52 research outputs found

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India

    From policies to aspects in KLAIM

    Get PDF

    Critical Services continuity, Resilience and Security: Proceedings of the 56th ESReDA Seminar

    Get PDF
    Critical Infrastructures (CIs) remain among the most important and vital service providers to modern societies. Severe CIs’ disruptions may endanger security of the citizen, availability of strategic assets and even the governance stability. Not surprisingly, CIs are often targets of intentional attacks, either of physical or cyber nature. Newly emerging hybrid threats primarily target CIs as part of the warfare. ESReDA as one of the most active EU networks in the field has initiated a project group (CI-PR/MS&A-Data) on the “Critical Infrastructure/Modelling, Simulation and Analysis – Data”. The main focus of the project group is to report on the state of progress in MS&A of the CIs preparedness & resilience with a specific focus on the corresponding data availability and relevance. In order to report on the most recent developments in the field of the CIs preparedness & resilience MS&A and the availability of the relevant data, ESReDA held its 48th, 52nd and 56th Seminars. The 56th ESReDA Seminar on “Critical Services continuity, Resilience and Security” attracted about 30 participants from industry, authorities, operators, research centres and academia. The seminar programme consisted of 18 technical papers, two plenary speeches and an interactive session on Climate & CI protection.JRC.G.10-Knowledge for Nuclear Security and Safet

    Assuring Safety and Security

    Get PDF
    Large technological systems produce new capabilities that allow innovative solutions to social, engineering and environmental problems. This trend is especially important in the safety-critical systems (SCS) domain where we simultaneously aim to do more with the systems whilst reducing the harm they might cause. Even with the increased uncertainty created by these opportunities, SCS still need to be assured against safety and security risk and, in many cases, certified before use. A large number of approaches and standards have emerged, however there remain challenges related to technical risk such as identifying inter-domain risk interactions, developing safety-security causal models, and understanding the impact of new risk information. In addition, there are socio-technical challenges that undermine technical risk activities and act as a barrier to co-assurance, these include insufficient processes for risk acceptance, unclear responsibilities, and a lack of legal, regulatory and organisational structure to support safety-security alignment. A new approach is required. The Safety-Security Assurance Framework (SSAF) is proposed here as a candidate solution. SSAF is based on the new paradigm of independent co-assurance, that is, keeping the disciplines separate but having synchronisation points where required information is exchanged. SSAF is comprised of three parts - the Conceptual Model defines the underlying philosophy, and the Technical Risk Model (TRM) and Socio-Technical Model (STM) consist of processes and models for technical risk and socio-technical aspects of co-assurance. Findings from a partial evaluation of SSAF using case studies reveal that the approach has some utility in creating inter-domain relationship models and identifying socio-technical gaps for co-assurance. The original contribution to knowledge presented in this thesis is the novel approach to co-assurance that uses synchronisation points, explicit representation of a technical risk argument that argues over interaction risks, and a confidence argument that explicitly considers co-assurance socio-technical factors

    Harnessing Human Potential for Security Analytics

    Get PDF
    Humans are often considered the weakest link in cybersecurity. As a result, their potential has been continuously neglected. However, in recent years there is a contrasting development recognizing that humans can benefit the area of security analytics, especially in the case of security incidents that leave no technical traces. Therefore, the demand becomes apparent to see humans not only as a problem but also as part of the solution. In line with this shift in the perception of humans, the present dissertation pursues the research vision to evolve from a human-as-a-problem to a human-as-a-solution view in cybersecurity. A step in this direction is taken by exploring the research question of how humans can be integrated into security analytics to contribute to the improvement of the overall security posture. In addition to laying foundations in the field of security analytics, this question is approached from two directions. On the one hand, an approach in the context of the human-as-a-security-sensor paradigm is developed which harnesses the potential of security novices to detect security incidents while maintaining high data quality of human-provided information. On the other hand, contributions are made to better leverage the potential of security experts within a SOC. Besides elaborating the current state in research, a tool for determining the target state of a SOC in the form of a maturity model is developed. Based on this, the integration of security experts was improved by the innovative application of digital twins within SOCs. Accordingly, a framework is created that improves manual security analyses by simulating attacks within a digital twin. Furthermore, a cyber range was created, which offers a realistic training environment for security experts based on this digital twin

    RFID Technology in Intelligent Tracking Systems in Construction Waste Logistics Using Optimisation Techniques

    Get PDF
    Construction waste disposal is an urgent issue for protecting our environment. This paper proposes a waste management system and illustrates the work process using plasterboard waste as an example, which creates a hazardous gas when land filled with household waste, and for which the recycling rate is less than 10% in the UK. The proposed system integrates RFID technology, Rule-Based Reasoning, Ant Colony optimization and knowledge technology for auditing and tracking plasterboard waste, guiding the operation staff, arranging vehicles, schedule planning, and also provides evidence to verify its disposal. It h relies on RFID equipment for collecting logistical data and uses digital imaging equipment to give further evidence; the reasoning core in the third layer is responsible for generating schedules and route plans and guidance, and the last layer delivers the result to inform users. The paper firstly introduces the current plasterboard disposal situation and addresses the logistical problem that is now the main barrier to a higher recycling rate, followed by discussion of the proposed system in terms of both system level structure and process structure. And finally, an example scenario will be given to illustrate the system’s utilization
    • 

    corecore