798 research outputs found

    Projected Newton Method for noise constrained Tikhonov regularization

    Full text link
    Tikhonov regularization is a popular approach to obtain a meaningful solution for ill-conditioned linear least squares problems. A relatively simple way of choosing a good regularization parameter is given by Morozov's discrepancy principle. However, most approaches require the solution of the Tikhonov problem for many different values of the regularization parameter, which is computationally demanding for large scale problems. We propose a new and efficient algorithm which simultaneously solves the Tikhonov problem and finds the corresponding regularization parameter such that the discrepancy principle is satisfied. We achieve this by formulating the problem as a nonlinear system of equations and solving this system using a line search method. We obtain a good search direction by projecting the problem onto a low dimensional Krylov subspace and computing the Newton direction for the projected problem. This projected Newton direction, which is significantly less computationally expensive to calculate than the true Newton direction, is then combined with a backtracking line search to obtain a globally convergent algorithm, which we refer to as the Projected Newton method. We prove convergence of the algorithm and illustrate the improved performance over current state-of-the-art solvers with some numerical experiments

    Uniform Penalty inversion of two-dimensional NMR Relaxation data

    Full text link
    The inversion of two-dimensional NMR data is an ill-posed problem related to the numerical computation of the inverse Laplace transform. In this paper we present the 2DUPEN algorithm that extends the Uniform Penalty (UPEN) algorithm [Borgia, Brown, Fantazzini, {\em Journal of Magnetic Resonance}, 1998] to two-dimensional data. The UPEN algorithm, defined for the inversion of one-dimensional NMR relaxation data, uses Tikhonov-like regularization and optionally non-negativity constraints in order to implement locally adapted regularization. In this paper, we analyze the regularization properties of this approach. Moreover, we extend the one-dimensional UPEN algorithm to the two-dimensional case and present an efficient implementation based on the Newton Projection method. Without any a-priori information on the noise norm, 2DUPEN automatically computes the locally adapted regularization parameters and the distribution of the unknown NMR parameters by using variable smoothing. Results of numerical experiments on simulated and real data are presented in order to illustrate the potential of the proposed method in reconstructing peaks and flat regions with the same accuracy

    On a continuation approach in Tikhonov regularization and its application in piecewise-constant parameter identification

    Full text link
    We present a new approach to convexification of the Tikhonov regularization using a continuation method strategy. We embed the original minimization problem into a one-parameter family of minimization problems. Both the penalty term and the minimizer of the Tikhonov functional become dependent on a continuation parameter. In this way we can independently treat two main roles of the regularization term, which are stabilization of the ill-posed problem and introduction of the a priori knowledge. For zero continuation parameter we solve a relaxed regularization problem, which stabilizes the ill-posed problem in a weaker sense. The problem is recast to the original minimization by the continuation method and so the a priori knowledge is enforced. We apply this approach in the context of topology-to-shape geometry identification, where it allows to avoid the convergence of gradient-based methods to a local minima. We present illustrative results for magnetic induction tomography which is an example of PDE constrained inverse problem

    A New Hybrid Inversion Method for 2D Nuclear Magnetic Resonance Combining TSVD and Tikhonov Regularization

    Get PDF
    This paper is concerned with the reconstruction of relaxation time distributions in Nuclear Magnetic Resonance (NMR) relaxometry. This is a large-scale and ill-posed inverse problem with many potential applications in biology, medicine, chemistry, and other disciplines. However, the large amount of data and the consequently long inversion times, together with the high sensitivity of the solution to the value of the regularization parameter, still represent a major issue in the applicability of the NMR relaxometry. We present a method for two-dimensional data inversion (2DNMR) which combines Truncated Singular Value Decomposition and Tikhonov regularization in order to accelerate the inversion time and to reduce the sensitivity to the value of the regularization parameter. The Discrete Picard condition is used to jointly select the SVD truncation and Tikhonov regularization parameters. We evaluate the performance of the proposed method on both simulated and real NMR measurements

    Parameter identification in a semilinear hyperbolic system

    Get PDF
    We consider the identification of a nonlinear friction law in a one-dimensional damped wave equation from additional boundary measurements. Well-posedness of the governing semilinear hyperbolic system is established via semigroup theory and contraction arguments. We then investigte the inverse problem of recovering the unknown nonlinear damping law from additional boundary measurements of the pressure drop along the pipe. This coefficient inverse problem is shown to be ill-posed and a variational regularization method is considered for its stable solution. We prove existence of minimizers for the Tikhonov functional and discuss the convergence of the regularized solutions under an approximate source condition. The meaning of this condition and some arguments for its validity are discussed in detail and numerical results are presented for illustration of the theoretical findings

    Convergence Rates for Inverse Problems with Impulsive Noise

    Full text link
    We study inverse problems F(f) = g with perturbed right hand side g^{obs} corrupted by so-called impulsive noise, i.e. noise which is concentrated on a small subset of the domain of definition of g. It is well known that Tikhonov-type regularization with an L^1 data fidelity term yields significantly more accurate results than Tikhonov regularization with classical L^2 data fidelity terms for this type of noise. The purpose of this paper is to provide a convergence analysis explaining this remarkable difference in accuracy. Our error estimates significantly improve previous error estimates for Tikhonov regularization with L^1-fidelity term in the case of impulsive noise. We present numerical results which are in good agreement with the predictions of our analysis
    • …
    corecore