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Abstract. This thesis concerns the detection of overlapping speech seg-
ments and its further application for the improvement of speaker diariza-
tion performance. We propose the use of three spatial cross-correlation-
based parameters for overlap detection on distant microphone channel
data. Spatial features from different microphone pairs are fused by means
of principal component analysis or by an approach involving a multi-
layer perceptron. In addition, we investigate the possibility of employing
long-term prosodic information. The most suitable subset of candidate
prosodic features is determined by a two-step mRMR feature selection al-
gorithm. For segments including detected overlapping speech the speaker
diarization system picks a second speaker label, and such segments are
also discarded from the model training. The proposed overlap labeling
technique is integrated in the Viterbi-decoding part of the diarization
algorithm.

Keywords: overlapping speech detection, speaker overlap, speaker di-
arization, spatial features, cross-correlation, prosody

1 Introduction

It is a well known fact that people sometimes tend to speak at the same time,
i.e., simultaneously. It is a normal part of human conversation behavior. For
that reason, audio recordings of meetings commonly include regions of overlap-
ping speech. A lot of spoken language technologies suffer from this conversation
phenomenon, one of them is speaker diarization.

Given a speech recording, speaker diarization aims to answer the question:
“Who spoke when?”, generally without any prior knowledge. The application
of diarization systems is often a very useful preprocessing step for other audio
technologies such as ASR. Meetings are considered the most difficult application
domain due to high spontaneity of speech, variable microphone signal quality,
and room reverberation.

According to several studies [1,2], a portion of the performance degradation
on real meeting data can be directly associated with the occurrence of speaker
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overlaps. Nevertheless, the number of published proposals is rather limited and
dealing with overlapping speech still remains a challenging problem.

The discussed thesis' addresses the issues related to the occurrence of si-
multaneous speech in meeting recordings. The motivation is to improve speaker
diarization performance. However, the investigation of overlapping speech may
also be useful beyond diarization, e.g., for speech, or speaker recognition. This
paper briefly summarizes the outcomes of the thesis work and highlights some
of the achieved results.

2 DMotivation and Thesis Objectives

A common drawback of conventional diarization systems is that they are only
able to assign one speaker label per segment. In cases when a segment contains
simultaneous speech, this implicitly leads to missed speech errors. In addition,
another possible effect of overlaps on diarization performance discussed in [1] is
that speaker models could be corrupted if simultaneous speech is included into
the training data.

The first main goal of the thesis was the development of a robust overlap
detection system. The requirement was to work with distant channel data with-
out any constraints about microphone configuration or the recording room. Our
interest was to research and propose new features which may be useful for this
task. We aimed at exploring the possibilities of employing spatial-based informa-
tion for the detection of simultaneous speech since (smart) meeting rooms are
normally equipped with microphone arrays. The availability of multi-channel
data provides the option to estimate features that are in some way related to
spatial location. Further option was to investigate the potential of higher-level
information. “Higher” in this case refers to speech information which is above
the level of short-term spectral or cepstral features, such as prosody.

Another main goal of this thesis was to apply the detected overlapping speech
in the UPC speaker diarization system in order to reduce diarization error. This
should be achieved by both recovering missed speaker time, as well as by improv-
ing the clustering. We sought to implement a novel technique for the assignment
of extra speaker labels in speaker overlap segments. Different overlap detection
systems were examined according to the quality of their hypotheses for diariza-
tion improvement.

Finally, since our general intention was contribute to the research in human
language processing, we participated in the organization of the Albayzin evalua-
tion campaign. Being in charge of the speaker diarization section, we presented
the final results in [3] and [4].

3 Overlapping Speech Detection

Our baseline overlap detection system was firstly defined in [5], it utilizes a num-
ber of spectral-based features, such as MFCCs, LPC residual energy [6], spectral

! Thesis manuscript is accessible at: http://www.tdx.cat/handle/10803/72431
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Fig. 1. Overlap detection system diagram.

flatness 7], and deltas. Following classes are considered to classify the signal and
produce an output hypothesis by means of Viterbi decoding: non-speech (e. g.,
silence, noise), single-speaker speech, and overlapping speech. For each class a
three-state hidden Markov model (HMM) is defined. Since the amount of training
data is not balanced among classes, we use a higher number of Gaussian com-
ponents for single-speaker speech than for overlapping speech and non-speech.
Transition probabilities between different HMMSs are set manually. In order to
increase the precision, the transition from single-speaker speech to overlapping
speech can be penalized with an overlap insertion penalty (OIP), and the tran-
sitions from overlapping speech to non-speech and vice versa are forbidden. The
diagram showing the system architecture is given in Fig. 1.

3.1 Novel Spatial-based Features

The generalized cross-correlation function with phase transform weighting (GCC-
PHAT) is a commonly used measure of the similarity between signals performing
well in reverberant environments [8]. GCC-PHAT exhibits a prominent peak at
the elapsed time corresponding to the dominant sound source in the room, min-
imizing the peaks of the non-dominant sources and reverberation at the same
time.

Our hypothesis was that in case of multiple, possibly moving, concurrent
speakers, the time delay of arrival (TDOA) estimates produced by the GCC-
PHAT will jump from one speaker to another at a very high rate as one source
dominates due to the non-stationarity of the voice. TDOA can be expressed as
follows,

Tn = arg m;‘:;lX R (7—)7 (1)

where Ry,,(7) is the GCC-PHAT function for a pair of microphones m and
n. The maximum value of the cross-correlation sequence should also be lower
than in the single speaker situation, since multiple speakers introduce random
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peaks, which attenuate the main peak. We proposed three cross-correlation-
based spatial features for every microphone pair, which are intended to provide
some degree of information on speaker overlaps [5,9].

The first is the coherence value, defined in (2), which is the principal peak
value of the GCC-PHAT. In ideal conditions it should be high for single-source
situations, while the presence of noise, reverberation, and concurrent acoustic
sources attenuate this value.

Cran = max(Ryn (7)) (2)

The second feature, coherence dispersion ratio, is derived from the coherence
value. It is defined as follows,

02
Dmn = Wimn - ~ i (3)
t:;w,nn Rgnn(t + Tmn)

This value is computed as the ratio between the square of the main peak value
and the square quadratic sum of the cross-correlation values under a time delay
window w,,,. The size of the window w,,,, varies for different microphone pairs
and it is set to the TDOA standard deviation of each pair. In this way, the
dispersion ratio measures the relation between the energy of the main peak and
the energy that is scattered in its neighborhood. Similar to the coherence feature
(2), the dispersion ratio is close to 1 in the case of a single speaker and ideal
conditions, while it has a lower value in reverberant conditions or concurrent
acoustic sources situations.

Finally, the delta of TDOA obtained by (1) for every microphone pair also
carries information on overlaps. The derivative of the TDOA is high in situations
where the speaker is moving, multiple non-concurrent speakers change turns at
talk, or multiple speakers talk simultaneously.

3.2 Microphone Data Fusion

Practical issues with the use of spatial features are the high and variable dimen-
sionality of vectors. Especially the latter—sites may have different number of
microphones—makes it difficult to train a general model. One of the strategies
for dimensionality reduction and normalization is the application of a princi-
pal component analysis (PCA), which transforms the original feature space into
a new coordinate system with the greatest variance lying on the first compo-
nent. We estimated a separate transformation matrix for every discussed spatial
feature kind per each site, and then we use just the first principal component.

We also considered an alternative approach to reduce the spatial vector di-
mensionality based on a multi-layer perceptron (MLP). The input of the MLP
is composed by 6 input neurons, 3 for spatial features and 3 for normalization
values (mean of coherence, variance of coherence, variance of TDOA) for every
pair. The output is a binary score classifying between overlap and non-overlap,
which is commensurable across microphone pairs. For a given frame the average
score was taken and merged with corresponding spectral feature vectors.
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3.3 Prosodic Features

Prosody, in general, is characterized by rhythm, intonation, stress, and juncture
in speech. A few studies were published that researched the relationship between
prosodic cues and the interaction of conversation participants. For instance, it
was suggested that stretches of low pitch can trigger backchannel feedback from
listener (yeah, uh-huh, right) [10]. It was also shown that speakers raise their
voices when starting their utterance during somebody else’s talk, compared to
starting in silence [11].

For the detection of overlapping speech a number of prosody-based features
are considered [12,13]. They can be assigned to one of the following categories:
pitch, intensity and (four) formant frequencies. In addition, for each of these
categories we estimate besides the actual value for every given time point also
long-term statistics such as mean, median, min., max., std. deviation and the
difference between the min. and max. value. Missing values, such as F0 estimates
for unvoiced speech, or parameters in non-speech regions, are substituted with
default values. Non-speech regions are not considered for the computation of the
statistical parameters.

The use of both instantaneous prosodic features and their long-term statistics
is a source of redundancy in our prosodic feature set. Due to this fact, we have
added a two-stage feature selection procedure to our feature extractor. The stages
are as follows. In the first stage, we applied a mRMR algorithm [14] on held-out
development data to score individually the candidate features against the target
class (overlapping vs. single-speaker speech) and sorted them according to their
minimum redundancy and maximal relevance.

The second feature selection stage involves conventional hill climbing wrapper
approach, i.e., iteratively adding candidate features to the feature set, creating
a model and evaluating the system on the development data.

3.4 Overlap Detection Experiments

Experiments were conducted on the AMI corpus, on far-field microphone ar-
ray channels. We defined a single- and a multi-site scenario. The first included
recordings only from Idiap site and the latter also from Edinburgh and TNO site.
The average amount of overlap in these scenarios was 14.40% and 15.10%, re-
spectively. Training of the overlap detection system and evaluation is performed
with force-aligned annotations obtained by SRI’s DECIPHER recognizer.

Performance is measured with recall (ratio between true detected and refer-
ence overlap time), precision (ratio between true and all detected overlap time),
and with the sum of missed and false overlap time divided by the reference
overlap time, referred to as detection error. To make a reasonably fair evalu-
ation, results are measured at four operation points defined by the OIP value
(OIP = {0,-10,—50,—100}).

The detection performance for different feature combination setups is given
in Fig. 2. For single-site data it can be seen that the overlap detection also
using spatial or prosodic parameters outperformed the baseline system (Spct).
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Fig. 2. Overlap detection performance for AMI (left) single- and (right) multi-site data
using spectral features (Spct), and in combination with spatial (+ Spat) or prosodic
(+ Prosod 20) features. Detection error, precision, and recall are delineated with solid,
dotted, and dashed line, respectively.

We can conclude that the PCA-fused spatial feature including dispersion ratio
(Spct + Spat PCA CDdAT) is well suited for the single-site condition. The system
using MLP score (Spct + Spat MLP) has a good detection performance in this
scenario, but for high OIP its precision drops bellow the one of the baseline
system.

For the multi-site scenario, however, the mentioned PCA-fused dispersion
ratio (marked with D) seems to lack robustness. The possible reason for the
worse performance of feature setups involving this parameter is its dependency
on the spatial distribution of microphones, which might be an issue in case of
using multiple recording rooms. Moreover, the limited ability to compensate for
the variability of this scenario can most likely be attributed to the simplicity of
the PCA technique.

In the multi-site case the better performing setup included only spatial co-
herence and delta TDOA (Spct + Spat PCA CdT), but the distinction in per-
formance between setups including and not including dispersion ratio becomes
evident only at higher OIPs. The MLP technique combines all three spatial pa-
rameters more effectively in this scenario and outperforms, or at least equals,
the baseline system. In general, the less precise multi-site models need a higher

-465-



IberSPEECH 2012 — VII Jornadas en Tecnologia del Habla and III Iberian SL.Tech Workshop

amount of overlap penalization to arrive to the lowest detection errors. The addi-
tion of prosodic features decreased the overlap detection error in both scenarios
either due to higher precision for low penalties or due to improved recall in high
penalty region.

4 Speaker Diarization

Our speaker diarization system, detailed in [15], follows the commonly used
agglomerative clustering approach and relies on 20 MFCCs extracted from 30
ms frames. The algorithm starts with an uniform initial segmentation where the
number of initial clusters is determined automatically. Clusters are modeled with
Gaussian mixture models (GMMSs) and cluster pair merging in each iteration is
driven by Bayesian information criterion (BIC). The complexity of GMMs is
also determined automatically based on the amount of data corresponding to a
particular cluster.

The system can be improved by multi-channel approach based on conven-
tional techniques. We applied speech signal techniques such as Wiener filtering
and beamforming for signal enhancement, and we also combined the time-delay-
of-arrival (TDOA) information as a second stream in the diarization [16].

The performance of the speaker diarization was evaluated by means of the
diarization error rate (DER). Defined by NIST, the DER is a time-weighted
metric composed of the sum of missed speaker time, false alarms and speaker
error time.

4.1 Handling Overlapping Speech

Overlap handling in diarization comprises the labeling and /or exclusion of simul-
taneous speech. The first technique seeks to select the two most likely clusters in
Viterbi decoding instead of only one. In this way the missed speaker time should
be decreased. Overlap exclusion blocks overlap frames from being included into
cluster initialization and HMM training, but does not prevent decoding them.
The aim of this technique is to get lower speaker detection error rates with more
precise clusters. The concept is depicted in Fig. 3.

Both techniques work independently from each other, or better said sequen-
tially, since the exclusion works throughout the diarization process whereas the
labeling is performed at the end of the iteration process. These two techniques
do not necessarily have to share the same overlap hypothesis, they can be opti-
mized independently and can possibly use two different hypotheses, i. e., one for
each technique. This method was firstly suggested in [5].

4.2 Speaker Diarization Experiments

Baseline DERs and relative improvements by applying overlap exclusion and
labeling in experiments on AMI data are given in Table 1. The most success-
ful overlap detection setup on single-site data was the combination of spectral

-466-



IberSPEECH 2012 — VII Jornadas en Tecnologia del Habla and III Iberian SL.Tech Workshop

Overlap Exclusion Overlap Labeling

Overlap hypothesis A | |

Overlap hypothesis B

Holding back
data

HMM
training

Second-
speaker label
assignment

Viterbi
segment.

Cluster
merging

| Final speaker-
last t--------3 segmentation
iteration hypothesis

Fig. 3. Overlap handling concept in speaker diarization algorithm.

and the three PCA-transformed spatial parameters (Spct+Spat PCA CDdT),
yielding improvement of 11.2% relative. A good result was also obtained with
the combination of spectral and prosodic features. However, the result was not
much higher compared to the Spct case.

In the multi-site scenario the relative improvements were higher, the best
observed result of 17.0% DER reduction was with the combination of spatial
coherence and delta TDOA (Spct+Spat PCA CdT). Another successful system
with 13.9% improvement was the one using MLP for the spatial parameter fusion.

Table 1. Speaker diarization with exclusion and labeling of simultaneous speech de-
tected by different systems, baseline DER and relative improvements over the diariza-
tion baseline (in %).

Single-site Multi-site

Overlap det. +Ovlp. Excl. and Labl.
Baseline 38.3 37.3
Spct +6.9 +6.7
Spct+Spat (PCA) CAT +5.7 +17.0
Spct+Spat (PCA) CDdT +11.2 +8.0
Spct+Spat MLP +5.7 +13.9
Spct+Prosod 20 +7.2 +11.1

Table 2 shows the comparison of our Viterbi-integrated labeling technique to
two simple labeling schemes in terms of relative DER improvement. The first of
these techniques a posteriori attributes the overlapping speaker label according
to the nearest neighboring (NNeigh.) speaker, as in [17]. The other competing
technique assigns the overlapping label to the most talkative speaker (MTalk.)
[18]. In case the most talkative speaker has already been picked by the diarization
system, the second most talkative speaker is selected. In general, the differences
between DER of the three labeling techniques are small, but it can be seen that
the results of the technique proposed in this thesis are competitive, in single-site
scenario in particular.

-467-



IberSPEECH 2012 — VII Jornadas en Tecnologia del Habla and III Iberian SL.Tech Workshop

Table 2. Relative improvements of speaker diarization by different labeling strategies.

Single-site Multi-site
Overlap det. +Labl. Vit. NNeigh. MTalk. Vit. NNeigh. MTalk.
Spct +5.3 +5.1 448 +2.7 +3.2 423
Spct-+Spat +6.2 459 +5.6 +3.4 439 +3.0

5 Discussion

This work deals with the issues of overlapping speech in the context of speaker
diarization on distant microphone channels. In order to locate the regions where
multiple speakers are speaking simultaneously, an overlap detection system was
built. We have found that spatial information can be utilized to perform this de-
tection and proposed three novel cross-correlation-based features. The problem
of high and variable dimensionality of spatial feature space was addressed with
the application of a per-site-specific PCA, or an MLP neural network. Further-
more, we have also introduced features based on prosody and their long-term
statistics.

Objectively, the overlap detection performance has still a lot of potential for
improvement. The task proved to be extremely challenging for an automated
system, but in a lot of cases it is difficult even for humans to decide what can
and what cannot be considered overlapping speech.

By handling of the detected simultaneous speech segments, we managed to
improve the baseline speaker diarization system. With the objective to build
more precise speaker models, the speech frames including overlapping speech
were excluded from the training process. In addition, we reduced diarization’s
missed speech by assigning second speaker labels for speaker overlap segments.
Analyses beyond the scope of this paper showed that the performance of over-
lap exclusion exhibits a relatively non-stable nature [9]. Our proposed labeling
technique delivers competitive results compared to alternative simple strategies,
especially in the single-site scenario.
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