9 research outputs found

    A review of the role of sensors in mobile context-aware recommendation systems

    Get PDF
    Recommendation systems are specialized in offering suggestions about specific items of different types (e.g., books, movies, restaurants, and hotels) that could be interesting for the user. They have attracted considerable research attention due to their benefits and also their commercial interest. Particularly, in recent years, the concept of context-aware recommendation system has appeared to emphasize the importance of considering the context of the situations in which the user is involved in order to provide more accurate recommendations. The detection of the context requires the use of sensors of different types, which measure different context variables. Despite the relevant role played by sensors in the development of context-aware recommendation systems, sensors and recommendation approaches are two fields usually studied independently. In this paper, we provide a survey on the use of sensors for recommendation systems. Our contribution can be seen from a double perspective. On the one hand, we overview existing techniques used to detect context factors that could be relevant for recommendation. On the other hand, we illustrate the interest of sensors by considering different recommendation use cases and scenarios

    A conceptual framework and taxonomy of techniques for analyzing movement

    Get PDF
    Movement data link together space, time, and objects positioned in space and time. They hold valuable and multifaceted information about moving objects, properties of space and time as well as events and processes occurring in space and time. We present a conceptual framework that describes in a systematic and comprehensive way the possible types of information that can be extracted from movement data and on this basis defines the respective types of analytical tasks. Tasks are distinguished according to the type of information they target and according to the level of analysis, which may be elementary (i.e. addressing specific elements of a set) or synoptic (i.e. addressing a set or subsets). We also present a taxonomy of generic analytic techniques, in which the types of tasks are linked to the corresponding classes of techniques that can support fulfilling them. We include techniques from several research fields: visualization and visual analytics, geographic information science, database technology, and data mining. We expect the taxonomy to be valuable for analysts and researchers. Analysts will receive guidance in choosing suitable analytic techniques for their data and tasks. Researchers will learn what approaches exist in different fields and compare or relate them to the approaches they are going to undertake

    AIRSPACE PLANNING FOR OPTIMAL CAPACITY, EFFICIENCY, AND SAFETY USING ANALYTICS

    Get PDF
    Air Navigation Service Providers (ANSP) worldwide have been making a considerable effort for the development of a better method for planning optimal airspace capacity, efficiency, and safety. These goals require separation and sequencing of aircraft before they depart. Prior approaches have tactically achieved these goals to some extent. However, dealing with increasingly congested airspace and new environmental factors with high levels of uncertainty still remains the challenge when deterministic approach is used. Hence due to the nature of uncertainties, we take a stochastic approach and propose a suite of analytics models for (1) Flight Time Prediction, (2) Aircraft Trajectory Clustering, (3) Aircraft Trajectory Prediction, and (4) Aircraft Conflict Detection and Resolution long before aircraft depart. The suite of data-driven models runs on a scalable Data Management System that continuously processes streaming massive flight data to achieve the strategic airspace planning for optimal capacity, efficiency, and safety. (1) Flight Time Prediction. Unlike other systems that collect and use features only for the arrival airport to build a data-driven model for predicting flight times, we use a richer set of features along the potential route, such as weather parameters and air traffic data in addition to those that are particular to the arrival airport. Our feature engineering process generates an extensive set of multidimensional time series data which goes through Time Series Clustering with Dynamic Time Warping (DTW) to generate a single set of representative features at each time instance. The features are fed into various regression and deep learning models and the best performing models with most accurate ETA predictions are selected. Evaluations on extensive set of real trajectory, weather, and airport data in Europe verify our prediction system generates more accurate ETAs with far less variance than those of European ANSP, EUROCONTROL’s. This translates to more accurately predicted flight arrival times, enabling airlines to make more cost-effective ground resource allocation and ANSPs to make more efficient flight scheduling. (2) Aircraft Trajectory Clustering. The novel divide-cluster-merge; DICLERGE system clusters aircraft trajectories by dividing them into the three standard major flight phases: climb, en-route, and descent. Trajectory segments in each phase are clustered in isolation, then merged together. Our unique approach also discovers a representative trajectory, the model for the entire trajectory set. (3) Aircraft Trajectory Prediction. Our approach considers airspace as a 3D grid network, where each grid point is a location of a weather observation. We hypothetically build cubes around these grid points, so the entire airspace can be considered as a set of cubes. Each cube is defined by its centroid, the original grid point, and associated weather parameters that remain homogeneous within the cube during a period of time. Then, we align raw trajectories to a set of cube centroids which are basically fixed 3D positions independent of trajectory data. This creates a new form of trajectories which are 4D joint cubes, where each cube is a segment that is associated with not only spatio-temporal attributes but also with weather parameters. Next, we exploit machine learning techniques to train inference models from historical data and apply a stochastic model, a Hidden Markov Model (HMM), to predict trajectories taking environmental uncertainties into account. During the process, we apply time series clustering to generate input observations from an excessive set of weather parameters to feed into the Viterbi algorithm. The experiments use a real trajectory dataset with pertaining weather observations and demonstrate the effectiveness of our approach to the trajectory prediction process for Air Traffic Management. (4) Aircraft Conflict Detection. We propose a novel data-driven system to address a long-range aircraft conflict detection and resolution (CDR) problem. Given a set of predicted trajectories, the system declares a conflict when a protected zone of an aircraft on its trajectory is infringed upon by another aircraft. The system resolves the conflict by prescribing an alternative solution that is optimized by perturbing at least one of the trajectories involved in the conflict. To achieve this, the system learns from descriptive patterns of historical trajectories and pertinent weather observations and builds a Hidden Markov Model (HMM). Using a variant of the Viterbi algorithm, the system avoids the airspace volume in which the conflict is detected and generates a new optimal trajectory that is conflict-free. The key concept upon which the system is built is the assumption that the airspace is nothing more than a horizontally and vertically concatenated set of spatio-temporal data cubes where each cube is considered as an atomic unit. We evaluate the system using real trajectory datasets with pertinent weather observations from two continents and demonstrate its effectiveness for strategic CDR. Overall, in this thesis, we develop a suite of analytics models and algorithms to accurately identify current patterns in the massive flight data and use these patterns to predict future behaviors in the airspace. Upon prediction of a non-ideal outcome, we prescribe a solution to plan airspace for optimal capacity, efficiency, and safety

    Connected and Automated Vehicle Enabled Traffic Intersection Control with Reinforcement Learning

    Get PDF
    Recent advancements in vehicle automation have led to a proliferation of studies in traffic control strategies for the next generation of land vehicles. Current traffic signal based intersection control methods have significant limitations on dealing with rapidly evolving mobility, connectivity and social challenges. Figures for Europe over the period 2007-16 show that 20% of road accidents that have fatalities occur at intersections. Connected and Automated Mobility (CAM) presents a new paradigm for the integration of radically different traffic control methods into cities and towns for increased travel time efficiency and safety. Vehicle-to-Everything (V2X) connectivity between Intelligent Transportation System (ITS) users will make a significant contribution to transforming the current signalised traffic control systems into a more cooperative and reactive control system. This research work proposes a disruptive unsignalised traffic control method using a Reinforcement Learning (RL) algorithm to determine vehicle priorities at intersections and to schedule their crossing with the objectives of reducing congestion and increasing safety. Unlike heuristic rule-based methods, RL agents can learn the complex non-linear relationship between the elements that play a key role in traffic flow, from which an optimal control policy can be obtained. This work also focuses on the data requirements that inform Vehicle-to-Infrastructure (V2I) communication needs of such a system. The proposed traffic control method has been validated on a state-of-the-art simulation tool and a comparison of results with a traditional signalised control method indicated an up to 84% and 41% improvement in terms of reducing vehicle delay times and reducing fuel consumption respectively. In addition to computer simulations, practical experiments have also been conducted on a scaled road network with a single intersection and multiple scaled Connected and Automated Vehicles (CAV) to further validate the proposed control system in a representative but cost-effective setup. A strong correlation has been found between the computer simulation and practical experiment results. The outcome of this research work provides important insights into enabling cooperation between vehicles and traffic infrastructure via V2I communications, and integration of RL algorithms into a safety-critical control system

    Semantic Trajectories:Computing and Understanding Mobility Data

    Get PDF
    Thanks to the rapid development of mobile sensing technologies (like GPS, GSM, RFID, accelerometer, gyroscope, sound and other sensors in smartphones), the large-scale capture of evolving positioning data (called mobility data or trajectories) generated by moving objects with embedded sensors has become easily feasible, both technically and economically. We have already entered a world full of trajectories. The state-of-the-art on trajectory, either from the moving object database area or in the statistical analysis viewpoint, has built a bunch of sophisticated techniques for trajectory data ad-hoc storage, indexing, querying and mining etc. However, most of these existing methods mainly focus on a spatio-temporal viewpoint of mobility data, which means they analyze only the geometric movement of trajectories (e.g., the raw ‹x, y, t› sequential data) without enough consideration on the high-level semantics that can better understand the underlying meaningful movement behaviors. Addressing this challenging issue for better understanding movement behaviors from the raw mobility data, this doctoral work aims at providing a high-level modeling and computing methodology for semantically abstracting the rapidly increasing mobility data. Therefore, we bring top-down semantic modeling and bottom-up data computing together and establish a new concept called "semantic trajectories" for mobility data representation and understanding. As the main novelty contribution, this thesis provides a rich, holistic, heterogeneous and application-independent methodology for computing semantic trajectories to better understand mobility data at different levels. In details, this methodology is composed of five main parts with dedicated contributions. Semantic Trajectory Modeling. By investigating trajectory modeling requirements to better understand mobility data, this thesis first designs a hybrid spatio-semantic trajectory model that represents mobility with rich data abstraction at different levels, i.e., from the low-level spatio-temporal trajectory to the intermediate-level structured trajectory, and finally to the high-level semantic trajectory. In addition, a semantic based ontological framework has also been designed and applied for querying and reasoning on trajectories. Offline Trajectory Computing. To utilize the hybrid model, the thesis complementarily designs a holistic trajectory computing platform with dedicated algorithms for reconstructing trajectories at different levels. The platform can preprocess collected mobility data (i.e., raw movement tracks like GPS feeds) in terms of data cleaning/compression etc., identify individual trajectories, and segment them into structurally meaningful trajectory episodes. Therefore, this trajectory computing platform can construct spatio-temporal trajectories and structured trajectories from the raw mobility data. Such computing platform is initially designed as an offline solution which is supposed to analyze past trajectories via a batch procedure. Trajectory Semantic Annotation. To achieve the final semantic level for better understanding mobility data, this thesis additionally designs a semantic annotation platform that can enrich trajectories with third party sources that are composed of geographic background information and application domain knowledge, to further infer more meaningful semantic trajectories. Such annotation platform is application-independent that can annotate various trajectories (e.g., mobility data of people, vehicle and animals) with heterogeneous data sources of semantic knowledge (e.g., third party sources in any kind of geometric shapes like point, line and region) that can help trajectory enrichment. Online Trajectory Computing. In addition to the offline trajectory computing for analyzing past trajectories, this thesis also contributes to dealing with ongoing trajectories in terms of real-time trajectory computing from movement data streams. The online trajectory computing platform is capable of providing real-life trajectory data cleaning, compression, and segmentation over streaming movement data. In addition, the online platform explores the functionality of online tagging to achieve fully semantic-aware trajectories and further evaluate trajectory computing in a real-time setting. Mining Trajectories from Multi-Sensors. Previously, the focus is on computing semantic trajectories using single-sensory data (i.e., GPS feeds), where most datasets are from moving objects with wearable GPS-embedded sensors (e.g., mobility data of animal, vehicle and people tracking). In addition, we explore the problem of mining people trajectories using multi-sensory feeds from smartphones (GPS, gyroscope, accelerometer etc). The research results reveal that the combination of two sensors (GPS+accelerometer) can significantly infer a complete life-cycle semantic trajectories of people's daily behaviors, both outdoor movement via GPS and indoor activities via accelerometer

    Advances in Computational Intelligence Applications in the Mining Industry

    Get PDF
    This book captures advancements in the applications of computational intelligence (artificial intelligence, machine learning, etc.) to problems in the mineral and mining industries. The papers present the state of the art in four broad categories: mine operations, mine planning, mine safety, and advances in the sciences, primarily in image processing applications. Authors in the book include both researchers and industry practitioners

    Enhancing OpenStreetMap for the Assessment of Critical Road Infrastructure in a Disaster Context

    Get PDF
    Die Häufigkeit von Naturkatastrophen nimmt weltweit zu, was zu immensen Schäden an kritischer Straßeninfrastruktur und deren Funktionalität führen kann. Daher ist es von entscheidender Bedeutung, die Funktionalität kritischer Straßeninfrastruktur vor, während und nach einer Katastrophe zu beurteilen. Dazu werden globale Straßendaten benötigt, die für die Routenplanung nutzbar sind. OpenStreetMap (OSM) stellt globale Straßennetzdaten zur Verfügung, die kostenlos und frei zugänglich sind. Allerdings ist die Verwendung der OSM Straßendaten für Routenplanungsanwendungen oft eine Herausforderung. Das übergeordnete Ziel dieser Arbeit ist die Entwicklung eines generischen, mehrskaligen Konzepts zur Analyse kritischer Straßeninfrastrukturen im Kontext von Naturgefahren unter Verwendung von OSM Daten. Dafür werden zwei aufeinander folgende Forschungsziele aufgestellt: (i) die Verbesserung der Routingfähigkeit von OSM Daten und (ii) die Bewertung kritischer Straßeninfrastruktur im Kontext von Naturgefahren. Daraus resultiert die Gliederung dieser Arbeit in zwei Hauptteile, die jeweils den Forschungszielen entsprechen. Im ersten Teil dieser Arbeit wird die Nutzbarkeit von OSM Daten für Routing Anwendungen verbessert. Zunächst wird dafür die Qualität des OSM Straßennetzwerks im Detail analysiert. Dabei werden zwei große Herausforderungen im Bereich der Anwendbarkeit von OSM Daten für die Routenplanung identifiziert: fehlende Geschwindigkeitsangaben und Fehler in der Straßenklassifizierung. Um die erste Herausforderung zu bewältigen, wird ein FuzzyFramework zur Geschwindigkeitsschätzung (Fuzzy-FSE) entwickelt, welches eine Fuzzy Regelung zur Schätzung der Durchschnittsgeschwindigkeit einsetzt. Diese Fuzzy Regelung basiert auf den Parametern Straßenklasse, Straßenneigung, Straßenoberfläche und Straßenlänge einsetzt. Das Fuzzy-FSE besteht aus zwei Teilen: einer Regel- und Wissensbasis, die über die Zugehörigkeitsfunktionen für den Ausgangsparameter Geschwindigkeit entscheidet, und mehrere Fuzzy-Regelsysteme, welche die resultierende Durchschnittsgeschwindigkeit berechnen. Die Ergebnisse zeigen, dass das Fuzzy-FSE auch bei ausschließlicher Verwendung von OSM Daten eine bessere Leistung erbringt als bestehende Methoden. Die Herausforderung der fehlerhaften Straßenklassifizierung wird durch die Entwicklung eines neuartigen Ansatzes zur Erkennung von Klassifizierungfehlern in OSM angegangen. Dabei wird sowohl nach nicht verbundenen Netzwerkteilen als auch nach Lücken im Straßennetzwerk gesucht. Verschiedene Parameter werden in einem Bewertungssystem kombiniert, um eine Fehlerwahrscheinlichkeit zu erhalten. Auf Basis der Fehlerwahrscheinlichkeit kann ein menschlicher Nutzer diese Fehler überprüfen und korrigieren. Die Ergebnisse deuten einerseits darauf hin, dass an Lücken mehr Klassifizierungsfehler gefunden werden als an nicht verbundenen Netzwerkteilen. Andererseits zeigen sie, dass das entwickelte Bewertungssystem bei einer benutzergesteuerten Suche nach Lücken zu einem schnellen Aufdecken von Klassifizierungsfehlern verwendet werden kann. Aus dem ersten Teil dieser Arbeit ergibt sich somit ein erweiterter OSM Datensatz mit verbesserter Routingfähigkeit. Im zweiten Teil dieser Arbeit werden die erweiterten OSM Daten zur Bewertung der kritischen Straßeninfrastruktur im Katastrophenkontext verwendet. Dazu wird der zweite Teil des generischen, mehrskaligen Konzepts entwickelt, das aus mehreren, miteinander verbundenen Modulen besteht. Ein Modul implementiert zwei Erreichbarkeitsindizes, welche verschiedene Aspekte der Erreichbarkeit im Straßennetzwerk hervorheben. In einem weiteren Modul wird ein grundlegendes Modell der Verkehrsnachfrage entwickelt, welches den täglichen interstädtischen Verkehr ausschließlich auf der Grundlage von OSM Daten schätzt. Ein drittes Modul verwendet die oben beschriebenen Module zur Schätzung verschiedener Arten von Auswirkungen von Naturkatastrophen auf das Straßennetzwerk. Schließlich wird in einem vierten Modul die Vulnerabilität des Straßennetzes gegenüber weiteren Schäden bei Langzeitkatastrophen analysiert. Das generische Konzept mit allen Modulen wird exemplarisch in zwei verschiedenen Regionen für zwei Waldbrandszenarien angewendet. Die Ergebnisse der Fallstudien zeigen, dass das Konzept ein wertvolles, flexibles und global anwendbares Instrument für Regionalplaner und Katastrophenmanagement darstellt, das länder- bzw. regionenspezifische Anpassungen ermöglicht und gleichzeitig wenig Daten benötigt

    Analyzing Granger causality in climate data with time series classification methods

    Get PDF
    Attribution studies in climate science aim for scientifically ascertaining the influence of climatic variations on natural or anthropogenic factors. Many of those studies adopt the concept of Granger causality to infer statistical cause-effect relationships, while utilizing traditional autoregressive models. In this article, we investigate the potential of state-of-the-art time series classification techniques to enhance causal inference in climate science. We conduct a comparative experimental study of different types of algorithms on a large test suite that comprises a unique collection of datasets from the area of climate-vegetation dynamics. The results indicate that specialized time series classification methods are able to improve existing inference procedures. Substantial differences are observed among the methods that were tested
    corecore