14,220 research outputs found

    Folding Assembly by Means of Dual-Arm Robotic Manipulation

    Full text link
    In this paper, we consider folding assembly as an assembly primitive suitable for dual-arm robotic assembly, that can be integrated in a higher level assembly strategy. The system composed by two pieces in contact is modelled as an articulated object, connected by a prismatic-revolute joint. Different grasping scenarios were considered in order to model the system, and a simple controller based on feedback linearisation is proposed, using force torque measurements to compute the contact point kinematics. The folding assembly controller has been experimentally tested with two sample parts, in order to showcase folding assembly as a viable assembly primitive.Comment: 7 pages, accepted for ICRA 201

    Survey on Additive Manufacturing, Cloud 3D Printing and Services

    Full text link
    Cloud Manufacturing (CM) is the concept of using manufacturing resources in a service oriented way over the Internet. Recent developments in Additive Manufacturing (AM) are making it possible to utilise resources ad-hoc as replacement for traditional manufacturing resources in case of spontaneous problems in the established manufacturing processes. In order to be of use in these scenarios the AM resources must adhere to a strict principle of transparency and service composition in adherence to the Cloud Computing (CC) paradigm. With this review we provide an overview over CM, AM and relevant domains as well as present the historical development of scientific research in these fields, starting from 2002. Part of this work is also a meta-review on the domain to further detail its development and structure

    Research on Cloud Enterprise Resource Integration and Scheduling Technology Based on Mixed Set Programming

    Get PDF
    With the development of Industry 4.0 and intelligent manufacturing, aiming at the incompatibility of heterogeneous manufacturing resource interfaces and the low efficiency of collaborative scheduling of manufacturing resources among enterpriseswe proposed the resource integration and scheduling strategy among enterprises based on Mixed Set Programming [1]. By using the metadata and ontology modeling methods, we were able to realize a standardized model description of manufacturing resources. At last, an enterprise application case was discussed to verify the resources integration and scheduling strategy based on Mixed Set Programming is effective to optimize and improve the efficiency of the collaborative scheduling of resources among enterprises. The resources integration and scheduling strategy based on Mixed Set Programming could be applied to promote the optimal allocation of manufacturing resources

    Agent and cyber-physical system based self-organizing and self-adaptive intelligent shopfloor

    Get PDF
    The increasing demand of customized production results in huge challenges to the traditional manufacturing systems. In order to allocate resources timely according to the production requirements and to reduce disturbances, a framework for the future intelligent shopfloor is proposed in this paper. The framework consists of three primary models, namely the model of smart machine agent, the self-organizing model, and the self-adaptive model. A cyber-physical system for manufacturing shopfloor based on the multiagent technology is developed to realize the above-mentioned function models. Gray relational analysis and the hierarchy conflict resolution methods were applied to achieve the self-organizing and self-adaptive capabilities, thereby improving the reconfigurability and responsiveness of the shopfloor. A prototype system is developed, which has the adequate flexibility and robustness to configure resources and to deal with disturbances effectively. This research provides a feasible method for designing an autonomous factory with exception-handling capabilities

    Combining physical constraints with geometric constraint-based modeling for virtual assembly

    Get PDF
    The research presented in this dissertation aims to create a virtual assembly environment capable of simulating the constant and subtle interactions (hand-part, part-part) that occur during manual assembly, and providing appropriate feedback to the user in real-time. A virtual assembly system called SHARP System for Haptic Assembly and Realistic Prototyping is created, which utilizes simulated physical constraints for part placement during assembly.;The first approach taken in this research attempt utilized Voxmap Point Shell (VPS) software for implementing collision detection and physics-based modeling in SHARP. A volumetric approach, where complex CAD models were represented by numerous small cubic-voxel elements was used to obtain fast physics update rates (500--1000 Hz). A novel dual-handed haptic interface was developed and integrated into the system allowing the user to simultaneously manipulate parts with both hands. However, coarse model approximations used for collision detection and physics-based modeling only allowed assembly when minimum clearance was limited to ∌8-10%.;To provide a solution to the low clearance assembly problem, the second effort focused on importing accurate parametric CAD data (B-Rep) models into SHARP. These accurate B-Rep representations are used for collision detection as well as for simulating physical contacts more accurately. A new hybrid approach is presented, which combines the simulated physical constraints with geometric constraints which can be defined at runtime. Different case studies are used to identify the suitable combination of methods (collision detection, physical constraints, geometric constraints) capable of best simulating intricate interactions and environment behavior during manual assembly. An innovative automatic constraint recognition algorithm is created and integrated into SHARP. The feature-based approach utilized for the algorithm design, facilitates faster identification of potential geometric constraints that need to be defined. This approach results in optimized system performance while providing a more natural user experience for assembly

    Closed-Loop Behavior of an Autonomous Helicopter Equipped with a Robotic Arm for Aerial Manipulation Tasks

    Get PDF
    This paper is devoted to the control of aerial robots interacting physically with objects in the environment and with other aerial robots. The paper presents a controller for the particular case of a small‐scaled autonomous helicopter equipped with a robotic arm for aerial manipulation. Two types of influences are imposed on the helicopter from a manipulator: coherent and non ‐ coherent influence. In the former case, the forces and torques imposed on the helicopter by the manipulator change with frequencies close to those of the helicopter movement. The paper shows that even small interaction forces imposed on the fuselage periodically in proper phase could yield to low frequency instabilities and oscillations, so called phase circle

    The relevance of outsourcing and leagile strategies in performance optimization of an integrated process planning and scheduling

    Get PDF
    Over the past few years growing global competition has forced the manufacturing industries to upgrade their old production strategies with the modern day approaches. As a result, recent interest has been developed towards finding an appropriate policy that could enable them to compete with others, and facilitate them to emerge as a market winner. Keeping in mind the abovementioned facts, in this paper the authors have proposed an integrated process planning and scheduling model inheriting the salient features of outsourcing, and leagile principles to compete in the existing market scenario. The paper also proposes a model based on leagile principles, where the integrated planning management has been practiced. In the present work a scheduling problem has been considered and overall minimization of makespan has been aimed. The paper shows the relevance of both the strategies in performance enhancement of the industries, in terms of their reduced makespan. The authors have also proposed a new hybrid Enhanced Swift Converging Simulated Annealing (ESCSA) algorithm, to solve the complex real-time scheduling problems. The proposed algorithm inherits the prominent features of the Genetic Algorithm (GA), Simulated Annealing (SA), and the Fuzzy Logic Controller (FLC). The ESCSA algorithm reduces the makespan significantly in less computational time and number of iterations. The efficacy of the proposed algorithm has been shown by comparing the results with GA, SA, Tabu, and hybrid Tabu-SA optimization methods

    An introduction of small-scale intelligent manufacturing system

    Get PDF
    Embargoed OA, manuscript version after 24 months from publishing date. Link to publishers version: http://doi.org/10.1109/SIMS.2016.7802896Manufacturing companies in Northern Peripheral and Arctic region are predominately small and medium-sized and face considerable challenges like geographical isolation and a lack of benefits offered by industrial clusters. For the ultimate goal of enhancing their competitiveness in a global market, it is imperative for companies to innovate or adopt innovations in order to quickly response to changes in market, meet customer demands, reduce time-to-market and lower cost. A novel concept for small-scale intelligent manufacturing systems (SIMS) is introduced, in which diverse methods and innovative technologies can be applied and integrated. This paper gives an introduction of SIMS, defines its design objectives, and summarizes major relevant tools, techniques and paradigms for the development of SIMS, to generate a facilitative environment for small and medium-scale manufacturing enterprises to embrace new and innovative technologies
    • 

    corecore