

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 19, 2017

From policies to aspects in KLAIM

Herbert, Luke Thomas; Egilsson, Einar

Published in:
Proceedings of The 13. Nordic Workshop on Secure IT Systems

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Herbert, L. T., & Egilsson, E. (2008). From policies to aspects in KLAIM. In Proceedings of The 13. Nordic
Workshop on Secure IT Systems: NordSec 2008 (13 ed., pp. 39-53). Kgs. Lyngby: Technical University of
Denmark (DTU).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13784777?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/from-policies-to-aspects-in-klaim(e41e50c3-b5dd-4bcf-98ff-432ac0848bcf).html

From policies to aspects in KLAIM

Luke Herbert and Einar Egilsson

Department of Informatics, Technical University of Denmark
{lth,ee}@imm.dtu.dk

Abstract. The aspect oriented programming paradigm facilitates the
separation of cross cutting concerns in system development. Security
policies are a typical such concern and in this paper we present a simple
policy language, LUNAR, and show how it can be translated into aspect
definitions. We perform the development for KLAIM, a small kernel lan-
guage for agent interaction and mobility, and show how static analysis
can be used to limit the number of aspect definitions. The technique has
been applied to a larger case study, namely the electronic invoice system
at DTU.

1 Introduction

Motivation Modern business processes can be extremely complicated and the
need exists to verify that these processes comply with a given security policy
[H05]. This situation might arise in an invoicing system, where the processes put
in place could allow embezzlement or other undesirable activity due to loopholes
in the security policy, or in the business process itself. Today, the flow of many
business processes is dictated by the software they employ, software which has
often been required to quickly evolve as the needs of the business change, and
which has not been built with security in mind.

The separation of concerns inherent in aspect oriented programming [MK03]
allows security features to be developed separately from the main body of code,
thus removing the complexity of adding such features and allowing them to
change as needed. In addition, security features can be developed separately
by people specialized in this field, hopefully ensuring a higher quality of code.
However, the separation of code into aspects and the transformation of a security
policy into aspects present many new challenges.

Contribution In Section 2 we introduce the subset of KLAIM to be used for
specifying business processes. KLAIM is a kernel language for distributed com-
putation where data and processes can be moved from one computing location
to another [NFP98]. Processes can interact with one another by performing in-
put, output and read operations and in Section 3 we present a simple policy

language called LUNAR that will be used to limit which operations can be per-
formed at various stages in a workflow process. To enforce the policies we present
in section 3.1, we make use of an aspect oriented version of KLAIM developed in
[HNNY08]; in Section 4 we present a slight extension of the AspectK language
together with an algorithm for transforming LUNAR policies into aspects; a
subsequent weaving will then embed the aspects into the code itself. Finally, in
Section 5 we present a static analysis that, given a KLAIM workflow process and
a set of LUNAR policies will identify which policies might be violated; indeed it
is only necessary to construct aspects for those. In Section 6 we give concluding
remarks.

A overview of the basic design of LUNAR is shown in Figure 1.

Fig. 1. The design of the LUNAR system

1.1 Case Study: the DTU invoice system

The above development has been carried out for a larger example modelling the
workflow of the electronic invoice system at DTU; specifically how this system is
used within the department of Informatics and Mathematical Modelling. Figure 2
shows the basic flow of the invoice process.

The typical flow of an invoice through the system is described below, this is the
straightforward case of a purchase being approved with no problems arising:

1. A supplier sends a paper invoice to the scanning office which scans it to
create an electronic invoice.

2. The scanning office forwards the electronic invoice to DTU’s main finance
department.

3. The finance department forwards the invoice to the section accountant of
the relevant department.

4. In this business process the section accountant generally knows which person
inside the department has been ordering which things, and so they forward
the invoice to the person who placed the order.

2

Fig. 2. Overview of how the DTU invoice system interacts with the IMM department

5. The person who ordered the product(s) confirms the invoice by adding their
signature to it and then forwards the invoice to the relevant account holder.

6. The account holder approves the purchase by adding the correct account
number to the invoice and sends it back to the section accountant.

7. The section accountant confirms that the invoice is correctly filled out, and
then forwards it to the head accountant.

8. The head accountant confirms the invoice and forwards it to DTU Finance.
9. Finance pays the invoice and enters the amount into the main DTU ledger.

When errors or malicious activity occurs, other flows through the system take
place. Some examples of alternative flows are described below:

– The section accountant sends an invoice to the wrong person. That person
does not confirm the purchase but sends it back to the section accountant,
who will then have to find out who the correct recipient is and forward it to
him. In practice such errors accumulate to large amounts of wasted time.

– If the buyer sees that the price on the invoice is wrong, he can send a com-
plaint to the supplier and wait for a credit note to be issued by the supplier,
before sending both the invoice and credit note back to the section accoun-
tant. The invoice and credit note then both follow the normal path to get
paid.

– If no one within the department recognizes an invoice payment, then it is
refused and sent back to the supplier.

In this system a security policy can be enforced by controlling the flow of the in-
voice through the system. This is achieved by having each invoice carry a status

3

N ∈ Net N ::= N1 || N2 | l :: P | l :: 〈
−→
l 〉

P ∈ Proc P ::= P1 | P2 |
∑
i ai.Pi | ∗P | if cond then P1 else P2 fi

cond ∈ BExp cond ::= `1 = `2 | test(
−→
`λ)@`

a ∈ Act a ::= out(
−→
`)@` | in(

−→
`λ)@` | read(

−→
`λ)@`

`, `λ ∈ Loc ` ::= u | l `λ ::= ` | !u

Table 1. KLAIM Nets and Processes Syntax

tag which changes as it passes through the system. Each entity in the process
should only receive invoices with the appropriate status. For example the scan-
ning office should only receive sent invoices, DTU’s finance department should
only receive presented or accounted invoices and account holders should only
receive presented or confirmed invoices. Other entities have similar restrictions
which will be explained in detail in Section 3.1.

2 The KLAIM subset used in LUNAR

The LUNAR system analyses a subset of the KLAIM language [NFP98] similar
to what is used in [HNNY08]. The syntax is defined in Table 1. A net N is
a parallel composition of located processes or located tuples. Each person or
entity in the business process is represented as a location. For a given entity, the
collection of tuples present at its location is known as its tuple space, and the
processes located at its location define its behaviour. A given location may have
many processes running in parallel; each process can run just once or repeatedly,
as indicated by the ∗ prefix. A process is made up of one or more actions and
we allow just three operations, in, out and read. The in operation removes a
tuple from a tuple space, out outputs a tuple to a tuple space and read reads a
tuple from a tuple space but does not remove it. An operation parameter can be
a location constant l, variable binding !u or a variable u. A variable is defined
when it is bound. All communication between entities in the business process is
modelled by locations sending and receiving tuples from each other.

The read and in operations attempt to match a tuple to the tuple space they
are reading from. The number of parameters in the operation must match the
number of elements in a tuple for it to be selected. Furthermore, for any variable
or constant parameter pn in the operation, the element en in a tuple must have
the same value for the tuple to be selected. This is used to conditionally select
tuples from a tuple space.

4

In order to model conditional behaviour we have added a conditional expression
to the language; in particular we needed to model different behaviours depending
on the existence of a tuple at a particular location. The if statement can check
for the existence of a tuple using the test function. The statement if test(

−→
`λ)@`

then P1 else P2 fi will execute the P1 process if there exists a tuple at ` that
matches

−→
`λ, if the tuple does not exist process P2 is executed instead.

A more precise definition of the language and its semantics, including its struc-
tural congruence and reaction semantics on closed nets can be found in [HNNY08].

2.1 The DTU invoice system expressed in KLAIM

For reasons of space we can not show the entire DTU invoice model here but
include a representative example. The example shows the DTUFinance and Staff
locations. Staff is a simple database mapping people to departments and roles,
it has no processes. DTUFinance is the main DTU finance department which
receives invoices and forwards them to other locations within the system.

DTUFinance :: <INVOICE, PRESENTED, 500, Fona, IMM, Printer, 200>
|| DTUFinance ::

* in(INVOICE, PRESENTED, !nr, !supplier, !department, !item, !price)@self
. read(!accountant, department, SectionAccountant)@Staff
. out(INVOICE, PRESENTED, nr, supplier, department, item, price)@accountant
|
* in(INVOICE, ACCOUNTED, !invnr, !supplier, !department, !item, !price, !confirmedBy,

!accountNr, !project)@self
. out(INVOICE, PAID, invnr, supplier, department, item, price, confirmedBy, accountNr,

project)@Ledger
|
* in(INVOICE, REFUSED, !invnr, !supplier, !department, !item, !price)@self
. out(INVOICE, REFUSED, invnr, supplier, department, item, price)@supplier

|| Staff :: <Sally, IMM, SectionAccountant>
|| Staff :: <Adam, IMM, AccountHolder>
|| Staff :: <Alice, IMM, AccountSupervisor>
|| Staff :: <Sara, IMM, Secretary>
|| Staff :: <Henrik, IMM, HeadAccountant>

Code Example 1: DTUFinance location KLAIM code

Looking at DTUFinance in the code snippet above we see that it has one tuple
located in its tuple space. The tuple format is 〈type, status, invoice nr, vendor,
department, item, price〉. The DTUFinance location has three parallel processes.
The first process removes an invoice tuple with the status PRESENTED from DTU-
Finance’s tuple space, looks up the relevant department’s section accountant by
doing a read operation at the Staff location, and then outputs the tuple into the
section accountant’s tuple space. The second process pays invoices that have the
status ACCOUNTED by removing them from DTUFinance’s tuple space and out-

5

SP ∈ SecPolicy SP ::= A G

A ∈ Abbreviation A ::= $a = S | A ; A | ε
G ∈ Group G ::= ”name” P | G ; G

P ∈ Pattern P ::= P ; P | V ::out(
−→
V)@V | V ::in(

−→
V)@V | V ::read(

−→
V)@V

V ∈ Value V ::= S | [S]

S ∈ Set S ::= S + S | t
t ∈ Terminal t ::= l | $a | ∗ | ...

Table 2. LUNAR Syntax

putting them to Ledger with status PAID. The third process removes REFUSED
invoice tuples and sends them back to the supplier that they originated from.

In this case the first process finds a match since it looks for invoices with status
PRESENTED and then forwards the invoice to the relevant location. Neither the
second nor third process find any tuples matching their in operations in DTUFi-
nance’s tuple space. Other entities within our system are modelled in a similar
way.

3 The LUNAR policy language

LUNAR allows the user to express security policies using the LUNAR policy
language, which is simple formal policy language inspired by regular expressions
[LP97]. The syntax for the language is shown in Table 2. A given security policy
is made up of zero or more abbreviations and one or more pattern groups.

Abbreviations allow a large set of values to be represented concisely and can
be used in more than one place in a security policy. They are defined before
any patterns and cannot be redefined later in the policy. Abbreviations start
with a $ character to distinguish them from ordinary values. An example of an
abbreviation is:

$AccountHolders=Adam+Alice

Pattern groups are defined after the abbreviations. Each pattern group is com-
prised of a name and one or more patterns. The patterns themselves are similar
to KLAIM statements, each pattern is made up of a sender, an operation, one
or more parameters, and a receiver.

sender :: op(p1, p2, ...pn)@receiver

6

Each component of the pattern (sender, op, pn, receiver) can be expressed
as a single value or as a set of possible values for that component. A set is a
list of the possible values separated by +, so for instance the sender part of
the pattern could have the value Adam+Henrik+Sara. Pattern components are
matched against action parameters to see if the pattern should apply to that
action, except in the case where a component is surrounded by [], in that case
the component represents allowed values for the actions’ parameter. The * token
is a wildcard character matching any possible value, and the . . . token can be
thought of as one or more *’s, and can only be the last parameter in a parameter
list. This is introduced to handle the case where tuples gain additional elements
in the course of the workflow, yet we still require that the pattern matches
regardless of the number of elements.

3.1 Case study: DTU security policy

The purpose of our security policy is to prevent information leaks, that is to say
invoices reaching unintended recipients. Such a security policy can be enforced
by controlling the flow of invoices through the system, by use of the status tag.
Specifically we create LUNAR patterns which specify the states invoices and
credit notes may be in when they are output into a particular locations tuple
space. The LUNAR policy language allows for role based access control [G99],
to implement this we start by creating abbreviations that define the roles within
the system.

$Vendors=HP+OfficeSupplies+TaxiStation

$SectionAccountant=Sally

$Secretary=Sara

$AccountHolders=Adam+Alice

$HeadAccountant=Henrik

Using these roles, expressed as abbreviations in LUNAR policy notation, we can
define the following security policy:

1. Vendor allowed content: Vendors can only receive complaints, invoices
and creditnotes. Specifically the invoices may only have the status sent or
refused and creditnotes may only have the status sent.

2. ScanOffice allowed content: The scanning office can only receive invoices
and creditnotes and they may only have the status sent.

3. DTUFinance allowed content: DTU’s finance department can only in-
voices and creditnotes. Specifically the invoices may only have the status
presented, accounted or refused and creditnotes may only have the status
presented or accounted.

4. Ledger allowed content: Only DTU’s finance department may output
tuples into the ledger. The tuples may be either invoices and creditnotes and
they may only have the status paid.

7

5. SectionAccountant allowed content: Section accountants may only re-
ceive invoices and creditnotes and they may only have the status accounted
or presented.

6. Secretary allowed content: The secretary can only receive complaints
and invoices. Specifically the invoices may only have the status presented or
wrong and creditnotes may only have the status presented.

7. AccountHolder allowed content: Account holders can only receive com-
plaints and invoices. Specifically the invoices may only have the status pre-
sented, confirmed or wrong and creditnotes may only have the status pre-
sented or confirmed.

8. Head Accountant allowed content: The head accountant can only re-
ceive complaints and invoices with the status accounted.

The above rules are each mapped into a pattern group consisting of one or more
patterns. Generally the pattern groups start with a line defining what types of
tuples are allowed and subsequent lines restrict what states each type of tuple
may be in when it is output into the entity’s tuplespace.

Next we present two examples of rules expressed as LUNAR pattern groups.
Rule 4 only allows DTUFinance to output paid invoices and creditnotes into the
Ledger. This stops employees from trying to slip paid invoices past the finance
department. This can be expressed as a single pattern since the invoice and
creditnote have the same allowed states.

"4. Ledger allowed content"

[DTUFinance]::out([INVOICE+CREDITNOTE], [PAID], ...)@Ledger

A more complex pattern group is required to implement rule 7. In this case the
invoice and creditnote have different allowed states, the first pattern restricts the
type of tuples that can be sent to account holders, the second and third pattern
restrict the allowed states for invoices and creditnotes respectively.

"7. AccountHolder allowed content"

*::out([INVOICE+CREDITNOTE], ...)@$AccountHolders

*::out(INVOICE, [PRESENTED+CONFIRMED+WRONG], ...)@$AccountHolders

*::out(CREDITNOTE, [PRESENTED+CONFIRMED], ...)@$AccountHolders

4 Conversion of policies to aspects

An aspect oriented coordination language, AspectK, was introduced in [HNNY08].
This language is a superset of the KLAIM like language we have used to model
the DTU invoice system, and supports the addition of aspects. The AspectK lan-
guage takes the approach that input actions should be trapped before a concrete
tuple has been selected for input, this is very useful in the LUNAR system where

8

S ∈ System S ::= let −→asp in N

asp ∈ Asp asp ::= A[cut] , body
body ∈ Advice body ::= case (cond) sbody ; body | sbody

sbody ::= as break | as proceed as
as ∈ Act∗ as ::= a.as | ε

cond ∈ BExp cond ::= test(
−→
`λ)@` | `1 = `2 | cond1 ∧ cond2 | ¬ cond

cut ∈ Cut cut ::= ` :: a

`λ ∈ Loc `λ ::= ` | !u | ?u | ...

Table 3. AspectK syntax

we are focused on checking a security policy. If we were to trap after a concrete
tuple has been selected for input, it would constitute a covert channel [G99] as
the presence or absence of a tuple in the tuple space might enable or prevent the
advice to trap the action, and this would amount to visible behaviour bypass-
ing the security policy. In [HNNY08] a successful method for trapping an input
action before a concrete tuple has been selected for input which has an ability
to deal with joinpoints that contain constructs for binding new variables. Such
joinpoints are referred to as ’open joinpoints’ in [HNNY08] and we will do the
same. AspectK aspects allow a number of actions for handling a trap including
the option to to block an action or to let it proceed which is sufficient for the
LUNAR system. For these reasons we have chosen to use a slightly modified ver-
sion of AspectK, into which to transform our security policy, the modifications
we have introduced are very small and will be introduced in the description of
the AspectK syntax below.

4.1 AspectK

The AspectK syntax is an extension of the subset of the KLAIM syntax shown
in Table 1. AspectK aspects have two main elements, the cut and the body.
The cut is the part that is matched against actions being executed and decides
whether the aspect in question should be applied to the executing action. If the
cut matches the action then the body of the aspect is executed. The body has
to contain either a break statement which stops the action from being executed,
or a proceed statement which allows the execution to proceed. The aspect body
can also have actions that are executed before a break statement, or before and
after a proceed statement. Variables that are bound in the action can only be
accessed in the body after a proceed statement, since before the break or proceed
statements a concrete tuple has not yet been selected, and hence the variables

9

have not been bound. AspectK also adds a new token for `λ, the ?u token which
matches both l and !x in actions.

The trapping of actions and execution of aspects is done by the functions shown
in tables 4 through 7. For a more detailed discussion of how these functions
work we refer to [HNNY08], we show them here with our modifications for the
sake of completeness, and to discuss what modifications we have made to allow
wildcards and error messages to be incorporated into AspectK.

The φ function in Table 4 checks each action against every aspect. It uses the
trap function from Table 5 to check whether the aspect matches the action. The
trap function then uses the check function from Table 6 to determine whether the
entities from the cut match the entities in the action, and produce a substitution
of values for variables. If the aspect matches the action then the aspect body is
executed before checking the next aspect. After checking every aspect it looks at
the index f to determine whether to execute the original action or halt. If any
aspect has issued the break statement, then the action is not executed and the
process halts.

Φf (A[cut] , body, ΓA; ` :: a) = case trap(cut, ` :: a) of fail : Φf (ΓA; ` :: a)

θ : κΓA,`::a
f (body θ)

Φf (ε; ` :: a) = if size(f) > 0 then: stop(f)
else: a

Table 4. Trapping Aspects: Step 1.

trap(cut, ` :: a) = case (cut, ` :: a) of

(`s :: out(
−→
`)@`0, ls :: out(

−→
l)@l0) : check(〈`s,

−→
` , `0〉, 〈ls,

−→
l , l0〉)

(`s :: in(
−→
`λ)@`0, ls :: in(

−→
`′λ)@l0) : check(〈`s,

−→
`λ, `0〉, 〈ls,

−→
`′λ, l0〉)

(`s :: read(
−→
`λ)@`0, ls :: read(

−→
`′λ)@l0) : check(〈`s,

−→
`λ, `0〉, 〈ls,

−→
`′λ, l0〉)

otherwise fail

Table 5. Trapping Aspects: Step 2.

We have made two modifications to the original AspectK definition of these
functions. First, we modified the check function to accommodate the . . . wild-
card character. Our version deviates from the original in that the number of
parameters does not have to be the same in both tuples, there can be k entities
in the cut but k + n entities are possible in the action and happens if the ...
wildcard is used. The function checks the first entity in the cut tuple against

10

check(〈〉, 〈〉) = id

check(〈. . .〉, 〈`′λ1 , · · · , `′λn 〉) = id

check(〈`λ1 , `λ2 , · · · , `λk〉, 〈`′λ1 , · · · , `′λk+n〉) = let θ = case (`λ1 , `
′λ
1) of

(!u, !u′) : [u′/u]
(?u, !u′) : [u′/u]
(?u, l′) : [l′/u]
(u, l′) : [l′/u]
(l, l′) : if l = l′ then id else fail

otherwise fail
in θ ◦ check(〈`λ2 , · · · , `λk〉, 〈`′λ2 , · · · , `′λk+n〉)

Table 6. Trapping Aspects: Step 3.

κΓA,`::a
f (case cond sbody ; body) = case B(cond) of tt : κΓA,`::a

f (sbody)

ff : κΓA,`::a
f (body)

κΓA,`::a
f (sbody) = case sbody of as1 proceed as2 : as1.Φf (ΓA; ` :: a).as2

as break(msg) : as.Φf∪{msg}(ΓA; ` :: a)

Table 7. Trapping Aspects: Step 4.

the first entity in the action tuple, and produces a substitution if they match or
fails if they don’t. It then recursively calls itself using the tuples with the first
entity removed. If both tuples are empty the function returns indicating that
the aspect did match the action. If the cut tuple has only the ... wildcard and
the action tuple has n entities left, the function also returns indicating that the
aspect is a match, regardless of the values of the n entities left in the action
tuple.

Secondly, we changed the index f and the break statement. In the original version
f could take on either the value break or proceed. In our version we allow the
break statement to take a parameter, which is an error message saying why the
action is not permitted. We then define f to be a set of error messages, and in
φ we check whether the number of elements in the set f is greater than zero, if
so we halt the process and display the error messages in f to the user.

4.2 Converting LUNAR patterns to AspectK aspects

The LUNAR system can read a security policy specified in the LUNAR policy
language and convert the patterns to AspectK aspects. Each generated aspect
consists of two conditional statements. The outer conditional checks whether the
matching values (values not inside []) in the pattern match their corresponding

11

elements in the action. If they do not match then the pattern is not a match for
the action, and a proceed advice is given. If the pattern matches the action,
then the inner conditional statement will check for each of the allowed values
parameters whether the action contains allowed values. If the action contains
any value that is not in the set of allowed values, then the violation is logged
to a Log location and a break advice is given. The * wildcard in a pattern
is transformed to a ?pn parameter in the AspectK cut, so it can match both
location constants and binding of variables, as the pn parameter can contain
anything it is not checked. We have also added the . . . token to AspectK cuts,
where it has the same meaning as in the LUNAR policy language, any number
of parameters with any values.

We employ the following algorithm to convert LUNAR policies to Aspects:

The Algorithm
1) Given a pattern u::op(p1,p2, ..., pn)@l
2) Create tuple t as 〈u, p1, p2, ... pn, l〉
3) Create outer case condition caseouter
4) Create inner case condition caseinner
5) for each part pi in t:

if (pi is V1+V2+...+Vk)
create new or-clause matchi
for each value vj in p

add condition ’pi = vj ’ to matchi
add matchi to caseouter condition
add parameter pi to aspect cut

else if (pi is [V1+V2+...+Vk])
create new or-clause allowedi
for each value vj in pi

add condition ’pi = vj ’ to allowedi
add allowedi to caseinner
add parameter pi to aspect cut

else if (pi is *)
add parameter ?pi to aspect cut

else if (pi is ...)
add parameter ... to aspect cut

4.3 Case study: transformation example

The transformation shown below is of the pattern that specifies which tuples
can be put into Ledger’s tuplespace. Ledger represents DTU’s general ledger and
should only receive invoices and credit notes which are paid, and only from
DTUFinance.

12

"4. Ledger allowed content"

[DTUFinance]::out([INVOICE+CREDITNOTE], [PAID], ...)@Ledger

is transformed into

A[user :: out(p1, p2, ...)@loc] , case(loc = Ledger)
case(p1 = INV OICE ∨ p1 = CREDITNOTE)
∧(p2 = PAID) ∧ (user = DTUFinance)

proceed
;

out(V iolation, user, p1, p2, loc)@Log
break ”Ledger allowed content”

;
proceed

For out actions this transformation is enough and results in one aspect for each
pattern. For in and read actions however we also have to consider that an action
might try to bind a variable in a position where we have specified allowed values.
Consider the case where we have the pattern

"C allowed reads"

*::read([A], [B], *)@C

Here we state that a read operation can only be performed at location C if the
first parameter has the value A and the second parameter has the value B. The
parameter values in the actual action can be checked against the allowed values
if they are location constants or variables, but if they are variable bindings then
they they will not match the AspectK cut. Consider the action

User::read(!x, !y, !z)@C

This will not match the generated AspectK cut A[u::read(p1, p2, ?p3)@l], and
would allow the user to randomly bind to a tuple in C’s tuplespace. In the case
where allowed values are specified for a parameter we want to break if a user
tries to bind a variable to that parameter. To do that we need the pattern in
question to issue a break advice on all of the following actions:

U::read(AA, BB, !z)@C

U::read(!x, B, !z)@C

U::read(A, !y, !z)@C

U::read(!x, !y, !z)@C

The first action can be checked with an aspect generated from the transforma-
tion described above. For the three remaining aspects which all contain variable
bindings, we generate one aspect for each possibility. These aspects only check
whether the matching values in the pattern (in this case only C) match the ac-
tion and then immediately break. The three extra aspects generated in this case
would be

13

A[user :: out(!p1, p2, ?p3)@loc] , case(loc = C)
out(V iolation, u, p2, l)@Log
break ”C Allowed reads”

;
proceed

A[user :: out(p1, !p2, ?p3)@loc] , case(loc = C)
out(V iolation, user, p1, loc)@Log
break ”C Allowed reads”

;
proceed

A[user :: out(!p1, !p2, ?p3)@loc] , case(loc = C)
out(V iolation, user, loc)@Log
break ”C Allowed reads”

;
proceed

It is possible in AspectK to define a cut which matches all these possibilities, by
having all parameters take the form ?p, since parameters prefixed with ? match
both location constants and variable bindings. So a cut such as A[u::read(?p1,
?p2, ?p3)@l] would indeed match any possible combination of variable bindings
and location constants. The problem with this approach is that in the body of
the aspect we have no way of determining whether ?p1 and ?p1 are variable
binding or not. Because of that we cannot check their values since if they are
in fact variable bindings they will have no values and the variables p1 and p2
should not be used in the aspect body until after a proceed statement.

5 Static Analysis

We employ static analysis, inspired by [NGHNNPP08] and [RPN08], to deter-
mine a reduced set of aspects needed to enforce a given security policy. The static
analysis we perform works by executing the following algorithm on a KLAIM
code file and an associated LUNAR policy file.

We define the following global variables for the algorithm; Tl the set of all tuples
that can reside in the tuple space of a given location l. For each location’s (l)
processes’ (p) we define σlp to denote the set of values that each variable in the
process can take. Further we define the function comb(σ,

−→
`) to return all pos-

sible variations of
−→
` by using all possible combinations of variable substitutions

from σ.

Static Analysis Algorithm
1) For each location l

Initialise Tl with the existing tuples at l.
2) Define T ′ := T and σ′ := σ.
3) For each locations’ l processes’ p action a

14

if a = out(
−→
`)@lout

Tlout
:= Tlout

+ comb(σlp,
−→
`)

if a = in/read(
−→
`)@lin

Get possible matches from Tlin

Update σlp for all !x in
−→
`

4) If T ′ 6= T or σ′ 6= σ goto 3.

This algorithm works by letting the tuples at each location propagate to all the
locations that they can possibly reach limited by the actions at each location.
The algorithm halts as the possible values of all tuples in KLAIM are finite sets
and as such the sets T and σ are finite, and eventually the stabilisation condition
in step 4 will be satisfied.

To apply the analysis we define Klpa which denotes the possible values for a
given locations’ processes’ actions’ variables as specified by LUNAR policies.
Further we define the function match(α, Klpa) which returns true if the lunar
pattern α matches Klpa. Finally, we define A to be the set of patterns that need
to be implemented as aspects. We then employ the following algorithm:

Applying the analysis
1) For each locations’ l processes p action a

Use σlp to generate all possible variations of a and add them to the set Klpa

2) For each lunar pattern α
For each location’s l processes p action a

if match(α,Klpa) then
A := A+ α

This algorithm compares the possible parameter values that can occur with the
ones that are permissible given a specific security policy. The test in step 2 is
the key part and allows the set A to be filled with policies that may be violated.

6 Conclusion

We have presented the LUNAR system, and the LUNAR policy language for
specifying security policies for KLAIM nets. This system has been implemented,
tested and source code has been made available. This is a full system for adding
security policies to KLAIM nets and serves as a proof of concept of a method for
determining the elements of a security policy that are necessary to implement
as aspects.

Given the power of aspect oriented programming, if a programmer makes a
logical mistake when writing an aspect it can lead to widespread program failure.
Therefore, reducing the set of aspects that need to be implemented should help
shrink the chance of one containing a mistake. The LUNAR system serves as a

15

proof of concept that this can indeed be done and has been presented in general
enough terms to be applied to other languages.

While the LUNAR system operates on KLAIM code, in future work we would
like to extend the system to allow the application of a reduced set of aspects
to other code, such as Java code with aspects implemented as AspectJ aspects
[KLMMLLI97] and analysis done as in [ACHKLLMSST05].

A Source code

This report, source code for the LUNAR system and pre-compiled Windows
binaries are available from http://www.student.dtu.dk/˜lthhe/.

References

[H05] Michael Havey. Essential Business Process Modeling. O’Reilly Media; 1st edition,
2005.

[MK03] H. Masuhara and K. Kawauchi. Dataflow Pointcut in Aspect-Oriented Pro-
gramming. Programming Languages and Systems: First Asian Symposium, 2003.

[ACHKLLMSST05] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, J. Lho-
tak, O. Lhotak, O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. Optimising
AspectJ. ACM SIGPLAN Conference on Programming Language Design and Im-
plementation. ACM Press, 2005.

[KLMMLLI97] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-
M. Loingtier, and J. Irwin. Aspect-oriented programming. Proceedings European
Conference on Object-Oriented Programming, pages 220242, 1997.

[HNNY08] Chris Hankin, Flemming Nielson, Hanne Riis Nielson and Fan Yang, Advice
for Coordination. Coordination Models and Languages, 10th International Confer-
ence, COORDINATION 2008, Oslo, Norway, June 4-6, 2008. Proceedings

[RPN08] Ren Rydhof Hansen, Christian W. Probst and Flemming Nielson Sandboxing
in myKlaim. Proceedings of the The First International Conference on Availability,
Reliability and Security, ARES 2006, The International Dependability Conference -
Bridging Theory and Practice, April 20-22 2006, Vienna University of Technology,
Austria

[NGHNNPP08] Rocco De Nicola, Daniele Gorla, Ren Rydhof Hansen, Flemming Niel-
son, Hanne Riis Nielson, Christian W. Probst, and Rosario Pugliese. From Flow
Logic to Static Type Systems for Coordination Languages. Coordination Models and
Languages, 10th International Conference, COORDINATION 2008, Oslo, Norway,
June 4-6, 2008. Proceedings, 2008.

[NFP98] R. De Nicola, G. Ferrari and R. Pugliese. Klaim: a Kernel Language
for Agents Interaction and Mobility. Transactions on Software Engineering,
24(5):315330, 1998.

[G99] Dieter Gollmann. Computer Security. John Wiley & Sons; 1st edition, 1999.
[LP97] H. Lewis and Christos Papadimitriou. Elements of the Theory of Computation

(2nd ed). Prentice-Hall, 1997.

16

