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Abstract 

 

Background 

The vast majority of oocytes formed in the fetal ovary do not survive beyond birth.  

Possible reasons for their loss include the elimination of non-viable genetic 

constitutions arising through meiosis, however, the precise relationship between 

meiotic stages and prenatal apoptosis of oocytes remains elusive.  We studied oocytes 

in mouse fetal and neonatal ovaries, 14.5–21 days post coitum, to examine the 

relationship between oocyte development and programmed cell death during meiotic 

prophase I.   

 

Results 

Microspreads of fetal and neonatal ovarian cells underwent immunocytochemistry for 

meiosis- and apoptosis-related markers. COR-1 (meiosis-specific) highlighted axial 

elements of the synaptonemal complex and allowed definitive identification of the 

stages of meiotic prophase I.  Labelling for cleaved poly-(ADP-ribose) polymerase 

(PARP-1), an inactivated DNA repair protein, indicated apoptosis. The same oocytes 

were then labelled for DNA double strand breaks (DSBs) using TUNEL. 1960 

oocytes produced analysable results.  .  

Oocytes at all stages of meiotic prophase I stained for cleaved PARP-1 and/or 

TUNEL, or neither. Oocytes with fragmented (19.8%) or compressed (21.2%) axial 

elements showed slight but significant differences in staining for cleaved PARP-1 and 

TUNEL to those with intact elements.  However, fragmentation of axial elements 

alone was not a good indicator of cell demise.  Cleaved PARP-1 and TUNEL staining 

were not necessarily coincident, showing that TUNEL is not a reliable marker of 

apoptosis in oocytes.   

 

Conclusions 

Our data indicate that apoptosis can occur throughout meiotic prophase I in mouse 

fetal and early postnatal oocytes, with greatest incidence at the diplotene stage.  

Careful selection of appropriate markers for oocyte apoptosis is essential.   
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Background 

 

The aim of this study was to identify and quantify apoptosis at different stages of 

meiotic prophase I in mouse oocytes, in order to explore the relationship between 

chromosomal activity during meiosis, and the occurrence of cell death by apoptosis.  

 

Most mammalian oocytes die long before they reach maturity, having no direct role in 

forming the next generation. Extensive loss of immature oocytes occurs at various 

stages in mice: (1) during meiotic prophase I, the prenatal process of oocyte 

formation; (2) in the first days after birth when oocytes that have not been enclosed 

into primordial follicles suffer demise and (3) when the ovarian follicle that nurtures 

the oocyte succumbs to atresia.  Follicular recruitment, growth and atresia are tightly 

controlled by intra-ovarian factors and gonadotrophic hormones.  However, the 

factors balancing oocyte formation and loss prenatally have received less attention, 

even though these are crucial for establishing the size and quality of the ovarian 

reserve.  

 

The biological basis for the prenatal cull of oocytes remains unexplained. For 

example, it may be a developmental solution to accumulated mutations in 

mitochondria [1], a means of avoiding inheritance of potentially lethal errors arising 

during germ cell mitosis or meiotic prophase I [2], or an altruistic process ensuring 

survival of some oocytes within a particular sibling ‘nest’ [3].  

 

While oocyte populations behave predictably, the factors controlling survival or death 

of individual oocytes remain obscure. Synaptic problems are common and may 

promote oocyte loss [4] while defects in recombination caused by DNA repair 

insufficiency can trigger meiotic arrest [5]. Thus, selective elimination based on 

meiotic abnormality could promote the survival of more normal oocytes to the ovarian 

pool [6].  However, these quality control mechanisms are not completely efficient, 

allowing some abnormal oocytes to continue developing. In humans, mature oocytes 

have an exceptionally high rate of around 20% aneuploidy [7].  Such aneuploidies 

may have their origin in meiotic prophase I and are recognised contributors to the low 

fertility of humans, the high miscarriage rate, and certain prevalent conditions such as 
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Trisomy 21 Down’s Syndrome [8].  An understanding of the origins of abnormal 

oocytes, and the biological methods for their control, has potential to improve 

reproductive outcome. We are therefore interested in how abnormalities in oocytes 

during meiotic prophase I relate to the occurrence of apoptosis. These experiments in 

mice complement and extend our studies of human prenatal oogenesis [9-11].   

 

In mice, early studies indicated that cell death affects proliferating primordial germ 

cells or oogonia in 12-13 dpc ovaries, and also oocytes at the zygotene/pachytene 

stage of meiotic prophase I, from 16dpc through to birth [reviewed in 12].  In humans, 

oocyte loss has been reported particularly at the pachytene stage, using electron 

microscopic identification of meiotic chromosomes [2]. Prenatal loss of oocytes may 

involve apoptosis [13,14] although this view has been challenged [15]. Several 

approaches have been made to characterise apoptotic oocytes in mouse fetal ovaries.  

Small oocytes with reduced DNA content were observed at 13.5 dpc [16] and 

increased on 15.5 and 17.5 dpc [17], DNA ladders (180-200bp) have been detected by 

gel electrophoresis, and DNA fragmentation in oocytes has been detected by TUNEL 

applied to ovarian tissue sections [18].  The germ cell specific marker Vasa, has been 

applied together with poly (ADP-ribose) polymerase (PARP-1) and TUNEL as 

apoptotic markers [3]. The latter used ovarian tissue sections to show that mouse germ 

cell apoptosis occurs predominantly from 20.5 to 22.5 dpc when oocytes are mainly in 

the diplotene stage. Previous publications therefore differ in their interpretation of the 

risks of oocyte death by apoptosis during the stages of meiotic prophase I.  

 

The study of apoptosis in oocytes is challenging for two reasons.  First, DNA breaks, 

often used as a marker of apoptosis, are integral to meiosis, particularly during the 

leptotene stage, when DNA strands condense before synapsis [19].  Hence, methods 

detecting DNA breaks, such as TUNEL, must be combined with apoptosis-specific 

markers, in order to avoid false positive results [20]. Second, identification of stages 

of meiotic prophase I has not been straightforward. Histological methods permit 

differences in interpretation, causing widespread variations in results, notable in 

studies of human fetal ovaries [reviewed in 21]. More recently, the availability of 

molecular methods to identify meiotic chromosomes categorically [22] and to ascribe 

their meiotic stages with certainty in large numbers of individual cells has prompted 

us to re-examine the timing of apoptosis in relation to meiotic prophase I.  
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Results and Discussion 

 

We studied a total of 1960 oocytes from 24 mouse fetuses or neonates from 14.5 to 21 

dpc. The relationship between oocyte development and death during meiotic prophase 

I was investigated according to the stage of meiotic prophase I, the appearance of 

axial elements and also their cleaved PARP-1 and TUNEL labelling. Figure 1 

presents examples of labelled spread oocytes. 

 

Progression of oocytes during meiotic prophase I 

Overall, the numbers of oocytes in meiotic prophase I, observed using COR1 

labelling, increased from 14.5 to 18dpc and approximately halved at day 19, the day 

of birth in these mice. Figure 2 shows the numbers of oocytes observed according to 

age, and stage of meiotic prophase I, indicating the proportions having intact, 

compressed or fragmented elements. The numbers of oocytes observed are not 

necessarily representative of the total in ovaries since we only observed those oocytes 

that remained affixed to slides after microspreading, fixation and washing.  However, 

we are not aware of any evidence that the attachment of chromosomes is biased 

towards any particular type of cell.  

Oocytes with fragmented axial elements comprised 10-25% of zygotene, pachytene 

and diplotene oocytes, and 33% of unstaged oocytes.  Some fragmented oocytes were 

noted each day from 14.5 to 21 dpc, however they were particularly evident on day 18 

(38%) (Figure 2a).  Compressed oocytes (see Figure 1J) comprised 17-35% of 

oocytes at zygotene to diplotene stages, and 65% of unstaged oocytes (Figure 2b).  

Compressed oocytes were the predominant fraction on day 19 when they comprised 

75% of the total. As will be discussed later, the lack of spreading (thus compressed) 

could be related to compromised membrane function in the degenerating oocytes.  

Therefore, compared to spread oocytes, compressed oocytes may represent cells with 

lower viability.  Nine oocytes were classed as abnormal.   

 

The distribution of oocytes across the stages of meiotic prophase I varied with age as 

expected (p<0.001). Unstaged oocytes were notable mainly after 18dpc.  Interestingly, 

there were two waves of zygotene oocytes on 15.5 and 18 dpc and pachytene oocytes 

on 16-17 and 20 dpc (Figure3).    
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Factors affecting oocyte labelling with cleaved PARP-1 and TUNEL  

The oocytes in each category of cleaved PARP-1 and TUNEL labelling (P
+
T

+
, P

+
T

-
, 

P
-
T

+
, P

-
T

-
) were analysed as a proportion of the total numbers of oocytes observed on 

the slide of the same ovary. The majority of P
+
 oocytes were also T

+
, as expected 

from the relationship between cleaved PARP-1 and DNA damage during apoptosis, 

however, isolated T+ labelling of oocytes was also evident, as we had predicted. 

Labelling for cleaved PARP-1 and TUNEL varied according to the stage of meiotic 

prophase I and age post-coitum (p<0.001) (Figures 4 and 5). Oocytes staining for 

neither cleaved PARP-1 nor TUNEL were the largest fraction at all stages of meiotic 

prophase I.   

 

The data were then analysed according to stage of meiotic prophase I on certain dpc, 

to determine whether oocytes entering meiosis earlier or later than average were more 

prone to apoptosis, as has been suggested by Park and Taketo [22].   

 

At the leptotene stage, T
+
 oocytes predominated on 14.5 dpc (Figure 5), as might be 

expected from the chromosomal reorganisation taking place in early meiosis [18]. 

However, by 15.5 dpc, leptotene oocytes appeared to be either apoptotic (P
+
) or 

potentially viable (P
-
T

-
) (figure 5). 

 

At subsequent stages of development, oocytes exhibited all possible combinations of 

PARP-1 and TUNEL staining, irrespective of whether their axial elements, 

highlighted by COR1, appeared intact or fragmented. There was no evidence to 

suggest that oocytes that entered meiosis earlier or later had different profiles of 

staining for TUNEL and cleaved PARP-1.  It is notable that a few zygotene and 

pachytene oocytes that were apparently viable (P
-
T

-
) and had intact elements, were 

identified up to two days after birth (Figure 5). On 20dpc, 12.9% of oocytes were 

classified as intact pachytene cells, reducing to 7.4% on 21dpc.  Interestingly, 

diplotene oocytes increased as expected towards the time of birth.  However, at day 

21, the principal group of diplotene oocytes was undergoing apoptosis, as shown by 

P
+
T

+
 staining (Figure 5).   
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Statistical analysis of data pooled across time points showed that oocytes at the 

diplotene stage had a significantly different staining profile to those at pachytene or 

zygotene stages, regardless of whether their elements were intact or fragmented, 

having a higher likelihood of P
+
T

+
 labelling (p<0.01).  At the zygotene, pachytene and 

diplotene stages, oocytes with fragmented axial elements were less likely to show T
+
 

or P
+
 labelling than those with intact axial elements (p<0.01).  Additionally, oocytes 

having compressed chromosomes were significantly more likely to stain for cleaved 

PARP-1 and TUNEL than those with intact or fragmented axial elements (p<0.001). 

Zygotene and pachytene oocytes with compressed elements were also more likely to 

be P
+
T

-
 than if their elements were intact or fragmented (p<0.05). A similar 

relationship was not found for the unstaged oocytes.   

 

A number of questions arising from the data presented have bearing upon the 

detection of normality and viability in fetal oocytes, and upon our understanding of 

the processes governing prenatal oocyte selection.  These will be highlighted below.   

 

Can the appearance of synaptonemal complex staining define oocyte 

viability?   

Since a large proportion of prenatal oocytes will die, we wished to understand, firstly, 

whether oocytes in meiotic prophase I could be ascribed reliably as viable or non-

viable on the basis of the visual appearance of their immunostained axial elements.  

There is considerable discrepancy in the literature concerning the interpretation of 

microscopic images of meiotic cells as well as the optimal means of cell preparation 

to obtain ideal cytogenetic spreads. For example, non-intact elements observed 

microscopically have been interpreted as abnormal, non-viable or degenerating [11, 

19, 24-29] as well as potentially artifactual [30,31].   

 

We found that oocytes with fragmented elements were a relatively consistent 

proportion of the total at all stages of meiotic prophase I (Figure 2b), averaging 

18.5%. This was similar to the 14.8% noted by Martinez-Flores et al [31] in rats using 

procedures optimised to minimise artifactual fragmentation. The reason for the 

increased fragmentation on day 18 is unclear. Technical variation has been discounted 

because mice from different litters gave the same results. Oocytes with fragmented 

axial elements were less likely to stain for cleaved PARP-1 and TUNEL.  Although 
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this finding was significant, its impact was modest because such oocytes represented a 

relatively small proportion of the total. Overall, staining of oocytes with fragmented 

axial elements was broadly similar to those with intact axial elements, i.e. the majority 

remaining unstained for cleaved PARP-1 and TUNEL, despite fragmented axial 

elements. We therefore conclude that fragmentation of axial elements observed 

through immunocytochemistry of COR1 is not indicative of a PARP-1 dependent 

apoptotic process of oocyte degeneration. Nevertheless, fragmentation of SCs is 

associated with abnormal oogenesis in some mutant mice [32].  Therefore, its 

association with non-apoptotic degeneration, or apoptosis via a pathway independent 

of PARP-1, cannot be excluded.   

 

Cytogenetic spreading favours viable cells 

We also explored whether cytogenetic spreads of fetal ovaries produce preparations 

that are representative of the prenatal oocyte population. We examined all oocytes 

identified by COR1 staining, regardless of spread appearance, because we thought 

that the spreading method may selectively prepare viable cells. Spreading includes 

incubation in hypotonic solution to promote membrane rupture and efficient removal 

of cytoplasm [33], which may thereby cause under-representation of oocytes in 

apoptosis or with poor membrane function. Our findings support this contention. The 

oocytes we observed with compressed elements had nuclei that spread less (Figure 1J) 

and were also more likely to stain for cleaved PARP-1, a marker of apoptosis. 

Coucouvanis et al. [16] have also reported condensed nuclei as features of apoptotic 

oocytes. Such oocytes are a major population at meiotic prophase I (28% in our 

series), although they are unlikely to contribute to the ovarian reserve. They may 

therefore have been overlooked in studies where only oocytes producing good quality 

spreads were analysed. We therefore decided to include these compressed oocytes 

because their exclusion, based on their suboptimal response to the spreading 

technique, may be a misrepresentation of the dynamics of cell death within the fetal 

ovary. 

 

Interestingly, we noted an increase in such compressed oocytes on day 19, soon after 

birth, heralding the dramatic reduction of oocyte numbers known to occur from birth 

[3].  The high proportion of P
+
T

+
 diplotene oocytes at day 21 may be a later 

manifestation of this phenomenon of postnatal oocyte death.   



 9 

 

Progress of meiotic prophase I 

The increasing numbers of oocytes observed between 14.5 and 18 dpc and the profile 

of stages of meiotic prophase I suggest that female germ cells are entering meiosis 

gradually, as expected [34], notwithstanding technical losses of cells during 

processing.  Data from McClellan et al. [35] using CD1 mice show a similar profile of 

stages of meiotic prophase I, although they did not observe diplotene oocytes until the 

day of birth (also 19dpc), whereas we observed them in substantial numbers from 

16dpc (Figure 3).  The rate of progress of meiotic prophase I has been reported to 

differ in different strains of mice [34] which may account for this difference.  The 

time profile of meiotic prophase I in our study, showed two ‘waves’ of zygotene 

oocytes on 15.5 and 18 dpc and two ‘waves’ of pachytene oocytes on 16-17 and 20 

dpc (Figure 3).  The existence of two waves of pachytene oocytes in B6CBF2 mice is 

consistent with other data from our group (unpublished) and could be a genetic effect 

[36,37].  Biphasic observations of prenatal oocyte degeneration and the premeiotic S 

phase have been reported in rats [30,38].   

 

Meiotic prophase I in female mice is non-synchronous and probably takes about four 

days. The durations of the leptotene, zygotene and pachytene stages in mice were 

estimated at 3-8 hours, 12-40 hours and >60 hours respectively by Crone et al [39] 

using tritium labelling studies.  Our data show some discrepancies from this 

approximation, as follows:  First, the interval between the first appearance of 

pachytene at 15.5dpc and diplotene at 16dpc is shorter than the expected >60h 

duration reported by Crone et al [39].  Our data may suggest either a shorter 

pachytene stage or a difference in the interpretation of the onset of diplotene, perhaps 

caused by technical differences between the immunocytogenetic spreads that we used 

and the autoradiographed sections used by Crone et al [39].  Second, zygotene 

oocytes remain a major fraction until 19dpc, while leptotene oocytes are not seen 

beyond 16 dpc (Figure 3).  This 3 day interval is longer than the estimated maximum 

of 40 hours from Crone et al. [39], suggesting a prolonged zygotene stage in at least 

some oocytes, probably including the ‘second wave’ zygotene oocytes that we 

observed on 18dpc (Figure 3) and potentially also the pre-diplotene oocytes remaining 

after birth.  Prolonged early meiosis has been associated with persistence of the 

bouquet stage consequent upon compromised DNA repair, essential for recombination 



 10 

[see 40].  It may be hypothesised that constraints upon the progression of meiosis, 

such as the necessity for DNA repair, difficulties with homologous chromosome 

identification or pairing, or other undefined problems, may indicate an oocyte that is 

abnormal or has reduced gametogenic potential.  The major reduction in zygotene and 

pachytene cells around birth, whether or not mediated via apoptosis, may thus 

constitute a selection mechanism against developmentally incompetent oocytes that 

have failed to reach the diplotene stage and accrete a follicle. If this idea is correct, 

this mechanism might explain some of the variability in oocyte apoptosis, described 

in the next section, rather than the pachytene arrest that is well known in males [41].   

 

The persistence of some zygotene and intact pachytene oocytes between 19 and 21 

dpc, without indications of apoptosis, has not previously been reported.  This finding 

confirms earlier histological and electron microscopic observations on newborn mice 

[34,42] but is contrary to the report of McClellan et al [35] in CD1 mice.  McClellan 

et al [35] detected early diplotene oocytes after birth, but zygotene oocytes were 

absent and pachytene oocytes represented <1% of the total.   Recent contributions 

have revisited the idea that oocyte production may continue into maturity through the 

persistence of non-meiotic germinal stem cells after birth [43], however, the postnatal 

longevity of oocytes in prediplotene stages of meiotic prophase I is unknown and 

further data are required. 

 

Apoptosis detection in oocytes 

Molecular localisation of apoptotic and meiotic markers in microspread oocyte nuclei 

offers a powerful tool to unravel the inter-related processes of meiosis and apoptosis 

through detailed analysis of many individual oocytes.   

 

When we studied oocytes using cleaved PARP-1 and TUNEL labelling, both P
+
T

+ 
and

 

P
-
T

- 
germ cells were identified

 
at the preleptotene stage.  Positivity for cleaved PARP-

1 indicates that some germ cells may be lost through apoptosis even as they enter 

meiosis. This agrees with previous findings that cell death affects proliferating 

primordial germ cells or oogonia as well as oocytes at the zygotene, pachytene and/or 

diplotene stages [13,14].   
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The high proportion of P
+
T

+ 
cells

 
at the preleptotene and leptotene stages on 14.5 dpc 

(Figure 5) are a consequence of apoptosis, whereas those with isolated T
+
 labelling 

probably have meiotic double strand breaks (DSBs). DSBs appear early in meiotic 

prophase I (leptotene), prior to the formation of mature SCP3, and disappear in 

zygotene as synapsis progresses [44,45].  Active RNA synthesis can also result in 

TUNEL positivity in tissue sections [20].  While RNA synthesis may occur during all 

stages of meiotic prophase I excepting the pachytene stage and particularly at the 

diplotene stage [46], the spreading methods we used are likely to have removed this 

confounding influence. Consistent with this, we did not observe a stage-related 

incidence of isolated T
+
 labelling.   

Interestingly, we found that TUNEL did not highlight all leptotene oocytes.  There 

may be a number of explanations, for example, that TUNEL does not label meiotic 

DSBs efficiently, that leptotene oocytes are heterogeneous, that the number of DSBs 

at the leptotene stage is smaller than the number of 3’-ends in DNA during apoptosis 

and thus DSBs in leptotene oocytes may be below the threshold for detection by 

TUNEL, or that the complexes of proteins that bind to meiotic DSBs have persisted 

despite proteinase K exposure and masked the sites.  Further experimentation would 

be necessary to clarify this point, including the use of antibodies specific to meiotic 

DSB processing proteins [see 47], rather than the non-specific TUNEL procedure.    

 

When does oocyte apoptosis occur? 

The proportion of P
+
T

-
 oocytes remained very low throughout meiotic prophase I.  

This would be expected because cleaved PARP-1 is present late in apoptosis shortly 

before DNA breakdown, which would then be indicated by co-positivity for TUNEL.  

However, the observed P
+
T

-
 oocytes in pachytene on 17 dpc and diplotene oocytes 

from 19 dpc may be precursors of the rise in P
+
T

+
 diplotene oocytes between 19 and 

21 dpc (figures 5). This tends to confirm the findings of Pepling and Spradling [3], 

who showed increased female germ cell apoptosis in mice from 20.5 to 22.5 dpc.  
 

The proportion of P
-
T

+
 oocytes in pachytene was low except on 16 dpc (figure 5). P

-

T
+ 

oocytes are either healthy, with physiological DNA breaks due to meiotic 

chromosome activities [48,49] or active RNA synthesis [20] or at very late stages of 

apoptosis, with migration of cleaved PARP-1 from the nucleus to the cytoplasm [50] 

and consumption of NAD
+
 in the cytoplasm [51] to replenish ADP-ribose. Since their 

elements are intact, and pachytene oocytes are increasing in number at this point, the 
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latter seems unlikely.  The nature of the TUNEL positivity in PARP-1 negative 

pachytene oocytes could possibly relate to recombination activities at this time [52], 

however, in that case, it is unclear why it affects only a proportion of pachytene 

oocytes.   

 

Previous studies have noted abnormal appearing pachytene oocytes using histological 

methods and have concluded that pachytene is a major point in meiosis at which 

oocyte elimination may occur [2,25,53] as is the case in males [54].  However, this 

was challenged by McClellan et al [35] who used a combination of histological and 

spreading methods to show a continual loss of oocytes throughout meiotic prophase I.  

In our study, pachytene oocytes were no more likely than other stages of meiotic 

prophase to exhibit fragmented or compressed elements (Figure 2), or staining for 

apoptotic markers (Figure 6).  Our data therefore do not support the contention of 

stage-specific apoptosis in prenatal mouse oocytes.   

 

Conclusions 

 

In summary, fragmented axial elements, demonstrated by COR 1 staining, are not 

necessarily indicative of oocyte apoptosis, however, compressed elements in poorly-

spread nuclei may be associated with apoptosis. Approximately 10-50% of oocytes at 

all stages stained positive for cleaved PARP-1, an apoptosis marker. These 

conclusions have major implications for the interpretation of data arising from oocyte 

spreading techniques.  In particular, our data pose a significant challenge to the 

currently widespread assumption that fragmented axial elements are evidence of 

oocyte degeneration.  It is possible that such oocytes may be undergoing a cell death 

process unrelated to PARP-1.  However, PARP-1 dependent apoptosis is clearly a 

major contributory pathway for prenatal oocyte loss during meiotic prophase I 

because a major fraction of this oocyte population does stain for PARP-1, regardless 

of the appearance of axial elements.  Future research should address which other 

apoptotic pathways are involved, the upstream events leading to a cell death decision, 

and how they relate to the control and progress of meiotic prophase I.   

 

Our results also provide strong support for the work of others challenging the concept 

of stage-specific oocyte demise during meiotic prophase I.  The proportions of P
+
T

+
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oocytes during zygotene on 15.5 dpc, pachytene from 16 to 17 dpc and diplotene from 

19 dpc onwards suggests that there are several stages throughout first meiotic 

prophase when apoptosis may occur. However, diplotene seems to be when the 

majority of oocytes are depleted via apoptosis, particularly at birth or shortly 

afterwards. Some oocytes in zygotene and pachytene, which lack evidence of 

apoptosis, may persist for at least 2 days postnatally.  Genetic effects upon the rate of 

meiotic prophase I and the numbers of oocytes that will survive beyond the prenatal 

period are currently poorly understood, but may explain some of the discrepancies 

noted between our work and that of others.  

 

Prenatal apoptosis and events in meiotic prophase I are well known to impact upon 

many later aspects of oogenesis and fertility, and thus deserve thorough investigation. 

The present data add to the evidence detailing oocyte apoptosis throughout meiotic 

prophase I, providing much-needed information and challenging the validity of 

TUNEL for studies of apoptosis in oocytes.   

 

Methods 

Mice  

The mice were kept under Home Office licence, housed at 23
◦
C with 12:12 hours of 

light:dark, and fed ad libitium. Female B6CBF1 mice aged from 6 weeks to 6 months 

old were caged with a male overnight for one night only, to ensure accuracy of dating 

their pregnancy. 

Collection and preparation of ovarian tissues 

The first day of observing the copulation plug was counted as day zero. Pregnant 

females were sacrificed in a CO2 chamber on specific days post-coitum (dpc) in the 

morning (14.5, 15.5 dpc) or evening (16, 17, 18, 19, 20, 21 dpc).  Ovaries were 

dissected from female fetuses between the ages of 14.5 and 18 dpc. Some pregnant 

mice were allowed to deliver their litter, which occurred on the morning of day 19.  

Neonates were sacrificed using CO2 at 19 to 21 dpc and neonatal ovaries were 

collected.  

Both ovaries from at least three B6CBF2 mouse fetuses/neonates at each time point 

were placed in protein-free Ham’s F10 medium (Sigma, UK). The ovaries of each 
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fetus/neonate were kept separately from those of others. The entire process of ovary 

isolation lasted ~20 minutes. To obtain microspread oocyte preparations, whole 

ovaries were macerated in protein-free Ham’s F10 medium on an ethanol-cleaned 

glass slide and further prepared as described below.  One ovary was used per slide.  

 

Determination of stages of meiotic prophase I and detection of 

apoptosis 

Cleaved PARP-1 and COR1 were detected simultaneously on micro-spreads of 

mouse ovaries, followed subsequently by TUNEL labelling of DNA breaks. 

 1) Co-detection of COR1 and cleaved PARP-1 

COR1 protein is present on axial elements of the synaptonemal complexes between 

homologous chromosomes during all stages of meiotic prophase I [55]. Therefore the 

long-term presence of COR1 on the core elements of chromosomes during meiosis 

makes it a useful germ cell marker. Fluorescent highlighting of COR1 protein 

demonstrates the arrangement of chromosomal pairing and hence the stage of meiotic 

prophase I.  Anti-COR1 antibody recognizes short segments of chromosomal core 

elements at the leptotene stage and fully formed elements at the pachytene stage [56]. 

COR1 protein was identified using polyclonal mouse anti-hamster COR1 antibody (a 

kind gift from Peter Moens, York University, Toronto, Canada). 

 

PARP-1 is activated by binding to DNA strand breaks, where it catalyses the transfer 

of ADP-ribose from NAD
+
 to certain proteins involved in chromatin architecture or 

DNA metabolism including PARP-1 itself [57]. PARP-1 is proteolysed during 

apoptosis, converting from a 116kDa form to fragments of 89kDa (C-terminal 

fragment) and 24kDa (N-terminal fragment) [58]. The presence of cleaved PARP-1 

indicates an incapacity to repair DNA, which is considered a marker of apoptosis [59] 

and can be revealed by specific antibodies.  

 

Briefly, dispersed ovarian cells were treated with 3 drops of 3% sucrose hypotonic 

solution for 30 minutes at room temperature. The spreads were fixed with 10 drops of 

1% ultra pure formaldehyde (TAAB, Aldermaston, UK) containing 1% SDS, pH: 8.0 

for 25 minutes at room temperature. After fixation all slides were washed for 5 

minutes with 0.5% triton in PBS and then twice for 10 minutes with 0.1% triton in 
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PBS (PBT). All slides were incubated with 5% normal goat serum (Sigma) in PBT for 

45 minutes at room temperature, to prevent non-specific binding. Primary anti-COR1 

antibody at a concentration of 1:1000 in PBT and primary anti-cleaved PARP-1 

antibody (rabbit anti-mouse, polyclonal antibody, Cell Signalling, USA) at a 

concentration of 1:50 in PBT, were applied simultaneously. Slides were placed in a 

moist chamber at 4°C overnight.  

 

All secondary antibodies were used at a concentration of 1:200 in PBT. Texas Red 

conjugated goat anti-mouse antibody (Vector laboratories, UK) was applied for 30 

minutes in the dark at 37
°
C to visualise COR1 followed by three further washes in 

PBT for 5 minutes. To visualise cleaved PARP-1, goat anti-rabbit biotinylated IgG 

(L+H))(Vector laboratories) was applied for 30 minutes at 37°C followed by 3 washes 

in PBT of 10 minutes each. Then a combination of Texas Red goat anti-mouse and 

anti-avidin AMCA [7-amino-4-methylcoumarin-3-acetic acid (Vector laboratories)] 

was applied and incubated for 30 minutes at 37°C. Afterwards the slides were washed 

3 times in PBT, 10 minutes each. Finally the slides were mounted with Vectashield 

mounting medium for fluorescence without DAPI (Vector Laboratories). All slides 

were viewed directly under fluorescence microscopy (Axioskop, Carl Ziess) to detect 

individual oocytes (highlighted by COR1 staining), noting the presence or absence of 

cleaved PARP-1 indicated by blue staining of nuclei where the axial elements were 

highlighted with COR1. Fluorescence microscope images were recorded via a cooled 

charged-coupled device (CCD) camera and Vysis QUIPS with Smart capture software 

(Digital Scientific).  

 

Negative controls lacking primary and/or secondary antibodies were performed at the 

same time as test slides to confirm no cross reactivity between anti-COR1 and anti-

cleaved PARP-1 primary and secondary antibodies.  

 

All the slides were then further processed for detection of DNA fragmentation using 

TUNEL with a direct fluorescent method as described below.  
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Criteria for classification of oocytes according to COR1 staining 

Oocytes in definitive stages of meiotic prophase I were distinguished using criteria set 

out by Barlow and Hultén [28] and Hartshorne et al [9] with more detail regarding the 

integrity (intact/fragmented) of the axial elements [11]. During preleptotene, the 

nuclei of the oocytes accumulated COR1 protein but displayed only very short 

segments of proteinaceous backbone. During the leptotene stage, staining of COR 1 

protein was apparent on the proteinaceous backbone forming along each chromatid 

pair. Leptotene oocytes were considered normal unless an unusual assembly of COR1 

on axial elements was observed. During the zygotene stage, the staining was denser 

and homologous chromosomes had begun to align with one another according to 

classification by Wallace and Hultén [26] and Bojko [27]. At the pachytene stage, 

homologous chromosomes were fully synapsed along their entire length, forming 20 

distinct bivalents apparent as compressed, shortened structures [review 60]. During 

the diplotene stage, homologous chromosomes had become separated by repulsion 

and started to desynapse. Crossover sites were apparent holding the homologous 

chromosomes together by chiasmata [see 60]. Distinction between the zygotene and 

diplotene stages was possible since the axial elements in zygotene, with longer 

lengths and opened non-synapsed ends, appeared different from those in the diplotene 

stage that are rather shorter in length and very dense with forklike desynapsed ends. 

 

The total number of cells having COR1 staining on axial elements was counted on 

each slide (one ovary per slide). The axial elements of homologous chromosomes in 

oocytes were classified as intact when there was continuous staining of COR1, 

fragmented when there were discontinuities or large gaps in COR1 staining, 

compressed when the oocyte nucleus was not well spread, and degenerated when 

scattered staining was observed but there was no clear structure to the axial elements. 

Preleptotene and leptotene oocytes were excluded from the analysis on fragmentation 

of elements, since their elements are, by definition, fragmented at this stage of meiotic 

prophase I.  Although incomplete elements were present in zygotene oocytes, they 

were distinguishable from fragmented elements by the extent to which they were 

linear and partially paired.  Oocytes were classified as abnormal when the appearance 

of their intact elements did not match with the criteria of axial elements in any stage 

of meiotic prophase I, as described above, based upon published descriptions [9,26-

28,46]. Some oocytes stained with COR1, yet could not be staged using the criteria 
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above.  These represented 13.7% of the total.   

 

2) TUNEL labelling 

DNA cleavage was detected by TUNEL using the Apop Tag Fluorescein Direct In 

Situ Apoptosis Detection Kit (Intergen, USA) that enzymatically labels free 3’-OH 

ends with fluorescein nucleotides. This technique is used in many applications to 

detect apoptosis where chromatin condensation has begun and DNA breaks are 

occurring. We applied it here to study DNA breaks on the same micro-spread oocytes 

that had already been assessed using antibodies to COR1 and cleaved PARP-1.  All 

washing and incubation processes were performed in the dark in order to preserve the 

fluorescent markers. After removal of residual immersion oil and glass cover slips, the 

slides were re-stained with Texas Red-labelled goat anti-mouse antibody for 30 

minutes in the dark at 37°C, to ensure that the axial elements would remain 

completely visible.  Slides were washed in PBT, three times for 10 minutes and then 

processed according to the manufacturer’s protocol for TUNEL. Positive control 

slides were treated with 0.9 µg/ml DNAse 1 in DN buffer for 10 minutes at room 

temperature. Finally slides were mounted with Vectashield mounting medium for 

fluorescence without DAPI (Vector Laboratories). These slides were either viewed 

immediately or stored at –20ºC.  

The same oocytes previously examined for COR1 and cleaved PARP-1 staining were 

located and assessed for TUNEL labelling and their images were captured. During 

these assessments oocytes were categorised into four different groups (P
+
T

+
, P

+
T

-
, P

-

T
+
, P

-
T

-
) according to being cleaved PARP-1 positive (P

+
) or negative (P

-
) and 

TUNEL positive (T
+
) or negative (T

-
).  

All oocytes in which COR1 staining was identified were examined, including those 

which appeared to be in the process of degeneration, since the features of such 

oocytes were of particular relevance to our aims.   

 

Statistical analysis  

The distribution of oocytes at different stages of first meiotic prophase in fetal ovaries 

was analysed by ordinal regression after logit transformation of the data. Within each 

stage of meiotic prophase I, each oocyte was classified according to its positive or 
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negative staining for cleaved PARP-1 and TUNEL, and analysed by ordinal 

regression as before. Results were back transformed to obtain the proportions of 

oocytes at each stage of meiosis in each category of cleaved PARP-1 and TUNEL 

labelling according to their axial element integrity (intact, fragmented or compressed).  

Unstaged oocytes were omitted from the analyses of cleaved PARP-1 and TUNEL 

staining at different stages of development.  Compressed oocytes where the stage of 

meiotic prophase I could be determined were included with intact oocytes for 

comparisons of intact and fragmented elements in terms of cleaved PARP-1 and 

TUNEL staining.   
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Figure legends 

 

Figure 1: Microspread oocytes from fetal mouse ovaries, demonstrating 

different appearances of axial elements and labelling for cleaved PARP-1 and 

TUNEL during meiotic prophase I.   

 

Red = COR1 immunodetection indicating the axial elements of oocyte chromosomes, 

used to determine the stage of meiotic prophase I.   

Blue = Cleaved PARP-1 immunodetection.  Presence of cleaved PARP-1 indicates 

inability to repair DNA damage, indicative of apoptosis. 

Green = TUNEL labelling.  Indicates presence of DNA double strand breaks.  

 

A. Oocyte in late zygotene with intact axial elements shown by COR1 staining in red.  

This oocytes was negative for both cleaved PARP-1 and TUNEL. 

B and C.  Oocyte at pachytene showing discontinuities in COR1 staining.  This oocyte 

was TUNEL positive (green) and negative for cleaved PARP-1. 

D. Oocyte in pachytene with intact axial elements, negative for both cleaved PARP-1 

and TUNEL.   

E and F.  Oocyte in early diplotene showing discontinuities in COR1 staining.  This 

oocyte was positive for cleaved PARP-1  (blue) and negative for TUNEL. 

G, H and I.  Oocyte with short sections of dense discontinuous COR1 staining, 

possibly degenerating diplotene stage.  This oocyte stained positive for both TUNEL 

(H) and cleaved PARP-1 (I), indicating advanced apoptosis.   

J.  Two adjacent oocytes stained for COR1, demonstrating clear differences in nuclear 

size.  Oocytes showing limited expansion, such as that on the right, we have termed 



 24 

‘compressed’.  Both of these oocytes were TUNEL negative (shown green) and 

PARP-1 positive (not shown).   

 

Figure 2: Total numbers of oocytes identified in mouse fetal and neonatal 

ovaries, having intact, compressed or fragmented axial elements. 

A.  on each day post-coitum between 14.5 and 21.   

B.  at each stage of meiotic prophase I.   

 

Figure 3: The proportions of fetal mouse oocytes in different stages of meiotic 

prophase I between 14.5 and 21 days post coitum.  

Note, two waves of zygotene peaking on 15.5 and 18 dpc, followed by two waves of 

pachytene on 17 and 20 dpc.  Note also the persistence of some pre-diplotene stages 

of oocytes until day 21, two days after birth.   

 

Figure 4: Distribution of oocytes in the stages of meiotic prophase I according to 

their labelling for cleaved PARP-1 and/or TUNEL.   

P
+
 indicates positive staining for cleaved PARP-1;  T

+
 indicates positive labelling 

using the TUNEL method 

 

 

Figure 5: Distribution of oocytes at each stage of meiotic prophase I between 

14.5 and 21 dpc according to their labelling for cleaved PARP-1 and/or TUNEL.   

Oocytes with intact axial elements between zygotene and diplotene stages are 

presented in separate graphs (left) in parallel with oocytes having compressed or 

fragmented axial elements at the same stage (right).   
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Figure 5
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