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Abstract
Following the success of the 1st, 2nd, 3rd, 4th and 5th CHiME
challenges we organize the 6th CHiME Speech Separation and
Recognition Challenge (CHiME-6). The new challenge revisits
the previous CHiME-5 challenge and further considers the prob-
lem of distant multi-microphone conversational speech diariza-
tion and recognition in everyday home environments. Speech
material is the same as the previous CHiME-5 recordings except
for accurate array synchronization. The material was elicited
using a dinner party scenario with efforts taken to capture data
that is representative of natural conversational speech. This pa-
per provides a baseline description of the CHiME-6 challenge
for both segmented multispeaker speech recognition (Track 1)
and unsegmented multispeaker speech recognition (Track 2). Of
note, Track 2 is the first challenge activity in the community
to tackle an unsegmented multispeaker speech recognition sce-
nario with a complete set of reproducible open source baselines
providing speech enhancement, speaker diarization, and speech
recognition modules.
Index Terms: CHiME challenge, speech recognition, speech
enhancement, speech separation, speaker diarization, computa-
tional paralinguistics

1. Introduction
Automatic speech recognition (ASR) performance in difficult
reverberant and noisy conditions has improved tremendously
in the last decade [1–6]. This can be attributed to advances in
speech processing, audio enhancement, and machine learning,
but also to the availability of real speech corpora recorded in
cars [7, 8], quiet indoor environments [9, 10], noisy indoor and
outdoor environments [11, 12], and challenging broadcast media
[13,14]. Among the applications of robust ASR, voice command
in domestic environments has attracted a great deal of interest
recently, due in particular to the release of the Amazon Echo,
Google Home and other devices targeting home automation
and multimedia systems. The CHiME-1 [15] and CHiME-2 [16]
challenges and corpora have contributed to popularizing research
on this topic, together with the DICIT [17], Sweet-Home [18],
and DIRHA [19] corpora. These corpora feature single-speaker
reverberant and/or noisy speech recorded or simulated in a single
home, which precludes the use of modern speech enhancement
techniques based on machine learning. The two voiceHome
corpora [20, 21] address this issue, but they are fairly small.

In parallel to research on acoustic robustness, research on
conversational speech recognition has also made great progress,

as illustrated by the recent announcements of super-human per-
formance [22, 23] achieved on the Switchboard telephone con-
versation task [24] and by the ASpIRE challenge [25]. Distant-
microphone recognition of noisy, overlapping, conversational
speech is now widely believed to be the next frontier. Early
attempts in this direction can be traced back to the ICSI [26],
CHIL [27], and AMI [28] meeting corpora, the LLSEC [29] and
COSINE [30] face-to-face interaction corpora, and the Sheffield
Wargames corpus [31]. These corpora were recorded using ad-
vanced microphone array prototypes which are not commercially
available, and as result could only be installed in a few laboratory
rooms. The VOiCES corpus [32] utilizes an ad-hoc array of com-
mercial microphones, with pre-recorded speech and noise played
over speakers. The DIPCO corpus [33], inspired by the CHiME-
5 challenge [34] but of shorter duration, provides recordings
of dinner table interactions between four participants recorded
simultaneously on several commercially available microphone
arrays. The Santa Barbara Corpus of Spoken American English
[30] stands out as the only large-scale corpus of naturally oc-
curring spoken interactions between a wide variety of people
recorded in real everyday situations including face-to-face or
telephone conversations, card games, food preparation, on-the-
job talk, story-telling, and more. Unfortunately, it was recorded
via a single microphone.

The CHiME-6 challenge, which builds upon CHiME-5 [34],
targets the problem of distant microphone conversational speech
recognition in everyday home environments. The speech mate-
rial has been collected from twenty real dinner parties that have
taken place in real homes. The recordings have been made using
multiple commercially available 4-channel microphone arrays
and have been fully transcribed. The challenge features:

• simultaneous recordings from multiple microphone ar-
rays;

• real conversation, i.e. talkers speaking in a relaxed and
unscripted fashion;

• a range of room acoustics from 20 different homes each
with two or three separate recording areas;

• real domestic background noises, e.g., kitchen appliances,
air conditioning, movement, etc.

In the following, we introduce the recording scenario
and the two proposed challenge tracks in Section 2. We
describe the software baselines and the challenge instructions
for Tracks 1 and 2 in Sections 3 and 4, respectively. We
report the corresponding results in Section 5 and conclude
in Section 6. More details can be found on the challenge website:



https://chimechallenge.github.io/chime6/

2. Scenario and tracks
2.1. The scenario

The dataset is made up of the recording of twenty separate dinner
parties taking place in real homes. Each dinner party has four
participants — two acting as hosts and two as guests. The party
members are all friends who know each other well and who
are instructed to behave naturally. Efforts have been taken to
make the parties as natural as possible. The only constraints are
that each party should last a minimum of 2 hours and should
be composed of three phases, each corresponding to a different
location:

• kitchen: preparing the meal in the kitchen area

• dining: eating the meal in the dining area

• living: a post-dinner period in a separate living room area

Participants have been allowed to move naturally from one loca-
tion to another but with the instruction that each phase should
last at least 30 minutes. Participants are free to converse on
topics of their choosing — there is no artificial scenario. Some
personally identifying material has been redacted post-recording
as part of the consent process. Background television and com-
mercial music has been disallowed in order to avoid capturing
copyrighted content.

2.2. The recording set up

Each party has been recorded with a set of six Microsoft Kinect
devices. The devices have been strategically placed such that
there are always at least two capturing the activity in each
location. Each Kinect device has a linear array of 4 sample-
synchronised microphones and a camera. The raw microphone
signals and video have been recorded. Each Kinect is recorded
onto a separate laptop computer.

In addition to the Kinects, to facilitate transcription, each
participant is wearing a set of Soundman OKM II Classic Studio
binaural microphones. The audio from these is recorded via
a Soundman A3 adapter onto Tascam DR-05 stereo recorders
being worn by the participants. The recordings have been divided
into training, development test, and evaluation test sets. Each set
features non-overlapping homes and speakers. For more details
about these datasets, see [34].

2.3. Tracks

For the first time, the challenge moves beyond automatic speech
recognition (ASR) and also considers the task of diarization, i.e.,
estimating the start and end times and the speaker label of each
utterance. The challenge features two tracks:

1. ASR only: recognise a given evaluation utterance given
ground truth diarization information,

2. diarization+ASR: perform both diarization and ASR

Both tracks are multi-array, i.e., all microphones of all arrays can
be used. Track 1 is a rerun of the CHiME-5 challenge [34] and
Track 2 is similar to the “Diarization from multichannel audio
using system SAD” track of the DIHARD II challenge [35], with
the following key differences:

• an accurate array synchronization script is provided,

• the impact of diarization error on speech recognition
error will be measured,

• upgraded, state-of-the-art baselines are provided for
diarization, enhancement, and recognition.

These baselines and related implementations are integrated in
the Kaldi speech recognition toolkit [36] as a recipe.

For each track, we will produce two separate ASR rankings:
A Systems based on conventional acoustic modeling and

official language modeling: the outputs of the acoustic
model must remain frame-level tied phonetic (senone)
targets and the lexicon and language model must not be
changed compared to the conventional ASR baseline,

B All other systems, including systems based on the end-
to-end ASR baseline or systems whose lexicon and/or
language model have been modified.

Ranking A focuses on acoustic robustness only, while ranking B
addresses all aspects of the scenario.

3. Track 1
Concerning Track 1, we provide baseline systems for array syn-
chronization, speech enhancement, and speech recognition. All
systems are integrated in the Kaldi CHiME-6 recipe1.

3.1. Overview

The main script (run.sh) executes array synchronization, data
preparation, data augmentation, feature extraction, Gaussian mix-
ture model - hidden Markov model (GMM-HMM) training, data
cleaning, and chain model training. After training, run.sh
calls the inference script (local/decode.sh), which in-
cludes speech enhancement and recognition given the trained
model. Participants can also execute local/decode.sh in-
dependently with their own ASR models or pre-trained models
downloaded from the Kaldi model storage site2. Detailed techni-
cal descriptions of system components can be found in [37]. We
outline the process below.

1. Array synchronization (stage 0)
This stage first downloads the array synchronization tool,
and generates the synchronized audio files across arrays
along with their corresponding JSON files. Note that this
requires sox v14.4.2, which is installed via miniconda
in ./local/check tools.sh. Details of the array
synchronization procedure are presented in Section 3.2.

2. Data, dictionary, and language model (stages 1–3)
These stages prepare data directories, the lexicon, and lan-
guage models in the format expected by Kaldi. The lexi-
con has a 127,712 word vocabulary. We use a maximum
entropy-based 3-gram language model, which achieves
the best perplexity on the development set.

3. Data augmentation (stages 4–7)
In these stages, we augment and fix the training data.
Point source noises are extracted from the noise regions
in the CHiME-6 corpus. Here, we use a subset of 400 k
utterances from the array microphones, their augmenta-
tions, and all worn microphone utterances during training.
We did not include enhanced speech data for training to
maintain the simplicity of the system.

4. Feature extraction (stage 8)
We extract 13-dimensional Mel-frequency cepstral coeffi-
cient (MFCC) features for GMM-HMM systems.

1https://github.com/kaldi-asr/kaldi/tree/
master/egs/chime6/s5_track1

2http://kaldi-asr.org/models/m12

https://chimechallenge.github.io/chime6/
https://github.com/kaldi-asr/kaldi/tree/master/egs/chime6/s5_track1
https://github.com/kaldi-asr/kaldi/tree/master/egs/chime6/s5_track1
http://kaldi-asr.org/models/m12


5. GMM training (stages 9–13)
These stages train monophone and triphone GMM-HMM
models. These models are used for cleaning training data
and generating lattices for training the chain model.

6. Data cleaning (stage 14)
This stage performs cleanup of the training data using the
GMM model.

7. Chain model training (stage 15)
We use a factorized time delay neural network (TDNN-F)
adapted from the Switchboard recipe 7q model [38].

8. Decoding (stage 16)
This stage performs speech enhancement and recognition
for the test set. This stage calls local/decode.sh,
which includes speech enhancement (described in Sec-
tion 3.3) and decoding and scoring (described in Sec-
tion 3.4).

3.2. Array synchronization

The new array synchronisation baseline is available on GitHub3.
It compensates for two separate issues: audio frame-dropping
(which affects the Kinect devices only) and clock-drift (which
affects all devices). It operates in the following two stages:

1. Frame-dropping is compensated by inserting 0’s into
the signals where samples have been dropped. These
locations have been detected by comparing the Kinect
audio with an uncorrupted stereo audio signal recov-
ered from the video AVI files that were recorded (but
not made publicly available). The frame-drop loca-
tions have been precomputed and stored in the file
chime6 audio edits.json, which is then used to
drive the synchronisation software.

2. Clock-drift is computed by comparing each device’s sig-
nal to the session’s ‘reference’ binaural recordings (the
binaural mic of the speaker with the lowest ID number).
Specifically, cross-correlation is used to estimate delays
between the device and the reference at regular intervals
throughout the recording session. A relative speed-up
or slow-down can then be approximated using a linear
fit through these estimates. The signal is then synchro-
nised to the reference using a sox command to adjust
the speed of the signal appropriately. This adjustment
is typically very subtle, i.e., less than 100 ms over a
2.5 h recording session. Note, the approach failed for
devices S01 U02 and S01 U05 which appear to have tem-
porarily changed speeds during the recording session and
have required a piece-wise linear fit. The adjustments
for clock-drift compensation have been precomputed and
the parameters to drive the sox commands are stored in
chime6 audio edits.json.

Note, after frame-drop and clock-drift compensation, the
WAV files that are generated for each device will have slightly
different durations. For each session, device signals can be safely
truncated to the duration of the shortest signal across devices,
but this step is not performed by the synchronisation tool.

Finally, the CHiME-5 transcript JSON files are processed to
fit the new alignment. In the new version, utterances will have
the same start and end time on every device.

3https://github.com/chimechallenge/
chime6-synchronisation

3.3. Speech enhancement

We provide two baseline speech enhancement front-ends based
on open-source implementations of guided source separation
(GSS) [39] and BeamformIt [40], respectively. Both of them are
combined with an open source version [41] of weighted predic-
tion error (WPE) dereverberation [42], and integrated into our
Kaldi recipe. They can be installed in the Kaldi tool installation
directory.

The first front-end consists of WPE, a spatial mixture model
that uses time annotations (GSS), beamforming. They are ap-
plied to multiple arrays. GSS is performed with the setup of
multiarray=outer array mics meaning that only the
first and last microphones of each array are used. This is the
default speech enhancement front-end for the CHiME-6 Track 1
recipe.

The alternative front-end applies WPE based dereverbera-
tion and weighted delay-and-sum beamforming (BeamformIt)
to the reference array. Users can easily switch from GSS
to BeamformIt by specifying the enhancement option (e.g.,
--enhancement beamformit).

3.4. Decoding and scoring

We perform two-stage decoding, which refines i-vector ex-
traction based on the first pass decoding result to achieve
robust decoding of noisy speech [37]. We also provide a
scoring script for both development and evaluation: local/
score for submit.sh. The language model weight and
insertion penalty are optimized based on the development set.

Note that, during scoring, we filter the tags ([noise], [inaudi-
ble], [laughs], and [redacted]), and normalize ambiguous filler
words4.

4. Track 2
Concerning Track 2, we provide baseline systems for array syn-
chronization, speech enhancement, speech activity detection
(SAD), speaker diarization, and speech recognition. All systems
are integrated in the Kaldi CHiME-6 recipe5.

4.1. Overview

The main script (run.sh) is similar to run.sh in Track 1
as described in Section 3, which performs array synchroniza-
tion, data preparation, data augmentation, feature extraction,
GMM-HMM training, data cleaning, and chain model training.
run.sh in Track 2 additionally includes SAD model training
on the CHiME-6 dataset, and diarization model training on the
VoxCeleb dataset [43]. We allow the participants to use Vox-
Celeb in addition to CHiME-6 data, since it is necessary to build
a good diarization system.

After training, run.sh finally calls the inference script
(local/decode.sh), which performs speech enhancement,
SAD, speaker diarization, and speech recognition based on
the trained models. Participants can also execute local/
decode.sh independently with their own SAD, diarization,
and ASR models or pre-trained models.

4For example, we perform the following replacements to filter out
variants of the filler word ‘hmm’: sed -e ’s/\<mhm\>/hmm/g;
s/\<mm\>/hmm/g; s/\<mmm\>/hmm/g;’. The actual filtering
rules can be found in local/wer output filter.

5https://github.com/kaldi-asr/kaldi/tree/
master/egs/chime6/s5_track2

https://github.com/chimechallenge/chime6-synchronisation
https://github.com/chimechallenge/chime6-synchronisation
https://github.com/kaldi-asr/kaldi/tree/master/egs/chime6/s5_track2
https://github.com/kaldi-asr/kaldi/tree/master/egs/chime6/s5_track2


Stages 1–7 are the same as those of Track 1, as described in
Section 3.1. But these are followed by new subsequent stages:

1. SAD training
We use a TDNN+LSTM (long short-term memory) model
trained on the CHiME-6 dataset with ground truth align-
ments obtained by a GMM-HMM. Participants can also
download a pretrained SAD model6.

2. Diarization training
An x-vector neural diarization model [44] is trained with
the VoxCeleb data [43]. This script is adapted from the
Kaldi VoxCeleb v2 recipe. A probabilistic linear dis-
criminant analysis (PLDA) model [45] is trained on the
CHiME-6 dataset. Participants can also download a pre-
trained diarization model7.

3. Decoding and scoring (stage 16)
In Track 2, only raw recordings are given without seg-
ment or speaker information; i.e., local/decode.sh
has to perform the whole pipeline consisting of speech en-
hancement, SAD, speaker diarization, and ASR decoding
and scoring. These steps are detailed below.

4.2. Array synchronization

Track 2 uses the exact same array synchronization technique as
described in Section 3.2.

4.3. Speech enhancement

Unlike Track 1, Track 2 only provides the BeamformIt-based
speech enhancement front-end (see Section 3.3) due to the risk
of degradation in GSS performance using estimated diarization
information instead of ground truth speech segment information
(which is unavailable).

4.4. Speech activity detection

The SAD baseline relies on the neural architecture in [46]. It was
trained using data (train worn u400k) from 1) the CHiME-
6 worn microphone utterances and 2) a randomly selected subset
of 400 k array microphone utterances. We generate speech
activity labels using an HMM-GMM system trained with the
train worn simu u400k data from 1) the CHiME-6 worn
microphone utterances perturbed with various room impulse
responses generated from a room simulator and 2) a randomly
selected subset of 400 k array microphone utterances.

As a neural network architecture, we use 40-dimensional
MFCC features as input, 5 TDNN layers, and 2 layers of statistics
pooling [46]. The overall context of the network is set to be
around 1 s, with around 0.8 s of left context and 0.2 s of right
context. The network is trained with a cross-entropy objective to
predict speech/non-speech labels.

During inference, SAD labels for the test recordings are
obtained by Viterbi decoding using an HMM with minimum
duration constraints of 0.3 s for speech and 0.1 s for silence.
We also prepared an SAD decoding script to evaluate the SAD
performance on the CHiME-6 data. Note that the baseline sys-
tem only performs SAD (and all other post-processing steps
including speaker diarization and ASR) for the U06 array for
simplicity. Exploring multi-array fusion techniques for SAD,
diarization, and ASR is an integral part of the challenge.

6http://kaldi-asr.org/models/12/0012_sad_v1.
tar.gz

7http://kaldi-asr.org/models/12/0012_
diarization_v1.tar.gz

4.5. Speaker diarization

The speaker diarization baseline relies on the segment files ob-
tained by SAD. It is an x-vector system [47] with a 5-layer
TDNN trained on the VoxCeleb dataset [43]. PLDA is trained
on CHiME-6 data (train worn simu u400k). Agglomera-
tive hierarchical clustering (AHC) [48] is performed. Since the
number of speakers in CHiME-6 is four in every session, this
prior information is used by AHC.

Our speaker diarization system consistently uses the ref-
erence RTTM converted from the original JSON file via data
preparation (run.sh --stage 1) by using the Kaldi RTTM
conversion script8. The diarization result is also obtained as an
RTTM file, and the diarization error rate (DER) and Jaccard error
rate (JER) are computed using dscore9 (used in the DIHARD II
challenge).

Similar to the SAD system, this baseline system only per-
forms diarization for the U06 array for simplicity.

4.6. Decoding and scoring

The RTTM files obtained by speaker diarization in Section 4.5
are converted to the Kaldi data format. We perform two-stage
decoding, which refines the i-vector extraction based on the
first pass decoding result to achieve robust decoding for noisy
speech [37]. Again, the baseline system only performs ASR for
the U06 array for simplicity.

We provide a scoring script for both development and eval-
uation. The language model weight and insertion penalty are
optimized based on the development set. Multispeaker scoring
is performed to obtain the concatenated minimum-permutation
word error rate (cpWER).

The cpWER is computed as follows:

1. Concatenate all utterances of each speaker for both refer-
ence and hypothesis files.

2. Compute the WER between the reference and all possible
speaker permutations of the hypothesis. There are 24
such permutations.

3. Pick the lowest WER among them (this is assumed to be
the best permutation).

cpWER is directly affected by the speaker diarization results.
In addition to the cpWER, which shows the error rate of en-
tire recordings, we also report detailed errors per utterance by
recovering the utterance information from the reference.

4.7. RTTM refinement

In the original CHiME-5 annotations, utterance boundaries are
marked by human annotators, among other information, in an
RTTM file. While these utterance boundaries are sufficient for
training and testing ASR, there are utterances that include long
pauses between words, making them an imperfect reference for
diarization. To obtain a more precise diarization reference, we
apply forced alignment between the transcripts and the cleaner
binaural recordings.

The acoustic model we use for forced alignment is the tri-
phone GMM-HMM model trained in the baseline system (see
Section 3.1). We use steps/align si.sh to align the worn
(binaural) microphone recordings for both the development set

8https://github.com/kaldi-asr/kaldi/blob/
master/egs/wsj/s5/steps/segmentation/convert_
utt2spk_and_segments_to_rttm.py

9https://github.com/nryant/dscore

http://kaldi-asr.org/models/12/0012_sad_v1.tar.gz
http://kaldi-asr.org/models/12/0012_sad_v1.tar.gz
http://kaldi-asr.org/models/12/0012_diarization_v1.tar.gz
http://kaldi-asr.org/models/12/0012_diarization_v1.tar.gz
https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/segmentation/convert_utt2spk_and_segments_to_rttm.py
https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/segmentation/convert_utt2spk_and_segments_to_rttm.py
https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/segmentation/convert_utt2spk_and_segments_to_rttm.py
https://github.com/nryant/dscore


Dev. WER Eval. WER

CHiME-6 baseline 51.8% 51.3%

CHiME-5 baseline [34] 81.1% 73.3%
CHiME-5 top system [49] 45.6% 46.6%

Table 1: CHiME-6 Track 1 baseline ASR results, compared to the
baseline and top systems for the (equivalent) CHiME-5 multiple
device track.

and the evaluation set. The decoding beam size is 20 by default,
but if this search fails we perform a second alignment with a
beam size of 150. These alignment results are at the word level.
In order to merge them into utterances, we identify all contiguous
words separated by gaps of at most 300 ms of silence. Instances
of [noise] also separate utterances. These alignments are then
saved in the RTTM format as the refined reference for SAD and
diarization.

5. Baseline results
5.1. Track 1

Table 1 presents the Track 1 baseline ASR results with the official
3-gram language model (corresponding to category A). The
CHiME-6 baseline is significantly better than the baseline and
close to the best system [49] for the CHiME-5 multiple device
track, which is equivalent to CHiME-6 Track 1. Note that the
CHiME-6 baseline is designed to be a compromise between
performance and simplicity, e.g., we purposefully did not use
system combination but the result is still close to [49], which
is based on complex multi-path enhancement processing with
system combination.

5.2. Track 2

Table 2 shows the SAD performance obtained by the CHiME-6
baseline SAD system, as described in Section 4.4. It lists the
SAD results computed against both human-annotated (old) and
force-aligned (new) RTTMs, as described in Section 4.7. This
result shows that the evaluation set is more difficult than the
development set in terms of SAD performance. Also, the new
and old RTTMs have significant differences in the development
set while they have marginal difference in the evaluation set.

Table 3 shows the DER and JER obtained by the CHiME-6
baseline speaker diarization system, as described in Section 4.5.
In spite of using a state-of-the-art diarization technique [44], both
metrics show over 60% error rates and improving the diarization
performance is one of the main challenges in Track 2.

Finally, Table 4 shows the performance gap between the
Track 1 and Track 2 baselines. The main differences between the
Track 1 and 2 baselines come from the use of advanced speech
enhancement (GSS [39], as described in Section 3.3) and the use
of speech segmentation from manual annotations or automatic
speaker diarization. Note that both tracks use the same acoustic
and language models. Therefore, by comparing Tracks 1 and
2 with BeamformIt, we can observe that the main degradation
(around 15% absolute) comes from speaker diarization.

6. Summary
This paper describes the CHiME-6 challenge outline, baselines,
and experimental results. Newly introduced audio synchroniza-

tion and a state-of-the-art Kaldi baseline simplify challenge entry
for Track 1, while Track 2 significantly increases the difficulty
due to the need for speaker diarization. To help the challenge
participants tackle these difficulties, we provide a complete set
of open source Kaldi recipes for both Track 1 and Track 2 which
combine speech enhancement, speaker diarization, and speech
recognition. This is the first trial in the community to provide
open source recipes for unsegmented multispeaker ASR, and a
lot of effort has been provided through volunteer activities by
speech separation and recognition researchers in addition to the
challenge organizers. Our future work is to provide the analysis
of this challenge including the investigation of the effective-
ness of the techniques proposed during the challenge, a review
of evaluation metrics, the relationship between diarization and
speech recognition errors, and so on. Through this analysis, we
would like to make significant progress toward this challenging,
realistic, and unsolved multispeaker speech processing problem.
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O. Galibert, “The ETAPE corpus for the evaluation of speech-
based TV content processing in the French language,” in Proc. 8th
Int. Conf. on Language Resources and Evaluation (LREC), 2012,
pp. 114–118.



Dev. Eval.
Missed speech False alarm Total error Missed speech False alarm Total error

Annotation RTTM 2.5% 0.8% 3.3% 4.1% 1.8% 5.9%
Alignment RTTM 1.9% 0.7% 2.6% 4.3% 1.5% 5.8%

Table 2: CHiME-6 Track 2 baseline SAD results. Annotation RTTM is the original RTTM obtained by human annotation while alignment
RTTM is based on forced alignment and is considered as the official RTTM file for the challenge.

Dev. Eval.
DER JER DER JER

Annotation RTTM 61.6% 69.8% 62.0% 71.4%
Alignment RTTM 63.4% 70.8% 68.2% 72.5%

Table 3: CHiME-6 Track 2 baseline diarization results. Annota-
tion RTTM is the original RTTM obtained by human annotation
while alignment RTTM is based on forced alignment and is
considered as the official RTTM file for the challenge.

Dev. Eval.
Enhancement Segmentation WER WER

Track 1 BeamformIt Oracle 69.8% 61.2%
Track 1 GSS Oracle 51.8% 51.3%
Track 2 BeamformIt Diarization 84.3% 77.9%

Table 4: CHiME-6 Track 1 and 2 baseline ASR results with
BeamformIt-based [40] and GSS-based [39] speech enhance-
ment. We used the same acoustic and language models for both
tracks.

[14] P. Bell, M. J. F. Gales, T. Hain, J. Kilgour, P. Lanchantin, X. Liu,
A. McParland, S. Renals, O. Saz, M. Wester, and P. C. Woodland,
“The MGB challenge: Evaluating multi-genre broadcast media
recognition,” in Proc. IEEE Automatic Speech Recognition and
Understanding Workshop (ASRU), 2015, pp. 687–693.

[15] J. Barker, E. Vincent, N. Ma, H. Christensen, and P. Green, “The
PASCAL CHiME speech separation and recognition challenge,”
Computer Speech and Language, vol. 27, no. 3, pp. 621–633, 2013.

[16] E. Vincent, J. Barker, S. Watanabe, J. Le Roux, F. Nesta, and
M. Matassoni, “The second CHiME speech separation and recog-
nition challenge: Datasets, tasks and baselines,” in Proc. IEEE
Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP),
2013, pp. 126–130.

[17] A. Brutti, L. Cristoforetti, W. Kellermann, L. Marquardt, and
M. Omologo, “WOZ acoustic data collection for interactive TV,”
in Proc. 6th Int. Conf. on Language Resources and Evaluation
(LREC), 2008, pp. 2330–2334.

[18] M. Vacher, B. Lecouteux, P. Chahuara, F. Portet, B. Meillon, and
N. Bonnefond, “The Sweet-Home speech and multimodal corpus
for home automation interaction,” in Proc. 9th Int. Conf. on Lan-
guage Resources and Evaluation (LREC), 2014, pp. 4499–4509.

[19] M. Ravanelli, L. Cristoforetti, R. Gretter, M. Pellin, A. Sosi, and
M. Omologo, “The DIRHA-English corpus and related tasks for
distant-speech recognition in domestic environments,” in Proc.
IEEE Automatic Speech Recognition and Understanding Workshop
(ASRU), 2015, pp. 275–282.

[20] N. Bertin, E. Camberlein, E. Vincent, R. Lebarbenchon, S. Peil-
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