50 research outputs found

    Processing and Linking Audio Events in Large Multimedia Archives: The EU inEvent Project

    Get PDF
    In the inEvent EU project [1], we aim at structuring, retrieving, and sharing large archives of networked, and dynamically changing, multimedia recordings, mainly consisting of meetings, videoconferences, and lectures. More specifically, we are developing an integrated system that performs audiovisual processing of multimedia recordings, and labels them in terms of interconnected “hyper-events ” (a notion inspired from hyper-texts). Each hyper-event is composed of simpler facets, including audio-video recordings and metadata, which are then easier to search, retrieve and share. In the present paper, we mainly cover the audio processing aspects of the system, including speech recognition, speaker diarization and linking (across recordings), the use of these features for hyper-event indexing and recommendation, and the search portal. We present initial results for feature extraction from lecture recordings using the TED talks. Index Terms: Networked multimedia events; audio processing: speech recognition; speaker diarization and linking; multimedia indexing and searching; hyper-events. 1

    Review of Research on Speech Technology: Main Contributions From Spanish Research Groups

    Get PDF
    In the last two decades, there has been an important increase in research on speech technology in Spain, mainly due to a higher level of funding from European, Spanish and local institutions and also due to a growing interest in these technologies for developing new services and applications. This paper provides a review of the main areas of speech technology addressed by research groups in Spain, their main contributions in the recent years and the main focus of interest these days. This description is classified in five main areas: audio processing including speech, speaker characterization, speech and language processing, text to speech conversion and spoken language applications. This paper also introduces the Spanish Network of Speech Technologies (RTTH. Red TemĂĄtica en TecnologĂ­as del Habla) as the research network that includes almost all the researchers working in this area, presenting some figures, its objectives and its main activities developed in the last years

    Detection and handling of overlapping speech for speaker diarization

    Get PDF
    This thesis concerns the detection of overlapping speech segments and its further application for the improvement of speaker diarization performance. We propose the use of three spatial cross-correlation-based parameters for overlap detection on distant microphone channel data. Spatial features from dierent microphone pairs are fused by means of principal component analysis or by an approach involving a multilayer perceptron. In addition, we investigate the possibility of employing long-term prosodic information. The most suitable subset of candidate prosodic features is determined by a two-step mRMR feature selection algorithm. For segments including detected overlapping speech the speaker diarization system picks a second speaker label, and such segments are also discarded from the model training. The proposed overlap labeling technique is integrated in the Viterbi-decoding part of the diarization algorithm.Peer ReviewedPostprint (published version

    Robust Speaker Diarization for Short Speech Recordings

    Get PDF
    We investigate a state-of-the-art Speaker Diarization system regarding its behavior on meetings that are much shorter (from 500 seconds down to 100 seconds) than those typically analyzed in Speaker Diarization benchmarks. First, the problems inherent to this task are analyzed. Then, we propose an approach that consists of a novel initialization parameter estimation method for typical state-of-the-art diarization approaches. The estimation method balances the relationship between the optimal value of the duration of speech data per Gaussian and the duration of the speech data, which is verified experimentally for the first time in this article. As a result, the Diarization Error Rate for short meetings extracted from the 2006, 2007, and 2009 NIST RT evaluation data is decreased by up to 50% relative

    CHiME-6 Challenge:Tackling Multispeaker Speech Recognition for Unsegmented Recordings

    Get PDF
    Following the success of the 1st, 2nd, 3rd, 4th and 5th CHiME challenges we organize the 6th CHiME Speech Separation and Recognition Challenge (CHiME-6). The new challenge revisits the previous CHiME-5 challenge and further considers the problem of distant multi-microphone conversational speech diarization and recognition in everyday home environments. Speech material is the same as the previous CHiME-5 recordings except for accurate array synchronization. The material was elicited using a dinner party scenario with efforts taken to capture data that is representative of natural conversational speech. This paper provides a baseline description of the CHiME-6 challenge for both segmented multispeaker speech recognition (Track 1) and unsegmented multispeaker speech recognition (Track 2). Of note, Track 2 is the first challenge activity in the community to tackle an unsegmented multispeaker speech recognition scenario with a complete set of reproducible open source baselines providing speech enhancement, speaker diarization, and speech recognition modules

    Tuning-Robust Initialization Methods for Speaker Diarization

    Get PDF
    This paper investigates a typical speaker diarization system regarding its robustness against initialization parameter variation and presents a method to reduce manual tuning of these values significantly. The behavior of an agglomerative hierarchical clustering system is studied to determine which initialization parameters impact accuracy most. We show that the accuracy of typical systems is indeed very sensitive to the values chosen for the initialization parameters and factors such as the duration of speech in the recording. We then present a solution that reduces the sensitivity of the initialization values and therefore reduces the need for manual tuning significantly while at the same time increasing the accuracy of the system. For short meetings extracted from the previous (2006, 2007, and 2009) National Institute of Standards and Technology (NIST) Rich Transcription (RT) evaluation data, the decrease of the diarization error rate is up to 50% relative. The approach consists of a novel initialization parameter estimation method for speaker diarization that uses agglomerative clustering with Bayesian information criterion (BIC) and Gaussian mixture models (GMMs) of frame-based cepstral features (MFCCs). The estimation method balances the relationship between the optimal value of the seconds of speech data per Gaussian and the duration of the speech data and is combined with a novel nonuniform initialization method. This approach results in a system that performs better than the current ICSI baseline engine on datasets of the NIST RT evaluations of the years 2006, 2007, and 2009

    Segmentation, Diarization and Speech Transcription: Surprise Data Unraveled

    Get PDF
    In this thesis, research on large vocabulary continuous speech recognition for unknown audio conditions is presented. For automatic speech recognition systems based on statistical methods, it is important that the conditions of the audio used for training the statistical models match the conditions of the audio to be processed. Any mismatch will decrease the accuracy of the recognition. If it is unpredictable what kind of data can be expected, or in other words if the conditions of the audio to be processed are unknown, it is impossible to tune the models. If the material consists of `surprise data' the output of the system is likely to be poor. In this thesis methods are presented for which no external training data is required for training models. These novel methods have been implemented in a large vocabulary continuous speech recognition system called SHoUT. This system consists of three subsystems: speech/non-speech classification, speaker diarization and automatic speech recognition. The speech/non-speech classification subsystem separates speech from silence and unknown audible non-speech events. The type of non-speech present in audio recordings can vary from paper shuffling in recordings of meetings to sound effects in television shows. Because it is unknown what type of non-speech needs to be detected, it is not possible to train high quality statistical models for each type of non-speech sound. The speech/non-speech classification subsystem, also called the speech activity detection subsystem, does not attempt to classify all audible non-speech in a single run. Instead, first a bootstrap speech/silence classification is obtained using a standard speech activity component. Next, the models for speech, silence and audible non-speech are trained on the target audio using the bootstrap classification. This approach makes it possible to classify speech and non-speech with high accuracy, without the need to know what kinds of sound are present in the audio recording. Once all non-speech is filtered out of the audio, it is the task of the speaker diarization subsystem to determine how many speakers occur in the recording and exactly when they are speaking. The speaker diarization subsystem applies agglomerative clustering to create clusters of speech fragments for each speaker in the recording. First, statistical speaker models are created on random chunks of the recording and by iteratively realigning the data, retraining the models and merging models that represent the same speaker, accurate speaker models are obtained for speaker clustering. This method does not require any statistical models developed on a training set, which makes the diarization subsystem insensitive for variation in audio conditions. Unfortunately, because the algorithm is of complexity O(n3)O(n^3), this clustering method is slow for long recordings. Two variations of the subsystem are presented that reduce the needed computational effort, so that the subsystem is applicable for long audio recordings as well. The automatic speech recognition subsystem developed for this research, is based on Viterbi decoding on a fixed pronunciation prefix tree. Using the fixed tree, a flexible modular decoder could be developed, but it was not straightforward to apply full language model look-ahead efficiently. In this thesis a novel method is discussed that makes it possible to apply language model look-ahead effectively on the fixed tree. Also, to obtain higher speech recognition accuracy on audio with unknown acoustical conditions, a selection from the numerous known methods that exist for robust automatic speech recognition is applied and evaluated in this thesis. The three individual subsystems as well as the entire system have been successfully evaluated on three international benchmarks. The diarization subsystem has been evaluated at the NIST RT06s benchmark and the speech activity detection subsystem has been tested at RT07s. The entire system was evaluated at N-Best, the first automatic speech recognition benchmark for Dutch
    corecore