovale) and right (ductus arteriosus). Illustration based on [112].
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2.1. PHYSIOLOGY

end of gestation [414]. According to Peter and Miller [328, p.83], a major part of the blood

pressure fall occurs in the uteroplacental arteries due to its flow resistance. During the course

of pregnancy, this resistance decays causing an increase in maternal blood flow. In physiological

pregnancies approximately 450-600 mL of maternal blood flows through the placenta (ca. 10%

of the total blood volume). As in any other organ, the magnitude of blood flow in the placenta is

determined by the driving pressure (maternal BP) and the vascular resistance (uteroplacental).

Although intrafetal umbilical vessels are innervated, it is believed that the extrafetal cord and

placenta lack innervations. Therefore, neural mechanisms for regulation of placental perfusion

are believed to be irrelevant [328, p.179]. On the other hand, increased uterine blood flow is

essential to meet metabolic demand from the growing uterus as well as the placenta and fetus

[293]. Despite taking part on the body’s general vascular regulation, there is no evidence that

the uterus itself possesses an auto-regulation mechanism for vasoconstriction. For this reason,

minimalistic changes in the maternal BP are expected to have a large and direct effect on the

uterine perfusion, therefore on the fetal supply. [385, 415, Chap.11].

The uterine perfusion is influenced by hormonal (e.g. cortisol/catecholamines) changes

during pregnancy [365, 385, Chap.11]. For instance, the fetus influences the provision of

maternal nutrients via the placental production of hormones that regulate maternal metabolism.

Meanwhile, the placenta may respond to the fetal endocrine signals to increase transport of

maternal nutrients by growth of the placenta, by activating transport systems and producing

placental hormones to influence maternal physiology and even behavior [293].

Several other factors may influence the placental function and play a role in the fetal develop-

ment, such as maternal drug intake, placental or fetal defects (e.g. genetic disorders). The reader

is referred to [293] for a review. A reduction of the uteroplacental circulation may result in fetal

hypoxia and growth restriction while severe reductions may result in embryo/fetal death [289].

Some of the pathologies that lead to placental insufficiency are further described in Section 2.2.

2.1.3 Fetal growth and presentation

During the first trimester of pregnancy, the organogenesis takes place. After this period,

the underlying structures for larger organs (e.g. brain, eyes, and heart) are present [289, 415].

During the fetal period (from 9th WOG onwards), maturation of tissues and organs, as well as

a rapid growth, occur. This growth is characterized by a slowdown in the head growth and

increase in body development, where the fetus weight increases from tens of grams to a couple

kilograms and the sitting height from approximately 5 to 35 cm. During the fourth and fifth

months, the fetus increases in size while most of the weight gain occurs in the last 2.5 months

of gestation. During fetal prenatal monitoring, ultrasound assessment of the head, abdominal

and femur lengths allow an estimate for the fetal development [361]. This diagnostic is relevant

since the deprivation on the supply of nutrients for the fetus through the placenta may lead

to a condition called Intrauterine growth restriction (IUGR) (see Section 2.2.2). The lungs start

developing at the fifth WOG and are complete at late fetal stages. At the end of the 26th WOG,

the thin-walled terminal sacs are developed and the lung tissue is vascularized, which means
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2.1. PHYSIOLOGY

that ex-utero respiration would be possible. From this point of the gestation onward, premature

newborns have a higher chance of survival given that intensive care is provided [289, Chap.10].

A fetus in-utero can obviously not breath. However, as consequence of the ANS development

(described in Section 2.1.5) and as part of the lungs’ maturation process, fetal breathing-like
movements (FBMs) can be observed from the 10th WOG onwards [172, 198]. During these

intermittent FBMs, lungs contract with amniotic fluid which is essential for the stimulation

of lung development [230]. Approximately 30 % of those movements occur during rapid eye

movement sleep [289, Chap.10]. According to Blackburn [65, Chap.10], FBMs start rapid and

irregular (occurrence around 6 % the time by 19 WOG) and become slower and more regular

weeks before delivery (around 30 % to 40 % the time at rates around 30-70 breaths per minute).

During the first and second trimesters of pregnancy, the fetuses can move with relative ease

within the uterus and have no specific presentation. This movement can be felt by the mother

from the 5th month on. According to Stinstra [409], fetuses move on average on every four

minutes between the 8-20th week and on every 5 min between 20-30th WOG. Around the half

of the third trimester, the fetus usually settles into a head-down position known as the vertex

presentation, which is most appropriate for birth. However, the fetus may also settle in other less

probable positions, e.g. breech, shoulder or other variants of the vertex position [16, 362, 409].

The fetus is surrounded by amniotic fluid and the uterus, moving outward the maternal

abdomen there are layers of muscle, fat, and skin, respectively. The amniotic fluid is reported to

have the best conductivity (at low frequencies and 37 °C) of all feto-maternal tissues, slightly

higher than the umbilical cord and placenta [311, 331, 409]. Nevertheless, the abdominal

volume conductor is not a steady conductor and its consistency, electrical properties and

geometry of its compartments change during pregnancy. A drastic change in the electrical

property of the feto-abdominal compartment is the appearance of the vernix caseosa in the last

trimester [431]. The vernix caseosa is well-documented white-colored waxy layer that covers the

fetus almost completely around this period. The vernix has been reported around the eyebrows

of fetus at 17 weeks and, as gestation progresses, it coverage of the fetal skin increases until the

32nd WOG, when most of the fetus is covered. From the 32nd WOG onwards the vernix slowly

dissolves, covering around 72 % infants’ body between 33-37 WOG, 38 % (for 37.1-40.9 WOG)

and 12 % (for 41.0-42.3 WOG). Thus some amount of vernix is still present on the skin at birth

for virtually all full term infants, humans being the only animal species who present it. Fetal

maturation is associated with an increased turbidity of the amniotic fluid, which is believed to

be linked to the detachment of the vernix [449]. An important remark for the present work is the

fact that the vernix has electrically insulating properties, with conductivity lower (by a factor

of approximately 1 million) than the conductivity of other involved tissues e.g. muscles and

amniotic fluid [311]. Therefore, it significantly attenuates the electrical potentials transmitted

from the fetal heart to the maternal abdomen surface [246], specially between the 28th to 32nd

weeks, when the vernix coverage is prevalent [246, 268, 329].
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2.1. PHYSIOLOGY

2.1.4 Fetal circulatory system

The heart is the first organ structure to develop and it already carries most of its adult

functionalities after the organogenesis [202, 289, 415]. The fetal heart starts to beat in a

coordinated manner approximately 21 days after ovulation (at the end of the 5th WOG). Its

electrophysiology is believed to be very similar to the one of an adult [289]. Initially, the fetal

heart beats at around 80− 90 bpm and rises up to the end of the 9th week to 150− 170 bpm,

when the heart already attained most of its adult’s characteristics [202, 280]. Around the 15th

WOG, the average FHR slowly decays reaching 120− 160 bpm at late gestational age [334, 410].

See [119] for a complete depiction of the average FHR progression. Naturally, these absolute

values are modulated along the pregnancy by the developmental stage of the ANS amongst

several other external factors, which are further discussed in the following sections of this work.

Still, some mechanical differences between the fetal and adult circulatory systems exist. For

instance, in adults the left ventricle pumps blood through the body, while the right ventricle

pumps the poorly oxygenated blood into the lungs, where carbon dioxide is replaced by oxygen

[403]. In the fetal case, oxygenated blood is supplied by the placenta through the umbilical

vein (see Figure 2.1). For enabling the circulation of oxygen-rich blood throughout the body

and organs, three different shunts are present, namely the ductus venosus, foramen ovale and the

ductus arteriosus [409]. The first diverges ca. 80% [385] of the oxygenated blood that arrives

from the umbilical cord into semi-functional liver towards the vena cava. The foramen ovale is a

hole that connects both atria so that most blood bypasses the pulmonary circulation to the left

atria, consequently being pumped through the body by the left ventricle. The latter structure,

the ductus arteriosus, is also used to diverge blood which has reached and is pumped out of the

right ventricle from the lungs by connecting the pulmonary artery to the aorta [409]. Despite

no gas exchange being performed within the lungs, blood is pumped throughout the whole

fetal body (including lungs). After birth, the foramen ovale closes with the first seconds/minutes

and the ductus arteriosus partially closes within 10-15 hours (taking up to 3 weeks for complete

closure), and the ductus venosus usually closes within the first week. Other minor changes in the

physiology of the baby’s heart and its circulatory system take place within the first year of life

[16, 365].

2.1.5 Fetal autonomic nervous system

Human heart beats are caused by the pseudo-periodical excitation of the myocardium. When

physiological, this excitation originates on the sinoatrial (SA) node and propagates through

different structures of the heart. The nervous system is one of the earliest systems to begin to

develop, but it is the last to be completed (after birth). Due to this extensive formation process,

prolonged in-utero insults may have consequences to development of the nervous system [178].

The SA node is the primary structure of the electrical conduction system of the heart to manifest,

followed approximately 40 days later by a discernible atrioventricular (AV) node, the Bundle of

His and Purkinje fibers [29, Chap.1]. The electric impulse is usually generated by the SA node

that acts as the primary cardiac pacemaker.
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The SA node is strongly innervated by ANS’s two main functional branches: the parasym-

pathetic (i.e. nervus vagus) and sympathetic nervous system (i.e. spinal nerves). Over longer

periods of time, this autonomic innervation influences the sinus node and serves as indirect link

between the natural pacemaker with regulatory centers in the brain [202, 410]. The sympathetic

system is responsible for the physiological changes in the fight-or-flight response in the presence

of physical or psychological stress. Meanwhile, the parasympathetic system is responsible for

homeostasis, rest, and digest functions. Therefore, an elevated sympathetic activity leads to an

accelerated heart rate (HR), while an increase in parasympathetic activity to a deceleration. The

balance between these antagonist forces are responsible for the characteristic oscillations of the

beat-to-beat interval (BBI)s [276], which on the fetal case are responsible for the FHRV. In early

pregnancies, the sympathetic activity is predominant, since the nervus vagus (responsible for

parasympathetic activity) develops between the 11-20th WOG [181, 415, 465]. This fact explains

the slow decrease on average FHR during the second and third trimesters (as pointed out in the

previous section). Moreover, a second form of modulation is provided by the cholinergic and

adrenergic nerves of the SA node. The first is already evident at early stages of fetal growth,

whereas the second develops much later and is completed only some months after birth [202],

so that the FHR further sinks while the FHRV increases. Despite the intense research in the area,

the development of the ANS is not yet fully understood [410]. The modulation produced by

the ANS is influenced by multiple systems, e.g. respiratory, digestive, metabolic, baroreceptor

reflexes and input from higher functions of cerebral centers [181]. Due to this close relation-

ship between FHR/FHRV and the maturation status of the ANS, several researchers focus on

estimating the health state and development stage of the fetus through heart rate parameters.

2.1.6 Fetal heart activity and underlying factors

As mentioned in Section 2.1.4, some changes in FHR and FHRV are expected as pregnancy

progresses. Meanwhile, in Section 2.1.5, the ANS was shown to modulate these rates distinctly at

different stages of development. Indeed, several factors influence the fetal heart activity, such as

the stage of pregnancy, environmental conditions to which unborn child and mother are exposed

and individual characteristics. In order to evaluate the fetal development and its health state,

monitoring its heart activity is crucial (see Section 3.1). In Table 2.2 [276, 385], an overview of

the various factors that influence the fetal heart activity is presented. The motivation for such

regard to these factors is twofold: i) short-term oscillations of the fetal heart activity can provide

usable information about its health state; ii) disregarding some of these factors over longer time

periods may have a negative influence on study findings on the fetal development [256]. To

elucidate the complexity of the fetal heart activity, some of the aspects presented in Table 2.2

are further explained throughout this section.

For instance, uterine contractions are uterus muscular activities that take place during a large

part of the pregnancy and vary in intensity and frequency. Deficiency in the umbilical blood

perfusion due to cord compression might happen during a uterine contraction, which in current

medicine is associated with a characteristic pattern in FHR (see FHR interpretation guidelines
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Table 2.2: Influencing factors for the fetal heart activity [276, 385, Chap.33]

Influencing factors
endogenous (maternal) endogenous (fetal) exogenous
blood pressure gestational age fetal movement
oxygenation ANS regulation fetal pathophysiological state
humoral factors (e.g. stress) acidosis sleep arousals
body posture hemodynamics uterine activity
pharmacological congenital defects
drug usage infection
body temperature

[12, 296, 358]). According to these guidelines, in physiological cases, an early deceleration
occurs when uniform, repetitive and periodic slowing of FHR occurs with early onset in the

contraction, and return to baseline at the end of the contraction. Late decelerations, on the other

hand, are indicators of a pathological state, where the slowing of FHR coincides with the onset

mid-end of the contraction and its nadir occurs more than 20 seconds after the peak of the

contraction. Changes in the maternal pulmonary pressure or fetal movements may have similar

effects leading to a momentary deficiency on the exchange of oxygen and nutrients through the

placenta.

Since the normal fetal development entails FBMs, the observation of this activity is an

important clinical measure. In adult ECG, respiration has a great importance and reflects on

several HRV parameters [421], therefore, the same principle is expected to apply to FHRV.

Based on the presence or absence of fetal movement and patterns of the heart rate, Timor-

Tritsch et al. [428] and Nijhuis et al. [300] described four fetal behavioral states (namely, 1F, 2F, 3F,

4F). States are defined as coordinated relationship between different variables, such as gross or

fine motor activity, eyes, and FBMs as well as FHR patterns. Behavioral states are reproducible

from the 36th onwards [117, 300]. Nevertheless, current studies make often use of simplified

versions of the states described by Nijhuis et al. [300], particularly the states 3F and 4F rarely

occur [335, 438]. As pregnancy progresses the increased occurrence of quiet and active states

have been associated with several FHR/FHRV parameters [139, 188, 225, 241, 300, 335, 444].

Analogously to adults, fetal circadian rhythm fluctuations of the basal FHR can be observed

on the last trimester [256]. This behavior is however considered as a reaction to the circadian

changes in the maternal system. Evidence that supports this hypothesis is the fact that the

antenatal circadian rhythm becomes ultradian at birth [281]. Similarly, synchronization periods

between maternal and fetal average HR were found by [325, 349, 441, 444]. The latter suggested

that this association is due to the maternal respiration. To confirm this hypothesis, Van Leeuwen

et al. [443] described a higher incidence of such synchronization epochs when mothers exert a

higher breathing rate. However, the exact cause for such behavior is still controversial, usually

being attributed to heart sounds, since external stimuli such as vibroacoustic stimulation (e.g.

music or speech) can affect FHRV [25, 276, 444]. A discussion on this topic is present in [199].

Moreover, it has been shown that psychological factors such as maternal stress [115], anxiety

[226, 285], relaxation [116] or emotive state [285] can influence FHR/FHRV [444]. For instance
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[285] demonstrated a correlation between maternal anxiety score and basal FHR. In this study,

a significant effect for the patient group with low level of anxiety was related to an increase in

maternal BP, which could incur in changes in the FHR. Additionally, there was an increase in

the breathing rate of both groups, so that not only the acute emotional reaction but also the

respiratory influence caused by the distress is plausible.

2.2 Pathology

Many complications during antenatal and intrapartum periods may lead to fetal hypoxia.

Despite the various fetal compensatory mechanisms that take place, if hypoxia is prolonged,

it can lead to acidosis (i.e. an increased acidity in the body fluids). Severe and acute acidosis

are associated with significant morbidity (e.g. irreversible neurological damage) and mortality

[4, 67, 196]. Hypoxia effectively reduces the energy storage available for repolarization of the

myocardial cells, resulting in a changes on the FHR, FHRV and FECG waveforms [11]. Exces-

sive uterine contractions are the leading cause of hypoxia, since they may decrease placental

perfusion as well as compress the umbilical cord [38].

In this work, focus is put on three pathological conditions that are related to hypoxia. These

conditions are briefly described along the next sections and their relationship with abnormal

heart rate/morphological parameters (e.g. FHRV metrics) is hypothesized.

2.2.1 Premature rupture of membrane

Premature rupture of membrane (PROM) refers to rupture of the fetal membranes prior to the

onset of labor irrespective of gestational age. According to Caughey et al. [77], preterm PROM

complicates 2% to 20% of all deliveries and is associated with 18% to 20% of perinatal deaths.

There are several factors may promote PROM, such as antepartum vaginal bleeding, direct

abdominal trauma, smoking, drug use, low body mass index (BMI), intra-amniotic infection

and multiple pregnancy. After the occurrence of PROM, delivery is recommended when the

risk of ascending infection is greater than the risk of prematurity [77]. In early preterm PROM

patients (< 28 WOG) a lower amount of amniotic fluid (oligohydramnios) is a complicating

factor because at these stages of pregnancy it may prevent respiratory breathing movements,

therefore retarding the pulmonary growth [230]. Oligohydramnios is also associated with cord

compression and, subsequently, with fetal hypoxia [263, 410]. Moreover, there is an increased

risk of infection for both mother and fetus during this period, therefore preterm patients are

usually admitted to hospitals and closely monitored until birth.

Particularly for patients below the 28th WOG, treatments are generally more conservative

and the pregnancy is usually sustained as far as possible [385, Chap. 25]. During this period,

intermittent recordings of the FHR, together with the assessment of amniotic fluid volumetry,

amniocentesis (to exclude intra-amniotic infection) and administration of antenatal corticos-

teroids (for accelerating fetal lung maturation [351]) and broad-spectrum antibiotics (for avoid-

ing infections) [77]. From the 32nd week onwards, a more active procedure is adopted, and
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induced labor is beneficial for both mother and fetus [385, Chap. 25]. The German guidelines

for the treatment of PROM patients are available at [36].

2.2.2 Intrauterine growth restriction

Intrauterine growth restriction (IUGR) describes a decrease in fetal growth rate that prevents

an infant from obtaining its complete growth potential (i.e. its genetically predetermined size)

[69, 266]. IUGR does not denominate a disease per se, but rather a manifestation of many

possible fetal and maternal disorders [347]. Pregnancies affected by IUGR pose a major public

health problem affecting from 5% to 7% of all pregnancies [69] since they are also associated

with risk of hypoxia increased neonatal morbidity and mortality. In addition, it may increase

the risks for the development of hypertension, diabetes, coronary heart disease and stroke in

adulthood [347, 435].

In prenatal medicine, the estimated fetal weight is most commonly measured using 2D-

ultrasound [435]. However, according to Resnik [347], there is no consensus on what limits

should be used to define a small for gestational age (SGA) fetus/newborn. The most commonly

used definition is a birth weight less than the 10th percentile for a given gestational age [347,

385, 435]. Several standard curves for fetal growth have been suggested in the literature, but it

has to be kept in mind that fetal weight depends on several socioeconomic factors. That is, a

small fetus/newborn may merely represent the tail of the normal distribution without actually

having had any growth restriction. In order to differentiate between SGA fetuses2 and the

pathological state of IUGR, additional tests using Doppler velocimetry are required to examine

the umbilical and uterine arteries.

There are two types of IUGR, namely symmetric and asymmetric. Symmetric growth re-

striction is characterized by fetuses with smaller skeletal and head dimensions as well as

abdominal circumference. This variant is considered to be indicative of an early intrinsic

impairing condition, e.g.chromosomal abnormalities and congenital malformations. In those

cases, growth is symmetrically impaired due to its occurrence during cell division in the first

or second trimesters. Symmetric IUGR leads to a underdevelopment of the ANS (described in

Section 2.1.5). In contrast, asymmetric IUGR is usually a consequence of exogenous factors,

such as inadequacy on the availability of substrates for the fetal metabolism through the pla-

centa. This disorder takes place later in pregnancy when fetal growth occurs primarily by an

increase in cell size rather than cell number [69, 347, 410]. There is a strong association between

IUGR, chromosomal disorders and congenital malformations. Moreover, intrauterine infections,

maternal vascular diseases and maternal under nutrition may favor IUGR [69, 266]. Likewise,

chronic hypoxia (high altitudes) associated with placental insufficiency plays a key role in the

etiology of IUGR [196]. Nevertheless, the pathophysiological processes that lead to IUGR are

not fully understood, and there is a lack of agreement on guidelines for managing this condition

[81, 266, 294].

2 SGA just refers to the fact that the fetus is small, which may be due to genetic reasons such as small parents. When
nutrition is not satisfactory and there is an abnormal amount of amniotic fluid, IUGR is likely to be present.
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2.2.3 Fetal anemia

Anemia describes a decrease on the density of erythrocytes (i.e. red blood cells) in the

peripheral blood system. Erythrocytes’ cytoplasm are rich in hemoglobin, an iron-containing

molecule which can easily be bound with oxygen [382, Chap.23]. In pregnant women, the plasma

volume increase (mentioned in Section 2.1.1) is usually more expressive than the multiplication

of red blood cell mass, which results in a “physiological anemia” caused by hemodilution

[372, 388]. However, since these quantities widely vary from pregnancy to pregnancy, the

distinction between physiological and pathological cases is not straightforward [388].

The most common cause of fetal anemia is a pre-existing iron deficiency or other minerals

such as folate or vitamin B12, necessary for the production of hemoglobin [385, Chap. 18].

Another cause is the immunoreaction from the mother to the fetal antigens, known as Rhesus-

factor incompatibility. Such incompatibilities generate a high probability of developing fetal

anemia (alloimmune-induced hemolytic anemia) of up to 20%-25% the cases [385]. Severe

cases of anemia may lead to hydrops fetalis [259], a condition characterized by an excess of

amniotic fluid (polyhydramnios) and the accumulation of fluids in different fetal compartments

[385, Chap. 18]. Moreover, due to the low blood oxygen levels, the fetal heart needs to pump

a greater volume of blood, which may cause congested heart failure [259]. Anemia diagnosis

is performed through maternal blood sampling, ultrasound (to exclude hydrops or fetal heart

failure), amniocentesis (invasive sampling the amniotic fluid) and fetal blood sampling. If the

anemia is severe, treatment may include fetal intrauterine blood transfusion [455]. Since the fetal

oxygen transport is deficient, anemia may lead to hypoxia. In fact, some FHR sinusoidal patterns

are associated with severe anemia and hydrops [44]. For this reason, long-term monitoring of

these patients is desirable.

2.3 Interpretation of Fetal Heart Activity

Overall, fetal heart monitoring follows the advances in adult cardiac assessment. As such, it

may be divided into the analysis of the FHR and the analysis of morphological features of the

FECG signal3. For completeness, in this section, a brief summary of those current approaches is

presented.

2.3.1 Summary of clinical studies on FHR/FHRV

The FHR is qualitatively evaluated based on the visual inspection of its trace along with mea-

sures of intrauterine pressure (IUP) in clinical routines. By means of these traces, categorization

with respect to baseline heart rate and its variability, accelerations and decelerations as well

as sinusoidal patterns are carried out (see [39, 41, 295] for reviews). A number of guidelines

for interpretation of these traces have been released and updated e.g. [12, 356, 358]. More

precise computerized quantification of heart rate changes were further proposed [105] and

3 Obviously, morphological analysis of the FECG only applies when electric/magnetic principles are used in data
collection.
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augmented the evaluation of such traces [39, 446]. However, due to the lack of universally

accepted guidelines and poor inter and intra-observer agreements (even in cases where guide-

lines are accepted amongst clinicians) the effectiveness of current assessment techniques has

been strongly criticized [8, 44, 62, 371]. This led researchers to look for alternative automated

methods of quantifying those changes in the FHR.

For adults, the heart rate fluctuations (i.e. HRV) has been shown to be a strong, independent

predictor of future health problems [391]. Different metrics for adult HRV have been proposed

over the past 60 years, which can be divided into temporal (e.g. standard deviation of all
normal beat-to-beat intervals (SDNN) or root mean squared differences between adjacent beat-to-beat
intervals (RMSSD)), spectral (e.g. low-frequency (LF) or high-frequency (HF) content as well as low
to high-frequency ratio (LF/HF) ratio) and nonlinear techniques (e.g. approximate entropy (ApEn),
sample entropy (SampEn) and detrended fluctuation analysis (DFA)). A rich literature is available

on that topic, including a well-known guideline [421]. However, the U.S. Food and Drug
Administration (FDA) withdrew its support to HRV being used as a clinical parameter in 1993,

due to the lack of consensus on its efficacy [93]. Still, HRV is the focus of ongoing research,

where novel methods are constantly being proposed. Such studies focus on HRV modulating

parameters such as the length of the window around the signal of interest, preprocessing filters

used, age and gender of subject, physical and psychological conditions, sleep-awake cycles,

respiration and effect of drugs amongst others have been intensively investigated [317]. A

historical perspective on HRV is available in [64] and an analysis of signal processing algorithms

on [86]. Despite the extensive literature on adult HRV, there is to date no general agreement

about how to characterize or interpret the short and long-term oscillations of the HR.

The same discussion is applicable for FHRV parameters, which usually are adaptations of

the adult algorithms to consider the higher HR and slightly different spectral content. In this

scope, several works are available on the fetal field using several parameters [79, 84, 134, 135,

137, 146, 157, 185, 188, 240, 386, 393, 427]. A review on some of these parameters is provided

in [410]. Motivated by the physiological basic assumptions presented in Section 2.1.6, the main

focus of FHRV research has been:

• evaluating the fetal ANS maturation or brain age [146, 153, 188, 240, 313, 386, 394, 427,

445, 456]

• distinguishing between IUGR and physiological pregnancies [84, 135, 136, 290]

• correlating FHR/FHRV parameters with fetal acidosis [140, 141, 323, 437, 457]

• synchronization between maternal and fetal heart rates [349, 442–444]

• classification of fetal behavioral states [139, 188, 190, 241, 438]

• effect of maternal physical (e.g. exercise [32, 271]) and psychological (e.g. stress [115] and

anxiety [284, 285]) on fetal heart activity

Regardless of how many studies have investigated the FHRV, the vast majority of those works

are very limited in terms of number of subjects/patients and pathophysiological conditions.
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Figure 2.2: Exemplary beat demonstrating FQT interval, fetal T-wave amplitude (FTh), FQRS
amplitude and the defined isoelectric line (starting 185 ms after R-peak)

Another limitation of such studies is the fact that each one utilizes distinct statistical analysis

and different recording principles (thus, different temporal and frequency resolutions – see

Section 3.1), which makes their comparison and interpretability challenging.

2.3.2 Summary of studies on heart conduction

Similarly to the ECG analysis, the FECG allows for a deeper interpretation of the heart’s

electrical activity than merely assessing its rhythmic changes. This is realized by performing a

morphological analysis over the so-called PQRST complex (see Fig. 2.2). This evaluation suffers

from similar limitations as the FHR/FHRV analysis, i.e. the lack of standards. Additionally,

FECG analysis is rarely used in clinical practice4. Several FECG features have been studied in

the context of fetal monitoring (see Symonds et al. [418, Chap.6]). Between those features are:

width and shape of the QRS complex, R/S ratio (using fetal vectocardiogram (VCG)), P wave

morphology (inversion, notching, and disappearance), PR interval, QT interval and ST-segment.

The reader is referred to Behar et al. [51] for an overview on available morphological features. In

this work, focus was on the following metrics that have initially shown promising results [51]:

Fetal QT (FQT) segment: in adults changes in the QT-interval are associated with myocardial

ischemia [292], infarct [380], cardiomyopathy [59], sudden cardiac death [332] amongst

several other conditions (see the position statement in [46]). Thus, the FQT interval is of

much interest in the monitoring of fetal hypoxia. In a study by Oudijk et al. [316], a signif-

icant shortening of the FQT interval has been shown to be associated with intrapartum

hypoxia resulting in metabolic acidosis, whereas in normal labor none of such changes do

occur. In Behar [49], Behar et al. [56] the authors showed the possibility to automatically

recover the FQT from NIFECG recordings. Three clinicians manually annotated the FQT

from invasive and non-invasive recordings from 22 laboring women. The annotations

4 As further presented in Section 3.1, there is one exception that invasively monitors the FECG during labor.
However, the technique has recently been target of unfavorable criticism about its clinical value, see [57, 63, 297,
360].
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were fused, and the errors between reference and automated detection were found to be

in a similar range to adult QT-analysis.

Fetal ST (FST) segment: it is believed that an elevation of the FST segment and T wave identi-

fies hormone-induced fetal heart muscle responding to hypoxia, where a deviation from

the baseline indicates a pathological response [11]. For this reason, fetal monitoring could

greatly benefit from FST analysis. However, the ST segment delineation involves the

detection of the end of the T-wave and J-point, which even in adult ECG is a challenging

task. Due to the considerably lower amplitudes and surrounding noise, the FST is hardly

attainable. An alternative is to use the fetal T/QRS (FTQRS) ratio (as follows) as a proxy

for the FST elevation.

Fetal T/QRS (FTQRS) ratio : FTQRS was demonstrated to be a proxy for the ST segment us-

ing animal models by Greene et al. [165], where the authors examined 10 chronically

instrumented fetal lambs at 115 days to term. The study showed that the normal FTQRS

ratio was lower than 0.30, whereas it was in the range of 0.17 to 0.59 for eight of the

lambs after inducing hypoxia and reverted to normal with normoxia. However, studies

[57, 63, 297, 360] suggest that the FTQRS as proxy for the FST level is either not accurate

enough, or that it does not provide meaningful information for fetal monitoring (see

Section 3.1).

Regarding the difficult task of segmenting the largely unexplored FECG beats, the duration

of such intervals highly depend on the gestational age and projection of the fetal heart (i.e.

electrode configuration), and should be taken into consideration. Since no standard is available

for morphological analysis, clinical considerations from the current studies have to be analyzed

with caution. Symonds et al. [418] concluded in 2001 that “The issue of the value of current

use of the FECG morphological characteristics and time intervals for the prediction of fetal

compromise remains promising but unresolved”. As Behar et al. [51] pointed out: 15 years later

the problem remains unresolved.

2.4 Chapter Summary

In this chapter, an overview on the main pathophysiological influencing factors to the fetal

heart activity were presented on Sections 2.1 and 2.2). In Section 2.3, the current antepartum

clinical standards for interpreting the cardiac activity of the fetus were introduced. In the

following chapter, the state-of-the-art on techniques for prenatal diagnostic (i.e. data acquisi-

tion) are presented. Particular focus is put on the NIFECG technique’s signal acquisition and

processing methods to enable its analysis.
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All sorts of computer errors are now turning up. You’d be surprised to

know the number of doctors who claim they are treating pregnant men.

– Isaac Asimov, quoted in Des MacHale, “Wit” (2003)

3
Technical State of the Art

In the previous chapter, clinical background information on the fetal development and

cardiac activity was presented. The current chapter is mainly divided into two part, namely

signal acquisition and processing. The first, comprises diagnostic techniques for prenatal

monitoring devices available (Section 3.1) and NIFECG signal acquisition (Section 3.2). The

latter, i.e. NIFECG signal processing, is the focus of this work and is investigated in depth

within this chapter. MECG suppression / FECG extraction is presented throughout Section 3.3,

where the method of choice (i.e. the Kalman filter) is discussed extensively in Sections 3.3.2

to 3.3.4. Further in Sections 3.4 to 3.6, techniques to perform and evaluate FQRS detection,

FHR estimation, and FECG morphological analysis are showed. Lastly, in Section 3.7, the major

signal processing challenges in fetal electrocardiography are summarized.

3.1 Prenatal Diagnostic and Measuring Technique

3.1.1 Fetal heart monitoring

Monitoring methods for the fetal heart activity may be divided into invasive (i.e. used during

labor) and non-invasive (i.e. antepartum/intrapartum periods). Table 3.1 shows an overview of

the available methods, which are further described throughout this section. The first works in

fetal heart rate monitoring emerged during the 19th century and dealt with the auscultation of the
fetal heart sounds. By using the wooden stethoscope introduced in 1816 by René Laennec, Pinard

suggested the intermittent auscultation of the FHR in prenatal care in 1895 [408]. Early works

associated a slow return of the FHR to its baseline after a deceleration with “fetal sufferance” and

that head compression produced bradycardia [418, Chap.2]. This rudimentary 120 years-old

technique, was still the most often used method until the 1960’s [385, Chap.33] and is still in

use in developing countries and in resource-poor settings.

Recording the heart sounds using electronic amplification (i.e. collected using a microphone),
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the so-called phonocardiogram (PCG), was first suggested at the end of the 19th century. However,

the presence of several noise sources (e.g. intestines and veins sounds, external noise, and

fetal movements) have rendered the method impracticable [385, Chap.33]. Nevertheless, the

technique substituted auscultation using stethoscopes until the 1960s, when its sensitivity began

to be questioned [224]. Still, equipment based on PCG technology continue to be released, such

as the Sensa monitor (Nuvo Group, Tel Aviv, Israel).

In the 1960s electronic monitoring of the FHR by means of Doppler ultrasound became

available and its use rapidly disseminated. This recording of the FHR combined with the

recording of uterine activity by an external pressure transducer (i.e., the IUP), constitutes the

modern CTG [385, Chap.33]. As mentioned in Section 2.3.1, visual inspection of the FHR is

subjective and has lead to high false-positive rates in the detection of pathological patterns [298].

Moreover, recent studies found no decrease in perinatal mortality or cerebral palsy associated

with the use of CTG, aside from a potential reduction in neonatal seizures. On the contrary,

CTG was associated with an increase in unnecessary obstetric interventions such as cesarean

delivery (63% increase) and in instrumental vaginal deliveries (15% increase) [8, 39, 41, 358].

Furthermore, the side effect of long-term ultrasound exposure on the fetus is not completely

understood, and there is a risk of provoking the heating of fetal tissues [45, 92, 411]. For this

reason, the non-invasiveness of the CTG technique should be contested. These limited benefits

provided by CTG have instigated further research on alternative techniques for fetal monitoring.

For instance, hand-held Doppler ultrasounds have recently gained researchers’ interest as

a low-cost method for under-developed countries [270, 413]. However, due to considerable

susceptibility to noise and the need for directing the ultrasound probe towards the fetal heart at

all times, it is usually used as an intermittent auscultation method such as the Pinard stethoscope

and PCG (see [244] for a review of these methods and guidelines). Overall, acoustic signals such

as PCG and Doppler methods have the benefit of providing means for obtaining cardiac valves

opening and closure times, which is under current research in adult [406] (using low-cost PCG)

and fetal monitoring [270] (using hand-held Doppler).

During late stages of labor, a simple pulse oximeter can be attached to the fetal cheek (i.e.

invasively). Theoretically, the so-called fetal pulse oximetry (FPO) provides benefits over other

techniques since in addition to fetal pulse rate, it may also serve as a proxy for oxygen saturation

and tissue perfusion [114]. Despite initial reports about its usefulness [114, 261], a Cochrane

study [122] analyzing four trials rapidly criticized the technique for not reducing cesarean rates

when assisting CTG or increasing fetal and maternal outcomes.

Another non-invasive method for assessing the fetal cardiac activity is the fetal magneto-
cardiogram (FMCG). The FMCG measures the magnetic flux density which emanates from

the heart to the surroundings of the maternal abdomen. Due to the low magnitude of these

magnetic fields (BFECG ≈ 10−12 T , i.e. several of orders of magnitude weaker than earth’s

magnetic field) and necessity for substantial noise reduction, highly sensitive Superconducting
Quantum Interference Device (SQUID) sensors are required. For this reason, the FMCG is usually

measured by a large equipment (i.e. short-term only) within a magnetically shielded room and

using several channels (ranging up to a couple hundred channels). The FMCG is well-suited
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3.1. PRENATAL DIAGNOSTIC AND MEASURING TECHNIQUE

for clinical measurement, generally producing fetal cardiac waveforms of good quality, which

are used for diagnosing fetal cardiac conduction disorders. Despite being already available

on the mid-1970s, its popularity only increased at the beginning of the 1990s. Due to the

expensive equipment and necessity of skilled personnel to carry out measurement, its use has

been hampered [329, 330, 410]. Nevertheless, owing to its high temporal/spatial resolution and

good SNR for the fetal signal, several published works investigate FHRV metrics using FMCG

recordings, e.g. [157, 189, 190, 386, 427, 440, 443].

The FECG is the electrical equivalent of the FMCG [246] and presents a viable alternative

that can be recorded invasively or non-invasively. Invasive FECG technology, the so-called fetal
scalp electrode (FSE), uses an electrode attached to the presenting part of the fetal scalp. This

electrode is fixated to the fetal skin using either a needle-like spiral electrode that penetrates

(screws into) the skin surface, or using a spring-loaded clip to skew a piece of skin. In any case,

one electrode (positive electrode) is attached to the fetus, while other is used to make contact

with the vaginal vault and cervix (negative electrode) and a third is used as common mode e.g.

on the maternal thigh [418, Chap.4]. Three major drawbacks discourage the use of the FSE: i) its

restricted usability (i.e. it can only be used during labor stages, after the rupture of membranes);

ii) its associated risk of infection, due to its invasiveness; and iii) the reduced number of available

leads (which prevents a three-dimensional analysis of the myocardium electrical activity [52])

[18]. To date, the only FSE commercial equipment available is the STAN® monitor (Neoventa

Medical, Mölndal, Sweden), which performs both heart rate and morphological analysis of

the FECG in clinical environments [92]. For this purpose, STAN provides FHR readings, a

proxy measure for the FST segment deviation (the FTQRS ratio, mentioned in Section 2.3.2) and

evaluates whether biphasic FST segments are present or not [18, 466]. Despite being readily

available, a recent Cochrane study [297] reviewed six randomized trials that compared the effect

of analyzing FECG waveforms during labor with alternative fetal monitoring methods. The

trials used different versions of the STAN and included a total of 26,446 women, but showed no

significant difference in primary birth outcome achieved using the FST proxy when compared

to FHR monitoring alone. More recently, another study including 11,108 women has revealed

that ST-segment analysis, as an adjunct to conventional intrapartum electronic fetal heart-rate

monitoring, did not improve perinatal outcomes and did not decrease operative-delivery rates

either [57]. Therefore the FSE premise is under current debate, see [47, 63, 66, 297, 360, 469].

The latter non-invasive FECG technique, namely NIFECG, is the focus of this work and is

described separately in Section 3.2.

3.1.2 Related metrics

In addition to the several challenges in the fetal heart monitoring, the definition for fetal

outcome is largely discussed in the medical society about their efficacy in predicting neonatal

morbidity. Some of the metrics for assessing the fetal state hypothesize about the relationship

between hypoxia and fetal metabolic acidosis. The most established one is the Apgar score

[28], which is a summary metric developed on the 1950s that infer the health state of newborns
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3.2. NON-INVASIVE FETAL ECG ACQUISITION

based on five criteria (Appearance, Pulse, Grimace, Activity, and Respiration - which forms the

acronym Apgar). The scores range from 0 to 10 and are usually performed 1 and 5 minutes

after birth. Despite being largely used to date, the score has been criticized about its value in

asphyxia assessment for over 30 years [417].

During labor, fetal blood sampling (FBS) may be applied in evaluating parameters such as pH

and base deficit/excess and lactate changes. Some studies [48, 212] attribute a decrease in the

number of interventions to this technique. Nevertheless, reports in literature are contradictory

[8, 80] about the efficacy of such adjunctive methods. Correlation of FBS values and perinatal

outcome depends on the time interval between sampling and birth. Moreover, fetal capillary

blood is likely to be affected by the redistribution of circulation during fetal hypoxemia, thus

not being a well-representing factor for the central circulation [450]. The analogous to FBS

after birth is the umbilical cord blood sampling (from artery or vein), which suffer from

similar drawbacks in terms of interpretation since fetuses usually tolerate acidosis through

compensatory mechanisms until it is very severe [30].

3.2 Non-Invasive Fetal ECG Acquisition

3.2.1 Overview

In 1906, only 3 years after the first suggestion of ECG by Einthoven, Cremer [99] proposed

the use of FECG. Cremer along with following works on the beginning of the 20th century

suggested the use of abdomino-vaginal or abdomino-rectal electrodes [418, Chap.2], while the

use of non-invasive abdominal leads was suggested in the mid-1900s by [183, 184]. A detailed

history of the developments that lead to NIFECG technique is available in [418].

As earlier discussed, there are several advantages of using the NIFECG technique. For

instance, it makes use of convenient surface electrodes which can be spatially distributed onto

the maternal abdomen (see Figure 3.1), usually being applicable from 20th week of gestation

onwards. As in adult ECG, the premise is to detect the summation of the stage-wise electrical

events that occur within myocardial cells, seen from the body surface projection. These electrical

potential changes relate to fluctuations in biochemical action potentials in the myocardium

over time and result in the PQRST complex [11] (see Fig. 2.2). Early works on extracting

morphological information from NIFECG recordings have been published by [53, 85, 344]. As

regards to the FHR estimation, due to its high temporal resolution, NIFECG allows a beat-to-

beat determination of the RR-intervals, while the CTG usually averages its estimates in 2-5 s

blocks due to the poor quality of ultrasound recordings [15, 40, 107]. Another advantage is

NIFECG’s availability for multiple channels, that may provide information about the heart in

three-dimensional projection, using e.g. the VCG representation of the myocardial activity.

The VCG may help on predict ventricular arrhythmia [426] and assess QT dispersion [235].

Lastly, long-term continuous monitoring can be achieved by NIFECG when using Holter-like

equipment. This feature is particularly relevant to evaluate the fetal circadian heart activity,

behavioral states and periods of breathing movements (described in Section 2.1).
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3.2. NON-INVASIVE FETAL ECG ACQUISITION

Figure 3.1: NIFECG recording principle

NIFECG’s undemanding recording setup comes at the cost of a generally lower SNR for

the FECG signal [144, 173]. Several noise sources are responsible for the relatively low SNR

(summarized in Figure 3.2), where the MECG is the main interference overlapping the FECG

both in time and frequency domains. This makes the task of extracting the fetal signal from the

abdominal mixture arduous and, in fact, has hindered NIFECG’s further usage in the clinical

practice [18, 92]. Looking at the “bright side”, one of the noise sources presented in Fig. 3.2,

namely the uterine activity i.e. electrohysterogram (EHG), presents yet another benefit of NIFECG

technique. This because EHG can be used as a surrogate for IUP [354], therefore as in the CTG

one could interpret the fetal heart response to uterus contractions. On the following subsections,

further specifics about this technique’s current state are provided.

3.2.2 Commercial equipment

Taking into account the various advantages of NIFECG technique, the recent advances in

electronics and signal processing and the lacking proof of current standard techniques’ efficacy,

the commercial interest for NIFECG technology has re-emerged along the last few decades. At

first glance, these commercial devices should be very similar to a Holter ECG with some few

peculiarities [51]:

• sufficiently high analog-digital converter (ADC) resolution, to capture low amplitude FECG

signals while avoiding that baseline changes (e.g. during movement or postural changes)

saturate the ADC. Current studies on the literature use 16 to 24 bit ADC resolution [16];

• sampling frequency of 1 kHz is desirable to accurately define MECG and FECG peaks,

moreover, low sampling frequencies can affect the accuracy of morphological measure-

ments such as the FQT interval [46];

• number of channels should be around 3-10 channels, depending on the trade-off between

capturing the multidimensional nature of both the fetal and maternal ECG and mother

comfort (see Section 3.2.3 for a deeper discussion on the topic);
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Maternal
Muscular Activity
(EMG and EHG)

Baseline
Drift

(artefacts /
respiration)

Maternal
ECG

(MECG)

Powerline
Interference
(50/60 Hz)

Ambient Noise
(electromagnetic

radiation)

Noise in Electronic
Equipments
(amplifiers)

Electrode
contact noise

(pop / contact)

Motion Artifact
(change in impedance)

Abdominal
Signal

Fetal
ECG

(FECG)

Figure 3.2: Predominant sources present in abdECG measurements. Interferences with bio-
logical origins (on the left), noises originated on interfaces between mother and equipment
(below and in the middle), and equipment noise (on the right). Maternal ECG is the most
significant disturbance. Modified from [16].

• battery life should be able to cover 24-48 h of recordings so that the feto-maternal circadian

rhythm and fetal behavioral states (presented in Section 2.1.6) can be observed.

Currently, only two commercial NIFECG monitoring equipment are available, both having

obtained FDA 510(k) clearance for intrapartum period (WOG > 36 weeks), namely AN24/Novii

from Monica Healthcare (Nottingham, UK) and M100/M1000 monitors from MindChild Medi-

cal (North Andover/MA, USA).

Monica’s AN24 was the first available apparatus which has been commercialized in Europe

(CE approval) for nearly 10 years. Despite being recommended for WOG≥36 weeks, in Europe,

its use is allowed for earlier WOGs (≥20 weeks). Monica provides the FHR, maternal heart
rate (MHR) and uterine activity (EHG) in real-time with information on three leads and has

shown some initial fair results. However, studies using the AN24 are still limited in population

size and heterogeneity. Besides, Monica depends on the patient’s abdomen receiving thorough

skin preparation with a special abrading solution and gentle scrub of the skin for a better signal

quality, which may be an inconvenience [16, 466].

Meridian monitors use a 32 lead system [51] where no skin preparation is required [466],

however, its use is still restricted, and little information is available about its design and

characteristics. Furthermore, very few studies are available since it has obtained FDA(k) for

intrapartum monitoring on 2012.

Aside from the described commercial equipment, a handful of other companies, such as

Nemo Healthcare (Eindhoven, Netherlands), PregSense from Nuvo Group (Tel Aviv, Israel) and

KOMPOREL from the Institute of Technical and Medical Equipments (ITAM) (Zabrze, Poland),
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have shown their intention of releasing novel NIFECG monitors in the near future. However,

when applying commercial instruments in research there is the disadvantage of not knowing

exactly what is inside the architecture and how the signal extraction is precisely performed.

These cons can lead to unwitting mistakes and do not permit a full analysis of the data. All

in all, commercial applications of NIFECG monitoring are in their early days, and there is a

growing interest in improving their performance, aiming to reach a point where they provide

actionable information to clinicians.

3.2.3 Electrode configurations

Aside from the ADC used, when attempting to collect NIFECG data careful consideration

has to be given to the electrode configuration applied. To date, there is no available standard

for the positioning of abdominal electrodes in NIFECG recordings. Similarly to adult electro-

cardiography, the morphology of the cardiac signal strongly depends on the lead configuration

employed. In the abdECG case, although the lead system may be chosen and kept relatively

constant (depending of course on the maternal and girth’s size), the fetal position is time-

varying, individual-dependent and cannot be easily identified prior to electrode placement. A

general-purpose optimal electrode placement is impracticable for this reason [4].

Before proceeding, the terminology used in this work is defined based on the recommen-

dations of the American Heart Association (AHA) [231]. Bioamplifiers usually make use of

differential amplifiers, thus there are two main electrical potential inputs (V +
in and V −in). As

input to the amplifier, one generally has two active electrode, one connected to the positive

terminal (V +
in, henceforth graphically shown as + ) and another on the negative terminal (V −in,

depicted as - ). In addition, a reference electrode (here termed as ground electrode – “GND”)

is used to improve common mode (unwanted noise) rejection. Take for instance Einthoven’s

lead II, the positive, negative, and ground electrodes are located on the left leg, right arm, and

right leg, respectively. The negative electrode can physically exist (as in Einthoven’s lead II) or

be calculated as the average of some (or all) leads, as in Wilson’s central terminal. When this

electrode physically exists, the derivation is often referred to as “bipolar”, when otherwise it

is referred as “unipolar”. However, the use of this historical nomenclature (i.e. “bipolar” and

“unipolar”) is discouraged by the AHA since all leads are effectively bipolar, thus, the term

“unipolar” is described as lacking precision [231].

Numerous configurations have been proposed in the literature in an attempt to standardize

the recording procedure. Several of those configurations are presented in Figure 3.3. From

Fig. 3.3 it is evident that some authors rely on the most common fetal presentation (i.e. vertex,

breech or shoulder), in order to reduce the number of leads used by aiming at usual positions

for fetal head/thorax and, consequently, minimizing the application’s complexity. Meanwhile,

other authors aim at covering most of the abdomen to maximize the chances of obtaining FECG

signal [4]. The inter-electrode distance also plays an important role in the signal SNR, FECG

and MECG power. The closer the electrodes are from one another in a differential scheme, the

more local similar information is collected on both electrodes. As a consequence, the MECG
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power is generally smaller, while FECG, and electromyogram (EMG) noise (muscle crosstalk)

have a higher power.

Despite the various electrode configurations proposed, to date very few studies have compared

the different options that exist. Rooijakkers et al. [354] is one exception, in which both negative

and ground electrodes placed on the patient’s right side (as depicted in Fig. 3.3 d). Rooijakkers

et al. [354] evaluated the effect of increasing the distance between electrodes, considering the

SNRs of maternal and fetal ECGs as well as EHG as goodness criteria. The authors suggested

two differential lead schemes, one with 5 electrodes for intrapartum recordings (inter-electrode

distance of 16 cm - similar to figure 3.3a with an additional central electrode) and a 6 electrodes

scheme for preterm recordings (distance 20 cm - similar to Figure 3.3d). Such configurations

should optimally record the MECG, FECG, and uterine activity. Despite the interesting analysis,

this clinical study was limited to 5 patients, each recording having 20 min in duration and

performed at high gestational weeks (> 39 weeks). Moreover, the proposed lead configuration

was very restrictive with a single triangular configuration and negative electrode kept in the

same position. Another study, which considered signal quality throughout different channels

was performed by Clifford et al. [85, 89]. The authors described an “over-complete” set of

electrodes (see Fig. 3.3 j) and mentioned that some channels, at a particular time instant,

contributed most to the quality of the FECG signals. However, the authors noted that the signal

quality varies across patients (and time), thus an automatic selection of channels based on signal

quality measures is necessary [51]. Lastly, the optimal number of electrodes may depend on

the extraction method used. For instance, extraction routines may require from one to several

abdominal leads, meanwhile, other methods need one (or more) MECG chest leads. Further

details about these signal processing requirements are discussed in Section 3.3.1.

While designing electrode configurations for portable equipment, it should be kept in mind

that an increasing number of electrodes is responsible for higher power consumption and

decrease in patient comfort. The same applies for MECG leads, which despite being conve-

nient for distinguishing between maternal from fetal ECG signals, they increase the hardware

requirements and add extra leads outside the abdominal area that may be less comfortable.

Another consideration is the location of the negative and common ground electrodes. For

NIFECG applications, a ground electrode is recommended, since it reduces the common mode

interference while enhancing the relative contribution of the signals of interest [164, 268, 354].

3.2.4 Available NIFECG databases

The increasing interest in the NIFECG created the need for data platforms where researchers

could compare their extraction/detection results. Few freely available databases emerged over

the last two decades, which are summarized below [49, 51, 365]:

DAISY database [109, 288] consists of a single 10 seconds recording using eight ECG channels

(5 abdominal and 3 thoracic leads) sampled at 250 Hz. The study was performed by the

Department of Electrical Engineering of the Katholieke Universiteit Leuven (Belgium).

The dataset is available at http://homes.esat.kuleuven.be/~smc/daisy/.
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GND

(a) 5 electrodes (used
by the Monica AN24)

[221, 333, 346]

GND

(b) 6 electrodes (used
by the ITAM
KOMPOREL)
[61, 145, 208]

GND

(c) 7 electrodes [463]

GND

(d) 8 electrodes
[341, 354]

GND

(e) 10 electrodes
[129, 439, 452]

GND

(f) 10 electrodes [265] (g) 13 electrodes [268]

(h) 12-14 electrodes
[432, 453]

GND

(i) 14 electrodes [422]

GND

Back

(j) 32 electrodes (used
by the Meridian

M100/1000) [85, 467]

Figure 3.3: Different electrode configurations present in the literature. Similar comparisons are
presented in Agostinelli et al. [4], Andreotti [16]. As detailed in the text, the symbols + , - and
“GND” represent the positive, negative, and ground electrodes, respectively. Some general remarks: (b)
Bergveld and Meijer [61] made use of suction electrodes with the common electrode on the patient’s
back; (c) Widrow et al. [463] only made use of one abdominal lead, however different configurations
were suggested (depicted with lighter color); (e) Fanelli [129] did not specify his common ground elec-
trode; (h) Ungureanu et al. [432] did not make use of MECG leads (i.e. merely 12 leads); (g) Martens
et al. [268] presented two variations of the depicted scheme including a differential lead system.
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Non-Invasive Fetal Electrocardiogram Database [161] comprises

55 multichannel (2 thoracic and 3-4 abdominal leads) recordings taken from a single

woman between the 21st and 40th WOG. Recordings were performed using a g.BSamp

Biosignal Amplifier (GTech GmbH, Austria) at 1 kHz, with 16-bit resolution, bandpass

filtered around 0.01-100 Hz and using a notch filter at 50 Hz. Recordings widely vary

in duration ranging from less than 2 min segments up to 46 min, however, no reference

annotation was provided. The data has been prepared by the Digital Signal Processing

Group of the Electronics Engineering Department at the University of Valencia (Spain)

and is available on Physionet [161] (https://physionet.org/physiobank/database/

nifecgdb/).

Abdominal and Direct Fetal Electrocardiogram Database [208] consists of five, 5-minute, mul-

tichannel (4 abdominal and one scalp ECG channels) recordings of women in labor (38th

to 41st WOG). The electrode configuration consisted of four electrodes placed around the

navel, a reference electrode placed above the pubic symphysis and a common mode elec-

trode placed on the left leg. Recording were performed using the KOMPOREL (mentioned

in Section 3.2.2) that has 16-bit resolution, 1 kHz sampling rate, bandwidth 1-150 Hz

and digital filters for removing baseline and power-line interference. Reference FQRS

annotation was derived from the FSE recording. The recordings were acquired in the

Department of Obstetrics at the Medical University of Silesia (Poland) and are available

on Physionet [161] (https://physionet.org/physiobank/database/adfecgdb/).

Physionet/Computing in Cardiology Challenge 2013 Database [92, 395] is a compilation from

five different databases [54, 395]: the two previous datasets, Scalp FECG Database (pri-

vate), Ukraine Non-Invasive FECG (private) and simulated data (further described). The

database includes 447 min of data, with up to 4 channels, resampled at 1 kHz. This

is the largest publicly available FECG dataset to date, available on Physionet [161]

(http://www.physionet.org/challenge/2013/). The database was used as training set

for the PCINC 2013.

However, the present databases are still very limited in: i) number and duration of the

recordings; ii) variety of WOG; iii) information on the subject’s pathophysiological background;

iv) expert’s annotations of the FQRS locations v) events such as fetal movement and presence

of ectopic beats; vi) silver-standard for FECG morphology. Hence, there is a demand for a

more complete database, which may allow FHR, FHRV and morphological analysis of the FECG.

Some further specifics on such idealistic database are described in [49, 51, 54].

3.2.5 Validity and usability of the non-invasive fetal ECG

As previously shown, NIFECG can be used for two major types of analysis, namely FHR/FHRV

and the morphological analysis of the extracted FECG waveform. Regarding gold-standards for

the afore mentioned metrics, FHR/FHR can be compared with CTG (antepartum/intrapartum,
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less accurate) and FSE (intrapartum, accurate), while for FECG morphology requires either

FMCG (antepartum1) or FSE (intrapartum) as reference.

Although the Monica AN24 has not yet gained a significant foothold in the monitoring

market, several studies and commercial NI-FECG equipment claim to obtain accurate FHR

tracings [51, 466]. For instance, Reinhard et al. [346] has found that the NIFECG and CTG

characterize FHR trace in a similar manner with regards to acceleration count, decelerations

count and coincidence, variability and baseline for n = 27 subjects. Moreover, the author found

an overall strong correlation (Pearson’s r = 0.91) between the techniques’ FHR traces. Similar

results were obtained by a more recent study by [228], on which moderate to high correlations

(r = 0.57− 0.97) were found n = 39 recordings of 20 min duration including 2 min of auditory

stimulus. Another important aspect addressed by [407] was the lower rate of confusion between

maternal HR and FHR achieved by NIFECG, when compared with CTG. High accuracy has

also been reported in the literature when comparing FSE and NIFECG specially when using the

open-source databases that counted with FSE for FQRS gold-standard.

With regards to the morphology of the signal, in Clifford et al. [85], the authors recorded

the NIFECG on n = 32 term laboring women who had FSE placed after clinical indication.

They evaluated the accuracy of the FST segment extracted on the NIFECG (by an automated

algorithm) against the reference FST segment extracted from the FSE (using the same automated

algorithm). The root mean square error between the FST calculated by both modalities averaged

over all processed segments was 3.2%, indicating that accurate extraction of the FST segment

from the NIFECG may be feasible. Similarly, [344] investigated the feasibility of NIFECG FST

analysis by comparing the AN24 and STAN on n = 6 pregnant women during birth. Non-invasive

FST was possible in 50 % the cases due to absence of fetal T-wave. Furthermore, McDonnell et al.
[274] has found a very low difference between T/R ratios obtained by STAN and the Meridian

monitor for n = 27 term laboring women. Lastly, in Behar et al. [56] the authors showed the

possibility to recover the FQT from the NIFECG from n = 22 term women. The study made use

of manually annotated FQT on both NIFECG and FSE, which were fused prior to comparison.

The errors found between NIFECG and FSE FQT were in the range of QT annotations performed

on adult ECGs [51]. All these studies are very encouraging, nevertheless a careful reader should

have concerns about the reference being provided by a single cephalic lead and how the effect

of the electrode positioning may affect the final results for NIFECG technique. Since the current

studies are fairly limited in number, such conclusions should be considered with caution.

Considering the quality of such recordings, as early as 1995 Crowe et al. [100] have qualita-

tively shown the benefits and challenges in long-term NIFECG monitoring, due to the lower

SNR of the fetal signal. Taylor et al. [423] reported being able to visually inspect FECG sig-

nal (including P, QRS and T waves) in 80 % for this study’s population (15 pregnant women,

24-41 WOG, half of which with ≥ 39 weeks) using 15 min recordings. Pieri et al. [333] made

use of 400 short-term recordings (5-10 min) at different stages and pregnancy, using a FHR

obtainal success rate the authors produced trends for signal quality throughout pregnancy.

1 Please note that there is a fundamental complication in using both NIFECG and FMCG simultaneously, due to the
electromagnetic interference that the techniques have on each other.
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Although little information on the subjects pathophysiological states is revealed, it is clear that

around the 28th WOG NIFECG’s quality is expressively reduced. Fuchs et al. [145], who used

the KOMPOREL, investigated pregnant women ranging between 28 and 42 WOG and have

found no correlation between the percentage of signal loss and gestational age, nor between

signal loss and BMI. A more comprehensive study using the AN24 by Graatsma et al. [163]

evaluated long-term 15 h recordings of 150 preterm pregnant and 1-hour recordings of 22

laboring women, who had FSE simultaneously applied. Regarding the quality of recordings, the

authors have found that 82 % the long-term recordings were of good quality (i.e. where on 60 %

of the time FECG signal was present – as defined by the authors). The study also suggests that

during the night period signal quality increased. According to the authors, a strong and signif-

icant correlation between FSE and NIFECG’s FHR (r = 0.99) and FHRV short-term variability

[106] (r = 0.79) were found during labor. Analogously, Reinhard et al. [345] assessed the signal

quality of the FHR estimated from n = 144 NIFECG and CTG recordings during the first and

second stages of labor. The study showed significant better results for NIFECG during the first

stage, while no difference in signal loss was found during the second stage. Associated to these

results, both Graatsma et al. [163], Van Laar et al. [439] have found no significant effect of BMI

on NIFECG recording quality, however Van Leeuwen et al. [446] showed an increase in signal

loss due to obesity.

Aside from the few publications herein listed and a handful of others provided by the current

NIFECG commercial equipment, there is not much evidence on the ability of these devices to

extract and detect fetal signals. For instance, neither Monica’s nor Meridian have published

any large randomized trial to compare NIFECG recordings with other gold-standards such as

CTG and FSE. Nor have they demonstrated NIFECG’s ability to improve neonatal outcome.

Moreover, little is known about the quality of NIFECG recordings, particularly on earlier WOG

(i.e. WOG < 28). This latter analysis is important to figure out what factors aside from the vernix

caseosa can influence the quality of NIFECG recordings, which would enable the technique to be

used in a broader number of patients. Moreover, as previously describe, a study on FHRV is only

complete if additional information about the fetal behavioral state, time of day and activity (i.e.

fetal movement) is available. Similarly, to be able to analyze the FECG morphology, information

about the observed projection (i.e. electrode positioning) is required. Such information could be

partially obtained by obtaining a VCG representation of fetal heart, as suggested by [452].

In any manner, the fetal signal component in the NIFECG should be reliably extracted and

detected before any further clinical analysis take place. Due to the more fundamental data

collection and signal processing problems that are involved in NIFECG technique, the clinical

analysis of the parameters that could be obtained through these recordings (i.e. FHR, FHRV

and morphological analysis) are out of the scope of this thesis.
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3.3 Non-Invasive Fetal ECG Extraction Methods

Before proceeding, the mathematical notation adopted in the following sections (common

in estimation theory) is summarized in Table 3.2. When looking for any other variable, please

refer to the List of Symbols.

Table 3.2: Notation used in this work.

Notation Represents Font characteristics
x regular font scalar

xk , x[n]
subscripted index/
square brackets discrete-time variable x at time k/n

x(t) parenthesis signal at continuous time t
x underlined vector
A capitalized, boldfaced matrix
x̄ overlined mean
x̂ hat estimate for variable x
x̃ tilde estimation error for x, i.e. x − x̂
Ã capitalized, tilde linearized/approximate matrix

x̂k|k−1 subscripted index† a priori estimate of xk conditioned to all
prior measurements except at time k

x̂k|k subscripted index‡ a posteriori estimate of xk conditioned
to all measurements up to time k

† Also often described in literature as x̂−k . The notation in this work is adopted from Sayed [379].
‡ Also often described in literature as x̂+

k .

3.3.1 Overview on the non-invasive fetal ECG extraction methods

One of the major challenges in FECG analysis is separating the fetal signal from its surround-

ing noise. This section gives an overview on the current solutions to the problem. Particular

focus is given to the Kalman Filter (KF) algorithm, due to its versatile and mathematically sound

framework. For further information on these signal processing techniques, the reader is referred

to the following reviews [51, 92, 173, 365, 418].

Extraction techniques aim at estimating the fetal signal either directly from abdominal

signals or indirectly by first estimating the MECG and then treating the signal residuals as

FECG and noise. The first (i.e. direct FECG estimation) is usually unfeasible due to various noise

signals involved which makes the source separation problem more complex. Therefore, most

approaches available in the literature are indirect. In the following sections, a brief description

of the most important algorithms is presented (see Fig. 3.4). These methods can be categorized

in: Adaptive Methods, Template Subtraction, Blind Source Separation or combination of those

(i.e. Hybrid Methods). Since the Physionet/Computing in Cardiology Challenge (PCINC) 2013

[92, 395] enabled a direct benchmark between some of these methods, exemplary applications

are mentioned while describing each category.
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FECG extraction
(indirect)

Blind Source Separation

Decompose signal
into components

by means of its sta-
tistical properties

Template Subtraction

Adapt and subtract
MECG template

beats from abdECG

Adaptive Methods

Project MECG ref-
erence signal onto

abdECG leads

Requirements

• Single channel + MECG
thoracic reference
• Some require training

Output

Estimate for reference’s
projection onto single
channel

Advantages

• Ectopic beats and
arrhythmia pose no
problems

Requirements

• Multiple channels
(for some ≥ number of
sources)
• Statistical description
of data
• Heuristics for compo-
nent selection
• Fixed time interval for
batch filtering
•Model order selection
• Back-propagation may
be necessary

Output

Multiple components
(or back-propagated
channels) that maximize
a predefined statistical
property

Advantages

• Better separation in the
presence of strong noise
or artefacts
• Potentially applicable
to multiple pregnancies

Requirements

• Single channel
• Accurate MQRS loca-
tions
•MECG template

Output

Single channel where
template signal was
adaptively attenuated

Advantages

• Simple structure
• Suitable for morpholog-
ical analysis of extracted
FECG signal

Figure 3.4: Indirect techniques for FECG extraction and their main characteristics. Aside
from those shown in this figure, “Hybrid Methods”, i.e. combination of these methods, have
also been described in the literature.
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Adaptive methods

As the FECG overlaps in time and frequency with its surrounding noise, especially with

the MECG, simple linear filters with fixed coefficients (i.e. constant transfer function) are not

able of separating the FECG from NI-FECG recordings [173]. Adaptive Methods (AM) are more

sophisticated approaches that attempt to project one (or more) MECG reference lead(s) onto

each abdominal lead, hence estimating the projection of the maternal signal on the abdECG

channels. This is obtained by continuously adapting AM’s filter coefficients while following

the MECG reference. In the literature, some authors refer to such structure as Adaptive Noise
Canceller (ANC) [463]. Exemplary AM methods are the Least Mean Squares (LMS) [463], Recursive
Least Squares (RLS) and Echo State Network (ESN) [200]. According to Behar et al. [52], the LMS

attempts to minimize the mean square error (MSE) between reference MECG and abdominal

signal, regarding solely the information on the current and previous samples. Similarly, the

RLS minimizes the sum of squared errors using all available samples of the measured signal.

For this filter, a forgetting factor is required for weighting down the past error’s influence

while calculating the current filter weight. Both LMS and RLS assume linear propagation of

the MECG signal throughout the body. Unlike the previously described methods, the ESN is

capable of nonlinear projecting the MECG onto abdominal channels, achieving better FECG

estimates [18, 52]. However, ESN entails a neural network approach that comes at cost of a

much higher computational load. A more extensive review on AM for FECG can be found in

Behar et al. [52]. Several alternative methods, both linear and nonlinear, have been proposed

for the purpose of extracting the FECG, e.g. using Wiener filtering [352, 387] or adaptive

finite impulse response (FIR) schemes e.g. [34, 35, 76, 257, 390, 412]. Due to the lack of MECG

reference leads, AM were not preferred during the PCINC 2013, one exception was Rodrigues

[352], who obtained poor results by making use of the Wiener filter to follow 3 out of the 4

available abdominal leads. Some of the drawbacks from AM are: i) the stringent necessity

of a reference lead, which adds complexity and potential discomfort to recording system,

and ii) the fact that some of those methods e.g. ESN and Adaptive Neuro-Fuzzy Interference
System (ANFIS) [35] are based on neural networks, therefore require a training phase which can

increase computational/time cost.

Template subtraction methods

Template Subtraction (TS) methods make use of the maternal signal pseudo-periodicity in

obtaining a mean MECG cycle (so-called “template”), i.e. coherent averaging [353] maternal

beats [267]. This procedure heavily depends on accurate maternal QRS (MQRS) detections. Next,

the template is adapted onto the abdECG on a beat-to-beat basis, therefore estimating the MECG

on each channel. Last, the estimated MECG signal is subtracted from the abdECG channel,

leaving behind FECG signal and noise as residuals. In order to account for varying morphologies

of the MECG, this average template is usually built on every couple seconds/minutes or updated

online. TS algorithms impose the fewest number of restrictions on the recording system and

can be applied on a single lead. A variety of TS techniques have been described in the literature
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[20, 54, 78, 113, 254, 268, 430, 433, 454, 477]. For instance, the T Sc [78, 111, 434] simply adapts

each beat using a single scalar gain [54]. This approach was used in early works at the IBMT

in the field of FECG [16, 477]. Analogous procedures were applied during the PCINC 2013 by

[54, 337]. More elaborate techniques such as the T Sm [268] make use of different scalar gains

for each P-QRS-T waveform. Template adaptation (T Sa) [20, 179] enables width and height

adaption of the template on a sample-basis, using concepts of Self-Organizing Maps (SOMs).
Ungureanu et al. [433], Vullings et al. [454] suggested the use of linear prediction for individually

weighting previous maternal cycles, here called T Slp. Sameni et al. [368, 369, 370] proposed

the use of a TS technique based on the EKF, namely T Sekf . Differently from the previously

described methods, T Sekf performs a continuous and adaptive sample-by-sample estimation

of the MECG and, consequently, the FECG and noise contained in the residual. As compared

with the other approaches, T Sekf framework is more adaptive, theoretically allowing better

estimation of the MECG in highly non-stationary scenarios [18]. TS are usually straightforward

techniques, that imply the least distortions on the estimated FECG as shown in [18].

Blind source separation

Differently from AM and TS, Blind Source Separation (BSS) methods strive to decompose

the multichannel abdominal mixture into different components without a priori knowledge

about the signal itself. In fact, BSS attempts to separate the sources present in the abdECG

(i.e. FECG, MECG and noise/artefacts) according to their statistical properties, e.g. correlation

or independence. Exemplary BSS algorithms are the Principal Component Analysis (PCA) [42,

308], Independent Component Analysis (ICA) [109, 447, 474, 475], Singular Value Decomposition
(SVD) [75, 219], Gaussian Processes (GP) [301, 350], Tensors Decomposition (TD) [301–303]

and Nonlinear State-Space Projection (NSSP) [236, 348, 387]. In case additional information is

provided (e.g. MQRS locations) methods are referred to as semi-BSS, e.g. the Periodic Component
Analysis (πCA) [366]. For consistency, BSS extraction techniques using ICA, PCA and etc. are

further referred to as BSSica, BSSpca, etc., respectively.

Some early works on BSS techniques for solving the NIFECG problem have been published

[42, 109, 474] and revisited during the PCINC 2013 [54, 447]. BSS techniques generally process

segments of signal, within this segment the mixture between sources is assumed to be stationary,

i.e. the statistical properties of the signal do not vary over time. This assumption was shown

in Andreotti et al. [18] to be a dangerous assumption. Moreover, these algorithms usually2

require multiple abdominal (and/or thoracic) leads, BSSica in particular, requires as input

at least the same number of leads as sources [221]. Additionally, some BSS methods suffer

from scaling (e.g. BSSpca) and permutation indeterminacy3 (e.g. BSSica). Furthermore, the

2 Some works have described SVD-based approaches for single-lead applications [37, 219, 304]
3 Component selection constitutes the major challenge concerning BSS techniques [18]. Selecting one or more

components that well represent the MECG is as-is difficult, making a distinction between MECG and FECG and
correctly selecting the FECG signal (for a direct approach) is nearly impossible. Particularly for ICA, permutation
indeterminacy is a well know problem, where the positioning of independent component (IC)s inside ICA’s output
is a priori unknown. This problem makes the already cumbersome task of automatic selection of the IC(s) of
interest (i.e. MECG/FECG) more complex [20, 83, 459].
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issue of determining the optimal number of underlying sources, referred to as model order

selection problem [201, 327], should be addressed. The problem states that an inappropriate

choice/estimation of the number of components may lead to unsatisfactory source separation.

In order to partially overcome this difficulty, a PCA dimension reduction step is usually applied

[197]. Lastly, the length of the evaluated signal segment has to be considered. The longer the

segment, the more critical the assumption of stationarity becomes. For lengthy segments, BSS

techniques are expected to underperform; meanwhile, if this segment is too short, there may not

be sufficient statistical information to represent MECG/FECG’s features (e.g. non-Gaussianity),

therefore also preventing a satisfactory source separation. Nevertheless, if those technique’s

assumptions are respected and parameters/heuristics well-designed, accurate FQRS results can

be achieved. Regarding morphological analysis, Andreotti et al. [18] has shown that it should be

performed in the observational domain, rather than source domain. Unlike AM and TS, BSS

techniques are usually applied in batches4 of signal.

Hybrid extraction methods

Aside from the aforementioned techniques, extraction routines may also be composed by

combining methods from different subgroups (shown in Fig. 3.4). One example is the deflation

procedure introduced by Sameni et al. [367]. This general procedure transforms multichannel

abdominal signals into the source-domain (by means of any BSS method); next the MECG

interference is removed from the source-domain components by means of TS techniques; and,

at last, the denoised sources are back-propagated to the observational domain. This procedure

is repeated a number of times until the output signals satisfy some predefined measure of

signal separability [367]. Sameni et al. [367] themselves applied the framework in NI-FECG

extraction using BSSπCA [366] and T Sekf combination, as did [170] during the PCINC 2013,

while [303] combined TD and BSS techniques. Another example of hybrid method is the T Spca
[18, 54, 219] which, in essence, is a TS method that decomposes stacked maternal cycles using

PCA. T Spca selects a couple first principal components, next a back-propagation step takes

place on a beat-to-beat basis, producing MECG estimates for every maternal cycle. T Spca was

applied during the PCINC 2013 by [54, 254]. Table 3.3 summarizes the different extraction

methods mentioned throughout the present section as in [51].

3.3.2 Kalman filtering basics

In the previous section, the strengths and weaknesses of three different classes of extraction

methods were delineated. When contemplating real world applications, a reduced number of

electrodes is desirable for improving subject’s comfort and allowing its use in an ambulatory

environment. As mentioned in Sections 3.2.3 and 3.3.1, selecting applicable extraction methods

is highly dependent on the available electrode configuration. TS techniques impose the fewest

4 Please notice that every category of method requires some initialization procedure, after this period TS and AM
can run only e.g. TS initializes its templates and can adapt it on-the-go. BSS techniques, on the other hand, require
a chunk of data which should be long (e.g. 1 min long) and spatially complete (e.g. 8 channels) to enable the
extraction of the desired components.
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Category Examples

AM AMlms [463], AMrls and AMesn [52]

TS T Sc [78], T Sm [268], T Slp [433], T Sa [20], T Sekf [369]

BSS
BSSica [474], BSSpca [42], BSSsvd [75], BSSGP [350],
BSSTD [302], BSSπca [366]

Hybrid methods deflation procedure [366], T Spca [219]

Table 3.3: NI-FECG extraction algorithms [51].

restrictions on the recordings system and are capable of performing NIFECG extraction on single

leads. Moreover, due to their simple structure, TS methods usually implicate few distortions on

estimated FECG, thus enabling the acquisition of morphological information. For these reasons,

TS approaches have been favored since IBMT’s earliest works [16].

Past contributions by this author have applied the T Sc [16, 476, 477], T Sa [20, 21] and T Sekf
[16–18, 20, 21, 23, 24, 476, 477]. Moreover, a complete benchmark using various methods

is presented in [18]. In this work, focus is given to T Sekf , since the KF approach provides a

versatile, modular, but yet mathematical framework for FECG extraction, which allows diverse

extensions. In the following sections a brief review on Kalman filtering is provided and its use

in NIFECG extraction explained.

Background

The history of optimal filtering began with the Wiener-Kolmogorov filter [233, 464], where

for linear systems the optimal Bayesian solution to the estimation problem (with minimum
mean square error (MMSE) loss) coincides with the least squares solution [373] (for a detailed

description on Bayesian estimators, the reader may refer to [222, Chap.10-13]). On his seminal

work on Kalman Filter (KF) written in 1960 [217, 218], Rudolph E. Kalman elegantly applied

the concept of state-space models to the Wiener-Kolmogorov filter. Through this change of

perspective on the KF’s formulation, the filter yields a more general form than the Wiener-

Kolmogorov filter, which does not require its system to possess deterministic dynamics nor the

random process to have stationary property [166, 379]. Indeed, the KF provides the optimal

solution to estimation problems for linear non-stationary stochastic processes, if some explicit

conditions are met (further discussed in this section) [272, 399]. Such performance is attainable

since KF makes use of all provided information by processing each available measurement,

regardless of its precision, to estimate the current value of the variables of interest [272].

Aside from its wide usability, assimilating capacity and optimality, KF is a powerful tool that

can be efficiently implemented in digital processors through fairly simple matrix operations

using a two-step data assimilation algorithm5 (denoted as prediction and update steps, further

explained in detail). One of KF’s first and most remarkable real-world applications was the

guided descent of the Apollo 11 lunar module [383, 424], which resulted in the first man

landing on the moon in 1969 [399]. For this reason, the filter is considered one of the greatest

5 This two-step algorithm is by many described as ‘recursive’, however from an engineering point of view, the
algorithm is rather iterative than recursive.
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Figure 3.5: Illustrative representation of Bayesian estimation based on prior observations
[272]. Bayes’ rule used by KF is explicitly presented for clarity as in [82], with low-case p(A|B)
describing the conditional probability density function of A given B. This figure demon-
strates how the Kalman filter estimates the a posteriori PDF given the current and prior obser-
vations yk and yk−1.

discoveries in the history of estimation theory and possibly one of the greatest discoveries of the

20th century [166]. A more complete historic perspective on KF as well as tools that enabled its

development is presented in [166, Chap.1].

Bayesian approaches for linear state estimation attempt to construct the posterior probability
density function (PDF) of the state (xk– assumed to be a random variable) based on prior

knowledge about its PDF and the observed measurements [33, 166, 222]. This step is referred to

as prediction step. Using Gaussian PDFs is, hence, convenient because all information present

in the conditional probability density can be represented by the first and second order statistical

moments (only moments necessary for describing Gaussian distributions). Therefore, the KF

only needs to propagate these moments from one step to the next [272]. During its update

step, KF makes use of the latest measurement in correcting its state prediction PDF (shown in

Fig. 3.5). This is possible using Bayes theorem6, which breaks down a conditional probability

function into three densities of easier evaluation [33, 272]. Such prior knowledge about the

hidden state lead to a more accurate estimator [222], i.e. a sharper PDF as shown in Fig. 3.5.

Several variants of the KF have been developed, including for continuous-time systems

(so called Kalman-Bucy filter [71, 218, 359]). Kalman filters may be classified by their sys-

tems (e.g. linear/nonlinear or discrete/continuous), by its data assimilation algorithm (opti-

mal/suboptimal) or by its noise (colored/white or additive/non-additive). An overall classifi-

cation presenting the different algorithms is infeasible due to the number of variable criteria

involved. Moreover, there are several analogies between KF and different algorithms such as GPs

6 The well-known Bayes theorem describes the fundamental probability law governing the process of logical
inference [82], which refers to calculating the probability of a given event, based on conditions that may be related

to another event. This powerful theorem is formulated as P (A|B) = P (B|A)P (A)
P (B) , where P(A) is the probability

that event A occurs, which can be inferred by calculating the remaining conditional probabilities and vice-versa.
From an estimation point of view, one is interested in estimating a random variable xk based on noise-corrupted
measurements related to this variable y

k
and y

k−1
, i.e. P (xk |yk , yk−1) [272] (see Fig. 3.5).
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[82, 342, 357], hidden Markov model (HMM) [147] and Particle Filters [33]. This work focuses

on the digital implementation of the KF algorithm, therefore its discrete form is used. A brief

derivation is presented based on [70, 222, 245, 272, 362, 379, 399, 424, 461]. Basic concepts in

linear algebra, system theory and probability theory, necessary for the understanding of this

derivation, are explained in [399, Chap.1-3].

A discrete-time linear system can be represented in the state-space form as follows, also

known as canonical representation of the KF model [218]:

xk = Fk−1xk−1 + Gk−1uk−1 +wk−1 , (3.1)

y
k

= Hkxk + vk , (3.2)

where k ∈ Z≥0 represents the discrete-time index. xk is the hidden state variable, which we

attempt to estimate from our observations y
k

(sensor data). The matrices Fk, Gk and Hk are

considered known matrices. The state transition matrix Fk is responsible for describing the

dynamics of our state, the control input matrix (Gk) determines how a known control input

(uk) influences the system, while the observational matrix (Hk) explains how these states are

observed. The process (wk) and measurement noises (vk) are often considered uncorrelated

white Gaussian noise (WGN), whose PDF can be described as follows [272]:

wk ∼N (0,Qk) and vk ∼N (0,Rk)

with

E
[
vk · vTk

]
= Rk · δi−j

E
[
wk ·wTk

]
= Qk · δi−j

E
[
vi ·wTj

]
= 0 ∀i, j ∈ k

where ‘∼’ stands for “distributed as”,N (µ,C) symbolizes a Gaussian distribution with mean µ

and covariance C and δi−j is the Kronecker delta, which is unitary for i = j and zero for i , j. In

our case Qk and Rk being, respectively, the process and measurement noise covariance matrices.

KF assumes that both Qk and Rk are known matrices well representing the system.

The first equation in the Kalman model (Eq. 3.1) is known as “process equation”, which is

a differential equation describing the dynamics of the unobserved state as simple first-order

Markov process7. On top of that, since wk is assumed Gaussian and additive, the state xk
happens to be a first-order Gauss-Markov random process [222, 357]. Additionally, the dynamic

of the filter presented in Equation 3.1 may be regarded as a first-order autoregressive (AR)
process (AR(1)) [222, Chap.13]. The latter equation (Eq. 3.2) is called “measurement equation”

and describes how the hidden state is observed throughout physical sensors. Similar to the

system equation, y
k

and xk are jointly Gaussian but y
k

is not a Markov process since the past

observations y
k−2

and y
k−1

may convey more joint information about y
k

than y
k−1

alone [14].

As described by Kay [222, Chap.12], there are three main problems that can be treated using

7 Markov processes are based on the Markov property that a state at time k+1 can be entirely determined/predicted
by its present state at k, i.e. past observations bring no additional information. The assumption is usually
formulated using conditional probabilities [150].
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the KF framework, namely filtering, smoothing or prediction problems. Filtering aims at estimat-

ing xk based on the observations y
1
. . . y

k
, i.e. using present and past data only; as k increases

the effect of the estimation is causal. Smoothing attempts to estimate xk using all data available

y
1
. . . y

N−1
, therefore it requires the estimation to be performed offline. Lastly, prediction aims at

estimating xk−1+l , with the lag l being a positive integer, based on measurements y
1
. . . y

k−1
. This

study focuses on the problem of estimating the FECG from noisy NIFECG recordings, unless

stated otherwise, the reader should consider that these techniques are being used for filtering

purposes. Smoothing may be later applied to improve filtering results.

Kalman filter assumptions and optimality

As previously mentioned, the classical KF is based on some basic assumptions8. These

assumptions are listed and properly justified below [218, 272]:

i) the system equations (i.e. Eqs 3.1 and 3.2) must be linear, possibly time-variant and

well-representing of the real system;

ii) present noises wk and vk are additive, zero-mean, white and Gaussian distributed (i.e.

WGN);

iii) the initial state variable has a known mean (x0) and covariance matrix (P0).

The linearity assumption is suitable since linear systems and linear differential equations can

be better manipulated by engineering tools. Indeed this assumption may not hold for a large

class of problems [272], however, for this end there are KF extensions (further described in this

work). The restriction of unbiased noise (zero-mean) does not impose any loss of generality,

since a mean value for noise could be modelled within the remaining parameters of the system

[357]. White noise implies that the noise values are uncorrelated from time step to time step.

Despite this being a concept that does not apply for real-world problems, one could interpret the

definition of white noise as a wide band noise, which is present in a system that has an intrinsic

low pass effect on its output (as all real systems do). This consideration makes the mathematics

involved in the filter tangible. Similar to nonlinear cases, colored or even correlated noise may

also be treated by the KF if a shaping filter is applied [272, 399]. Whereas whiteness refers to

time/frequency relationships of a noise source, Gaussianity reflects its amplitude values. In

the literature, the Gaussianity assumption is weakly motivated by the central limit theorem9.

Nonetheless, a stronger and more practical argument is that using Gaussian densities improves

the analytical tractability of the filter’s mathematics [272, 357]. That is, by having Gaussian

8 In fact, Kalman’s original derivation of the Kalman filter [217] did not require the underlying system equations to
be linear or have Gaussian probability densities. The only assumption made were i) the estimator was linear, ii)
that predictions of the state and of the system observations can be calculated, and iii) that consistent estimates
of the system random variables could be obtained by simply propagating their first and second-order moments
(means and covariances) [278, Chap.1].

9 That is, physically justified by the fact that the system and measurement noise are usually caused by several small
sources. The central limit theorem shows mathematically that when a number of independent random variables
are added together, the summed effect can be described very closely by a Gaussian probability density, regardless
of the shape of the individual densities [272].
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noise one ensures that all variables stay Gaussian and, therefore, the mean and covariance fully

characterize the system dynamics.

Under those conditions mentioned above, KF produces the optimal estimate for xk , in terms

of virtually any available criterion [272, 399]. There are several criteria for optimality, some

examples are MMSE, maximum a posteriori (MAP), maximum likelihood (ML) or Minimax (for

complete reviews on the topic refer to [82, 222]). Cost functions of the general quadratic form,

i.e. Jk = E[(xk − x̂k|k)TMk(xk − x̂k|k)] with Mk being a symmetric positive definite matrix [166, 222,

245, 272, 399], are usually preferred due to their mathematical tractability [222]. In fact any

cost function which is symmetric and convex could be used [245]. In [222, Chap.11] alternative

cost functions are presented, such as the absolute error and hit-or-miss error. For quadratic

functions the MMSE estimator is usually the mean of the posterior PDF, for proportional cost

functions the median and for hit-or-miss functions the mode. ForM = I , the definition of MMSE

is obtained:

E
[∥∥∥xk − x̂k|k∥∥∥] = E

[(
xk − x̂k|k

)T (
xk − x̂k|k

)]
(3.3)

The MMSE is often used in the literature, but for any reasonable choice for optimality criterion,

the Bayes estimate obtains the same estimate e.g. mean, median or mode coincide [272, 404].

The proof for KF’s optimality for the MMSE is available in [222] and using MAP in [82]. Even if

the Gaussianity criterion is relaxed, KF is still the optimal “linear” filter, meaning that there

might exist a nonlinear filter that is more accurate [399]. In the next section the algorithm for

the discrete KF approach is presented in detail. The MMSE is further used as motivation for its

optimization problem.

Derivation of the discrete Kalman filter

In the literature, there are several ways of writing and deriving the KF equations where

most of those are mathematically equivalent [399]. In this section, the time and measurement-

update form is presented, since it clearly demonstrates the filter philosophy in a simple iterative

algorithm. Alternative formulations presented in [399, Chap.6] aim at improving KF’s computa-

tional performance or filter’s precision.

At this point, it is convenient to define the hat notation
(
x̂k|k−1

)
as being the estimate for

the state variable xk. The sub-index k|k − 1 makes explicit that it is an “a priori” estimate,

which refers to the fact that the present observation (at time k) is not taken into consideration.

Otherwise, it would be “a posteriori” state estimate x̂k|k or simply x̂k . It is important to remark

that both x̂k|k−1 and x̂k|k are estimates for xk before and after the measurement y
k

is taken into

consideration [399]. The “a priori” and “a posteriori” estimate error covariance matrices for

xk are given in Eqs. 3.4–3.5 [399]. The main goal of the KF algorithm, as for any estimation

problem, is to find x̂k that minimize the “a posterior” state estimate error covariance matrix Pk|k .
The a priori and posteriori state covariance matrices are defined in Eqs. 3.4 and 3.5.

Pk|k−1 = E
[
(xk − x̂k|k−1)(xk − x̂k|k−1)T

]∣∣∣∣
y

1
...y

k−1

(3.4)
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Pk|k = E
[
(xk − x̂k|k)(xk − x̂k|k)T

]∣∣∣∣
y

1
...y

k

. (3.5)

According to the previous section, KF’s algorithm requires initial values for its state and

estimation error covariance matrix. Since no measurement is available at k = 0 to estimate x0, it

is reasonable to use the expected value of the initial state x0, such as x̂0|0 = E[x0]. Similarly, P0|0
is usually initialized with P0|0 = E

[(
x0 −E

[
x0

])(
x0 −E

[
x0

])T ] [272, 399]. An alternative is to

initialize the state covariance by choosing a constant α and setting P0 = α2·Q0, where typically

α = 10 is a reasonable estimate. Nevertheless, in general, the effect of these initial estimates

diminishes with time and they do not affect the steady state performance of the KF [121].

From Eq. 3.1 and the assumption of unbiased noise, the propagated state is obtained as in

Eq. 3.6.

x̂k|k−1 = E
[
xk

]∣∣∣∣
y

1
...y

k−1

= E
[
Fk−1xk−1 + Gk−1uk−1 +wk−1

]∣∣∣∣
y

1
...y

k−1

= Fk−1x̂k−1|k−1 + Gk−1uk−1

(3.6)

From Eq. 3.4 and assuming that wk−1 and x̂k−1|k−1 are uncorrelated, the a priori propagated

state error covariance matrix is shown in Eq. 3.7 (also known as Lyapunov equation) [272, 343].

Pk|k−1 = E
[
(xk − x̂k|k−1)(xk − x̂k|k−1)T

]

= E
{[ (from Eq. 3.1)︷                                ︸︸                                ︷(

Fk−1xk−1 +�����Gk−1uk−1 +wk−1

)
−

(from Eq. 3.6)︷                           ︸︸                           ︷(
Fk−1x̂k−1|k−1 +�����Gk−1uk−1

) ][
· · ·

]T }
= E

{[(
Fk−1xk−1 +wk−1

)
−
(
Fk−1x̂k−1|k−1

) ][
· · ·

]T }
= Fk−1E

[
(xk−1 − x̂k−1|k−1)(xk−1 − x̂k−1|k−1)T

]
FTk−1 +E

[
wk−1w

T
k−1

]
= Fk−1Pk−1|k−1FTk−1 + Qk−1 .

(3.7)

So far, the KF’s time update equations were derived for x̂ and P, next focus is put on the

measurement update step i.e. attempting to improve our estimates regarding the current

measurement y
k

[70, 399]. In order to do so, let us define the innovation process (νk - also

known as measurement residual) and derive its covariance matrix Sk (based on Eq. 3.2 and

uncorrelation assumption for observational noise) [343, 399]:

νk , yk
−Hk x̂k|k−1 (3.8)

Sk = E
[
νkν

T
k

]
= E

[
(y
k
−Hk x̂k|k−1)(y

k
−Hk x̂k|k−1)T

]
= E

{[
(Hkxk + vk)−Hk x̂k|k−1

] [
(Hkxk + vk)−Hk x̂k|k−1

]T }
= HkPk|k−1HT

k + Rk .

(3.9)
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The innovation represents the new information about the state made available at k by the

observation y
k
. The innovation sequence is a zero-mean and white noise random process.

Theoretically, if x̂k is an optimal estimate, there is no information left in νk [151]. Thus, a good

way of verifying KF’s performance is to monitor its residual. In case its state estimate or state

covariance error are not as expected, there might be incorrect assumptions on the model or noise

statistics [175, 245, 343, 399]. Moreover, the innovation process is uncorrelated and orthogonal,

yet statistically equivalent [216, 277] to the observations y
k
. For this reason KF is considered as

a whitening filter [14, 245, 343].

From the estimation theory [222], it is known that the MMSE estimator with a linear Bayesian

model yields the same form as the minimum variance unbiased estimator (MVUE) for classical

linear models. Moreover, the estimation can be done in a sequential manner (rather than

processing the whole data offline as a batch), similarly to the recursive least squares estimator

[222, Chap.4]. Therefore, as y
k

becomes available, the a posteriori estimate for our state can be

described as in Eq. 3.10.

x̂k|k = x̂k|k−1 + Kk(yk −Hk x̂k|k−1)

= x̂k|k−1 + Kkνk
(3.10)

This equation blends noisy measurements and prior estimate by computing the “a posteriori”

state estimate by means of a weighted difference between the new measurement y
k

and the

measurement prediction Hk x̂k|k−1. Kk is a blending factor which is yet to be determined [70, 461].

Substituting Eq. 3.10 into Eq. 3.5 and assuming that the cross-product between the explicit

expression for the updated error covariance matrix Pk|k is obtained [272, 343]:

Pk|k = E
[(
xk − x̂k|k

)(
xk − x̂k|k

)T ]

= E
{[
xk −

(from Eq. 3.10)︷                           ︸︸                           ︷
x̂k|k−1 −Kk

(
y
k
−Hk x̂k|k−1

) ][
· · ·

]T }

= E
{[

(a priori state
estimation error)︷        ︸︸        ︷
(xk − x̂k|k−1) −Kk(

(from Eq. 3.2)︷     ︸︸     ︷
Hkxk + vk −Hk x̂k|k−1)

][
· · ·

]T }
= E

{[
(I−KkHk) (xk − x̂k|k−1)−Kkvk

] [
(I−KkHk) (xk − x̂k|k−1)−Kkvk

]T }
= (I−KkHk)E

[
(xk − x̂k|k−1)(xk − x̂k|k−1)T

]
(I−KkHk)

T + KkE
[
vkv

T
k

]
KT
k

= (I−KkHk)Pk|k−1(I−KkHk)
T + KkRkKT

k .

(3.11)

Although Eq. 3.11 can be further simplified for easing computational cost, the presented form is

more stable and robust. This form, so-called the Joseph stabilized version of Pk|k , assures that

Pk|k is symmetric positive definite as long as Pk|k−1 is symmetric positive definite [71, 399].

Returning to our optimization problem, the aim of the filter is to find a linear function

of the measurements y
k
, which minimizes any quadratic cost function, for example the MSE

shown in Eq. 3.3. It can be noticed that the error criterion shown in Eq. 3.3 is similar to the

definition of a posteriori state estimate error covariance matrix (see Eq. 3.5). In fact, those
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functions are equivalent [82, 245] and according to the Gauss-Markov theorem produce the

MMSE. That being said, the KF attempts to minimize the trace of the posterior estimation error

covariance matrix T r(Pk|k) by selecting a suitable blending factor Kk . Several derivations of this

optimization are available in the literature. Brown and Hwang [70, Chap.5] presents a detailed

derivation considering the least squares criterion and squares completion based on previous

works from [404]. For the sake of brevity, this deduction is here omitted. Instead, it is here

derived as in [151, Chap.4] as follows:

Jk = T r(Pk|k)
∂Jk
∂Kk

= 0 =⇒ ∂T r(Pk|k)
∂Kk

= −2
(
HkPk|k−1

)T
+ 2KkSk = 0

∴ Kk = Pk|k−1HT
k S−1

k . (3.12)

This blending factor is referred to as “Kalman gain” matrix, which is optimal in the MMSE

sense if KF’s assumptions are met. By evaluating its Hessian, it can be shown that Kk indeed

minimizes T r(Pk|k) [151]. By evaluating Eq. 3.9, 3.10 and Eq. 3.12, an intuition on the basic

working principle of the Kalman filter is attained [461]:

lim
Rk→0

Kk =H−1 (3.13)

lim
Pk|k−1→0

Kk = 0 . (3.14)

That is, if the observation error covariance matrix Rk is small, the current measurement is

deemed trustworthy and the predicted value for the state estimate (Hk x̂k|k−1 is trusted less. On

the contrary, if the a priori state error covariance matrix approaches zero, the measurement y
k

is

trusted less and the filter output consists basically of the a priori state estimate. Moreover, it is

imporant to notice from Eq. 3.7 that Pk|k−1 depends not only on the a posteriori error covariance

matrix from the previous filter iteration, but also on the previous value for the model error

covariance matrix Qk−1. That causes the Kalman gain to depend on a non-trivial counterbalance

between Rk and Qk−1. The complete recursive discrete Kalman filter algorithm is summarized

in Algorithm 1. Furthermore, Eq. 3.13 it is clear that the filter requires matrix H to be invertible.

This fact may be interpreted as the necessity of the filter having a complete set of observations

(i.e. matrix H is full-rank) that links the hidden state with the latent state vector.

Kalman filter’s performance

Despite its theoretical optimality, real-world applications of the KF may face some imple-

mentational issues. Two of these main difficulties are finite arithmetic precision and modelling

errors. Digital implementations of the KF are unavoidably bounded to finite precision, which

may cause divergence or instability in the filter. For example, although the filter does not

formally require a non-singular covariance matrix, in practice a singular covariance increases

the possibility of numerical problems [401]. Some algorithmic strategies may increase the

robustness of the filter, as suggested by Simon [399]. Meanwhile, modelling errors can be

improved by better designing Kalman’s model. Particularly, it is assumed that Fk, Gk, Hk, Qk
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Algorithm 1 Pseudo-code summarizing the KF algorithm (time and measurement-update form)

Require: models for Fk ,Hk , Qk , Rk
Initialize: x0, P0

for k = 1 to Nsamples do
// Prediction step

x̂k|k−1 = Fk−1x̂k−1|k−1 + Gk−1uk−1 ; // a priori state estimate

Pk|k−1 = Fk−1Pk−1|k−1FTk−1 + Qk−1 ; // a priori covariance estimate

// Update step

νk = y
k
−Hk x̂k|k−1 ; // innovation signal

Sk = HkPk|k−1HT
k + Rk ; // innovation covariance

Kk = Pk|k−1HT
k S−1

k ; // obtain Kalman gain

x̂k|k = x̂k|k−1 + Kkνk ; // a posteriori state estimate

Pk|k = (I−KkHk)Pk|k−1(I−KkHk)T + KkRkKT
k ; // a posteriori error covariance

end

and Rk are known and that the noise processes respect the assumptions described previously in

this section. If the model does not reflect well the real process, the filter may not work [399].

With regards to modelling errors, as previously described, Qk and Rk play an important

role in the determination of the Kalman gain. For example, Qk interferes on the asymptotic

performance of the estimate x̂k|k [175], since the larger its value the bigger is the assimilation

of the measurements into the estimated state [424]. However, these matrices are usually not

simple to obtain and their tuning is non trivial. If some training data with the true values

of the estimated parameters is available (e.g. when using simulated data), consistency [121]

or simple distance measures (e.g. MSE) between estimate and true state can be calculated.

Unfortunately, in any real application the true values are not available (otherwise one would

not have an estimation problem), therefore, other measures are necessary. Shyam Mohan et al.
[392, Chap. 3] provides an overview on the different practical approaches for tuning the noise

covariance matrices and categorizes the main approaches into four classes: Bayesian, Maximum

Likelihood, Covariance Matching and Correlation Techniques. For example, the last approach

takes into consideration the fact that the innovation sequence should be a zero-mean, white

and Gaussian process. Some authors [277] suggest the use of autocorrelation for verifying if the

implemented Kalman gain produces statistically acceptable white noise sequences. Odelson et al.
[307] have shown that the process and measurement matrices are not sufficient nor necessary (as

described by Mehra), additionally Odelson et al. [307] proposed an improved method namely

Autocovariance Least Squares (ALS), which should produce much smaller variances and better

estimates [392].

Another modelling consideration is how the state variable x0 and state covariance P0 are

initialized. As previously denoted, x0 and P0 are generally initialized with rough estimates of

their expected values, but the initialization effect vanishes with time. That is, given that the
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filter is properly tuned and well-represents our system, T r(Pk|k)→ 0 and the estimates x̂k tends

to the true value of xk . Thus, an important test is to monitor the filter’s performance is to check

if T r(Pk|k) converges to zero.

3.3.3 Nonlinear Kalman filtering

The classical discrete KF assumes that the system is linear, however such systems do not exist

in practice [399, Chap.13]. In fact, real-world systems may be described as10:

xk = fk−1(xk−1,uk−1,wk−1) (3.15)

y
k

= hk(xk ,vk) (3.16)

where the system equation f (·) and measurement equation h(·) are nonlinear functions. It is

known that the optimal solution to nonlinear filtering problems demands a complete descrip-

tion of the conditional PDF. However, this exact description requires a potentially unbounded

number of parameters [214]. Thus, several sub-optimal solutions for nonlinear Bayesian estima-

tion have been developed. Based on [33, 166, 278, 399, 424] these practical approaches can be

grouped into the following categories:

Linearized Kalman filters make use of partial derivatives to linearize the nonlinear model.

This is performed by expanding the system and measurement nonlinear functions using

Taylor series around a nominal control u0, nominal state x0, nominal output y0 and

nominal noises w0, v0 point. This method assumes very small perturbations on the

nominal state trajectory. Unfortunately, the nominal trajectory is not always easy to be

found [399].

Gaussian approximate methods are nonlinear extensions of the KF, whose estimator merely

propagates the first and second-order moments of the random variables involved [424].

Four exemplary methods within this group are [424] the Extended Kalman Filter (EKF)
[206, 384], the Sigma-point Kalman filter (SPKF) [214, 279], Ensemble Kalman Filter (EnKF)
[126, 127, 159] and the Gaussian Sum Filter (GSF) [10, 405].

The EKF was the first and is undoubtedly the most widely used nonlinear variant of

the KF [278, 399]. Proposed by Stanley F. Schmidt11 [383, 384], EKF aims at linearizing

the KF system around its estimate (i.e. x0 = x̂), which in turn is estimated based on the

linearized system (as in the Linearized KF). This bootstrap philosophy allows the filter

to estimate the nominal state trajectory, overcoming the difficulties presented on the

Linearize KF method. Unfortunately, due to the linearization procedure, EKF happens

to be a sub-optimal implementation of the KF [278]. This is caused by the linearization

approach which, while calculating the means and covariances of the random variables

10 An attentive reader should notice that in Eqs. 3.15-3.16 the process and measurement noises are not regarded
as additive. This formulation taken over from [399, Chap.13] is more general than the additive case (i.e. xk =
fk−1(xk−1,uk−1) +wk−1 / y

k
= hk(xk) + vk), which can be easily derived from the derivation here presented.

11 According to Grewal et al. [166], Schmidt was an early adopter and successful advocate of the KF. After Kalman has
visited Schmidt at NASA in the fall of 1960, Schmidt began working on the probably the first full implementation
of the KF algorithm, soon discovering what is now called EKF.
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involved, disregards the fact that the PDF of these variables are no longer normal after

undergoing their respective nonlinear transformations [436, 461]. This failure to account

for the “probabilistic spread” of the state variables can seriously affect the accuracy of

the posterior estimates [278]. Furthermore, EKF’s shortcomings include its sensitive and

complex initialization/tuning procedure and the fact that for strong nonlinear systems

the linearization procedure may heavily affect the estimation accuracy or even lead to

divergence [215, 279, 424].

In an attempt to minimize the linearization errors from EKF, a subgroup of approaches

termed as SPKF [279] has been proposed. SPKF schemes are derivative-free state estima-

tors that in order to estimate the state information focus on approximating the probability

distribution directly, rather than approximating the nonlinear function at an operating

point as EKF does [82]. This is performed by deterministic sampling approaches that

propagate the Gaussian statistics [278], i.e. the sigma points are transformed and com-

bined in a special way so that an estimate of the state and an estimate of the covariance

of the state estimation error are obtained [400]. For some problems SPKF approaches

can better approximate state estimate nonlinearities than a standard EKF, because EKF’s

estimates are always approximately Gaussian [33]. A well-known SPKF algorithm is

the Unscented Kalman Filter (UKF) [214, 215], which makes use of the scaled unscented

transformation in the calculation of the optimal terms for the Gaussian approximate

Bayesian update. The sigma-point weights used in the unscented transform are com-

bined to provide unbiased estimates for the output mean and covariance. The unscented

transform is advantageous due to its computational efficiency [166]. Furthermore, the

UKF estimates the mean and covariance of the state to third-order accuracy, compared

to EKF’s first-order approximation [82, 400]. However, in practice UKF often encounters

ill-conditioned covariance matrix (not positive semi-definite), which can be alleviated by

using regularization through square-root UKF [82].

Similarly to SPKF, the EnKF [74, 125] uses a reduced number of ensembles to propagate

the mean and covariance of random vectors undergoing nonlinear transformations. EnKF

was developed for high-dimensional systems, whose state covariance matrix evolution has

an elevated computational cost. Instead of calculating the propagation integral, EnKF uses

a Monte Carlo method to represent the distribution of the state using a random sample (so-

called ensemble) and replace the covariance matrix by the sample covariance computed

from the ensemble [264]. EnKF uses individual ensembles for each data assimilation step,

considering as mean the current measurement and the variance of the current ensemble

as measurement error [126–128, 159, 424]. Therefore both prediction and update steps

are stochastic analyses [128]. In contrast to SPKF the number of ensembles is heuristically

chosen [424], the greater this number the more accurate are the estimates [128, 187, 282].

Still, it is an approximate solution since EnKF does not treat the Bayesian update for

non-Gaussian PDFs, but linearly combines the a priori non-Gaussian ensembles in its

update. Therefore, some non-Gaussian properties will be inherited, notwithstanding it is
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a sub-optimal scheme [128].

The last group, GSF [10, 405], aims at approximating non-Gaussian posterior PDFs

using finite weighted sum of Gaussian densities [82, 279, 399]. Each Gaussian component

is propagated in using paralell Kalman filters, the results are then combined into obtaining

an approximate estimate. The idea of using sums of Gaussians distributions is similar to

performing a piecewise linearization, thus GSF and EKF are similar [399]. In fact, GSF still

requires EKF algorithm to propagate each Gaussian distribution, therefore it also suffers

from the same drawbacks. Similar to EnKF, the number of filters incurs in a trade-off
between approximation accuracy and computational effort [399].

Grid-based filters approximate the value of the posterior PDF (Bayesian integrals) with a large

but finite sum over a uniform N-dimensional grid around the state-space region of interest.

In Grid-based Filter (GBF), PDF of the state is approximated, stored, propagated, and

updated at discrete points in state-space [399]. As the dimensionality of the state-space

increases, the computational cost of the approach increases drastically, which hinders its

further usage [33, 278, 279]. Both optimal and approximate solutions for this filter exist

[33].

Particle filters are much less restrictive approaches, since no assumption on the shape of the

posterior distribution densities is made. Rather than merely propagating the first and

second-order moments of PDFs, Particle filters aim at approximating the N-dimensional

Bayesian integrals using Monte Carlo sampling [424]. More specifically, by representing

the posterior PDF by a set of random samples (“particles”) with associated weight [324].

The estimate mean and covariance are then computed based on these particles and weights

using the Sequential Importance Sampling (SIS) algorithm. SIS resample or continuously

importance samples data at each time-step to obtain sharper statistical estimates. Next,

those particles are individually propagated by simulating the known nonlinear dynamics

of the system. By assimilating the newest measurement, the a posteriori covariance is

calculated, which is then used to comput the Kalman gain [166]. Due to the application of

Monte Carlo and SIS algorithms, Particle filters are also referred to as Sequential Monte

Carlo.

Both UKF and EnKF could be understood as a particle filtering methods [424] and, in

fact, Particle filters can be considered as a generalization of those [400]. In comparison

with UKF, Particle filters also make use of dynamic simulation of samples (i.e. “particles”),

which are carried forward in time by nonlinear dynamics and used to reconstruct the

propagated mean and covariance matrix. Meanwhile, UKF’s time update is deterministic.

Moreover, the number of sigma-points in UKF are commonly chosen to be slightly larger

than the system’s state dimension (usually n+ 1, 2n or 2n+ 1), while Particle filters have

no upper bound but usually increase exponentially with the state [166, 400]. The a priori

estimation step is performed similar to EnKF’s but with varying weights. Differently from

EnKF, the Gaussian approximation in the update step is avoided. Particle filters are also
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comparable with GBF, except that in Particle filtering one chooses the particles to be

distributed in state-space according to the state’s PDF, whereas GBF does not. Hence the

computational requirements for GBF increase exponentially with the dimension of the

state, being considerably more expensive than Particle filters. For this reason, Particle

filtering could be regarded as an “intelligent” GBF [399].

Particle filters can be applied to general nonlinear and non-Gaussian problems, however

they are computationally more expensive than most Gaussian approximation methods

[278]. The PDF estimates converges to the true PDF as the number of particles approaches

infinity [400]. Nevertheless, dimensionality is this filter’s main drawback, since the compu-

tational complexity grows exponentially with the dimension of the state vector. Therefore,

an online implementation of Particle filters may not be feasible [424]. With larger sam-

ple sizes, particle filters have the potential to obtain better estimates of the means and

covariances than the UKF [166]. Another common problem with the Particle filter is the

sample degeneracy phenomenon, where after a few iterations, all but one particle will

have negligible weight [33, 142]. In order to solve this problem a large computational

effort is made to avoid the propagation of particles with negligible importance [324].

Due to its wide acceptance, lower complexity and computational expense [399] and based on

the previous works in FECG from Sameni [362], EKF is used throughout this work. Thus, in the

following Section, EKF algorithm is presented in detail.

The extended Kalman filter

As previously mentioned, EKF attempts to linearize the nonlinear functions described in

Eqs. 3.15 and 3.16 around the estimated state x̂k. This linearization can be numerically or

analytically performed, here a demonstration of the analytical procedure is shown. Given

Eq. 3.15, that uk is known ∀k ∈ Z≥0, regarding the point x0 as the a posteriori state estimate

at time k − 1 (x̂k|k−1) and assuming the unknown noise value to be wk−1 = 0 ∈ Rn×1, xk is

approximated using the first-order Taylor expansion series as follows [399]:

xk ≈ fk−1

(
x̂k−1|k−1,uk−1,wk−1

)∣∣∣∣
wk−1=0

+
∂fk−1

∂xk−1

∣∣∣∣∣∣
wk−1=0
xk−1=x̂k−1|k−1︸               ︷︷               ︸
F̃k−1

(xk−1 − x̂k−1|k−1) +
∂fk−1

∂w

∣∣∣∣∣
wk−1=0
xk−1=x̂k−1|k−1︸               ︷︷               ︸
W̃k−1

wk−1

≈ F̃k−1xk−1 +
[
fk−1

(
x̂k−1|k−1,uk−1,0

)
− F̃k−1x̂k−1|k−1

]
︸                                           ︷︷                                           ︸

(known signal ũk−1)

+W̃k−1wk−1

(3.17)

where F̃k−1 and W̃k−1 are known matrices. Similarly to Eq. 3.17, the measurement equation

(Eq. 3.16) is linearized around the a priori state estimate x̂k|k−1 [399]:
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y
k
≈ hk

(
x̂k|k−1,vk

)∣∣∣∣
vk=0

+

H̃k︷         ︸︸         ︷
∂hk
∂xk

∣∣∣∣∣∣
vk=0
xk=x̂k|k−1

(xk − x̂k|k−1) +

Ṽk︷         ︸︸         ︷
∂hk
∂v

∣∣∣∣∣
vk=0
xk=x̂k|k−1

vk

≈ H̃kxk +
[
hk

(
x̂k|k−1,0

)
− H̃k x̂k|k−1

]
+ Ṽkvk .

(3.18)

One can redefine the a priori and a posteriori state estimate as [399]:

x̂k|k−1 = fk−1(x̂k−1|k−1,uk−1,0) (3.19)

x̂k|k = x̂k|k−1 + Kk

[
y
k
− h(x̂k|k ,0)

]
(3.20)

Next, based on Eqs. 3.17, 3.19, and 3.20, the nonlinear a priori and a posteriori estimation

error is defined as:

xk − x̂k|k−1 ≈ F̃k−1(xk−1 − x̂k|k−1) + fk−1

(
x̂k−1|k−1,uk−1,0

)
− fk−1(x̂k−1|k−1,uk−1,0) + W̃k−1wk−1

(3.21)

≈ F̃k−1(xk−1 − x̂k|k−1) + W̃k−1wk−1

xk − x̂k|k ≈ xk − x̂k|k−1 −Kk

[
y
k
− h(x̂k|k ,0)

]
(3.22)

≈ xk − x̂k|k−1 −Kk

[
H̃k(xk − x̂k|k−1) + Ṽkvk

]
Given Eqs. 3.21 and 3.22 a priori and a posteriori state estimation error covariance as well as

Kalman gain matrices, can be calculated analogously to Eqs. 3.7, 3.11 and 3.12, respectively.

This derivation (here omitted) results into the following matrices:

Pk|k−1 = F̃k−1Pk−1|k−1F̃Tk−1 + W̃k−1Qk−1W̃T
k−1 (3.23)

Pk|k = (I−KkHk)Pk|k−1 (I−KkHk)
T + KkṼkRkṼT

k KT
k (3.24)

Kk = Pk|k−1HT
k

(
HkPk|k−1HT

k + ṼkRkṼT
k

)−1
. (3.25)

Algorithm 2 shows a summary of the EKF algorithm. This formulation enables the state

estimation by means of KF for nonlinear systems. If the functions involved are approximately

linear around their mean, good results can be achieved. As mentioned in the previous section,

due to the linearization approach that disregards the nonlinear transformation performed

over the state variables’ PDF, EKF algorithm is sub-optimal. Moreover, the first-order Taylor

series approximation causes estimation errors, which are propagated through the means and

covariance matrices used by the EKF algorithm (thoroughly demonstrated in [399, Chap.13]). If

the functions f (·) and h(·) are non-differentiable, those errors are large and the EKF may diverge

[399].

Some approaches attempt to minimize those linearization errors within EKF framework, two

examples are the Iterated EKF and the Second-order EKF. The first, makes use of the more

accurate a posteriori state estimate provided by EKF algorithm to iteratively re-estimate the a

posteriori state at each time-step k. The latter method improves the linearization procedure by

using the second-order Taylor expansion instead of the first. These improvements can promote
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some minor improvement, however for highly nonlinear systems other methods (presented in

the previous Section) should performed better.

Algorithm 2 Pseudo-code summarizing the Extended Kalman Filter algorithm (time and
measurement-update form)

Require: models for fk−1(·),hk(·), Qk and Rk
Initialize: x0, P0

for k = 1 to Nsamples do
// Prediction step

F̃k−1 ≈ ∂fk−1
∂xk−1

∣∣∣∣
wk−1=0
xk−1=x̂k−1|k−1

and W̃k−1 ≈ ∂fk−1
∂w

∣∣∣∣
wk−1=0
xk−1=x̂k−1|k−1

; // linearization

x̂k|k−1 = f (x̂k−1|k−1,uk−1,0) ; // a priori state estimate

Pk|k−1 = F̃k−1Pk−1|k−1F̃Tk−1 + W̃k−1Qk−1W̃T
k ; // a priori covariance estimate

// Update step

H̃k ≈ ∂hk
∂xk

∣∣∣∣
vk=0
xk=x̂k|k−1

and Ṽk−1 ≈ ∂hk
∂v

∣∣∣∣
vk=0
xk=x̂k|k−1

; // linearization

νk = y
k
− hk(x̂k|k−1,0) ; // innovation signal

Sk = H̃kPk|k−1H̃T
k + ṼkRkṼT

k ; // innovation covariance

Kk = Pk|k−1H̃T
k S−1

k ; // obtain Kalman gain

x̂k|k = x̂k|k−1 + Kkνk ; // a posteriori state estimate

Pk|k = (I −KkH̃k)Pk|k−1(I −KkH̃k)T + KkṼkRkṼT
k KT

k ; // a posteriori error covariance

end

3.3.4 Extended Kalman filter for FECG estimation

The KF is a versatile framework that has been used in various biomedical engineering

applications. For example in filtering (ECGs [369], electroencephalogram (EEG) [309], heart [251]

and breathing rates [299, 419]), for feature extraction (e.g. intracranial pressure [193], EEG

spectra [31, 204]) and in classification (e.g. of arrhythmias in ECG [314, 378, 402]). Moreno

and Pigazo [291, Chap.7] provide a good overview of biomedical applications of the filter. In

the scope of NIFECG extraction, EKF was first suggested by Sameni et al. [368, 369, 370]. A

complete description is present in his doctoral thesis [362] and a MATLAB® (The MathWorks,

Inc., Natick, USA) implementation of his code is available is freely available in the Open-
Source Electrophysological Toolbox (OSET) [363]. Since its first suggestion in 2005, the T Sekf has

rapidly obtained wide acceptance amongst researchers and featured in several publications

e.g. Andreotti et al. [20], Behar et al. [54], Li et al. [248], Niknazar et al. [304], Panigrahy et al.
[322], Roonizi and Sassi [355], Sayadi et al. [377], and Zaunseder et al. [477].

As TS technique, the EKF method aims at estimating the MECG signal on a single lead,

which is subsequently subtracted from the original signal. In fact, the EKF was first proposed

for adult ECG filtering [369, 370] and its application to FECG emerged shortly after [362].

Figure 3.6 demonstrates a general work-flow for FECG extraction and detection by means of the

T Sekf. In the present section, specifics on the MECG estimation (i.e. “Fetal Extraction” block)
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Figure 3.6: Signal processing work-flow for NI-FECG extraction using T Sekf. 1 , 2 , 3 , 4

and 5 represent the raw channel, preprocessed channel, MQRS detection, fetal channel
(preprocessed - maternal channel) and FQRS detection, respectively.

follow. Pre-requisites for this step are the preprocessed abdECG channels12 and reliable MQRS

detections.

While applying the T Sekf to abdECG, the first step is to obtain a coherent/ensemble averaged

[353] MECG beat (henceforth called “template”). To build this template, an initialization period

τ0 (e.g. τ0 = 60 s)13 is required, on which multiple maternal cycles are available. A wrapping

approach then takes place, stretching (or compressing) beats with different lengths into a pre-

determined number of bins (Nb) before the average is taken (shown in Figure 3.7a). Additionally,

the wrapping approach enables the calculation of the inter-beat standard deviation, which is

further used in the filter modelling (see Figure 3.7b).

Next, as detailed in the previous sections, the EKF requires an accurate mathematical de-

scription of its system model (i.e. MECG template). In order to obtain such model, Sameni

et al. [369] made use of the ECG model proposed by McSharry et al. [275], which approximates

ECG waveforms by a sum of Nk Gaussian kernels. EKF’s system model, described by Eq. 3.26,

requires information about two parameters: a phase information (θk) and an amplitude signal

(zk), as follows [180, 362]:


θk = (θk−1 +ωδ) mod 2π

zk = zk−1 −
Nk∑
i=1

δ
αiω

b2
i

∆θi,k−1exp

−∆θ2
i,k−1

2b2
i

+ ηk−1,
(3.26)

θk is produced by linearly assigning values between [−π,π] for each beat (e.g. where −π/3
marks the maternal R-peak), thus resulting in a sawtooth-shaped signal. zk is the actual

MECG amplitude at time-step k. Regarding the first equation, ω represents a constant angular

12 Simple bandpass and notch filters (for 50/60 Hz powerline interference) are usually applied. The cutoff bands
for the bandpass are usually application dependent, e.g. if focus is on FQRS detections (a narrower band) or
FECG morphology (broader band). This topic is closer addressed in the following Chapter, see [18, 51] for more
information.

13 This initialization period is the only restriction to the online application of the EKF filter
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Figure 3.7: Kalman filter ECG modelling algorithm for a real recording. In (a) the phase
wrapping used in stretching/compressing MECG beats is shown; (b) depicts an average
MECG beat with respective standard deviation (σb) for each bin (Nb); and (c) demonstrates
the approximation to the averaged MECG beat using Nk = 7 Gaussian kernels. Illustration
based on [362, 363].

frequency (i.e. maternal heart rate, or approximate pace for the maternal heart cycle - in

rad/s), δ is the small sampling period (i.e. 1/fs, in s). The angular frequency ω was originally

set to ω = 2π/T , where T is an average RR-interval period for the MECG cycle. The second

equation is the analogous time-discrete form of Eq. 5.2, ηk is a random additive noise term to

include e.g. baseline wander. The procedure of adapting Nk Gaussian kernels into the averaged

template results in a nonlinear optimization problem. In order to solve this problem, Clifford

[87], Clifford and McSharry [90] and Sameni [362] used a nonlinear least-squares optimization

approach in providing the best estimate in the MMSE sense. In MATLAB® the problem can be

solved using the lsqnonlin function [362], see Figure 3.7 (c) for an exemplary fitting for Nk = 7.

Figure 3.8 demonstrates an abdECG channel and typical models obtained for θk and zk . The

model described can be applied into the KF framework by regarding θk and zk as the states
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Figure 3.8: KF modelling using real recording (channel 5 - see Figure 5.4). On the top the
preprocessed abdominal signal, in the middle the phase information and at the bottom is KF’s
system model (previous to adaptation).

variables, whilst αi ,bi ,φi ,ω,ηk are Gaussian14 random variables considered to be process noises,

so that:

xk = [θk , zk]
T ,

wk =
[
α1, · · · ,αNk ,b1, · · · ,bNk ,φ1, · · · ,φNk ,ω,ηk

]T
.

Therefore, based on Eqs. 3.15 and 3.16, the EKF model can be described as [49, 362]:

xk =

 f0(θk−1,ω)

f1(θk−1, zk−1,ω, {αi,k−1}, {bi,k−1}, {φi,k−1},ηk−1)

 , for i ∈ [1,Nk]

y
k

=
[
1 0
0 1

]
xk + vk .

(3.27)

As the reader may notice, the k index from the nonlinear functions f (·) were dropped since

the proposed system model by Sameni [362] is time-invariant. Instead the set of functions f0(·)
and f1(·) is used to represent the nonlinear function applied to each state. Since the system

model is nonlinear, its process equation has to be linearized prior to applying the EKF algorithm.

As results from the Eqs. 3.17 and 3.18 [362]:

14 As discussed by Sameni [362], the assumption of Gaussianity is described as a “working assumption” that in
theory may not hold for some of the parameters.
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F̃k−1 ≈ ∂f

∂xk−1

∣∣∣∣∣∣
wk−1=0
xk−1=x̂k−1|k−1

∂f0
∂θk−1

=
∂f1
∂zk−1

= 1,
∂f0
∂zk−1

= 0

∂f1
∂θk−1

= −
Nk∑
i=1

δ
αiω

b2
i

1− ∆θ2
i,k−1

b2
i

exp−∆θ2
i,k−1

2b2
i

 ,
W̃k−1 ≈ ∂f

∂w

∣∣∣∣∣
wk−1=0
xk−1=x̂k−1|k−1

(3.28)

∂f0
∂αi

=
∂f0
∂bi

=
∂f0
∂φi

=
∂f0
∂ηk−1

= 0,
∂f1
∂ηk−1

= 1,
∂f0
∂ω

= δ

∂f1
∂αi

= −δω∆θi,k−1

b2
i

exp

−∆θ2
i,k−1

2b2
i

 ,
∂f1
∂bi

= 2δ
αiω∆θi,k−1

b3
i

1− ∆θ2
i,k−1

2b2
i

exp−∆θ2
i,k−1

2b2
i

 ,
∂f1
∂φi

= δ
αiω

b2
i

1− ∆θ2
i,k−1

b2
i

exp−∆θ2
i,k−1

2b2
i

 ,
∂f1
∂ω

= −
∑
i=1

δ
αi∆θ

2
i,k−1

b2
i

exp

−∆θ2
i,k−1

2b2
i

 ∀i ∈ [1,Nk].

So far, the nonlinear system model and its linearization procedure for applying the EKF

on abdominal signals were described. As explained in Section 3.3.2, the initialization of the

algorithm’s covariance matrices plays an important role in the performance of the EKF. Based on

[49, 362, 363] the following initial parameters for the state and the filter’s covariance matrices

can be defined:

Qk = Q0 = diag
([
σ2
α1..αNk , σ

2
b1..bNk

, σ2
φ1..φNk

, σ2
ω , σ

2
f it

])
Rk = R0 =

(ωδ)2 0

0 σ2
f it


P0 =

(2π)2 0

0 10 ∗max(|y1:τ0
|2)


(3.29)

where diag(·) is a function which diagonalizes its argument, σ2
x with x = {αi ,bi ,φi ,ω} represents

the manually defined variance for each Gaussian parameter and angular frequency, σ2
f it =

1/Nb
∑
b σ

2
f it(b) is the mean standard deviation obtained during the template fitting for all bins

(see Figure 3.7-(b)) andmax(·) returns the maximum value of its argument. On its simplest form,

Sameni [362] definedQk and Rk as time-invariant, thusQ0 and R0. As explained in Section 3.3.2,

KF’s performance depends on its model and the tunning of its covariance matrices. Therefore,

the parameters described in Equation 3.29 should be exhaustively calibrated depending on

the application (e.g. electrode configuration). Considering that this tunning is satisfactory,
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Figure 3.9: FECG extraction using EKF algorithm using clinical recording (channel 5 - see
Figure 3.8). On the top the preprocessed abdominal signal, in the middle the estimated
MECG signal and at the bottom the residual signal (FECG + noise). Amplitude in millivolts.

P0 should rapidly converge. If one has a trustworthy system model, the EKF algorithm (see

Algorithm 2) may be iteratively applied in obtaining estimates for the MECG at every time-step

k. In Figure 3.9 an application example using EKF for FECG extraction output is presented.

Improvements on the extended Kalman model

During the last decade, several improvements to the EKF’s model were proposed in the

literature. In the previous section the initialization procedure for EKF was demonstrated.

Independent of how well this initialization is performed, the average MECG template was

originally not designed to evolve through time. It is clear that for long-term recordings such

consideration would lead to an undesired lack of trust on the model by the Kalman algorithm.

Moreover, the filter’s MECG estimates could greatly benefit on a beat-to-beat basis from a time-

varying Kalman model, on which small P-QRS-T wave variations are foreseen. For this purpose,

instead of considering each Gaussian kernel parameter (i.e. αi,k ,bi,k ,φi,k) as a noise processes

(described in Section 3.3.4), Sayadi and Shamsollahi [375] suggested to consider them as hidden

states following a random walk, increasing the number of states by 3×Nk . An almost identical

approach was adopted by Akhbari et al. [6], Lin et al. [253], who suggested15 the modelling

of angular frequency ω as an additional state (i.e. ωk). This improvement is relevant, since

15 On a side note, similar to the works by Akhbari et al. [7], Niknazar et al. [305] suggested the use of Dynamic
Time Warping (DTW) for allowing nonlinear phase adaptation. Both methods are indeed relevant, however, they
were validated in filtering adult ECG using Physionet’s MIT-BIH Arrhythmia Database [161, 286], which contains
patients suffering from a variety of heart conditions, including premature ventricular contraction (PVC). Their
approach, therefore, attempted to adapt the phase of the model to represent those morphologically different
heartbeats. To better cope with those cases of cardiac ectopy, a more suitable extension of the model is the
switching Kalman filter proposed by Oster et al. [314], which changes its ECG model based on the innovation of
the signal.
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on the original filter equation (see Eq. 3.26) no additive noise was associated with the phase

information. Lastly, as proposed by [305], a random additive noise (ηθ,k) was added to the

phase state equation so that the phase is no longer “strictly” linear, but fluctuations around

its modelled values are allowed. Therefore, the resulting model with 3×Nk + 1 [6, 305, 375]

additional state variables is summarized as follows:



f0 : θk+1 = (θk +ωkδ) mod 2π+ ηθ,k

f1 : zk+1 = zk−1 −
Nk∑
i=1
δ
αiw

b2
i

∆θi,k−1exp(−∆θ
2
i,k−1

2b2
i

) + ηz,k−1

f2 : ωk =ωk−1 + ε1,k−1

f3 : α1,k = α1,k−1 + ε2,k−1
...

fNk+2 : αNk ,k = αNk ,k−1 + ε(Nk+1),k−1

fNk+3 : b1,k = b1,k−1 + ε(Nk+2),k−1
...

f2·Nk+2 : bNk ,k = bNk ,k−1 + ε(2·Nk+1),k−1

f2·Nk+3 : φ1,k = φ1,k−1 + ε(2·Nk+2),k−1
...

f3·Nk+2 : φNk ,k = φNk ,k−1 + ε(3·Nk+1),k−1

(3.30)

so that the state xk and noise process wk become:

xk =
[
θk , zk ,ωk , {α1:Nk ,k}, {b1:Nk ,k}, {φ1:Nk ,k}

]T
wk =

[
ηθ,k ,ηz,k{ε1:3·Nk+1,k}

]T . (3.31)

The new state equations may be linearized as in Eq. 3.28 [49, 180, 375]:

F̃k−1 ≈ ∂f

∂xk−1

∣∣∣∣∣∣
wk−1=0
xk−1=x̂k−1|k−1

∂f0
∂θk−1

=
∂f1
∂zk−1

= 1,
∂f0
∂ωk−1

= δ,

∂f0
∂zk−1

=
∂f0

∂αi,k−1
=

∂f0
∂bi,k−1

=
∂f0

∂φi,k−1
= 0,

∂f1
∂θk−1

= −
∑
i

δ
αi,k−1ω

b2
i,k−1

1− ∆θ2
i,k−1

b2
i,k−1

exp−∆θ2
i,k−1

2b2
i,k−1

 , (3.32)

∂f1
∂ωk−1

= −
∑
i=1

δ
αi∆θ

2
i,k−1

b2
i

exp

−∆θ2
i,k−1

2b2
i

 ,
∂f1

∂αi,k−1
= −δω∆θi,k−1

b2
i,k−1

exp

−∆θ2
i,k−1

2b2
i,k−1

 ,
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∂f1
∂bi,k−1

= 2δ
αiω∆θi,k−1

b3
i,k−1

1− ∆θ2
i,k−1

2b2
i,k−1

exp−∆θ2
i,k−1

2b2
i,k−1

 , (3.32 cont.)

∂f1
∂φi,k−1

= δ
αiω

b2
i,k−1

1− ∆θ2
i,k−1

b2
i,k−1

exp−∆θ2
i,k−1

2b2
i,k−1

 ,

∂fi

∂x
j+1
k−1


being x

j
k−1is the jth variable in state vector x

1, if ∀{i = j |i = 2,3, · · · ,3·Nk + 2}
0, otherwise

W̃k−1 =
∂f

∂w

∣∣∣∣∣
wk−1=0
xk−1=x̂k−1|k−1

≈ I(3·Nk+3)×(3·Nk+3) (3.33)

Another improvement proposed by Sameni et al. [370], Tarvainen et al. [420] was adapting

the covariance matrix Rk by using a normalized innovation for state zk such that:

ci =
1
N

i∑
k=i−N+1

(νk)
2

sk
(3.34)

where νk is the second entry of the innovation vector νk presented in Eq. 3.8 that refers to

the MECG amplitude state zk. Similarly, sk is the second diagonal entry of filter-calculated

innovation matrix Sk (see Eq. 3.9). The factor ci then normalizes the estimated innovation for zk
over its estimated variance sk using a moving average window of length N . Such approach, also

present in [166, Sec. 8.11], is termed as information-weighted square innovation. According to

[370], ideally is ci ≈ 1, if it has values greater than unit the innovation signal variance is being

underestimated, while values close to zeros indicate it is being overestimated. The authors then

adaptively updated the matrix Rk by using a AR moving average window of length M:

s2k = λvs
2
k−1 + (1−λv)

1
M

k−1∑
j=k−M

(
sj
)2

(3.35)

where 0 < λv < 1 is a forgetting factor, set to λv = 0.95 in [420]. If M > 1, the adaptation repre-

sents a moving average filter with the ω changing the slope of the filter’s response, otherwise

it is a first order AR model as in [420]. For updating the second entry q2
k of the model noise

covariance Qk , Tarvainen et al. [420] proposes the following correction factor:

q2
k = λw

s2k
p2
k

(3.36)

where p2
k is the second diagonal entry of matrix Pk|k and λw is the update coefficient, empirically

defined. The observation variance (s2k ) is included in order to remove the influence of signal

amplitude of the estimate.
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Further extensions

In Section 3.3.3 several extensions of the linear Kalman filter were presented. Aside from

the EKF, the UKF [370] and Particle Filters [253] have also been applied in the scope of adult

ECG denoising, which could be simply applied to NIFECG signals. In [365], the use of Particle

filters is suggested as future work, however, to date there are no studies known to the author

who applied McSharry’s ECG model using such filters.

Additionally, if a delay in our filter or offline processing is allowed, smoothing may be used.

There are 3 types of smoothing filters: fixed-point, fixed-lag and fixed-interval. In fixed-point

smoothing, the point one intends to estimate is fixed, but the number of measurements continu-

ally changes. Fixed-lag smoothers allow a constant lag of some samples between the newest

measurement and the current estimated sample. The last, and in our case most relevant, type

is fixed-interval smoothing. Fixed-interval smoothers process in batches a fixed interval of

measurements, using all available samples [399, Chap.9], i.e. offline processing. The Extended
Kalman Smoother (EKS) is another extension of the EKF which enables the use of future infor-

mation into improving the current estimate. The EKS algorithm consists of a forward EKF stage

followed by a backward recursive smoothing stage. Due to its non-causal nature, the EKS is

expected outperform the EKF [377].

In [370] a comparison between the EKF, EKS and UKF is presented. According to the authors,

EKS demonstrated the smoothest results, while UKF performed better than EKF. Moreover,

the authors affirmed that the most remarkable differences in estimation occur around sharp

turning points of the signal (e.g. QRS complexes), where derivative-free methods such as UKF

are better suited for strong non-linearities [370]. Based on the presented state-of-the-art on the

EKF model, novel improvements are proposed further in Chapter 4.

3.4 Fetal QRS Detection

Analogous to the analysis of adult electrocardiography, the FQRS complexes obtained from

FECG signals provide a first interesting feature, which can be directly linked to clinical diagnos-

tic information. The current state-of-the-art for FQRS detectors are discussed in this section,

meanwhile multi-channel merging considerations are presented in Section 3.4.1 and statistical

metrics for evaluating these detector’s accuracy and precision are described in Section 3.4.2.

From FQRS detections, one can almost directly derive the FHR (described in Section 3.5) and ob-

tain FHRV parameters (Section 2.3.1). However, the importance of accurate FQRS is not limited

to FHR and FHRV analysis. In fact, reliable detection of fetal peak locations is pre-requirement

for further analysis of FECG’s morphology, since FQRS locations are crucial for segmentation of

the FECG cycle.

Several algorithms have been proposed in the literature for QRS detection in adult ECG.

A comprehensive overview on those methods can be found in Köhler et al. [232]. For the

sake of example, methods may be based on adaptive thresholding [171, 320], filter-banks [3],

matched-filters [123, 220], slope-detection [5, 416] or in representations such as the Hilbert [58]
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or Wavelet transforms [154, 247].

Fetal QRS detectors present in the literature are usually adaptations of adult QRS detectors to

cope with the higher FHR. During the PCINC 2013 several participants made use of this strategy,

including some open-source entries available at Physionet e.g. Behar et al. [54] proposed an

adapted implementation of the Pan and Tompkins [320] algorithm. Another relevant source

of FQRS detection methods is the OSET [363], which includes a maxima search algorithm.

Other examples of this strategy are matched filters [169, 254], slope-detection [337], supervised

machine learning using the ESN algorithm [255], Wavelet transform [9, 155, 269]. Aside from

the PCINC 2013, there is to date no study evaluating the performance of those FQRS detectors

against each other known to the author. Some authors separate the FQRS procedure performed

after FECG extraction (see Figure 3.6) into a “FECG enhancement” and “FQRS detection” step.

In this work, however, the preprocessing performed to enhance the fetal peaks (i.e. feature

extraction) is regarded as part of the FQRS algorithm.

3.4.1 Merging multichannel fetal QRS detections

Most FQRS detectors available in the literature make use of a single extracted FECG channel.

However, real applications usually make use of multi-lead systems (as discussed in Section 3.2.3).

In order to cope profit from this higher data dimensionality, one can either select/merge the

available FECG channels (i.e. prior to FQRS detection), or select/merge the different FQRS

detections available. In any case, some sort of metric for fetal signal quality (i.e. signal quality
index (SQI)) has to be applied for determining which lead(s) to use. Typical measures take

in consideration: 1) the morphology of the FECG signal, such as a kurtosis as “peakedness”

measure; or 2) the pseudo-peridicity of the FQRS detections, i.e. a RR interval regularity.

Therefore, performing the selection/merge after the FQRS detection occurs is advantageous

since a regularity metric for each FECG channel is then available.

While the selection of one single FQRS source to represent the whole measurement may

work in short datasets (e.g. PCINC 201316) , it is sub-optimal for long-term recordings due to

the varying nature of the fetal signal’s SNR. Therefore, adaptively fusion of the information

contained in multiple FQRS detections is a more attractive solution. One solution is to adaptively

(e.g. on every few seconds) choose the lead with the best SQI, the so-called lead switching
approach. An exemplary application of such method was proposed by Johnson et al. [209, 211],

who made use of several SQI measures and lead switching to multi-modal adult beat detection

in obtaining the best scores on the PCINC 2014. Another option is to use weighted or majority

voting to obtain a consensus detections. Such approaches have been often for merging the results

of different QRS detectors/classifiers [205, 283] and for producing consensus from annotations

provided by different experts [170, 429, 479].

16 Behar et al. [54] obtain top-scoring results in the PCINC 2013 by making use of a regularity SQI in selecting the
most periodic FQRS detection source. The method proposed by the author not only used every lead, but also
extracted channels using different extraction methods.

60



3.4. FETAL QRS DETECTION

3.4.2 Detection performance

In order to report FQRS detection statistics different measures were proposed in the literature.

The main goal of these metrics is to assess the accuracy and precision of the obtained FQRS

detections. In an attempt to standardize this assessment, challenge organisers at PCINC 2013

suggested the use of the root mean square error (RMSE) of corresponding RR intervals as scoring

measure for its events 2 and 5 (E2/E5 - in ms) [20, 395]:

E2/E5 =

√√√√
1
Np

N ′p∑
n=1

(
RRtn −RRrn

)2
(in ms) (3.37)

being n the detection index, Np the number of existent reference FQRS anotations, N ′p the

number of FQRS detections available, RRtn each detected RR interval (t = test) and RRrn the

nearest reference (r) RR interval available. However, the measure mixes both precision and

accuracy in one score, which is not optimal for the interpretation of the results.

In order to more clearly present the accuracy of FQRS detections, measures presented in the

American National Standards Institute (ANSI) [26] can be used. Particularly, the number of true
positive (TP) denotes correctly detected peaks, false negative (FN) being existing peaks which

were not detected and false positive (FP) nonexistent peaks that were falsely detected can be

reported. Differing from the adult norm [26] of 150 ms acceptance interval between detection

and reference annotation, to account for the higher FHR a window of 50 ms is usually applied

[20, 52, 477]. Based on from these absolute numbers, the following summary metrics can be

used:

SE = 100 · T P
T P +FN

(in %) P P V = 100 · T P
T P +FP

(in %) (3.38)

where sensitivity (SE) measures the percentage of actual FQRS complexes that were correctly

identified and positive predictive value (PPV) defines the proportion of detected peaks that

indeed correspond to FQRS peaks. Once again, these measures can be condesed into two FQRS

detection accuracy measures, namely accuracy (ACC) [221] and the F1 score [52, 374]:

ACC = 100 · T P
T P +FN +FP

[%] (3.39)

F1 = 100 · 2 · P P V · SE
P P V + SE

= 100 · 2 · T P
2 · T P +FN +FP

(in %) (3.40)

ACC is simply the percentage of the correctly detected peaks, over all detected and un-detected

peaks, while F1 provides the harmonic mean between SE and P P V , therefore summarizing

those measures in one score. Despite some criticism [339, 340], the latter measure is particularly

suitable for situations when the average of rates is desired [51, 374].

Beyond the presented metrics for evaluating FQRS’s window-based accuracy (i.e. SE, P P V

and F1), a distance measure is necessary to discriminate between precise and imprecise detec-

tions, e.g. if any jitter occurs, information which is not captured by window-based metrics.

Andreotti et al. [18] suggest the used of the mean average error (MAE). MAE consists of the

absolute time difference between the reference annotation time-stamp (QRSrn) and detected
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Figure 3.10: Exemplary fetal HR tachogram from own clinical data. Highlighted around the
beat number 760 there is a clear example of missing beat, on which the FHR is assumed to
be the half as its baseline value. The consequence of detection jitter on the FQRS is also high-
lighted (around beat number 800) and is characterized by a shorter FHR estimate followed by
a longer, or vice-versa.

annotation (QRSdn ). In order to make this distance criterion independent from the detection

accuracy, Andreotti et al. [18] only made use of T P detection peaks in the MAE calculation.

Therefore, MAE is expressed as in Equation 3.41:

MAE =
1
T P
·
T P∑
i=n

|QRSri −QRSdi | (in ms). (3.41)

Aside from the mean detection jitter (i.e. MAE), the standard deviation of the detection

jitter, which measures the spread of the FQRS detections, has also been referred to in the

literature [148, 176]. In order to perform a proper benchmark of the FQRS detector’s capabilities,

results should always be presented for both accuracy and distance (or spread) [18]. For further

information on FQRS metrics, the reader is referred to [51].

3.5 Fetal Heart Rate Estimation

As presented in Section 2.3.1, the FHR is the most often used parameter in clinical routine

to evaluate the fetal health state. This parameters is usually obtained through the Doppler

ultrasound (averaged using a ca. 3.75 s window interval) or using the STAN monitor during the

intrapartum period. Since the accurate FQRS are a pre-requirement but are generally faulty

(e.g. missing detections), the attained FQRS need to be preprocessed before further analysis

(presented in Section 3.5.1). Considering that accurate FHRs are available, the analysis shown

in Section 2.3.1 may be applied.
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3.5.1 Preprocessing the fetal heart rate

Despite one’s best effort on obtaining accurate detections, FQRS are usually imperfectly

identified. These inaccuracies may have physiological, pathological or technical origins [326].

For instance, according to Clifford et al. [88], the fiducial markers should always be set on the

onset of the P-wave rather than on the R-peaks, since this is a more accurate marker of the

sinoatrial node stimuli. However, the R-peaks are considerably simpler to detect, particularly in

the NIFECG case. Aside from this technical difficulty, several other aspects should be considered.

Peltola [326] presents an overview on available methods for preprocessing HR tachograms, while

Clifford [86] provide a more in-depth analysis of available methods.

The RR series obtained from ECG recordings are usually functions of the number of heartbeats

instead of time (usually in beats per minute (bpm)) [249]. Figure 3.10 exhibits an exemplary fetal

RR series tachogram, obtained by taking the first derivative of the FQRS timestamps (in s) and

dividing its inverse. As Figure 3.10 hints, some of the common difficulties encountered when

analyzing FHRV. These may have a technical (e.g. detection jitter, missing detections or uneven

sampling) or a pathophysiological origin (e.g. ectopic beats). Different preprocessing methods

are available in the literature to treat each of these events. Despite being an interesting research

topic, such techniques to process heart rate series exceed the scope of this work. As previously

explained, this work focuses on more fundamental problems in the signal processing of FHR

rather than clinically interpreting those results. For this reason, in this work 5 seconds moving

median windows with 1 second overlap were applied when calculating FHR estimates. This

approach is specifically applied in Section 4.3.2, where a multichannel approach to improve

FHR estimates is proposed.

3.5.2 Fetal heart rate statistics

Similarly to the F1 accuracy metric presented for FQRS detections, the heart rate detection
rate (HDR) has been often applied in adult HR detection. HDR assesses the percentage of the HR

values within ±5 bpm tolerance [27] of the reference HR annotations (regarded as TP estimates)

[51, 52]. On the fetal case, this tolerance was modified to ±10 bpm to reflect the higher FHR

(accelerations and decelerations of the FHR are usually defined by changes greater than 15 bpm

[12]). HDR results (in percent) are given by dividing the number of TP by the total number of

measured FHR estimates [22], i.e. similar to Eq. 3.39, as follows:

HDR = 100 · T P
T P +FN +FP

(in %) (3.42)

As for precision metric, the distance between the produced FHR and the reference values were

also often used in the literature. Its use is particularly relevant when some averaging window

is applied in producing the RR estimates (e.g. CTG’s 3.75 s averaged FHR values). During the

PCINC 2013, the mean square error between matched reference and test FHR measurements

(i.e. FHRr and FHRt, respectively) at 12 instances for each recording (on every 5 s) [20, 51, 395].
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The scoring statistic was used for the Events 1 and 4 (E1/4 - in bpm2):

E1/E4 =
1

12

12∑
i=1

(
FHRtn −FHRrn

)2
(in bpm2) (3.43)

As before, the Challenge scoring is hardly interpretable and depends on pre-defined Physionet

WFDB functions (see [161, 398]). In this work, a more straightforward measure is used, namely

the RMSE between reference and test FHR, described as:

RMSE =

√√√√
1
Np

N ′p∑
n=1

(
FHRtn −FHRrn

)2
(in bpm) (3.44)

3.6 Fetal ECG Morphological Analysis

In Section 2.3.2 the three major parameters used in fetal morphological analysis were clarified,

namely the FQT, FST and the FTQRS. Due to the lack of standards for FECG morphological

analysis, there are several aspects of this evaluation that require further investigation. In

this section, focus is put on the signal processing tools that enable the derivation of these

morphological features. Further on, metrics on how to evaluate the accuracy of such estimated

measures are proposed.

The first aspect to be regarded is the bandwidth used while extracting the NIFECG signal,

since it can deform the fetal signal, e.g. the T-wave. Throughout this work the signal bandwidth

was configured as recommended by the American Heart Society for adult electrocardiography

[231] (as further described in Section 4.1). Similarly, the extraction method used (see Sec-

tion 3.3.1) is expected to have an impact on those parameter estimates and are evaluated in

Chapter 6.

Another important consideration is whether the morphological features should be obtained

on a beat-to-beat basis or on an averaged FECG template. The first option is obviously more

attractive, however due to the usually low SNR of the fetal signal it is impracticable, making the

use of averaged FECG beats imperative17. As an example, even though direct FSE recordings

comprise a much higher FECG SNR, commercial equipments such as STAN, still makes use

of this averaging procedure. For this reason, this work is restricted to the analysis of FECG

template beats. A general signal processing scheme for obtaining the aforementioned features is

presented in Figure 3.11.

Template generation plays an important role in this analysis, important details are the

number of average beats, which central tendency measure is used (e.g. mean, median), and if

low correlating or ectopic beats are excluded from final template. In preliminary works [18] the

template construction method proposed by Oster et al. [314] has provided better results than

similar methods, therefore it is used in this thesis.

The template generation step is followed by beat segmentation, which aims at finding the

17 On a side note, in fact, even for adult ECG analysis there are no current standards and signal-averaging is not a
consensus among researchers, despite its wide usage in the literature (e.g. [85, 132, 162, 473])
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Figure 3.11: Signal processing steps for morphological analysis, regarding morphological features
shown in Figure 2.2.

necessary fiducial points, i.e. locations for Q-onset, T-offset as well as T-peak. Several ECG

segmentation algorithms have been proposed in the literature [203, 269, 376, 381, 451], however

current algorithms are mainly designed and trained using adult ECG databases and are likely to

be sub-optimal for FECG analysis. To the authors best knowledge, the only FECG segmentation

algorithm present in the literature is an adaptation by Hurezeanu et al. [195] of the Wavelet

delineation algorithm from Martinez et al. [269]. Additionally, despite the large number of adult

segmentation algorithms available, only a very few of those have been made open-source such

as: the ecgpuwave [203], as part of the WFDB toolbox [161, 398]18, and very recently the Wavelet

delineation script [269], made available under the ecg-kit19. As demonstrated in Figure 3.11,

the last step is an heuristic treatment of the obtained fiducial locations. This simple step is

necessary for making sure that the fiducial annotations are valid, e.g. from the physiology not

too short/long.

At last, one can define the FQT and FTQRS errors as [18]:

F̃QT =
1
N

N∑
i=1

∣∣∣FQTabdm −FQTref ∣∣∣ (in ms) (3.45)

˜FTQRS =
100
N
·
N∑
i=1

∣∣∣∣∣∣ FTh,abdmFQRSabdm
− FTh,ref
FQRSref

∣∣∣∣∣∣ (in %) (3.46)

Alternatively, if simulated data is used, distance measures such as the MSE or SNR between the

fetal reference and an extracted signals could be applied Behar et al. [51].

3.7 Problem Description

Despite the rich and growing literature that focus on NIFECG extraction and FQRS detection,

few of those works are actually reproducible. This is mainly due to the lack of common dataset

and open-source software. Due to its versatile framework, many authors make use of the EKF

approaches (described in Section 3.3.4). However, EKF heavily depends on a well-representative

model and is sensitive to its initialization/calibration. The non-observance of these aspects leads

to the undesired suppression of fetal peaks, either when MECG temporal overlap occurs (lack

of trust in model) or partial suppression of the FECG due to (noise overestimation – remember

that the FECG is treated as noise). In this work, those topics were further explored, particularly

regarding the MECG/FECG modelling. Therefore, three aspects are further explored: i) the

18 Available at: https://www.physionet.org
19 Available at: https://github.com/marianux/ecg-kit
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creation of the MECG template/model, ii) the varying presence of measurement noise, and

iii) the ill-conditioned assumption that the FECG can be represented as WGN. A systematic

calibration procedure is carried out to guarantee the general validity of the designed filters.

Regarding FQRS detection and FHR estimation (presented in Section 3.4-3.5), as can be

seen on the PCINC 2013-related papers, current techniques are often faulty. This problem is

addressed in this work by using two different multichannel FQRS/FHR correction methods,

which take into consideration different signal quality metrics that weight down unreliable

detections. One of those techniques is considered as responsible for the author’s first-place

award and top-scores on PCINC 2013 competition [20, 21], as further clarified.

3.8 Chapter Summary

In this chapter, current prenatal diagnostic techniques were presented and the benefits from

NIFECG clearly stated. Further, an overview on NIFECG extraction algorithms was provided.

Further in this section, the discrete-time KF and EKF algorithms were briefly derived. In Sec-

tion 3.3.4 the current state-of-the-art on EKF for FECG extraction was presented. Particularly

two models were presented, the 2-state EKF algorithm [370] (henceforth named EKF2), ex-

tended states EKF [6, 375] (henceforth called EKF24 - i.e. 3·Nk + 3 states, considering Nk = 7 as

discussed in the next chapter of this work). In Sections 3.4-3.6 the metrics to assess FQRS, FHR

and FECG morphology parameters were presented. In Section 3.7, the current challenges on

NIFECG signal processing that were addressed in the remaining of this work were clarified. In

the next chapter, novel methods are proposed to deal with the limitation of current techniques.
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All models are wrong, but some are useful.

– George E.P. Box (1978)

4
Novel Approaches for Fetal ECG Analysis

In this chapter, newly developed approaches for NIFECG analysis are presented. These

methods are divided into NIFECG extraction (Section 4.2) and FQRS/FHR correction methods

(Section 4.3). Before proceeding with the proposed improvements on FECG signal extraction

and FQRS detection/correction performed throughout this thesis, some preliminary issues

about the available signals are presented in the following section.

4.1 Preliminary Considerations

Regarding NIFECG’s signal processing chain (see Fig. 3.6), preprocessing is an important

step, on which FQRS detection results or morphological analysis strongly depend. For this

reason, before proceeding, some definitions on the following aspects shall be considered:

• bandpass filtering range;

• MQRS reference and re-alignment;

• initialization window allowed and online/offline execution strategy;

• channel selection.

The pre-filtering bands are a crucial aspect of NIFECG research on which depending on the

application the final results may be heavily influenced. For instance, if the aim is to detect FQRS

complexes, a narrower band is required than when the focus is on FECG morphological analysis.

While dealing with FQRS detection accuracy, Behar et al. [54] evaluated different high-pass

cut-off frequencies using several extraction methods. For most approaches by raising the higher

cut-off frequencies to 10 Hz, an improvement of up to 3% in the F1 (see Section 3.4.2) occurred.

On the order hand, for morphological analysis a higher cut-off will lead to P and T-wave

distortion and suppression (see Kligfield et al. [231] guideline for adult electrocardiography).

67



4.1. PRELIMINARY CONSIDERATIONS

In this work, two passing bands (henceforth called narrow and wide bands), were defined as

in Andreotti et al. [18]. Both bands made use of a low-pass cutoff frequency at 100 Hz and used

Butterworth zero-phase filters. The narrow band consists of a 3rd order low-pass and 5th order

high-pass filter with cutoff at 3 Hz. Meanwhile the wide band made use of a 7th order low-pass

filter and 8th high-pass filter with cutoff at 0.5 Hz, in order to preserve most of the fetal T-wave.

Both filters were designed to match a 20 dB attenuation at the stop-band and 0.1 dB gain at

the pass-band) [18]. Additionally, an infinite impulse response (IIR) notch filter was included for

suppressing the powerline interference suppression at 50 or 60 Hz (±1 %).

With regards to MQRS locations, as mentioned in Section 3.3.4 EKF extraction strongly

depends on a reliable MQRS reference annotation. As discussed in Section 3.2.3, NIFECG

analysis can greatly benefit from the presence of a MECG reference lead with little additional

computational effort and increase in hardware complexity. Therefore, in this work it is assumed

that a MQRS reference is available. From the author’s own experience on collecting this study’s

clinical data, a MECG channel is not a too restrictive assumption and the benefits are valuable.

In order to align this maternal reference to each abdominal channel’s peak a re-alignment was

performed. During EKF’s initialization, the absolute maxima around each maternal references

peak with a window of ±100 ms was sought. The average lag between reference and maxima

location was then regarded as re-alignment factor and every MQRS annotation is shifted by this

factor before the extraction takes place.

A common strategy for signal processing algorithms running on biomedical devices is to

allow a short initialization period, after which algorithms should be able to run online. Aiming

at producing online methods for NIFECG, throughout this work an initialization window of

60 seconds is used for every extraction method. Moreover, for the same reason no offline

smoothing filter was applied. In the scope of NIFECG such initialization window is interesting

since it allows a reproducible comparison between TS, AM and BSS extraction methods, by

allowing that each technique:

• TS: generation of initial template;

• AM: initialization of adaptive filter coefficients or training period;

• BSS: mixing matrix calculation;

Channel selection is another topic to be considered when dealing with multichannel record-

ings of abdECG signals. Indeed the information obtained from bad quality channels should

be weighted down (or discarded). However, to date there is no consensus for assessing the

signal quality in NIFECG recordings. Moreover, adult SQI metrics are prone to confound be-

tween FQRS and MQRS complexes. For this reason, in this work, no channel selection on the

preprocessing step is performed. Instead, the extraction algorithms (developed in Section 4.2)

were applied on every available channel and, by using specifically designed fetal SQI metrics

in association with novel FQRS detectors (further shown in Section 4.3), the information from

multiple channels is fused.
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4.2 Fetal ECG Extraction by means of Kalman Filtering

In Section 3.3.2 it is noticeable that the “art” of Kalman filtering consists of optimizing its

model. In Section 3.3.4, two state-of-the-art variants of the EKF model for NIFECG analysis

were presented, namely the 2-state model EKF2 and the extended state model EKF24 (with

3·Nk + 3 states, considering Nk = 7 further defined in Section 4.2.1). These models serve

as basis for this work’s developments, which were implemented in MATLAB®environment

as described in Section 3.3.4. Regarding EKF24’s implementation, the extended states (see

Eq. 3.31) do not strictly require the same update rate as the first two states (i.e. phase and

amplitude of the MECG signal), since these processes are expected to have a slower rate of

change. For avoiding unnecessary computation, an update frequency was empirically set to 10%

the sampling frequency of the NIFECG signal (fu = fs/10). In the following subsections, novel

improvements on the Kalman model are proposed, which are benchmark using both EKF2 and

EKF24 as reference in the following chapter.

4.2.1 Optimized Gaussian approximation

As described in Section 3.3.4 and illustrated in Fig. 3.7, EKF’s dynamic model is obtained by

wrapping and coherent averaging MECG beats to generate the so-called MECG template. The

maternal template is henceforth denoted using the simple time-discrete notation tm[n], since

the template is converted from polar notation tm(θk), where {θk} ∈ [−π,π] the phase into bins

with k ∈ {1, ...,300} bins. As explained in the aforementioned section, tm[n] is approximated

using a number Nk of Gaussian kernels, whose parameters αi (amplitude), bi (width/standard

deviation) and φi (position) with i ∈ {1, ...,Nk} are optimized to fit the template (see Fig. 3.7-c).

This optimization procedure was solved as proposed by Clifford [87], Clifford et al. [91] using

the nonlinear least-squares approach, e.g. using the lsqnonlin function from MATLAB® [362].

Initial values for each kernel parameters were defined by the local template amplitude (i.e.

αi = tm(φi)) and the fixed width bi = 0.04 rad. Although Clifford [87] allowed these positions

to vary, Sameni et al. [370] fixed the initial positions (φi) for these kernels for simplicity and

stability, this latter procedure is denoted as fixed fitting (FF) in this work. The widely varying

abdominal projections may hinder such a generalization of initial parameters. Moreover, due

to the discontinuities present in the MECG waveform (e.g. the QRS complex) the pursuit for

global minima is not straightforward and the optimization function may return a position of

local minimum.

Based on the limitations of the existent approaches, in this work an improved approached

for performing this optimization procedure was suggested in Andreotti et al. [17]. Based on

the hypothesis that the approximation of tm(φi) can be improved by introducing an intelligent

initialization procedure, relying on an iterative approach that exploits the effects of random

initialization and on the Stationary Wavelet Transform (SWT) technique. In the following section

the suggested SWT approach as well as alternative techniques suggested in the literature are

explained.
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4.2. FETAL ECG EXTRACTION BY MEANS OF KALMAN FILTERING

Gaussian fitting strategies

In the FF initialization, the pre-determined kernel positions were obtained from publications

that followed the works from McSharry et al. [275]. Specifically, for Nk = 5 [275], Nk = 6 [91],

Nk = 7 [87, 91] and for Nk = 9 to 11 [364]. Additionally, a model for Nk = 15 was extrapolated

from the model using 11 kernels by inserting 4 new kernels between the existing ones. A

similar approach for the FF can be achieved by simply distributing these Nk kernels uniformly

within the interval [−π,π], which is here denoted uniform fitting (UF). For both FF and UF, the

optimization procedure was performed considering as lower/upper bounds ±2 its initial values

for each parameter αi , bi and φi , regardless of their units (i.e. mV or radians). The number of

steps permitted for the optimization procedure was limited to 100×Nk .
Another method suggested in the literature is a brute-force search method based on the FF/UF

approaches. However, the method has the remarkable distinction of being stochastic. The so-

called random search fitting (RSF) [52] initializes the Gaussian kernel parameters at random

positions and repeats the optimization procedure several times. The best results, defined as the

minimal normalized mean square error (NMSE) fitting the Gaussian to the MECG template, are

kept and further used. This exhaustive search approach was previously used in the NIFECG

context by Behar et al. [53, 54]. As in the previous approaches, the Gaussian kernels’ parameters

were searched using 100×Nk steps1 of the optimization procedure, the best results were then

selected.

An alternative deterministic algorithm for initializing the Gaussian kernel positions based

on the cross-correlation between the MECG template and pre-defined Gaussian functions with

varying standard deviations was proposed in [87]. As mentioned by the authors, the use of

wavelet scaling functions is an alternative to the cross-correlation procedure. Aiming at im-

proving the computational efficiency of this optimization procedure, this author (see Andreotti

et al. [17]) proposed an approach using the SWT framework. The SWT is a discrete version

of the Wavelet transform, which provides translation invariant output. The computational

efficient calculation is performed by using the algorithme à trous [182], which upsamples and

zero-pads the filter coefficients instead of performing downsampling (therefore, the approach

is also called the undecimated wavelet transform). This property makes the SWT a redundant

scheme computationally more complex than the discrete wavelet transform (DWT). Aside from

the Wavelet algorithm used, the choice for wavelet is very important. In this work, the quadratic

spline wavelet [262] was applied, due to its qualitatively resemblance to Gaussian kernels (see

Fig. 4.1).

Note that the approach does not rely on the wavelet coefficients themselves, instead it exploits

a side effect of the iterative scheme to calculate the transform, namely the low-pass filters. In this

work, the first six dyadic scales were used i.e. 2j , j ∈ {1, ...,6}. Since the low-pass filters (scaling

functions) have different number of samples at different levels, their signal power vary. In order

to normalize this power, the SWT was calculated and further divided by the standard deviation

1 Despite having used a fixed number of iterations, the author acknowledges that to reduce the total iterations in
more practical scenarios may required the inclusion of a tolerance threshold. That is, when the model reaches an
acceptable fitting error the optimization procedure should be terminated.
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Figure 4.1: First four low-pass convoluted filters for quadratic spline wavelet (from (a)-(d)).
Being li for i ∈ [1,4] the low-pass filters at each level, when regarding the filter-bank scheme
for the SWT. These filters are used in locating optimal positions for fitting Gaussians (at
various scales / widths) into a MECG template.

of the low-pass filter and template, i.e. using the cross-correlation coefficient, described in the

following Equation 4.2:

ai[n] = tm[n] ∗ (l1 ∗ l2 · · · ∗ li) [n]︸             ︷︷             ︸
l1..i [n]

(4.1)

ai[n] =
(tm? l1..i) [n]
σtmσl1..i

for i ∈ [1,6] (4.2)

where ai (not to be confounded with Gaussian amplitude αi) is the approximation at scale i and

? represents the cross-covariance operation. The initial position for each kernel is iteratively

defined as the absolute maxima of the approximation (i.e. |ai[n]| with i ∈ [1,6]). For each kernel,

the nonlinear least squares optimization procedure was employed with a maximal number of

100 steps for fitting αi , bi and φi parameters, as in the previous approaches. Three variants of

this iterative approach, here denoted stationary wavelet transform fitting (SWTF), were evaluated

as follows:

• implementation as previously explained, henceforth denoted as “SWTF1”;

• inclusion of constraints to the optimization procedure, variant here denoted as “SWTF2”:

– direction constraint to each αi based on current unnormalized scale amplitude value

to avoid kernels from changing sign;

– each bi was initialized with the current scale’s standard deviation to dynamically

give it a realistic starting value;

– for eachφi fitting, a shift of ±π/10 was allowed to avoid that kernels adapt themselves

to other waves;

• after applying the SWTF2, the selected Gaussian parameters were used as input for a last

optimization round, i.e. performing the fine-tuning all Nk kernels at once. This latter

method is here named “SWTF3”.
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Figure 4.2: Stationary wavelet transform fitting. Inclusion of first (top) and third (bottom)
Gaussian kernels.

Database and Validation

In order to evaluate which of the proposed methodologies can most accurately approximate

tm, the clinical dataset collected during this work and further described in Section 5.2 was used.

Template generation was performed once for each abdominal channel in each recording during

the initialization period, totalizing 168 templates. The goodness of the fit (GOF) was selected as

performance measure, which is based on the NMSE as follows:

GOF = 1−
∥∥∥∥∥∥ tm[n]− t̂m[n]
tm[n]− tm[n])

∥∥∥∥∥∥︸              ︷︷              ︸
NMSE

,

t̂m[n] = interp

 N∑
i=1
αi · exp

− (θk −φi)2

2 · b2
i

 ,
(4.3)

where GOF = 1 represents a perfect fit, ‖.‖ is the Euclidean norm operator, and interp() is the

interpolation function to convert templates from a polar notation to the predefined number of

bins (Nb).

Since the ECG modelling procedure is a fundamental part of the EKF’s initialization and

common for all Kalman variants presented along this chapter, it is here treated as preliminary

work. Therefore the results and discussion are exceptionally shown within the next sub-
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Table 4.1: Results for different fitting methods evaluated (shown as median ± (interquartile
range - IQR). Methods used include fixed (FF), uniform (UF), random search (RSF), and vari-
ants of the SWT fitting approach (SWTF). The best results are highlighted for each number of
kernel (Nk).

(a) Results for GOF (n.u.)
Nk /

Method 5 6 7 9 10 11 15

FF 0.95 (0.09) 0.19 (0.26) 0.18 (0.22) 0.99 (0.03) 0.98 (0.06) 0.99 (0.03) 0.99 (0.05)
UF 0.19 (0.19) 0.21 (0.21) 0.97 (0.07) 0.32 (0.59) 0.99 (0.02) 0.94 (0.73) 0.99 (0.57)
RSF 0.98 (0.03) 0.99 (0.02) 0.99 (0.02) 1.00 (0.01) 1.00 (0.01) 1.00 (0.01) 1.00 (0.00)

SWTF1 0.96 (0.04) 0.97 (0.03) 0.98 (0.02) 0.99 (0.01) 0.99 (0.01) 0.99 (0.01) 1.00 (0.01)
SWTF2 0.96 (0.04) 0.97 (0.03) 0.98 (0.02) 0.99 (0.01) 0.99 (0.01) 0.99 (0.01) 1.00 (0.01)
SWTF3 0.97 (0.02) 0.98 (0.02) 0.99 (0.01) 0.99 (0.01) 1.00 (0.01) 1.00 (0.01) 1.00 (0.01)

(b) Computational time (in seconds)
Nk /

Method 5 6 7 9 10 11 15

FF 0.11 (0.07) 0.27 (0.33) 0.26 (0.44) 0.23 (0.17) 0.32 (0.20) 0.35 (0.24) 0.47 (0.36)
UF 0.15 (0.15) 0.24 (0.32) 0.14 (0.08) 0.37 (0.45) 0.28 (0.14) 0.49 (0.44) 0.58 (0.77)
RSF 19.7 (12.7) 26.3 (15.3) 33.7 (18.0) 50.2 (25.3) 59.2 (26.7) 68.2 (31.0) 102.3 (45.7)

SWTF1 0.10 (0.03) 0.11 (0.03) 0.13 (0.03) 0.15 (0.03) 0.17 (0.04) 0.18 (0.04) 0.24 (0.05)
SWTF2 0.09 (0.02) 0.10 (0.03) 0.11 (0.03) 0.14 (0.03) 0.15 (0.03) 0.17 (0.04) 0.22 (0.04)
SWTF3 0.14 (0.04) 0.16 (0.06) 0.20 (0.08) 0.28 (0.12) 0.32 (0.13) 0.35 (0.18) 0.55 (0.23)

section. Further developments presented in this chapter are evaluated in Chapter 6 (Results)
and discussed in Chapter 7 (Discussion).

Preliminary results and discussion

Table 4.1 shows median results for GOF and computational time using a Dell Optiplex 760

desktop computer with Intel® CoreTM2 Duo E8400 3.00 GHz processor with 16 GB of RAM.

Meanwhile, Figure 4.3 provides a graphical glimpse on the results.

Table 4.1a and Fig. 4.3 show that both SWTF and RSF methodologies were able to provide

better fits for the average MECG beat than the fixed model in the NMSE sense. Moreover, the

generally poor and highly varying performance obtained by UF highlights how sensible the

nonlinear least-squares optimization procedure is to its initialization, which advocate for the

use of non-parametric techniques as SWTF and RSF. Results for SWTF3 demonstrate that if the

many initial parameters are well adjusted, the optimization routine is able to produce even better

results than iteratively positioning each kernels (as in SWTF1 and SWTF2) [17]. Meanwhile,

from investigating Table 4.1-(b) it becomes clear that SWTF approaches are computationally

efficient particularly for larger number of kernels.

When compared with RSF, SWTF3 is 140 to 180 times faster with very little distinction in the

GOF (see Table 4.1). Based on the superior results, from this point onwards Nk = 7 kernels are

used and fitted during EKF’s initialization by means of the SWTF3 approach.
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Figure 4.3: Comparison of best performing fitting methods. Fixed and uniform fittings are
omitted for visibility purposes, since their results are occasionally much lower than that of
RSF and SWT approaches (see Table 4.1. Missing variants are due to the lack of models de-
scribed in the literature. Goodness of fit is shown (on the top) and the semi-log bar graph of
median computational time (at the bottom), with input computational time in milliseconds.

4.2.2 Time-varying covariance matrices

When comparing the EKF24 model with the simpler EKF2, by modelling the angular velocity

ωk and Gaussian parameters as time-varying AR models the system becomes considerably more

dynamic. That means, it can theoretically better track the non-stationary characteristics of the

MECG such as HRV changes (with ωk) and morphological features (with Gaussian parameters)

such as T-wave amplitude changes over time. Figure 4.4 illustrates this adaptability. Since this

evolving characteristics for the model are implemented, there is no explicit need for updating the

model noise covariance Qk . On the other hand, these modifications do not provide information

on the current level of confidence that one has on the measurements (i.e. covariance matrix Rk).

Based on the works of [370, 420] (mentioned in the Section 3.3.4), the idea of a time-variant Rk
is further evaluated throughout this section.

Independent from the EKF variant used, the premise is that the uncorrelated WGN processes

are well-represented by their respective noise covariance matrices. In real applications, however,

these conditions vary with time. For instance, the measurement noise SNR of each abdominal

lead is expected to change through time, as the fetus moves, muscular and ambient artefacts
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Figure 4.4: Evolution for ωk (a) and αi,k (b) states using the EKF24. In this example a Case 2
(see Table 5.1) is portrayed, where there is a clear change in maternal HR. As it can be seen,
ωk is capable of reliably follow those changes. Some slow evolution of αi,k is also visible.

occur (see Fig. 3.2). For this reason, the filter could benefit from an adaptive measurement

noise covariance Rk . The observed phase θk noise (i.e. vk(1)) depends on the robustness of the

MQRS and quantization errors (i.e. jitter) due to the signal sampling frequency. The initial

variance R0(1,1) = (ωδ)2 (see Eq. 3.29) is a conservative error estimate for the quantization.

However, since accurate MQRS detections are assumed to be a pre-condition (see Section 4.1),

the adaption of the first observed state covariance is not performed. The noise in amplitude

information zk (i.e. vk(2)), on the other hand, is initialized with the average signal variance

σ2
f it. As the recording progresses, artefacts should have a direct impact on the reliability of

such estimate. For this purpose, as described in [166, 370], it is convenient to monitor the

innovation covariance matrix (Sk - see Eq. 3.8 and 3.9) throughout the EKF filtering procedure

[180]. Monitoring these variables provides means of rejecting anomalous measurement data

and monitoring the fidelity of the filter and updating the values for the measurement noise

covariance matrix. In this work, differently from the constant correction factor proposed by
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Sameni et al. [370], a correction is applied only in cases when the innovation covariance exceeds

a given confidence interval as further shown.

As explained in Section 3.3.2, on the linear case the innovation is a random, zero-mean

and Gaussian distributed variable, which should be independent and white as long as the KF

properly works [277] (for EKF this is only marginally true). If that is the case, Sk (from Eq. 3.9

should match the true innovation covariance matrix, i.e. σ2
S,k = E[νk(2)·νk(2)T ]. If this is not

true, considering Eq. 3.9 it can be concluded that either Pk|k−1, H or Rk does not represent the

system anymore. Since several improvements to the EKF model took place as demonstrated on

the previous chapter, it can be assumed that Rk (i.e. R0 for the invariant case) is the cause for

such mismatch. An online adaptation for rk (i.e. noise relative to zk , following the notation from

Section 3.3.4) is attained from Eq. 3.9 as [180, 277]:

rk = σ2
S,k − h·pk|k−1·hT , (4.4)

where h represents the second row of the observational matrixH and pk|k−1 is the second element

on the main diagonal of Pk|k−1. Assuming that the innovation νk ∼N (0,Sk), one can empirically

estimate the true innovation variance as the sample variance S2 [180, 277, 307]:

Ŝ2 =
1

L− 1

k−L∑
i=k

(νi(2)−E[νi(2)])2 =
1

L− 1

k−1∑
i=k−L

ν2
i (2), (4.5)

where the L is the number of samples that should be averaged. Ŝ2 is a random variable, whose

sampling distribution follows a Chi-square distribution (S2(L−1)/Sk(2,2) ∼ χ2
L−1). Therefore, while

updating rk (in Eq. 4.4), it is important to make sure that the empirical value Ŝ2 has values

outside a given confidence interval (CI), i.e. it is very probable that E
[
S2

]
, h·pk|k−1·hT . In this

work a 99% CI is used, in case the empirical variance exceeds these limits rk shall be updated.

The CI for the χ2 distribution with L degrees of freedom, is given by [180]:

CI =

 L · S2

χ2
1− α2 ,L

,
L · S2

χ2
α
2 ,L

 . (4.6)

The specified χ2 quantiles are obtained based on [180] as:

χ2
1− α2 ;L = 0.5(

√
2L− 1 + 2.58)2, (4.7)

χ2
α
2 ;L = 0.5(

√
2L− 1− 2.58)2. (4.8)

An implementation detail is the definition for the value L. This window length should make

sure that it represents actual SNR changes and not physiological changes on the MECG signal

amplitude, e.g. due to shift of the cardiac vector during respiration. For this reason, in this work

L was empirically set to comprise 10 MECG cycles [180], i.e. L = 10 · (2π·fs/ωk). Moreover, the

changes in the rk process are expected to be slower than the EKF filter. For avoiding unnecessary

computational effort, rk is updated with a frequency that equals 10% the signal’s sampling

frequency, similarly to the extended state update in EKF24 variant previously mentioned. In
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Figure 4.5: Example of covariance matrix adaptation using EKF2. In this example a Case
3 is portrayed (i.e. muscular artefact - see Table 5.1), where a large change in SNR due to a
simulated uterine contraction is presented. As it can be seen, rk is able to reproduce those
changes in signal quality.

Fig. 4.5, this adaptive concept put to test using a dataset simulating a large muscular artefact

due to uterine contraction. As it can be seen from this figure, the noise covariance matrix is able

to reflect those changes in signal quality. This proposed adaptive variant is henceforth named

vEKF2 and vEKF24 for the EKF2 and EKF24 filters, respectively.

4.2.3 Extended Kalman filter with unknown inputs

Despite its practical success in the literature, up to date most2 of the proposed models

using the EKF framework attempt to estimate the MECG while considering the FECG signal

as part of the signals noise process. This assumption, however, is not always appropriate since

one considers that the FECG signal is a zero-mean, white and Gaussian random process (as

described in Section 3.3.2) [156]. In practice, due to the FECG signal’s actual nature (and of

course, depending on the filters initialization) implementations of the EKF tend to estimate

part of FQRS peaks as MECG estimation, leading to attenuated fetal peaks on the estimation

residuals. This is particularly visible when MQRS and FQRS complexes are overlapped in

time, as described by [304]. The fact that this exogenous input (i.e. the FECG) is present

transforms the NIFECG estimation problem into an state estimation and identification problem.

An attractive theoretical solution to such problems containing highly non-Gaussian signals as

input is the inclusion of an “unknown input” vector dk on the filter equations. In such systems,

it is assumed that no prior information on dk is available regarding its dynamics or statistics

[425]. In this section this novel formulation, applied to our EKF models, is further explored.

Some of the pioneer works in treating linear systems with exogenous unknown inputs are

2 Two exceptions are Dual EKF models proposed by [53, 304], which take into consideration both FECG and MECG

for its model. This is performed by including additional states for the fetal phase θ
f
k and amplitude z

f
k to the

state-space model (see Eq. 3.26). However, these approaches require the FQRS locations as well as information on
the dynamics of the signal (on those works, also approximated using a sum of Gaussian kernels).
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[103, 186, 191, 223, 229]. These methods usually modify the filter’s equations (described

in Eqs. 3.15 and 3.16) and are separated into methods with or without direct feedthrough.

Systems with direct feedthrough [102, 131, 160, 186, 425, 471] model the exogenous unknown

input in both process and measurement equations of the filter. On the other hand, systems

without feedthrough describe this unknown input either in the process (e.g. [103, 158, 191,

229, 319, 425]) or in the measurement equation (e.g. [319, 425]). The decision of which of these

approaches to take depends on the way the system is modelled, but does not imply limitations

to the filter.

The inclusion of an unknown input in the EKF system generates concerns about the system’s

unbiasedness, minimal variance, rank deficiency (i.e. in case the direct feedthrough matrix from

the unknown input to system measurement is not full rank), and stability. Several approaches

have been proposed in the literature to cope with these model inadequacies. For instance,

Darouach et al. [103], Kitanidis [229] have proposed MVUE filters without feedthrough, which

served as base for further optimal implementations with direct feedthrough by [102, 186].

However, these methods did not enable the estimation of the unknown input itself. For this

purpose, Gillijns and De Moor [158], Hsieh [191] developed simultaneous input and state filters

that were also MVUE for systems without direct feedthrough. While some approaches e.g. [131]

require the feedthrough matrix to have full rank, others [192] focus on treating rank deficiency

at cost of a biased input estimate [471]. Yong et al. [471] have recently proposed a filter that

simultaneously estimates the state and unknown input, producing MVUE estimates with no

restriction to the direct feedthrough matrix.

Most approaches available in the literature assume linear KF models, which are optimal and

hold assumptions on the signals, e.g. the whiteness of the innovation. Indeed the presence of

unknown inputs could severely restrict the performance of nonlinear filters, since a high bias

may be introduced in the state estimation due to the uncertainties from the unknown inputs

[156]. Moreover, this approach for nonlinear systems is more challenging, since the unknown

inputs make it unnecessary to linearize the system equations where both state and input may

be coupled [130]. Amongst the few studies in the literature that have applied these concepts

making use of nonlinear models and the EKF are e.g. [130, 156, 321, 470]. The Unknown Input
Extended Kalman Filter (UIEKF) model obtained from Eqs 3.15 and 3.16 is described setting the

known-input uk = 0, ∀k, assuming additive noise as well as unknown input models, and linear

observation equations (specific for the model presented in Section 3.3.4) as:

xk = fk−1(xk−1,dk−1,wk−1)

= fk−1(xk−1) + Dk−1dk−1 +wk−1 (4.9)

y
k

= hk(xk ,dk ,vk)

= Hkxk + Ekdk + vk (4.10)

where dk ∈ Rs×1 is the unknown input with covariance Sd,k ∈ Rs×s = E
[(
dk − d̂k

)(
dk − d̂k

)T ]
,

Dk−1 ∈Rn×s and Ek ∈Rm×s are known matrices. In this particular work, the following assump-
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tion Ek = 0∀k is made. As mentioned, this assumption is not limiting and merely a design

choice. The derivation however is only valid if the number of measurements m is larger than the

number of unknown inputs s [156]. An implementational detail is the fact that the unknown

input estimation is delayed by one time-step, since the novel information contained in the obser-

vation is available at the end of the Kalman filter recursion. The assumption of linear additive

unknown input and noises simplify the linearization procedure, which can be simply derived

from applying Eqs. 3.17-3.18 into Eqs. 4.9-4.10. The EKF2 model presented in Section 3.3.4 is

therefore expanded as follows, with Dk = [0 , 1]T ∀k:


θk = (θk−1 +ωδ) mod 2π

zk = zk−1 −
Nk∑
i=1

δ
αiω

b2
i

∆θi,k−1exp

−∆θ2
i,k−1

2b2
i

+ dk−1︸︷︷︸
unknown input

+ηk−1, (4.11)

As explained in [156, 425], the joint estimation of both state x̂k and unknown input d̂k for a

nonlinear stochastic system can be regarded as a constrained optimization problem, where the

state unbiasedness is the constraint, but the joint global optimization of state and unknown input

cannot be guaranteed. The estimates for x̂k|k−1 and d̂k|k−1 can be determined by minimizing

the objective function Jk(Kk) representing the sum of square errors between true and predicted

values for the state variable x [156, 321, 425]:

Jk(Kk) =
k∑
i=1

∆Ti R−1
i,i ∆i = ∆Ti R−1

i,i ∆i (4.12)

with ∆i = yi−h(yi ,di ,vi) and Ri,i is the ith diagonal element of the measurement noise covariance

matrix. This objective function is subjected to the unbiasedness constraint (I −KkDk) = 0 (see

[425]). The derivation of this filter can be found in [156, 321, 425] and is omitted in this work.

Instead, the recursive UIEKF filter equations are summarized in Algorithm 3. To test this novel

methodology, the UIEKF was evaluated regarding the EKF2 model. Its expansion to the EKF24

model is possible, yet it requires a more complex calculation due to the non-observable states

that lead to rank-deficiency for the matrix Ek , thus, it remains for further studies.

4.2.4 Filter calibration

As presented in Section 3.3.4, several parameters were empirically defined in order to model

the covariance matrices P0, R0 and Q0. In order to fine-tune these parameters, a multiplying

factor was added to each diagonal element of those covariances. This number of parameters

make the EKF initialization a highly dimensional optimization problem, which is known to

severely affect the filter’s performance. While the linear KF may rely on properties such as the

whiteness of the innovation, most these concepts do not necessarily apply for the nonlinear

variant used in this work. For this reason, the filter calibration is an exhaustive and empirical

process. Each proposed EKF approach (i.e. EKF2, EKF24 and etc) was calibrated individually.

For this purpose, a subset of 15 randomly chosen simulated recordings from the Fetal ECG
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Algorithm 3 Pseudo-code summarizing the Unknown Input Extended Kalman Filter algorithm
(time and measurement-update form)
Require: models for Ak ,Hk , Qk , Rk
Initialize: x0, P0
for k = 1 to Nsamples do

// Prediction step

F̃k−1 ≈ ∂fk−1
∂xk−1

∣∣∣∣
wk−1=0
xk−1=x̂k−1|k−1

and W̃k−1 ≈ ∂fk−1
∂w

∣∣∣∣
wk−1=0
xk−1=x̂k−1|k−1

; // linearization

x̂k|k−1 = F̃k−1xk−1|k−1 + Dk−1dk−1|k−2 ; // a priori state estimate

Pk|k−1 = F̃k−1Pk−1|k−1F̃Tk−1 + W̃k−1Qk−1W̃T
k ; // a priori covariance estimate

// Update step
νk = y

k
− hk(x̂k|k−1,0) ; // innovation signal

Sk = HkPk|k−1HT
k + Rk ; // innovation covariance

Sd,k =
[
DkHkR−1

k

(
I−HT

k Kk

)
HkDk

]−1
; // unknown input covariance

Kk = Pk|k−1HT
k S−1

k ; // obtain Kalman gain

x̂k|k = x̂k|k−1 + Kkνk ; // a posteriori state estimate

d̂k−1|k = Sd,kDT
k HT

k R−1
k

[(
I−HT

k Kk

)(
νk + HT

k Dk−1dk−2|k−1

)]
; // unknown input estimate

Pk|k = (I −KkHk)
[
Pk|k−1 + Dk−1SkDT

k−1 (I −KkHk)
T
]

end

Synthetic Database (FECGSYNDB) was used. A random search3 was carried out in attempting to

minimize a multiobjective cost function comprising the following three subfunctions:

This fitting problem is similar to the problem presented in Section 4.2.1, for this reason the

GOF was also used.

MECG residuals: effectively, the EKF attempts to estimate the maternal ECG signal. In order

to assess the quality of EKF’s MECG estimation, the NMSE between estimated and true

maternal signal (available for simulated data) was evaluated. The NMSE was calculated

only within a ±50 ms window around each MQRS complex, excluding segments were

FQRS and MQRS overlaps occurred.

FECG estimation: analogously to the previous metric, while estimating the MECG, the FECG

should not be confounded with the MECG, i.e. the filter should not completely trust the

observed signal. For this purpose, the NMSE difference between the estimation residual

(or unknown input in the uiEKF2 case) and the true fetal signal (available in simulated

data) was evaluated around a ±25 ms of each FQRS complex.

FQRS detection accuracy: this last metric is what one in fact aims to improve, namely the

accuracy of the FQRS detections. This was done by using a simple maxima search FQRS

detector [363] and the F1 metric (see Section 3.4.2) over each extracted signal.

The global cost function consisted of a weighted average of these aforementioned subfunctions

by using weights from 1 to 3 to MECG residuals, FECG estimation and FQRS detection accuracy,

3 The EKF extraction is a computationally expensive operation. Random search algorithms enable the search for
hyper-parameters in an efficient manner, compared to grid search algorithms. [60]
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respectively. These weights were arbitrarily chosen to reflect the importance of each subfunction

on the extraction result. The set of parameters which at last delivered more often the best results

was used.

4.3 Accurate Fetal QRS and Heart Rate Detection

The increasing interest in NIFECG analysis culminated on PCINCC 2013 [92], which dealt

with the accuracy of FQRS detections and FHR estimates. Indeed, reliable FQRS/FHR estimates

are crucial for the further clinical analysis of NIFECG (e.g. FHR variability or morphological

analysis signal). During the PCINC 2013, various approaches for improving fetal heart rate

detection were presented e.g. [20, 54, 447]. While most available FQRS detection methods are

simple re-parametrized single-channel adult QRS detectors (as described in Section 3.4), FHR

estimates are often based on heuristic rules for how a smooth FHR tracing should appear. The

lack of a general framework impede the understanding and hamper these method’s further

use. Aiming at improving the accuracy of FQRS detections obtain from those simple detection

algorithms, two multichannel correction frameworks are proposed in this work. For this purpose,

the following input signals are assumed to be available:

(i) at least one maternal chest lead;

(ii) reliable MQRS detection/annotation;

(iii) multiple channels of abdominal signals;

(iv) extracted FECG signals from (iii);

(v) initial FQRS detections for each channel.

The two correction methods have substantially distinct characteristics and aim at different

applications. Nonetheless, both algorithms are based on the common idea of applying novel SQI

measures in FECG analysis. In Section 4.3.1, an offline, stochastic approach is presented, which

exhaustively searches for a global solution to the detection problem. The method considers

multiple SQIs as cost functions, requiring a SQI value for each individual FQRS candidate. The

second approach (shown in Section 4.3.2), focuses on real-time applications and is an online,

deterministic and window-based method. For this method a large variety of SQI metrics are

proposed and accordingly evaluated.

4.3.1 Multichannel evolutionary QRS correction

The multichannel method presented in this section was developed at the IBMT by this author

[20, 21] and obtained the highest FQRS detection accuracy scores at the PCINC 2013, regarding

the scoring metrics E1/E4 and E2/E5, amongst all participants. The method was developed in

the scope of a side project in the student research from Himmelsbach [179]. The identification

of fetal peaks on extracted signals is challenging, due to the low SNR of the FECG as well as the
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presence of MECG residuals (mainly MQRS complexes), which can easily be confounded with

the FQRS. In order to cope with such demanding task, this novel method makes use of basic

concepts from evolutionary algorithms (EA)4. Due to its origins in evolutionary computing, the

algorithm is henceforth named evolutionary QRS correction algorithm (eQRS).

In EAs artificial individuals are used to populate the search space, through selection, mutation
and recombination the population evolves towards optimal regions of the search space. The

recombination mechanism allows the mixing of parental characteristics to be passed to their

descendants and mutation introduces innovation into the population [43]. In our application,

FQRS detections were treated as individuals, where on each iteration FQRS candidates were

allowed to originate, change location or cease existence. That is, although the proposed approach

inherits characteristics from EA that involve randomness, it does not perform a whole-circuit

optimization. Particularly, recombination and mutation are not present due to the lack of

suitable interpretation for such concepts in our application. Although EA’s population is often

arbitrarily initialized [43], for the purpose of faster convergence the start our method with

initial FQRS detections provided by a simple QRS algorithm applied to each channel.

According to Bäck and Schwefel [43], the environment delivers the quality information (i.e.

fitness value (FV) – denoted as FVt,i , being fitness value for individual i at iteration time-step t)

about the search points. The selection process then favors those individuals with higher fitness

to reproduce more often than those of lower fitness. On our FECG application, FVs describe

how well a certain FQRS suits the extracted fetal signal (environment). In order to evaluate

FV values for each individual, particularly designed fetal SQIs are proposed. This global SQI

metric was composed by multiple real-valued objective functions, which can be divided into

two groups based on their features: the FQRS pseudo-periodicity and FECG beat morphology.

These sub-functions can be thought of as different SQI metrics that exploit the morphological

characteristics or regularity of the candidate fetal peaks. The first group of the fitness function,

i.e. morphological features, can not be described by one single feature signal due to the presence

multiple noise sources (e.g. MECG and muscular noises). In order to assess FECG morphology,

two sub-functions were used, namely conformity (cSQI) and extravagance (xSQI). The latter

group of SQI functions is described by a single function that involves the plausibility of the

FHR trace (henceforth called gSQI). A summary on those newly developed SQIs follows:

cSQI measures how conform the FECG complexes are in relation to an coherent averaged FECG

template. This FECG template is created based on the current FQRS location candidates.

By simply taking the correlation coefficient between the averaged template and each

cycle i (centered at the FQRS occurrences), a value in the interval [0,1] is obtained for

each individual. In other words, conformity portraits how similar each individual is to a

4 Evolutionary algorithms are a class of approaches based on biological evolution, as Charles Darwin [104] described
the “survival of the fittest”. Generic algorithms and EA have various similarities and were proposed by the groups
of John Holland and Hans-Paul Schwefel, respectively [462]. The reader is referred to [43, 462] for general
overviews. In contrast to traditional algorithms for optimization, EAs are working with probabilistic rules thereby
enabling parallel solutions. EAs have become a popular heuristic near-optimal solution for problems with large
search spaces [462]. Due to the lack of boundaries in creating the global cost function, EAs can be applied in an
easy and flexible way [338].
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Figure 4.6: Representation of the xSQI metric, modified from [177]. The metric builds the
ratio between the power of the abdominal signal in ∆w2 over the total power in ∆w1···3 for
each detection. In this work ∆w1 = ∆w2 = ∆w3 = 50 ms.

relatively clean template.

xSQI is a measure of contrast between the detected FQRS peak and the embedded noise. By

using a window of ±25 ms length around location of each individual FQRS, the FECG peak

amplitude is compared against the power of the signal within three times that window

length. Therefore, xSQI obtains a measure between [0,1] representing how powerful is the

current FQRS compared its surrounding noise. A graphical depiction of xSQI is available

in Figure 4.6.

gSQI is a function that places around each individual i six Gaussian kernels (three on each

side) on probable locations for neighboring detections. To obtain an average distance were

the nearby detections can occur, the local value of a smoothed FHR trace was obtained.

The amplitude of such kernels depends on two factors: i) local value of FV (amplitude

increase with rising FVt,i) and ii) distance from actual individual, i.e. {1 · FVt,i±1,0.9 ·
FVt,i±2,0.8 ·FVt,i±3}, i.e. decaying amplitude with increasing distance. Gaussians’ standard

deviation was defined as 20% the recording’s shortest smoothed RR-interval. The sum

of the individually generated curves resulted on the FHR plausibility curve presented in

Figure 4.7. Additionally to providing a rough measure for certainty on FQRS positions,

gSQI generates a competitive behavior between neighboring individuals. Differently

from morphological features, for implementation purposes gSQI assumes values for each

sample of the original abdominal signal, not only one for each detection.

A global fitness value (SQI(global) in Figure 4.7) is then calculated for each individual by

combining the different sub-functions. During the PCINC 2013, a linear combination of these

function was used, where optimal weights were empirically determined.

Based on the initial detections, the eQRS iteratively improves these detections by attempting

to maximize a the global fitness function. As the number of iterations increased, gSQI kernels

are expected to interfere constructively with one another and generate a more skewed values

(see Figure 4.8). After selection of most fit individuals, the fitness values are re-evaluated at
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Figure 4.7: Qualitative example of different sub-functions used for defining the fitness func-
tion.

the beginning of each iteration. Following the idea of Simulated Annealing [227], the amount

of changes (i.e. number of detections to originate/move/vanish) was reduced after every cycle.

This procedure was firstly performed on each individual channel, until the convergence criteria

is achieved, i.e. the majority of the detections settled (did not move), or the maximum number

of iterations was achieved (i = 1000). After providing viable FQRS within each lead, the

detector uses the channels which were considered to be most trustworthy (largest overall FV)

to generate a set of multichannel detections. This is done by using the mean SQI values across

the channels and exhaustively including and removing channels until the optimal solution is

encountered. Since this procedure is stochastic, the optimization algorithm may get stuck in

local optima or not converge producing random differences on its results. Nevertheless, the

computationally expensive and redundant iterative re-calculation of the fitness function leads to

satisfactory results. Further developments of the evolutionary detector at the IBMT [177, 472]

have focused on applying it to other biosignals (e.g. capacitive ECG recordings) and including

ectopic beats detection. The latter can be done by modifying the morphological SQI functions

(using multiple templates on cSQI for instance) and weighting down the confidence in the

signal’s pseudo-periodicity i.e. gSQI .

4.3.2 Multichannel fetal heart rate estimation using Kalman filters

Despite the promising results obtained using the eQRS method presented in the previous

section, the method is restricted to offline applications and its computational cost is high. In this

section, the focus is to obtain an online method for improving window-based FHR estimates

(see Section 3.5), which similarly to the previous method is based on SQI metrics (e.g. the cSQI

and xSQI). Based on the approach by Li et al. [251], the use of Kalman filters for improving the

FHR estimates using the information from multiple channels is proposed. The novelty of this

work is the design of a number of SQI specific for NIFECG application as well as adaptation of

existing ECG metrics for its use with fetal signals. Additionally, a careful characterization and

construction of a combined SQI metric is presented.
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Figure 4.8: Evolutionary algorithm at different iteration numbers (i) using record “a01” from
PCINC 2013. The continuous line depicts gSQI curve (from Figure 4.7). The FV are repre-
sented by the height of the actual detection at each iteration with (◦). Initial detections (i.e.
i = 1) are depicted by (◦) [20].

Fetal signal quality indices

As discussed in Section 3.2, several noise sources (e.g. muscular/uterine noise, electrode

motion and etc. – see Fig. 3.2) are present in the abdECG. The presence/absence of such

signals affects the SNR of the fetal signal. These interfering sources, which typically show a

strongly non-stationary behavior, make the detection of the FQRS complexes a challenging

signal-processing task where erroneous detections are unavoidable. This situation raises two

issues: 1) how can segments with high rate of miss detections be identified? 2) how can the

occurrence of erroneous detections in cases of low fetal SNR be avoided?

The first point is closely related to the usage of SQIs, as addressed by many works on adult

ECG monitoring (e.g. [55, 89]). With such SQI, an increase in specificity of built-in signal

processing techniques is aimed [315]. The importance of this topic is confirmed by the recent

Physionet challenges that dealt with the determination of ECG’s clinical acceptability (i.e.

PCINC 2011 [397]) and robust peak detection in multimodal data (i.e. PCINC 2014 [396]). Both

these competitions have in common that top-scoring entries ([89, 211]) made use of SQIs to

improve the specificity of their results. SQI metrics, in their current form, were firstly proposed

by Li et al. [251], who suggested various SQIs for both ECG and BP signals. Since then, SQI

metrics have been successfully applied in adult ECG [55, 89, 101, 211, 336], BP [211, 252, 336],

photoplethysmogram (PPG) signals [22, 250, 312]. A review on such methods is provided in

[149]. Despite the abundance of works in adult ECG analysis, the concept of SQIs has not been

properly conveyed to the context of NIFECG. This application of SQIs is particularly interesting

since the NIFECG suffers from low/varying SNR, moreover, it contains an additional pseudo-

periodic signal, i.e. the MECG, whose residuals can mimic high quality signals. Concerning the

second question, given that suitable NIFECG SQIs are available, it should be possible to transfer

approaches from adult ECG to the NIFECG. Particularly, those that incorporate the information

about the signal quality into the heart rate detection [19].
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In this work, as specified in Section 4.3, it is assumed that both raw and extracted abdominal

signals are available as well as MQRS reference locations and at least one MECG chest lead.

These input signals should not impose any restriction to the method since they should be readily

available after the FECG extraction is performed. As discussed in Section 4.3.1, the eQRS

attributed SQI values to each FQRS complex (cSQI and xSQI) or continuously throughout the

abdominal signal (gSQI). Differently from the eQRS approach, Li et al. [251] made use of a

window-based approach for calculating HR estimates segment-wise. In this work, the SQI met-

rics were evaluated on 5-second windows with 1 s overlap (as described in Section 3.5).Although

some SQI algorithms may benefit from longer segments, e.g. for building FECG templates or

estimating spectral content, the 5 s interval was deemed as appropriate for the trade-off between

window length and online capability of the FHR correction algorithm. Moreover, this interval is

consistent with the one used in the signal quality annotations (see Section 5.2.3) here used as

gold-standard for assessing the performance of the developed SQI metrics.

Table 4.2 summarizes the SQI metrics used in this work. Amongst those metrics are adap-

tations of the SQI algorithms for adult ECG (derived from the literature) and two of the three

indices5 proposed in the previous section (i.e. cSQI and xSQI). Additionally, the use of four

novel indices that are particularly applicable to our signal of interest (FECG) is suggested,

namely mxSQI , mpSQI , mcSQI and miSQI . These indices attempt to make use of all avail-

able information in estimating how well the MECG suppression performed. The available

SQI methods were divided into four classes of algorithms: time, frequency, detection-based,

and FECG-specific approaches. Time-based methods refer to calculus of simple statistics of the

extracted FECG signal (e.g. kurtosis - kSQI and skewness - sSQI). Frequency metrics attempt to

identify the spectral power of QRS complexes (pSQI) or baseline noise6 (basSQI) normalized at

a wider spectral band. Detection-based methods may be subdivided into two types, namely those

that evaluate the regularity of FQRS detections and those that based on the fetal peak locations

aim at assessing the morphology of the FECG signal. In the first sub-category are methods that

apply compare multiple detectors applied to a single channel (bSQI), same detector used on

multiple channels (iSQI) and the rSQI , which counts the number of FHR changes that exceed a

pre-defined physiological threshold (set to 30 bpm as in [54]). For both bSQI and iSQI a 50 ms

acceptance interval (±25 ms) was used, as specified in Section 3.4.2. On the latter sub-category

of detection-based approaches are the FECG morphology metrics presented in the previous

section (i.e. xSQI and cSQI). As previously mentioned, FECG-specific approaches are specifically

designed to regard the presence (and potential confusion) of the MECG component in extraction

residuals. These latter metrics are throughly explained as follows:

mxSQI is the analogous of xSQI with focus on the maternal extravagance on residuals of ex-

traction procedure. This metric uses the extracted abdominal signal and MQRS reference

locations to estimate the strength of MECG residuals on the estimated FECG signal. To

5 gSQI was excluded from this analysis, since it delivers continuous values for probable FQRS locations, rather
than a quality metric itself. In a window-based SQI metric such values are hardly applicable.

6 Please notice that pre-filtered abdominal signals using the narrow band for FQRS detection (explained in Sec-
tion 4.1) are expected to have less power at lower frequencies due to the elevated high-pass cutoff frequency.
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account for the broader maternal complexes, an interval of 100 ms around the MQRS was

used. The metric is obtained as:

mxSQI = 1− xSQI
∣∣∣
MQRS,FECG

. (4.13)

mpSQI makes use the magnitude-squared of the FECG’s Fourier transform and the median

reference MHR for each segment. Similarly to the approach by de Haan and Jeanne [108],

the aim is evaluate the relative power of MHR and its harmonics on the frequency-domain,

which should be an index for left-over maternal residuals. In order to do so, the MQRS

fundamental frequency and its Nh first harmonics (within an empirically defined ±0.3 Hz

band) were compared with the power of the [0.5,10] Hz band (based on the expected

frequency range for MHR), so that:

mpSQI = 1−

Nh·f0∑
fi=f0

(∫ fi+0.3 Hz

fi−0.3 Hz
|X(f )|2df

)
∫ 10 Hz

0.5 Hz
|X(f )|2df

. (4.14)

where X(f ) represents the fast Fourier transform (FFT) spectrum of the FECG signal, f0 rep-

resents the fundamental frequency of the MHR. A graphical representation of the involved

signals is presented in Figure 4.9 and mpSQI is illustrated in Figure 4.9 (c). From this

figure it is clear that the metric depends on the MHR, i.e. a higher maternal fundamental

frequency leads to a lower number of harmonics (Nh) in the interval [0.5,10] Hz. Thus, two

approaches were evaluated in order to deal with this problem. The first (mpSQIa) fixated

Nh = 5 and only regarded the frequencies up until the fifth harmonic of the MHR for

calculating the SQI as in Eq. 4.14 (i.e. using 5·Nh + 0.3 Hz instead of 10 Hz as integration

limit). The second approach (mpSQIb) makes use of the whole spectral band between

[0.5,10] Hz and sets Nh to the total number of harmonics that occur on this interval. To

deal with the aforementioned MHR dependency, it corrects the fraction presented in

Eq. 4.14 using an empirically defined function with a f actor = log(8/Nh)+1, where 8 is the

expected number of harmonics (i.e. MHR ≈ 75 bpm). This function, therefore, increases

the weight of segments with higher MHR and weights down segments with lower MHR.

The mpSQI2 function is then truncated to deliver values between [0,1].

mcSQI spectral coherence (or magnitude-squared coherence) is a measure of cross-correlation

between frequency spectra with values between [0,1], described as:

Cxy(f ) =
|Sxy(f )|2

Sxx(f )·Syy(f )
(4.15)

being Sxy(f ) the cross-spectral density between x(t) and y(t). In this work, focus is put

on applying the coherence to measure the extraction performance by using the involved

signals (i.e. raw data, extracted abdECG and MECG chest lead). For this purpose, the

function mschohere() from MATLAB® was used, with default parameters aside from a

pre-defined FFT length of Nf = 1024 samples, which leads to values of Cxy(f ) being

calculated for (Nf /2) + 1 values of f = 0, fsNf ,
2·fs
Nf
, · · · , fs2 Hz. In Figure 4.9 (d) an example of
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successful and unsuccessful extraction are presented. Following this idea, two metrics

were developed, namely mcSQIa and mcSQIb. The first measures the similarity between

the MECG chest (i.e. x(t)) lead and extracted FECG (y(t)) on the [0,100] Hz band as:

mcSQIa = 1− 1
Nf ′
·
∑
f ′
Cxy(f )df , (4.16)

with f ′⇐ f ≤ 100 Hz and Nf ′ being the number of frequencies in f that match the desired

band. The second metric, focuses on evaluating if the extraction method has included

artifacts on higher frequent spectrum of the extracted signal. This could occur, e.g. when

using the EKF algorithm Gaussian kernels do not perfectly fit a MQRS complex in a couple

samples, leaving behind some artifacts with high-frequency content (see Figure 4.9 (d) - on

the right). This was done by evaluating the coherence between the preprocessed abdECG

(x(t)) and extracted FECG (y(t)) on the band [60,100] Hz as follows:

mcSQIb =
1
Nf ′
·
∑
f ′
Cxy(f )df , for 60 Hz ≤ f ′ ≤ 100 Hz. (4.17)

miSQI metric based on the iSQI and on the premise that in cases where the FECG extraction

performs poorly, the MQRS residuals have larger amplitudes then the FQRSs themselves.

As a consequence, the sub-optimal extraction leads to MQRS peaks being detected (in-

stead of FQRS), which could be assessed by using the iSQI-like algorithm to compare

the detected extracted abdominal signal and MQRS reference. Therefore, the metric is

calculated using a 50 ms acceptance interval as:

miSQI = 1− iSQI
∣∣∣
MQRS,FQRS

. (4.18)

Since both detection-based SQIs and miSQI metrics (see Table 4.2) make use of FQRS de-

tectors, their outcomes are dependent on the FQRS detectors’ performance. In this work, five

publicly available FQRS detectors were evaluated as presented in Table 4.3. For further refer-

ence, the indices listed in this table are used to describe variants of SQI metrics to which they

are pertained, e.g. bSQI12 represents the bSQI evaluated using the maxsearch algorithm [363]

and jqrs [54] detectors.
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Figure 4.9: Example of newly proposed SQIs on good (left column) and bad quality (right
column) extracted segments. (a) Demonstrates the signals in time domain; (b) presents the
magnitude spectrum from the segments in (a) in the interval [0,55] Hz; (c) shows an excerpt
from (b) that is used to calculate the mpSQIb based on the maternal fundamental frequency
(MHR f0) and its harmonics; (d) presents the spectral coherences between available signals
that are used in assessing the mcSQI indices.
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Table 4.3: Fetal QRS detectors evaluated in this work.

Index Name Description Reference

1
maximal
search

Simple algorithm that search for an absolute maximum within a
pre-defined window. [363]

2 jqrs
Implementation of the Pan and Tompkins [320] peak energy
detector. The algorithm is based on filtering, adaptive
thresholding as well as forward and backward search.

[54, 320]

3
P&T algo-
rithm

Alternative implementation of the Pan-Tompkins algorithm. [320, 458]

4 gqrs
QRS matched filter with a custom- built set of heuristics (such as
search back). It has been designed by George Moody, and is freely
available on Physionet

[161, 398]

5 wqrs
Detector based on low-pass filtering, a nonlinear curve length
transformation and adaptive thresholding. [398, 480]

Classification using a Bayesian probabilistic classifier

With the aforementioned fetal SQIs at hand, one aim to evaluate if some combination of those

features can be indeed used in classifying good/bad quality FECG signals. This is performed by

using the annotated clinical data presented in Section 5.2.3 and visibility index from Table 5.6.

Several machine learning techniques are available to solve the classification problem at stake.

For the purpose of classification, a Naive Bayes classifier was employed using prior probability

and attribute probability densities given each class to model its posterior probability. During

classification, the class with the maximum posterior probability is usually selected [118]. How-

ever, in this work, the posterior probabilities were used to transform the classified values into

continuous valued outputs for further processing, as described in the following section [19].

In order to assess the expected classification performance of the trained Naive Bayes model,

i.e. the efficiency in assigning the signal quality based on the used SQIs to appropriate class,

a 10-fold cross validation was performed. Here, all 9,065 observations in the dataset (only

abdominal channels) were used to generate training and test sets, respectively. The final Naive

Bayes classification model was trained using all available observations as training set. To

avoid the trained classifier to be bounded by the training data’s class imbalance (as reported in

Section 5.2.3 and Fig. 4.10), the prior class probabilities were assumed to be equal for all classes

during performance assessment and when training the final classifier [19]. For completeness,

results are presented using both ordinal (Krippendorf’s αK ) and nominal (Cohen’s κ) agreement

measures, presented in Section 5.2.3.

Kalman filter approach to multichannel consensus

As described by Oster and Clifford [315], several methods have been proposed for fusing

multichannel HR estimates using SQI-like metrics. Amongst those are simplistic weighted

averages and computationally demanding machine learning approaches. This consensus, there

are generally two types of possible combinations, namely channel selection or fusion. In channel
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Figure 4.10: Relative frequency of each class the on annotated training set (on the left) and
sigmoid function for normalization applied after classification (on the right).

selection, the lead with the best quality is selected. For example, Johnson et al. [211] applied

SQI metrics on 10 s segments of the PCINC 2014 multimodal data, selecting the channel with

highest SQI to produce a consensus of adult HR. In channel fusion, HR estimates from different

channels are merged, e.g. by simple majority voting or weighted averaging based on a quality

metric. A more sophisticated framework proposed for this end is the KF. The use of KF is

motivated by its well-defined paradigm, which has the advantage of incorporating knowledge

of the FHR dynamics as well as the amount of uncertainty in its measurement and intrinsic

model. Through their innovation, KF methods can identify trends and abrupt changes in

the underlying features not requiring an intensive training period [315]. The use of KFs in

improving heart/respiratory rate measures was firstly suggested by [251, 419]. The algorithm

can be divided into two stages, namely single-channel HR estimation (using the unfiltered FHR

estimates and the classified fetal SQI as input) and multichannel data fusion (using Kalman

filtered single-channel estimates, fetal SQI and the innovation signal as byproduct of the KF

algorithm).

On the single-channel stage, with both information at hand (i.e. FHR rough estimates and

combined SQI), the linear Kalman filter algorithm is applied, which was explained in detail

in Section 3.3.2 and summarized in Algorithm 1. Differently from its previous application in

FECG extraction, the state variable xk is now defined as the FHR estimates. For the purpose of

modelling the dynamics of this system (i.e. HRV), AR models were often applied in the literature

[251, 419]. Moreover, AR processes are convenient since they can be easily implemented into

KF’s framework using its Markovian representation (as the reader may recall from Section 3.3.2).

For completeness, this model is generalized as a pth order AR process, which allows the system

to have memory. However in this work the first-order model (i.e. p = 1) is applied [19]. A

univariate pth order AR process is described as [22, 31]:
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ak+1 =
∑p
i=1

(
ϕi,k · ak−i+1 +wk

)
,

ak+1 = ϕT
k
· ak +wk ,

(4.19)

where i ∈ [1,p] is the index, xk denotes the order, ϕi,k are the time-dependent AR coefficients

and wk is an additive zero-mean white Gaussian noise process. By applying this modelling

into a KF framework, one aims to obtain a linear regression of the p previous FHR measures

(FHRk−1 · · ·FHRk−p) to estimate the current FHRk , represented in Eq. 4.20:

F̂HR(n) = [FHR(n− 1) ·ϕ1 +FHR(n− 2) ·ϕ2 + ...+FHR(n− p) ·ϕp] (4.20)

Equations 4.19-4.20 can be modelled into KF’s space-state representation as Eqs. 3.1 and

3.2. The state variable xk ∈ Rp×1 is defined as the signal of interest (i.e. the FHR p previous

estimates), the state vector y
k
∈ Rq×1 contains the observations (rough FHR values), wk is the

process noise and vk the observational noise. The filter noise covariance matrices are defined by

w ∼N (0,Qk) and v ∼N (0,Rk). The state transition matrix A is the p × p matrix, describing the

expected dynamics of our state (see Eq. 4.21), while the observational matrix H is a 1× q null

vector, except for its first element which is unitary.

xk =
[
FHRk ,FHRk−1, · · · ,FHRk−p+1

]T

and F =



ϕ1 ϕ2 . . . ϕp−1 ϕp
1 0 . . . 0 0

0 1 . . . 0 0
...

. . .
...

0 0 . . . 1 0


(4.21)

he KF’s gain is mostly influenced by its defined process and observational noise covariance

matrices (Qk and Rk). In order to integrate the information on the signal quality, Li et al. [251]

proposed modulating the KF’s measurement covariance matrix as described in Eq. 4.22.

Rk ≡ R0 · exp(1/SQI2
k − 1) (4.22)

where SQIk (with SQI ∈ [0,1]) denotes the time dependent combined signal quality and R0 is

the initial value of measurement covariance matrix, which is signal dependent. The employed

nonlinear weighting function leads to Rk → R0 (if SQIk → 1) and Rk →∞ (if SQIk → 0). The

adaptive covariance matrix enhances the influence of cleaner estimates on the filter’s outcome,

providing the filter with a more rapid response to sudden changes in the signal quality [315].

n this work, to obtain continuous SQI values, the use of posterior probabilities P (i,k) from the

previously depicted classifier is proposed. Thus, the continuous valued SQI output is generated

by SQIk =
∑
{i=A,B,...,E} P (i,k)∗vi,k . The initial values for the measurement and process covariance

matrices, were empirically determined using a grid-search algorithm (as in [22]) on the first

minute of each annotated dataset, for avoiding over-training. The calibration procedure resulted
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on R0 = 10−3 and Q0 = 1.

After obtaining a Kalman filtered FHR estimate for each available channel, the second stage

(i.e. sensor data fusion) step takes place. This multichannel consensus is obtained by using both

KF innovation (νk) and consensus SQI signal such that:

x′k =
Nc∑
s


∏Nc
i=1,i,s σ

2
k,i∑Nc

i=1

(∏Nc
j=1,j,i σ

2
k,j

) · xk,s
 (4.23)

where x′k represents the final FHR estimate, xk,s is the current FHR estimate for each available

channel s at time-step k and σ2
k,s ≡

(
νk,s/SQIk,s

)2. This approach was likewise proposed by [251].

The accuracy of our estimated FHR was evaluated based on two measures, as described

in Section 3.5.2, namely the HDR and RMSE. In order to generate the FHR reference, FQRS

complexes were manually annotated as described in Section 5.2.4. The reference FHR was then

obtained by calculating the mean of the annotated RR intervals in windows of 5 seconds with

1-second overlap.

Applicability to other biosignals

As a side note, in a preliminary work [22] this author made use of a similar strategy for

obtaining more accurate HR estimates from camera-based photoplethysmogram (cbPPG) record-

ings by means of SQI measures for video images. cbPPG is a contactless measuring technique,

which based on the slight variations of skin color during a heart cycle, allows the acquisition of

cardio-respiratory signals using conventional cameras [194]. As usually occurs, the ease with

which it is recorded is counterbalanced by subject’s movements and light changes that generally

lead to a signal of interest with low SNR. At the IBMT several works have been performed on

this topic [243, 459, 460, 478]. In order to cope with the low SNR of the cbPPG signal, the green

channel is often preferred. Next, one or more region of interest (ROI)s are usually selected from

the output of a face detection algorithm. The resulting cbPPG signal is obtained by averaging

the intensity signal within these ROIs. Notwithstanding, even after some bandpass filtering, the

pulsatile signal obtained is often buried into noise.

In Andreotti et al. [22], 10 s segments were processed using the Short Time Fast Fourier
Transform (STFT), whose main frequency was assumed to represent the HR. The KF approach,

presented in the previous section, was then used for improving HR detection. For this purpose,

two SQI metrics were applied, namely frequency-based (mpSQIa, as previously described

in this section) and a novel image velocity-based (vSQI) index. This latter measure aims at

detecting motion artefacts, which usually influences the reliability of the cbPPG measurement

and respective HR estimate.

4.4 Chapter Summary

In this chapter, several improvements in NIFECG extraction, detection and heart rate estima-

tion were proposed. In Section 4.2, two major improvements in the EKF2/EKF24 models were
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proposed, namely the time-varying covariance matrices (vEKF2/vEKF24) and the unknown

input addition to its model (i.e. uiEKF2), to better represent the non-Gaussian nature of fetal

peaks. In Section 4.3, methods to improve the detection of FQRS complexes (i.e. location

accuracy for individual peaks) or their time-average (i.e. FHR) were proposed. Both those

methods had in common the necessity of metrics to improve their specificity. For this reason,

several novel fetal SQI metrics were suggested (see Section 4.3.2). Fetal QRS locations was

improved with the eQRS method, which exhaustively attempts to optimize a global objective

function based on each individual peak’s SQI values. Fetal HR estimation was improved using a

KF approach, whose noise covariance matrix Rk was adapted using a Naive Bayes classifier and

several novel SQI metrics. In the next chapter, the data material produced during this work is

presented.
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In God we trust, all others (must) bring data

– controversially attributed to W. Edwards Deming

5
Data Material

Data is a crucial part of training and testing of signal processing algorithms. In the previous

chapters, novel methods for NIFECG were proposed, however due to the lack of publicly

available NIFECG databases, as mentioned in Section 3.2.4, the clinical usage of NIFECG has

been hindered. Therefore, in this work alternative sources of data were sought. For this

purpose, a simulator and large database of simulated data was created in cooperation with

the Institute of Biomedical Engineering at the University of Oxford, which is presented in

Section 5.1. Concomitantly, to validate the performance of signal processing algorithms in a

real-world scenario, clinical recordings were performed at the University Hospital of Leipzig

(see Section 5.2).

5.1 Simulated Data

Simulated data provides means for training NIFECG processing algorithms with gold-

standard information on the accurate location of FQRS, MQRS and FECG signal waveform. In

the following sections, the toolbox and simulated database developed during this work are

described.

5.1.1 The FECG Synthetic Generator (FECGSYN)

A straightforward manner of representing the myocardial electrical activity is to use a three-

dimensional time-varying vector, whose origin is modelled as a punctual source at the center

of the heart. This heart dipole vector can be written as d(t) = v1(t)î + v2(t)ĵ + v3(t)k̂, where î, ĵ,

k̂ are unit vectors for the three-dimensional body axes and vn(t) with n ∈ [1,3] depicts three

orthogonal signals, which constitute the VCG, and are used to represent the heart cycle. The

potential difference φ(r, t)−φ0(r, t) measured at a point on the torso (i.e. volume conductor)
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and a reference potential (negative electrode, as explained in Section 3.2.3) is represented in

Equation 5.1 [49, 50]:

φ(r, t)−φ0(r0, t) =
d(t)

4πε0

(
r(t)
|r(t)|3 −

r0(t)
|r0(t)|3

)
, (5.1)

where r(t) is the vector from the dipole center to observational point, ε0 is the permittivity of the

volume conductor (here regarded as isotropic1 and unitary). As the heart dipole d(t) changes

with time (i.e. during a heart cycle, i.e. time-point on the VCG waveform) or its position r(t)

(e.g. with respiration), the potential difference is expected to vary [50].

Based on this simplified representation of the cardiac electrical activity by McSharry et al.
[275] and Sameni et al. [364] proposed a model for generating realistic ECG waveforms. The

model is built on the premise that a set of Nk Gaussian kernel functions can be used to approxi-

mate VCG cycles. By modelling all three dimensions of VCG signals (see Fig. 5.1), available for

example at Physionet’s PTB Diagnostic ECG Database2 [68, 161], one can attain a 3-D model

for the heart’s electrical activity. Adopting the simplified polar coordinate system (rather than

Cartesian) as proposed by Sameni [362], the model can be described as:

ḋp(t) =

Nk∑
n=1

δ
α
p
nλ(
b
p
n

)2∆θ
p
n,k−1exp

−∆(θpn,k−1)2

2(bpn)2

 for p ∈ {î , ĵ , k̂} , (5.2)

where each component dp(t) of the dipole d(t) is represented by a sum of Nk Gaussian kernels.

The variable ∆θn,k = θk −φn denotes the phase of the nth Gaussian at time step k, φn being

the position of the each kernel inside the template. Parameters αn, bn and φn correspond to

the amplitude, width, and position of the nth Gaussian kernel, respectively (see Fig. 5.1). The

angular frequency (λ) and sampling period (δ) determine the time progression (or pace) of

the signal. In McSharry et al. [275], realistic HRV changes are introduced by making λ time

variant, designed to well-represent the respiratory sinus arrhythmia and the response to Mayer

waves [213]. Furthermore, a projection matrix built upon the cardiac dipole model was used

to project the VCG waveforms onto the observational points (i.e. electrode positions) on the

surface of the volume conductor, thus obtaining propagated ECG signals. The projection matrix

contains information about the permittivity of the conductor (assumed constant), dipole origin

and relative location between observing electrodes and source. Figure 5.2 shows exemplary

fetal and maternal punctual cardiac sources within a cylindric volume conductor. From this

Figure, the positive electrodes (numbered from 1-34) and the ground electrode can be seen.

The negative potential (φ0(t)) is calculated as the mean of all available electrodes’ signals. The

original implementation of McSharry et al. [275]’s adult ECG simulation model is available on

Physionet3.

Following the works from McSharry et al. [275], Sameni et al. [364] suggested the use of this

1 According to [468], for frequencies below 1000 Hz, the capacitive component of tissue impedance, the inductive
and the electromagnetic propagation effect in biological tissues can be neglected.

2 Available at Physionet under https://www.physionet.org/physiobank/database/ptbdb/
3 ECGSYN toolbox, available at https://www.physionet.org/physiotools/ecgsyn/
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Figure 5.1: Three dipole components (on the left) and resulting VCG (on the right). For illus-
tration purpose, each Gaussian kernel on the dipole model is presented with a different color,
the resulting model is obtained by simply summing these kernels. For clarity, the amplitude
values were omitted.

framework for NIFECG modelling and included realistic noise. Noise modelling was done

using real muscular artifact (MA), electrode motion (EM) and baseline wander (BW) signals from

the Physionet Normal Stress Test Database (NSTDB) [161, 287]. Sameni et al. [364] proposed

the use of AR models to add non-stationarity effects such noise processes while overcoming

the restriction of being limited to generating 30 min noise signals (length of NSTDB noise

recordings). Thus, the potential measured at an electrode can be described as in Equation 5.3

[50, 364]:

φ(t) = Hm ·Rm · dm(t) + Hf ·Rf · df (t) +ω(t) , (5.3)

where φ(t) ∈ RM corresponds to the signal recorded on the M ECG channels at time t, the

dipole vector d(t) ∈R1×3 is given in Equation 5.2, H ∈RM corresponds to the projection matrix,

R ∈R3×3 is the rotation matrix for the dipole vector and ω(t) ∈RM corresponds to the noise on

each ECG channels at time t [50]. The sub-indices m represent maternal and f fetal hearts.

During the development of this thesis, several improvements to the previous simulators

were proposed in cooperation with the Institute of Biomedical Engineering (IBME) (University of

Oxford) (see [18, 50]). Key aspects proposed by Behar et al. [50] are listed below:

• Each source, i.e. either cardiac (e.g. mother, fetus) or noise (e.g. MA, EM, BW), was

regarded as an individual punctual dipole with different magnitudes and spatial positions,

allowing multiple fetuses and any number of noise sources. Moreover, those sources can
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be spatially distributed freely within the volume conductor;

• Translatory and rotatory motion of dipole sources were implemented by designing H(t)

and R(t) to be time variant. This improvement allows the modelling of fetal/maternal

respiratory movements and fetal/noise movements inside the volume conductor;

• Different SNRs were assigned to each source, meaning each fetus/noise could have distinct

strengths;

• Both HR signal and SNR strength can be modulated, for example, using a hyperbolic

tangent function to increase/decrease HR or noises SNR;

• VCG models for ectopic beats derived from the PTB Diagnostic ECG Database4 [68, 161]

were included.

These improvements to the model and encapsulated design enable the production of maternal

and fetal signals in both physiological and pathological scenarios as well as a number of

non-stationary phenomena. The enhanced simulator, named Fetal ECG Synthetic Generator
(FECGSYN), was released5 under an open-source GNU General Public License (GPL) license.

Its main purpose is to facilitate stress-testing of NIFECG algorithms under varied conditions.

Further, FECGSYN was used to generate a large simulated dataset and benchmark routine

described in the following section.

5.1.2 The FECG Synthetic Database (FECGSYNDB)

In this work, the FECGSYNDB was developed and made publicly available on Physionet6

[18, 161]. The FECGSYNDB is a large database of simulated signals, which enables reproducible

research in adult and NIFECG areas. Similarly to the FECGSYN toolbox, the FECGSYNDB was

created in partnership with the IBME from the University of Oxford.

The simulated data was generated using the FECGSYN [50] (Section 5.1.1). The modeled

volume conductor is presented in Figure 5.2. As observational points, 34 simulated channels

(32 abdominal and 2 MECG chest channels) were included (see Fig. 5.2). The ground electrode

was positioned on the back of the cylinder at the polar coordinates {π,0.5,−0.3}. The electrode

configuration was designed to span across most of the simulated “maternal abdomen”. A total of

seven physiological events (i.e. described in table 5.1) was considered. For each case, the heart

dipole models (for mother and fetuses) were generated ten times by randomly selecting one of

the nine VCGs available in the FECGSYN toolbox. Five different levels of additive noise were

included (0,3,6,9, and 12 dB). Simulations were repeated five times, re-generating noise signals

on every iteration, to obtain a more representative database. Overall a total of 7×10×5×5 = 1750

synthetic signals were produced. Each simulation consisted of 5 minutes abdominal mixtures

projected onto , totalizing 145.8 hours of multichannel data and 1.1 million fetal peaks. Several

4 Available at Physionet: https://www.physionet.org/physiobank/database/ptbdb/
5 Available at: http://www.fecgsyn.com
6 Available at Physionet: https://physionet.org/physiobank/database/fecgsyndb/
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Figure 5.2: Side (a) and upper (b) view the of volume conductor. Positions for fetal (small
sphere, blue) and maternal (larger sphere, red) hearts are shown. The square with a “G” rep-
resents the position of common mode ground electrode.

Table 5.1: Scenarios used for simulating pregnancy’s pathophysiological events. Noise refers
to muscular noise added as two independent sources situated on the lower half of the conduc-
tor volume. MHR/FHR represent the maternal/fetal heart rates.

Case Description

Baseline abdominal mixture (no noise or events)
Case 0 baseline (no events) + noise
Case 1 fetal movement + noise
Case 2 MHR /FHR acceleration / decelerations + noise
Case 3 uterine contraction + noise
Case 4 ectopic beats (for both foetus and mother) + noise
Case 5 additional NIFECG (twin pregnancy) + noise

parameters were required whilst generating these events. The most relevant ones used in this

study are summarized in Table 5.2 (for more details the reader may refer to [18, 50]). Some

exemplary signals are shown in Figure 5.3.

As the FECGSYNDB provides gold-standards for FQRS detection and unmixed FECG signal

morphology, in this work, the FECGSYNDB is used for benchmarking novel signal processing

techniques developed in Chapter 4. As in Andreotti et al. [18], from the 32 abdominal channels

available, eight (i.e. channels 1, 8, 11, 14, 19, 22, 25 and 32 - see Figure 5.2a) were used.

5.2 Clinical Data

5.2.1 Clinical NIFECG recording

Data collection was performed together with our partner from the Department of Obstetrics

from the University Hospital of Leipzig. Ambulant and stationary volunteers were asked to
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Table 5.2: FECGSYN model parameters used within this work, based on [50]. N (µ,σ2) repre-
sents a normal distribution with mean µ and variance σ2 and U (a,b) a uniform distribution
between a and b. mheart was allowed to vary its position up to 1% of the conductor’s volume
in any direction.

Parameters Definition Range/type Unit
f s sampling frequency 250 Hz

SNRf m signal to noise ratio of the FECG relative to MECG N (−9,2) dB
SNRmn signal to noise ratio of the MECG over noise {0,3,6,9,12} dB
f hr fetal heart rate N (135,25) bpm
mhr maternal heart rate N (80,20) bpm
f acc fetal heart rate acceleration/deceleration N (30,10) bpm
macc maternal heart rate acceleration/deceleration N (20,10) bpm
f res fetal respiration frequency N (0.90,0.05) Hz
mres maternal respiration frequency N (0.25,0.05) Hz
mheart maternal heart position in polar coordinates {2π/3, 0.2, 0.4} —

f heart fetal heart position in polar coordinates
{U (-π/10,π/10),
U (0,0.1)+0.25,
U (-0.4,-0.2)}

—
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(a) Case 1 – fetal movement

(b) Case 3 – uterine contraction

(c) Case 4 –ectopic beats

Figure 5.3: Exemplary simulated signals using FECGSYN, with Case 1 (above), Case 3 (mid-
dle) and Case 4 (bottom). This figure depicts the abdominal mixture (abdECG - in gray) as
well as propagated FECG (blue). See cases description on Table 5.2.
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Figure 5.4: Electrode configuration used in this work (14 electrodes). As demonstrated in (a),
the configuration comprises a MECG lead and 7 bipolar abdominal leads; (b) and (c) shows
those leads being applied onto a patient (GND electrode not visible).

take part in the study, handled under the supervision of Prof. Holger Stepan and Dr. Alexander

Jank by Dr. Claudia Schmieder, Sophia Schröder, and Susanne Löther. This trial was approved

by the University Hospital of Leipzig’s ethics commission record 348-12-24092012 and written

informed consent was obtained from each patient.

Since no lead configuration standard for NIFECG recordings is available, based on the existent

configurations (see Figure 3.3) and some own preliminary works [16] a 14-electrode system

comprising seven abdominal channels and one MECG channel was proposed (presented in

Figure 5.4). This electrode configuration was considered appropriate since it covers a large

portion of the maternal abdomen (as many other schemes in literature do - see Figures 3.3d–3.3j),

aiming at maximizing the probability of having usable channels containing FECG signals as

described in Section 3.2.3. Moreover, the lead configuration includes the same derivations as the

first available commercial equipment Monica AN24 (see Figure 3.3a). Regarding this geometry,

two different inter-electrode distances were used, namely the diagonal of the external circle and

the internal triangular formation of electrodes (see Fig. 5.4).

Recordings were performed at 1000 Hz sampling frequency and 16-bit ADC using the

ADInstruments ML138 Octal Bio Amp and ADInstruments PowerLab 16/30 (ADInstruments,

Dunedin, NZ). The abdominal channels were filtered in hardware by a mains filter7 (cutoff
frequency at 50 Hz) and a first-order high-pass filter (cutoff at = 1 Hz). The measuring range of

the abdominal recordings was ±500 µV. More information on these equipment’s specifics can be

found in the fabricant’s datasheet [1, 2]. Figure 5.5 depicts some examples of recorded data.

Supplementary clinical information

Along with the multichannel data, information about mothers (age, BMI, history of diseases,

medications administered), pregnancy (WOG, eventual complications, fetal gender, fetal posi-

tion, amount of amniotic fluid, placental position, and outcome) and the recording (time, date,

7 According to the manufacture’s manual [1], this adaptive filter tracks the recorded signal for a second and removes
both fundamental and harmonic frequencies of the powerline interference.
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Figure 5.5: Exemplary raw signals collected during this work by our project partners at the
University Hospital of Leipzig. The x-axis represents the time (in seconds) and FQRS loca-
tions are marked with (◦). See electrode configuration on Fig. 5.4 and note the different ampli-
tude scales.

room) were documented. This information was obtained in the form of a questionnaire, based

solely on mothers’ knowledge. If available, information on the outcome of those pregnancies

were also collected, such as: labor date and type of birth (e.g. cesarean or vaginal) as well as

newborn’s size (i.e. height, weight and head circumference), APGAR scores (for 1, 5 and 10 min

after birth), umbilical cord analysis (i.e. pH-level and base excess) and diseases within the few

hours after delivery.

5.2.2 Scope and limitations of this study

Between September 2011 and January 2013, a total of n = 259 recordings from 107 women

were collected. Both individual and longitudinal recordings were performed, on average

2.4 recordings per patient took place (range between 1-12 recordings). The duration of those

recordings was on average 20.2 min, ranging from 8.5 to 37.3 min. As mentioned in Section 2.1.4,

the period around the end of the second and beginning of third trimester of gestation (i.e. <

28 WOG) is crucial for the fetal development [289, Chap.10]. During this period, a considerable

shift in the risk of neonatal death (for premature newborns) occurs. For this reason, the focus of

the clinical trial carried out during this doctoral work was on WOG< 28 weeks. Overall statistics

on our population are shown in Figure 5.6 and Table 5.1. Regarding the patient categories

(see Fig. 5.6), the category “other” entails conditions such as fetal heart failures (5% of total –

including e.g. ventricular septal defect (VSD), double outlet right ventricle (DORV) and tetralogy of

104



5.2. CLINICAL DATA

16 18 20 22 24 26 28 30 32 34 36 38 40
0

10

20

30

Gestational age

N
u
m
be

r
of

p
at
ie
nt
s

(a) Distribution of recordings’ week of gesta-
tion

IUGR (7%)

fet. anaemia (6%)

physiological (60%)

PROM (12%)

others (15%)

(b) Pie chart with occurrences of different
patient conditions

Figure 5.6: Study’s population. Abbreviations describe: fet. = fetal; PROM = premature rup-
ture of membranes (PROM); and IUGR = Intrauterine growth restriction (IUGR)

Fallot), fetal arrhythmia (2% – e.g. (supra-)ventricular bradycardia/tachycardia and AV block),

pre-eclampsia (1%), premature uterine contractions (1%) and less often gestational diabetes

and cervical insufficiency.

Several medications were prescribed to this study’s population. Between those were antibi-

otics, anti-arrhytmics, anti-hypertensives, hormonal supplements amongst others. However, due

to the absence of test and control groups and the large variety of drugs that were administrated

to patients, this information was not regarded in our analysis.

Despite its modest size (n = 259) the obtained clinical dataset contains interesting informa-

tion that is further investigated in an exploratory manner throughout the remaining of this

chapter. This analysis is of great relevance since little is known about the quality of NIFECG

recordings, particularly during this study’s focus period (< 28 WOG). Further, in Chapter 6, this

dataset is revisited, aiming at the assessment of developed FECG extraction and FQRS detection

algorithms under real circumstances.

To salvage the most information from the clinical data, two different annotation protocols

were performed. Those protocols produced reference expert annotations regarding FQRS

locations and overall signal quality, as discussed in the following sections.

5.2.3 Data annotation: signal quality and fetal amplitude

In exploratory clinical investigations such as the one performed in this work, it is important

to assess the factors that determine the measured FECG signal quality. The motivation for

having an annotated dataset is three-fold. First, such quality annotated data enables the

characterization of the collected clinical data in terms of FECG-noise content. Such evaluation

has the additional benefit of eventually providing some insights about appropriate NIFECG

recording conditions. Second, these annotations are a simple manner of determining which

recordings have visible/extractable FECG signals, a relevant aspect of the further analysis

(presented in Section 5.2.4 and in Chapter 6). Last, such references provide us an interesting
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Table 5.3: Descriptive statistics on collected data. Results for numeric variables are presented
as “median (IQR)”, whereas categorical variables are shown in percent and number of occur-
rences (n). Left column indicates the pathophysiological categories possible for each patient.
Population is divided in the remaining columns according to their clinical assessment.

physiological
(n = 156)

PROM
(n = 30)

IUGR
(n = 17)

fet. anaemia
(n = 16)

others
(n = 40)

Maternal age 29.8 (4.7) 27.4 (6.8) 28.8 (10.2) 32.6 (0.2) 28.4 (2.6)

Maternal BMI 25.6 (5.2) 25.9 (15.2) 26.7 (9.2) 28.8 (4.7) 26.1 (7.8)

Gestational week 24.9 (5.4) 26.6 (3.0) 28.0 (3.4) 27.1 (6.7) 29.4 (9.7)
early (< 28) 76.9% (n = 120) 76.7% (n = 23) 47.1% (n = 8) 50.0% (n = 8) 35.0% (n = 14)
vernix (28− 36) 19.2% (n = 30) 23.3% (n = 7) 52.9% (n = 9) 50.0% (n = 8) 42.5% (n = 17)
late (> 36) 3.8% (n = 6) 0.0% (n = 0) 0.0% (n = 0) 0.0% (n = 0) 20.0% (n = 8)
unknown 0.0% (n = 0) 0.0% (n = 0) 0.0% (n = 0) 0.0% (n = 0) 2.5% (n = 1)

Fetal gender
male 50.0% (n = 78) 10.0% (n = 3) 64.7% (n = 11) 12.5% (n = 2) 52.5% (n = 21)
female 14.7% (n = 23) 76.7% (n = 23) 11.8% (n = 2) 12.5% (n = 2) 30.0% (n = 12)
unknown 35.3% (n = 55) 13.3% (n = 4) 23.5% (n = 4) 75.0% (n = 12) 17.5% (n = 7)

Fetal position
vertex 42.9% (n = 67) 50.0% (n = 15) 35.3% (n = 6) 43.7% (n = 7) 57.5% (n = 23)
breech 24.4% (n = 38) 40.0% (n = 12) 23.5% (n = 4) 0.0% (n = 0) 15.0% (n = 6)
shoulder 7.7% (n = 12) 0.0% (n = 0) 0.0% (n = 0) 0.0% (n = 0) 5.0% (n = 2)
unknown 25.0% (n = 39) 10.0% (n = 3) 35.3% (n = 6) 56.3% (n = 9) 22.5% (n = 9)

Amniotic fluid
anhydramnios 0.0% (n = 0) 3.3% (n = 1) 0.0% (n = 0) 0.0% (n = 0) 0.0% (n = 0)
oligohydramnios 1.3% (n = 2) 70.0% (n = 21) 29.4% (n = 5) 6.2% (n = 1) 2.5% (n = 1)
under norm 3.8% (n = 6) 6.7% (n = 2) 5.9% (n = 1) 0.0% (n = 0) 2.5% (n = 1)
normal 91.0% (n = 142) 16.7% (n = 5) 52.9% (n = 9) 43.8% (n = 7) 82.5% (n = 33)
above norm 3.8% (n = 6) 0.0% (n = 0) 0.0% (n = 0) 25.0% (n = 4) 0.0% (n = 0)
polyhydramnios 0.0% (n = 0) 0.0% (n = 0) 0.0% (n = 0) 0.0% (n = 0) 10.0% (n = 4)
unknown 0.0% (n = 0) 3.3% (n = 1) 11.8% (n = 2) 25.0% (n = 4) 2.5% (n = 1)

Placenta placement
posterior 28.8% (n = 45) 70.0% (n = 21) 35.3% (n = 6) 87.5% (n = 14) 25.0% (n = 10)
anterior 28.8% (n = 45) 6.7% (n = 2) 29.4% (n = 5) 6.3% (n = 1) 42.5% (n = 17)
fundal 1.3% (n = 2) 6.7% (n = 2) 0.0% (n = 0) 0.0% (n = 0) 2.5% (n = 1)
right lateral 3.8% (n = 6) 0.0% (n = 0) 11.7% (n = 2) 0.0% (n = 0) 12.5% (n = 5)
left lateral 8.3% (n = 13) 10.0% (n = 3) 11.7% (n = 2) 0.0% (n = 0) 0.0% (n = 0)
praevia 0.6% (n = 1) 0.0% (n = 0) 0.0% (n = 0) 0.0% (n = 0) 5.0% (n = 2)
bipartia 0.0% (n = 0) 0.0% (n = 0) 0.0% (n = 0) 0.0% (n = 0) 5.0% (n = 2)
unknown 28.2% (n = 44) 6.7% (n = 2) 11.7% (n = 2) 6.3% (n = 1) 7.5% (n = 3)

database for training and evaluating algorithms that attempt to classify the signal quality of

both FECG and noise (further discussed in Section 4.3.2).

With regards to the annotation procedure, two aspects are relevant for analyzing the collected

NIFECG data, namely the FECG signal amplitude and the power of noise. In this study, segments

of every recording of the clinical dataset were annotated including maternal chest lead and 7

abdominal channels (shown in Fig. 5.4). To reduce the amount of noise in those recordings,

each channel was preprocessed. Preprocessing was performed using Butterworth filters of 5th

or low-pass at 100 Hz and 3rd order high-pass at 3 Hz. A FIR 1000th order notch filter was
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Figure 5.7: Collected signals from own dataset with different signal quality. (a) shows a clean
signal with pronounced FECG peaks; (b) exhibits a relatively clean signal with no visible
FQRS complexes; (c) depicts a noisy abdominal signal. Please notice the different scaling for
the y-axis.

also applied at 50 Hz, to reduce the powerline interference. The first and last minutes of each

measurement were disregarded, to avoid that subject’s movements on the beginning or end of

measurements are considered. The remaining data was divided into five equal intervals from

which the first 5 s excerpts were assessed. Therefore, for each channel and each recording,

5 segments (of 5 seconds each) were exported to be annotated producing a total of 10,360

segments (i.e. 259×8×5). Additionally, a subset of 500 segments was provided twice so that

intra-rater variability can be assessed. Annotators were asked to appraise each segment for its

FECG signal amplitude (4 classes) and SNR level (5 categories), as specified in Table 5.4. The

annotation procedure was carried out using the standalone graphical user interface (GUI) shown

in Appendix A.

Four experts (here named Annotator ANN1, ANN2, ANN3, and ANN4) with both medical

and engineering background and different years of experience in the NIFECG field diligently

annotated the data. Annotation was performed using a single abdominal 5 s segment (i.e.

one channel at a time) and a maternal chest lead for avoiding confusion between maternal

and fetal peaks (see Appendix A). Annotators ANN1 and ANN2 annotated each 100% of the

segments. Annotators ANN3 and ANN4 annotated 72.6% and 37.0% the data, respectively, in

a complementary manner so that at least 3 annotations for each segment of the whole data are

available. All annotators evaluated the duplicated subset so that intra-observer statistics are

available for every annotator.

Intra/Inter-rater agreement and consensus

Several statistics for inter/intra-rater agreement have been proposed in the literature, such

as Scott’s π [389], Cohen’s κ [94, 95] and Fleiss’s K [138]. Cohen’s κ [94] coefficient is the most

commonly used statistic for this purpose [448] and its main advantage is the correction of

agreement that is expected to occur by chance alone. The κ values are usually classified into

the following categories of agreement [94]: “very good” (κ ∈ [0.8,1.0]), “good” (κ ∈ [0.6,0.8)),

“moderate” (κ ∈ [0.4,0.6)), “fair” (κ ∈ [0.2,0.4)), and “poor” (κ ∈ [0,0.2)). Despite its wide use,
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Table 5.4: Clinical data annotation classes and definitions.

(a) Recording’s annotation criteria for SNR

Classification Description
unacceptable no ECG† signal can be spotted on the segment

bad ECG signal can hardly/intermittently be seen
adequate ECG signal is clearly visible throughout most of the segment

with strong background noise present (or sporadic e.g. artifact)

good ECG signal is clearly visible through all the segment with mod-
erate background noise

excellent ECG is clearly visible with low or very low noise content

† ECG was used to generalize the presence of either MECG and/or FECG, indifferently.

(b) Recording’s annotation criteria for FECG strength

Classification Description
not present FECG is NOT visible

low amplitude FECG visible with small amplitude

moderate amplitude FECG visible, its amplitude consists of at most 50% the MECG
amplitude

high amplitude FECG visible and its amplitude is at least 50% as large as the
MECG amplitude

Cohen’s κ defines expected agreement in terms of contingencies, as the agreement that would

be expected if coders were statistically independent of each other [237]. For this reason, κ

chance fails to include disagreements between observers’ individual predilections for particular

categories, punishing raters who agree on their use of categories, and rewards those who do not

agree with higher κ values. These drawbacks have been often referred to in the literature as

Kappa’s paradoxes [133, 168]:

(i) If the percentage of agreement by chance (pe) is large, the correction process can convert

a relatively high value of overall percentage of agreement (pa) among observers into a

relatively low κ. This problem becomes evident from Kappa’s formulation κ = pa−pe/1−pe;

(ii) Unbalanced marginal totals may produce higher values of κ than more balanced totals.

These paradoxes make the reproducibility between κ values across different studies difficult

and its interpretation counterintuitive. Moreover, κ is a measure of nominal agreement, which

cannot be directly applied to ordinal scale as presented in Table 5.4. This because κ penalizes

small misclassification (between two adjacent classes, e.g. adequate and good categories) with

the same weight it penalizes e.g. bad and excellent. To cope with those “less serious” classi-

fication errors the Krippendorff’s alpha coefficient (αK ) was proposed [174]. Krippendorff’s

coefficient can be used for any number of raters (not only two), it also is applicable for different

kinds of variables (e.g. nominal, ordinal, interval) and can be used for incomplete or missing

data [174]. Moreover, unlike Fleiss’ K , αK has no restriction regarding the sample size used.
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Krippendorff’s αK can be interpreted as a generalization of several of the previously available

metrics. For instance regarding two observers, for nominal data αK is asymptotically equal

to Scott’s π, while for ordinal data it is identical to Spearman’s rank correlation coefficient ρ

(disregarding tied ranks) [174]. As in Cohen’s κ, when disagreements are systematic and exceed

the expected by chance, αK can deliver negative values. Since no standard terminology for

interpreting αK values is available8, in this work the aforementioned scale [94] is used.

Intra-observer agreement is a measure for evaluating each rater’s reliability, which is conve-

nient when determining how to build a consensus amongst all raters. In this work, a subset

of 500 segments was annotated twice by each annotator. Table 5.5 shows the intra-rater and

inter-rate agreement for this study. Overall inter-rater agreement considering both categories

(FECG and SNR) was good with 0.65 and 0.68 for FECG strength and SNR criteria, respectively.

Similarly, there was a good to very good intra-rater agreement as can be verified in Table 5.5.

Considering the good agreement amongst all observers, majority voting was used to generate

a consensus for both FECG and SNR criteria in each segment. In cases of ties amongst observers

(i.e. when at least two of the most annotated alternatives have the same number of votes –

occurred on 6.3% of SNR and 2.1% FECG annotations), one of the most voted alternatives

was randomly chosen to avoid any further bias in our analysis. Figure 5.8 demonstrates these

resulting consensus and respective abdominal signal segments. With the consensus annotations

for SNR and FECG at hand, one can further define one single measure to describe the visibility

of the FECG peaks. This visibility consensus9 was built, following the rules shown in Table 5.6.

Further, using the visibility consensus, one can aim at identifying which recordings have

at least one usable channel for every segment. This is relevant when evaluating if a specific

pathology or higher BMIs have an overall impact on the quality of our measurements. For this

purpose, a recoding index (RI) was created in a similar fashion to our consensus for SNR and

FECG using the maximum value for the visibility consensus across channels and performing

majority voting throughout the segments. This manner, an overall index per recording, which

follows the same categories as the visibility index (see Table 5.6), is obtained.

Table 5.5: Intra-observer (on the main diagonal) and inter-observer agreement by means of
Krippendorff’s αK statistics for FECG (a) and SNR (b) quality annotation (see Table 5.4).

(a) FECG amplitude

Rater ANN1 ANN2 ANN3 ANN4
ANN1 0.82 – – –
ANN2 0.65 0.72 –
ANN3 0.63 0.58 0.70 –
ANN4 0.74 0.69 0.68 0.88

(b) SNR

Rater ANN1 ANN2 ANN3 ANN4
ANN1 0.86 – – –
ANN2 0.66 0.82 – –
ANN3 0.71 0.65 0.84 –
ANN4 0.75 0.65 0.83 0.81

8 In his book, Krippendorff [238] indeed suggested that a minimum αK value to confirm a given hypothesis should
be chosen according to the importance of the conclusions to be drawn from the available data. For this purpose,
the author recommended a threshold of αK ≥ 0.800 for conclusive and 0.667 ≤ αK ≤ 0.800 to draw tentative
conclusions. This consideration is indeed important and reflect the author’s regard with serious empiricism.

9 Please notice that the experts are only able to annotate what they can identify on the time-domain. However,
there may exist a linear/non-linear projection of the available channels, which entails stronger FECG signals. For
instance, see Andreotti et al. [20] (Figure 5) and Behar et al. [54] (Figure 7).
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Figure 5.8: Annotated segments of abdominal recordings for NIFECG signal quality. All seg-
ments belong to the same recording, the visibility consensus (see Table 5.6) for SNR (SNRc)
and FECG amplitude (FECGc) are described within each subfigure.

Table 5.6: Definition of fetal peak visibility consensus, based on FECG strength and SNR
consensus [152]. Scoring is done on a segment basis, one channel at a time.

SNR† FECG‡ Meaning
Visibility
consensus

∗§
s1,s2

f1
∗§ No FECG visible 1

s3,s4 f2 FECG visible but low amplitude and SNR 2
s5
s3

f2
f3 FECG visible adequate SNR 3

s4,s5
s3

f3
f4 FECG very visible adequate SNR 4

4,5 4 FECG very visible good SNR 5

† s1 =unacceptable, s2 =bad, s3 =adequate,s4 =good, s5 =excellent
‡ f 1 =not present, f 2 =low, f 3 =moderate and f 4 =high amplitude
§ The asterisk ∗ represents a don’t-care term.
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Characterization of collected and annotated dataset

Figure 5.9a and 5.9b demonstrate in a channel-by-channel manner the resulting consen-

sus between experts for FECG and SNR, respectively, as discussed in the previous section.

Figure 5.9 (c) shows the results for the visibility consensus on segments regarding fetuses in

vertex presentation; similar results were obtained using every presentation. As discussed in

Section 3.2.3, the electrode geometry as well as inter-electrode distance plays an important role

in the signal SNR and FECG quality. Such effects can be seen in Figure 5.9a and 5.9b, the smaller

the distance between electrodes, the higher are FECG peaks but also noise levels. Moreover,

channels 2 and 6-8 appear to have proportionally a higher fetal presence. This trend is visually

confirmed in Figure 5.9c, where the visibility consensus for FECG and SNR (presented in the

previous section) is used.

In order to verify those findings, a statistical analysis was performed under the hypothesis

that: if FECG peaks are visible in any channel for a given segment, there is significant difference

in quality amongst the individual channels. Since the maternal chest lead does not contain

FECG signal, it was excluded from the analysis. Moreover, as it can be seen from Figure 5.9a,

there is a great number of segments with no FECG signals visible. Since the goal is assessing

channel differences in cases where FECG is present, segments were no FECG could be seen

for every channel (i.e. the FECG amplitude is “not present”) were excluded from this analysis.

Since the data has repetitions (up to 5 segments), a non-parametric variant of the 2-way Analysis
of Variance (ANOVA) called Skillings-Mack test [260] was applied. This test is a Friedman-type

statistic for unbalanced data (due to excluded FECG absent segments). The test indicated highly

significant (p < 0.001) differences among the different channels with respect to both FECG and

SNR consensus. Thus, a post-hoc test was performed using the Sign test for evaluating paired

differences between channels, shown in Figure 5.10. From Figure 5.10a it is clear that channel

numbers 7, 8, 6 and 2 (in this order), contain highest FECG content. Regarding Figure 5.10b,

it is clear that leads in the same groups, i.e. internal (i.e. channels 6-8) or external (i.e. 2-5),

have similar SNRs. The internal leads 6, 7 and 8 have worse SNR than the external ones. This

confirms the trade-off theory about inter-electrode distance explained in Section 3.2.3.

With regards to the different WOG and the visibility of the fetal signal, Figure 5.11 demon-

strates how many of the collected data had observable FECG peaks. From this figure, it is clear

that from the 28th WOG onwards, there is a strong decay in FECG quality. The fact is justified

by the presence of the vernix caseosa, as described in Section 2.1. Indeed, for WOG < 28, 56.6%

the recordings had a RI≥2, where only 38.1% had a RI≥3. Meanwhile, for WOG ≥ 28, only

22.3% had RI≥2 and 20.0% with RI≥3. Nevertheless, as previously explained, the vernix is

expected to slowly dissolve from the 36th week, but only a few recordings are available for these

WOGs in this study.

As shown in Table 5.3, in this study every type of independent and dependent variables are

present: interval, ordinal and nominal (both dichotomous and polychotomous). Thus, several

statistical tests and methods are required to check for dependencies between variables (whether
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Figure 5.9: Channel-by-channel overview of expert’s consensus annotations for FECG (top
left) and SNR (top right). Below a bubble plot shows the visibility consensus results across
different channels, where the number inside the bubbles and their sizes reflect the number
of segments which were classified in each category. Please refer to electrode configuration on
Fig. 5.4. In Fig. 5.11 the recording index metric regarding multiple channels for this study’s
population is demonstrated.

dependence is significant10 or not) and, if so, to assess the strength of association11 across

those variables. Table 5.7 shows the different tests of dependence and bivariate measures for

effect size used in this work. Interpreting the strength of a relationship (i.e. if none existing,

weak, moderate or strong) is to some extent relative [110]. As suggested by Cohen [96], effect

size is defined as according to its absolute value as: 0 − 0.1 (none), 0.1 − 0.3 (weak), 0.3 − 0.5

10 Each recording in this study is regarded as an independent sample, the author acknowledges that this is a working
condition that is not absolutely true for repeated measures of the same subject.

11 Correlations for nominal variables are usually termed as “association”, a term which is used in this work as an
umbrella term. In this work the terms “strength of association” and “effect size” are used indiscriminately.
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Figure 5.10: Post-hoc analysis using the Signed test for verifying channel quality, i.e. FECG
amplitude (on the left) and SNR level (on the right). The channel configuration is presented
in Fig. 5.4. The colored boxes indicate the results for the two-tailored sign test, insignificant
differences are colored white, significant (i.e. p < 0.05) with gray and very significant (p <
0.01) with black. Additionally, the test’s Z-value sign provide the direction of this difference
and are shown with the “<” and “>” symbols. The direction of comparison is from the left to
below, e.g. for FECG amplitude channel 7 obtained a very significant higher median than all
other channels except channel 2.
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Figure 5.11: Recording’s quality across different WOGs for study population. The recording
index (RI) is presented in the previous section and ranges from 1 (FECG not visible) to 5
(FECG peaks very distinguishable).

(moderate) and 0.5 − 1.0 (strong). As regards to significance levels, throughout this work

thresholds are defined as significant (p-value < 0.05), very significant (p < 0.01) and highly

significant (p < 0.001).

From this point onwards in our analysis, the values for the maternal reference channel

are disregarded, since no FECG is present. Moreover, to reduce the number of sub-classes

within some of this variables, clustering was applied. Specifically, the level of amniotic fluid
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Table 5.7: Measures of dependency and bivariate association used in this study for the dif-
ferent variable types used. Nominal variables are divided into dichotomous (dych. – with
two classes) and polychotomous (poly.). On the first line of each cell the test of significance
(dependence/independence) is specified, followed by the measure of effect size.

Measures Interval Ordinal Nominal (dych.) Nominal (poly.)

Interval
Permutation test

Spearman’s ρ† – – –

Ordinal
Permutation test

Spearman’s ρ
Permutation test

Spearman’s ρ – –

Nominal
(dich.)

Kruskal-Wallis test
Point-biserial rpb‡

Permutation test
Spearman’s ρ

Pearson’s χ2 test
Cohen’s w [97] § –

Nominal
(poly.)

Kruskal-Wallis test
correlation ratio (η)§,¶

Kruskal-Wallis test
correlation ratio (η)§,¶

Pearson’s χ2 test
Cohen’s w [97]§

Pearson’s χ2 test
Cohen’s w [97] §

† Pearson’s correlation coefficient (r) is an alternative, however it assumes a linear relationship between variables.
‡ This measure is mathematically equivalent to Pearson’s r, but specific for dichotomous-interval correlation.
§ Asymmetric coefficient with values ranging between [0,1], i.e. no direction information.
¶ It is the squared-root of the effect size measure used by ANOVA (η2), as such it is based on the squared sum of

explained/total variance.

was grouped into three categories (low, normal, high) and placental position into 4 (posterior,

anterior, sideways, praevia/bipartia), see Table 5.3. Unknown values were disregarded from our

analysis. Since some of these relationships are expected to vary throughout the pregnancy, the

trends are evaluated by grouping the patients into 4 groups of gestational weeks. Results for

these trends are shown in Figure 5.12. From Figure 5.12, a clear decrease and even inversion in

the direction of the correlation between FECG and WOG is observable during the formation

of the vernix. Aside from that, a moderate association between channel number and SNR

consensus is noticeable, the same holds for placental position and FECG grade.

Due to the several classes existing within each variable (described in Table 5.3), overall

considerations about the recording quality (i.e. RI) should make use of all recordings (i.e. every

WOG available) to avoid miss-conceptions due to small sample-sizes. Given that, associations

between RI metric and channel independent variables were evaluated. The estimated effect-

sizes for each variable were: BMI (ρ = −0.10,p = 0.10); WOG (ρ = −0.10,p = 0.11); fetal gender

(ρ = 0.24,p < 0.001); measuring expert (η = 0.02,p = 0.25); and patient pathophysiological

group (η = 0.21,p = 0.16). The lack of significant correlations/associations between most of

those variables and recording quality comes at no surprise, e.g. some authors [163, 346, 439]

have described no decrease of quality with an increase in maternal BMI. Unexpectedly, fetal

gender showed a week and highly significant correlation (female fetuses shown on average a

slightly better RI); however this results may be attributed to the unbalanced groups or groups

having different shape of distribution (e.g. through heteroscedasticity12). Particularly regarding

fetal gender, data from n = 115 male and n = 62 female fetuses was collected. Similarly,

12 Heteroscedasticity denotes when different groups have different standard deviations from each other. In such
cases, the probability of obtaining a false positive results even though the null hypothesis is true may be greater
than the desired alpha level. Parametric tests assume that data is not heteroscedastic (i.e. homoscedastic) [273].
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Figure 5.12: Effect sizes across different gestational weeks. Filled markers (e.g. ) represent
significant results, while no significant effect size was obtained otherwise (i.e. ). Results
compare channels (chan), gestational weeks (wog), placental position (plac), amniotic fluid
level (amnio), fetal position (fetpos) against both SNR and FECG consensus. The combination
amnio-fecg is omitted since no significant dependence was found.

pathological groups have shown a weak not significant association, which can be attributed to

Kruskal–Wallis’s test sensitivity to the resulting distributions within each group (e.g. the much

larger number of physiological pregnancies than some pathologies – see Table 5.3).

The focus of this work is on earlier stages of pregnancy, for this reason, henceforth only

recordings where WOG < 28 are regarded in our analysis. Before proceeding, the annotated

consensus variables (i.e. SNR and FECG), derived in the previous section, are investigated to

test if there is a degree of association between those. The intuitive thought behind the idea is

that bad SNR signals tend to have no visible FECG peaks at all, meanwhile, strong FECG peaks

may influence the observer’s classification of SNR values. Aside from this association, the effect

sizes across the several variables described in Table 5.3 were evaluated, the results are presented

in a correlation matrix (see Table 5.8a and Table 5.8b).

Indeed a highly significant dependency but weak correlation was found between FECG

and SNR metrics (ρ = 0.14, p < 0.001). Nevertheless, the direction of correlation confirms

the initial hypothesis that annotators may associate an increase in FECG amplitude with an

increase in SNR. Similarly, the visibility consensus was shown to have a weak correlation

with SNR and a strong one with FECG consensus. As it can be seen from Table 5.8a, SNR

to visibility consensus dependency is highly significant. However, between FECG and the

visibility consensus no significant dependency was found. Further investigation using Kendall’s

τb correlation coefficient demonstrated that the FECG–visibility consensus relationship is indeed

strong and very significant13. The findings are consistent with the expected, i.e. an increase in

SNR (and/or FECG amplitude) reflects on better visibility consensus.

13 The false indication here using ρ is due to the fact that Spearman’s ρ does not handle ties well (i.e., both members
of the pair have the same ordinal value). Ties often occurred in this analysis, due to the large amount of cases
were both FECG and the visibility consensus accuse “1” (i.e., no fetal peak present)
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Aside from the assessment metrics, some other effects can be observed in Table 5.8. Some

of these effects, such as the reduction of amniotic fluid levels with an increase in WOG, can be

physiologically explained. Meanwhile, the cause of other effects such as the association between

fetal and placental position are less evident. From Table 5.8 (b) it is noticeable that a strong

and significant association was found between channel number and FECG/visibility consensus,

which confirms the previous results. Strong associations between placental position and SNR

level (η = 0.76, p < 0.01) and moderate association for placental position – FECG (η = 0.30,

p < 0.001) were encountered. Further analysis showed slightly inferior SNR results for patients

with anterior/fundal placentas, which can be justified by the higher relative permittivity of

the placenta compared to muscles/amniotic fluid (shown in [331]). This placental position,

thus, could offer resistance on the path between fetal dipole and electrodes. FECG levels were

weaker for sideways and praevia/bipartia positions. Different from the results obtained by

Graatsma et al. [163], fetal position was shown to have a highly significant association for both

SNR and FECG parameters, as shown in Table 5.8 (b). Indeed results show higher visibility

consensus levels for fetuses in vertex position. Lastly, regarding the levels of amniotic fluid,

despite significant dependency no association was found. The counterintuitive results for the

interval-scaled variable WOG against nominal variables (fetal and placental position) showing

high association with no significance indicate that the dataset is limited in number for providing

such analyses. This is because the correlation coefficient (η) for nominal-ordinal/interval

variables requires that the frequencies of each class of the categorical variable must be large

enough to give statistical stability to the means of these classes. An alternative to obtain more

meaningful representation of the real effect-size is to group the different WOGs into ranges.

Further tests confirmed a reduction on the effect-size when clustering neighboring WOGs into

ranges, nevertheless, the acceptance of the null-hypothesis is not altered.

However, a bivariate analysis does not cover inter-dependencies between multiple variables.

For example, the fetal position and channel numbers are both expected to influence the strength

of the FECG signal. For assessing how these variables interact, a more elaborate multivariate

analysis such as Factor Analysis with Mixed Data (FAMD) [124, 207, 318] is further required.

Again, due to the limited number of recordings available for this work, such analysis is unfeasible

and remains for future works.

5.2.4 Data annotation: fetal QRS annotation

Another feasible analysis using the available clinical dataset is to assess the accuracy of the

attained FQRS detections. Exact FQRS are crucial not only for enabling FHR/FHRV analysis

but also because morphological analysis of the FECG signal usually relies on FQRS locations to

segment the FECG waves. Using a clinical database, one is able to validate the results obtained

in a simulated dataset (e.g. FECGSYNDB). Therefore, a conclusive assessment of how these

preprocessing, extraction, and detection methods perform is possible.
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Table 5.8: Correlation table for clinical data regarding WOG < 28. Asterisk notation show the
significance level as significant (∗), very significant (∗∗) and highly significant (∗∗∗). Abbrevia-
tions used: position (pos.), consensus (cons.) and visibility (vis.).

(a) Effect size for interval-ordinal and ordinal-ordinal variables (both using ρ)

Parameter WOG† amniotic
fluid

SNR
cons.

FECG
cons.

amniotic fluid −0.28∗∗∗ – – –
SNR cons. ×‡ −0.02 – –
FECG cons. ×‡ −0.03∗ 0.14∗∗∗ –
vis. cons. ×‡ −0.03∗∗ 0.18∗∗∗ 0.99

† Before calculating the effect size, repeated terms were excluded.
‡ Don’t-care term. Since every channel number is contained in every recording,

these correlations shall be further investigated using the RI.

(b) Effect size for nominal-nominal (w) and nominal-ordinal/interval (η) variables

Parameter channel # WOG† placenta
pos.

amniotic
fluid fetal pos.

WOG ×‡ – – – –
placenta pos. ×‡ 0.99 – – –
amniotic fluid ×‡ – 0.07∗∗∗ – –
fetal pos. ×‡ 0.99 0.42∗∗∗ 0.25∗∗∗ –
SNR cons. 0.34 – 0.76∗∗ – 0.79∗∗∗
FECG cons. 0.78∗∗∗ – 0.30∗∗∗ – 0.23∗∗∗
vis. cons. 0.76∗∗ – 0.21∗∗∗ – 0.14∗∗∗

Hence, a subset14 of 24 recordings of viable quality were annotated for MQRS and FQRS

locations. These recordings were taken from ten women (both healthy and pathological patients

were present), aging from 21 to 33 years (27.1± 4.3 years), gestational weeks between 20 and 28

weeks (25.0±2.5 weeks) and duration of 19.4±2.4 minutes, where no significant arrhythmia

or ectopic beats have been found for neither mother or fetus. Considering the signal quality

annotations presented in the previous section, the selected recordings had different RI indices:

six recordings with RI = 2, eleven with RI = 3, two with RI = 4 and five with RI = 5. Each

recording had its MQRS and FQRS annotated by one and corrected by two other trained

specialists. Annotators should use four types of annotations for “visible peak”, “likely, yet,

not visible peak”, “begin” and “end of signal loss interval”. The annotation procedure was

performed using a JAVA GUI developed at the IBMT. Both software and annotation protocol

are detailed in Appendix B. The annotated data totalized 465 min, containing over 67,000 fetal

complexes, and was used as gold-standard for evaluating the developed FQRS/FHR detection

techniques.

14 The reason behind the choice for a subset was due to the fact that the annotation procedure is very time-costly.
The annotation of a single recording by one expert can take a couple hours. The author assumes if the subset is
heterogeneous enough, it may nonetheless provide a good reference for further benchmarks.
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5.3 Chapter Summary

In this chapter, the two principal sources of data developed throughout this work were

presented. First, motivated by the lack of freely available abdECG databases, in cooperation

with the IBME (University of Oxford) a NIFECG simulator was developed, i.e. the so-called

FECGSYN (see Section 5.1.1). This versatile toolbox provides means for several types of non-

stationary abdominal mixtures and several pathophysiological scenarios. By making use of

the FECGSYN, a large open-access database was created (i.e. FECGSYNDB – see Section 5.1.2).

Second, together with the project partners at the University Hospital of Leipzig, a clinical

trial was conducted and resulted in n = 259 NIFECG recordings. The obtained clinical data

was statistically characterized in Section 5.2. The overall quality of NIFECG at early WOGs

(i.e. < 28 weeks) was shown to be fair. Particularly in this analysis, the dependence between

WOG and FECG amplitude was demonstrated. Indeed there is a strong attenuation of the

FECG around the 28-32 weeks, which is commonly associated with the vernix caseosa. Another

important factor discussed was the influence on electrode location and the power of fetal and

noise signals, where depending on the NIFECG application, a mixture of more and less distant

electrodes may be considered. Other influencing factors were also evaluated using a bivariate

analysis, however, the effects are not conclusive due to the modest size of the clinical dataset.

Further analysis should focus on multivariate analysis using a much larger dataset (i.e. at

least a couple thousand recordings). In the next chapter, the methods proposed in Chapter 4

are comprehensively benchmarked against several other extraction methods available in the

literature, using the produced data material here presented.
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I only believe in statistics that I doctored myself

– origin unknown, often attributed to Winston S. Churchill

6
Results for Data Analysis

In the previous chapters, several improvements on current extraction and detection tech-

niques for NIFECG analysis as well as valuable data were produced. In this chapter, these

suggested approaches are benchmarked in depth. In order to do so, the present chapter is

divided into two main sections, based on the type of analysis performed and data material

used. In Section 6.1, the simulated data (i.e. the FECGSYNDB - see Section 5.1.1) was used to

benchmark several extraction methods, in terms of FQRS detection and morphological fidelity of

NIFECG estimates. In Section 6.2, the best performing methods from each algorithmic category

(see Figure 3.4) were applied to the own clinical dataset collected throughout this work (see

Section 5.2).

6.1 Simulated Data

The application of simulated data for the purpose of characterizing NIFECG is particularly

important, since one can evaluate the different algorithms behavior in the presence of differ-

ent noise levels, non-stationary artefacts and pathophysiological events. In this section, the

FECGSYNDB was used to that end in an analog manner as in Andreotti et al. [18]. This database

comprises several pathophysiological scenarios, shown in Table 5.1.

6.1.1 Fetal QRS detection

This first experiment consisted of comparing different NIFECG extraction techniques in

terms of FQRS detection accuracy. As in [18], single-lead extraction methods were applied

to simulated leads 1, 8, 11, 14, 19, 22, 25, and 32 (see Fig. 5.2). In order to produce a fair

comparison between BSS and the remaining techniques (AM and TS), results are restricted

best outcomes amongst all leads/components. Gross statistics were calculated for evaluating

agreement (F1) and distance (MAE) measures (see Section 3.4.2). A case-by-case overview on
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Table 6.1: Case-by-case FQRS results for each extraction method (first column) for
FECGSYNDB. Presented cases include “baseline” (i.e. no noise source), “case 0” (i.e. noise),
“case 1” (i.e. fetal movement), “case 2” (i.e. heart rate accelerations), “case 3” (i.e. uterine con-
traction), “case 4” (ectopic beats), and “case 5” (twins). For more information see Table 5.1.
Results are shown as median (IQR), best performing method is highlighted in each case.

(a) F1 (%)
Method Baseline Case 0 Case 1 Case 2 Case 3 Case 4 Case 5 Overall

BSSica 100.0 ( 0.3 ) 99.9 ( 0.7 ) 98.2 ( 8.7 ) 99.9 ( 0.1 ) 85.2 ( 22.9 ) 85.4 ( 3.1 ) 99.5 ( 10.7 ) 99.2 (13.0)
BSSpca 99.3 ( 6.6 ) 98.6 ( 6.8 ) 95.2 ( 8.2 ) 98.7 ( 6.2 ) 86.6 ( 8.9 ) 84.0 ( 4.7 ) 83.9 ( 21.7 ) 92.5 ( 14.8 )
AMlms 99.6 ( 5.7 ) 94.3 ( 20.4 ) 94.9 ( 16.1 ) 96.3 ( 16.5 ) 72.9 ( 13.6 ) 82.9 ( 6.7 ) 79.8 ( 26.3 ) 86.8 ( 23.7 )
AMrls 99.6 ( 4.2 ) 94.8 ( 19.7 ) 95.5 ( 14.9 ) 96.9 ( 16 ) 73.2 ( 14.0 ) 83.3 ( 6.4 ) 79.8 ( 26.7 ) 87.6 ( 23.7 )
AMesn 98.6 ( 3.6 ) 97.4 ( 7.1 ) 97.5 ( 6.6 ) 98.2 ( 5.3 ) 77.4 ( 12.2 ) 83.1 ( 5.4 ) 83.1 ( 24.9 ) 92.9 ( 17.7 )

TSc 99.8 ( 3.4 ) 83.5 ( 35.3 ) 92.2 ( 30.7 ) 90.0 ( 33.5 ) 55.2 ( 17.4 ) 80.5 ( 16.5 ) 73.2 ( 29.3 ) 81.8 ( 35.8 )
TSpca 100.0 ( 0.1 ) 85.9 ( 36.6 ) 92.7 ( 32.2 ) 92.4 ( 34.3 ) 55.6 ( 16.2 ) 81.3 ( 16.4 ) 73.0 ( 30.9 ) 83.1 ( 37.6 )

TSEKF2 99.4 ( 2.8 ) 83.0 ( 34.7 ) 91.4 ( 29.8 ) 89.7 ( 33.3 ) 54.8 ( 17.5 ) 76.7 ( 15.5 ) 72.7 ( 27.1 ) 79.8 ( 35.5 )
TSvEKF2 99.1 ( 3.9 ) 83.1 ( 34.2 ) 90.7 ( 30.6 ) 88.6 ( 33.0 ) 54.7 ( 16.9 ) 76.5 ( 16.2 ) 72.4 ( 27.7 ) 79.6 ( 35.1 )
TSuiEKF2 95.5 ( 10.2 ) 75.5 ( 31.6 ) 83.0 ( 30.8 ) 80.9 ( 32.2 ) 53.1 ( 16.1 ) 74.8 ( 21.1 ) 68.9 ( 33.6 ) 74.9 ( 34.9 )
TSEKF24 99.8 ( 0.4 ) 85.5 ( 36.5 ) 92.6 ( 30.7 ) 92.3 ( 34.3 ) 55.2 ( 17.6 ) 77.1 ( 16.4 ) 72.6 ( 28.9 ) 80.8 ( 37.6 )
TSvEKF24 99.6 ( 1.4 ) 82.3 ( 35.5 ) 87.7 ( 34.2 ) 90.0 ( 35.3 ) 54.6 ( 16.9 ) 75.6 ( 16.2 ) 71.6 ( 26.5 ) 78.8 ( 37.1 )

(b) MAE (ms)
Method Baseline Case 0 Case 1 Case 2 Case 3 Case 4 Case 5 Overall

BSSica 4.0 ( 1.0 ) 4.0 ( 0.9 ) 4.0 ( 1.2 ) 4.0 ( 0.1 ) 4.6 ( 2.7 ) 4.3 ( 1.1 ) 4.0 ( 0.3 ) 4.0 ( 1.0 )
BSSpca 4.1 ( 1.9 ) 4.2 ( 1.8 ) 4.5 ( 1.8 ) 4.0 ( 1.4 ) 4.6 ( 1.7 ) 4.8 ( 1.7 ) 4.2 ( 2.0 ) 4.3 ( 1.6 )
AMlms 3.9 ( 2.0 ) 4.1 ( 1.9 ) 4.0 ( 0.7 ) 3.9 ( 0.6 ) 5.9 ( 1.9 ) 4.6 ( 1.5 ) 4.2 ( 1.5 ) 4.2 ( 1.7 )
AMrls 3.8 ( 2.3 ) 4.0 ( 1.9 ) 4.0 ( 0.9 ) 3.9 ( 0.7 ) 6.0 ( 1.9 ) 4.6 ( 1.5 ) 4.3 ( 1.5 ) 4.2 ( 1.8 )
AMesn 3.9 ( 1.9 ) 3.8 ( 1.6 ) 3.8 ( 0.7 ) 3.7 ( 0.6 ) 5.3 ( 1.6 ) 4.3 ( 1.2 ) 3.9 ( 1.2 ) 4.0 ( 1.4 )

TSc 4.0 ( 1.9 ) 4.2 ( 2.5 ) 4.2 ( 0.7 ) 4.2 ( 0.7 ) 8.2 ( 3.1 ) 5.1 ( 2.1 ) 4.4 ( 2.3 ) 4.4 ( 2.6 )
TSpca 4.1 ( 2.0 ) 4.3 ( 2.5 ) 4.2 ( 0.9 ) 4.2 ( 0.8 ) 8.3 ( 2.9 ) 5.0 ( 2.1 ) 4.4 ( 2.4 ) 4.5 ( 2.8 )

TSEKF2 3.9 ( 1.9 ) 4.0 ( 2.4 ) 3.9 ( 0.8 ) 3.9 ( 0.7 ) 8.1 ( 3.2 ) 5.1 ( 1.9 ) 4.2 ( 2.4 ) 4.3 ( 2.7 )
TSvEKF2 3.9 ( 1.9 ) 4.1 ( 2.3 ) 4.1 ( 0.8 ) 4.0 ( 0.7 ) 8.3 ( 3.1 ) 5.3 ( 2.1 ) 4.3 ( 2.5 ) 4.5 ( 2.8 )
TSuiEKF2 5.1 ( 4.3 ) 6.1 ( 4.7 ) 4.7 ( 3.5 ) 4.8 ( 3.9 ) 9.0 ( 5.2 ) 5.5 ( 3.4 ) 5.6 ( 6.6 ) 5.7 ( 5.0 )
TSEKF24 3.9 ( 2.0 ) 4.1 ( 2.3 ) 4.0 ( 0.8 ) 4.0 ( 0.7 ) 8.2 ( 3.0 ) 5.3 ( 1.9 ) 4.3 ( 2.3 ) 4.4 ( 2.7 )
TSvEKF24 4.0 ( 1.7 ) 4.3 ( 2.4 ) 4.1 ( 1.0 ) 4.2 ( 0.8 ) 8.6 ( 3.2 ) 5.5 ( 2.1 ) 4.5 ( 2.6 ) 4.5 ( 2.8 )

each method’s performance is shown in Table 6.1. The highest median F1 for each category of

methods was achieved by BSSica (99.2%), AMesn (92.9%) and TSpca (83.1%). MAE results for

most methods were similar. Figure 6.1 provides detailed view considering both metrics (F1 and

MAE) for each technique, cases and SNR levels. Using a Kruskal-Wallis test, a significant effect

of the SNR was found for most AM and TS methods, but not for BSS techniques (see Fig. 6.1).

Using a two-tailored Friedman test, the effect of the different cases and methods considering

each SNR level was separately evaluated. Regarding F1, low SNRs (i.e. 0 or 3 dB) exhibited

extremely significant (p < 0.001) differences between cases; highly significant (p < 0.01) for

intermediate SNRs (6,9 dB); whereas for a high SNR (12 dB) no significant difference was found

(p > 0.05). Regarding MAE, extremely significant differences were found in most SNR levels

(0,6,9,12 dB) aside from for SNR = 3 dB, where it was highly significant. Similarly, the effects of

different methods were tested and indicated extremely significant differences on every SNR level

for both F1 and MAE. At last, a post hoc test was performed using the Sign test for evaluating

paired differences between methods (shown in Fig. 6.2).
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(b) SNR = 03 dB
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(c) SNR = 06 dB
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(d) SNR = 09 dB
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(e) SNR = 12 dB
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Figure 6.2: Post hoc analysis for FQRS detection accuracy, performed using the Signed test
across extraction methods. The first row shows tests regarding F1, while the second MAE. For
this analysis, the Baseline case was excluded due to its independence of the SNR level. Black
squares accuse highly significant differences (p < 0.01) and white non-significant (p > 0.5).
Arrows indicate the direction of these significant differences as in Fig. 5.10.
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Figure 6.3: Two exemplary segments are portrayed during which BSSica’s mixing matrix is
updated (i.e. at 60 s and 180 s - dashed line) for a dataset containing fetal movement. De-
picted above are the abdominal mixtures for channel 14, below are the selected components
with highest F1, 8 channels were used as input. The plots on the first row depict abdominal
mixture and FQRS locations (marked with ), the ones in the inferior row show the selected
BSSica components.
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6.1. SIMULATED DATA

6.1.2 Morphological analysis

Morphological analysis aims at assessing how accurate morphological features (described in

Section 3.6) can be obtained. As in Andreotti et al. [18], the presence of noise and effects of the

different NIFECG extraction methods on the estimated morphological measures were assessed.

For providing a meaningful pathophysiological analysis and clearer presentation of the results,

we concentrate on a subset of the database containing baseline and case 0 (noise only). These

cases are similar in the sense that the baseline can be considered as a case 0 with infinite SNR,

since no noise is present.

Figure 6.3 displays excerpts of independent components (output from BSSica) around seg-

ments where the mixing matrix was updated. The dataset presented in this figure includes a

highly non-stationary event (case 1 - fetal movement) and demonstrates the expected difficulties

of analyzing the morphology in case of non-stationarities. Due to the current state of signal

processing techniques to fetal morphological analysis, several beats were excluded either during

template generation, segmentation using ecgpuwave [203] or due to distortions by the extraction

methods. The percentage of excluded beats increased with an decrease in the SNR level ranging

from 8 to 78% for TS methods, 19 to 48% for AM, meanwhile it was relatively constant for BSS

(14-20%). For performing a fair comparison on the morphological trustworthy, only segments

on which template beats could be obtained across all methods were used in our further analysis.

Therefore, the number of usable beats monotonically decreased from 69.7% on the baseline case

to 11.6% on case 0 (with 0 dB noise) [18].

Figure 6.4 and 6.5 exhibit the correlations between FQT intervals and FTQRS obtained in the

FECG reference and extracted channels in the presence and absence of noise. In these figures the

methods with best coefficient of determination (r2) from each class of methods are presented as

well as selected Kalman filter variants. The median FQT/FTQRS was taken across all channels

and segments which could be obtained for all methods. An overview on the results in terms of

F̃QT and ˜FTQRS for different methods, SNR levels and cases (baseline and case 0) is presented

in Fig. 6.6. Similarly to the analysis in the previous experiment, the difference between median

results was statistically tested (see Fig. 6.6). In this figure, a Kruskal-Wallis test was performed

in evaluating if differences in the median F̃QT and ˜FTQRS results for the various SNR levels

were significant. It has to be kept in mind that the percentage of missing templates due to failed

segmentation or failure in construction is not represented on these plots and increase with a

decreasing SNR.
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Figure 6.4: Differences in measured FQT intervals between extracted channels/components
(FQTtest) and reference propagated FECG signal (FQTref ). Extraction methods with highest
coefficient of determination (r2) for each category are shown as well as selected Kalman filter
variants. Results are shown for the baseline (lighter colors, solid lines) and case 0 with SNR =
0 dB (darker colors, dashed lines).
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Figure 6.5: Differences in measured FTQRS ratios between extracted channels/components
(FTQRStest) and reference propagated FECG signal (FTQRSref ). Results are presented in an
analogous fashion as in Figure 6.4.
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Figure 6.6: Accuracy of FQT and FTQRS extraction for the different methods and when con-
sidering different SNR levels (decreasing from left to right, i.e. baseline case furthest to the
left). A Kruskal–Wallis test was performed to evaluate significant differences across varying
SNR levels. Outliers were omitted for visualization purposes.

6.2 Own Clinical Data

Independent of how realistic the simulations with the FECGSYN are, the use of clinical

data enables the assessment of signal processing algorithms under real circumstances. This is

necessary, for example when one wishes to evaluate the actual quality of FECG signals. In this

section, both FQRS and FHR correction methods, introduced in Section 4.3, are evaluated using

the clinical data collected throughout this work, described in Section 5.2.

6.2.1 FQRS correction using the evolutionary algorithm

In order to assess the performance of the eQRS algorithm, the subset containing 24 recordings

(see Section 5.2.4) was used. In Table 6.2 the results for SE, P P V , F1 and MAE (described in

Section 3.4.2) are presented. The eQRS was applied to 1, 3, and 7 abdominal channels. The

3-lead scheme comprised the internal leads (see electrode configuration on Fig. 5.4). Figure. 6.7

provides a qualitative example of the resulting corrected FQRS using the proposed eQRS on

three channels. Figure 6.8 additionally presents the extraction results for BSSica when 3, 4, and

7 leads from the clinical recording is used as input for ICA.
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6.2. OWN CLINICAL DATA

Table 6.2: Results for FQRS detection accuracy and precision using the eQRS correction al-
gorithm. “Initial” detections denote simple FQRS detections (maxsearch algorithm) used to
initialize the eQRS routine. “Best” represents the best results considering all available chan-
nels (e.g. maximal F1 or minimal MAE). The best F1 and MAE results in each category are
underlined.

Method initial 1 channel 3 channels 7 channels
initial
(best)

1 channel
(best)

SE (%) 25.7±7.9 21.9±14.7 24.3±13.6 22.6±15.6 31.9±9.3 33.3±20.3
PPV (%) 28.7±6.5 26.1±14.8 30.5±12.1 30.9±15.6 32.9±19.2 38.5±19.6
F1 (%) 26.8±7.5 23.7±14.7 26.9±12.9 24.9±15.6 32.0±9.4 35.5±20.0

B
SS

ic
a

MAE (ms) 20.5±2.8 21.4±5.0 20.5±5.2 20.9±5.6 17.5±2.7 17.0±5.9
SE (%) 51.6±22.1 79.7±23.8 74.5±22.5 96.5 ±6.3 69.8±19.7 97.2±4.7
PPV (%) 53.2±21.9 78.9±23.5 83.6±22.2 95.8 ±5.5 70.6±19.2 96.1±5.0
F1 (%) 53.4±22.0 79.3±23.6 84.0±22.3 96.2 ±5.8 70.1±19.5 96.6±4.8

A
M

es
n

MAE (ms) 13.8±5.5 8.2±4.8 7.3±5.5 4.4±2.2 8.5±4.0 4.7±2.0
SE (%) 60.6±21.4 81.3±24.9 81.8±26.6 98.3±4.7 79.8±15.0 99.4±0.5
PPV (%) 60.8±21.3 80.5±24.7 81.0±26.5 97.3±5.0 79.4±15.0 98.4±1.7
F1 (%) 60.7±21.4 80.9±24.8 81.4±26.5 97.8±4.8 79.6±15.0 98.9±1.0T

S p
ca

MAE (ms) 11.4±5.6 7.4±4.9 7.3±5.5 4.9±1.8 6.3±3.1 4.2±1.6
SE (%) 56.0±21.4 79.3±24.7 80.2±27.3 98.9±1.9 76.0±16.0 98.9±1.8
PPV (%) 56.6±21.4 78.5±24.5 79.4±27.0 97.9±2.6 76.4±15.4 97.8±2.4
F1 (%) 56.3±21.4 78.9±24.6 79.8±27.1 98.4±2.1 76.2±15.7 98.3±2.0

T
S E

K
F2

4

MAE (ms) 12.9±5.4 7.7±5.0 7.7±5.84 5.1±2.1 7.4±3.2 4.4±1.6
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Figure 6.7: Evolutionary QRS correction using three channels and the AMesn extraction
method on three abdominal leads. Each lead presents fairly different signal qualities and
initial detections.
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Figure 6.8: Excerpt of clinical signals extracted using BSSica. Abdominal channels 1 to 7 are
presented in the middle column. Extracted signal variants with 4 (external - see Fig. 5.2) and
3 (internal leads are presented on the left, while the 7-lead BSSica extracted components on
the right column. The braces clarify which abdominal signals lead to which independent
components.

6.2.2 FHR correction by means of Kalman filtering

In this section, the results of the methodology for SQI assessment and FHR estimation

are presented, as described in Section 4.3.2 and in [19]. The SQI assessment accuracy was

performed using the large annotated database containing 9,650 segments (see Section 5.2.3),

while FHR accuracy was evaluated on the subset of 24 recordings annotated for FQRS location

(see Section 5.2.4).
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SQI evaluation

The overall classification accuracy in predicting the 5 classes using the cross validation scheme

for the Naive Bayes classifier was α = 0.65±0.04 (i.e. good) and κ = 0.44± 0.03 (i.e. moderate).

The resulting confusion matrix is presented in Table 6.3). Figure 6.9 provides an initial intuition

on the behaviour of different types of SQI features during the presence of muscular noise and

maternal ectopic beat [19].

Table 6.3: Resulting confusion matrix for the 10-fold cross validation.

Predicted Class
A B C D E

A
ct

u
al

C
la

ss A 6434 371 256 78 16
B 274 378 76 149 33
C 158 167 139 116 47
D 18 63 10 101 116
E 0 3 2 13 47
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Figure 6.9: Segments of clinical data comprising SQI metrics. On the left column a sudden
muscular artefact is portrayed at time 952.5 s. The right column shows the effects of a mater-
nal ectopic beat occurring around 712.0 s.
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In order to obtain a further insight into the importance of individual variables independent

from the applied classifier, the RELIEFF filter method [234] was applied (see Fig. 6.10). This

algorithm, often employed for feature selection, assigns weights to the individual features

according to their class separation capabilities. The number of nearest class hits and misses the

algorithm considered during weight computation was set to k = 50 nearest neighbors of each

class (approximately the number of observations on the lowest frequent class) and prior was

defined as uniform, so that our analysis does not depend on the presented class distribution (as

fetal signal quality may depend on several factors, e.g. gestational week) [19]. For demonstrating

the correlations amongst different features, the correlation matrix using the Kendall coefficient

is presented in Fig. 6.11.

FHR evaluation

The single channel FHR results before and after applying Kalman filter, as well as multichan-

nel outcomes are presented in Table 6.4. For completeness, the proposed fusion scheme was

compared with a weighted average of individual Kalman filtered channels by using their SQI

values. For evaluating the information obtained from the different leads, this procedure was

divided into a 3-channel (i.e. using the internal leads configuration), 4-channel (i.e. circular

lead system around abdomen) and 7-channel (i.e. all leads). An ideal best possible result is

shown by always selecting the channel with maximal HDR and minimal RMSE before and after

KF processing. An example of the FHR estimation using KF algorithm and classified SQI is

shown in Fig. 6.12.
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Figure 6.10: Bar graph showing the feature importance using RELIEFF. The different back-
ground colors on the graphic denote the different groups of SQI metrics presented in Ta-
ble 4.2, while the 10 features with highest results are emphasized.
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Table 6.4: Performance comparison using proposed KF technique in terms of FHR accuracy
((a) HDR) and precision ((b) RMSE). Results presented as average ± standard deviation. The
best mean results in each category are underlined.

(a) HDR results (in %)

Method 3 channels 4 channels 7 channels
single channel average (without KF) 54.4±16.2 58.5±14.5 56.7±13.5
single channel average (with KF) 59.1±14.4 63.9±12.1 61.8±11.5
multichannel weighted average (using
SQI and KF) 61.8±18.0 71.6±16.6 75.0±14.1

proposed multichannel KF 64.2±16.0 73.8±15.0 75.6±13.4
best individual channel (without KF) 59.3±17.4 69.3±17.7 71.2±16.7
best single channel
(with KF) 65.0±14.6 75.7±13.0 77.0±12.3

(b) RMSE results (in ms)

Method 3 channels 4 channels 7 channels
single channel average (without KF) 15.5±4.7 14.3±4.2 14.8±4.0
single channel average (with KF) 14.4±4.2 13.1±3.7 13.6±3.6
multichannel weighted average (using
SQI and KF) 13.9±5.0 11.4±4.2 10.8±4.0

proposed multichannel KF 13.3±4.6 10.8±4.1 10.5±4.0
best individual channel (without KF) 14.2±5.0 11.5±4.9 11.1±4.7
best single channel
(with KF) 13.0±4.5 10.1±4.1 9.8±4.0
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So, if she weighs the same as a duck, then she’s made of wood.

And therefore... A WITCH!

– Monty Python and the Holy Grail (1975)

7
Discussion and Prospective

As demonstrated throughout this work, NIFECG is a topic of ongoing research, whose

promising initial results have culminated on the emergence of a first generation of commercial

monitors (described in Section 3.2.2). However, there are several important aspects that need

to be further investigated before NIFECG becomes a clinical standard in continuous fetal

monitoring (see Chapter 2 and Behar et al. [51] for details). In the next sections, the main results

of this thesis as well as suggestions for future research are discussed.

7.1 Data Availability

The currently available databases for NIFECG analysis were presented in Section 3.2.4. As

described in this section, these datasets are very limited in size and spectrum of pathophysio-

logical conditions they contain. With the purpose of making NIFECG analysis more accessible,

objective and reproducible, in Chapter 5 the FECGSYN simulator (see Behar et al. [50]) and

FECGSYNDB (see Andreotti et al. [18]) simulated database were developed in this work. This

large simulated database can be used to train extraction and detection algorithms with a wide

number of non-stationary events (see Section 5.1), which in clinical settings are difficult to

collect/quantify. The increasing number of researchers using the developed platforms (and

consequent citations to the respective work [18, 50]) are proof of their usefulness.

Still, to demonstrate NIFECG’s efficacy, multi-center randomized clinical trials are necessary.

With respect to reproducibility, a more comprehensive open access medical database of NIFECG

signals is highly desirable (as described in [51]). Similar to the largely available adult QT [98,

239] and arrhythmia databases [286], such dataset would to allow researchers to rapidly discredit

unreliable clinical metrics such as the recent case of FTQRS in invasive FECG monitoring

(presented in Section 3.1) and allow that automated approaches to analyze FHR/FHRV tracings

are compared. This clinical trial/database should comprise different gestational ages (to capture
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Figure 7.1: Timeline for new measurement protocol.

the physiological changes that take place during pregnancy - see Section 2.1), pathological

groups (e.g. IUGR, PROM and fetal anemia - see Section 2.2), physiological events (such as

uterine contraction and MHR/FHR accelerations) and fetal behavioral states (see Section 2.1.6).

Another aspect to consider when developing such databases, is the use of input signals such

as paced breathing and orthostatic maneuvers during part of the recordings. As detailed in

Section 2.1.6, several external factors can influence the heart activity, thus, such techniques

could be applied to discriminate between pathological or physiological responses (e.g. through

FHRV changes as in [443]). The use of these additional arousals would lead to the necessity

of a multimodal study comprising e.g. respiratory or BP signals. Reference signals such

as CTG or FSE should serve as reference for confirming the validity of NIFECG recordings.

Additionally, during intrapartum periods the usability of EHG as a substitute to CTG’s pressure

transducer should be confirmed by concomitantly measuring both signals. Lastly, medical

expert annotations for both FQRS locations and morphological features are of great importance

to validate this methodology [51]. Similarly, additional patient background information on

the maternal psychological state would further enable studying these states with the fetal

development/heart activity e.g. [115, 226, 285, 285]. Lastly, information on the pregnancy

outcome such as Apgar scores and umbilical cord blood sampling for pH and base deficit/excess

and lactate (see Section 3.1.2) as well as follow up on the newborns first year(s) of life may

provide insights on the clinical value of NIFECG.

Considering the lack of available data, in cooperation with the project partners at the Uni-

versity Hospital of Leipzig, an exploratory clinical trial was designed and performed during

this work (presented in Section 5.2). Despite its modest size (n = 259 recordings), provided

some interesting insights on the nature of the fetal signal, as well as valuable data material for

further signal processing analysis. With the obtained experience in collecting NIFECG at hand,

an improved protocol was implemented, here presented as future work in the following section.

7.1.1 New measurement protocol

With the goal of producing a more comprehensive dataset, since November 2014 a new

measurement protocol was installed at the University Hospital of Leipzig. Whilst the successful

abdECG and chest lead configuration (see Fig. 5.4) was maintained as well as the ADC device,

several other sensors were added to the setup including:
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• respiration belt: placed around thorax on the breast area;

• finger PPG sensor: applied on the right hand’s index finger;

• continuous blood pressure: using the Finometer MIDI (Finapres Medical Systems B.V.,

Amsterdam, Netherlands), applied on the left middle finger as specified by manufacturer.

The Finometer was calibrate before each recording and auto-calibration took place on

every couple seconds;

• hand-held Doppler: model AngelSounds JPD-100S (Jumper Medical, Shenzhen, China),

the probe was carefully positioned and hold by recording expert during the whole record-

ing while attempting to minimize movement and contact with the abdominal electrodes,

while maximizing the audible FHR sound.

In order to make the recordings more reproducible, a GUI was developed to guide the

medical expert throughout the measurement. This GUI was developed in JAVA programming

language and is described in Appendix C. In order to observe fetal cardiac response to external

arousals, the novel recording protocol consisted of periods of rest and the performance of both

paced breathing and orthostatic maneuvers (see Figure 7.1). Based on [443] a breathing rate of

20 cycles/min was chosen, using the aforementioned GUI audible cues were given to “breath

in” and “breath out” during a 5 min phase. Obviously, when dealing with pregnant women

(often unwell patients) these maneuvers have to be as quotidian as possible. For this reason, as

orthostatic maneuver the choice was for natural everyday movement, where the subjects were

asked to change their position from supine into sitting position themselves.

On a preliminary study [276] comprising 16 initial recordings, no statistical difference

between the mean FHR for spontaneous and pace breathing was found. However, this may be

attribute to 1) the choice of breathing rate, which was found to be very similar to the normal

rate for pregnant women (generally for adults at rest is around 13 cycles/min, but higher for

pregnant women); and 2) the small number and general low quality of the available recordings

(ca. 20.5 % had visible FQRS peaks). Another feasibility study [415] using the same dataset has

shown a significant change in BP despite the subtleness of the performed maneuver. Similarly, a

significance test expressive short-term changes (≈ 1 min after maneuver) and long-term changes

(≈ 3 min after maneuver) on the average FHR. An unexpected result was the clear decrease

on FECG quality that reduced FQRS visibility from 20.5 % (before maneuver) to 4.4 % (after

maneuver). This may be attributed to changes on the position of maternal organs and strong

muscular artefact due to movement. However, as in the previous study, due to the limited data

available the results have to be considered with care. Nonetheless, this initial knowledge is

an important preliminary step before for the actual clinical trial that should follow. With the

limitations of current databases in mind, this data should be prospectively made freely available

at Physionet [161].
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Figure 7.2: Exemplary segment of new measurement protocol. At 1700 s the subject was
asked to sit as part of the orthostatic maneuver. FECG complexes are clearly visible prior to
maneuver, but less so after it. Moreover, a clear amplitude change is visible.

7.2 Signal Quality

The quality of the NIFECG signal is a matter of great concern. Throughout Section 5.2.3

of this work the collected clinical data was used in assessing the relationships between the

signal quality and several pathophysiological variables. The signal quality was shown to widely

depend on the gestational age (see Figs. 5.11 and 5.12), channel number (see Figs. 5.9 and 5.10)

and other pathophysiological factors such as placental and fetal positions (see Table 5.8). Few

works in the literature have addressed this topic in such depth, most of which are limited to high

WOG and intrapartum periods. A review on these studies is shown in Section 3.2.5, however

most of those make use their own metrics of signal quality or FHR detectability that impede a

quantitative comparison. Qualitatively, the trend in FHR success in [333, Fig.9] is consistent

with the results obtain in this study (Figs. 5.11 and 5.12), where a much lower FECG quality

is present around the 28th-36th WOG period. This decrease in quality is associated with the

appearance of the vernix caseosa as explained in Section 2.1.3. Regarding physiological factors

that may affect quality, the absence of correlation between BMI and signal quality was also

reported by [163, 439], but contradicted by [446].

As described in Section 5.2.2, the partnership with the University Hospital of Leipzig focuses

on gestational ages below 28 weeks. During this period, risk pregnancies should be closely

monitored due to the higher risk of premature mortality. This is particularly important e.g.

when premature PROM occurs, since after the rupture of membranes patients usually remain

stationary for a period that may extend to weeks. In these cases, NIFECG continuous monitoring
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could significantly improve patient’s comfort. However, concerns about the quality of the

obtained NIFECG have hampered such approach. In an attempt to better characterize such

signals, the analysis presented in Section 5.2.3 is partially direct to this period (shown in

Table 5.8). For instance, placental position was found to correlate with both SNR and FECG

amplitude, which could be due to its higher relative permittivity. Fetal presentation is also

important, since it goes along with electrode configuration, therefore, with signal quality. In this

study a strong and highly significant dependency was found between fetal position and SNR

ratio and fetuses in vertex position have shown higher FECG amplitude. Despite our dataset

being larger than that of most the referred studies, the described statistical results must be

considered with care since the population involved in this exploratory study is limited for the

broad spectrum of pathophysiological conditions of its patients. The author re-iterates the

importance of a large randomized clinical study to verify the true nature of these relationships.

Aside from the aforementioned associations, the inter-subject dependency should be regarded 1.

Similarly, a more comprehensive multivariate analysis could provide insights on the associations

between multiple variables e.g. the influence fetal position coupled with electrode configuration

in the resulting recording quality.

Electrode placement and inter-electrode distance is an important topic that remains virtually

unexplored in the literature (addressed in this work’s Section 3.2.3). In this thesis, the electrode

configuration was shown to have a significant effect on both abdominal signal SNR and FECG

content. In Figures. 5.9 and 5.10 it is clear the difference on signal quality for the different leads

used in this work. The inter-electrode distance was shown to play a large role on the signal

quality, where a trade-off between FECG amplitude and SNR exists. For further works, the

combination of shorter and larger leads is recommended (e.g. 2,6-8 – see Fig. 5.4), in order to

maximize the chances of obtaining usable NIFECG signals.

With the objective of providing automated means of assessing signal quality in NIFECG

recordings, in Section 4.3.2 several SQI metrics were introduced in this work. These metrics,

were then applied using a Naive Bayes classifier for estimating the signal quality of 5 s segments

of extracted NIFECG data. With respect to the proposed Naive Bayes classifier, good classifica-

tion results were obtained during cross validation using Krippendorff’s α coefficient, i.e. the

most suitable metric considering the ordinal dataset used. Meanwhile, Cohen’s κ produces

moderate results, since it is a nominal agreement measure. Visual inspection of the confusion

matrix (Table 6.3) confirms that most false classifications fall within neighboring classes. It

is important to mention that the Naive Bayes classifier assumes the features to be normally

distributed and conditionally independent given a class, which is a strong assumption that does

not hold for our data. Nevertheless, studies have shown [118] that Bayesian classifiers perform

quite well in practice even when attribute dependencies are present. Furthermore, its use is

justified by the transparent conversion from discrete to continuous-valued classification results,

which was necessary for the further processing. The underlying class distribution (see Fig. 4.10)

is expected to impact the trained classifier in terms of prior class probability. The assumption

1 In this work, different measurements from the same subjects were regarded as independent, which may be an
erroneous assumption.
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of uniform class distribution was relevant for improving the generalization potential of this

classifier. Unfortunately, there is no annotated clinical database currently available to serve as a

standard for comparing our classification results and provide further insights into the signal

quality distribution [19].

As it can be seen from Fig. 6.10, it is evident that time and frequency metrics (see Table 4.2

showed little importance, which can be explained by the well-known similarities and spectral

overlap between abdominal ECG/MECG/FECG. Detection-based algorithms such as bSQI ,

rSQI , cSQI and xSQI (particularly when using maxsearch or jQRS detectors) were relevant.

While applying bSQI , it is particularly important to use a combination of a more and other

less predictive detector, e.g. jQRS/gqrs (similar to the results obtained in [211]). This result

goes along with the author’s previous works and top scoring entry on the PCINCC 2013 [20],

where features like cSQI , xSQI , and rSQI were responsible for accurate FQRS detections.

The proposed FECG-specific features (latter group in Fig. 6.10) showed modest importance.

Amongst these, mpSQIb was deemed as most important by RELIEFF in the latter SQI category

(see Fig. 6.10) that can be confirmed its moderate reaction to the presence of noise (on Fig. 6.9).

From Fig. 6.11 the correlations amongst some features are made evident, e.g. between rSQI1,

rSQI2, and rSQI3. Interestingly, FECG-specific features show a different direction of correlation,

compared to the other three groups of SQI approaches. The consensus itself, appears to be

uncorrelated with most metrics, except the FECG-specific approaches. This is explained by

the fact that RELIEFF weights and Kendall correlation coefficients make different nonlinear

transformations to the provided variables. The first evaluates the euclidean distance between

available classes for for the nearest-hit/miss in the feature-space, while the second ranks its

variables and compares the number of concordant and discordant pairs of variables (features

against consensus). Indeed, feature selection is a comprehensive topic which extrapolates the

scope of this work. As future work, the author suggests the analysis of these interdependencies

for e.g. to reduce the information redundancy from similar SQI metrics.

In Fig. 6.9 (a)-(c) it is visible that most features produce lower values in the presence of

muscular noise, while iSQI2 and some FECG-specific indices (i.e. mpSQIb,mcSQIb andmiSQI2)

counter-intuitively output higher values. Nevertheless, the resulting continuous-valued SQI

showed to be very sensitive to such artefacts. On the other hand, Fig. 6.9 (d)-(f) portrays a

drawback of the proposed approach, where the estimated SQI value is larger during a maternal

ectopic beat. This is caused by the MECG large amplitude residual left over from a unsatisfactory

extraction procedure. In this case, iSQI2 output considerably higher values, since the ectopic

maternal complex still present in the residuals is expected to be detected on every lead. For

solving this problem, one may for example introduce SQI metrics similar to the fetal cSQI that

focus on the morphological consistency of the maternal signal.

Despite being larger than most datasets available in the specific literature, one limitation

of our data is the large disparity on the number of observations on each signal quality class,

where most data has low signal quality (see Figure 4.10). Another limiting factor is the fact

that the quality of the NI-FECG recordings was annotated using abdominal recordings (prior

to extraction of the FECG), while most proposed SQI metrics are based on the extracted FECG
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signals. Consequently, the training data depends on the extraction method used, which is

not ideal. Nevertheless, the method of choice for this analysis, i.e. TSpca, is simple enough

and should not produce any major distortion between the annotated and extracted signals.

Furthermore, the author recognizes that the defined overall consensus (see Table 5.6) is a

subjective concept and may be sub-optimal. However, it was a necessary step for the analysis.

Another possibility would be to have two separate sets of SQIs and classifiers, one dealing with

the signal SNR and another with the amplitude of the FQRS peaks. Regarding the length of the

segments used in this work, although some SQI algorithms may benefit from longer segments

(e.g. for building FECG templates or estimating spectral content) the 5 s interval was considered

as appropriate for the trade-off between window length and online capability of the proposed

algorithm. As described in Section 3.5, Doppler ultrasound approaches currently use a similar

3.75 s interval.

All in all, the proposed SQI metrics are able to reflect changes in signal quality for NIFECG

recordings. The developed routines were released as part of the FECGSYN toolbox [50] under a

GNU GPL open-source license [19]. As mentioned in Section 4.3.2, such automated estimates for

FECG signal quality are indispensable for improving signal processing algorithm’s specificity.

In this work, these metrics were used in FQRS correction (Section 4.3.1) and FHR estimation

(Section 4.3.2). Both these approaches are further discussed in Section 7.4. Future uses for such

SQIs are for instance in channel/component selection, e.g. when applying BSSica extraction.

7.3 Extraction Methods

Despite the large number of NIFECG extraction methods proposed in the literature (see

Section 3.3.1), very few studies have in fact made their code available. The PCINC 2013

promoted a considerable advance in the field by making a dataset and evaluation algorithms

freely available, while some participants could voluntarily open-source their own code. In

this work, in cooperation with the IBME, the author developed a realistic open-source FECG

simulator and toolbox for NIFECG signal processing and analysis (i.e. the FECGSYN Behar

et al. [50]). The toolbox was further applied in generating a comprehensive simulated dataset,

totalizing 145.8 hours of multichannel data and 1.1 million fetal peaks (i.e. the FECGSYNDB

[18]). These two well-defined tools, are currently the largest open-source collection of NIFECG

extraction algorithms and data known to the author, which allow reproducible research in the

field. Throughout this work, these benefits were enjoyed and culminated in a wide-ranging and

well-defined benchmark of state-of-the-art (Section 3.3.1) and newly proposed EKF approaches

(Section 4.2).

From Fig. 6.1 and Table 6.1, it is clear that under ideal circumstances (i.e. when the best

available lead/component is known) BSS techniques (especially BSSica) outperforms all other

approaches. Meanwhile, TSpca and AMesn obtained the best results in their respective categories

(similar findings for the AM category using real data were presented in [52, 258]). BSS methods

have showed to be robust to the presence of noise in any level, while AM and TS techniques are

extremely susceptible to noise. MAE results were very similar for all methods, notwithstanding,
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temporal techniques consistently obtained the best results for baseline to case 2 (c.f. Tab. 6.1).

Such results were only possible, since the MAE was used as distance measure and disregarded

FP and FN detections (regarded by F1 measure). It is important to mention that MAE was

calculated using a FQRS reference, which was not aligned to each individual channel, therefore,

a slight systematic error is expected for all methods as the R-peak location varies slightly from

channel to channel. Regarding the proposed EKF techniques, EKF24 performed best in terms of

F1 and MAE. This may be due to the absence of intermittent SNR changes in the FECGSYNDB

dataset (from which vEKF2/vEKF24 could outperform its basic implementation). The uiEKF2

variant’s under-performance is attributed to its model inability to adapt itself to amplitude

changes of the MQRS complexes, which leads to the innovation depicting this “unexpected”

peaks. Consequently, the UIEKF estimates MQRS residuals on the unknown input that leads

to its lower FQRS detection performance (see Table 6.1). Its further development (e.g. in a

EKF24 framework) may improve this results. Interestingly, by evaluating Fig. 6.5 (g), it is clear

that the UIEKF technique shows a strong bias to an increasing FTQRS ratio (i.e. decreasing

difference between fetal T-wave and FQRS amplitudes). That means that the model also depends

on the amplitude of the FQRS complexes themselves. The post-hoc tests from Fig. 6.2 indicate

that these performance differences amongst EKF variants are only visible at extreme high/low

SNRs scenarios for F1 and MAE, respectively. This sign test also confirms the above average

performance of BSS techniques for F1, but not for MAE. This lower result for the MAE distance

metric is explained by Fig. 6.3, which shows the remarkably distinct morphologies of BSSica

output components, depending on the calculated mixing matrix [18].

With respect to the individual cases presented in Fig. 6.1, there is a clear decay on BSSica’s

performance in cases 1 (i.e. fetal movement), 3 (uterine contraction), 4(ectopic beats), and 5

(twin pregnancy). Cases 1 and 4 may be attributed to the highly non-stationarity of the available

sources (i.e. the FECG intensity/morphology changes) within the abdominal mixture, which

is not foreseen in this implementation. The lower results for cases 3 and 5 may be associated

with the model order selection problem [201, 327], i.e. these additional sources may require the

presence of more than 8 leads. This latter problem is discussed in depth in [18]. While ectopic

beats are problematic for most BSS or TS approaches (see Fig. 6.9 (d)-(f)), it should not impose

restrictions for AM methods. This is confirmed by the good results for AM methods regarding

case 4 in Fig. 6.1. Specifically to the TSekf , the approach by Oster et al. [314] should overcome

this problem by allowing multiple templates (i.e. for different MECG waveforms).

Regarding morphological analysis, the results presented in Section 6.1.2 demonstrate that

considerable effort needs to be made in improving currently available techniques, so that clinical

relevant information can be obtained from the FECG morphology. The expressive number of

excluded beats were either due to problems in the template generation, segmentation or due

to the applied methods themselves, therefore further studies should focus on improving these

individual steps. Moreover, in order to perform fair morphological comparisons, studies should

make sure to use the same segments and report their failure rate, as in [18]. Figure 6.4 and 6.5

demonstrate that BSS techniques are unable to provide satisfactory FQT or FTQRS measures.

Meanwhile, TS and AM produced highly correlating FQT/FTQRS measures, if little to no noise
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is present. This claim is supported by Fig. 6.3, on which differences in the morphology of the

output signals at different time-instants are evident. The suitability of AM and TS techniques

is expressed in the FTQRS error in Fig. 6.6. The TSpca and TSEKF24 techniques delivered the

best FQT and FTQRS estimates (see Fig. 6.6). The findings of Figs. 6.4 and 6.5 reiterate the

importance of using excluding bad quality ECG segments from the analysis, e.g. using fetal SQI

measures. Regarding BSS techniques, an alternative would be to back-propagate specifically

selected FECG components from the source domain to the observation domain, in order to

perform this analysis. However, as mentioned, component selection is a challenging task, which

was not carried out in the present study. The separate analysis of the results for the baseline

and case 0 (see Figs. 6.4 and 6.5), enables a clear understanding of each methods performance,

and is preferable because ectopic beats and other non-stationarities may cause the algorithm to

fail in different routines (e.g. during template construction). This figure suggests rather high

FQT errors (≈ 20 ms) for all extraction methods, and technical improvements are therefore

required before being tested on more difficult cases. Several explanations are possible for this

low performance, e.g. the extraction techniques were optimized for FQRS detection and might

therefore distort other segments of the FECG, construction of the template might average out

small amplitude components (P or T wave), but also the segmentation was designed for adult

ECG and its performance is likely to be sub-optimal for FECG signals. Nevertheless, Fig. 6.5

suggests that TS techniques are more suited for FTQRS analysis.

Despite being a good starting point, the aforementioned results using simulated have to

be taken with caution since key algorithmic steps that can cause accuracy to decrease (e.g.

channel/component selection) were not accounted for. In this work, the component with highest

F1 was selected, disregarding the component selection step. Moreover, as mentioned in [18], a

limitation of the FECGSYN simulator is the linear phase applied to the modelled beats, which

leads to a simple stretching of those beats. This simplification has the drawback of disregarding

physiological variations, such as T-wave prolongation and ST segments variation. Since the

modelled FECG signal was acquired from adult ECG signals, non-physiological FQT intervals

are produced. To reliably validate an algorithm’s performance (i.e. FQRS detection accuracy

and morphological analysis), real clinical data is more suitable. In this study, no morphological

analysis using clinical data was possible, due to the absence of clinical goldstandard (i.e.

invasive FSE recordings). Nonetheless, data was carefully annotated for FQRS locations (see

Section 5.2.4). The results using the proposed eQRS are shown in Table 6.2. This table shows

that despite having lower performance on the simulated data, TSekf methods have shown to be

useful in praxis. In fact, similar F1 and MAE results were obtain for AMesn, TSpca, and TSEKF24

(see Table 6.2). As previously discussed in Section 7.1, a more substantial amount of annotated

data is required to associate the quality of these extraction methods with actual diagnostic value.

Aside the extraction procedure, other aspects of the NIFECG’s signal processing should be

separately considered, e.g. preprocessing, channel/component selection, smoothing techniques,

FQRS detection and FECG enhancement. Preprocessing (mentioned in Section 4.1) is a crucial

aspect of morphological analysis. In this work the signal bandwidth was configured as recom-

mended by the American Heart Society for adult electrocardiography [231]. A clinical trial is
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required to confirm if such standards can indeed be adopted for FECG analysis. Regarding

the template generation, there are no current standards in ECG analysis. For example, signal-

averaging is not a consesus among researchers, despite its wide usage in the literature (e.g.

[85, 162, 473]). However, for signals with low SNR such as the NIFECG such step is imperative.

Template generation played an important role in producing our results, a comprehensive study

comparing a number of template construction strategies should be conducted to investigate

in which depth its low-pass effect may hinder the morphological analysis. In our preliminary

work, the template construction method proposed by [314] obtained better empirical results

than simply using mean or medians, even when poorly correlated beats were excluded. It is

important to remark that the findings presented here need to be validated using clinical data

and expert annotations.

Overall, the EKF is the simplest nonlinear variant of the Kalman filter. The extensive literature

available (see Section 3.3.3) indicates that for sharp discontinuities, other algorithms may

produce better estimates, e.g. the UKF or Particle Filters. The usage of this latter technique in

NIFECG, has been suggested by [365], however, to the author’s best knowledge this extension has

not yet been applied in the literature. In its current stage, the usage of EKF approaches is linked

with a extensive and data-dependent calibration procedure. Depending on the calibration, the

filter produces considerably different results. Future works should focus on semi-automating

this initialization for improving its applicability and reproducibility. For obtaining morphologic

reliable FECG, a promising extension of TSekf model was proposed by [53, 304], which takes

into consideration both maternal and fetal heart models. However, accurate FQRS detections are

pre-requirements for these techniques. For this reason these methods have not been included in

this work. The extraction techniques applied in this work have been often used in the literature,

including top-scoring entries during the PCINC 2013. As revealed by Fig. 6.8, the choice of

extraction method cannot be dissociated from the recording scheme. For instance, for BSSica
not only the model order problem (i.e. number of input channels should be reasonable), but

these channels should contain relevant information for enabling ICA to properly separate the

sources. One of the advantages of using TS techniques, such as the EKF, is that they imply the

least restrictions on the recording scheme, being able to operate on a single lead systems. In

this section, the advantages and limitations of each of these techniques were demonstrated. In a

clinical environment, it is certainly beneficial to use multiple extraction methods in parallel and

apply fetal SQI indices to discern successful from unsuccessful extraction results. This manner,

the strength of each methodology can be conciliated.

7.4 FQRS and FHR Correction Algorithms

In this work both FQRS detection and FHR estimation were improved based on developed

SQI metrics, discussed in Section 7.2. Regarding FQRS detection using the evolutionary com-

puting approach (i.e. eQRS), Table 6.2 shows that the method considerably improves the FQRS

detections. The eQRS’s performance applied to BSSica output components was understandably

poor, due to the lack of features to distinguish between MQRS and FQRS complexes (such as
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miSQI - see Table 4.2). As mentioned in [20], permutation indeterminacy denotes a common

difficulty which goes along with ICA. The a priori unknown positioning of ICs inside ICA’s

output imposes the challenging task of automatic selection of the IC of interest (i.e. FECG

components) [459]. The eQRS detection using AMesn, TSpca, TSEKF24 was very accurate, with

monotonically increasing results with an increase on the number of channels available. These

results go along the author’s top scoring entry on the PCINC 2013, where TS methods in associ-

ation with the eQRS were responsible for highly accurate results [20]. Figure 6.7 demonstrates

that even in scenarios where the quality of the initial detections or signal SNR are non-ideal,

the eQRS is capable of combine/select multichannel detections into a trustworthy consensus.

There is a remarkable increase in accuracy between using the 3 internal channels or all available

leads, which reiterates the importance of having leads with different inter-electrode distance. As

previously mentioned, the eQRS method is a computationally intensive. Future works should

focus on reducing its computational load and parallelizing its execution.

Regarding the Kalman filter improved FHR estimation approach (presented in Section 4.3.2),

the overall modest FHR accuracy results (see Table 6.4), demonstrates how challenging FHR

estimation on real clinical data actually is. Behar et al. [52] compared several extraction methods,

including T Spca, using 82 min of manually annotated abdominal signals (from PCINC 2013

and a private commercial database). Results for FHR accuracy applying T Spca were 68.7 % and

73.9 % for each dataset (using a ±5 bpm acceptance interval). The multichannel estimation of

FHR using Kalman filter showed the best performance both in terms of HDR and RMSE (see

Table 6.4). The filter’s performance monotonically increased with the growth of available leads,

which shows how powerful the method is in incorporating additional information. Meanwhile,

the average result from single channel estimation (with or without KF) does not show this trend.

Large differences were found between the 3 and 4-lead schemes (i.e. internal or external channels

- see Fig. 5.4). The latter performed better, which can be attributed to a lower presence of noise

for greater inter-electrode distance between the positive and negative electrodes. After the

calibration procedure, the smaller value obtained for the initial observational noise covariance

matrix R0 = 10−3 compared to Q0 = 1 shows that the filter tends to “trust” its observations

associated with the SQI metrics. Additionally, in Fig. 6.12, a qualitative example demonstrates

the filter using 3 channels during a period FHR deceleration and changes of signal quality

throughout the available channels. As it can be seen, if the quality is sufficient in some channels,

the filter is able to reliably reflect the true FHR. Therefore, it is clear that the KF innovation

in association with the proposed SQI metrics is able to improve FHR estimation, as it did in

estimating adult heart rates [19, 251].

Differently from many FHR studies that regard periods of “signal loss”, in this thesis, seg-

ments/recordings with general bad quality were not discarded. In long-term recording scenarios,

removing portions of data with bad signal quality from the further the analysis is desirable

because FHR estimates during periods of low SQI would disregard the current measurements

and follow the filter’s dynamic equations (first-order AR process), therefore, delivering unreli-

able results. The manner with which selection of inadequate segments may be performed is

another complex topic, which deserves its own study. Nevertheless, the proposed SQI metrics
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and classifier are a favorable starting point for further studies. In Section 3.5 a series of HR

preprocessing algorithms were presented that aim at improving such FHR estimates before the

multichannel fusion e.g. with the presented KF approach takes place [19].

In this work, multiple KFs running parallel were implemented for estimating each of individ-

ual channel FHR. The multichannel fusion was considered as an additional step following this

single-channel estimation. Oster and Clifford [315] proposed combining both single-channel

FHR estimation and data fusion steps into a single step, rather than implementing multiple KF

and fusing those later on. This is performed by considering the consensus amongst those differ-

ent sensors as an additional Kalman state and allowing the transition and observational matrices

(Ak and Hk) to be time-variant and dynamically include the previously defined weighting factors

σ2
k,s (see Eq. 4.23) [19].

When comparing the accuracy results for the eQRS and KF FHR algorithms (i.e. Table 6.2)

and 6.4), the reader should keep in mind that these algorithms were designed for different

applications. The eQRS is a brute force, offline method with high demand for computational

power. On the other hand, the KF algorithm for FHR is light weight, online and can be ported

to relatively simple hardware structures. Both algorithms were initiated with FQRS detections

provided by simple detectors which correspond to the “Initial” column (in Table 6.2) and “single

channel average (without KF)” row (in Table 6.4). As it can be noticed, these results are indeed

similar for F1 and HDR (regarding TSpca).

In summary, these results reiterate the importance of having SQI metrics, in order to improve

the algorithmic specificity in NIFECG processing. Future works should focus on further devel-

oping those correction algorithms as well as further develop and explore SQI metrics and their

possible combinations of those. Possible SQI enhancements are, e.g. modifications on cSQI to

allow ectopic beats (as preliminary works at the IBMT [472]), or allowing some flexibility on

the FQRS regularity metrics (e.g. rsqi) so that arrhythmic episodes are better described.
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Barba non facit philosophum

– attributed to Herodes Atticus by Aulus Gellius

8
Conclusion

In this work, several relevant aspects regarding the NIFECG research were addressed. For

instance, the lack of publicly available databases containing gold standards for FQRS locations

and FECG morphology was tackled by further developing an elaborate FECGSYN simulator.

This well-defined framework was utilized in creating a large freely available Physionet dataset

comprising simulated abdominal signals that model different non-stationary scenarios and

pathophysiological conditions.

Aside from the produced simulated data, a large private clinical study was carried out in

partnership with the University Hospital of Leipzig. This exploratory study enabled further

insights on the nature of the NIFECG signal (particularly at earlier stages of pregnancy, i.e.

WOG<28). Moreover, the data supplied important information on the recording technique

(e.g. channel selection). Throughout the development of this work, this promising clinical trial

evolved into a multimodal study that shall be continued. Future works on the clinical front

should aim at generating large randomized trial, to conclusively confirm NIFECG’s clinical

relevance in prenatal monitoring.

Regarding signal processing methods for NIFECG, this study focused on pushing forward

open-source algorithms for enabling direct comparison amongst researchers. For this purpose,

the FECGSYN toolbox was furnished with a substantial number of state-of-the-art NIFECG

extraction techniques, statistical performance metrics for FQRS detection and morphological

analysis. To improve the specificity of current methodologies, novel fetal SQI metrics were

proposed, accordingly tested, and included in the FECGSYN toolbox.

A large part of this work dealt with improving the EKF framework. This was performed

by enhancing its model to account for the different signal sources contained in abdECG. For

this purpose, the EKF2 and EKF24 models served as base implementations. In order to cope

with changes of signal quality, a new time-varying method for updating the observational noise

covariance matrix was proposed (i.e. vEKF2 and vEKF24). A common misconception made
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by current models is the assumption that the FECG can be considered as a white Gaussian

noise. To deal with this model inaccuracy, the unknown input Kalman model is suggested

(uiEKF2). Several experiments were conducted to benchmark the performance of those NIFECG

extraction methods in their capacity to evaluate the FQRS locations, FQT length and FTQRS

ratio. The advantages and limitations of each method were throughly described. Since no

extraction algorithm performs systematically better on every experiment, a combination of

different extraction techniques should be considered for further applications.

Aside from extraction methods and signal quality estimation, this work focused on improving

multichannel FQRS detection and FHR estimation. The first, was performed using a newly

developed evolutionary algorithm for offline correction of FQRS locations. The brute force

search method showed to be highly accurate and is regarded as main responsible for the author’s

top scoring entry on the PCINC 2013 challenge. On the other hand, FHR estimation was

improved by applying the novel developed SQI metrics on a linear Kalman filter for fusing

multichannel information. The algorithm obtained more accurate results than traditional

techniques, additionally, its usage is compatible with online applications.

In summary, this dissertation dealt with several steps of the NIFECG signal processing

chain. Future works should further fine-tune current extraction methods. Moreover, alternative

machine learning approaches to combine the proposed SQI metrics could improve the signal

quality estimation for abdominal signals. At last, NIFECG-specific segmentation algorithms are

required for improving the reliability of FECG’s morphology analysis.
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A
Appendix A - Signal Quality Annotation

As described in Section 5.2.3, in order to allow clinicians to annotate the NIFECG signal
quality, a stand-alone Matlab® GUI was implemented. The interface (presented in Fig. A.1) was
made available under a GNU GPL license at https://github.com/fernandoandreotti/sqi_
annotation. The GUI enables the annotation of abdECG segments using two criteria, namely
the SNR (electrocardiographic signals versus other sources – in 5 levels) and FECG amplitude
(4 levels). The procedure may also be performed with the keyboard shortcuts alpha-numeric
“1”-“5” (for SNR classes) and “a” to “f” (for FECG amplitude). The output provided by the
software is a text file with extension “.dat”, located at a pre-determined folder. Given a set
of pre-selected segments in graphical format (e.g. “.jpg”), the annotation procedure can be
initiated. The software displays segments in a random order to avoid rater’s bias. The annotation
procedure can be stopped at any time and continued using the generated annotation file.

Figure A.1: Signal quality annotation interface.
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B
Appendix B - Fetal QRS Annotation

For the purpose of performing FHR/FHRV analyses, preferably exact annotations on the
FQRS locations are necessary. Throughout this work, one of the objectives is to enable semi-
automated methods that allow accurate FQRS detection and FHR estimation. In order to
evaluate those methods, an expert-annotated gold-standard is necessary. With that in mind, a
straightforward annotation scheme with four possible annotation markers (see Table B.1) was
introduced as described below [410]:

1. The annotation procedure should (if possible) be performed by using simultaneously
at least two different leads (preferably with different FECG polarities). That means,
recognizing a fetal peak in one channel and comparing with the other if it is really a QRS
complex or an artifact;

2. Real-time RR generation function should be enabled at all times in providing a simple
method for auto-assessment;

3. The chosen channels should be the ones on which the FECG appear to have the best
signal quality (according to visual inspection). The used data can be either the raw
signal channels, pre-processed or processed leads. Other two channels for the annotating
procedure may be chosen at any time due to quality fluctuation throughout the different
leads;

4. A peak is annotated (as normal peak ’N’) as long as it is visible in at least one of the two
abdominal channels. That, of course, if the form of the peak, QRS duration or heart rate is
in accordance with FECG properties;

5. Peaks which are buried into noise or fetal peaks overlapped with maternal QRS complexes
should be annotated (as invisible peaks, or ’V’), as long as the number omitted beats in a
row is not greater than two;

6. If the signal does not present a fetal R-peak due to signal quality issues, according to rules
3 and 4, the annotation ”loss of FECG signal” in this area should be started (’B’ marker
should be placed). This condition may be reversed (with an end marker ’E’) as soon as two
fetal peaks in a row are once again visible. The stop for the annotation ”FECG signal loss”
should be placed before these peaks;

7. Otherwise, no annotation is made.
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Table B.1: Fetal QRS annotation markers used in this work [410].

Marker Meaning
N normal, clearly recognizable fetal peak

V
probable, yet invisible peak. This marker applies e.g.
when the fetal complex is not visible due to an overlapping
MQRS complex

B
beginning of bad signal quality segment, where no fetal
peak is discernible

E end of bad signal quality segment

For the purpose of annotating FQRS data, the JAVA GUI developed by Grunitz [167] was
used. This GUI (shown in Fig. B.1) requires data to be in the Unisens format1 and allows the
simultaneous display of signals (e.g. MECG leads, raw, preprocessed or extracted abdECGs) and
annotations (e.g. MQRS and FQRS). This versatile interface enables stretching and compression
on both X and Y axes, modification, deletion and inclusion of signals at all times, to facilitate
the GUI’s usage. Moreover, the GUI enables the presentation of live RR-intervals (see Fig. B.1),
by taking the first derivative of “N” and “V” annotations, which enables specialists to quickly
detect and correct mistakes. The resulting annotated files are simple comma-separated files
(“.csv”) containing markers and potential commentaries.

Maternal chest lead

Abdominal channels

Live RR-interval preview

1
2

3

Figure B.1: Java GUI used for FQRS annotation. In the screenshot are depicted (1) main menu
with open, close and save functions; (2) secondary menu with information to displayed plots;
and (3) quick view of current file, annotation types and commentaries. In the screen are por-
trayed a MECG chest lead, two abdominal leads (with FQRS annotations as vertical bars) and
the live RR viewer.

1 Unisens was developed at the FZI Research Center for Information Technology and the Institute for Information
Processing Technology (ITIV) at the University of Karlsruhe. It is an open-source format available at: http:

//www.unisens.org/.
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C
Appendix C - Data Recording GUI

Recording NIFECG data in a clinical setup as the one described in this work is an arduous
task. The author’s first-hand experience with such problem lead to the development of a user
interface with the following goals:

• facilitate the recording procedure with an intuitive and simple interface, which is ex-
tremely necessary when the medical expert is responsible for positioning a Doppler ultra-
sound probe and be in charge of performing maneuvers (e.g. using the novel measurement
protocol described in Section 7.1.1);

• increase reproducibility of the recorded data regarding time duration and expert annota-
tions relevant to further analysis. This is particularly important on the newly proposed
recording protocol (Section 7.1.1), during events such as paced breathing or blood pressure
impulse;

• improve consistency on the medical collection of patients’ information, such as limiting
the possible inputs for pathological conditions or placenta locations. This is important for
the posterior analysis on how this clinical conditions may influence the NIFECG analysis,
as performed in Section 5.2.3.

For this purpose, a JAVA GUI (see Fig. C.1) was developed. The GUI was personalized to
the measurement system used in Leipzig and, after its opening, LabChart (ADInstruments’
recording interface) is automatically started with a preset configuration file (“.adiset” extension)
included in the GUI. The responsible expert is then prompted with the patient information
collection form showed in Fig. C.1a. This form was developed through direct interaction with
the project partners from Leipzig and includes all the information usually collected by them.
After the completion of this form and checking by the specialist, the recording may be initiated
and the user is prompted with the screen presented in Fig. C.1b. On the course of the recording,
the expert is asked if the respiratory and blood pressure maneuvers (see Section 7.1.1) should
be performed by alerts (in case the step should be skipped), depicted in Fig. C.2a. The color of
the interface is changed to indicate that a maneuver is being performed as detailed in Fig. C.2b.
When the recording is finished, the expert is required to provide additional information on the
measurement that may be relevant for further analysis (e.g. interruptions or problems - see
Fig. C.1c). Finally, the interface produces the following output data:

• collected patient information on tabular format (“.csv” extension), incrementally;
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(a) Initial screen with Labchart recording on the background and patient form.

(b) Screen demonstrating recording stage. (c) Final form containing recording remarks.

Figure C.1: Screenshots of recording GUI.

• for backup reasons each patient has a metadata file (as “.info”);

• time stamps respective to measurement start and begin of maneuvers is contained in an
additional text file (“.time”)

• the resulting recording is automatically saved in LabChart’s (“.adicht”) and Matlab’s
(“.mat”) formats;

• a “.log” file showing any problems the interface may have encountered.

180



(a) Alert

Resting Maneuver

(b) Color states during different recording
phases

Figure C.2: Chages to the GUI during physiological maneuvers.
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