29,599 research outputs found

    Transcriptional repression by ApiAP2 factors is central to chronic toxoplasmosis

    Get PDF
    Tachyzoite to bradyzoite development in Toxoplasma is marked by major changes in gene expression resulting in a parasite that expresses a new repertoire of surface antigens hidden inside a modified parasitophorous vacuole called the tissue cyst. The factors that control this important life cycle transition are not well understood. Here we describe an important transcriptional repressor mechanism controlling bradyzoite differentiation that operates in the tachyzoite stage. The ApiAP2 factor, AP2IV-4, is a nuclear factor dynamically expressed in late S phase through mitosis/cytokinesis of the tachyzoite cell cycle. Remarkably, deletion of the AP2IV-4 locus resulted in the expression of a subset of bradyzoite-specific proteins in replicating tachyzoites that included tissue cyst wall components BPK1, MCP4, CST1 and the surface antigen SRS9. In the murine animal model, the mis-timing of bradyzoite antigens in tachyzoites lacking AP2IV-4 caused a potent inflammatory monocyte immune response that effectively eliminated this parasite and prevented tissue cyst formation in mouse brain tissue. Altogether, these results indicate that suppression of bradyzoite antigens by AP2IV-4 during acute infection is required for Toxoplasma to successfully establish a chronic infection in the immune-competent host

    Apoptosis in mouse fetal and neonatal oocytes during meiotic prophase one

    Get PDF
    Background The vast majority of oocytes formed in the fetal ovary do not survive beyond birth. Possible reasons for their loss include the elimination of non-viable genetic constitutions arising through meiosis, however, the precise relationship between meiotic stages and prenatal apoptosis of oocytes remains elusive. We studied oocytes in mouse fetal and neonatal ovaries, 14.5ā€“21 days post coitum, to examine the relationship between oocyte development and programmed cell death during meiotic prophase I. Results Microspreads of fetal and neonatal ovarian cells underwent immunocytochemistry for meiosis- and apoptosis-related markers. COR-1 (meiosis-specific) highlighted axial elements of the synaptonemal complex and allowed definitive identification of the stages of meiotic prophase I. Labelling for cleaved poly-(ADP-ribose) polymerase (PARP-1), an inactivated DNA repair protein, indicated apoptosis. The same oocytes were then labelled for DNA double strand breaks (DSBs) using TUNEL. 1960 oocytes produced analysable results. . Oocytes at all stages of meiotic prophase I stained for cleaved PARP-1 and/or TUNEL, or neither. Oocytes with fragmented (19.8%) or compressed (21.2%) axial elements showed slight but significant differences in staining for cleaved PARP-1 and TUNEL to those with intact elements. However, fragmentation of axial elements alone was not a good indicator of cell demise. Cleaved PARP-1 and TUNEL staining were not necessarily coincident, showing that TUNEL is not a reliable marker of apoptosis in oocytes. Conclusions Our data indicate that apoptosis can occur throughout meiotic prophase I in mouse fetal and early postnatal oocytes, with greatest incidence at the diplotene stage. Careful selection of appropriate markers for oocyte apoptosis is essential

    DNA polymerases required for repair of UV-induced damage in Saccharomyces cerevisiae

    Get PDF
    The ability of yeast DNA polymerase mutant strains to carry out repair synthesis after UV irradiation was studied by analysis of postirradiation molecular weight changes in cellular DNA. Neither DNA polymerase alpha, delta, epsilon, nor Rev3 single mutants evidenced a defect in repair. A mutant defective in all four of these DNA polymerases, however, showed accumulation of single-strand breaks, indicating defective repair. Pairwise combination of polymerase mutations revealed a repair defect only in DNA polymerase delta and epsilon double mutants. The extent of repair in the double mutant was no greater than that in the quadruple mutant, suggesting that DNA polymerases alpha and Rev3p play very minor, if any, roles. Taken together, the data suggest that DNA polymerases delta and epsilon are both potentially able to perform repair synthesis and that in the absence of one, the other can efficiently substitute. Thus, two of the DNA polymerases involved in DNA replication are also involved in DNA repair, adding to the accumulating evidence that the two processes are coupled

    Molecular flexibility of citrus pectins by combined sedimentation and viscosity analysis

    Get PDF
    The flexibility/rigidity of pectins plays an important part in their structure-function relationship and therefore on their commercial applications in the food and biomedical industries. Earlier studies based on sedimentation analysis in the ultracentrifuge have focused on molecular weight distributions and qualitative and semi-quantitative descriptions based on power law and Wales-van Holde treatments of conformation in terms of "extended" conformations [Harding, S. E., Berth, G., Ball, A., Mitchell, J.R., & GarcƃĀ¬a de la Torre, J. (1991). The molecular weight distribution and conformation of citrus pectins in solution studied by hydrodynamics. Carbohydrate Polymers, 168, 1-15; Morris, G. A., Foster, T. J., & Harding, S.E. (2000). The effect of degree of esterification on the hydrodynamic properties of citrus pectin. Food Hydrocolloids, 14, 227-235]. In the present study, four pectins of low degree of esterification 17-27% and one of high degree of esterification (70%) were characterised in aqueous solution (0.1 M NaCl) in terms of intrinsic viscosity [ƎĀ·], sedimentation coefficient (sƂĀ°20,w) and weight average molar mass (Mw). Solution conformation/flexibility was estimated qualitatively using the conformation zoning method [Pavlov, G.M., Rowe, A.J., & Harding, S.E. (1997). Conformation zoning of large molecules using the analytical ultracentrifuge. Trends in Analytical Chemistry, 16, 401-405] and quantitatively (persistence length Lp) using the traditional Bohdanecky and Yamakawa-Fujii relations combined together by minimisation of a target function. Sedimentation conformation zoning showed an extended coil (Type C) conformation and persistence lengths all within the range Lp=10-13 nm (for a fixed mass per unit length)

    Blood clearance and tissue distribution of PEGylated and non-PEGylated gold nanorods after intravenous administration in rats\ud

    Get PDF
    Aims: To develop and determine the safety of gold nanorods, whose aspect ratios can be tuned to obtain plasmon peaks between 650 and 850 nm, as contrast enhancing agents for diagnostic and therapeutic applications. Materials & methods: In this study we compared the blood clearance and tissue distribution of cetyl trimethyl ammonium bromide (CTAB)-capped and polyethylene glycol (PEG)-coated gold nanorods after intravenous injection in the tail vein of rats. The gold content in blood and various organs was measured quantitatively with inductively coupled plasma mass spectrometry. Results & discussion: The CTAB-capped gold nanorods were almost immediately (<15 min) cleared from the blood circulation whereas the PEGylation of gold nanorods resulted in a prolonged blood circulation with a half-life time of 19 h and more wide spread tissue distribution. While for the CTAB-capped gold nanorods the tissue distribution was limited to liver, spleen and lung, the PEGylated gold nanorods also distributed to kidney, heart, thymus, brain and testes. PEGylation of the gold nanorods resulted in the spleen being the organ with the highest exposure, whereas for the non-PEGylated CTAB-capped gold nanorods the liver was the organ with the highest exposure, per gram of organ. Conclusion: The PEGylation of gold nanorods resulted in a prolongation of the blood clearance and the highest organ exposure in the spleen. In view of the time frame (up to 48 h) of the observed presence in blood circulation, PEGylated gold nanorods can be considered to be promising candidates for therapeutic and diagnostic imaging purpose

    Rheological study of structural transitions in triblock copolymers in a liquid crystal solvent

    Get PDF
    Rheological properties of triblock copolymers dissolved in a nematic liquid crystal (LC) solvent demonstrate that their microphase separated structure is heavily influenced by changes in LC order. Nematic gels were created by swelling a well-defined, high molecular weight ABA block copolymer with the small-molecule nematic LC solvent 4-pentyl-4-cyanobiphenyl (5CB). The B midblock is a side-group liquid crystal polymer (SGLCP) designed to be soluble in 5CB and the A endblocks are polystyrene, which is LC-phobic and microphase separates to produce a physically cross-linked, thermoreversible, macroscopic polymer network. At sufficiently low polymer concentration a plateau modulus in the nematic phase, characteristic of a gel, abruptly transitions to terminal behavior when the gel is heated into its isotropic phase. In more concentrated gels, endblock aggregates persist into the isotopic phase. Dramatic changes in network structure are observed over small temperature windows (as little as 1 Ā°C) due to tccche rapidly changing LC order near the isotropization point. The discontinuous change in solvent quality produces an abrupt change in viscoelastic properties for three polymers having different pendant mesogenic groups and matched block lengths

    Influence of genome-scale RNA structure disruption on the replication of murine norovirus--similar replication kinetics in cell culture but attenuation of viral fitness in vivo

    Get PDF
    Mechanisms by which certain RNA viruses, such as hepatitis C virus, establish persistent infections and cause chronic disease are of fundamental importance in viral pathogenesis. Mammalian positive-stranded RNA viruses establishing persistence typically possess genome-scale ordered RNA secondary structure (GORS) in their genomes. Murine norovirus (MNV) persists in immunocompetent mice and provides an experimental model to functionally characterize GORS. Substitution mutants were constructed with coding sequences in NS3/4- and NS6/7-coding regions replaced with sequences with identical coding and (di-)nucleotide composition but disrupted RNA secondary structure (F1, F2, F1/F2 mutants). Mutants replicated with similar kinetics to wild-type (WT) MNV3 in RAW264.7 cells and primary macrophages, exhibited similar (highly restricted) induction and susceptibility to interferon-coupled cellular responses and equal replication fitness by serial passaging of co-cultures. In vivo, both WT and F1/F2 mutant viruses persistently infected mice, although F1, F2 and F1/F2 mutant viruses were rapidly eliminated 1ā€“7 days post-inoculation in competition experiments with WT. F1/F2 mutants recovered from tissues at 9 months showed higher synonymous substitution rates than WT and nucleotide substitutions that potentially restored of RNA secondary structure. GORS plays no role in basic replication of MNV but potentially contributes to viral fitness and persistence in vivo
    • ā€¦
    corecore