165 research outputs found

    Emerging Informatics

    Get PDF
    The book on emerging informatics brings together the new concepts and applications that will help define and outline problem solving methods and features in designing business and human systems. It covers international aspects of information systems design in which many relevant technologies are introduced for the welfare of human and business systems. This initiative can be viewed as an emergent area of informatics that helps better conceptualise and design new world-class solutions. The book provides four flexible sections that accommodate total of fourteen chapters. The section specifies learning contexts in emerging fields. Each chapter presents a clear basis through the problem conception and its applicable technological solutions. I hope this will help further exploration of knowledge in the informatics discipline

    Information security and assurance : Proceedings international conference, ISA 2012, Shanghai China, April 2012

    Full text link

    Security protocols suite for machine-to-machine systems

    Get PDF
    Nowadays, the great diffusion of advanced devices, such as smart-phones, has shown that there is a growing trend to rely on new technologies to generate and/or support progress; the society is clearly ready to trust on next-generation communication systems to face today’s concerns on economic and social fields. The reason for this sociological change is represented by the fact that the technologies have been open to all users, even if the latter do not necessarily have a specific knowledge in this field, and therefore the introduction of new user-friendly applications has now appeared as a business opportunity and a key factor to increase the general cohesion among all citizens. Within the actors of this technological evolution, wireless machine-to-machine (M2M) networks are becoming of great importance. These wireless networks are made up of interconnected low-power devices that are able to provide a great variety of services with little or even no user intervention. Examples of these services can be fleet management, fire detection, utilities consumption (water and energy distribution, etc.) or patients monitoring. However, since any arising technology goes together with its security threats, which have to be faced, further studies are necessary to secure wireless M2M technology. In this context, main threats are those related to attacks to the services availability and to the privacy of both the subscribers’ and the services providers’ data. Taking into account the often limited resources of the M2M devices at the hardware level, ensuring the availability and privacy requirements in the range of M2M applications while minimizing the waste of valuable resources is even more challenging. Based on the above facts, this Ph. D. thesis is aimed at providing efficient security solutions for wireless M2M networks that effectively reduce energy consumption of the network while not affecting the overall security services of the system. With this goal, we first propose a coherent taxonomy of M2M network that allows us to identify which security topics deserve special attention and which entities or specific services are particularly threatened. Second, we define an efficient, secure-data aggregation scheme that is able to increase the network lifetime by optimizing the energy consumption of the devices. Third, we propose a novel physical authenticator or frame checker that minimizes the communication costs in wireless channels and that successfully faces exhaustion attacks. Fourth, we study specific aspects of typical key management schemes to provide a novel protocol which ensures the distribution of secret keys for all the cryptographic methods used in this system. Fifth, we describe the collaboration with the WAVE2M community in order to define a proper frame format actually able to support the necessary security services, including the ones that we have already proposed; WAVE2M was funded to promote the global use of an emerging wireless communication technology for ultra-low and long-range services. And finally sixth, we provide with an accurate analysis of privacy solutions that actually fit M2M-networks services’ requirements. All the analyses along this thesis are corroborated by simulations that confirm significant improvements in terms of efficiency while supporting the necessary security requirements for M2M networks

    Design of a secure architecture for the exchange of biomedical information in m-Health scenarios

    Get PDF
    El paradigma de m-Salud (salud móvil) aboga por la integración masiva de las más avanzadas tecnologías de comunicación, red móvil y sensores en aplicaciones y sistemas de salud, para fomentar el despliegue de un nuevo modelo de atención clínica centrada en el usuario/paciente. Este modelo tiene por objetivos el empoderamiento de los usuarios en la gestión de su propia salud (p.ej. aumentando sus conocimientos, promocionando estilos de vida saludable y previniendo enfermedades), la prestación de una mejor tele-asistencia sanitaria en el hogar para ancianos y pacientes crónicos y una notable disminución del gasto de los Sistemas de Salud gracias a la reducción del número y la duración de las hospitalizaciones. No obstante, estas ventajas, atribuidas a las aplicaciones de m-Salud, suelen venir acompañadas del requisito de un alto grado de disponibilidad de la información biomédica de sus usuarios para garantizar una alta calidad de servicio, p.ej. fusionar varias señales de un usuario para obtener un diagnóstico más preciso. La consecuencia negativa de cumplir esta demanda es el aumento directo de las superficies potencialmente vulnerables a ataques, lo que sitúa a la seguridad (y a la privacidad) del modelo de m-Salud como factor crítico para su éxito. Como requisito no funcional de las aplicaciones de m-Salud, la seguridad ha recibido menos atención que otros requisitos técnicos que eran más urgentes en etapas de desarrollo previas, tales como la robustez, la eficiencia, la interoperabilidad o la usabilidad. Otro factor importante que ha contribuido a retrasar la implementación de políticas de seguridad sólidas es que garantizar un determinado nivel de seguridad implica unos costes que pueden ser muy relevantes en varias dimensiones, en especial en la económica (p.ej. sobrecostes por la inclusión de hardware extra para la autenticación de usuarios), en el rendimiento (p.ej. reducción de la eficiencia y de la interoperabilidad debido a la integración de elementos de seguridad) y en la usabilidad (p.ej. configuración más complicada de dispositivos y aplicaciones de salud debido a las nuevas opciones de seguridad). Por tanto, las soluciones de seguridad que persigan satisfacer a todos los actores del contexto de m-Salud (usuarios, pacientes, personal médico, personal técnico, legisladores, fabricantes de dispositivos y equipos, etc.) deben ser robustas y al mismo tiempo minimizar sus costes asociados. Esta Tesis detalla una propuesta de seguridad, compuesta por cuatro grandes bloques interconectados, para dotar de seguridad a las arquitecturas de m-Salud con unos costes reducidos. El primer bloque define un esquema global que proporciona unos niveles de seguridad e interoperabilidad acordes con las características de las distintas aplicaciones de m-Salud. Este esquema está compuesto por tres capas diferenciadas, diseñadas a la medidas de los dominios de m-Salud y de sus restricciones, incluyendo medidas de seguridad adecuadas para la defensa contra las amenazas asociadas a sus aplicaciones de m-Salud. El segundo bloque establece la extensión de seguridad de aquellos protocolos estándar que permiten la adquisición, el intercambio y/o la administración de información biomédica -- por tanto, usados por muchas aplicaciones de m-Salud -- pero no reúnen los niveles de seguridad detallados en el esquema previo. Estas extensiones se concretan para los estándares biomédicos ISO/IEEE 11073 PHD y SCP-ECG. El tercer bloque propone nuevas formas de fortalecer la seguridad de los tests biomédicos, que constituyen el elemento esencial de muchas aplicaciones de m-Salud de carácter clínico, mediante codificaciones novedosas. Finalmente el cuarto bloque, que se sitúa en paralelo a los anteriores, selecciona herramientas genéricas de seguridad (elementos de autenticación y criptográficos) cuya integración en los otros bloques resulta idónea, y desarrolla nuevas herramientas de seguridad, basadas en señal -- embedding y keytagging --, para reforzar la protección de los test biomédicos.The paradigm of m-Health (mobile health) advocates for the massive integration of advanced mobile communications, network and sensor technologies in healthcare applications and systems to foster the deployment of a new, user/patient-centered healthcare model enabling the empowerment of users in the management of their health (e.g. by increasing their health literacy, promoting healthy lifestyles and the prevention of diseases), a better home-based healthcare delivery for elderly and chronic patients and important savings for healthcare systems due to the reduction of hospitalizations in number and duration. It is a fact that many m-Health applications demand high availability of biomedical information from their users (for further accurate analysis, e.g. by fusion of various signals) to guarantee high quality of service, which on the other hand entails increasing the potential surfaces for attacks. Therefore, it is not surprising that security (and privacy) is commonly included among the most important barriers for the success of m-Health. As a non-functional requirement for m-Health applications, security has received less attention than other technical issues that were more pressing at earlier development stages, such as reliability, eficiency, interoperability or usability. Another fact that has contributed to delaying the enforcement of robust security policies is that guaranteeing a certain security level implies costs that can be very relevant and that span along diferent dimensions. These include budgeting (e.g. the demand of extra hardware for user authentication), performance (e.g. lower eficiency and interoperability due to the addition of security elements) and usability (e.g. cumbersome configuration of devices and applications due to security options). Therefore, security solutions that aim to satisfy all the stakeholders in the m-Health context (users/patients, medical staff, technical staff, systems and devices manufacturers, regulators, etc.) shall be robust and, at the same time, minimize their associated costs. This Thesis details a proposal, composed of four interrelated blocks, to integrate appropriate levels of security in m-Health architectures in a cost-efcient manner. The first block designes a global scheme that provides different security and interoperability levels accordingto how critical are the m-Health applications to be implemented. This consists ofthree layers tailored to the m-Health domains and their constraints, whose security countermeasures defend against the threats of their associated m-Health applications. Next, the second block addresses the security extension of those standard protocols that enable the acquisition, exchange and/or management of biomedical information | thus, used by many m-Health applications | but do not meet the security levels described in the former scheme. These extensions are materialized for the biomedical standards ISO/IEEE 11073 PHD and SCP-ECG. Then, the third block proposes new ways of enhancing the security of biomedical standards, which are the centerpiece of many clinical m-Health applications, by means of novel codings. Finally the fourth block, with is parallel to the others, selects generic security methods (for user authentication and cryptographic protection) whose integration in the other blocks results optimal, and also develops novel signal-based methods (embedding and keytagging) for strengthening the security of biomedical tests. The layer-based extensions of the standards ISO/IEEE 11073 PHD and SCP-ECG can be considered as robust, cost-eficient and respectful with their original features and contents. The former adds no attributes to its data information model, four new frames to the service model |and extends four with new sub-frames|, and only one new sub-state to the communication model. Furthermore, a lightweight architecture consisting of a personal health device mounting a 9 MHz processor and an aggregator mounting a 1 GHz processor is enough to transmit a 3-lead electrocardiogram in real-time implementing the top security layer. The extra requirements associated to this extension are an initial configuration of the health device and the aggregator, tokens for identification/authentication of users if these devices are to be shared and the implementation of certain IHE profiles in the aggregator to enable the integration of measurements in healthcare systems. As regards to the extension of SCP-ECG, it only adds a new section with selected security elements and syntax in order to protect the rest of file contents and provide proper role-based access control. The overhead introduced in the protected SCP-ECG is typically 2{13 % of the regular file size, and the extra delays to protect a newly generated SCP-ECG file and to access it for interpretation are respectively a 2{10 % and a 5 % of the regular delays. As regards to the signal-based security techniques developed, the embedding method is the basis for the proposal of a generic coding for tests composed of biomedical signals, periodic measurements and contextual information. This has been adjusted and evaluated with electrocardiogram and electroencephalogram-based tests, proving the objective clinical quality of the coded tests, the capacity of the coding-access system to operate in real-time (overall delays of 2 s for electrocardiograms and 3.3 s for electroencephalograms) and its high usability. Despite of the embedding of security and metadata to enable m-Health services, the compression ratios obtained by this coding range from ' 3 in real-time transmission to ' 5 in offline operation. Complementarily, keytagging permits associating information to images (and other signals) by means of keys in a secure and non-distorting fashion, which has been availed to implement security measures such as image authentication, integrity control and location of tampered areas, private captioning with role-based access control, traceability and copyright protection. The tests conducted indicate a remarkable robustness-capacity tradeoff that permits implementing all this measures simultaneously, and the compatibility of keytagging with JPEG2000 compression, maintaining this tradeoff while setting the overall keytagging delay in only ' 120 ms for any image size | evidencing the scalability of this technique. As a general conclusion, it has been demonstrated and illustrated with examples that there are various, complementary and structured manners to contribute in the implementation of suitable security levels for m-Health architectures with a moderate cost in budget, performance, interoperability and usability. The m-Health landscape is evolving permanently along all their dimensions, and this Thesis aims to do so with its security. Furthermore, the lessons learned herein may offer further guidance for the elaboration of more comprehensive and updated security schemes, for the extension of other biomedical standards featuring low emphasis on security or privacy, and for the improvement of the state of the art regarding signal-based protection methods and applications

    A wireless multicast delivery architecture for mobile terminals

    Get PDF
    Content delivery over the Internet to a large number of mobile users offers interesting business opportunities for content providers, intermediaries, and access network operators. A user could receive, for example, music or a digital newspaper directly to a mobile device over wireless networks. Currently, content delivery over the Internet is held back by a number of reasons. Existing network technologies, such as GPRS, have a very limited capacity to transfer large files, such as those required for good-quality pictures in a newspaper. Another problem is security. Content received over the Internet is very vulnerable to being forged. A user who cannot be certain about the source and consistency of the received stock quotes is unlikely to pay for the information. Furthermore, content providers are unwilling to distribute their valuable information over the Internet due to their fear of copyright infringements. Traditionally, content has been considered consumed as soon as it has been downloaded. Content providers have been keen on preventing their content from being transferred over peer-to-peer networks because they consider the delivery itself to be a copyright infringement. In this dissertation, content delivery is separated from content consumption by encrypting the content before delivery. When the users wishes to consume the content, a license which includes the decryption key is provided. The architecture allows content to be delivered to users' devices even before the user commits to consume the content. The user can choose to receive content whenever downloading it is the most convenient and affordable. Thus, the content providers are able to maintain control over the use of their information even after the data has been transferred to the users' terminals. In addition, content received by users can be strongly source authenticated. The architecture allows secure, efficient and reliable delivery of content to a large group of receivers. The architecture does not commit itself to any specific delivery technique, and the content can be delivered using any delivery technique including multicast, broadcast, unicast, and peer-to-peer. This dissertation focuses mostly on multicast as the delivery technique. The efficiency of the multicast delivery over unreliable heterogenous wireless access networks is thoroughly analyzed. Mobile terminals can seamlessly switch between access points and access technologies while continuing to receive data reliably from the network. The multicast delivery uses adaptive error correction and retransmissions to deliver the content as efficiently as possible to a very large number of receivers. The simulations show, that the vast majority of receivers are able to receive the content reliably with a small delay even when the radio network suffers from high packet loss probability. Although the architecture is designed to deliver content to mobile terminals, it is also suitable for delivering content to terminals with fixed Internet connectivity.Digitaalisen sisällön siirtäminen liikkuville käyttäjille Internetin yli tarjoaa uusia liiketoimintamahdollisuuksia niin sisällöntuottajille, välittäjille kuin verkko-operaattoreille. Teknikkaa voidaan käyttää esimerkiksi musiikin tai sähköisten lehtien välittämiseen käyttäjille langattoman verkon kautta. Sisällön välittämistä Internetin kautta hankaloittaa yhä usea seikka. Nykyisin laajassa käytössä olevat verkkotekniikat, kuten GPRS, ovat liian hitaita siirtämään hyvin suuria tiedostoja suurelle määrällä vastaanottajia. Lisäksi väärennetyn tiedon välittäminen Internetin kautta on erittäin helppoa. Sisältö, jonka aitoudesta ja alkuperästä ei ole varmuutta, on usein arvotonta käyttäjälle. Sisällöntuottajat puolestaan ovat haluttomia käyttämään sisältönsä levittämiseen Internetiä mikäli digitaalisesti levitettävän sisällön kopioiminen ja oikeudeton kuluttaminen on liian helppoa. Perinteisesti sisältö ajatellaankin kulutetuksi jo sillä hetkellä, kun se on siirretty käyttäjän laitteeseen. Sen vuoksi sisällön tuottajat ovatkin käyttäneet paljon resursejaan estääkseen sisältönsä välittämisen vertaisverkoissa, koska jo pelkkää sisällön siirtämistä pidetään tekijänoikeusrikkomuksena. Tässä työssä erotetaan sisällön siirtäminen sisällön kuluttamisesta suojaamalla sisältö salauksella ennen sen siirtämistä käyttäjille ja sallimalla vapaa salatun sisällön jakelu. Arkkitehtuuri mahdollistaa sisällön siirtämisen käyttäjien laitteille silloin kun sisällön siirtäminen on edullisinta ja tehokkainta. Vasta käyttäjän halutessa kuluttaa aiemmin lataamaansa sisältöä, tarkistetaan oikeis sisällön käyttöön. Arkkitehtuuri mahdollistaa myös ladatun sisällön alkuperän ja eheyden vahvan tarkistamisen. Arkkitehtuuri mahdollistaa turvallisen, tehokkaan ja luotettavan sisällön siirtämisen suurelle määrälle vastaanottajia. Arkkitehtuuri ei pakota sisällön jakelua käyttämään mitään tiettyä siirtomenetelmää vaan sisältö voidaan siirtää käyttäen esimerkiksi ryhmälähetystä (multicast), joukkolähetystä (broadcast), täsmälähetystä (unicast) tai vertaisverkkoja (peer-to-peer). Tässä työssä on keskitytty analysoimaan ryhmälähetyksen soveltuvuutta tiedon siirtomenetelmänä. Ryhmälähetysmenetelmän tehokkuutta on analysoitu siirrettäessä sisältöä heterogeenisen langattoman liityntäverkon yli. Liikkuvat päätelaitteet voivat siirtyä saumattomasti liityntäverkosta toiseen samalla kun ne vastaanottavat sisältöä. Ryhmälähetys hyödyntää adaptiivista virheenkorjausta ja uudelleenlähetyksiä siirtääkseen sisällönmahdollisimman tehokkaasti suurelle joukolle vastaanottajia. Simulaatiot osoittavat, että erittäin suuri osa vastaanottajista saa sisällön luotettavasti ja pienellä viiveellä vaikka liityntäverkossa pakettien virhetodennäköisyys olisi suuri. Arkkitehtuuri on suunniteltu siirtämään sisältöä liikkuville laitteille, mutta sitä voidaan käyttää yhtä hyvin myös kiinteään verkkoon liitettyjen laitteiden kanssa.reviewe

    Trust management in cloud computing: A critical review

    Get PDF
    Cloud computing has been attracting the attention of several researchers both in the academia and the industry as it provides many opportunities for organizations by offering a range of computing services.For cloud computing to become widely adopted by both the enterprises and individuals, several issues have to be solved.A key issue that needs special attention is security of clouds, and trust management is an important component of cloud security.In this paper, the authors look at what trust is and how trust has been applied in distributed computing. Trust models proposed for various distributed system has then been summarized.The trust management systems proposed for cloud computing have been investigated with special emphasis on their capability, applicability in practical heterogonous cloud environment and implementabilty. Finally, the proposed models/systems have been compared with each other based on a selected set of cloud computing parameters in a table
    corecore