Semantic Trajectories: Computing and Understanding
Mobility Data

THESE N° 5144 (2011)

PRESENTEE LE 16 AOUT 2011
A LA FACULTE INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE SYSTEMES D'INFORMATION REPARTIS
PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES

PAR

Zhixian YAN

acceptée sur proposition du jury:

Prof. C. Petitpierre, président du jury
Prof. K. Aberer, Prof. S. Spaccapietra, directeurs de thése
Prof. J.-P. Hubaux, rapporteur
Prof. Y. Theodoridis, rapporteur
Prof. R. Weibel, rapporteur

(Pr

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Suisse
2011






> BNARBRREZHFEA]

XFE (BRA) HF (A=)
EX (R%AR) 585 (REF)
Z2F (X#)

R (B EAR)

2011.08.01 3% +7& &



> Dedicated to My Precious Family

Father (Hanyu Yan), Mother (Yunnan Zuo)
Father-in-law (Jiyou Wu), Mother-in-law (Guifang Pang)
Wife (Jing Wu)

Sister (ﬂ-[uijun Yan)

Zhixian @ Lausanne, Switzerland

15t ﬂugust, 2011



Acknowledgements

The journey of this four-year PhD study at EPFL has been proved to be a unique
learning experience for me, both at the professional level and on the personal as-
pect. I am sincerely grateful to many people who accompanied with me during this

challenging and exciting doctoral-student period.

Different from most doctoral students at EPFL with only one PhD supervisor, I
am exceptionally fortunate to be co-advised by two admirable professors, i.e., Prof.
Stefano Spaccapietra and Prof. Karl Aberer. First and foremost, I am sincerely

obliged to them for their extremely proficient and ingenious supervision.

I am deeply indebted to Stefano for taking me as his last PhD student. He always
offers me his kindness, support, guidance, and friendship over the last four years.
He enlightens me about all aspects of doing research and being a scientist, e.g.,
clarifying research problems, providing precise definitions, writing good papers in
terms of critical reading, correcting my English, as well as enjoying the scientific
lifestyle. Even after his official retirement, he keeps providing fully support and
guidance on my thesis work. It is almost well-known that Stefano is not only a great
scientist but also an honorable artist. From him, I in person learned that science and
art are two sides of one coin and cannot be separated. The four-year guidance from
him is extremely beneficial, both scientifically and personally. Therefore, I have to

say that I am very lucky and happy to be his last PhD student.

I genuinely appreciate that Karl accepted to supervise me together with Stefano.
Actually, since the very early stage of my PhD at EPFL, Karl has been continuously
providing me a lot of constructive feedback and insights into this “semantic trajec-
tory” study. Every time after the discussion with him, I could be able to broaden
and deepen my research topics, and gain better ideas to target higher research levels.
Without his guidance and suggestions, it would be impossible for me to expand this
thesis study into such promising and challenging domains of mobility and sensing,
which are well beyond the initial scope of this “trajectory” work. I definitely want to
continue improving my research ability under his guidance. Therefore, my greatest

gratitude goes to Karl for all of his kindness and supports from all perspectives.

I want to thank all of the jury members of my thesis defense, including Prof. Claude
Petitpierre, Prof. Jean-Pierre Hubaux, Prof. Robert Weibel, and Prof. Yannis
Theodoridis. I am appreciative of their time and efforts in reading and assessing this
thesis work. A special thank goes to Prof. Hubaux for his agreement on serving as

a committee member to evaluate my thesis at a very late request.



This thesis would not be able to reach this level without the contribution from many
excellent colleagues and my paper coauthors, both internally and externally: Prof.
Christine Parent, Prof. Yannis Theodoridis, Prof. Archan Misra, Prof. José Antoénio
Fernandes de Macédo, Prof. Ying Ding, Dr. Dipanjan Chakraborty, Dr. Nikos
Pelekis, Dr. Hoyoung Jeung, Nikos Giatrakos, Vangelis Katsikaros, etc. My greatest
appreciation goes to Christine for her never-ending encouragement and supports
during my doctoral work, and I personally consider her as my non-official PhD
supervisor. Furthermore, she helped me translate this thesis abstract into French.
In addition, I would like to particularly show my grateful to Dipanjan as we have
co-built many nice works together. I was fully convinced by his patience in listening,
organizing meetings and thoroughly taking notes. The collaboration with him is
always productive and enjoyable. Regarding my two-month visit in Athens, I had a
great time with my Greek coauthors and friends. Many special thanks go to Nikos,
Vagelis and Despina for their kind hospitality, which made my stay in Athens very

comfortable, enjoyable, and fruitful.

I would like to thank all of colleagues and friends in my two labs (LBD and LSIR) at
EPFL, for their generous supports and friendships. The LBD members are: Marl-
yse, Shijun (1st office mate), Christelle, Tonho, Jana (2nd office mate), Fabio, Lina,
Laura, David, Charles, and Catalin (3rd office mate) etc. The LSIR members are:
Chantal, Dipanjan, Hoyoung, Saket, Ram, Surender, Alex, Hung, Mehdi, Zoltan,
Nicolas, Wojciech, Urs, Thnasis etc. In particular, I want to express my sincere
gratitude to the two secretaries, Marlyse and Chantal; I bothered them very fre-

quently, but they never lost patience with me.

Besides my own PhD study, it was a very challenging and unexceptional experience
for me in designing and guiding student projects. I had a great time in working
with many master and bachelor students: Simone, viet Hung, Shuang, Lazar, Samy,
Giorgi, Hoan, le Hung, Ming, Younes, Mouna. Thanks for their trusts in me and I

learned a lot in trying to be a qualified mentor and good leader.

During last four years, the PhD journey became more colorful with a lot of Chinese
friends in Lausanne. They are Shijun, Beilu, Hai, Huan, Luoming, Junmei, Jingshi,
Feng, Rong, Jie, Yu, Xiuwei, Le, Fei, Hu, Li, Jiaqing, Zichong, Weijia, Ji, Jingmin,
Na, Duan, Wenqi, Yuxuan, Yuanfang, Xiao, Xiaolu, Xinchao, Runwei, Yu, many
others and new friends just arrived. It is too long to list all of their names here, but
I would like to take this opportunity to express my appreciation and thank them all.

I will never forget uncountable joyful social parties together.

Last but not least, even most importantly, my heartfelt gratitude goes to my precious
family for their unconditional love, endless patience, and steady support, particularly
to my father Hanyu Yan, mother Yunnan Zuo, younger-sister Huijun Yan, my father-
in-law Jiyou Wu, mother-in-law Guifang Pang, and of course my great beloved wife

Jing Wu. This doctoral dissertation is dedicated to them.

iv



Abstract

Thanks to the rapid development of mobile sensing technologies (like GPS, GSM,
RFID, accelerometer, gyroscope, sound and other sensors in smartphones), the large-
scale capture of evolving positioning data (called mobility data or trajectories) gen-
erated by moving objects with embedded sensors has become easily feasible, both
technically and economically. We have already entered a world full of trajectories.
The state-of-the-art on trajectory, either from the moving object database area or in
the statistical analysis viewpoint, has built a bunch of sophisticated techniques for
trajectory data ad-hoc storage, indexing, querying and mining etc. However, most of
these existing methods mainly focus on a spatio-temporal viewpoint of mobility data,
which means they analyze only the geometric movement of trajectories (e.g., the raw
(x,y,t) sequential data) without enough consideration on the high-level semantics

that can better understand the underlying meaningful movement behaviors.

Addressing this challenging issue for better understanding movement behaviors
from the raw mobility data, this doctoral work aims at providing a high-level model-
ing and computing methodology for semantically abstracting the rapidly increasing
mobility data. Therefore, we bring top-down semantic modeling and bottom-up
data computing together and establish a new concept called “semantic trajectories”
for mobility data representation and understanding. As the main novelty contribu-
tion, this thesis provides a rich, holistic, heterogeneous and application-independent
methodology for computing semantic trajectories to better understand mobility data
at different levels. In details, this methodology is composed of five main parts with

dedicated contributions.

(1) Semantic Trajectory Modeling. By investigating trajectory modeling re-
quirements to better understand mobility data, this thesis first designs a hybrid
spatio-semantic trajectory model that represents mobility with rich data ab-
straction at different levels, i.e., from the low-level spatio-temporal trajectory
to the intermediate-level structured trajectory, and finally to the high-level se-
mantic trajectory. In addition, a semantic based ontological framework has also

been designed and applied for querying and reasoning on trajectories.

(2) Offtine Trajectory Computing. To utilize the hybrid model, the thesis com-
plementarily designs a holistic trajectory computing platform with dedicated
algorithms for reconstructing trajectories at different levels. The platform can
preprocess collected mobility data (i.e., raw movement tracks like GPS feeds)
in terms of data cleaning/compression etc., identify individual trajectories, and

segment them into structurally meaningful trajectory episodes. Therefore, this



trajectory computing platform can construct spatio-temporal trajectories and
structured trajectories from the raw mobility data. Such computing platform
is initially designed as an offline solution which is supposed to analyze past

trajectories via a batch procedure.

(3) Trajectory Semantic Annotation. To achieve the final semantic level for
better understanding mobility data, this thesis additionally designs a seman-
tic annotation platform that can enrich trajectories with third party sources
that are composed of geographic background information and application do-
main knowledge, to further infer more meaningful semantic trajectories. Such
annotation platform is application-independent that can annotate various tra-
jectories (e.g., mobility data of people, vehicle and animals) with heterogeneous
data sources of semantic knowledge (e.g., third party sources in any kind of ge-

ometric shapes like point, line and region) that can help trajectory enrichment.

(4) Online Trajectory Computing. In addition to the offline trajectory comput-
ing for analyzing past trajectories, this thesis also contributes to dealing with
ongoing trajectories in terms of real-time trajectory computing from movement
data streams. The online trajectory computing platform is capable of providing
real-life trajectory data cleaning, compression, and segmentation over streaming
movement data. In addition, the online platform explores the functionality of
online tagging to achieve fully semantic-aware trajectories and further evaluate

trajectory computing in a real-time setting.

(5) Mining Trajectories from Multi-Sensors. Previously, the focus is on com-
puting semantic trajectories using single-sensory data (i.e., GPS feeds), where
most datasets are from moving objects with wearable GPS-embedded sensors
(e.g., mobility data of animal, vehicle and people tracking). In addition, we ex-
plore the problem of mining people trajectories using multi-sensory feeds from
smartphones (GPS, gyroscope, accelerometer etc). The research results reveal
that the combination of two sensors (GPS+accelerometer) can significantly in-
fer a complete life-cycle semantic trajectories of people’s daily behaviors, both

outdoor movement via GPS and indoor activities via accelerometer.

Keywords: semantic trajectory, structured trajectory, spatio-temporal trajectory, hy-
brid trajectory model, trajectory ontologies, trajectory computing, offline computing,
online computing, activity recognition, indoor activities, outdoor movement, semantic

annotation, movement behavior
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Résumé

Le développement rapide des technologies associées aux capteurs de position, tels
que les GPS, GSM, RFID, accélérometre, gyroscope, ou les fonctions de localisation
des Smartphones, a rendu économiquement rentable et tres facile I’enregistrement
et le stockage a grande échelle des traces des positions des objets mobiles, tels que
les camions de livraison, les taxis, les animaux ou les humains pourvus d’un tel
capteur. Ces traces sont couramment appelées trajectoires. Nous sommes entrés
dans un monde parcouru en tous sens de trajectoires. L’état de ’art sur les tra-
jectoires, que ce soit dans le domaine des bases de données pour objets mobiles
ou dans celui de ’analyse statistique des mouvements, comprend un vaste ensem-
ble de techniques dédiées au stockage, a l'indexation, a l'interrogation, a la fouille,
etc. des trajectoires. Cependant la plupart de ces techniques se limitent a ’étude
des caractéristiques spatio-temporelles des trajectoires, c’est-a-dire a la séquence des
positions (x;,¥;,t;). Elles ne prennent pas (ou trop peu) en compte la sémantique
qui peut tre associée a ces positions, et ainsi rendent difficiles, voire impossibles,
I’analyse et la compréhension du mouvement et in fine celles du comportement de
I’'objet mobile. Cette these contribue a I’étude du comportement des objets mo-
biles en proposant une modélisation des trajectoires a plusieurs niveaux, du niveau
spatio-temporel pur au niveau sémantique, et une méthodologie associée qui permet
de transformer, en plusieurs étapes, les données de base recueillies par les capteurs
en données sémantiques. Nous obtenons ainsi des trajectoires sémantiques qui sont

bien adaptées aux traitements des applications.

La these apporte cing contributions principales qui sont décrites dans cing chapitres:

(1) Modélisation sémantique des trajectoires. A partir de analyse des be-
soins pour la description des mouvements, nous proposons un modele de tra-
jectoire hybride qui décrit les aspects spatiaux et les aspects sémantiques a
différents niveaux d’abstraction. Le premier niveau décrit les trajectoires spatio-
temporelles, c’est-a-dire uniquement leurs caractéristiques spatiales et tem-
porelles. Le second niveau décrit les trajectoires structurées qui structurent
la séquence des positions de la trajectoire en épisodes. Le dernier niveau décrit
les trajectoires sémantiques dont les positions sont transformées en références

a des objets du monde réel.

(2) Calcul des trajectoires en différé. Nous avons défini un premier jeu d’algori-
thmes qui permet de construire les deux premiers niveaux de trajectoires a par-

tir des séquences de données brutes recueillies par les capteurs. Une premiere



étape consiste a nettoyer et comprimer si besoin est les données recueillies. La
seconde identifie dans la séquence des positions les trajectoires qui sont signi-
ficatives pour ’application. On obtient alors des trajectoires spatio-temporelles.
L’étape suivante segmente ces trajectoires spatio-temporelles en épisodes, afin
d’obtenir des trajectoires structurées. Ces algorithmes ont été conus pour tre

exécutés en mode différé.

(3) Annotation sémantique des trajectoires. Afin d’obtenir les trajectoires
sémantiques, nous avons défini un second jeu d’algorithmes qui permet d’enrichir
les trajectoires avec des annotations qui référencent des objets géo-localisés du
contexte. Les algorithmes peuvent utiliser n’importe quelle source de données
qui décrit le contexte, comme une base de données spatiales ou cartographiques.
Le mécanisme d’annotation marche pour tout type d’objet spatial, que ce soit
des objets représentés par des points, des lignes ou des surfaces, ainsi que pour
des trajectoires de type véhicules ou humains. Le résultat de ce processus

d’annotation est les trajectoires sémantiques.

(4) Calcul des trajectoires en temps réel. Ce chapitre est le pendant des
chapitres (2) et (3) pour le temps réel. Nous avons défini un jeu d’algorithmes
pour construire des trajectoires en temps réel au fur et a mesure de ’acquisition
des données par les capteurs. Les algorithmes permettent d’effectuer le nettoy-
age et la compression des trajectoires en continu, ainsi que leur annotation.

Nous pouvons ainsi construire des trajectoires en temps réel.

(5) Fouille des trajectoires recueillies par plusieurs capteurs. Les algo-
rithmes des chapitres précédents ont été conus essentiellement pour des données
de type GPS, pratiquement les données des GPS de véhicules ou de personnes.
Ce chapitre traite des données qui sont recueillies a ’aide de plusieurs types de
capteurs, tels qu'un GPS et un accélérometre ou gyroscope, comme c’est le cas
des données recueillies par les smartphones. Le résultat de nos recherches est
que disposer des données de deux types de capteurs (en l'occurrence GPS et
accélérometre) permet effectivement d’inférer quelles sont les activités poursuiv-

ies par les possesseurs de smartphones, et ce tant a 'extérieur qu’a l'intérieur.

Mots clés:

trajectoire sémantique, trajectoire structurée, trajectoire spatio-temporelle, modele
de trajectoire, calcul de trajectoire, calcul en différé, calcul en temps réel, annotation

sémantique, inférence des activités, analyse du comportement.
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Chapter

Introduction

Trajectory is the magic angles of
projectile motion.

Haiduke Sarafian, 2000

This chapter presents the background and the motivation of this thesis work, as well as the

contributions and organization of this dissertation.

1.1 Background

With the ubiquitous mobile positioning and tracking devices (such as wearable chips with em-
bedded GPS — Global Positioning System, PDA — Personal Digital Assistants, and the increasing
smartphones), it becomes technically convenient and economically cheap to collect the position-
ing data generated by several different kinds of moving entities, including humans, animals, and
other non-biological moving objects like vehicles (see Figure for different kinds of mobility
data scenarios). GPS on smartphones is no longer an emerging trend, but almost a must-have
feature nowadays. All of the state-of-the-art handsets like iPhone, Android, Nokia N-series and
Windows phones can offer such positioning functionalities with embedded sensors. Berg Insight,
a well-known IT company offering business intelligence to the telecom industry, forecasts that
the shipments of GPS-enabled GSM/WCDMA handsets will grow to 960 million units in 2014,
representing an attach rate of nearly 60%[H Furthermore, other cutting edge sensor-tracking
techniques like GSM, radar, WiFi, RFID can also help capturing and preprocessing a huge
amount of trajectory relevant mobility data very conveniently.

These kinds of GPS alike tracking and wireless sensing technologies significantly enhance
the capabilities of a large amount of existing applications, and even foster new applications
and services with locomotion feeds, e.g., ranging from traffic monitoring and environmental
management, to land planning and geo-social networks. In recent years, there has been a
tremendous surge in applications and services with locomotion feeds. To give some concrete
trajectory application scenarios: (1) scientists implant GPS chips in animals to analyze the

gregarious behavior of wild life, e.g., bird migration or monkey habits in forest. (2) smart phones

"http://www.berginsight.com/ (2011)
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car navigation bird migration

Embedded sensors: GPS, Accelerometer, Digital
compass, Magnetic sensor, Orientation sensor,
Light sensor, Proximity sensor, Micro-phone,
Camera, Bluetooth, WiFi ...

(wearable sensors) (smartphones)

Figure 1.1: Different kinds of mobility data scenarios

(e.g., iPhone, Nokia N series) can help people very conveniently establish geo-social networks
(e.g., Google Latitude, Foursquare, Facebook Place, Gowalla, Twitter) and access the interesting
location-based services. (3) RFID technology installed in goods can improve the service quality
of e-business with better tracking of shipment. (4) GPS-furnished moving vehicles can enhance
real-time traffic analysis and provide better road planning to decrease or even avoid massive
congestion in cities. These kinds of applications enhanced with trajectory data become more
and more practicable and prevalent. Now, the world is already full of trajectories. This thesis
is mainly focusing on the study of heterogeneous mobility data generated by various moving
entities, e.g., vehicles, people, and animals. In Section we will investigate the detailed
requirements to provide a comprehensive model for mobility data understanding.

With such increasing GPS alike mobility data, as well as their applications like LBS ( Location
Based Services), there is a growing need for improving the capability to efficiently manage and
analyze such huge amount of trajectory data produced by moving objects. Regarding these
location-aware applications on trajectory data, the literature mainly focuses on studying the
low-level geometric view of trajectory data, in particular in the domains of trajectory data
management and statistical analysis of mobility etc.

The data management and database community, MOD (Mowving Object Database) in par-
ticular, has focused on the design of spatio-temporal and trajectory datatypes, e.g., moving
point and moving region datatypes by extending the established collections of spatial and tem-
poral datatypes [KSFT03, IGBET00, WSX™"99, [GS05, [G05]; in addition, a lot of
ad-hoc techniques for trajectory data indexing [PJT00, [TVS96, [STLLOO, [CJLO8] and query-

ing [dAGBO06, [ZS102, [WXC00] (especially the nearest neighborhood relevant queries [BJKS02,
\GLC*07, BJKS06]) are proposed. In the meanwhile, mobility data analysis from the statistical

perspective has built approximation functions for trajectory data regression and compression
[ETO07, DP73|, SRL09, KPT09], and explored data mining algorithms for trajectory
patterns discovery [JSZ07, LHWO7, JYZT08, LHLGOS], but their major focus is still on the

raw tracking data with spatio-temporal views. Until very recently, research in these communi-

ties did not reach beyond the realm of handling and manipulating the evolving geometry that
characterizes movement. These approaches leave to application developers all the burden of
reconstructing and interpreting the meanings (semantics) to understand mobility data.

2



1.2 Motivation

1.2 Motivation

Based on the previous brief discussion on the background of trajectories, either from moving ob-
ject databases or with statistical analysis, we can come to a preliminary conclusion that: moving
object database has become a well-studied technology for trajectory indexing and querying, but
only with spatio-temporal view; statistical analysis (e.g., trajectory data mining) has addressed
low-level semantics about trajectories, but high-level semantics are still missing. More detailed
study on these related works will be discussed in the state-of-the-art in Chapter [2, To the best
of our knowledge, most of these trajectory studies do not reach beyond the realm of handling
and manipulating the evolving geometry that characterizes movement. Such methods simply
assume trajectory as a curve that a moving object follows through a geometric space. However,
real-world trajectories need to be reconsidered as the trace of a moving object that has not only
the generic spatio-temporal view (the evolution of geometric location) but also the meaning-
ful semantic view (the underlying meanings for better understanding the movement behavior),
which is intensively overlooked in the literature.

Recently, newer research efforts [PSZ06, ISPDT08, YMPS08b, IABK™07] have started to ex-
plore approaches that would support trajectory-based applications with rich conceptual models
(e.g., stops and moves in trajectory) where semantics of movement can be explicitly expressed
via application-aware trajectory modeling. Starting from these previous conceptual studies on
trajectories, the motivation of this thesis is to further explore a comprehensive semantic ap-
proach for analyzing mobility data, not only from spatio-temporal (geometric) view, but also
with semantic view. We aim at a semantic data modeling and computing method for under-
standing mobility data, which is able to not only explore the high-level semantic representation
of trajectories but also support real-world trajectory application scenarios with a large scale of
low-level tracking data (e.g., GPS feeds). Therefore, the core idea of this thesis can be consid-
ered as an integrated “semantic and computing” approach for trajectory data analysis, to better
understand the movement behaviors from mobility data. To achieve this goal, on one side,
we build a rich and comprehensive semantic representation for high-level trajectory modeling
(called “semantic trajectories”); on the other side, we design a couple of computing techniques
to utilize this rich model and reconstruct meaningful trajectories from real-life low-level GPS

alike mobility tracking data.

1.3 Core Issues

To put our “semantic trajectory” motivation, namely trajectory data analysis in terms of a
semantic and computing approach, into more concrete research statements, the following core
issues and fundamental questions need to be explored and answered during this thesis work. We

identify the six main research questions (Q1 to Q) to be discussed in this dissertation.

(Ql) What are the fundamental modeling requirements for representing trajectory (mobility)
data? What are low-level spatio-temporal view and high-level semantic view for trajec-
tories? What is the main difference in these two views, why do we need both of them?
What is the gap between the spatio-temporal view and the semantics, and how to bridge

such gap?
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(Q2)

1.4

Can we provide a more comprehensive and rich semantic model for mobility data repre-
sentation? How does this model meet all of the trajectory modeling requirements and
represent both spatio-temporal and semantic views aforementioned? Any intermediate
models are required and established between the spatio-temporal view and the semantic

view?

How can the semantic trajectory model be utilized in analyzing real-life trajectory applica-
tions and used for the GPS alike movement tracking data? Which kinds of computational
solutions and algorithms need to be designed? Can statistical computing or data mining

techniques be significantly adopted or redesigned for such computational tasks?

How to further enrich trajectory semantics in addition to the trajectory computing? Does
such semantic enrichment need additional 3rd party semantic sources, such as the geo-
graphic information or the application domain databases? How to annotate such seman-
tics with extra semantic sources? Can we provide a generic and heterogeneous annotation

framework to support such semantic enrichment on trajectories?

Instead of providing offline trajectory mobility data computing, can we also provide a real-
time computation of semantic-aware trajectories from streaming movement data? What is
the major difference between online and offline situations, and how to enable our approach

to work properly and efficiently in a real-time context?

Vehicle trajectories from embedded GPS chips are usually quite stationary and the data
is easy to handle with. However, for people trajectories collected from smartphones,
the mobility data is quite heterogeneous (e.g., no GPS signals during people’s indoor
activities, people can take different transportation modes when they move, like car, bike,
on foot etc). Can we compute semantic trajectories on heterogeneous people mobility data,
e.g., inferring semantic indoor activities instead of outdoor movement? Can we combine
different sensors (e.g., both GPS and accelerometer) from smartphones to better infer a

complete semantic people daily trajectories?

Contributions

Towards the motivation and research challenges to establish a semantic approach for computing

and understanding mobility data, this thesis formulates five major contributions, corresponding

to answering the aforementioned six research questions.

1.4.1 Hybrid Spatio-Semantic Trajectory Models

The first contribution of this thesis is developing a new multi-perspective data abstraction and

semantic approach for trajectory data modeling, namely the Hybrid Spatio-Semantic Trajectory

Model. This model considers not only spatio-temporal view, but also semantic view for analyzing

trajectories. The major novelties of this model can be summarized as follows:
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o Complete Modeling Requirement — By analyzing the requirements to completely model
trajectory data, we can claim that a comprehensive trajectory model should support not
only Spatio-temporal View but also Semantic View. Spatio-temporal view is the major
focus (or even the only one) in many traditional studies on moving object databases and
so called trajectory databases; whilst semantic view explains the underlying meanings to
understand trajectory movement behaviors, which is the missing point in most existing

works and needs to be highlighted.

e Spatio-temporal and Structured Trajectories — Corresponding to spatio-temporal view and
semantic view on trajectory data, we design two kinds of trajectories respectively, named
Spatio-temporal Trajectory and Semantic Trajectory. Instead of directly building semantic
trajectory from spatio-temporal trajectory, we design an intermediate model, i.e., Structured
Trajectory, which can help bridging the gap between a pure spatio-temporal model and a

pure semantic model, by capturing structured episodes in an individual trajectory.

o Semantic Trajectories — Regarding the semantic view, we design two types of semantics
which can be used for semantically enriching trajectory data. The first one is Geographic
View (e.g., landmarks, road networks) focusing on the geographic knowledge that ought
to be integrated into the raw trajectory data; the second one is Application Domain View
(e.g., home/office information in employee databases), as additional domain specific appli-

cation knowledge for understanding trajectory behaviors.

e Trajectory Ontologies — Last but not least, we also propose an ontological infrastructure,
Trajectory Ontologies, which also covers the previous three views (i.e., spatio-temporal
view, geographic view and application domain view). Such trajectory ontological frame-
work includes three components, i.e., Geometry Trajectory Ontology (GTO), Geographic
Ontology (GO), and Application Domain Ontology (ADO). However, the ontological model
is capable of providing even higher-level semantics, to support rich (conjunctive) querying

and reasoning on trajectories.

The detailed results of the trajectory modeling will be presented in Chapter [3| Some pre-
liminary results have already been published in [YMPS08a, [YMPS08b]. This contribution is for
answering relevant research questions in and

1.4.2 Offline Trajectory Computing

As the second major contribution of this dissertation, we design a practical computing platform
for applying the previous Hybrid Spatio-Semantic Trajectory Model in the real-world tracking
movement data. Basically, we present a bottom-up computing approach for constructing differ-
ent levels of trajectories from real-life GPS-alike raw movement tracks, in terms of a couple of

dedicated data computing layers in our offline computing platform.

e Data Preprocessing Layer — This is the preliminary task on processing the raw movement
data, such as cleaning the GPS tracking records. We apply several data cleaning methods
5
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like filtering and smoothing raw movement data for removing outliers and reducing er-
rors, interpolating missing data points, map-matching GPS points to the underlying road
networks, and compressing the data etc. As a result, we can achieve a cleaned version of

movement data for the later data computing steps.

e Trajectory Identification Layer — This component divides the long cleaned movement data
(i.e., the output of data preprocessing) into a set of subsequences, where each subsequence
is corresponding to a single meaningful trajectory. Several trajectory identification polices
are proposed, such as Raw_GPS_Gap, Predefined_Time_Interval, Predefined_Space_FExtent

and Time_Series_Segmentation. As a result, we can achieve spatio-temporal trajectories.

o Trajectory Structure Layer — This is the major component in trajectory computing, which
tries to further segment each single trajectory into many meaningful units, called trajectory
episodes. There are different kinds of episodes, such as Begin, End, Stop, Move discussed
in [SPDT08|. The core issue in trajectory structure is to design relevant and robust stop
discovery algorithms, such as velocity-based and density-based algorithms. As a result, we

can achieve structural trajectories.

The details of offline trajectory computing will be presented in Chapter [4 Some preliminary
results have already been published in [YPSCIO]. This contribution is for answering relevant
research questions in

1.4.3 Trajectory Semantic Annotation

To further establish the semantic meanings for understanding trajectories, we design a semantic
enrichment layer upon the previous computing platform. Semantic enrichment can integrate
structured trajectories with semantic knowledge from the two semantic viewpoints, i.e., geo-
graphic view and application domain view. As a result, we can achieve much more meaningful
semantic trajectories compared to the previous spatio-temporal trajectories and structured tra-
jectories. For example, Figure [1.2] shows a semantic trajectory example which has semantic
annotations on each individual eplsodes, including stops (with the tags of home, office, mar-
ket) and moves (with the tags of bus, metro, walk). In this thesis, we consider the semantic
data sources from the geographic and application domain together, and divide them into three
categories based on the underlying spatial extent, i.e., region, line, and point. According to
these three spatial extents, this thesis designs a heterogeneous annotation framework with three

dedicated annotation layers to semantically enrich mobility data.

[8am, 9am] [6pm, 6:30am] [7:30pm, 8pm]
road train path way o
(bus) @ (metro) > (walk) B

home office market home
[~ 8am] [9am, 6pm] [6:30pm, 7:30pm] [8pm,~]

Figure 1.2: A semantic trajectory example
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o Annotation with Regions — This layer enables annotation of trajectories with meaningful
geographic or application domain sources of semantic regions. It does so by computing
topological correlations between trajectories and 3rd party data sources containing seman-
tic places of regions (called ROI - Region of Interest, or Pregion). We design a spatial join
based algorithm, which can work for both regular grid-based regions (e.g., Landuse data)

and free-style irregular regions (e.g., EPFL campus).

e Annotation with Lines — This layer annotates trajectories with LOIs (Line of Interests,
or Piine) like road networks and considers variations present in heterogeneous trajectories
(e.g., vehicles run on road networks, while human trajectories use a combination of trans-
port networks and walk-ways etc). Given data sources of different form of road networks,
the purpose is to identify correct road segments as well as infer transportation modes such
as walking, cycling, public transportation like metro. Thus, the algorithms in this layer
include two major parts: the first part is designing a global map matching algorithm to
identify the correct road segments for the move episodes of a trajectory, and the second one

is inferring the transportation modes that the moving object used during the movement.

e Annotation with Points — This layer annotates the stop episodes of a trajectory with
information about suitable points of interest (POIs, or Ppyint). Examples of POI are
restaurant, bar, shops, movie theater etc. For scarcely populated landscapes, it is relatively
trivial to identify the objective of a stop (e.g., petrol pump on a high-way, back home
in a very sparse residential area). However, densely populated urban areas bring several
candidate POlIs for a stop. Further, low GPS sampling rate due to battery outage and GPS
signal losses makes the problem more intricate. We have designed a Hidden Markov Model
(HMM) based technique for semantic annotation of stops. Unlike most other algorithms
to identify POIs [ABK™07|[XDZ09], an unique novelty of our approach is that it works for
densely populated area with many possible POI candidates for annotation, thus catering
to heterogeneous people and vehicle trajectories. It also enables identifying the activity

(behavior) behind the stop, thus can further semantically annotate the whole trajectory.

The details of trajectory semantic annotation will be presented in Chapter Some pre-
liminary results have already been published in [YCP™11]. This contribution is for answering

relevant research questions in Q]

1.4.4 Online Trajectory Computing

Previously, we discuss the problem of trajectory computing, which is evidently necessary for
mobility data processing and understanding, including tasks like trajectory data cleaning, tra-
jectory identification, and segmentation to identify meaningful episodes like stops (e.g., while
sitting or standing) and moves (while jogging, walking, driving etc). However, such methods in
Chapter [4] like many related literatures are typically based on an offline procedure, which is not
sufficient for real-life trajectory applications that rely on timely delivery of computed trajec-
tories to serve real-time query answers. Therefore, this thesis alternatively proposes an online
platform, namely “SeTraStream”, for real-time semantic trajectory construction. Our online

7
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framework is capable of providing trajectory online data cleaning, compression, segmentation,

and even tagging over streaming movement data.

e Online Cleaning — We apply filtering methods like a Gaussian Kernel smoothing process
or Kalman Filter to get rid of errors for the real-time streaming mobility data. There are
two types of errors we need to deal with: the systematic errors (or called outliers) which
are totally wrong positioning records of moving object from the true values and need to be

removed; the random errors as the small noisy data need to be corrected and smoothed.

e Online Compression — An initial concern in our online setting regards the compression
of the vast amounts of incoming location data. Given the limited memory resources, it
is essential to reduce the amount of raw data and derive more compact representations
describing an object’s movement that will be later utilized by the upper levels of the
trajectory computing framework. As new location data points arrive, the framework dy-
namically determines whether to keep a specific object’s datapoint or not, by taking into
consideration both (a) a local accuracy bound expressed as an L1-error threshold. That is,
given the last received point of object O; the next point has the potential to be thrown in
case the resulting error does not exceed the previously defined threshold; and (b) a global
accuracy bound which is needed to ensure that the final compressed representation will

not be distorted above a certain tolerance percentage.

e Online Segmentation — A time series based online segmentation algorithm that operates on
one single stream or multiple streams (e.g., velocity, direction, location, acceleration etc.)
of the moving object. In this step, we can apply the online-window processing methods.
To achieve parameterless or parametric-insensitive solutions, we design more advanced
similarity measurements based on the statistical information of the streams (e.g., mean,
variance, RV-coefficients), and identify trajectory breaking points based on the movement

similarity computed from these statistical features.

e Online Tagging — Having detected an episode, SeTraStream manages to specify a tuple
(time from, timego, geometrypound, tag) describing its spatio-temporal extent and semantics.
Given application’s context, possible tag instances form a set of movement pattern classes
and notice that the instances of the classes are predetermined for the applications we
consider. Hence, the problem of episode tag assignment can be melted to a trivial classifi-
cation task, where the classifier can be trained in advance based on the collected episodes
(with features like segment distance, duration, density, average speed, average acceleration,
average heading etc.) and the detected episode e; can be timely classified based on the

trained model and the episode features.

The details of online trajectory computing will be presented in Chapter [f] Some preliminary
results have already been published in [YGKT11]. This contribution is for answering relevant

research questions in Q]
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1.4.5 Trajectory Computing from Multi-Sensors in Smartphones

In addition to the GPS alike mobility data, this thesis explores mining people trajectories using
multi-sensor feeds from smartphones. Our purpose is to enrich people trajectories with semantic
information about user’s activities using the combination of phone sensors (GPS+accelerometer).
While GPS as a sensor has been researched significantly, accelerometers have only been stud-
ied for activity recognition. GPS and accelerometers sense the user in partially overlapping
dimensions of activities, movements, motion patterns. It is intuitive that knowledge extraction
from such co-related streams should enrich the semantics of a trajectory, compared to a single
sensor (either GPS or accelerometer). However, mining such information is non-trivial, specially
considering completely naturalized settings. Our results reveal that the combination of the two
sensors in smartphones can significantly infer semantic people trajectory of a more complete
daily behaviors, in particular supporting the indoor semantic activities (e.g., cooking at home,

breaking in office).

e Two-tier inference framework — We present a two-step process of semantic activity in-
ferencing that (1) uses raw accelerometer streams to derive a sequence of an individual’s
micro-activities (e.g., sit, stand, walk), and (2) employs statistical feature extraction for
mining on the micro-activities to establish the mapping from such micro-activities to the
likely semantic activity (e.g., cooking at home). This two-step approach helps providing
robustness against noise in the underlying sensor observations, and accommodates daily

behavioral variations in semantic activities.

e Micro-activities from accelerometer — We explicitly consider the problem of accelerometer-
based micro-activity classification in a naturalistic environment, where the individual goes
about her daily life (i.e., non-control of usage style when people use the phone and data with
noisy). The results show that a combination of orientation-independent and orientation-
sensitive features provides the best classification accuracy (up to 90% in our studies) for

such naturalistic settings.

e Inferring high-level semantic-activities — We propose and evaluate two discriminatory fea-
ture extraction techniques (utilizing the micro-activity stream) to identify specific semantic
activities. The first approach uses features based only on the total duration of underlying
micro-activities (resulting in a classification accuracy of about 70%), while the second ap-
proach additionally considers the order (or sequence) of these micro-activities (providing

an additional about 10% increase in classification accuracy).

The details of mining semantic trajectories from phone sensors will be presented in Chapter
Some preliminary results have already been discussed in [YCMT]. This contribution is for

answering relevant research questions in Q)]

1.5 Thesis Organization

After the general discussion about motivation and contribution of this thesis, the remainder of

this dissertation is organized as follows:



. INTRODUCTION

e Chapter 2] presents a broad view of related works towards trajectory data from several dif-
ferent perspectives, including trajectory data management, processing, mining, semantic,

and activity recognition aspects.

e Chapter |3| discusses trajectory modeling issues, including the analysis of real world trajec-
tory scenarios and the investigation on model requirements, together with our two semantic

models, i.e., the hybrid trajectory model and the trajectory ontologies.

e Chapter [4] focuses on the offline computing issues, which construct different levels of tra-
jectories from the initial raw movement data. The fundamental problems are relevant

trajectory data processing and stop identification algorithms.

e Chapter [p| investigates the semantic annotation algorithms to further enrich the semantics
of the computed trajectories. It discusses the three dedicated annotation algorithms by us-
ing regions, lines and points, repshectively, from any third party geographic or application

data sources.

e Chapter [6] discusses the real-time trajectory computing from streaming movement data,
focusing on issues regarding online data cleaning, data compression, and trajectory seg-

mentation, as well as timely tagging functionality.

e Chapter|[7]explores the application of multiple sensors embedded in the smartphones, which
can better infer semantic trajectories of a complete daily movement behavior of people’s

regular life, including both outdoor and indoor semantic activities.

e Chapter [§ provides concluding remarks. Based on the work in this dissertation, many
interesting problems for further theoretical study and practical application exist. We

present some interesting open issues and future research directions.
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Chapter

State of the Art

In the present state of the art
this is all that can be done.

H.H. Suplee, 1910

2.1 Introduction

In this chapter, we review the literature related to this thesis work, in particular studies on
managing and analyzing mobility data. We will describe their characteristics, advantages and
drawbacks. For a better understanding with clear organization, we present these trajectory
studies in terms of five main perspectives as the research background of this thesis, i.e., trajec-
tory data management, trajectory data processing, trajectory data mining, semantic trajectory
analysis, as well as some studies on activity recognition with mobility data.

This chapter is organized as follows: Section discusses trajectory data management is-
sues, particularly the study of trajectory data models, indexing and query processing techniques;
Section presents trajectory data processing techniques, especially these data cleaning, com-
pression, map matching, and segmentation methods that are related to this thesis; Section
summarizes the trajectory mining methods including clustering, classification, and sequential
pattern discovery; in Section relevant trajectory studies on semantic aspect are described,
including building ontologies and conceptual views for spatio-temporal and trajectory applica-
tions; Section discusses related work on activity recognition within the context of trajectory

or other mobile sensing data; and finally Section summarizes the state-of-the-art chapter.

2.2 Data Management for Trajectory

Over the past decades, with the rapid development of consumer electronics (e.g., GPS-equipped

PDAs, smartphones, and vehicles, as well as RFID-tag tracking and sensor networks), the

database community started to face the larger availability of mobility data that is generated

by moving objects and such data is typically called “trajectories”. A lot of relevant database

researches have been established and become hot topics in the data management field, such as

the Spatio- Temporal Database [AR99, KSFT03|, Moving Object Database (MOD) [Wol02, [GS05]
11
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and the emerging discipline of Trajectory Database [KOO7]. Similar to traditional database
studies, their main research objectives are to build ad-hoc data representation, storage, index-
ing and querying techniques for the data of moving objects and the trajectories they generate.
There are many research issues, among which the most important ones are summarized in the
following subsections, including trajectory data representation models/systems, indexing and

query processing techniques.

2.2.1 Trajectory Data Models and Systems

Similar to many conventional database studies, the study on trajectory and moving object
databases started from designing specialized datatypes for the modeling of spatial, spatio-
temporal and moving objects [KSET 03| [GS05]. Based on these specially designed and dedicated
trajectory datatypes, a lot of relevant data operators and algorithms are proposed for indexing,
querying and processing movements and trajectories [GBET00, [GP0S].

In traditional DBMS (Database Management System), data is assumed to be constant unless
it is explicitly modified, which cannot be applied for modeling moving objects or trajectories.
In order to model such continuously varying location, several new data models are proposed.
An early and representative data model called Moving Objects Spatio-Temporal (or MOST for
short) has been proposed by Wolfson in [WXCJ98| for modeling dynamic attributes which can
change continuously as a function of time without any explicit updates. With this dynamic
attribute, query results depend on not only the contents but also the time. In contrast, a static
attribute of an object is an attribute in the traditional sense, with only explicit update time.
For modeling moving objects, the MOST model can represent spatial coordinates as dynamic
attributes. A corresponding moving object database prototype, called DOMINOH (Databases
fOrMovINg Objects tracking) [WSXT99], has been produced. As shown in Figure the system
can provide temporal capabilities, uncertainty management as well as the location prediction;
the system is built upon existing object-relational databases (e.g., Oracle), as well as applying

a GIS software for visualization (i.e., ArcViewEI).
Provide capabilities and user interface

primitives for storing, querying, and

Arc-View GIS manipulating geographic information |Op 1| |Op 2| |Op n|
Optimizer

) L . | Command Manager |
Provide temporal capabilities, uncertainty

management, and location prediction l
GUI

| Query Processor & Catalog |

Object-Relational Stores the information about each
DBMS moving object, including each object’s
plan of motion v Y

Informix/Oracle Kernel

Figure 2.1: DOMINO system [WSX*99) Figure 2.2: SECONDO system [GdAAT05]

| Storage & Manager Tools |

"http://www.cs.uic.edu/~wolfson/html/mobile.html
2http://www.esri.com/software/arcview/
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The second well-known moving object data model is built by Giiting in an extensible database
system called SECOND(ﬂ which supports non-standard database applications and moving
objects in particular. With the extensions on spatial and temporal algebra modules, SECONDO
uses spatial, temporal, and moving object datatypes to build moving object database system
as non-standard applications [G05, IGAAAT05, [GS05, |GO7]. In such system, moving object
is treated as a general time-varying geometry data type. New spatio-temporal datatypes are
designed and integrated into existing relational, object-oriented, and other DBMS data models;
furthermore, operations and algebras with formal semantics are defined for supporting spatio-
temporal query languages [GBET00]. In the implementation of the SECONDO system, there are
three major components (see Figure written in three distinctive programming languages:
the kernel with a set of algebras to support query processing is implemented in C++; the
optimizer implemented in PROLOG provides SQL-like query language with conjunctive query
optimization; and a graphic user interface is written in Java. In addition, Giliting et al. set
up a benchmark system (called BerlinMOﬂﬂ [DBGOT]) for evaluating moving object databases.
Based on the synthetic data generated by SECONDO with a simulated scenario, BerlinMOD
can validate moving object databases in terms of two sets of trajectory querying problems, i.e.,
the range and the nearest-neighbor queries.

Besides SECONDO implementing the idea of time-varying moving object datatypes, HER-
MESﬂ is yet another similar moving object database engine designed by Pelekis et al. The main
functionality of HERMES is to support the modeling and querying of continuously moving ob-
jects [PTVP06, PEGTO§|. The system is built on top of Oracle; a set of trajectory datatypes and
corresponding operations are defined in an Oracle data cartridge, called HERMES Mowving Data
Cartridge (Hermes-MDC), based on the extension and combination of Oracle Spatial Cartridge
and TAU Temporal Literal Library (TAU-TLL) Data Cartridgeﬂ Besides working as a moving
object database engine, HERMES can also be used either as a pure temporal or a pure spatial
database system. A couple of recently emerging trajectory indexing and querying techniques
have been already implemented in the HERMES trajectory database system [Ere08, PEGTOS].
As shown in Figure HERMES is implemented in PL/SQL based on the extension of Ora-
cle spatial; it also supports the network constrained trajectory data, as well as provides a web
demonstration for trajectory querying and visualization [PEGTOS].

In addition to the above three most well-known trajectory database engines, there are several
other research prototypes of trajectory databases. Meng and Ding in [MDO03] provide a future-
trajectory driven moving object database system, called DSTTMOD (Discrete Spatio-Temporal
Trajectory Based Moving Objects Database). Different from most prior moving object databases,
their claim is to support not only historical trajectories but also future location information. Aref
et al. design PLACE (Pervasive Location-Aware Computing Environments), a scalable location-
aware database server that can support continuous evaluation of queries over spatio-temporal
data streams [MXA¥04, XMAT04]. As built upon Nild] (a data stream management system

3http://dna.fernuni-hagen.de/Secondo.html/index.html
“http://dna.fernuni-hagen.de/secondo/BerlinM0OD/BerlinMOD. html
Shttp://infolab.cs.unipi.gr/hermes/
Shttp://www.oracle.com/technology/documentation/
"http://www.cs.purdue.edu/Nile/
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Client tier Application Tier
m http request Java
¢ ’ WS
__l_ response JSP
I JDBC Preprocessor
ORDBMS Tier
PL/SQL Interface Oracle Storage
| Spatial | | Temporal — TB-Tree Index
1 1 Trajectoires
R ﬂﬂ%ﬂ:ﬂ
TB-tree operands | [ ] |
I spatial data network data
Network Data Model =7
Analysis Services

Figure 2.3: HERMES system architecture [PTVP06]

[HMAT04]), the PLACE server can support a wide variety of stationary and moving continuous
spatio-temporal queries through a set of pipelined spatio-temporal operators, in terms of an
incremental evaluation mechanisms in a real-time setting.

For a realistic trajectory model in real world applications, two additional issues need to be
discussed, i.e., modeling with network-constrained movement and dealing with uncertainty. In
real-life, many moving objects are restricted to moving in a given underlying spatial network,
e.g., a transportation network like metro lines. Based on their early work on non-constrained
moving object database [GBET00], Giiting et al. have extended new network interfaces to the
standard time-varying moving object datatypes [GAADO6]. There are also some other relevant
network-constrained moving object data models like [VWO0I] (with dedicated predicts to support
network-related trajectory queries) and [SJKO03] (with rich network models from computational
perspective). Due to GPS alike mobile devices measurements and sampling errors, the recorded
position of a moving object does not always represent its precise location [ZG02]. Frentzos
in [Fre08] has summarized three possible sources for uncertainty: imperfect observation of real
world; incomplete representation language; ignorance, laziness or inefficiency. In order to man-
age moving object uncertainty, many different uncertainty models have been proposed in the
literature [TWHC04, [PJ99l [dAGO05Db, KOOQ7]. It is worth noting that privacy is another impor-
tant issue for real-life systems. For example, Gkoulalas et al. extend the HERMES system to
HERMES™™ for supporting privacy-aware trajectory tracking queries [GDV08]. In Table
we briefly summarize and compare these most-cited trajectory database engines. More detailed
discussion on the query and index functionalities will be provided in the later two subsections.

These aforementioned moving object database systems are still research prototypes, without
industrial strengths. The present commercial database management systems have built a couple
of functionalities for supporting spatial or temporal applications separately (e.g., Oracle Spatial,
SQL Server Spatial, PostgreSQL, PostGIS), in particular the requirements of spatial data like in
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| DOMINO | SECONDO |HERMES| PLACE |DSTTMOD|
moving point vV vV vV Vv vV
Data-
moving region NO Vv NO NO NO
types
network NO v vV NO NO
use-exist-db || v/(Informix) NO v/(Oracle) v/ (NILE) NO
Implemen-
tati language — Java/c++/Prolog| PL-SQL | C++ (server) —
ation
visualize V/(ArcView) | 4/ (Gui in Java) | / (Web) |/ (Guiin C++)| +/ (Gui)
Function- qanery v v v v v
it uncertain vV NO NO NO vV
alities
predict Vv NO NO NO vV
privacy NO NO Vv NO NO

Table 2.1: Comparison of different trajectory database models/systems

Geographic Information Systems (GIS). There is still a long way to go for the industry towards

moving object or trajectory databases.

2.2.2 Trajectory Indexing

Similar to traditional databases, the design and construction of an efficient and effective tra-
jectory indexing structure is a very important and challenging topic, which can ensure high
performance for trajectory data management, particularly for achieving efficient data querying.
The moving object can move continuously and generate a huge amount of or even unlimited size
of trajectories as time proceeds; therefore, trajectory indexing is crucial and becomes a possible
bottleneck in many trajectory data application systems.

One of the first, most important and ubiquitous, multi-dimensional spatial indexing technique
is R-tree [Gut84], which can be considered as a hierarchical data structure based on BT-tree
in multi-dimensional spaces. With the success of R-tree in spatial databases, it is well-used in
various applications, from geographical information system (GIS) and computer-aided design
to image and multimedia management systems [MNPTO5, HMTTO8|. R-tree, with its variants
and extensions, actually dominates the domain of spatio-temporal data indexing, where spatial
objects are represented by their minimum bounding rectangles (MBR). There are many examples
such as three-dimensional R-tree [TVS96], TB-tree (Trajectory Bundle Tree) and STR-tree
(Spatio-Temporal R-tree) [PJT00], and OP-Tree (Octagon-Prism Tree) [ZSI02]. Such trees can
support efficient trajectory-based queries. Recently, Frentzos et al. further extend the TB-Tree
methods and set up TB*-tree and FNR-tree (Fized Network R-tree) [Ere08]. TB*-tree offers
more trajectory operations, such as insertions, deletions and compressions; while FNR-tree can
be used for indexing movements in a constrained space, which is another interesting study on
indexing network-constrained moving objects and trajectories [DAGO05al, [PJ05].

The aforementioned TB-tree family is focusing on indexing the past trajectories. Another
active study of spatio-temporal indexing is the family of TPR-tree (the Time Parameterized
R-tree) [SJLLO0] that is originally proposed by Jensen’s group on the extension of R*-trees
(a variant of the R-tree) [BKSS90]. In addition to the MBR of the spatial extents, TPR-tree
maintains the velocity bounding rectangles (VBR), which can in turn index not only current
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but also the anticipated future positions of moving point objects. Therefore, TPR-tree benefits
to the query of present and anticipated future trajectories. Due to its success in indexing
current and future trajectories, TPR-tree has 204 successors developed by researchers from
2000 to 2008ﬂ Among them, TPR*-tree is one of the most dominant extensions [TPS03|, which
significantly enhances the TPR-tree performance by integrating novel insertion and deletion
algorithms during maintaining the index.

The R-tree based trajectory indexing techniques are prone to achieving low efficiency during
update compared with traditional BT-tree, because of the overlaps between bounding rectangles
(BRs). The