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Abstract

Recent advancements in vehicle automation have led to a proliferation of studies in traffic control
strategies for the next generation of land vehicles. Current traffic signal based intersection control
methods have significant limitations on dealing with rapidly evolving mobility, connectivity and social
challenges. Figures for Europe over the period 2007-16 show that 20% of road accidents that have
fatalities occur at intersections. Connected and Automated Mobility (CAM) presents a new paradigm
for the integration of radically different traffic control methods into cities and towns for increased travel
time efficiency and safety. Vehicle-to-Everything (V2X) connectivity between Intelligent
Transportation System (ITS) users will make a significant contribution to transforming the current
signalised traffic control systems into a more cooperative and reactive control system. This research
work proposes a disruptive unsignalised traffic control method using a Reinforcement Learning (RL)
algorithm to determine vehicle priorities at intersections and to schedule their crossing with the
objectives of reducing congestion and increasing safety. Unlike heuristic rule-based methods, RL agents
can learn the complex non-linear relationship between the elements that play a key role in traffic flow,
from which an optimal control policy can be obtained. This work also focuses on the data requirements
that inform Vehicle-to-Infrastructure (V2I) communication needs of such a system. The proposed traffic
control method has been validated on a state-of-the-art simulation tool and a comparison of results with
a traditional signalised control method indicated an up to 84% and 41% improvement in terms of
reducing vehicle delay times and reducing fuel consumption respectively. In addition to computer
simulations, practical experiments have also been conducted on a scaled road network with a single
intersection and multiple scaled Connected and Automated Vehicles (CAV) to further validate the
proposed control system in a representative but cost-effective setup. A strong correlation has been found
between the computer simulation and practical experiment results. The outcome of this research work
provides important insights into enabling cooperation between vehicles and traffic infrastructure via

V2I communications, and integration of RL algorithms into a safety-critical control system.
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delay percentage improvement is shown for each driving behaviour in simulation work and the scaled
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Chapter 1

1. Introduction

1.1. Motivation

The increasing volume of road transport creates several problems, among which the most serious
challenges are congestion growth, rise in energy consumption and carbon emissions (European
Commission, 2019b). Energy consumption of the transportation sector including air, road, railway,
marine in total accounts for 31% of all sectors in Europe where road transport has the greatest share at
94% of all transport options mainly due to an increase in number of vehicles by 1-2% on average every
year since 1990, reaching up to 516 cars per 1000 inhabitants in 2017 (European Commission, 2019a).
Therefore, there is an urgent need to address road transport issues to prevent their negative impacts on

economy, air quality, journey times and environment.

Technological advancement in recent years, targeting more efficient, safe and sustainable road transport
systems, has been instrumental in achieving a paradigm shift when considering the next generation of
Intelligent Transportation Systems (ITS). Connected and Automated Vehicles (CAV) and Cooperative
ITS (C-ITS) technologies are among these emerging fields that have the potential to radically reshape
how our current transport system operates in a response to the aforementioned challenges (Milakis, van
Arem and van Wee, 2017). In short, C-ITS involves communication between different users and
providers of ITS such as vehicles, traffic infrastructure etc. to establish cooperation by information

exchange, while CAV technologies aim to eliminate humans from the driving task in a vehicle.

Traffic management at intersections is one of the most important areas in ITS that can improve the
highlighted mobility and congestion issues in a cost-effective way (Mladenovic et al., 2016). The
figures in Europe over the period 2007-16 show that 20% of road accidents that have fatalities occur at
intersections (European Commission, 2018), and because of safety this puts traffic management at the
forefront of areas that need to be addressed as a priority. With penetration of C-ITS and CAV
technologies, traffic management methods are expected to harness the power of cooperation as well, in

order to better match the traffic demand to the existing infrastructure capacity. Signalised control is the
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most common traffic management method worldwide that utilises traffic lights to inform right-of-way.
It generally uses static road sensors such as loop detectors, radars and cameras to capture the traffic
demand, and as a result, the performance of such systems heavily depends on the number of sensors
installed (Atkins, 2016a). Use of C-ITS shared data between the traffic infrastructures and traffic users

can overcome this challenge whilst reducing infrastructure costs.

The advancements in computing power and data science has brought a resurgence of Artificial
Intelligence (AI) techniques in recent years which are broken down into three main categories:
supervised learning, unsupervised learning and Reinforcement Learning (RL) (Sutton and Barto, 2018).
Supervised learning deals with finding a relationship between input and output based on example data
provided whereas unsupervised learning attempts to find a pattern in a dataset without having any prior
knowledge about this data. On the other hand, RL is framed as a sequential decision making paradigm
that enables learning by trial-and-error. Among these categories, RL is considered to be the most
promising approach for traffic management applications (Haydari and Yilmaz, 2020) mainly due to its

ability to deal with stochastic environments such as traffic.

With this in mind, this research project seeks to propose a disruptive traffic control method with no
traffic lights, hereinafter referred to as unsignalised traffic control, that integrates C-ITS and CAV
features to make better use of the road transport infrastructure. In this method, the intention is to
implement RL-based decision making mechanism to manage intersection crossing of vehicles in a
proactive way in order to reduce journey times, congestion and improve safety. Unlike a typical Traffic
Light Control (TLC) method where each direction of traffic on the road is given right-of-way as a batch
of vehicles in turn with traffic lights, in the proposed method, vehicles are assigned with priorities
individually by the Al control algorithm, and a dedicated intersection crossing time window is allocated
for each vehicle. Another key differentiating point between the two control methods is that TLC
systems, in general, are based on complex mathematical traffic models in order to optimise signal
timings (Zhao, Dai and Zhang, 2012) for a given intersection whereas the proposed Al based control
method in this research work uses a model-free approach in which learning the traffic environment

dynamics happens in a trial-and-error way.

1.2. Research Questions

The main research questions are connected to each other and focused on the central research topic in

the area of traffic control considering the future of mobility. The questions are formulated as follows:
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Q1. How can an Al control strategy improve signalised control based on traffic lights in terms of
achieving less congestion, journey time and gas emissions by considering the integration of C-ITS
communication features, various levels of CAV penetration rates and different driving behaviours

from cautious to assertive?

Q2. What is the impact of the stochastic nature of the traffic environment on how an Al control
algorithm is designed? How is the operation of such a control method influenced by the neural

network architecture, traffic state representation, reward mechanism and the training strategy?

Q3. How can an Al traffic control method be validated with a generalised framework in both
simulation and practical settings? What is the most feasible, representative and cost-effective way
to benchmark the performance of the proposed control method against the fixed-time TLC method

in order to determine how robust and proactive they are under different traffic scenarios?

1.3. Structure of the Thesis

The structure of the thesis closely follows the research objectives in Section 2.6 and it is divided into 9
chapters including this first chapter where an introduction to the research work is presented. Chapter 2
presents the literature review and necessary background information on wireless communications in
ITS, various traffic management approaches at intersections, RL strategies and CAV technologies.
Chapter 3 then goes on to outline the wireless communication protocol used between CVs and RSU in
conjunction with the data requirements. Chapter 4 presents the details of the RL algorithm for vehicle
priority assignment and the methods used for collision avoidance while granting intersection crossing
access to vehicles with conflicting trajectories. Chapter 5 explains the concept of algorithm training, in
the context of RL, and gives details of the simulation platform and the created traffic environment.
Chapter 6 and 7 are concerned with the validation of the proposed traffic control method in the
simulation and the scaled testbed scenarios in addition to focusing on the performance comparison of
different traffic control methods. Chapter 8 presents the key findings of the research work by analysing
the simulation and the testbed experiments results. Chapter 9 draws conclusions on the research work

while providing insights and recommendation for future research.
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Chapter 2

2. Literature Review

2.1. Vehicle Connectivity and Autonomy

2.1.1. Vehicular Communications in Intelligent Transportation Systems (ITS)

Vehicle connectivity is one of the key enabler technologies for the next generation of I'TS infrastructure
which will enable information exchange with traffic users to coordinate their actions. This cooperation
between different users in traffic is expected to provide significant improvements in road safety and
more efficient use of limited road space (European Commission, 2017). Therefore, the European
Commission adopted the Cooperative ITS (C-ITS) strategy in November 2016 towards facilitating the
regulatory frameworks for the future of land traffic across Europe where Cooperative, Connected and

Automated Mobility (CCAM) technologies and services are deployed (European Commision, 2016).

C-ITS Deployment Platform was set up by the European Commission after the C-ITS strategy was
adopted as one of the key milestones to develop a shared and synchronised approach for the C-ITS
deployment in Europe with all stakeholders (European Commission, 2017), and this platform has been
working towards using mature short range communication technology like ITS-G5 (ETSI, 2010a) at
5.9 GHz or wide-area communication technologies like 3G, 4G or 5G. The wireless local area network
based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11p/bd standard (IEEE, 2014)

is the US market equivalent of ITS-G5 in Europe which offers similar features.

Several applications are supported within the ITS communications architecture in which data can either
be transmitted periodically via Cooperative Awareness Messages (CAM) (ETSI, 2014a) or event-based
via Decentralized Environmental Notification Message (DENM). DENM is especially important for
information dissemination on irregular traffic activities such as road works, hazards and events that has

potential impact on road safety (ETSI, 2010b).
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CAM messages are transmitted in a single hop communication. Therefore, direct communication range
is required to exchange CAM data. Unlike CAM, DENM can be disseminated to other users within the
same local geographical area in a multi-hop communication method (ETSI, 2010b). The data exchange
frequency for mobile users such as vehicles can be between 10 Hz and 1 Hz whereas it can be greater

than 1Hz for static stations such as Road Side Units (RSU) (ETSI, 2014b).

A study by Asselin-Miller et al., (2016) on the deployment of C-ITS in Europe reports that using cellular
networks like 5G can accelerate the deployment of these systems greatly as the underlying technology
has already been implemented and in use today. However, uncertainties exist around the latency times
that can be experienced for safety-critical applications when this technology is used. The authors also
highlight that the benefits of C-ITS can be significant especially in urban areas however, there is not
enough data to measure the effectiveness of some applications including traffic control. With this in

mind, it is expected that this research work will provide data in this domain.

2.1.2. Vehicle-to-Infrastructure (V2I) Communications

Within ITS, the Vehicle-to-Everything (V2X) umbrella term is used to represent wireless
communications between vehicles and all other users. Infrastructure is one of these users and Vehicle-
to-Infrastructure (V2I) communications has great importance for traffic control applications which will

be reviewed in this section.

Vehicle On-Board Unit (OBU) and RSU are two main components in a V2I architecture for traffic
control. Varga et al. (2017) implements a proof of concept system in the field that conforms to the C-
ITS standards (See Section 2.1.1). Vehicles receive broadcasted local MAP (physical intersection
geometry data) and Signal Phase and Time (SPaT) data from the RSU and transmit CAM data for
intersection crossing. The feasibility of the proposed solution is demonstrated for various environments
including rural, highway and urban traffic. On the other hand, Parra et al., 2017 argue that
communication reliability becomes a challenge in busy urban traffic scenarios and the authors suggest

this could be solved by improving the channel usage mechanism for heavily congested traffic scenarios.

Steinmetz et al. (2014) study V2I communication performance for an intersection control problem. The
main objective of the study is to determine the optimum uplink and downlink parameters to ensure
reliable communication. The simulation results show that a minimum of 100 uplink channels and

relatively high uplink power are required for a reasonable quality of service based on 100 ms of vehicle
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data broadcast interval. In terms of downlink, the authors found that a time interval of 300-400ms is the
most appropriate value to disseminate vehicle coordination data from the intersection controller. In the
same vein, Lee and Park (2015) found out that when there are less than 30 vehicles in the

communication zone of 150m, the packet drop is 0.01% which is insignificant.

There is also a growing body of literature that recognises the problems associated with redundant,
irrelevant, large data exchange between ITS users. Drawing on an extensive range of sources, Rettore
et al., 2019 focuses on the concept of vehicular data space in which V2X communication scenarios are
described from data point of view. It is argued that for a traffic control scenario, acquiring data on

vehicle states, weather and road conditions are fundamental.

2.1.3. Connected and Automated Vehicles (CAV)

The driving task in land transportation requires a complex skillset for safe and efficient movement of
vehicles between locations. Autonomous vehicles must be equipped with sufficient tools to be able to
handle unpredictable situations and make timely and safe decisions. Even though the state-of-the-art
CAYV solutions today cannot yet achieve the performance level that is acceptable for unsupervised
driving under any condition and environment (Schwarting, Alonso-Mora and Rus, 2018), the
automotive industry has witnessed a rapid progress recently on CAV technologies with cost reduction
of vehicle sensors and computing resources together with an increase in their availability (Pendleton et

al., 2017).

The Society of Automotive Engineers (SAE) provides a taxonomy that describes a range of vehicle
automation levels between SAE Level 0-5, and the autonomous driving capabilities increase as the level
number increases (SAE International, 2018). For example, SAE Level 5 vehicle refers to a fully
autonomous vehicle where there is no human driver, and the vehicle has the capability to drive

everywhere on the road network under all conditions.

The CAV technology is expected to disrupt many aspects of our mobility and lives in general. The
sequential effects of CAVs on mobility and society from short to long term are shown in three steps in
Figure 1 based on the rippled effect diagram by Milakis, van Arem and van Wee (2017). Congestion,
road capacity and value of time are all part of the first step effects of CAVs to which traffic control
applications are closely related. The second step effects include vehicle design and infrastructure while

the third step effects contain wider implications such as air pollution, energy consumption etc. When
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CAV-enabled traffic control systems are used, it is highlighted that more than two-fold road and

intersection capacity benefits can be realised as CAV penetration rate increases in traffic.

Step 1
Road Capacity Congestion Travel Choice
Travel Cost Vehicle Cost Value of Time
Step 2
Infrastructure Use of Land Vehicle Design
Employment Recreation Residential
Step 3
Social Equity Economy Use of Energy
Air Pollution Safety Public Health

Figure 1 — The sequential effects of autonomous driving from short to long term are shown in 3 steps

(Modified from source: Milakis, van Arem and van Wee (2017)).

It has commonly been assumed that removing the human driver element out of the driving task will
increase safety and reduce incidents in our transport network (Mladenovic, Abbas and McPherson,
2014) as the great majority of incidents occur due to human error (Fagnant and Kockelman, 2015).
Based on the statistics reported by European Commission (2018), obstruction to view, distraction,
inadequate plan and insufficient knowledge are among the reasons for incidents caused by human
drivers at traffic intersections, and the most common reason is the information failure between drivers
and traffic infrastructure, or between driver and vehicle (16% of fatal incidents). This points out a clear

need for better information exchange between traffic users at intersections.

The aforementioned advantages of CAVs compared to legacy vehicles are not only due to autonomous
features, but connectivity will also play a key role to enable cooperation between vehicles and
infrastructure via V2X communications (Fagnant and Kockelman, 2015). Taken together, the literature
on this subject supports the notion that many processes and systems will be affected by the advancement
of CAV technologies, and the evidence reviewed so far suggests a pertinent role for CAV-enabled

traffic infrastructure.
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2.1.4. The Impact of CAVs on Traffic Flow

CAYV technology is expected to have significant impact on how vehicles operate on the transport
network. Speed profiles, platoon formations, the interaction with legacy vehicles, lane positioning and
alignment and spacing between vehicles while driving are some of the characteristics that will influence
vehicle dynamics, road capacity, safety, carbon emissions and journey times (Atkins, 2016a). 40%
penetration rate of CAVs is reported to be a critical threshold to gain significant benefits (>10%) on
road capacity, and 100% penetration rate of CAVs could double the road capacity (Milakis, van Arem
and van Wee, 2017).

The choice of vehicle behaviour, cautious to assertive, that is implemented by vehicle manufacturers
and configurable by the end user can have a great impact on road capacity as the rate of CAV penetration
increases (Atkins, 2016a). Cautious driving behaviour, in this case, refers to an autonomous driving
style with user comfort (i.e. smaller rates of acceleration or deceleration) and more safety (i.e. larger
headways' between vehicles than traditional human-driven vehicles) as the main considerations.
Considering that human drivers will co-exist in traffic with CAVs for the foreseeable future, it is
essential to measure the impacts of different driving behaviours in the presence of CAV-enabled traffic

infrastructure at intersections.

Travel time reliability can be improved with CAVs due to advanced vehicle motion control, reduced
headways between vehicles and quicker reaction times (Fagnant and Kockelman, 2015). In terms of
travel time optimisation with CAVs, intersection control scenarios have more room for improvements

compared to highway scenarios (Milakis, van Arem and van Wee, 2017).

2.2. Signalised Traffic Control Systems

There are several TLC methods which will be placed in three broad categories in this literature review:
fixed-time, actuated and adaptive control. All of these three control categories make use of the concepts
of “phases” and “stages”, and therefore, it is important to understand what they refer to. British
Standards Institution (2007) defines the phase as a set of traffic movements that can take place
simultaneously, and the stage is defined as part of the control cycle during which a specific set of phases
are granted right-of-way with green light. The rest of this section will present the key research work in
the aforementioned categories. In addition, traffic control methods for the next generation of vehicles

with connectivity and autonomy features are also presented.

! Headway is the distance between vehicles on the road measured in time or space.
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2.2.1. Fixed-Time Traffic Signal Control

In fixed-time traffic signal control, green phase durations for the approaching lanes and their orders are
set offline prior to field deployment with optimisation tools such as TRANSYT (Robertson, 1969),
SYNCHRO (Husch and Albeck, 2003) and VISGAOST (Stevanovic et al., 2008). The optimisation is
done based on the historical traffic data for a given intersection and there are two main optimisation
techniques under the fixed-time control, namely stage-based and phase-based optimisations. The
aforementioned tools can generate a series of signal plans prior to deployment in the field for different

times of a day or for rush-hour type recurring events.

The fixed-time traffic control does not meet the fluctuating traffic demand and is not capable of
responding to any disruptive events such as accidents which is considered as the main drawback (Li,
Elefteriadou and Ranka, 2014). On the other hand, it is cost-effective as there is no requirement for

installation of sensors and communication devices for real-time data collection.

2.2.2. Vehicle-Actuated Traffic Signal Control

Vehicle actuated methods were introduced to overcome the inefficiencies of offline traffic timing
optimisation methods (Gokulan and Srinivasan, 2010). MOVA (Peirce and Webb, 1990), LHOVRA
(Kronborg and Davidsson, 1993) and SOS (Kronborg, Davidsson and Edholm, 1997) are prime
examples of vehicle actuated methods in which loop detectors play an important role to detect
approaching vehicles and set the green time duration accordingly (Abdulhai, Pringle and Karakoulas,
2003). Under this method, the phase time is extended in steps of seconds based on the traffic demand
that is detected by the sensors.

Even though the vehicle actuated methods responds to fluctuating traffic demands unlike the fixed-time
control methods, it is argued that the control decisions are suboptimal due to their myopic nature in time
(Yau et al., 2017; Xie et al., 2012). Another disadvantage of this method is that it only considers the
traffic demand on the current phase when deciding whether to increase the green time duration or not
for that phase without taking into account the demand on other phases, and this can significantly limit

the optimal usage of time and intersection space (Zhao, Dai and Zhang, 2012).
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2.2.3. Adaptive Traffic Signal Control

Adaptive control is a combination of the fixed-time and actuated methods in which signal time
optimisation is done online at every control cycle i.e. every 15 minutes based on the traffic demand.
More precisely, adaptive control includes a traffic network model that takes real-time measurements
rather than historical values as input to the model. The split, offset, cycle and/or switching times are the

outputs of the model for the subject traffic intersection.

Some of the well-known adaptive control methods are SCATS (Sims and Dobinson, 1980), SCOOT
(Hunt et al., 1981), GLIDE (Keong, 1993), ACS-Lite (Luyanda et al., 2003) which are used for urban
intersections worldwide (Gokulan and Srinivasan, 2010). Other adaptive control methods include
OPAC (Gartner, 1983), PRODYN (Henry, Farges and Tuffal, 1984), RHODES (Head, Mirchandani
and Sheppard, 1992), TUC (Dinopoulou, Diakaki and Papageorgiou, 2006), COP (Sen and Head, 1997),
DYPIC (Robertson and Bretherton, 1974), ALLONS-D (Porche and Lafortune, 1999), CRONOS
(Boillot, Midenet and Pierrelée, 2006) and RT-TRACS (Gartner, Pooran and Andrews, 2002).

Adaptive control can be coordinated for large networks to deal with oversaturation in traffic and the
inaccuracies of local sensor measurements, and, it is also considered widely for integration with further
traffic control strategies such as freeways (Papageorgiou et al., 2003). Integrated traffic control can
maximize the technical and performance benefits of multiple different subsystems by combining
different traffic signal parameter update strategies (Wang et al., 2018). On the other hand, achieving
real-time performance with adaptive control methods has shown to be very challenging as the model
state space grows exponentially with the number of steps in the optimisation horizon (Papageorgiou et
al., 2003). Xie et al. (2012) list some of the methods that are implemented such as shorter optimisation
horizon, smaller number of phase switches, value approximations and heuristic searches to achieve real-

time tractability with adaptive traffic control.

2.2.4. Traffic Signal Control with Vehicular Communications

The traffic signal control methods presented so far summarised the performance improvement efforts
made over the years to meet the ever-increasing demand in land traffic without using vehicular
communications. The research work presented in this section focuses on advanced real-time traffic
control methods that support V2X communications. The core idea is to extract and utilise valuable

information in the data that is exchanged between traffic users.

37



In the absence of vehicular communications, traffic flow parameters are estimated such as flow rate,
lane occupancy, average vehicle speed etc. to calculate signal timings. When vehicular communications
is used, estimation inaccuracies and challenges are overcome by providing actual real-time data (Li,
Wen and Yao, 2014). de Luca et al. (2017) study the traffic signal optimisation problem with vehicular
communications under a mixed traffic environment with traditional vehicles and CVs. Stage sequence
of the traffic light, the departure times and routes of the approaching CVs are optimised through a meta-
heuristic algorithm which is formulated as a Mixed-Integer Program. Similarly, Chang and Park (2013)
and Gokulan and Srinivasan (2010) propose signal control strategies that replace estimation functions

with real-time data acquired via vehicular communications.

Vehicular communications technology also paved the way for further research work in traffic control
that would otherwise not be possible. One prime example is vehicle trajectory optimisation to smooth
traffic flow which is commonly referred to as Green Light Optimised Speed Advisory (GLOSA)
systems (Katwijk and Gabriel, 2015). The key idea is to exchange signal timings with CVs so that they
can apply optimised acceleration and deceleration profiles while approaching an intersection from a
certain distance to prevent stop-and-go movements and to reduce energy consumption. Traffic signal
timing and vehicle trajectory optimisations together can be considered as a bi-level optimisation
problem in which speed profiles are generated based on methods such as model predictive control (Du,
HomChaudhuri and Pisu, 2017)(Katwijk and Gabriel, 2015), branch-and-bound (Yang, Guler and
Menendez, 2016), heuristic rules (Zhou, Li and Ma, 2015) and rolling horizon (Li, Elefteriadou and
Ranka, 2014).

Based on the research work in this field, it becomes apparent that prevalence of vehicular
communications also triggered a transition in the design philosophy of traffic control systems.
Estimation of current traffic state based on loop detectors is enhanced by accurate real-time data enabled

by V2X communications (Chang and Park, 2013).

2.3. Unsignalised Traffic Control Systems

In this research work, unsignalized traffic control is used to define traffic control systems that do not
involve traffic lights to indicate right of way. Traditionally, at unsignalized intersections such as
roundabouts, T-junctions etc., the driver must make the decision of when to enter the intersection as
there is no positive indication or control signal given to the driver by any traffic control infrastructure.
The driver waits for a safe opportunity to cross and this driver behaviour is modelled and named as gap

acceptance (FHWA, 2001).
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Unsignalised intersection control can be categorised as centralised or decentralised based on the
decision-making strategy. In centralised intersection control, there is at least one decision made for all
vehicles in the control region by a central controller whereas in decentralised intersection control, all
decision making is done by vehicles themselves (Rios-Torres and Malikopoulos, 2016). This section

will review the literature in intersection control without traffic lights for CHVs and CAVs.

2.3.1. Centralised Control

The vehicle scheduling problem at intersections can be considered as a shared resource allocation in
which space and time are discretised and allocated to vehicles. A study published by Naumann, Rasche
and Tacken (1998) is the first to propose an alternative centralised traffic control strategy considering
the foreseen features of CAVs. The authors proposed a reservation-based intersection control method

for vehicles with advanced automated and wireless communication features.

Another seminal study in this area is the work of Dresner and Stone (2004). They also propose a
reservation-based intersection control system for CAVs. In this control system, vehicles request and
receive time slots via V21 communication interface during which they can traverse the intersection
space they reserved. To allow simultaneous access of vehicles with non-conflicting trajectories, the
intersection is divided into a n x n grid of tiles. Therefore, each tile can be reserved by only one vehicle
per time step based on the First-Come-First-Served (FCFS) scheduling policy. The authors show
through simulations that the proposed control system outperforms traditional signal control significantly
in terms of average delay experienced by vehicles. Some of the limitations of this system are the
inability of vehicles to make a turn and to change their velocity while in the intersection. These
limitations are addressed in a follow-up study by Dresner and Stone (2005) and they demonstrate
through simulations and field tests (Quinlan et al., 2010) that this augmented system outperforms the

signalised control and the stop sign control in terms of average vehicle delays.

Levin, Boyles and Patel (2016) argue that there are certain scenarios in which traffic signal control
outperforms reservation-based intersection control with FCFS vehicle scheduling approach. For
instance, the fairness objective of a reservation-based control was found to increase the total vehicle
delay in an arterial road as side roads were given priority based on their waiting time to cross. Another
scenario is that vehicles on the side roads disrupt the platoon progression on the arterial road by

obtaining reservations that conflict with the platoon members. It is also reported by Khayatian et al.
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(2020) that the FCFS method performance degrades as the traffic demand increases which can limit the
usage of such a method in the field. However, these limitations can be overcome by implementing a

priority-based scheduling with appropriate objective functions.

Taken together, the studies presented thus far support the notion that the FCFS scheduling policy
performs worse than the traffic light policy in terms of average delays under heavy traffic conditions.
Much of the current literature on scheduling policies for unsignalized traffic control pays particular
attention to priority assignment based on Model Predictive Control (MPC) (Camacho and Bordons,
2007) with optimization objectives that include reducing average vehicle delays (Cai et al., 2014; Jin et
al., 2012; Zhu et al., 2009) increasing vehicle throughput and shared intersection space utilisation
(Fayazi, Vahidi and Luckow, 2017; Altche and de La Fortelle, 2016; Ghaffarian, Fathy and Soryani,
2012), reducing carbon emissions (Lee et al., 2013; Lee and Park, 2012; Huang, Sadek and Zhao, 2012),
increasing passenger comfort by considering vehicle dynamics (Dai et al., 2016; Yang et al., 2016),
increasing platoon formations (Vial et al., 2016; Tachet et al., 2016; Cheng et al., 2016; Tallapragada
and Cortés, 2015; Chen and Kang, 2015; Shahidi, Au and Stone, 2011; Lam and Katupitiya, 2013), and
introducing auction and market-based token systems (Carlino, Boyles and Stone, 2013; Vasirani and

Ossowski, 2009; Schepperle and Béhm, 2008).

The priority assignment strategy runs in discrete time in the aforementioned studies. The centralised
Intersection Control Agent (ICA) gathers the information from each vehicle every control cycle via V2I
communication interface. In each cycle, the right-of-way list is generated and communicated back to
the vehicles. One of the important outcomes of the studies presented under priority assignment is that
finding an optimal crossing sequence of vehicles is more effective in terms of reaching the target
objectives than finding an optimal vehicle trajectory for a given sequence of vehicles (Altche and de La
Fortelle, 2016). Vehicle trajectory, in this case, refers to the path that a vehicle drives through at an
intersection as a function of time. This emphasizes the importance of vehicle sequencing for

unsignalized intersection control.

There are a number of studies (Yan, Wu and Dridi, 2014; Gregoire and Frazzoli, 2016; Wu, Abbas-
Turki and Moudni, 2009; Ahn and Del Vecchio, 2016) that examine the relationship between scheduling
problem in operational research and vehicle sequencing problem at intersections. Vehicles are modelled
as jobs whereas the central intersection controller is modelled as a single machine. Yan, Wu and Dridi
(2014) extends the single machine job scheduling problem to parallel scheduling for vehicle stream
groups that can traverse the intersection simultaneously due to non-conflicting trajectories. Wu, Abbas-

Turki and Moudni (2009) argue that a job scheduling algorithm does not meet the real-time operation
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requirements that are expected from a safety-critical system as the number of vehicles and lanes
increase. For this reason, Ahn and Del Vecchio (2016) convert the job scheduling problem into a Mixed-
Integer Linear Programming (MILP) problem to meet real-time requirements. This modified scheduling
approach is claimed computationally more efficient as there are significantly smaller number of

decision variables.

Hult et al. (2015) investigate the problem of optimal autonomous vehicle control at intersections with
safety constraints. The key contribution of their study is the decomposition method that separates
vehicle sequencing problem from optimal vehicle trajectory planning. Approaching vehicles are ordered
in a centralised way and intersection occupancy time windows are calculated as a first step. The
occupancy time windows are then communicated back to the vehicles for the trajectory optimiser that
runs locally in vehicles to find optimal and feasible trajectories for crossing. It is claimed that the
proposed solution reduces the computational cost on the central controller significantly whilst providing

the ability to implement various objective functions on the local trajectory optimiser.

Centralised control strategies have their challenges. Single point of failure, scalability to much larger
road networks, processing overhead are some of the major issues that require solution prior to
deployment in the field. It is also important to highlight that research on centralised control strategies
presented so far has been mostly restricted to all vehicles having a wireless communications interface

or all vehicles having fully autonomous features. However, this will not be realised in the near future.

2.3.2. Decentralised Control

In decentralised traffic control, cooperation among vehicles is established through wireless
communication without requiring a road side unit acting as the central controller. This is an overlapping
area with vehicle autonomy and the integration of these two concepts gives us cooperative and
autonomous vehicles (Englund et al., 2016). A preliminary work on decentralised control is studied by
(Neuendorf and Bruns, 2004) for platoon of autonomous vehicles. In the concept they introduced,
vehicles calculate the right-of-way in a cooperative way as they exchange data among themselves and

reach a consensus on when each vehicle should cross an intersection.

Much of the decentralised research has focused on formulating an optimisation problem for sequencing
vehicle crossings. Katriniok et al. (2017) adopt an MPC-based approach to generate speed profiles for
each vehicle over a finite horizon window such that a cost function is minimised. The cost function is

the weighted sum of multiple optimisation parameters including mobility and safety constraints. The
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control method does not particularly decide on a crossing order for vehicles but gives a priority relation
in the case of trajectory conflicts. Other optimisation methods in the literature focus on minimising the
acceleration rate (Zhao, Malikopoulos and Rios-Torres, 2017), calculating the vehicles’ degree of
freedom to avoid collisions (de Campos, Falcone and Sjoberg, 2013; Hafner et al., 2013), taking the
inertia of the vehicles into account to reduce overall energy consumption (Makarem and Gillet, 2011)
and minimising the average crossing time through an intersection (Gregoire, Bonnabel and de La

Fortelle, 2013).

Game-theoretic approaches are also applied in the literature (Elhenawy et al., 2015; Wu et al., 2016)
for vehicle negotiation at intersections in a distributed way. The reward function determines which one
of the vehicles with conflicting trajectories need to yield in order to prevent collision. Heuristic rule-
based methods are also proposed to solve the distributed control problem (Rodrigues de Campos et al.,
2017; Yang and Monterola, 2016; Wu et al., 2015; Hassan and Rakha, 2014). It is also shown via
simulation work in these studies that even though a heuristic rule-based strategy offers reduced
processing complexity and high scalability features, the solution is sub-optimal (Rodrigues de Campos

et al., 2017).

In view of all that has been mentioned so far, decentralised control offers some advantages over
centralised control such as no requirements for costly traffic infrastructure deployment with V2I
capabilities and no single point-of-failure. On the other hand, Khayatian et al. (2020) argue that
decentralised control can have higher overheads in wireless communications as vehicles need to
broadcast their information much frequently than a centralised control approach, and time
synchronisation between vehicles is also considered as a major challenge in the absence of a centralised

control unit.

2.4. Attificial Intelligence in Traffic Control

Al based algorithms and models enable machines to learn tasks without being explicitly programmed
to do so, and they have demonstrated great potential in complex environments such as strategic long-
term decision making problems, process control with set point tracking or regulation, and partially-
observable systems in which unmeasurable, and/or unreliable data exists (Nian, Liu and Huang, 2020).
The aformentioned points are important advantages over traditional control methods that are presented

in Sections 2.2 and 2.3.
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Traffic control can be considered as a sequential decision making problem which is too complex to
apply simple heuristics or rule-based solutions (Bakker et al., 2010). Therefore, computational
intelligence algorithms are widely used for traffic control in the literature including fuzzy logic, neural
networks and probabilistic methods. Adaptive signal control systems such as OPAC (Gartner, 1983),
PRODYN (Henry, Farges and Tuffal, 1984), RHODES (Head, Mirchandani and Sheppard, 1992) are
based on dynamic programming. However, dynamic programming requires the state transition model
of the system and in this case, due to the stochastic nature of traffic, it is difficult to obtain a model for
traffic control (El-Tantawy and Abdulhai, 2010). Besides, the real-time implementation of a dynamic
programming based algorithm is challenging due to the curse of dimensionality phenomenon in the
state space (Cai, Wang and Geers, 2010). The curse of dimensionality refers to the issue of data sparsity

that occurs as the size and dimension of a state space increases.

RL is one of the main machine learning branches alongside supervised and unsupervised learning. RL

methods in the context of traffic control will be presented in this section.

2.4.1. Background on Reinforcement Learning

RL is a goal-directed computational approach that involves a sequential decision process to take actions
in a given situation in order to maximise a scalar reward signal. In RL, the dynamics of the environment
is not given as a priori to the agent, and therefore, the agent has to interact with the environment to
discover which actions give more reward. The background information in this section summarises the

key concepts and ideas in RL from the book by Sutton and Barto (2018).

Learning by trial and error, optimal control and temporal difference are the three fundamental subjects
that formed RL in the late 1980s. RL differs from supervised learning in that there is no human expert
that provides labelled data to take correct actions. Most importantly, the actions taken by the agent
influence the environment and the next state of the agent whereas in supervised learning, the

environment is not affected by the agent’s actions.
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Figure 2 — The interaction between the agent and the environment in RL

RL consists of three main building blocks, a policy, a reward signal and a value function as shown in
Figure 2. A policy can be defined as the mapping from states to actions and it forms the behaviour of
an agent. A policy can be deterministic or stochastic. A reward signal is used to determine whether an
action taken in a certain state gives an immediate good or bad outcome in order for the agent to reach
its goal. RL is a goal-oriented learning method in which an agent tries to maximise a scalar reward
signal over a period of time. This reward is given by the environment that the agent resides in and is
not directly under the agent’s control. A value function, on the other hand, is used to define the expected
total reward that an agent can receive in the future starting from the current state. Unlike rewards which
are given directly by the environment, a value function must be estimated by the agent repeatedly

throughout its operation in the environment.

There are several algorithms under the RL umbrella which can be categorised as being either model-
based or model-free. The model here refers to a collection of functions that predict the environment
dynamics such as state transitions and rewards when a certain action is taken. However, for complex
environments, such as traffic, obtaining a representative environment model is challenging (Arel et al.,

2010), and therefore, model-free algorithms are predominantly used.

There are two training approaches in model-free methods, namely Policy Optimisation (Silver ef al.,
2014) and Q-Learning (Mnih et al., 2013). In policy optimisation, the parameters of the agent policy

are updated directly while interacting with the environment using the most recent version of the policy.
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On the other hand, in Q-learning, the agent policy is not optimised directly but the action-value pair is
optimised with data collected at any point during the interaction with the environment. Q-Learning
tends to be less stable during training as it indirectly updates the agent policy, however, it has the
advantage of being substantially more sample efficient (Szepesvari, 2010). Sample efficiency refers to
the amount of training data required to reach a target level in agent performance. With this in mind,
there also exists a range of algorithms that can benefit from the advantages of both approaches by
concurrently learning an agent policy and an action-value pair. These algorithms are Deep Deterministic
Policy Gradient (DDPG) (Lillicrap et al., 2015), Soft Actor-Critic (SAC) (Haarnoja et al., 2018) and
Twin-Delayed DDPG (TD3) (Fujimoto, van Hoof and Meger, 2018) which also form the foundations

for the proposed unsignalised traffic control method in this research work.

Over the past decade, RL methods in the context of traffic control have been extensively studied by
many researchers to improve current TLC methods and to design the next generation systems with

CAVs. The next section will summarise the key research work in this area.

2.4.2, Traffic Control Based on RL Methods

RL was first applied to traffic signal control by Thorpe and Anderson (1996). The authors demonstrated
through simulation work that RL outperforms the fixed-time traffic signal control in terms of average
waiting time in an isolated intersection scenario. Since then, a considerable amount of literature has

been published on the application of RL algorithms for traffic control.

There is a large volume of published studies (Abdulhai, Pringle and Karakoulas, 2003; Arel et al., 2010;
El-Tantawy and Abdulhai, 2010; Gao et al., 2017; Casas, 2017; Khamis and Gomaa, 2014; Mousavi et
al., 2017) describing the role of RL to improve the existing traffic control methods with traditional
vehicles. Connectivity and autonomy are not taken into consideration in these studies. The proposed
solutions are validated through simulation work and it is argued that accurate traffic state representation
improves convergence rate and stability of the RL agent (Van Der Pol and Oliechoek, 2016). The
consequence of taking a sub-optimal action in a traffic control application, especially in a busy traffic

situation, might lead to a traffic jam which makes returning to a desirable state difficult.

There is also another large body of literature (Gritschneder et al., 2016; Altche, Qian and de La Fortelle,
2016; Ahn et al., 2015; Qian et al., 2014; Perronnet, Abbas-Turki and El Moudni, 2013) that is
concerned with RL based traffic control for CAVs. Considering that there will be a long transitional

period in which traditional human-driven vehicles and fully autonomous vehicles will co-exist in traffic
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(Liu, Ma and Kumar, 2015), it is crucial to accommodate human-driven vehicles while creating traffic

control methods (Dresner and Stone, 2006).

2.5. Research Gaps

The main research gaps based on the literature review presented in this chapter can be summarised as

below:

e Mladenovic et al. (2016) draw our attention to the technology path dependency for traffic
control methods, and it is argued that the legacy traffic control methods should not be the
foundation when considering a next generation disruptive technology such as unsignalised
traffic control with CAVs. There has been a limited amount of work reported on Al-based
unsignalised intersection control and there is research gap to address the challenges of how an

Al algorithm should be formulated, trained and validated.

e  Much uncertainty still exists about the impact of CAVs on unsignalised intersections in mixed-
fleet traffic scenarios where CAVs and CHVs co-exist. The interactions between CAVs and
human-driven vehicles at intersections also remain unclear (Atkins, 2016a). Vehicle delays at
road intersections are mainly caused by conflicting turning manoeuvres (Fagnant and
Kockelman, 2015) which is difficult to address by distributed traffic control strategies.

Therefore, a centralised traffic control method plays an important role in this case.

e Recent trends in vehicle automation and connectivity have led to a proliferation of studies in
traffic control strategies for the next generation of land vehicles. However, vehicle automation
is still in its infancy, and therefore, there is little empirical data from field tests. The state-of-
the-art studies mainly used simulation tools to explore the effects of CAVs in traffic and to
validate methods and algorithms (Milakis, van Arem and van Wee, 2017). Even though the
experimental data gathered from simulation works is based on various assumptions, there is a
general agreement that CAVs will increase the efficiency of the transportation system. This
indicates a need for practical experiments to investigate the impacts of CAVs in traffic flow at

intersections when different traffic control methods are used.

This research work will address the gaps identified and propose an unsignalised intersection control
method for CAVs which is based on the RL branch of machine learning. RL can learn the non-linear
relationship between the elements that play a role in the intersection control (Arel et al., 2010), from

which the agent can derive a control policy for traffic scheduling.
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2.6. Goal and Objectives

The primary goal of the research work is the proposal of an unsignalised traffic control method based
on the RL branch of machine learning to advance the current state-of-the-art by considering the future
of land traffic where CAVs and C-ITS communication systems are prevalent. The purpose is to make
real-time control decisions in a proactive way under constantly evolving traffic conditions whilst
ensuring a higher degree of safety in the absence of any physical traffic light system. The objectives of

the project are as follows:

O1. Identify research gaps during literature review in terms of traffic intersection control methods,
wireless communication solutions for ITS applications, CAV technologies and RL strategies that

are applicable for stochastic environments such as traffic,

02. Propose a Vehicle-to-Infrastructure (V2I) wireless communication protocol between
Connected Vehicles (CV) and the Road Side Unit (RSU) acting as the intersection control agent,

and to identify a data set for the traffic control application,

03. Design and implement a neural network architecture, traffic state representation, action space
and reward mechanism, in the context of RL, to learn an optimal traffic control policy whilst

preventing any vehicle trajectory conflicts for collision avoidance,

0O4. Create a realistic traffic environment in simulation to validate the proposed unsignalised traffic
control method under various scenarios, and benchmark against identified traffic control methods

for performance comparison,

05. Develop a scaled testbed for practical trials in a controlled environment with multiple scaled
CAVs and the digital twin of the scaled testbed in the simulation environment to further validate

the proposed traffic control method in a cost-effective way,

06. Analyse the results of simulation work and scaled testbed experiments, and highlight the key
findings and the impacts of the proposed control method on traffic flow, congestion and

environment,
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O7. Draw conclusions on the research work and provide recommendations on potential real-world
deployment of the proposed traffic control method considering the challenges in terms of technical,

commercial and policy.
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Chapter 3

3. Development of Vehicular Communications
Protocol for Intersection Crossing

3.1. Introduction

The problem of vehicle coordination at an unsignalised intersection with multiple approaching and exit
links and multiple lanes on each link is considered in this work as shown in Figure 3. Permitted left,
right turn and through movements are shown with road markings. The Intersection Critical Area (CrA)
is defined as the intersection area of incoming lanes [;..l,, n € N where N is the total number of
incoming lanes. CrA has the potential for lateral vehicle collision and it consists of Conflict Points (CP).
Essentially, only a single vehicle must occupy a CP at any moment in time. With this in mind,
unsignalised intersection control problem turns into a spatio-temporal control in which time windows

are allocated for each vehicle at CPs to enable safe crossing.
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Figure 3 — An example traffic intersection setup and visualisation of key definitions

In a centralised intersection control system, the RSU with V2I communication capabilities collects

vehicular data from approaching CVs, and disseminates intersection crossing time windows for each

and every approaching vehicle. CVs transmit data such as vehicle identification number, position,

velocity, desired trajectory through the intersection etc. when they enter the communication area of the

local ICA.

The rest of this chapter gives more detailed information about the wireless communications protocol

developed for the intersection crossing of vehicles, data requirements for the unsignalised intersection

control and the role of the key components in the control system.

50



3.2. Assumptions

In this research work, the following set of assumptions are made in order to focus on the proposed
contributions. Firstly, vehicles in traffic are assumed to be a mixture of CHV's and CAVs. Traditional
vehicles with no connectivity are not considered. Secondly, human drivers have access to an on-board
display in their vehicles where appropriate intersection crossing information is displayed, and they obey
the allocated crossing time window. Thirdly, all vehicles are equipped with Global Positioning System
(GPS) sensors with measurement accuracy of no worse than 1 metre. Finally, Vulnerable Road Users

(VRU) such as pedestrians and cyclists are not considered.

Vehicle interactions and driving behaviour outside the intersection communication range is beyond the
scope of this research work. The underlying wireless technology and communication concepts for the

rest of this chapter is based on the C-ITS standards as explained in Section 2.1.1.

3.3. V2| Communication Model

The communication model for the unsignalised intersection control is shown in Figure 4 as a Unified
Modelling Language (UML) deployment diagram and it is a simplified version of the work by Gaspar,
Szalay and Aradi (2014) that highlights the essential components for this research work.

The model in Figure 4 demonstrates the holistic view of traffic control and it is designed to handle data
for spatially and temporally dynamic traffic environment. In this view of the system architecture, the
Local Traffic Control System consists of an RSU, wireless communications radio equipment and
supporting sensors that can include video detection, temperature sensors etc. and this research work fits

in this component where proposed algorithms and methods are implemented locally in the RSU.

It is also possible that the RSU may not be required at every intersection and that some of the traffic
control functions could be supported remotely (Gaspar, Szalay and Aradi, 2014) by a Remote Traffic
Management Centre as shown in the far left box in Figure 4 that essentially has regional transportation
management responsibilities. Another key component in the communication model is the Vehicle OBU
that can be a part of either CAV or CHV to provide secure and reliable wireless communication
capabilities. In alternative system designs, some of these responsibilities can be assigned to different
components. In the rest of the chapter, the interactions between the ICA and CVs will be detailed and

their roles in the unsignalised traffic control will be explored.
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Figure 4 — Communications model UML deployment diagram
(Modified from source: Gaspar, Szalay and Aradi (2014))

3.3.1. The Area of Interest

ICA is responsible for broadcasting regular messages to announce the presence of the unsignalised
traffic control service. CVs that are approaching an intersection monitor such messages so that they can
participate in the traffic control service, by exchanging data on the designated radio channels (ETSI,
2010b). Therefore, the Area of Interest (Aol) for the unsignalised traffic control system can be defined

as the area that CVs can establish direct wireless communication with the RSU.

The Aol is further divided into three areas; Control Area (CoA), Critical Area (CrA) and Exit Area
(ExA) in which CVs and the ICA have to execute certain control and monitoring tasks. Figure 5
demonstrates these key tasks in a spatio-temporal way in which the x-axis is the time and the y-axis is
the distance from the intersection where d,, is the intersection entry point. The tasks marked as “V” are
executed by OBUs of each Vehicle Agent (VA) whereas the ICA executes the tasks marked as “I”. The

CVs also transition into different modes as “Approaching”, “Crossing” and “Exiting” within the Aol as

shown on the left side of the diagram.
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Figure 5 — The Interaction diagram that demonstrates the key tasks of VAs and the ICA in a spatio-temporal
way

When a CV enters the Aol, the first task it executes is the Approach Planning which includes mapping
its own geo-location on the intersection map data received, positioning itself on the correct lane based
on its desired trajectory through the intersection and the turning manoeuvre restrictions within the CrA.
The map data is based on the common data dictionary by ETSI (2014b). Once a vehicle is positioned
in the correct lane, it calculates an Estimated Time of Arrival (ETA) to the intersection entry point with
free flow traffic assumption as in Highway Capacity Manual by Transportation Research Board (2010)
and given by the equation:

dint
tera = — t tinie @)
tar

where v, is the target speed of the vehicle which depends on its driving behaviour and the speed limit
in the local road network and d;;,; is the distance of the subject vehicle to the intersection entry point
once target speed is reached. t;,;; is the initial acceleration or deceleration time that it takes for the

subject vehicle to reach the target speed starting from its current speed v, and is calculated as below:
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where a is the desired acceleration or deceleration value. Finally, the vehicle displacement d;,;; during

tinit period is calculated by the equation:

Vegr? — 1,
dinit — tar ZadCuTT (3)
from which, the d;,,; can simply be found as:
Aint = deyrr — dinit 4

where d ., 1s the current distance of the vehicle from the intersection entry point. It is important to
highlight that desired vehicle driving behaviour in terms of target speed, acceleration etc. is decided by
the vehicle itself and respected by the ICA rather than imposing on speed profiles determined by the
ICA for all approaching vehicles.

The Crossing Time Estimation task calculates the time that it takes for the subject vehicle to cross the
CrA depending on the target manoeuvre i.e. left turn, straight etc. and the target speed while making
manoeuvre. Once the subject vehicle executes the aforementioned set of tasks, it transmits this
information to the ICA for intersection crossing request. The data requirements within the context of

unsignalised intersection control are detailed in the following section.

3.3.2. Vehicle Agent Data

When a CV is within the Aol and executes the initial tasks that are explained in the previous section, it
is then responsible for transmitting its data to the ICA for traffic control actions to be taken. The vehicle
data includes information such as vehicle dynamic state, driving behaviour, vehicle configuration,
communication parameters and trajectory path through the intersection. ICA receives this information
from all vehicles in the Aol, executes data authentication checks with the remote TMC, and captures

the real-time local traffic state.

SAE International (2020) specifies a V2X communications message set dictionary that is agnostic from
the underlying communication technology i.e. ITS-GS5, IEEE 802.11, 4G etc., and it is named as J2735.
This dictionary is intended specifically for applications that use V2X communications systems, and it
describes a message set and its data frames. Table 1 lists a key sub-set of this dataset which is used as

part of the proposed unsignalised traffic control method between the vehicles and the ICA.
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VA Data

Description

veh_id Unique vehicle identification number
msg_id Message identification number

msg t tx Transmit message timestamp

ica_id ICA identification number

veh_type Vehicle type including the autonomy level
dist to cra Distance to the intersection CrA

veh v Current vehicle speed

veh a Current vehicle acceleration / deceleration
veh_length Vehicle length

veh_width Vehicle width

veh t arr Estimated arrival time to the critical area
veh lane arr Intersection arrival lane

veh lane exit Intersection exit lane

veh_v_cross Vehicle target crossing speed
veh_dt_cross Time to cross the entire CrA at veh_v_cross

Table 1 — Vehicle dataset transmitted by all CVs within the Area of Interest when Unsignalised Traffic Control
service is available.

3.3.3. Intersection Control Agent Data

The ICA processes the received data from the CVs every control cycle to generate vehicle priorities and
schedule their crossing time windows. The control cycle term refers to the iterative process of buffering
approaching vehicle information, assigning priorities for each buffered vehicle and sending crossing
time windows to those vehicles. From the ICA point of view, buffering more vehicles by extending the
duration of the control cycle helps towards making more optimal decisions as solution space for giving
priority to vehicles increases. However, the trade-off is that a less frequent crossing time window
allocation may cause vehicles to reach at the intersection entry point and stop due to having no valid
crossing time window yet. Therefore, in this research work, the control cycle duration is implemented

as 5 seconds based on the experiments conducted in the simulation tool.

The key data transmitted by the ICA to all vehicles is summarised in Table 2 and this includes the
details of the addressed vehicle, the assigned vehicle priority relative to other vehicles in the local

network, the allocated time window to cross the intersection and any deviations from the proposed
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request to cross by the vehicle itself such as reduced crossing speed or exit lane etc. No vehicle is
allowed to cross the intersection if no crossing time window slot is allocated by the time a vehicle
reaches to the intersection entry point. This can happen due to multiple reasons including wireless
communication issues, traffic jam in the exit link, traffic incident in the intersection CrA etc. Therefore,

It can be considered as a safety feature to prevent crashes.

ICA Data Description

veh_id Unique vehicle identification number
msg_id Message identification number
msg_t tx Transmit message timestamp

ica_id ICA identification number

veh t cross Crossing window start time

Allocated vehicle priority relative to other

h pri ]
veh_prio vehicles

Table 2 — Intersection control dataset transmitted by the RSU for each CV within the Area of Interest when
Unsignalised Traffic Control service is available.

3.4. V2| Communication Protocol

Unsignalised traffic control system can be considered as a point-to-multipoint communication system
as specified in ETSI (2010) from the ICA point of view. The data between the ICA and CVs is
exchanged from the originating source in a single hop to the receiving node located in the direct

communication range by using the control channel G5-CCH of the C-ITS communication architecture.

The ICA is responsible for sending two types of messages: CAM and DENM (ETSI, 2010b). A CAM
message includes the presence of intersection control service, detailed topological and geometrical
information about the intersection and information related to intersection crossing for each vehicle.
DENM is an event-based message, and it is used to report any road hazards or abnormal traffic

conditions in the local road network. The maximum communication latency for both cases must be

100ms (ETSI, 2009).
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3.4.1. Intersection Crossing Request

CVs in the Aol subscribe to the unsignalised traffic control service by sending a “Request for Crossing”
message. This message essentially registers the vehicle details in the ICA for spatio-temporal crossing
window allocation by the ICA. After the request is sent, the vehicle receives an acknowledgement

message back from the ICA as shown in the communication diagram in Figure 6.
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Figure 6 — Request for crossing communication diagram.

A timestamp of the transmitted data is one of the most important parameters for the ICA to realize the
unsignalised traffic control application as the age of highly dynamic data affects safety. The ICA might
take incorrect actions if the transmitted data does not correspond to the latest state of the vehicle i.e.
trajectory, speed etc (ETSI, 2013). For that reason, the safety and efficiency of the unsignalised traffic

control service depends on the timely delivery of the transmitted data from the approaching vehicles.
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When the “Request for Crossing” message is sent, the vehicle expects a crossing time window from the
ICA which may start at the estimated arrival time of the vehicle to CrA entry point. This is the ideal
condition in which the stop-and-go movement of the vehicle is prevented (Katwijk and Gabriel, 2015).
However, when traffic is congested, the majority of the approaching vehicles will have to wait at the
CrA entry point until their allocated crossing time window starts which is also the assumption that
vehicles make until they receive a valid crossing time window on their approach to the CrA entry point.

This assumption ensures safety as vehicles stop at the CrA entry.

The ICA buffers the received vehicle data until the next control cycle, and it processes the vehicles in
batches starting from the Vehicle Data Validation task as shown in Figure 7. In this stage, cybersecurity
management is done according to the security layer processes in ETSI (2010). This ensures that vehicles
that are participating in the unsignalised traffic control service are genuine and their data is validated.
For the sake of simplicity and focusing on the communication between the ICA and the vehicles, Figure
7 does not include any communication details between the ICA and the Remote TMC for the security
certificate management and authentication of the vehicles. Following this stage, the ICA updates its
perception of the local traffic state in terms of vehicles that: are in the Aol, require crossing time

windows, exit the Aol and report anomaly.
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Figure 7 — Transmit schedule data communication diagram.

Vehicle priority assignment, sequencing and scheduling are the tasks which will be explained in detail
in Chapter 4. In short, an unordered list of approaching vehicles is ordered and given priorities based
on the intersection control objective and crossing time windows are allocated to these vehicles by
applying conflict resolution techniques. The output of these stages is the crossing time window data to

be transmitted back to the vehicles as a response to their “Request for Crossing” message.
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3.4.2. Crossing Time Change Request

When approaching vehicles transmit their unsignalised traffic control service subscription message and
obtain a crossing time window from the ICA, their motion tracking algorithm on-board ensures that
vehicles arrive no later than the allocated crossing start time. However, if an approaching vehicle is late
for the start time due to any problem or change of vehicle trajectory such as selecting different entry or

exit lane, they must request for an updated crossing time window as shown in Figure 8.

The ICA processes the request for an updated crossing time window in the next control cycle. Firstly,
the previously allocated time window is cancelled, and then, a new time slot is generated in the exact
same way as before when “Request for Crossing” message was transmitted. It is important to note that
the new crossing time window might affect other vehicles that already hold valid crossing time
windows. A special procedure within the Conflict Resolution algorithm (See Section 4.4) is executed
to identify the vehicles with conflicting trajectories. These vehicles are also allocated new crossing time
windows which are no sooner than their initial crossing time windows and they are notified with a

“Crossing Time Update Notification” message.
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Figure 8 — Crossing time change request communication diagram.

3.4.3. Intersection Exit Notification

The final stage of the unsignalised traffic control service is the exit notification transmitted by the CVs
when they are in the Exit Area of the Aol as shown in Figure 9. The ICA de-registers these vehicles

from the traffic control service and no longer tracks their status.

In the case of a vehicle malfunction or a traffic incident, a DENM message is transmitted according to
ETSI (2014) so that any necessary safety actions can be taken including cancelling all allocated time
windows and stopping traffic until the emergency situation is handled appropriately. This type of

emergency handling methods is outside the scope of this research work.
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3.5. Summary

This chapter presents the unsignalised traffic control problem statement and the V2I wireless system
details including the communication protocol and the data requirements. There are certain assumptions
taken into account and listed in this chapter for the development of the communication strategy in order

to focus on the main contributions of this research work.

Unsignalised traffic control is one of the ITS applications that target at reducing congestion and the risk
of collision. Therefore, the communication latency between the CVs and the ICA must not be greater
than 100 ms as specified in SAE J2735 even though the performance may vary according to wireless
network characteristics, load and radio obstacles. CAM and DENM transmission concepts are used for
bi-directional data exchange between the users of the traffic control system based on ETSI

communication architecture for V2X applications.

The V2I communication architecture presented in this chapter is based on comprehensive research work
and standardisation activities in Europe and the rest of the world. Therefore, the feasibility and
compatibility of the proposed system with the existing ITS services and products are targeted. It is
important to highlight that the unsignalised traffic control service and the algorithms that will be
presented in the following chapters do not depend on a particular communication technology used such
as Wi-Fi, cellular, ITS-G5 etc. and it is agnostic from the V2I communication layer. This is primarily
to make sure the proposed traffic control system can be deployed at different locations (i.e. urban cities,
small villages, near tall buildings etc.) where certain communication technology may perform better

than others.
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Chapter 4

4. Algorithm Design: Al Traffic Control for

Unsignalised Intersections

4.1. Introduction

RL mainly originates from the optimal control and dynamic programming research fields (Nian, Liu

and Huang, 2020) in the early 1980s. RL is formulated as a sequential decision making algorithm for

problem domains which require consideration for randomness within the system and are too complex

to apply simple heuristics or rule-based solution like traffic control (Bakker et al., 2010). Even though

the stochastic elements within an environment cannot be controlled, an agent can learn to optimise its

actions in the presence of stochasticity.

The RL paradigm in the context of traffic control is shown in Figure 10. There are two main

components; the TCA and the traffic environment in which the TCA operates. The TCA receives

observation and reward values from the environment, and it makes a decision on the next action based

on its policy.

Observation

l

Traffic Environment Traffic Control Agent (TCA)

Reward
> U
\
“

g
Iy
g

Algorithm

pas

Network

)

Policy

Action

Figure 10 — Environment and agent interactions in RL

65




In the rest of this chapter, the details of how the TCA probabilistically maps the observations to actions
in order to maximise the rewards that it receives are explained. The neural network processes the traffic
observations in order to establish the aforementioned mapping and to determine the priority of the

approaching vehicles so that the intersection crossing sequence can be generated.

The conflict resolution of the shared intersection space is the next stage in the traffic control cycle once
a list of vehicles with priorities are generated. The methodology that ensures vehicles cross the

intersection safely at their allocated crossing time windows will be explained.

4.2. Assumptions

The following set of assumptions have been made in order to focus on the proposed contributions and
innovation in this section. Firstly, the traffic control system has sufficient computational resource and
constant power source to process all required data and to execute algorithms detailed in this section.
Secondly, the intersection crossing of all vehicles through the Aol is controlled by the proposed traffic

control system that disseminates space-time crossing information.

4.3. Neural Network Model

4.3.1. State Representation

A state in RL gives a complete description of an environment whereas an observation gives a partial or
limited description of an environment. A chess game can be given as an example for an environment
from which a state can be obtained with no missing or hidden information (Sutton and Barto, 2018). In
real world applications, identifying a state is very challenging and generally not possible to obtain, and
instead, observations are used. Traffic control is an environment which is too complex to obtain a state
and the sheer scale of the control problem requires a carefully constructed observation vector among a
plethora of available information. The “curse of dimensionality” is a term used in RL that refers to the
exponential growth in computational resource requirements with the number of observation vector
variables (Sutton and Barto, 2018). In this research work, an observation vector is constructed that
captures the current traffic flow and vehicle states as comprehensive as possible for the TCA to make

control decisions while keeping the number of variables in the vector to a minimum.
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®@)

Figure 11 — The representation of the traffic flow and the vehicle states which is updated every control interval.

Figure 11 demonstrates an example of a 4-way intersection with two lanes on each approaching link
which are numbered sequentially clockwise direction starting from the west approaching link. The lead
vehicle is defined as the vehicle with the shortest distance to CrA on a particular lane and these vehicles
are highlighted with black frames in Figure 11. Given that, s; denotes the observation vector at time

step ¢ for the TCA and it is given as:

S¢ = {Sll So, ey SN} (5)

Where N is the total number of approaching lanes for an intersection and s; is an aggregation of the
observation vectors on each approaching lane. Following that, s,, denotes the observation on a particular

approaching lane of an intersection where n € N and it represents the lane number. s,, is defined as:

Sn = {alveh: dint: tarrs larr: lexitv Viane, tdelay: 7"delay} (6)
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where:

e al,.,: Autonomy level of the lead vehicle i.e. SAE Level 0, 5 etc. Each autonomy level is
represented with a unique identification number.

e d;,: Distance of the lead vehicle to CrA in meters on lane n.

e t,.: Arrival time of the lead vehicle to CrA in seconds on lane 7.

e [, Arrival lane ID of the lead vehicle.

o [, Exitlane ID of the lead vehicle.

®  Vane: Average vehicle speed in km/h on lane n. This is the weighted average of speed of all
vehicles on lane n. The weight is the respective travel time of the vehicles. It means that vehicles
that have just entered the network have less influence on the value of this calculation than
vehicles that have been travelling on the approaching lane longer time.

® tgeiay: Average vehicle delay in seconds on lane n. Average vehicle delay is calculated by
dividing the total vehicle delay on lane » to the number of vehicles on lane #, and the total
vehicle delay is the aggregation of the delay values per vehicle which is obtained by dividing
the actual distance travelled in the current timestep to the difference of desired vehicle speed
and actual vehicle speed.

® T74elay: Ratio of the average vehicle delay on lane 7 to the total vehicle delay on all approaching

lanes.

The observation vector variables are normalized with respect to a pre-determined maximum value such
that all values are in the range of [0, 1]. For example, if the average vehicle speed is 15 km/h and the
speed limit is 30 km/h on that lane, then v,,,, will have the value of 0.5. The scale and distribution of
the observation vector values differ from each other, and larger weight values are required in the neural
network as the spread of a vector value gets larger (i.e. thousands of units as opposed to tens of units).
Therefore, it is common in deep learning applications to apply linear transformations to an input vector
before it is fed to a neural network (Bishop, 1995) in order to prevent unstable behaviour, poor

performance during model training and high generalisation error during model evaluation.

The state representation that is introduced above essentially consists of the lead vehicle (alyep, dint,

tarrs larrs lexit) and the average traffic flow parameters (Vigne, taeiay, Tdaetay) for €ach lane on the

approaching links. This kind of representation reduces the observation vector size significantly as

opposed to representing the parameters of all vehicles in the observation vector.

68



4.3.2. Action Space

The set of actions in an environment that an agent can take to reach its goal is called the action space in
an RL framework. There are two types of actions, discrete and continuous. A chess game is an example
environment with a discrete action space as there are a finite set of available moves for an agent to take
whereas a throttle and steering control environment for a CAV has continuous action space where the
actions are real number within certain limits. The action space 4 for the TCA is continuous, and it

contains the vehicle priorities for all approaching lanes as shown below:

A ={p1, P2, -, PN} (7

where A; denotes the action space at time step ¢ and p,, identifies the lead vehicle priority on [,, (lane
n) for N total number of approaching lanes which is a fixed-value for a given intersection i.e. N equals
8 for the intersection in Figure 12. The action a; = max (4;) is the selected action at timestep ¢ which
is essentially the vehicle with the highest p,, in A;. The selected vehicle is then put into the priority
assignment list for intersection crossing. There are two cases where certain actions can be masked out
for selection; a) when there is no vehicle approaching the intersection on a particular lane, b) when there
is no vehicle left to process on a particular lane for priority assignment. A(s) S A denotes the set of

masked actions in state s that are available for selection by the TCA.

oo [G] 4. o 3 oo [ [ 3 [ o
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L L L ]
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& §
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2 2 Lane 8 2 Lane 8
N N N Lane 4

Figure 12 — Action selection is demonstrated through an example traffic flow at a 4-way junction. The vehicles
with black frame are considered by the TCA for sequencing at that particular timestep, and the vehicles with red
frame are the selected vehicles that have the next highest priority to cross the intersection after the TCA
consideration.
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The vehicle priority assignment via action selection is demonstrated with an example traffic flow at an
intersection in Figure 12. The intersection has 8 approaching lanes, and in this case, A = { p;},. Let’s
assume that the vehicle priority list is empty at t, and all lanes apart from [; have approaching vehicles
for intersection crossing where A(s) = { p;}\_,. Therefore, the TCA will be restricted to select [;. The
vehicles highlighted with black frames in Figure 12.a are the vehicles to be considered next for the
priority assignment and the TCA selection is lg which is highlighted with a red frame. The selected
vehicle is put into the priority list accordingly. Bear in mind that one vehicle is selected at a time from
all available lanes which is why all vehicles highlighted with black frames Figure 12.a are the same in
Figure 12.b apart from 4. The next vehicle in the queue on 4 is now highlighted as the next vehicle in
the queue. The priority assignment process is repeated until all vehicles are sequenced for intersection
crossing. Figure 12.c shows the very last vehicle selected with TCA having A(s) = { p4}. In other

words, all actions apart from [, are masked in the last step.

The vehicle priority assignment process is executed every T CONTROL control interval (See Section
3.3.3) and the approaching vehicles with no priority yet are all buffered. It is important to note that the
generated priority list of vehicles do not have any crossing time windows allocated yet. This will be
done as part of conflict resolution stage that will be explained in Section 4.4. The role of Al in the
unsignalised traffic control system is essentially to determine the priority of the vehicles for intersection

crossing.

4.3.3. Reward Mechanism

Determining a reward mechanism is another challenge in the RL framework which has great impact on
what an agent learns. Reward mechanisms should be structured in a way to encourage or discourage an
agent on a selected action based on the objective of that agent. In other words, an objective function is
encoded in the form of a reward function in the RL setting. A reward is a scalar value that represents
how good or bad an action taken by an agent on a particular environment state and it depends on the
selected action, current and next states of the environment in which an agent operates. This dependency

can be shown as:

e = R(St, Aty Sev1) (8)

where, at timestep ¢, 17 is the reward, a, is the action taken, s; is the current state and s;,q is the next
state. The goal of an agent is to get as high a cumulative reward as possible over a horizon as it correlates
to going in the right direction of achieving the objective of that agent. The aforementioned horizon can

be finite (i.e. computer or board games etc.) or infinite as in this research work in which the traffic
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control system is in operation continuously. Cumulative reward over an infinite horizon is intractable.
Hence, a discount factor is applied to the cumulative reward to make it mathematically convenient and
it refers to how significant the future rewards are with respect to the current state. The discounted

cumulative reward which is also called discounted return over an infinite horizon is:

R(T) = Z yir 9)
t=0

where y € (0,1) is the discount factor and t is a sequence of states and actions. Many different
objectives can be considered when defining the reward for a traffic control application, and these
objectives can include journey time, junction queue waiting time, junction throughput, preventing stop-
and-go movements, accident avoidance and fuel consumption. In this research work, the objective is to
reduce traffic congestion and it is related to reducing the vehicle delay times during intersection
approach and crossing. The reward for the TCA at timestep ¢ is a weighted sum of three factors. These
reward terms are decided based on the initial experiments in the simulation tool with various different

weight factors and reward terms.

T,
ax — tn_delay_max (10)
T, =
! Tmax
T,
B tn_masked_delay_max
ry = (1)
Trnax
0, if trajg,—1 Ntrajg, = @
r3 = 1 (12)

- otherwise

from which, the final reward value is obtained as a weighted sum of the reward terms in Eq. 10-12.

Te =Wy Ty + Wy x1y + W3 *13 (13)

where 7y is clipped within [-1, 1] range. In Eq. 10, 4 term gives more reward as the average vehicle

delay times get smaller on all lanes where t;; geiqy max represents the maximum of average vehicle
delays on all lanes (same as tgerqy in Section 4.3.1 in state representation) and T,y is a fixed

configuration value to normalise the reward term. r; essentially ensures that all lanes have equal

importance in reducing overall congestion at the intersection. In Eq. 11, r, term gives more reward

71



when the most congested lane is prioritised for vehicle sequencing. t, masked_delay max denotes the
maximum of the average vehicle delays excluding the masked lanes. In other words, if TCA assigns
vehicle priorities starting from the most congested lane to the least, r, term will increase. r3 in Eq. 12
is actually a negative reward (also known as a punishment term) to discourage frequent lane switch in
the priority assignment. ;3 will decay exponentially when more vehicles are selected in a row from the
same approaching lane, meaning less punishment for TCA. For 73, an exponential decay term is used
instead of a linear decay as it resulted in less congestion and vehicle delays during the initial experiments

in the simulation tool.

Traffic control decisions can cause deviation from equilibrium in traffic flow (for instance, stopping the
lead vehicle of a platoon at CrA entry point), and this perturbation propagates along the stretch of an
approaching lane gradually. This phenomenon is called shockwave formation (FHWA, 2001). With this
in mind, it becomes more important for the reward mechanism to capture the average traffic flow
behaviour and change in time as a direct mid- to long-term consequence of the action selections made

by the TCA.

4.3.4. Neural Network

The neural network for the proposed traffic control application consists of multiple layers. The input
layer is the first layer which receives the observation vector, and the data is passed forward to the hidden
layers where feature extraction happens. The hidden layers are a mixture of Fully Connected (FC) and
Long Short Term Memory (LSTM) layers that extract some spatio-temporal features about the traffic
environment. The final layer is the output layer that produces the vehicle priorities for each approaching

lane.
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Figure 13 — Neural network setup with LSTM layers

Figure 13 shows the details of the neural network in which x; is the observation vector at timestep .
The objective of FC layers in the network is to extract spatial features i.e. the hidden relationship
between vehicle positions, speeds, distances etc. On the other hand, LSTM layers extract the temporal
features i.e. the effect of previous outputs on the current state. Hence, there exists the LSTM connection

with dashed lines in Figure 13 between timesteps.

A closer look at the structure of the LSTM cells for each time step is shown in red boxes in Figure 13.
At timestep ¢, the LSTM unit gets the previous cell state vector c;_, and hidden state vector h;_; as an
input together with the observation vector x;. The information flow inside the LSTM cell is regulated
via three gates, namely input, output and forget gates. These gates are composed of sigmoid functions
and pointwise product blocks in order to control to which extent the current input data should be

remembered or forgotten in the next timestep.

4.3.5. Policy

In RL, the policy can be defined as the strategy that an agent adopts in order to achieve its goals. With
this in mind, the policy brings together the state representation, action space, reward mechanism and

the neural network under Markov Decision Process (MDP) framework (Sutton and Barto, 2018). The
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policy determines the way an agent behaves at a given time in the environment by having a probability

distribution over the action space for the environment states.

A policy m can formally be structured as a tuple of the form (S, 4, P, R) where S is the state
representation, A is the action space, P is the probability matrix of transition from one state to another,
and finally, R is the reward mechanism. A policy in RL is parameterized via the neuron weights and
biases of the neural network, and this is done via an optimisation process during the training session

which will be explained in detail in Chapter 5.

In this research work, the policy is used in the context of the actor-critic architecture (Sutton and Barto,
2018) in which the actor essentially updates the policy parameter set, 8, for g (a|s) as guided by the
critic. The value of an action-state pair, Q™ (s, a), when started with a random action in state s and acted

according to policy m afterwards is defined as below and it is also called as the expected return:

Q"(s,a) = E[R(Dso =s, ao = a] (14)

where R(T) is the sum of discounted rewards from Eq. 9. Q™(s,a) can also be interpreted as the
expected cumulative future reward. When the optimal policy (the best strategy that leads the agent to
achieve its goals) is used by an agent, the expected return Q™(s,a) is maximised as optimal action

decisions are taken every timestep. The optimal action-state pair value is given by:

Q*(s,a) = max Q"(s,a) (15)

It is also important to note that there might be multiple action sequences that lead to optimal value
Q*(s,a). In that case, all of those action decision sequences are considered optimal. If Q*(s,a) is
obtained, then in a given state, the optimal action to take is also found by solving the equation (Watkins,

1989) below:

a*(s) =arg max Q*(s,a) (16)

In Section 4.3.2, it is explained that the proposed traffic control action space is continuous. With this in

mind, finding a*(s,a) among infinite action choices is not trivial and intractable as it requires
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computing the Q-values for each possible action every timestep to determine which one is the optimal
action. Therefore, in this research work, TD3 (Fujimoto, van Hoof and Meger, 2018) algorithm is
utilised which is a modified version of DDPG (Lillicrap et al., 2015) algorithm. TD3 overcomes the
aforementioned challenge with continuous action spaces by using a gradient-based learning rule for a
policy m(s) that presumes Q*(s,a) is differentiable with respect to the action and the following

approximation can be made (Sutton and Barto, 2018):

max Q*(s,a) = Q*(s,m(s)) (17)

TD3 algorithm is specifically developed for continuous action spaces as in this project and it is an off-
policy algorithm, meaning the TCA have the ability to learn from historical data obtained from the
traffic environment. Chapter 5 will give more details on how this algorithm is used to train an agent for

the unsignalised traffic control application.

4.4. Conflict Resolution of the Shared Intersection Space and Time for Vehicle Crossing

The problem statement given in Chapter 2 considers a scenario where multiple vehicles approach a
traffic intersection from multiple lanes. Safe intersection crossing in the absence of a traffic light
requires a vehicle trajectory conflict management method to avoid collisions. This section will give
details on the developed conflict management method which takes the vehicle priority list generated by
the Al agent as an input and produces crossing time windows for all vehicles in the queue as an output.
The proposed vehicle trajectory conflict management method is derived from a study by Levin and Rey
(2017) in terms of the conflict point modelling and travel time estimations of vehicles through those

CPs.

4.4.1. Vehicle Trajectory Conflicts

In the trajectory conflict stage, the primary focus is the prevention of the side collisions at CPs.
Transportation institutions worldwide release guidelines and manuals on various aspects of road
networks in order or standardise and synchronise activities across the country. With this in mind, CPs
are also determined by these institutions for different intersection geometries, and FHWA (2004) is an
example guidelines document by Federal Highway Administration in the USA that describes the CPs

for a given intersection.
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An example 4-way intersection (left-hand side drive) is shown in Figure 14 where there are three types
of CPs, crossing, merge and diverge as shown with different colours inside the CrA. There are 32 CPs
in total where there is a risk of lateral vehicle collision. The objective of the conflict management
method is to schedule vehicles crossing with time windows so that only one vehicle occupies each CP

at any given time.

@ 16 Crossing Conflicts

| . 8 Merge Conflicts

. 8 Diverge Conflicts

Figure 14 — Vehicle trajectory CPs inside the CrA

Each approaching vehicle i has a pre-determined trajectory traj; through the intersection which is
represented as an ordered list of CPs. For each crossing vehicle 7, t;(p) must be determined which is
the time that vehicle 7 occupies CP p where p € traj;. For the sake of simplicity, the vehicle type (i.e.
van, truck etc.) is assumed to be a passenger car and the vehicle speed during intersection crossing,
Veross» 18 assumed to be uniform which is decided by the vehicle and communicated to TCA via V21
communication as explained in Chapter 2. If a vehicle is entering the CrA from an initially stopped
condition at the entry point of the intersection, then the vehicle acceleration, a ,,ss, 1S assumed to be
uniform until v,.,s 1s reached. Even though a,,,ss and v...ss are assumed to be uniform, a safety
buffer of +Av,,oss and tAa,,,ss is added to the calculations which essentially ensures that there is
room for error as vehicles cross the intersection and there is sufficient safe spatio-temporal space

between vehicles with conflicting trajectories.
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4.4.2. Trajectory Conflict Table

There is a fixed number of CPs for a given intersection geometry. With this in mind, this research work
uses a Trajectory Conflict Table (TCT) to track the CP occupation for each crossing vehicle per
timestep. Let us imagine a scenario where there is only one vehicle requesting to cross an intersection
similar to Figure 15. In this case, the vehicle traj; is composed of 6 CPs. Figure 15.a shows the vehicle
crossing on the road whilst Figure 15.b highlighting with red dots the conflict table state as the vehicle

moves from one CP to another.

4k

Conflict
Space

Figure 15 — a) Vehicle trajectory through the intersection is shown with a set of conflict points that must be
occupied by a single vehicle at any moment in time, b) Conflict points occupation by the crossing vehicle is
shown over time.

The TCT approach for collision avoidance and vehicle conflict resolution brings some advantages. 1)
The approaching vehicles may change their trajectory decisions after securing a crossing time window
(i.e. lane change, exit lane change, crossing speed update etc.). When that happens, TCT can facilitate
allocation of an alternative crossing time window and updating the CP occupation times. 2) The fact
that the TCT has a fixed number of CPs offers a deterministic processing time when deployed in the

field.
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4.4.3. Vehicle Crossing Time Allocation

Vehicle crossing time start and duration times are calculated based on the vehicle trajectory traj;
through the intersection. Firstly, the travel time between CPs for a given vehicle is calculated. For
vehicle i, the travel time t;,q,, constraints between two consecutive CPs py, p, € traj; with a distance
of d¢p, (P1,p2) considering £Av,,,¢, safety buffer is given by:

dcpi(plvpz) < dcpi(Pppz)

= ltrav; =
Vcross T AVcross

(18)

Ucross — Avcross

Once tyrqp,; 1s calculated between all traj; = {p}ﬁ-‘;O where K is the total number of CPs along the

trajectory of vehicle 7, a suitable crossing time window search can be done in the TCT.

CP4 1 1 4 4
CP3 1 1 2 2 2
CP2 3
CP1
CPO 4
to ty ty t3 ty ts ts t7 ts tg tio t1
>

Figure 16 — Vehicle trajectory conflict resolution table for crossing time allocation.

The crossing time window allocation will be shown with an example intersection crossing scenario as
in Figure 16. Let us assume that Vehicle 1, 2 and 3 have already been allocated crossing time windows
and Vehicle 4 is the next vehicle to consider. Vehicle 4 has traj; = {p}ﬁ-{;os and CPs are shown with
red dots starting from CP0 to CP4 on its trajectory through the intersection. Even though, Vehicle 4 is

ready to cross at ¢y, it is not allowed to cross as there are trajectory conflicts with Vehicle 1 on CP3-4,
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with Vehicle 2 on CP3 and with Vehicle 3 on CP2. Therefore, the first suitable crossing window for
Vehicle 4 starts from tg which is the crossing start time that the vehicle is allowed to enter the CrA for

crossing.

4.5. Summary

In this chapter, the details of the Al algorithm and methods are presented in the context of an
unsignalised traffic control. Traffic is stochastic in nature, meaning the reaction of the environment
might not be predicted precisely. In addition, traffic environment is one of the prime examples where
the traffic control actions affect the flow of vehicles gradually in time rather than immediately after
taking a particular action. This led this research work to explore and implement methods that can handle

stochasticity and delayed outcome.

The state representation, the action space and the reward mechanism are explained, all of which will be
combined together under TD3 algorithm in the next chapter. This algorithm is off-policy and has the
ability to handle continuous action spaces. The parameterisation of the Al model will be done in the
next chapter during what is called a training session. The main task of the Al algorithm is to determine

the vehicle priorities every control cycle.

The vehicle trajectory conflict management and the crossing time window generation processes are
separated from the Al algorithm. The rationale is to differentiate achieving the objectives of traffic

congestion reduction and ensuring safety via two independent processes.
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Chapter 5

5. Algorithm Training: Al Traffic Control in
Computer Simulations

5.1. Introduction

The term training, in the context of Al, is used to define the learning procedure by using an optimisation
algorithm. There are many different optimization algorithms, among which the most popular ones are
gradient descent (Curry, 1944), conjugate gradient (Hestenes and Stiefel, 1952), quasi-newton method
(Wright and Nocedal, 1999), levenberg-marquardt (Levenberg, 1944), stochastic gradient descent
(Robbins and Monro, 1951) and adaptive linear momentum (Kingma and Ba, 2014). The objective of
the training is to achieve the minimum loss possible which can be translated into obtaining the
maximum possible cumulative reward for the RL algorithm. This is essentially done in an iterative way
during training by searching for an optimum parameter set that fits the neural network to the input data

from the environment.

Training an agent to achieve the objective of controlling traffic at intersections with minimum vehicle
delays requires a simulation environment so that the agent can learn by trial-and-error as it interacts
with the environment. In this research work, Vissim simulation tool from PTV Group (PTV — Planung
Transport Verkehr AG, 2019) was used. The rest of this chapter explains the details of the training

process and how the Vissim traffic model was setup as the control environment.

5.2. Training Methodology

The learning problem for the traffic control task is formulated in terms of a loss factor minimisation by
using the adaptive linear momentum (Kingma and Ba, 2014) optimisation algorithm, hereafter referred
to as the Adam optimizer. The Adam optimizer is widely used in machine learning applications and it
has been chosen mainly due to its computational efficiency, suitability for problems with noisy and

sparse gradients and small memory space requirements when coded in software.

81



The Adam optimizer executes a search through the neural network parameter space in order to decrease
the loss at every epoch, which refers to one full cycle through the training data, and it is done by
adjusting the neural network parameters. In particular, Adam optimizer calculates the exponential
moving average of the gradient and the squared gradient when determining the parameter adjustment
rate and direction. At first, a neural network is initialised with a random parameter set and it is updated
every epoch in the direction that minimizes the loss value until a training stop criterion is reached i.e.

the loss decrement in one epoch reaches a plateau.

5.2.1. Training Steps

In this section, the training procedure is explained step-by-step and the TD3 algorithm breakdown is
presented. Figure 17 shows an overview of the forward pass and back propagation stages. Forward pass
refers to the process of obtaining the output layer data after the traffic observation vector is given as an
input to the neural network during which the data cascades through the network layers. Back
propagation, on the other hand, refers to the process of neural network parameter update via the Adam

optimizer.
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Figure 17 — TD3 algorithm overview during forward pass and back propagation
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The training steps can be given as below:

Step 1:

The replay buffer is initialised as the first step. As mentioned in Chapter 4, the TD3 algorithm is off-
policy, and it uses a replay buffer to store past transitions when executing the policy in Vissim traffic
environment. Each transition can be represented as a tuple in the form of (s, s’, a,r) where, s and s’
are the current and next observations, a is the selected action and 7 is the reward value. During training,
the transition tuples in the replay buffer are queried to essentially replay the agent's experience either

in a shuffled way or in the original order they are stored.

Step 2:

The neural networks (See Section 4.3.4) are built as a next step by using TensorFlow (Abadi ef al.,
2016) open source machine learning libraries. There are 6 neural networks in total each with exactly
the same number of layers and neurons, one each for the Actor and Actor Target models and two each
for the Critic and Critic Target models as shown in Figure 17. The actor networks learn the policy

n(s|a) while the critics learn Q™ (s, a).

The rationale behind having target networks for both actor and critic is to be more conservative when
updating the neural network parameters. In other words, the target network parameters are constrained
to change at a slower rate which is determined by polyak averaging (Fujimoto, van Hoof and Meger,

2018):

Q)target = pq)target +(1-p)? (19)

Where p is in the range [0,1] and determines the rate of change in the target network parameter set.

Step 3:

The agent starts taking actions according to the initial policy in the Vissim traffic environment. Forward
pass is repeated until the replay buffer is full after which batch size number of transitions are sampled
from the buffer. For each transition in the sampled batch, the Actor target produces the next action a’
as shown in Figure 17, and (s’,a’) pair is given as an input to two Critic targets. The Critic targets
return the values of the state-action pair, Qo1 (s', a") and Qg2 (s', @), independent from each other.

The final Critic target Q-value is obtained by:
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Qtar =1+ Y(Min(Qtar1, Qrarz)) (20)

where Yy is the discount factor in the range [0, 1]. Taking the minimum of two Q-values has been found
to stabilize the optimisation process (Fujimoto, van Hoof and Meger, 2018) as optimistic Q-value
estimates are avoided by ignoring the higher Q;,,- value. Following this, the two Critic networks take

(s, @) pair as an input and produces Q; (s, a) and Q, (s, a) in order to compute the final Critic loss:

Losscritic = MSE(Q1(s, @), Qtar) + MSE(Q2(s, @), Q¢ar) 21)

where MSE refers to mean-squared error loss. This loss value is used during backpropagation to update
the Critic network parameters. This training step where the agent tries to reduce the Critic loss is called
the Q-learning. Q-learning step aims to find the optimal parameter set for the Critic networks. The next

step moves on to policy learning step.

Step 4:

Policy learning aims to find the optimal parameter set for the Actor network in order to maximise the
expected return (See Eq. 14). Based on the approximation made in Eq. 17, the Q-value from the Critics
is correlated with the expected return, meaning as the Q-value is increased, the expected return goes
towards being optimal. In this case, the loss for the policy learning is the mean value of the Q-values
from the Critics:

Q1(s,a) + Qz(s,a)
2

Lossgctor = — (22)

During backpropagation, gradient ascent is used, hence the negative sign in Eq. 22, by differentiating
the actor loss with respect to the Actor network parameters in the direction that maximises the expected

return.

The important point to note here is that policy learning is done every other step whereas Q-learning in
Step 3 is done every step. If the Q-learning is poor, the policy becomes poor as well, and it can cause
divergence of the loss moving towards minima. It is why Q-learning is done at double the rate of policy

learning to increase the performance of convergence to the optimal parameter set.
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Step 5:

The final step in the training cycle is to do an update on the target network parameters of the Actor and
the Critic which has not been done up until this point. The target network parameters are updated based
on Eq. 19 which is also called a soft update, and it essentially copies the weights of the Actor and Critic
networks with polyak averaging into the target networks. Similar to the policy learning, the target

network updates are done every other step to improve training performance stability.

Steps 2-5 are repeated until any of the training stop conditions are met as previously explained. The
replay buffer is overwritten with the new transitions starting from the oldest entry as the agent continues

to operate in the Vissim environment.

5.2.2. Exploration-Exploitation

The exploration-exploitation dilemma in RL refers to the trade-off that an agent makes when taking
actions in the environment in terms of exploring the new actions in the action space versus exploiting
the previously gained knowledge about certain actions. Therefore, it is crucial in RL problems to set

the ratio of exploration to exploitation appropriately.

There were three techniques applied in this research work to increase exploration whilst ensuring that

the agent also exploited the good actions when required:

e The authors of the TD3 algorithm (Fujimoto, Van Hoof and Meger, 2018) adds a mean-zero
Gaussian noise to the target actions a’ as in training step 3 in the previous section prior to
provide the tuple of (s’,a’) to Critic target networks. This noise is found to be useful in
exploring new actions. In this research work, the scale of noise over the course of training was
reduced linearly rather than keeping it fixed as in the original paper. This meant that the agent

explored the new actions less as training progressed.

e A mean-zero Gaussian noise, exploration noise, was also added to the actions during forward

pass and the scale of the noise was reduced linearly over the course of training.

o At the beginning of the training, the replay buffer was originally filled with data by the agent
taking actions according to the initial policy. This was essentially equivalent to taking random

actions from which most of the action sequences did not yield high rewards. Therefore, in this
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work, the fixed-time traffic light policy was utilised when taking actions until the replay buffer
was full after which the agent followed its own policy. This was found to be useful in terms of

reducing the training time.

5.2.3. Training Parameters

The training procedure was executed with 4 environments that were independent from each other as
shown in Figure 17. The reason for using 4 environments was due to the Vissim licence restrictions
where more than 4 instances of the software tool were not possible to run in parallel. It meant that the
replay buffer contained experiences of multiple agents. This is a common technique in RL training to
speed up the learning process and to reduce correlation between transitions. During backpropagation,

the global gradient was calculated by averaging all local gradients of individual agents.

The hyperparameters for the agent and the training procedure are given in Table 3. These
hyperparameter values was decided after executing a manual tuning process in which each

hyperparameter was changed one at a time to observe their effect on the training process.

Hyperparameter Value
FC layer 1 size 128
FC layer 2 size 128
LSTM layer size 64
FC layer 3 size 64
FC layer 4 size 32
FC layers activation ReLu
LSTM layer activation Tanh
Discount factor y 0.998
Polyak averaging p 0.05
Learning rate actor le™*
Learning rate critic le™3

Target action a’ noise initial scale  0.15

Target action a’ noise decay steps 15 * 103

Exploration noise initial scale 0.2
Exploration noise decay steps 15 % 103
Batch size 256

Replay buffer size 50 % 103
Adam optimizer e=1078p;

Table 3 — The hyperparameter list
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Reward mechanism parameter T,,,,, was set to 60 seconds and the weights for the reward terms (See

Eq. 13) were w; = 1.0, w, = 1.0 and w3 = 0.5.

5.3. Traffic Environment in Simulation

Many RL applications, that are deployed in the field, require a simulation platform for the training
procedure as it is not safe for an agent to learn by trial-and-error in a real-world setting. The Vissim
traffic simulation tool was adopted in this research work to proxy the effects of unsignalised traffic
control on traffic flow and congestion under mixed-driving conditions where CHV's and CAVs at SAE

Level 5 co-existed in traffic.

The core principles of how CAVs may impact traffic flow at intersection crossings are related to the
configuration of these vehicles including but not limited to wireless connectivity, longitudinal and
lateral motion control behaviour and gap acceptance times. Therefore, it is essential to let the agent
operate under as many different traffic conditions and driving behaviours as possible during the training

procedure so that the trained agent parameters can be scaled and deployed in a real-world setting.

5.3.1. Introduction to Vissim

Vissim simulation tool is a microscopic, time-step oriented, and behaviour based simulation tool for
modelling traffic in urban and rural settings, pedestrians, public transportation as well as rail
transportation. The interaction between each element can be modelled and simulated. The simulation
resolution is configurable in Vissim which determines how many times, in a simulation second, data
can be exchanged between the vehicles and the traffic control algorithm. In this research work, the tool
was run at 10 Hz speed throughout all experiments which corresponds to 10 data exchange in a

simulation second.

In Vissim, lateral and/or longitudinal control of multiple vehicles is possible. Parameter sets can be
identified that allow for the representation of different driving behaviours in the traffic flow. With
regards to the wireless communication, there is no built-in model in Vissim for V2X communications.
However, it is possible to integrate external tools via Component Object Model (COM) interface for

additional functionality such as V2X communications.
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The aforementioned COM interface also allows write or read access to all simulation data and
parameters from the external software while simulation is running. The data available from this interface
includes but not limited to the road network parameters, location and speed of all vehicles. This ability
of Vissim is a particular interest in this research work in order to control the behaviour of the vehicles
dynamically at every control cycle dependent on the unsignalised traffic control strategy. For example,
a vehicle approaching an intersection for crossing may be requested to wait or slow down if the TCA
gives priority to the vehicles on other approaching lanes. Further details on the implementation of the

Al traffic control algorithm and its integration with the Vissim tool will be given in Section 5.3.5.

5.3.2. Road Network Setup

Road networks in the real-world contain several stochastic elements, and in many cases, there are
multiple traffic control systems on the stretch of a link where roads with different capacities intersect
and have an impact on each other. In this work, a 4-way intersection with two lanes on each approach
and exit link was modelled as shown in Figure 18 in order to focus on the impacts of the proposed

control method on traffic flow in an isolated way from other factors.

Figure 18 — The road network setup in Vissim traffic simulation for the training procedure

The modelled approach and exit links had a length of 600m and a speed limit of 50 km/h. The RSU
with V2I capabilities was located near the shared space of the intersection area and it had a
communication radius of 150m. The vehicles did not interact with any other infrastructure other than

the TCA which operated inside the RSU.
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The simulated road network was constructed as per the UK traffic rules and standards i.e. left-hand
drive etc. However, the simulation results and data obtained are still relevant for other countries mainly
due to the fact that an isolated intersection was studied with similar traffic flow and driving behaviour

worldwide.

5.3.3. Driving Behaviour Generation

The driving behaviour in Vissim is based on the Wiedemann-99 car following model (Wiedemann and
Reiter, 1992) and the parameters of this model can be adjusted to create different driving behaviours.
The approach taken in this work was to have one general CHV behaviour and four different CAV
driving behaviours (CAV B1, B2, B3 and B4) by systematically varying the parameters to enable CAVs
to be more cautious or assertive than CHVs. To this end, the aforementioned parameter sets are based
on the research work by Atkins (2016) in which the impacts of CAVs on traffic flow are analysed in
detail in Vissim. There are 9 parameters in total as listed in Table 4 for each driving behaviour. It should
be noted here that all CAV driving behaviours are still considered SAE Level 5 with different driving
styles and CHYV is considered SAE Level 0.

Param. Description CHV CAVB1 CAVB2 CAVB3 CAV B4
CCo Desired standstill distance between vehicles (m) 1.5 1.0 0.9 0.6 0.5
CCl1 Headway time from the vehicle in front (s) 0.9 0.8 0.7 0.6 0.5
cC2 Headway longitudinal distance oscillation (m) 4.0 0.0 0.0 0.0 0.0
CC3 Time to recognise a preceding slower vehicle (s) 8.0 8.0 8.0 8.0 8.0
CcCc4 Negative desired speed difference (m/s) 0.35 0.05 0.05 0.05 0.05
CCs Positive desired speed difference (m/s) 0.35 0.05 0.05 0.05 0.05
CCo6 Influence of vehicle distance on speed oscillation 0.0 0.0 0.0 0.0 0.0
CC7 Oscillation during acceleration (m/s2) 0.25 0.3 0.35 0.40 0.45
CC8 Acceleration when starting from standstill (m/s2) 3.5 3.6 3.7 3.8 3.9
CC9 Acceleration at 80 kph (m/s2) 1.5 1.6 1.7 1.8 1.9

Table 4 — Driving behaviour parameters for connected human-driven vehicles and automated vehicles.

The rationale behind simulating multiple CAV driving behaviours is based on the assumption that, in
the future, CAV manufacturers will enable end-users to set the driving behaviour as an option to suit
their needs. In Table 4, the CAV driving behaviour becomes more aggressive from B1 to B4, meaning

higher acceleration rate, shorter gaps between vehicles etc. CAV Bl is parameterised in a way to make
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it more cautious then CHV whereas CAV B2-B4 are more assertive than CHV. Atkins (2016b) argues
that the focus for mixed-fleet simulation models should not be on the fidelity of the CHV driving
behaviour as it has been studied and understood in the literature, but the changes CAVs imply once

deployed.

5.3.4. Traffic Demand and Vehicle Routes

Traffic demand and vehicle route choices are another configuration set in Vissim that is essential to
vary during training for an agent to experience the potential impacts of CAVs under different
operational scenarios i.e. peak time, off-peak time etc. In order to achieve that, three levels of traffic
demand were parameterised to represent low (500 veh/h), medium (1000 veh/h) and high volume of
traffic (2000 veh/h) similar to Atkins (2016). The traffic demand levels were changed during training

at set intervals which was set as 2 hours.

Vehicle routes are represented as a fixed sequence of links and lanes in Vissim that a vehicle is requested
to follow on the road network. The turning decision at intersection, whether to go left, right or straight,
depends on this configuration. The relative ratio of turning decisions were set as 0.33 for left turn, 0.33
for right turn and 0.66 for straight during training. The vehicles that would turn left and right position
themselves on the inner or outer lane as they approached the intersection as per the road markings

whereas the vehicles that went straight could be on either lane.

5.3.5. Software Tools Integration

The complex nature of the proposed traffic control system required multiple software tools to be
integrated as no single tool solution existed, at the time of writing this thesis, for the Al traffic control
algorithm implementation and simulations. The interface diagram between the tools and the software
components are shown in Figure 19. As explained previously, there are multiple agents running in

parallel during training and collecting experiences independent from each other.

To this end, Vissim traffic environment and TensorFlow based Al model run in parallel processes
having an exact copy of parameters and computing resources. V2I connectivity and driving behaviour
control was implemented in the C++ programming language with an interface to Vissim in the form of
a Dynamic Link Library (DLL) file. During training, the DLL file was called every 100 ms for each

vehicle in the network.
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The National Instruments (NI) LabVIEW tool was also integrated to provide test automation, data
analysis, visualisation and logging features. The NI LabVIEW tool can be considered as the central hub
where the experiments were started and monitored during training. Please also note that the integration
of this tool was optional, and it was done mainly due to the author’s vast experience of using it in
various other industrial projects. Otherwise, NI LabVIEW tool could be replaced by a Python-based

custom code.
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Figure 19 — The software tools setup integrating Vissim simulation tool, NI LabVIEW platform and the RL
library.
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5.4. Summary

In this section, the agent training methodology and the associated parameters and configurations have
been explained in the context of the RL framework. The main objective of the training procedure was
to enable the agent to experience all potentially possible situations in the traffic environment so that it
could learn what action sequences result in better policy. Model-free RL algorithms like TD3 are
sample-inefficient, meaning they require a lot of interactions to learn a good policy. The exploration
and exploitation dilemma section has explained the techniques implemented in order to overcome the
sample-inefficiency challenge and to reduce the training time. Filling the experience replay buffer
initially with the traffic light policy has been found to be useful in terms of faster convergence to the

optimal policy.

When the training is complete, the agent can be deployed at different traffic intersections as long as the
number of approaching links to the intersection are the same as the training scenarios i.e. 4-way, 5-way
etc. Otherwise, the agent has to be re-trained so that it can learn the optimum control policy with the

target number of links on the road network.

The traffic simulation methodology and the tool chain have also been explained in this section. The
penetration rate of CAVs is too small, worldwide as of today, to gather any real-world evidence about
their impact on traffic flow. Therefore, any research work in this field of research utilises simulation
tools to model their behaviour. In this work, this approach was also taken where various different
driving styles were modelled in conjunction with traditional human driving behaviour in order to
simulate mixed-driving scenarios. The selected tools represent the state-of-the-art solutions which are

widely used within the machine learning and traffic engineering fields in academia and industry.

The next chapter focuses on the validation strategy of the proposed traffic control method which is also
called the evaluation stage in RL. The trained agent operates under various different traffic conditions
and the performance is compared against the traffic light based control method that exists in our road

networks today. The software toolchain explained in this section is also used during the validation stage.
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Chapter 6

6. Validation of Al Traffic Control in Computer
Simulations

6.1. Introduction

RL algorithms can be evaluated based on how their policy performs in the environment after the training
procedure is complete. The measure of performance is quantified with metrics that are specific to the
traffic control task and the traffic environment. In general, when agents are trained on specific tasks, it
is important to evaluate the capability of generalising the final policy to unseen situations in training.
In this research, the TCA was validated under such traffic scenarios in Vissim to determine how well
the agent generalised its traffic control policy. In this chapter, the details of the validation procedure

will be given including the identified performance metrics and the generated traffic scenarios in Vissim.

6.2. Validation Scenarios

The previous chapters of this thesis have explained the objectives of the proposed unsignalised traffic
control method and the mechanisms implemented that bring together wireless connectivity, operation
of CAVs and the machine learning strategies. In the following sub-sections, these objectives will be
translated into a methodological approach in which the impacts of the traffic control method can be

measured and quantified.

To this end, multiple scenarios in the traffic environment are defined that involve the following key

features:

e Road geometry i.e. roundabout, 4-way junction etc.

e Traffic demand range on the road network,

e Traffic demand ratio where intersecting roads have different demand levels,
e Driving behaviour from cautious to assertive,

e Mixed-driving where vehicles at different SAE Levels co-exist in traffic,

e Traffic control methods,
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A combination of these key features was used in the validation scenarios to measure the impact of the
traffic control methods on traffic flow and congestion. The main reason for validation via computer
simulations in this work is to be able to easily change the physical properties and features of the testbed

as listed above in order to ensure TCA performance is generalised to different traffic scenarios.

6.2.1. Road Geometry

Road geometry, in the context of intersection design, refers to the way that intersecting roads are
connected to each other. There were two types of geometric designs considered for the validation
procedure. The first one was a 4-way junction which was the exact replica of what was used during
training, and the second one was a 4-way roundabout as shown in Figure 20. The allowed turning
movements and the number of lanes on each link were the same for both scenarios. The conflict
resolution for the roundabout has been updated from the 4-way junction as there are less CPs (8 in total)

in the intersection CrA compared to 32 CPs in 4-way junction as shown in Figure 14.

Figure 20 — Intersection road geometry types used during validation, 4-way junction (on the left), 4-way
roundabout (on the right)

6.2.2. Traffic Demand

Traffic demand represents the number of vehicles per hour (veh/h) on the road network. Similar to the
training scenarios (See Section 5.3.4), three levels of traffic demand were defined to represent low (500
veh/h), medium (1000 veh/h) and high (2000 veh/h) volumes of traffic. In Vissim, the time that a vehicle
enters the road network is defined stochastically even though the traffic demand per hour is set as a
fixed value. Firstly, an average time gap between two vehicles was calculated based on the defined
traffic demand scenarios, which was then used as the average value of a negative exponential
distribution. The actual time gaps between two vehicles entering the network were obtained from this

distribution which relates to a Poisson distribution.
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Additionally, two more traffic demand related scenarios were generated that represented situations
where two links intersected with same or different traffic demand levels. The traffic demand ratio of
1.0 (Major link / Major link) and 2.0 (Major link / Minor link) were used which refer to the traffic
demand ratios of the intersecting links. For example, if the North-South and the West-East links have
traffic demands of 1000 veh/h, then the demand ratio is 1.0. Similarly, if one of the links has half the
level of traffic demand i.e. 500 veh/h, then the demand ratio is 2.0.

6.2.3. Driving Behaviours

The driving behaviours generated for the training were used in the exact same way during evaluation.
See Section 5.3.3 for a detailed explanation. In summary, there were 5 different driving behaviours,

CHYV and CAV Bl to B4.

6.2.4. Penetration Rate

Penetration rate is defined as the percentage of SAE Level 5 vehicles in the total vehicle fleet in the
road network. Mixed-driving fleet operations will be the case in the near future until all vehicles are of
type Level 5. To consider a variety of potential future cases, 5 levels of penetration rates were
considered during validation: 10%, 25%, 50%, 75% and 90%. For example, if the penetration rate of
Level 5 vehicles was 10%, then the other 90% was considered as CHV. Also note that Level 5 vehicles
were all considered to have the most assertive driving behaviour, CAV B4, in the mixed-driving

scenarios.

6.2.5. Traffic Control Methods

The Al traffic control method proposed in this research work was benchmarked against two control
methods during the validation procedure: the fixed-time TLC and the FCFS (Dresner and Stone, 2008)

heuristic rule-based control methods.

Al traffic control method:

The parameter set obtained after the training process for the Al model was frozen during validation,
meaning the agent no longer executed backpropagation for further parameter optimisation. With this in
mind, Critic, Actor Target and Critic Target networks were no longer required as the agent only operated

in forward-pass mode during validation. In addition, the agent only exploited the knowledge and
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experience it learned about the environment rather than exploring new policies for action selection.
During training, stochasticity in the agent policy was introduced by adding a mean-zero Gaussian noise
in the action selection. That meant that the agent did not always take the same action that gave good
reward in a certain state, but it explored other actions to determine whether there were any other better
actions that could give higher rewards. During validation, this exploration was not required, and the

noise was removed in order to make decisions according to the optimal policy.

Fixed-time TLC method:

The fixed-time TLC method used in this work utilised the V21 communication interface to inform the
approaching vehicles about the signal switch times so that they could set their speed profiles as they
approached to the intersection accordingly based on the Wiedemann driving model in Vissim. In
Vissim, the TLC model is provided by Vissig (PTV — Planung Transport Verkehr AG, 2019) add-on
software module in which the control parameters for the model can be set via the Graphical User
Interface (GUI). It is important to mention that the great majority of the traffic control systems do not
have the V2I communication capability implemented as of today. The rationale behind considering this
as part of the TLC method was to have a stronger benchmark control method that also considered a

realistic near-future scenario.

The TLC method uses the concept of phases and stages. Phase refers to a group of traffic movement
directions. For example, at a 4-way junction with 4 approaching links, there are 4 phases. Stage refers
to a group of non-conflicting phases. The phase split and offset times were determined via an in-built
optimisation process in Vissim. This process involved changing the green and red traffic light duration
times for each phase iteratively until the best results were obtained in terms of the lowest average vehicle
delay and the highest traffic flow. The aforementioned optimisation process steps are given in detail in
Appendix A. The TLC method and the optimisation of its parameters represent the real-world

deployment process of such control methods by traffic engineers.
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Figure 21 — Stage-based fixed-time TLC setup user interface in Vissim. Green light duration is shown with green
tubes, red light duration is shown with red line and the switching times (amber/red light) are highlighted with
yellow crossed box.

At the end of the optimisation procedure, the optimal phase and split times were found. The control
cycle time was considered as 60 seconds and the optimised green light durations for each phase is shown
in Figure 21. Each phase is defined as a group of traffic lights and the notations SG N, SG_S, SG W
and SG_FE are used that refer to Signal Group (SG) North, South, West and East for the road networks

used in Figure 20 during validation.

FCFS control method:

The main difference between the FCFS and the Al methods is the way approaching vehicles are
prioritised for intersection crossing. Essentially, the FCFS method gives priority to the vehicles based
on their arrival time to the intersection without considering any other traffic condition i.e. queue length,
vehicle delays etc. This method is widely used in the literature as a benchmark for unsignalised traffic

control (Khayatian et al., 2020).

6.2.6. Scenarios Overview

The overview of the generated validation scenarios is given in Figure 22. The scenarios are split into 2
sections, A and B. Section A represents the base validation scenarios whereas section B represents the

key use cases in traffic. The combination of Section B use cases was used for validation on all base
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scenarios in Section A. With this in mind, the total number of validation scenarios, n_vS;,tq; can be
found as:

n=4

R_VSyorar = ) Cup 1) #n_vs, (23)

i=1

where n_vs, is the total number of base scenarios in Section A, u; is the number of use cases for each
category from Section B and C(u;, 1) is the combination of those use cases within a category. This

gives 360 validation scenarios in total.

Mixed Driving Scenarios Single Driving Scenarios
A g g g

90% CHV- 75%CHV- 350%CHV- 25%CHV- 10%CHV - CHV CAV BI CAV B2 CAVB3 CAV B4
10% CAV B4 25% CAV B4 50% CAV B4 75% CAV B4 90% CAV B4

Traffic Demand Ratio Traffic Demand Traftic Control Method Road Geometry

Major / Major ~ Major / Minor Low Mid High Al FCFS TLC 4-Way Junction  4-Way Roundabout

Figure 22 — Simulation test cases overview

The duration of each validation scenario was set as 2 hours and every scenario was run 5 times in order
to capture the average behaviour among all simulation runs. In summary, a total number of 1800 (5
scenario repeats x 360 total scenarios) simulation runs were executed that added up to 3600 hours of
traffic environment simulation. Random seed parameter in Vissim was varied for each simulation run

to reflect the inherent uncertainty in traffic environment.

The results of each simulation run were automatically saved into a folder by Vissim that enabled
performance analysis and comparison of the proposed unsignalised traffic control against the two

benchmarked control methods.
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6.3. Performance Metrics

The performance of the traffic control methods used during validation was measured and compared to
each other based on a set of performance metrics. The identified metrics are associated with the
environmental, congestion, travel time impacts of the control method under test on the traffic
environment. In this research work, 8 performance metrics were defined in total; vehicle delay, number
of vehicle stops, vehicle speed, queue length, fuel consumption and gas emissions. All performance
metrics were calculated by Vissim during a simulation run and the results were logged into a file for

data analysis afterwards. The details of these metrics are given in the following sub-sections.

6.3.1. Vehicle Delay

Vehicle delay time per vehicle in Vissim considers the additional time incurred due to congestion and
the traffic control method by subtracting the theoretical attainable travel time from the actual travel
time. Dividing the total delay of all vehicles in the network by the total number of vehicles in the
network gives the average vehicle delay, and it was used as a performance metric. The same average

vehicle delay was also used as one of the observation vector features as explained in Section 4.3.1.

6.3.2. Number of Vehicle Stops

A vehicle is considered as stopped when its speed in the previous timestep was greater than 0 (zero)
and it is 0 (zero) in current timestep. Following this, the stop counter for that vehicle is incremented by
one. Dividing the total number of stops of all vehicles by the total number of vehicles in the network

gives the average number of vehicle stops, and it was used as a performance metric.

6.3.3. Vehicle Speed

Average vehicle speed is used as a performance metric, and it is also used in the state representation.

Please refer to Section 4.3.1 for an explanation of its calculation.

6.3.4. Queue Length
Queue length is measured per lane from the upstream position of the queue, the CrA
entry point, up to the last vehicle that satisfies the “in-queue” condition which is determined as below:

o Ifthe speed of a vehicle is less than 5 km/h, then that vehicle is considered as entering a queue.
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e A vehicle remains in the queue as long as the speed of that vehicle has not yet exceeded 10

km/h.

Queue length is measured in Vissim in terms of units of length (i.e. metres), not in terms of number of
vehicles. Average queue length was used as a performance metric, and it is calculated by measuring the
queue length on each lane at each timestep and taking the arithmetic mean of the measured values,

including 0 (Zero) values as queue length, for the duration of the validation scenario.

6.3.5. Fuel Consumption

All vehicles in Vissim were modelled as petrol vehicles and there was no other type of vehicle in the
network. Fuel consumption was measured for each vehicle in terms of US liquid gram and the average

fuel consumption was used as a performance metric.

6.3.6. Gas Emissions

Environmental impact assessment of the traffic control methods is done based on the measurement of
exhaust emission of the vehicles in the network. The gas emission calculations in Vissim are based
Traftic Network Study Tool Version 7F (TRANSYT7-F) simulation and optimisation tool by Penic and
Upchurch (1992). Carbon monoxide (CO), nitrogen oxide (NOx) and volatile organic compounds
(VOC) were the gas emission of interest for the validation scenarios. The average gas emissions for the
duration of the validation scenario were used as performance metrics, and they were measured in terms

of grams.
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6.4. Summary

The validation procedure for the trained Al model have been explained in this section. In particular, the
Al model is expected to generalise its optimal policy by applying the learned knowledge to previously
unseen data during validation. To this end, 360 validation scenarios were generated that differ from the
training scenarios in terms of road geometry (i.e. roundabout), mixed-driving and traffic demand ratios.
In addition to this, benchmark traffic control methods were also tested under the same scenarios in order

to compare their performance in terms of the identified metrics.

The validation traffic scenarios were designed to isolate the impacts of particular traffic control methods
on traffic flow, journey times and congestion in the presence of CAVs. Whilst they did not represent
real world situations exactly, due to the assumptions made in this research work, the validation results

gave an indication of relative performance improvements in the traffic environment.

The computer simulation validation results and the discussions are presented in Chapter 8 together with
the validation results of the scaled real-world experiments. The next chapter will focus on the
development of the scaled road network with scaled CAVs for the validation of the unsignalised traffic

control on the scaled testbed.
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Chapter 7

7. Validation of Al Traffic Control in Scaled Testbed
Experiments

7.1. Introduction

A simulation based validation process can offer great benefits in terms of avoiding costly installations
with physical assets, speeding up experiments, varying conditions and scenarios easily and generating
edge cases for safety-critical situations. On the other hand, practical testing and validation is also not
avoidable mainly due to the fact that a thorough understanding of a traffic environment for modelling
in simulation including all factors involved is very challenging, if not impossible. Therefore, simulation
work can accelerate the validation and testing activities of complex systems such as traffic control in

real-world, but not necessarily replace these activities.

Taking that into consideration, a scaled testbed setup with scaled CAVs is presented in this chapter for
executing validation scenarios with physical assets and measuring performance of the proposed traffic
control system. Although the road network and the CAVs are scaled, the testbed can be seen as a bridge
between a simulation work and a full-scale deployment in a real-world setting. Indoor localisation, V21
communication, traffic monitoring and visualisation capabilities are some of the key features
implemented. Unlike the scaled testbed setup by Stager et al. (2017), all scaled cars in this work have
the capability to run vehicle behaviour, decision making and motion control algorithms on-board
without requiring an external processing unit. In addition, a digital twin of the scaled testbed was also
created in Vissim to cross-validate the vehicle behaviour and the traffic control performance, and is

presented in the following sections.

7.2. Scaled Testbed Environment

7.2.1. Road Network Setup

The scaled road network in this research work was used as a testbed to further validate the traffic

scenarios in a controlled environment. It incorporated realistic cues with regards to the traffic
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environment including a 2-way intersection with a single lane on each link, scaled CAVs running on
Al-enabled embedded systems, V2I wireless communications based on Wi-Fi, vehicle positioning and

localisation system.

Different versions of the road network have been used during the initial stages of the project in an
iterative manner until all required traffic environment features and functions were implemented. Figure
23 shows three versions of the road network in which the top-left picture is the Version 1 (V1), and the

bottom picture is the Version 3 (V3) that is the final version used for the validation scenarios.

Figure 23 — Scaled road network setup for unsignalised traffic control experiments. Version 1 (top-left), Version
2 (top-right) and Version 3 (bottom) of the road network setup are shown.
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The final version of the road network spanned over 30.24 square metres (7.2m x 4.2m), and the road
surface was constructed out of 84 interlocking Ethylene-Vinyl Acetate (EVA) foams (0.6m x 0.6m)
with 10 mm thickness. The road lanes were built with white matt gaffer tape, and the middle of the road
was marked with orange tape. The intersection entry and exit points were marked with black tapes. The
initial experiments on V1 and V2 showed that marking only the outer boundaries of the lanes made it
very challenging for the scaled cars to determine which side of the white lane boundary to drive on the
curved sections of the road due to the on-board car camera not being able to see both lane boundaries

at the same time. This problem was resolved by marking the whole road lane with white colour in V3.

Figure 24 — Demonstration of the unsignalised control method at an event in the UK

Having a portable road network also facilitated the demonstration of the traffic control method at
various different academic and industrial events during the project. Figure 24 shows the road network
setup process at one of those events in the UK, it took 30 minutes for one person to complete the full
system setup for the demonstration. The complete list of the Bill of Materials (BOM) for the scaled
testbed is given in Appendix B.

7.2.2. Wireless Communications

The V2I communication between the scaled cars and the TCA was established via Netgear Nighthawk
Smart Wi-Fi Router AC1900. The router supported IEEE 802.11 b/g/n variants at 2.4 GHz and IEEE
802.11 a/n/ac variants at 5.0 GHz. In this project, 2.4 GHz range was used for communication. The
TCA was run on a Windows 10 machine acting as the RSU on the scaled testbed.

7.2.3. Indoor Localisation and Positioning

Vehicle localisation is one of the key requirements to satisfy in order to determine the distance of the

scaled cars to the intersection entry point. GPS based localisation would fail to work or lack precision
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required indoors. Therefore, the adopted method in this research work was based on external cameras
and ArUco markers (Garrido-Jurado et al., 2014) that were placed on top of the scaled cars. There were
2 external cameras (Logitech C922 Pro Stream) on tripods as shown in Figure 24 that captured the

whole testbed when combined.

ArUco marker was composed of a white binary matrix on a black background. In this work, the marker
size of 4x4 was used in terms of the number of bits per marker. The ArUco marker concept is originated
from the pose estimation requirements of robotic applications, and the concept enables 3D translation
of position and rotation vectors from the binary matrix of the markers to be obtained. The software
implementation of this concept was based on OpenCV library (Itseez, 2015) in which marker detection,
identification and pose estimation functions were all defined and provided as a library in Python
programming language. The ArUco markers that were used on the scaled cars are shown in Figure 25

with their embedded IDs written underneath the markers.

ID:10 ID:11 ID:12 ID:13 ID:14

EILAGAEA

ID:15 ID:16 D:17 ID:18 1D:19

Figure 25 — Unique ArUco markers for the scaled car identification

The ArUco markers were placed on top of the scaled cars as the screen capture of the external cameras
show in Figure 26. A cube-shaped paper with a triangle roof was used to display the ArUco marker on
every surface to ensure visibility from all locations on the testbed. The indoor localisation and
positioning software function run every 25 ms. Firstly, it detected all the markers on the testbed and
identified each car. Secondly, it calculated the direction and location of the cars in terms of distance to
the intersection entry points. Finally, the latest localisation data was sent over to the vehicles via V2I

communication interface. The accuracy of the localisation was measured to be better than 1 cm.
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alibration points

Figure 26 — Indoor localisation and positioning with Aruco markers. The laptop screen shows side by side what
both cameras capture. The shared intersection space is captured by both cameras whereas the curved sections of
the road network are only captured by one camera.

When the testbed is moved to another location for demonstration purposes, it is important to position
the cameras correctly. To this end, a calibration procedure was implemented to accelerate the setup of
the cameras in the correct position. The green dots on the intersection entry and exit lines in Figure 26
are essentially the calibration points which must overlay on top of the intersecting point where black

and orange lines meet.

7.2.4. Digital Twin

A digital twin is defined as the relevant abstraction of a physical system, rather than being an exact
replica of that system, including modelling of complex behaviours and interactions. In this project, the
digital twin of the scaled testbed was created in Vissim in order to cross validate the scaled testbed
experiment results and to calibrate the driving behaviour parameters on the scaled cars to achieve

uniform behaviour in both platforms.
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Figure 27 — The digital twin (left-image) of the scaled testbed (right-image) in Vissim.

The length of a passenger car model in Vissim was similar to a real size passenger car i.e. 4.5 m.
However, the length of the scaled cars was 0.25 m. This necessitated a scaling factor to be applied to
the road network as well in order to achieve similar performance results in both platforms. The radius
of each loop on the figure of eight scaled road network was 2.5 m which is 10 times greater than the
length of the scaled car. With this in mind, the radius on the digital twin was also set as 10 times of a

passenger car length i.e. 45 m.

In computer simulations, 5 different driving behaviours (1 CHV, 4 CAV B1 to B4) were generated by
configuring the driving model parameters within Vissim. However, implementing these driving
behaviours in the scaled cars was challenging due to the Vissim driving model not being available in
the scaled cars. Therefore, the driving behaviour in the scaled car was calibrated to behave similar to
CAYV BI1 driving behaviour in the simulation tool by utilising the digital twin setup. The calibration
process involved iterative 15-min experiments on the scaled testbed with different sets of driving
behaviour parameters, which provided the intersection throughput values in terms of the total number
of vehicles that crossed the intersection, and choosing the parameter set that gave the nearest results

when compared to the digital twin simulation experiments.

The reason for choosing CAV B1 driving behaviour only was mainly due to the limitations of the
sensors on the scaled cars which did not make it possible to follow the preceding car on the scaled
testbed with reduced headways. The validation scenarios that will be presented in the next section were
executed both in the scaled testbed and in the digital twin. The digital twin simulations did not run in
parallel or real-time as the scaled testbed experiments. The experiment results were obtained

independent from each other.
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7.2.5. Validation Scenarios

The validation scenarios on the scaled testbed mainly focused on the comparison of the TLC and the
Al control methods under varying traffic demand conditions. It is important to mention that the variety
of scenarios that can be implemented on the scaled testbed is much more limited compared to the
simulation work in terms of the number of vehicles. There were 10 scaled cars in total built for the
purpose of these experiments. However, maximum 6 of these cars could run at the same time due to the

size restrictions of the testbed.

In summary, the validation scenarios were a combination of traffic control methods and the traffic
demands as shown in Figure 28. Each square box represents one unique scenario in which the number
of scaled cars to run is listed on top and the demand ratio, in terms of Right-Turn (RT), Straight (S) or
Left-Turn (LT) at the intersection crossing, is given as the distribution of the scaled cars for each
potential route. This gives a total of 16 validation scenarios. The combination of LT, S and RT routes

were used in order to vary the vehicle trajectory choices during intersection crossing.
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5 Cars
Traffic Demand Ratio
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Traffic Demand Ratio

6 Cars
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Traffic Control Method

N

Al TLC

Figure 28 — The scaled testbed scenarios overview

Each validation scenario was run for 15 minutes, and it was repeated twice both in the scaled testbed
and in the digital twin. The experiment results that will be presented in Chapter 8 are the average value
of these multiple runs for each scenario. Two performance metrics were defined to quantify the
performance of the traffic control methods; average vehicle delay and the intersection throughput which
is the total number of vehicles that cross the intersection. Some of the performance metrics used during
the simulation work could not be used in the scaled testbed i.e. fuel consumption, gas emissions as they

depended on the algorithms and models implemented in Vissim.
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7.3. Scaled CAVs

7.3.1. Vehicle Hardware Components

The key hardware components of a scaled CAV are explained in this section. A total of 10 scaled cars
have been built to the exact same standards. In a nutshell, each car has the ability to run complex Al
algorithms in real-time, capture images for driving, communicate wirelessly with the RSU, detect

objects, measure speed, control steering and throttle.

Chassis, Motor and Batteries:

The scaled CAVs were based on an off-the-shelf Remote-Controlled (RC) car at 1/16 scale with a
brushed motor and an Electronic Speed Control (ESC) unit as shown in Figure 29. The chassis was
large enough to carry all required components, and it was also small enough to operate in the scaled
testbed area. The original RC car 1100 mAh 7.2V Nickel-Cadmium (Ni-Cd) battery was replaced with
a 4200 mAh 7.2V Nickel-Metal Hydride (NiMH) battery with increased battery capacity for longer
operation time. When fully charged, a scaled CAV could drive for about 45 minutes continuously. A

charging station was setup near the experiment area to manage battery charging under safe conditions

by using fire and explosion proof safety bags.

Figure 29 — The original remote-controlled car that was purchased off-the-shelf (top-left-image), fleet of cars
during the electronics assembly process (right-image) and the final version of the assembled car (bottom-left-
image) are shown.
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During the initial experiments with the scaled CAVs, a performance comparison was carried out
between a brushed motor and a brushless motor to determine the suitability of these options for the
project. The experiments revealed that the speed control with a brushless motor was very difficult at
low speeds (under 5 m/s). Therefore, a brushed motor was used in all cars. The scaled cars could go up
to 50 km/h speed, and the chassis was equipped with axle trees to reduce friction of the components
and to run smoother. In addition to that, there were front/rear bumpers and spring shock units that

provide protection against impacts.

The brushed motor was controlled with Pulse Width Modulation (PWM) signal, and for that reason, a
dedicated 16-Channel 12-bit PWM driver board was used supplied by Adafruit Industries. The PWM
driver acted as a bridge between the computing platform and the brushed motor that converted the

digital control requests into analogue signals.

Computing Platform:

An onboard computing platform was integrated into the vehicle that handled the automated driving
operations in the scaled testbed. A trade-off was made between cost and computing speed in terms of
frames per second (fps) by deciding on a minimum viable fps of 20. This was determined based on the
maximum speed limit of 2 m/s set for the scaled CAVs. In other words, a scaled car would travel
maximum 5 cm between two consecutive frames which was deemed as satisfactory. With this in mind,
Raspberry Pi 3 Model B+ and NVIDIA Jetson Nano Developer Kit platforms were selected for the
initial experiments, and the two cars in Figure 30 were built to the same specification apart from the
computing platform. At the time of writing this thesis, the cost of Raspberry Pi solution was three times
less than that of NVIDIA solution. However, the performance comparison testing showed that the
Raspberry Pi board processing speed was 12 fps on average whereas it was 96 fps for the NVIDIA

board. As a result, NVIDIA solution was selected as the main computing platform for the project.
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Figure 30 — Comparison of the scaled CAV design based on Raspberry Pi 3 Model B+ (left-image) and NVIDIA
Jetson Nano (right image)

The computing platform and other electronic components were not powered by the same battery as the
motor control. The secondary battery was a 10 Ah lithium-ion polymer battery with 3A maximum
current capability. All electronic components were housed on a 3D printed black assembly which was
made out of polylactic acid (PLA) material, and the design was based on the open-source donkeycar

platform (Donkeycar, 2021).

The NVIDIA board did not include any wireless connectivity Integrated Circuit (IC) unlike the
Raspberry Pi solution. Therefore, the Edimax N150 USB dongle that provided Bluetooth and Wi-Fi

connectivity was used on all cars for V2I communications.

Camera:

The on-board camera is one of the key components that capture the traffic environment as an image
input for the automated driving Al model. Logitech HD Webcam C525 was selected due to its compact
size, ease of integration with the computing platform via USB interface and low cost. The resolution in
pixels was not a key requirement as down-sampling was performed on the camera image prior to feeding

it into the neural network.

Sensors:

All vehicles were fitted with some additional sensors which were controlled and monitored by the main
computing platform. HC-SR04 ultrasonic sensor from SparkFun Electronics was one of the sensors

integrated for object detection. Two ultrasonic sensors were placed at 45 degree angle on the front left
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and front right sides of the scaled cars. The validation scenarios did not require the cars to reverse at
any moment in time. Hence, no sensor was placed on the back side of the cars. The ultrasonic sensor

provided 2-400 cm of non-contact distance measurement functionality from the object with an accuracy

of no worse than 10 mm.

The hall-effect sensor

Figure 31 — Speed measurement of the CAVs with hall effect sensors

Speed measurement was achieved by a hall-effect sensor that was installed inside of the back wheels of
the scaled cars as shown in Figure 31. The sensor produced a trigger signal when the magnetic field
density around it exceeded a set threshold value, and this was captured by the computing platform as a
digital input signal. Magnetic discs (6 in total) with 5 mm radius were placed inside one of the wheels
at an equal distance from each other. By doing this, the distance travelled by a scaled car could be found
based on the fact that one revolution of the wheel was 24 cm, and 6 trigger signals were generated per
revolution. Then, the average speed of a vehicle within a monitoring cycle of 200 ms could be found

by solving the equation, distance = speed * time.
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An Inertial Measurement Unit (IMU) based speed measurement was also considered and tested on the
scaled cars. The MPU6050 sensor from InvenSense Inc. was used due to its low cost and compatibility
with the computing platform. The sensor had 3-axis gyroscope and a 3-axis accelerometer for
directional speed measurement. However, the scaled vehicle testing showed that the accuracy was very
poor, reaching up to 0.5m, and the error accumulated if the sensor was not calibrated continuously.

Therefore, an IMU based speed measurement method was not chosen as a viable solution in this project.

This concludes the key hardware components. The complete list of BOM for the scaled cars is given in

Appendix B with the associated cost information.

7.3.2. Vehicle Software Components

The vehicle software in this project refers to the automated driving application that runs on the
computing platform, and the software architecture was inspired by the open-source donkeycar software
library (Donkeycar, 2021). The software was executed in a multi-threaded way where key tasks run in
parallel at different cycle rates. The aforementioned key tasks are shown in Figure 32 with their cycle
rates listed underneath, ranging from 20 Hz to 100 Hz. The arrows indicate the producer-consumer
relationship between the tasks in which a producer generates the required data to be used by the

consumer task for decision making or post-processing.

The main system task run at 100 Hz and responsible for starting, terminating and monitoring other tasks
in the software in addition to handling data exchange between these tasks when required. Object
detection and camera vision tasks had the next fastest cycle rates as they had the greatest impact on
driving within the lanes and preventing collisions with other cars. All vehicle software components run

on Linux Operating System (OS), and they were coded in Python programming language.
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Figure 32 — The scaled CAV key software modules for automated driving application that runs on the
computing platform.

7.3.3. Automated Driving Al Model Setup

The neural network for the automated driving Al model is given in Figure 33. The network consists of

an input layer, 6 Convolutional Layers (CL), 5 Fully-Connected (FC) layers and 2 output layers with

their corresponding number of neurons as shown in the figure.

CL1 CL2 CL3

Input Image
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pixels

24 filters, kernel size

[5x5]

Normalized and
re-centred
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—f > — ] —
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Figure 33 — Al network for the automated driving task
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The input layer takes the down-sampled (160x120 pixels) camera image as an input and performs
normalisation on the pixel values in the target range of [0, 255]. The CLs perform feature extraction,
and the process of an input image being abstracted to a feature map is shown on top of the CLs in Figure
33. The sequence of images helps to visualise what happens to the original input image after each CL.
The CLs are followed with FC layers leading to 2 output layers for throttle and steering control values
which are produced in the range of [-1, 1] by the network, and then, they are scaled accordingly

afterwards for actual steering and throttle command to the electric motor.

The neural network architecture can be considered as an end-to-end model, similar to Bojarski et al.
(2016), based on the fact that the network parameters are optimised by considering the input and output
data directly without including any intermediate data points. The next section will present the training

procedure for the AI model.

7.3.4. Automated Driving Al Model Training

The training method for the automated driving Al model is based on supervised learning. This means
that the training data is collected and labelled offline unlike the RL training where an agent is trained
online by interacting with an environment. In the context of automated driving with scaled cars, the
objective of the training for the agent is to predict throttle and steering angle control values for the given

input image based on the labelled data acting as the ground truth.

The training data was collected in the scaled testbed by driving one of the scaled cars with a remote
control device. In other words, the ground truth values came from a human driver as the scaled car was
controlled remotely. It was important to control the scaled car as smoothly as possible without going
outside the road lanes or changing the speed frequently. Because the agent was trained on this collected

data to behave as close to the human driver as possible.

Data collection was done over 20 minutes of driving the scaled car remotely around the testbed per each
potential route at the intersection crossing. There were 3 potential routes, LT, S and RT. As a result, 60
minutes of driving data was collected which corresponds to about 60k labelled records. A single record
refers to a collection of data points that include the camera image, timestamp, throttle, steering angle,
distance from the intersection entry and the route choice if crossing the intersection. An example set of
data collected during training is shown in Figure 34. In this figure, the images on the left and right hand

sides correspond to driving within the lane and crossing the intersection. As can be seen, crossing an
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intersection can be challenging for an Al model due to the complexity of the road markings. This is
why the training data was collected for each route option so that the agent could be taught how to turn

left, right or go straight accordingly.

"timestamp"':

"2019-04-01 18:33:56.453043"
"cam": "Image.jpg",
"throttle": 0.7477,

"angle": -0.0419,

"state": [0, 0, 1]

"distance": 0.124
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Figure 34 — Training data collection for automated driving AI model within the scaled road network

Training data collection is a lengthy process during which the human driver may not always be able to
control the scaled car perfectly in the middle of the road. However, this does not pose a serious problem

as long as it is only a small portion of the collected data.

Generalisation of automated driving behaviour to unseen situations during training is very important.
To this end, data augmentation was applied to the training data. Data augmentation refers to the process
of applying little variations to the original image in order to multiply the amount of training data in a
synthetic way. This technique reduces overfitting of the neural network parameters, and thus makes the
Al model to be more robust in the automated driving task. Figure 35 shows an original image on the far
left and the 3 synthetic versions of it from left to right where the image attributes, in terms of brightness
contrast and gamma correction, are varied. In summary, 60k original training data was increased to

240k in this project by applying data augmentation on each image.
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a b c d

Figure 35 — Data augmentation for improving the quality of the training data. a) Original image, b) Brightness
contrast filter applied, c) night vision filter applied, d) gamma correction filter applied

7.4. Summary

The testbed introduced in this chapter is a scaled road network in a figure of eight shape with a single
road lane. It has been constructed with an objective of replicating real-world traffic control scenarios in
a scaled, cost-effective and controlled environment. It can be seen as a bridge between a simulation
work and a real-world deployment of such a system. Realistic environmental cues have been included
in the scaled testbed such as V2I communications, road markings and intersection crossing shared space
so that the impact of an unsignalised traffic control could be obtained and compared with a traffic light
based control method. Furthermore, the digital twin of the scaled testbed has also been created in Vissim

to cross validate the experiment results.

The technical details of the scaled CAVs are also presented in this chapter. During the development of
the scaled cars, some methods or approaches did not work and all of these important “lesson-learned”
points are also presented. The NVIDIA Jetson Nano processor was used as the main computing platform
which run the software for the automated driving application. The automated driving task itself required
a training data collection process with a human driver controlling one car remotely around the testbed.
10 cars have been assembled that were built to the same specification, and they could drive

autonomously around the scaled testbed simultaneously.

The validation cases presented in this section have been executed in the scaled testbed and the results

are presented in Chapter 8 together with a discussion of the key findings.
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Chapter 8

8. Performance Evaluation of AI Traffic Control

8.1. Introduction

This chapter presents the results of the simulation work from Chapter 6 and the scaled testbed
experiments from Chapter 7. The discussions focus on the impacts of the traffic control methods on
traffic flow, congestion, journey times and the environment. The measure of effectiveness of the traffic
control methods are quantified with metrics and the rest of this chapter is organised to present the key
results based on these performance metrics. The remaining results in the form of data tables and graphs

can be found in Appendix C.

8.2. Traffic Simulation Results

8.2.1. Vehicle Delay

The average vehicle delay times for the validation scenarios is shown in Figure 36. In this figure, the
top and bottom three charts are for the scenarios where the demand ratio is major/major and major/minor
respectively. The x-axis of all charts has a series of discrete points that represent five different driving
behaviours and five different CAV penetration rates in mixed-fleet operation conditions (See Section
6.2). For example, 90% CHYV label is used to represent a mixed-fleet traffic flow condition where 90%
of the vehicles are CHV and 10% CAV B4.

Simulation data in Figure 36 shows that vehicle delay times decrease as traffic demand decreases from
high to low in common for all traffic control methods as expected. Another common trend for all control
methods was that the delay times dropped as CAV penetration ratio increased, and as vehicle driving
behaviour became more assertive from B1 to B4. This trend was more pronounced when the traffic
demand was high and the FCFS method was used. The FCFS method had the highest delay times in
high traffic demand scenarios compared to the Al and the TLC methods, reaching up to 88.34 sec and
270.23 sec under major/major and major/minor demand ratios respectively. The Al method was shown

to perform the best in all high demand traffic scenarios with minimum delay times of 12.26 sec and
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12.67 sec under major/major and major/minor demand ratios respectively. When the traffic demand
was medium or low, the TLC method displayed the worst performance in terms of vehicle delay time
which was in the range of 20.52-21.96 sec while the Al and the FCFS methods were on a par in all

scenarios with a maximum vehicle delay difference of 2 sec between the two methods.

Interestingly, the vehicle delay time for CAV B1 was observed to be greater than CHV by 8.36 sec
when the demand ratio was major/major in high traffic demand scenario under only the FCFS method.
A note of caution is due here since this difference in vehicle delay between CAV B1 and CHV was not
found when the demand ratio was major/minor. A possible explanation for this can be the fact that CAV
B1 is a more cautious driving behaviour than CHV and the effects of this is more pronounced under

high traffic demand scenarios when two major roads intersect.
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Figure 36 — Average vehicle delay for each driving behaviour and CAV penetration ratio under high, medium
and low traffic demand scenarios a) when the demand ratio is major / major (top 3 graphs) and b) when the
demand ratio is major / minor (bottom 3 graphs)
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Figure 37 — Average vehicle delay box plot that shows the range of delay times for all driving behaviours and
CAYV penetration rates under each traffic control method. The middle line of the boxes and the x inside the boxes
represent the median and mean values respectively. 1 quartile (bottom line of the boxes) and 3™ quartile (top line
of the boxes) of the range are also shown together with the whiskers that represent the maximum (top) and
minimum (bottom) values in the range a) when the demand ratio is major / major (top 3 graphs) and b) when the
demand ratio is major / minor (bottom 3 graphs).

The range of vehicle delay values that were obtained from all scenarios of driving behaviour and CAV
penetration ratio are shown in a box plot in Figure 37 for each traffic control method. From this figure,
it can be seen that the TLC method has the most constrained range of delay times under all traffic
demand conditions with the largest delay range of 24.44-25.96 sec under high traffic demand. This
indicates that the CAV penetration rate and driving behaviour being assertive or cautious have minimum
impact on the delay times with the TLC control. On the other hand, the FCFS method was shown to be
very sensitive to changes in driving behaviour of vehicles and CAV penetration rate in the traffic flow
as this control method had the widest range of delay times under all traffic demand conditions with a
maximum delay range of 33.84-88.34 sec under high traffic demand. What stands out in this figure is
that the Al method performance gets significantly better as traffic demand increases compared to the

TLC method.
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The average vehicle delay percentage improvement in all scenarios against the baseline scenario of
CHYV where the traffic flow consists of 100% CHYV driving behaviour is shown in Figure 38. This figure
is important mainly because it makes a performance comparison between the potential future traffic
conditions and the traffic conditions of today where CAVs do not exist on a mass scale. What is striking
in this figure is that a maximum of 10% improvement in vehicle delays could be obtained when the
TLC method was used even if 90% of the traffic flow was CAV B4. On the other hand, the Al and the
FCFS methods offered much greater improvements as the driving behaviour became more assertive or

CAYV penetration rate became higher.
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Figure 38 — Average vehicle delay percentage improvements of all scenarios are shown against the CHV
scenario where the traffic flow consists of 100% CHYV driving behaviour a) when the demand ratio is major /
major (top 2 graphs) and b) when the demand ratio is major / minor (bottom 2 graphs).

During training of the Al method, as explained in Chapter 5, only a 4-way junction geometry was used
as the road network. However, validation scenarios included a roundabout geometry as well which has
not been used during training in order to validate the operation of Al method in an unseen geometric
road network. Figure 39 shows the comparison of average vehicle times for 4-way junction and 4-way
roundabout under major/major traffic demand ratio scenarios when Al method is used. It can be seen

from this figure that the trend in vehicle delay under all scenarios are the same for both road networks
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where the delay times are slightly higher in roundabout with a maximum difference of 3.69 sec between
two road networks in high traffic demand scenarios. It is apparent from this figure that the AI method

generalises well to other road networks that are not used during the training session.
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Figure 39 — Comparison of average vehicle delay for each driving behaviour and CAV penetration ratio 4-way
junction and 4-way roundabout scenarios when the demand ratio is major / major.

8.2.2. Number of Vehicle Stops

In an ideal intersection crossing scenario, there should be no stop-and-go movement in order to incur
no vehicle delays. Therefore, the number of vehicle stops metric gives useful insights with regards to
congestion build-up. Figure 40 provides the results obtained from the validation scenarios in terms of

the number of vehicle stops for each control method.

As can be seen in Figure 40, the number of vehicle stops reduces as more CAVs penetrate into the
traffic flow or as driving behaviour gets more assertive with the Al and the FCFS methods. However,
a closer inspection of the figure demonstrates that this trend does not hold true for the TLC method, and
the greatest number of vehicle stops (1.03, 1.19, 1.35 under high, mid and low traffic demands
respectively) was observed with CAV B4 driving behaviour. With the TLC method, the number of
vehicle stops decreased as the CAV penetration rate reduced or driving behaviour became more
cautious. In addition to that, the number of vehicle stops increased as traffic demand decreased with the
TLC method which was the other way around with the Al and the FCFS methods. This result may be
explained by the fact that the TLC method gives right-of-way to all approaching links in turn in a control
cycle even though there are no vehicles waiting to cross in the queue on a particular approach link which

becomes the case as traffic demand decreases.
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Figure 40 — Average number of vehicle stops for each driving behaviour and CAV penetration ratio under high,
medium and low traffic demand scenarios a) when the demand ratio is major / major (top 3 graphs) and b) when
the demand ratio is major / minor (bottom 3 graphs).

There were no control methods that eliminated the stop-and-go movement for the given traffic demand
scenarios. However, the Al method specifically was shown to perform the best in majority of the
scenarios except for the low traffic demand scenarios where the FCFS method outperformed the Al
method marginally with a maximum difference of 0.1 average number of vehicle stops. It is also
important to highlight that data from Figure 36 can be compared with the data in Figure 40 which shows
that there is a strong correlation between vehicle delay times and the number of vehicle stops when the
Al and the FCFS methods are used but there is no correlation found when the TLC method is used as

shown in Figure 41.
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Figure 41 — Scatter graph that shows the correlation between vehicle delay times and the number of vehicle
stops at an intersection based on the results obtained from mid traffic demand scenarios with major/major
demand ratio.
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8.2.3. Vehicle Speed

A speed limit of 50 km/h was applied in all validation scenarios for all vehicles. This meant that free-
flow speed of all vehicles in traffic was expected to be near this speed limit when there was no
congestion. Figure 42 shows the average vehicle speed for each traffic control method under all traffic
demand scenarios. The Al and the FCFS methods gave similar results with a vehicle speed range of
42.43-46.18 km/h and 45.27-47.62 km/h under all mid and low traffic demand scenarios including both
demand ratios. When the TLC method was used in the aforementioned scenarios, the average vehicle

speed reached up to 40.66 km/h.
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Figure 42 — Average vehicle speed for each driving behaviour and CAV penetration ratio under high, medium
and low traffic demand scenarios a) when the demand ratio is major / major (top 3 graphs) and b) when the
demand ratio is major / minor (bottom 3 graphs).

The data in Figure 42 also shows that free-flow vehicle speed breakdown occurs for scenarios with high
traffic demand. In particular, average vehicle speed fluctuations were more pronounced when the FCFS
method was used, and higher average vehicle speed was observed as CAV penetration rate increased or

driving behaviour became more assertive.

It is also important to highlight that the Al and the TLC methods could successfully deal with two
different demand ratios based on the fact that average vehicle speed decrease was no more than 4%

when traffic demand was high, and the demand ratio was changed from major/major to major/minor.
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However, the FCFS method was significantly worse in major/minor traffic demand ratio scenarios when

the traffic demand was high with speed values dropping down to 9.06 km/h.

8.2.4. Queue Length

Average queue length of all approaching links for each control method is shown in Figure 43. It can be
seen from this figure that it is common in all validation scenarios for the queue length to decrease as
the CAV penetration rate increases or driving behaviour becomes more assertive. This trend was more
pronounced as traffic demand increased. This outcome can be attributed to the standstill distance (CCO)
parameter of driving behaviour model within Vissim. The expectation was that CAVs would stop with
reduced gaps from each other in a queue as driving behaviour became more assertive, which in turn

would reduce the queue length.
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Figure 43 — Average queue length for each driving behaviour and CAV penetration ratio under high, medium
and low traffic demand scenarios a) when the demand ratio is major / major (top 3 graphs) and b) when the
demand ratio is major / minor (bottom 3 graphs).

When the traffic demand was low or mid, the TLC method had the greatest queue lengths under all
scenarios with a maximum value of 5.68 m for CAV B1 driving behaviour. The impact of driving
behaviour on queue length was more visible for the TLC method under low and mid traffic demand
scenarios whereas the FCFS method showed the greatest variance in queue length values under high

traffic demand scenarios. The Al method in general demonstrated the best performance in terms of

126



having the smallest queue length values for all except for the low traffic demand scenarios in which the

FCFS method slightly outperformed the Al method.

8.2.5. Fuel Consumption

Average fuel consumption of all vehicles for the duration of each validation scenario is shown in Figure
44. The effects of CAV penetration rate or driving behaviour on fuel consumption became marginal as
traffic demand decreased from high to low. The AI method consistently gave the lowest fuel
consumption in all validation scenarios apart from the low traffic demand scenarios where the FCFS
method was slightly better with a range of 0.86-1.62 gallons of fuel consumption difference between

the two methods.
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Figure 44 — Average fuel consumption for each driving behaviour and CAV penetration ratio under high,
medium and low traffic demand scenarios a) when the demand ratio is major / major (top 3 graphs) and b) when
the demand ratio is major / minor (bottom 3 graphs).

A comparison of the data in Figure 44 with Figure 40 shows that there is a strong correlation between
the number of vehicle stops and fuel consumption for all validation scenarios. This relationship between

the results is shown in Figure 45 for the mid traffic demand scenarios.

127



S 48 8"“

E=4 46

g 4 o Al

@ §42 o FCFS

S5 i e TLC

T 238

.3' ;2 = e Linear (Al)

%D 39 ﬁ Linear (FCFS)
30 e Linear (TLC)

0.3 0.5 0.7 0.9 1.1
Avg. Number of Stops

Figure 45 — Scatter graph that shows the correlation between fuel consumption and the number of vehicle stops
at intersection based on the results obtained from mid traffic demand scenarios with major/major demand ratio.

8.2.6. Gas Emissions

Gas emission results collected during the simulation work included CO, NOx and VOC. Figure 46
shows the average CO emissions of all vehicles for the duration of each validation scenario. The same
trend was observed in NOx and VOC results, and therefore, only CO emission results are presented in

this section. The graphs for the rest of the gas emission results can be found in Appendix C.

As shown in Figure 46, CO emissions decreased for all control methods as traffic demand decreased
from high to low. Similar to previous results, CAV penetration rate and driving behaviour had
significant impacts on CO emissions in high traffic demand scenarios and this impact became marginal

as traffic demand decreased.
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Figure 46 — Average carbon monoxide emission for each driving behaviour and CAV penetration ratio under
high, medium and low traffic demand scenarios a) when the demand ratio is major / major (top 3 graphs) and b)
when the demand ratio is major / minor (bottom 3 graphs).

A comparison of the data in Figure 46 with Figure 40 shows that there is a strong correlation between

the number of vehicle stops and CO emissions for all validation scenarios. This relationship between

the results is shown in Figure 47 for the mid traffic demand scenarios.
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Figure 47 — Scatter graph that shows the correlation between CO emissions and the number of vehicle stops at
intersection based on the results obtained from mid traffic demand scenarios with major/major demand ratio.
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8.3. Scaled Testbed Experiment Results

In this section, the results of the scaled testbed experiments and its digital twin are presented. A
comparison of the data obtained from the two platforms was expected to give similar results in terms
of intersection throughput. On the other hand, a direct comparison with absolute performance metric
values between the results of the simulation work (Section 8.2) and the scaled testbed experiments
(Section 8.3) would not offer a meaningful data analysis. This is mainly due to the difference in the
number of vehicles used for the simulation work (in the range of thousands) and the scaled testbed (in
the range of tens). Instead, the experiment results are presented in terms of relative vehicle delay
improvements in percentage between the Al and the TLC methods which can be considered as a

normalisation technique to enable direct comparison of the experiment results.

8.3.1. Intersection Throughput

The experiments in the scaled testbed and the digital twin were run for 15 minutes for each scenario,
and each scenario was repeated twice. The results represent the average values of all runs which is also
scaled from 15 min to 1 hour by simply multiplying the obtained experiment result by 4. The
intersection throughput data in Figure 48 makes a comparison between the scaled testbed and the digital
twin results for TLC and the Al traffic control methods. The y-axis shows the intersection throughput
in terms of number of vehicles and the x-axis has a series of discrete points that represent each validation
scenario (See Chapter 7.2.5). The naming convention for the validation scenarios is wCars_xS yL zR
where w denotes the traffic demand in total number of scaled cars and x, y, z denote the traffic demand
at figure-of-eight intersection to go straight, turn left and turn right respectively. Furthermore, the
percentage values on top of the data series Figure 48 indicate how far the scaled testbed results are from

the digital twin results.
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Figure 48 — Intersection throughput data that is obtained from the scaled testbed and the digital twin experiments
for all scenarios under the Al and the TLC traffic control methods. The percentage values represent how far the
scaled testbed results are from the digital twin results.

The most interesting aspect of the data in Figure 48 is the small variation between the scaled testbed
and the digital twin results. The maximum intersection throughput difference was measured to be 6.2%
for the TLC method and 6.7% for the Al method. This result is encouraging, and the evidence support
that the driving behaviour of the scaled cars were implemented as close to CAV B1 as possible in the
simulation environment. It is also shown in this figure that the intersection CrA was utilised more
efficiently with the Al method under all traffic demand scenarios as the intersection throughput was
consistently more that the TLC method and it reached a maximum of 912 veh/h, while it stayed at 660
veh/h with the TLC method.

8.3.2. Vehicle Delay

The average vehicle delay for the validation scenarios under the Al and the TLC methods in the scaled
testbed is shown in Figure 49. CAV Bl driving behaviour was implemented in the scaled cars as
explained in Section 7.2.4. It can be seen that the vehicle delay times increased as traffic demand
increased for both control methods as expected. The data shows that the Al method consistently
outperformed the TLC method in all scenarios in terms of vehicle delay times. The range of vehicle
delay values was measured to be 69.1-400 sec with the Al method whereas this was measured to be

353.6-510 sec with the TLC method.
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Figure 49 — Average vehicle delay data that was obtained from the scaled testbed experiments for all scenarios

under the Al and the TLC traffic control methods.

The average vehicle delay percentage improvement when the Al method is used instead of the TLC

t_delaysc—t_delayg;
t_delayyc

method is calculated as: * 100 where t_delayy;;. and t_delay,; denote the average

vehicle delay data obtained when the TLC and the Al methods are used respectively. Based on this
calculation, the vehicle delay improvement can also be calculated for the data obtained from the
simulation work (See Figure 36). The rationale is to make a relative improvement comparison between

the results obtained independently from the simulation work and the scaled testbed experiments.

Figure 50.d gives a summary of vehicle delay percentage improvements for each driving behaviour and
CAYV penetration ratio in the simulation work and the scaled testbed. Figure 50.a, Figure 50.b and Figure
50.c show, as an example, in three steps how the percentage improvement value for 90% CHYV in Figure
50.d have been obtained. First of all, the average vehicle delays for the Al and the TLC methods are
shown in Figure 50.a under high, mid and low traffic demand scenarios. The percentage value on top
of the bars in Figure 50.a represent the vehicle delay improvement when the Al method is used
compared to the TLC method. Following this, in Figure 50.b, the percentage improvement values are
displayed as a scatter graph to highlight the range of percentage improvement. Finally, Figure 50.c
displays the improvement range as a box plot where median and mean values are marked. The other

percentage improvement values in Figure 50.d have been calculated in the same way.
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Figure 50 — a) Average vehicle delay comparison between the Al and TLC methods for 90% CHYV scenarios. b)
Average vehicle delay percentage improvement is shown in a scatter graph to highlight the improvement range.
c¢) The scatter graph in b) is transformed into a box plot. The middle line of the boxes and the x inside the boxes
represent the median and mean values respectively. d) Average vehicle delay percentage improvement is shown
for each driving behaviour in simulation work and the scaled testbed when the Al method is used compared to the
TLC method. The range of percentage values represent the results obtained from all traffic demand scenarios.

The scaled car percentage improvement range in all 8 validation scenarios is shown as 22-85% in Figure
50.d which is labelled as Scaled Car. As explained previously, the scaled cars were essentially calibrated
to have similar driving behaviour as CAV B1, and a closer inspection of Figure 50.d shows that the
range of vehicle delay improvements obtained in Vissim for CAV B1 is 19-82% which has a strong
correlation with the results of the scaled testbed. The vehicle delay percentage improvement became

better as CAV penetration rate increased or as the driving behaviour became more assertive.
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8.4. Discussion and Key Findings

The validation scenarios were constructed to measure and analyse the impacts of traffic control methods
on traffic flow, congestion, journey times and environment. The results obtained from the simulation
work and the scaled testbed combined together provided extremely useful insights on the performance
comparison of different traffic control methods in realistic real-world scenarios. Based on the

comprehensive results presented in this chapter, particular key findings are explained below.

Higher CAYV penetration rate brings various benefits as long as more advanced traffic control

methods are used

The results of this research work indicate that the penetration of CAVs into the traffic flow will bring
variety of benefits in terms of reduced vehicle delays, congestion, fuel consumption and gas emissions.
These benefits were shown to increase as the CAV penetration ratio increased. Another important
finding was that the aforementioned benefits highly depended on the traffic control method used. When
the TLC method was used, no significant benefits (<10% under all scenarios) were seen in terms of
vehicle delays whereas the Al method offered 7.61% reduced vehicle delays even when there was only
10% CAV penetration rate. It can thus be suggested that unless more advanced traffic control methods
are used, such as the proposed Al method in this work, no significant benefits can be gained with
increased CAV penetration rates which is also supported by Atkins (2016b) and Fagnant and
Kockelman (2015).

Driving behaviour choice can have significant impact on traffic flow

The literature review highlighted the fact that CAVs with different driving style configurations will
exist in traffic as CAV penetration rate increases (Atkins, 2016c¢). The range of driving behaviour is not
necessarily expected to be more assertive than a human driver, and therefore, some CAVs may represent
driving behaviour more cautious than a human driver. The evidence found in this work suggests that
marginal benefits can be obtained in terms of vehicle delay times under mid or low traffic flow
conditions when the traffic flow is 100% CAVs that are more cautious than a human driver, and more
importantly, the delay times can be worse than a human driver when the traffic is congested under high
traffic demand. Therefore, the driving behaviour should be a key consideration when rolling out CAVs
into our road networks as the driving style will have an influence on the relative benefits compared to
CHVs in terms of vehicle delays and congestion among many other factors that will determine the roll

out of CAVs.
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Marginal benefits in low traffic demand

The results presented in this chapter show that benefits in terms of vehicle delay, congestion, preventing
stop-and-go movements, fuel consumption and gas emissions were much greater when traffic demand
is high. Under low traffic demand conditions, all traffic control methods showed marginal
improvements in all performance metrics as CAV penetration rate increased or CAV driving behaviour
became more assertive. This finding has important implications when deciding the initial mass-scale
deployment strategy for any automated public transportation services i.e. buses, taxies etc. In other
words, the evidence suggests that urban areas and congested networks will benefit more from having

CAVs in the traffic flow.

There is no single traffic control method that fits all real-world scenarios

The Al traffic control method has shown to perform the best, based on all performance metrics, in all
traffic conditions apart from the low traffic demand scenarios where the FCFS method performed on a
par with or slightly better than the Al method. Considering that there are development, installation and
maintenance costs associated with each control method, the findings in this study suggest that even
simple heuristic-based control methods, such as FCFS, can be implemented as a traffic control method
in areas that do not experience high volumes of traffic. This could be attractive to local authorities and
transport service providers in terms of keeping the cost and complexity of the control system to

minimum.

An Al-based traffic control can adapt to changes in traffic flow

This research work demonstrated that an Al-based control method can perform well in a traffic control
domain which is stochastic in nature, and it can adapt to unseen states and conditions during training.
It is therefore likely that once an Al neural network is trained under a simulation environment, it can be
deployed to multiple locations without requiring a special training procedure for every single
intersection. It is also important to bear in mind that 4-way junction and 4-way roundabout geometries
were used in this work during validation. Therefore, there is limited evidence to suggest that the Al
control method could work on geometries with a different number of lanes and links when it is trained
on 4-way junction type only. In theory, it is possible to train an Al network to operate in multiple

intersection geometries as long as the training scenarios are setup appropriately for this objective.
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A scaled testbed coupled with a digital twin in simulation can accelerate the development and the

validation of advanced traffic control methods

Simulation tools can offer great benefits in terms of avoiding time-consuming and expensive
experiments with physical assets. On the other hand, practical testing and validation is also not
avoidable mainly due to the fact that a thorough understanding of a traffic environment for modelling
in simulation including all factors involved is very challenging, if not impossible. This research work
demonstrated that it was possible to set up a cost-effective scaled testbed with scaled cars in order to
generate traffic flow with CAVs and validate the operations of advanced traffic control methods. The
digital twin approach was extremely useful when making associations with the simulation experiments
in terms of results obtained. The present work suggests the possibility that much larger scaled testbeds
where multiple intersections and road types are implemented can help towards understanding the
impacts of CAVs in traffic flow at a fraction of the cost and duration that would otherwise be required

in a real world setting.

8.5. Summary

The validation results from the simulation work and the scaled testbed experiments are presented in this
chapter. The impacts of different traffic control methods on traffic flow, congestion, journey times and
environment are quantified with performance metrics. Key findings are drawn out from the
comprehensive experiment results and a discussion on these findings is provided. Together these
findings provide important insights into enabling CAV support from an infrastructure point of view.
The next chapter moves on to presenting the conclusions of this work together with recommended future

research directions in order to expand the ideas and methods proposed in this work.
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Chapter 9

9. Conclusions and Future Work

9.1. Research Summary

In this thesis, a novel traffic control method has been proposed that integrates cooperative ITS features
and supports the integration of CAVs into mixed-fleet operations to make better use of the road transport
infrastructure. To this end, an extensive literature review has been presented in Chapter 2 in traffic
control methods, focusing on the recent advancements in CAVs, Al techniques and cooperation
between traffic users via wireless communications. The traffic control problem definition, the V2I
communication protocol, the RL algorithm set up and training, and the validation methodology has
provided a series of insights into the future use of the road networks, vehicles and transport services
that will allow the delivery of a positive disruptive change on how traffic is managed at intersections.

The main conclusions derived from this research work are summarised below:

The Al traffic control method with C-ITS communication features achieves less congestion,
journey time, fuel consumption and gas emissions when compared to the fixed-time signalised

control method and the heuristic rule-based FCFS method.

Chapter 3 has presented the unsignalised traffic control problem statement and the V2I wireless system
details including the communication protocol and the data requirements under certain assumptions in
order to focus on the main contributions of this research work. The proposed unsignalised traffic control
is one of the ITS applications that targets the reduction of congestion whilst preventing collisions.
Therefore, the communication latency between the traffic users was considered to be less than 100ms
as specified in SAE J2735 standard. The communication protocol presented in Chapter 3 forms the
foundation for the proposed unsignalised intersection control, enabling bi-directional data exchange

between the vehicles and the infrastructure.

The ICA, in the context of RL has been presented in Chapter 4. The main task of this agent has been to
determine the individual vehicle priorities based on the objective of reducing average vehicle delays on

all approaching links of the intersection. To this end, the information received from the approaching
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vehicles by using the communication protocol from Chapter 3 has been instrumental. The current traffic
observation vector has been constructed with this information to capture the dynamics of the traffic
state. This input vector is essentially the “eyes” and the “ears” for the traffic control agent to make sense
of the current traffic state and take actions accordingly. Chapter 4 has also established the conflict
resolution method in order to calculate the crossing time windows for all vehicles waiting to cross the
intersection. The conflict resolution method takes the vehicle priority list, generated by the agent, as an
input and produces safe crossing time windows so that collision avoidance is ensured during intersection

crossing.

The results obtained from the simulation work in Chapter 6 and the scaled testbed in Chapter 7
combined together have provided extremely useful insights on the performance comparison of different
traffic control methods in realistic real-world scenarios. The impacts of different traffic control methods
on traffic flow, congestion, journey times and environment have been quantified with performance
metric, and key findings have been drawn out from the comprehensive experiment results in Chapter 8.
Together these findings have provided important insights into enabling CAV support from
infrastructure point of view. The key findings can be summarised as below and suggest that the proposed
Al traffic control method outperforms the benchmarked control methods in all identified performance

metrics:

e An Al-based traffic control method can adapt to changes in traffic flow and generalise its
strategy well to unseen traffic states.

e Higher CAV penetration brings various benefits as long as more advanced traffic control
methods are used.

e Driving behaviour choice can have significant impact on traffic flow and congestion.

e Marginal benefits have been gained from of having more assertive driving behaviour or more
CAV penetration rate in low traffic demand with all traffic control methods.

e There is no single traffic control method that fits all real-world scenarios.

o A scaled testbed coupled with a digital twin in simulation can accelerate the development and

the validation of an advanced traffic control method.

The stochastic nature of traffic environment has significant implications on how a traffic control

algorithm, based on RL techniques, should be designed and trained.

The details of the Al algorithm and methods have been presented in Chapter 4. Traffic is stochastic in
nature, meaning the reaction of the environment might not be predicted precisely. In addition, traffic

environment is one of the prime examples where the traffic control actions affect the flow of vehicles
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gradually in time rather than immediately after taken a particular action. This has led us to explore and

implement methods that can handle stochasticity and delayed outcome.

The state representation, action space and the reward mechanism have all been combined together under
the TD3 algorithm. The agent training methodology and the associated parameters and configurations
have been explained in Chapter 5. The main objective of the training procedure has been to enable the
agent to experience all potentially possible situations in the traffic environment so that it could learn
what action sequences result in better policy. Model-free RL algorithms like TD3 are sample-
inefficient, meaning they require a lot of interactions to learn a good policy. The exploration and
exploitation dilemma section in Chapter 5 explained the techniques implemented in order to overcome
the sample-inefficiency challenge and reduce the training time. Filling the experience replay buffer
initially with the traffic light policy has been found to be useful in terms of faster convergence to the

optimal policy.

In order to validate and test advanced traffic control methods in real-world traffic scenarios with
hundreds or thousands of CAVs, in a cost-effective way, in a controlled and repeatable

environment, it is essential to consider the integration of virtual elements and physical assets.

The penetration rate of CAVs is too small, worldwide as of today, to gather any real-world evidence
about their impact on traffic flow. Therefore, any research work in this field of research utilises
simulation tools to model their behaviour. In this work, this approach has also been taken where various
different driving styles have been modelled in conjunction with traditional human driving behaviour in
order to simulate mixed-driving scenarios. The traffic simulation methodology and the tool chain have
been presented in Chapter 6 and the scaled testbed setup has been presented in Chapter 7. The selected
tools are state-of-the-art solutions which are widely used within the machine learning and traffic

engineering fields both in academia and industry.

The scaled testbed introduced in Chapter 7 is a scaled road network in a figure of eight shape with a
single road lane. It has been constructed with an objective of replicating real-world traffic control
scenarios in a scaled, cost-effective and controlled environment. It can be seen as a bridge between a
simulation work and a real-world deployment of such a system. Realistic environmental cues have been
included in the scaled testbed such as V2I communications, road markings and intersection crossing
shared space so that the impact of an unsignalised traffic control can be obtained and compared with a
traffic light based control method. Furthermore, the digital twin of the scaled testbed has been also

created in Vissim to cross validate the experiment results.
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The technical details of the scaled CAVs have also been presented in Chapter 7. The NVIDIA Jetson
Nano processor has been used as the main computing platform which runs the software for the
automated driving application. The automated driving task required a training data collection process
with a human driver controlling one car remotely around the testbed. 10 cars have been assembled that
were built to the same specification, and they could drive autonomously around the scaled testbed

simultaneously.

9.2. Original Contributions

This research work advances the current state-of-the-art in traffic control at intersection further by

making the following main contributions:

C1. Proposal of a novel centralised and unsignalised traffic control method based on the Twin-
Delayed Deep Deterministic Policy Gradient (TD3) RL algorithm for mixed-fleet operations where
CAVs and Connected Human-driven Vehicles (CHV) co-exist in traffic. The proposed method
achieved up to 84% less average vehicle delays and 41% less fuel consumption during intersection

crossing compared to the fixed-time TLC method both in simulation and practical experiments.

C2. Proposal of a novel state representation and a reward mechanism for the traffic control agent
which are put together under the TD3 algorithm as part of the RL framework. The state space has 8
values for each road lane approaching an intersection that consist of the average traffic flow
parameters and the lead vehicle parameters. The proposed state space captures the traffic
environment state as comprehensive as possible while keeping the number of variables in the vector
to a minimum. The reward mechanisms has been structured in a way to reduce average vehicle

delays at the intersection whilst considering safety and platoon formations.

C3. Creation of a training and validation software platform for an Al-based traffic control method.
The software platform consists of the state-of-the-art Vissim traffic simulation tool, TensorFlow
open source machine learning library and National Instruments (NI) LabVIEW tool. The platform
brings together the aformentioned tools that complement each other in order to generate a realistic
traffic environment and scenarios where CAV penetration rates, traffic demand levels, driving styles

and road geometry are varied systematically in a repeatable way. The software platform has been
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created by comprehensive coding work that includes three programming languages, C++ (Vissim),

Python (TensorFlow) and Visual Programming (NI LabVIEW).

C4. Development of a scaled testbed with realistic cues about the traffic environment together with
multiple scaled CAVs. The digital twin of the scaled testbed has also been created in the simulation
environment for cross-validation of the scaled testbed experiment results. This validation and testing
approach can be seen as an extremely useful intermediate step when taking a complex system such
as traffic control from simulation to real-world deployment in a cost-effective and controlled way.
The experiment results obtained from the scaled testbed and its digital twin indicated strong
similarities, based on a maximum difference of 6.8% in intersection throughput metric between both

platforms, which proved the relaibility of the scaled testbed approach with the scaled CAVs.

The original contributions of this research work are expected to influence the new ways of thinking
about the use of road networks, vehicles and transport services that will allow delivering positive
disruptive change on how traffic is managed at intersections whilst providing the catalyst for new

experiments in the future of mobility.

9.3. Future Work

This section highlights some particular open research questions and the knowledge gap that remains,
and finally makes recommendations for future research in this field. Unsignalised traffic control with
reinforcement learning in the presence of CAVs represents an integration of emerging technology areas,
and therefore, there is definitely scope for substantial future work. This is specifically relevant for
intelligent transport planners, road network operators, local authorities and ITS technology providers
where increased knowledge of the potential for such advanced control systems can allow for a more
accurate assessment of their potential impacts on the traffic flow. The recommendations for future work

are summarised below:

Mixed-fleet operations

CAVs will be operating in traffic with human drivers for a foreseeable future where the number of
scenarios that can be encountered is practically infinite, as human drivers tend to find alternative ways
to deviate from expected behaviour in traffic. For this reason, the mixed-fleet operations should be
understood thoroughly when considering a disruptive technology like unsignalised intersection control.

As of today, the work towards having formalised standards or approval schemes for the integration of
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CAVs into the transport system is still in its infancy. In order for safe and rapid adoption of unsignalised
traffic control method, mixed-fleet operations should be initially modelled in simulation environments
for complex driving scenarios. These scenarios should include but not limited to the impacts of CHVs

not following the instructions or traffic rules.

Multi-intersection operations in the context of multi-agent systems

In this work, a single intersection control has been studied without considering the wider impacts of
upstream or downstream traffic intersections. The management of multi-intersection network with a
single agent can be challenging, and therefore, consideration for multi-agent system should be made
where agents synchronise their activities and make decisions jointly to meet the design objectives such
as keeping local area congestion under a certain level. In a multi-intersection network, when traffic
demand is high, congestion in one intersection can have a knock-on effect ono other neighbour
intersections. Thus, an efficient control method that maximises a collaborative long-term reward
between neighbour intersections is desired. The training methodology for such scenarios for neural
networks is also an area that is recommended for future research where neighbour intersections share

traffic state data with each other for more pro-active decision making.

Implications on field deployment and commercialisation

One of the key considerations of integrating unsignalised traffic control as a key transportation service
is to determine what is the optimal positioning of such technology in the immediate and longer term
future. In creating such a disruptive and novel traffic control method, the question of enabling
infrastructure investment and deployment challenges rises. Rigorous testing procedure must be in place
prior to deployment of such a system that considers CAV operations and any edge cases so that rare
occurrence of a particular situation would not jeopardise the safety of the system and the traffic users.
Further study in this area is definitely needed to guide the integration of an unsignalised traffic control
system into the transportation network and how the associated government and industry business cases

for commercialisation could be structured.

Consideration for other type of road users

In this work, certain assumptions have been made in order to focus on the isolated impacts of the
proposed unsignalised traffic control method on the traffic flow. One of the assumptions that must be
relaxed and considered in future work is the inclusion of vulnerable road user such as pedestrians,

cyclists, and other types of vehicles such as buses, lorries etc. As CAV penetration rate increases in the
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future, they are likely to operate in increasingly complex traffic environments. It is therefore essential

to understand the interaction between CAVs and other road users that has not been studied in this work.

The impact of unsignalised traffic control on safety and user acceptance

Safety and user acceptance are two key drivers when it comes to scaling up a disruptive technology.
The Vissim simulation tool that has been used in this study does not include a built-in safety assessment
and analysis software component. Therefore, no safety impacts could have been measured in this
research work. Further work in simulation is recommended that integrates safety assessment tools for
collision risk analysis. In parallel to this, it will also be necessary to gain user trust, and this can be
achieved by proving safety of the traffic control system in all potential real-world scenarios with

methodical test and validation procedures.

Closed-loop operation of priority assignment and conflict resolution stages of the control

algorithm

Conflict resolution stage of the proposed traffic control algorithm in this research work receives a list
of assigned priorities by the TCA, and following this, crossing time windows are allocated for each
vehicle. It might be possible in the future to feedback the output of conflict resolution stage back to the

reward mechanism for the TCA to develop a full picture of the consequences of its actions.

Cybersecurity

Further reseach into solutions for secure connectivity between RSUs and CAVs/CHVs on the road is
recommended as it has been assumed in this reseacrh work that the V2I connectivity and data was
secure. The function of the RSU is to broadcast the traffic control, map and safety related data to all
vehicles at the traffic intersection. Potential security threats to this communication link include spoofing
the RSU communication unit to send false information to the approaching vehicles and signal jamming.
The techniques that could be used to mitigate against these threats should be investigated for

unsignalised traffic control.
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Appendices

Appendix A

Al. Signal Time Optimisation Process Steps in Vissim (from the User Manual)

Vissim repeatedly runs simulations of the entire network during the optimisation process. The

optimisation process is continued as long as changes in green times of the stages lead to an increase in

the traffic flow or to a reduction in the average vehicle delay. The stage lengths with the best result have

the highest flow and the lowest average vehicle delay and are stored in a file after the optimisation. The

process steps are given below:

1.

NS kW

Vissim determines the average delay of all vehicles that have passed through the intersection,

automatically evaluating each signal group over the entire simulation run.

For optimisation, the signal group in which the vehicles have the highest delay is determined

for each stage.

The stage with the lowest maximum average delay is selected as the best stage.

The stage with the highest maximum average delay is selected as the worst stage.

A second of green time is deducted from the best stage.

A second of green time is added to the worst stage.

If a second can no longer be deducted from the best stage, the second best stage is used. If this

can no longer be shortened, the next worst stage is always taken iteratively. If no other stage

can be shortened, the optimisation is terminated.

A signal program is considered to be better than another if one of the following criteria is met:

e If the flow formed by the total number of vehicles driven through the node during the
simulation run has increased significantly by at least 25 vehicles or by 10% if this is less.

o If'the flow has not significantly decreased by 25 vehicles or by 10% and the average delay
across all vehicles has decreased.

If a signal program is better than the best rated, it replaces this as the best. The optimization is

continued with the next step.

10. The optimisation is terminated if one of the following criteria is met:

e  Once the signal program does not improve within 10 simulation runs.
e Once the flow decreases by more than 25% compared to the best signal program.

e Once the average delay increases by more than 25%.
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Appendix B

B1. BOM for A Single Scaled Car

Part # Part Name Description Qty Supplier Unit Cost Cost
NVIDIA JETSON
945-13450- | NVIDIA Jetson NANO 4GB 1 Silicon £ 82 50 82.50
0000-100 Nano Dev Kit DEVELOPER KIT Highway ’ :
(BO1)
l%/ilzre):l ;?;n 1;11;1; d M2 Metric Thread
SSCF-M2- P Size (2mm), Length
6-A2-R360 Screws (DIN 912) - (L): 6mm, Full 4 Accu £ 0.22 0.88
Thread Locking A2 ) s
. Threaded: Yes
Stainless Steel
M2.5 X 12mm Full M2.5 Metric Thread
SSCF- Thread Cap Head Size (2.5mm), Length
M2.5-12- Screws (DIN 912) - (L): 12ﬁ1m F;ﬂl g 8 Accu £ 0.28 2.24
A2 Thread Locking A2 ) : y
. Threaded: Yes
Stainless Steel
A2-70 cold-worked
M2.5 Hexagon .
gN'Mz'S " | Nuts (DIN 934) - Etamless Sltgeé’ 315300 4|8 Accu £ 0.03 0.24
A2 Stainless Steel nown as 16-¢ ot
Stainless Steel
HPW- M2.5 Form A Flat A2 Stainless Steel,
M2.5-A2 Washers (DIN 125) | also known as 18-8 or 8 Accu £ 0.03 0.24
) - A2 Stainless Steel | 304 Stainless Steel
SanDisk 32GB . ™
SDSQXAF- | Extreme Al V30 glzcg’g)DHC
032G- Micro SD Card microSISXCTM 1 MyMemory | £ 13.99 13.99
GN6MA (SDHC) + Adapter
- 90MB/s (64GB-256GB)
Logitech C525 Logitech C525
N/A Portable HD Portable HD Webcam 1 Amazon £ 54.99 54.99
Webcam with Fast Autofocus
Edimax Bluetooth, %{?ﬁ:ﬂigiieiﬁg
136-3088 WiFi USB 2.0 1 RSOnline £ 16.96 16.96
Dongle 4.0 Nano USB E—
Adapter
éﬁ:irnuélt 1] g:bi ¢ 12-bit resolution for
N/A PWM/Servo Driver | S2ch output - for | | ThePiHut | £  14.00 14.00
-12C interface - servos, 4us resolution
PCA9635 at 60Hz update rate
RB-Spa- HC-SR04 Ultrasonic sensor
1388 p Ultrasonic Range distance measuring 2 RobotShop £ 3.65 7.30
Finder module
Adafruit Premium
N/A i‘fg;z/ \F;ffeasle 0 | NA 1 The PiHut | £ 2.00 2.00
x 3" (75mm)
HOBBYMATE
N/A Lipo Battery Safe 20x I5x15cm 1 Amazon £ 541 5.41
Bag
Total 200.75
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https://www.siliconhighwaydirect.com/product-p/945-13450-0000-100.htm
https://www.siliconhighwaydirect.com/product-p/945-13450-0000-100.htm
https://www.accu.co.uk/en/cap-head-screws/3792-SSCF-M2-6-A2
https://www.accu.co.uk/en/cap-head-screws/250410-SSCF-M2-5-12-A2-R360
https://www.accu.co.uk/en/hexagon-nuts/7886-HPN-M2-5-A2
https://www.accu.co.uk/en/flat-washers/72477-HPW-M2-5-A2
https://www.mymemory.co.uk/sandisk-32gb-extreme-a1-v30-micro-sd-card-sdhc-adapter-90mb-s.html?utm_source=google_shopping&gclid=EAIaIQobChMI1pDDivm-2gIViD4bCh0B7Al0EAkYAyABEgL86_D_BwE
https://www.amazon.co.uk/Logitech-Portable-Autofocus-360-degree-Rotating/dp/B01BGBJ8SQ/ref=sr_1_3?s=computers&ie=UTF8&qid=1540897538&sr=1-3&keywords=logitech+webcam&refinements=p_89%3ALogitech%2Cp_36%3A428445031#HLCXComparisonWidget_feature_div
https://uk.rs-online.com/web/p/wireless-adapters-wifi-dongles/1363088?cm_mmc=UK-PLA-DS3A-_-google-_-PLA_UK_EN_Computing+%26+Peripherals_Whoop-_-Wireless+Adapters+%26+WiFi+dongles_Whoop-_-PRODUCT_GROUP&matchtype=&pla-304990621831&s_kwcid=AL!7457!3!413122817731!!!g!304990621831!&gclid=Cj0KCQjwx7zzBRCcARIsABPRscOnBvCB7i0Gk8V4o20DNHqc_jgDM-7TAqhUh9IHtQ9jKcsQ0CdSTVUaAsKjEALw_wcB&gclsrc=aw.ds
https://thepihut.com/products/adafruit-16-channel-12-bit-pwm-servo-driver-i2c-interface-pca9685?variant=27740507729&gclid=EAIaIQobChMIyYClh6CH2gIVTowZCh0KnQLlEAkYAiABEgKiU_D_BwE#fo_c=1889&fo_k=8540ee869ffe3598e5a1c5c6faad3fd8&fo_s=gplauk
https://www.robotshop.com/uk/hc-sr04-ultrasonic-range-finder-sparkfun.html?gclid=EAIaIQobChMIyumJqrHj3gIVCflRCh3WvgSvEAkYASABEgJVpvD_BwE
https://thepihut.com/products/adafruit-premium-female-female-jumper-wires-20-x-3-75mm?variant=27739698577&gclid=EAIaIQobChMI3I2UqZ-H2gIVDJ4bCh0sYwhXEAkYASABEgLRZPD_BwE#fo_c=1889&fo_k=36c4bbb8344ce772fad19900f9aaf236&fo_s=gplauk
https://www.amazon.co.uk/HOBBYMATE-Lipo-Battery-Safe-Fireproof/dp/B07521JTLP/ref=asc_df_B07521JTLP/?tag=googshopuk-21&linkCode=df0&hvadid=222573034714&hvpos=&hvnetw=g&hvrand=4723073597563471111&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=1006839&hvtargid=pla-803587746954&psc=1

B2. BOM for the Scaled Testbed

Part # Part Name Description Qty | Supplier Unit Cost Cost
N/A tsi(%:::)re feet / 24 Exercise Tiles Floor 96 cbay £0.40 £38.29
Mat Grey
Economy Matt Matt (non-reflective
N/A Gaffer Tape finish), high strength 4 | GafferTape £6.20 £24.80
(White) adhesive
Fluorescent Anti-Reflection
Economy Matt Coating, glows under
N/A Gaffer Tape artificial UV/Black 1 GafferTape £8.26 £8.26
(50m)(Fluorescent lioht
Orange) &
NETGEAR
Nighthawk Smart | NETGEAR Nighthawk
N/A Wifi Router Smart Wifi Router 1 Amzon £103.98 £103.98
(R7000) - (R7000) - AC1900
ACI1900
Samsung 43 Samsung 43" TU7100
TU7100 HDR HDR Smart 4K TV
N/A Smart 4K TV I 1 Amazon £319.00 £319.00
e with Tizen OS [Energy
with Tizen OS Class A]
[Energy Class A]
Logitech C922 Logitech C922 Pro
N/A Pro Stream Stream Webcam, Full 2 Amazon £119.99 £239.98
Webcam HD 1080p
Total £ 734.31
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https://www.ebay.co.uk/i/152869835325?chn=ps&var=452619973755&dispItem=1&adgroupid=51456996475&rlsatarget=pla-401454472228&abcId=1130076&adtype=pla&merchantid=118945322&googleloc=1006976&device=c&campaignid=1030309171&crdt=0
http://www.gaffatape.com/economy-matt-gaffer-tape/Default.aspx
http://www.gaffatape.com/Fluorescent-Economy-Matt-Gaffer-Tape-50m-1/Default.aspx
https://www.amazon.co.uk/NETGEAR-R7000-Nighthawk-WiFi-Router/dp/B00HDK4GAK
https://www.amazon.co.uk/Samsung-TU7100-HDR-Smart-Tizen/dp/B085RYF94Z/ref=sr_1_1?dchild=1&keywords=samsung+tv&qid=1610317049&refinements=p_n_size_browse-bin%3A9591878031&rnid=161398031&s=home-theater&sr=1-1
https://www.amazon.co.uk/Logitech-Stream-Streaming-3-month-License/dp/B01L6L52K4/ref=sr_1_1?s=computers&ie=UTF8&qid=1540897053&sr=1-1&keywords=C922%2BPro%2BStream&th=1

Appendix C

C1. Simulation Results on Average Vehicle Delay

average delay (sec)

average delay (sec)

Average Delay (Proposed) Average Delay (FCFS) Average Delay (Signalised)
Demand Ratio 1.0 Demand Ratio 1.0 Demand Ratio 1.0
100.000 100.000 100.000
90.000 90.000 90.000
80.000 _ 80.000 _ 80,000
70.000 § 70000 $ 70000
60.000  60.000 % 60000
50.000 S 50.000 5 50.000
40.000 ;-fn 40.000 Il % 40.000
30.000 $ 30,000 9 30.000
||| =g LR
o [ oot o | ol oo 2 [T
1352 1329 0.863 1.352 1329 0.863 1352 1.329 0.863
90% CHV 20.740 6.690 4.550 90% CHV 73.890 9.950 2210 90% CHV 25.760 21.900 21.250
W 75% CHV 19.280 6.850 4.370 W 75% CHV 60.460 10.270 2330 W 75% CHV 25.250 21.860 21.270
W 50% CHV 17.030 6.480 3.690 W 50% CHV 50.460 8310 2.090 W 50% CHV 24.630 21.830 21.250
W 25% CHV 14.120 6.320 3.460 W 25% CHV 41.170 6.790 1.860 W 25% CHY 24.450 21.830 21.230
W 10% CHV 13.560 6.080 3.400 m 10% CHV 35.900 5.940 1.630 W 10% CHV 24.440 21.840 21.220
WCAV LA 12.260 5.790 3.470 W CAV B4 33.840 5.430 1.560 W CAV B4 24.520 21.880 21.320
W CAV B3 15.170 6.040 3.590 mCAV B3 44.590 7.060 1.910 W CAV B3 24.280 21.820 21.320
W CAV B2 17.350 6.630 3.590 u CAV B2 72.720 8.280 2.080 = CAV B2 24.770 21.880 21.350
W CAV BL 18.690 7.310 3.860 m CAV B1 88.340 10.000 2.280 W CAV B1 25.750 21.960 21.370
mCHY 21.590 7.300 3.660 mCHV 79.980 10.550 2.300 mCHV 25.960 21.920 21.250
traffic flow traffic flow traffic flow
Average Delay (Proposed) Average Delay (FCFS) Average Delay (Signalised)
Demand Ratio 0.5 Demand Ratio 0.5 Demand Ratio 0.5
300.000 300.000 300.000
250.000 250.000 250.000
H H
200.000 £ 200.000 & 200.000
k) 5
150,000 ¥ 150.000 - 150.000
& &
100.000 £ 100.000 £ 100.000
50.000 50000 | 50.000
ocoo | NNEEmEEERR camcmmccam oo pooo  ° I"II SRR 0.000
1.352 1329 0.863 1.352 1.329 0.863 1352 0.863
90% CHV 20.000 6.600 3.820 = 90% CHV 187.700 7.200 1.880 90% CHV 25.490 20.640
W 75% CHV 18.230 6.650 3.770 W 75% CHV 132.360 7.260 2,050 W 75% CHV 24.940 20.630
W 50% CHV 15.920 6.250 3.560 W 50% CHV 57.460 6.120 1.880 W 50% CHV 24.350 20.620
W 25% CHV 13.730 6.000 3.470 W 25% CHV 46.820 5.170 1.680 W 25% CHV 24.050 20.580
W 10% CHV 13.090 5.820 3.320 W 10% CHV 43.910 4.600 1.520 W 10% CHV 24.060 20.570
WCAV L4 12.670 5.620 3.310 WCAV B4 35.450 4.260 1.560 W CAV B4 24.260 20.550
mCAV B3 15.080 6.040 3.510 mCAV B3 45.030 5.370 1.740 W CAV B3 24.340 20.520
" CAV B2 14.320 6.100 3.670 w CAV B2 100.350 6.250 1.870 = CAV B2 24.870 20.540
HCAV B1 18.020 6.650 3.740 ®CAVBL 251.120 7.080 2.040 ®CAV B1 25.680 20.570
®CHV 20.690 7.560 3.700 W CHV 270.230 7.550 2,000 ® CHY 26.740 20.540
traffic flow traffic flow
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C2. Simulation Results on Average Number of Stops

Average Stops (Proposed) Average Stops (FCFS) Average Stops (Signalised)
Demand Ratio 1.0 Demand Ratio 1.0 Demand Ratio 1.0
5.000 5.000 5.000
4.500 4.500 4.500
4.000 4.000 4.000
g 3500 a 3500 w 3500
2 3000 2 3000 2 3000
@ 2500 @ 2500 g 2500
§ zom § 2000 § 200
& 1500 ® 1500 ® 1500
1.000 1.000 1.000
‘" Ml 11 TN 1A
0.000 0.000 e 0.000
- . 1.352 1.329 0.863 1352 1.329 0.863
90% CHV 0.750 0.430 0.290 = 90% CHV 2.960 0.560 0.190 = 90% CHV 0.890 1.060 1.260
W 75% CHV 0.740 0.440 0.280 W 75% CHV 2.580 0.580 0.180 W 75% CHV 0.900 1.070 1.280
W 50% CHV 0.720 0.440 0.260 W 50% CHV 2370 0.510 0.170 W 50% CHV 0.930 1110 1.300
W 25% CHV 0.660 0.420 0.250 W 25% CHV 2.130 0.450 0.140  25% CHV 0.920 1.150 1.320
W 10% CHV 0,660 0.420 0.240 W 10% CHV 1910 0.410 0.140 W 10% CHV 1.010 1.170 1.330
HCAV L4 0.620 0.400 0.250 HCAV B4 1.820 0.390 0.130 W CAV B4 1.030 1.190 1.350
W CAV B3 0.630 0.410 0260 mCAV B3 2.260 0.450 0.150 = CAV B3 0.900 1.080 1.280
mCAV B2 0.710 0.440 0260 uCAV B2 3610 0.500 0.160 u CAV B2 0.880 1.050 1.270
mCAV Bl 0.720 0.460 0.270 HCAV BL 4.610 0.560 0.180 W CAV B1 0.890 1.050 1.260
" CHY 0.750 0.450 0260 " CHV 3.820 0.570 0.190 W CHV 0.830 1.050 1.260
traffic flow traffic flow traffic flow
Average Stops (Proposed) Average Stops (FCFS) Average Stops (Signalised)
Demand Ratio 0.5 Demand Ratio 0.5 Demand Ratio 0.5
16.000 16.000 16.000
14.000 14.000 14.000
12.000 12.000 12.000
@« a a
£ 10.000 2 10000 g 10,000
i ] &
@ 8.000 ¢ 8.000 4 8.000
E 6.000 5 6.000 5 6.000
H H H
4.000 4.000 4.000
2.000 2.000 IIIII 2.000
0.000 0.000 EENsse e o eeeeee -— 0.000
1.352 1.329 0.863 1.352 1329 0.863 1352 1.329 0.863
90% CHV 0.740 0.420 0.270 W 90% CHY 10.510 0.440 0.160 " 90% CHV 0.870 0.980 1.230
W 75% CHV 0.710 0.430 0270 W 75% CHV 7.150 0.450 0.160 W 75% CHV 0.880 1.000 1.240
W 50% CHV 0.680 0.420 0.260 W 50% CHY 3.250 0.410 0.150 W 50% CHV 0.910 1.030 1.260
W 25% CHV 0.640 0.410 0.250 W 25% CHY 2.900 0.360 0.130 W 25% CHV 0.950 1.070 1.280
W 10% CHV 0.630 0.400 0.250 W 10% CHY 3.040 0.340 0.130 m 10% CHV 0.990 1.090 1.290
MCAV L4 0.620 0.390 0.240 W CAV B4 2.320 0.330 0.130 W CAV B4 1.000 1.120 1.320
HCAV B3 0.680 0.410 0.260 ECAV B3 2.700 0.370 0.130 HCAV B3 0.900 1.010 1.250
wCAV B2 0.640 0.410 0.260 " CAV B2 7.060 0.400 0.150 " CAV B2 0.880 0.990 1.230
W CAV B1 0.700 0.430 0.270 W CAV B1 13.070 0.430 0.160 W CAV B1 0.880 0.980 1.230
uCHY 0.730 0.420 0.260 m CHV 13.930 0.450 0.170 uCHV 0.880 0.970 1.220
traffic flow traffic flow traffic flow
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C3. Simulation Results on Average Vehicle Speed

Average Speed (Proposed) Average Speed (FCFS) Average Speed (Signalised)
Demand Ratio 1.0 Demand Ratio 1.0 Demand Ratio 1.0
50.000 50.000 50.000
45.000 45.000 45.000
£ 40.000 £ 40.000 E 40000
g 35.000 E 35.000 E 35.000
3 30000 3 30000 3 30000
2 25.000 g 25.000 g 25000
@ 20.000 @ 20.000 @ 20.000
g 15.000 ;!, 15.000 & 15000
& 10.000 & 10.000 & 10000
5.000 5.000 5.000
0.000 0.000 0.000
1.352 1329 0.863 1352 1.329 0.863 1.352 1329 0.863
1 90% CHV 37.860 44.460 45.270 " 90% CHV 24.340 42.720 47.060 #50% CHV 37.810 39.430 39.740
W 75% CHV 38570 44.500 45.900 B 75% CHV 26.790 42650 47.120 W 75% CHV 38.010 38.440 39.730
W 50% CHY 39.530 44.700 46.310 W 50% CHY 28.920 43.700 47.280 W 50% CHV 38.250 39.450 39.730
W 25% CHY 40.820 44.790 46.450 W 25% CHV 31.270 44.530 47.420 W 25% CHV 38.300 39.440 39.740
W 10% CHV 41.080 44.920 46.480 W 10% CHV 32.740 45.010 47.570 W 10% CHV 38.320 39.440 39.740
mCAV L4 41.690 45.090 46.450 mCAV B4 33.360 45.300 47.620 mCAV B4 36.850 37.850 38.060
W CAV B3 40.330 44.950 46.370 W CAV B3 20.330 44.380 47.390 = CAV B3 36.930 37.870 38.060
= CAV B2 39.390 44,610 46.360 u CAV B2 25.250 43.730 47.280 = CAV B2 36.740 37.850 38.050
mCAV B1 38.810 44.240 46.210 WCAV BL 24.040 42.830 47.160 mCAV B1 36.380 37.810 38.040
" CHY 37.520 44.090 46.180 W CHY 23.570 42.430 47.010 " CHY 36.740 37.830 38.050
traffic flow traffic flow traffic flow
Average Speed (Proposed) Average Speed (FCFS) Average Speed (Signalised)
Demand Ratio 0.5 Demand Ratio 0.5 Demand Ratio 0.5
50.000 50.000 50.000
45.000 45.000 45.000
= 40.000 = 40.000 = 40.000
£ £ £
£ 35000 E 35.000 £ 35.000
3 30000 3 30.000 3 30000
8 25.000 g 25.000 Y 25000
@ 20.000 © 20.000 @ 20.000
§ 15.000 E 15.000 E 15.000
@ 10.000 & 10.000 & 10.000
5,000 5.000 I 5.000
0.000 0.000 0.000
1.352 1329 0863 1352 1.329 0.863 1.352 1329 0.863
90% CHY 38.440 44.720 46.170 " 90% CHV 14.790 44.430 47.350 " 90% CHV 38.280 40.640 40.350
W 75% CHY 39.290 44.860 46.390 W 75% CHV 21.790 44.540 47.400 W 75% CHV 38.480 40.650 40.350
W 50% CHY 40.290 45.070 46.510 W 50% CHY 27.770 45.140 47.500 W 50% CHV 38.700 40.660 40.350
W 25% CHV 41.250 45.200 46.520 W 25%CHV 30.200 45.660 47.620 W 25% CHV 38.810 40.660 40.360
W 10% CHY 41.560 45.300 46.530 10% CHV 31.070 45.990 47.730 W 10% CHV 38.820 40.580 40.360
WCAV L4 41.750 45.420 46.550 HCAV B4 33.280 46.180 47.620 HCAV B4 37.280 38970 38.710
W CAV B3 40.640 45.190 46.530 WCAV B3 30.650 45.550 47.590 m CAV B3 37.260 38.980 38.720
W CAV B2 40.980 45.170 46.470  CAV B2 24.200 45.080 47.510 u CAV B2 37.060 38.970 38.710
W CAV B1 39.410 44.870 46.410 W CAV B1 5,060 44,640 47.410 W CAV B1 36.750 38.940 38.700
mCHY 38.190 44.250 46.280 uCHY 13.540 44.250 47.280 uCHV 36.860 38.950 38.710
traffic flow traffic flow traffic flow
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C4. Simulation Results on Average Queue Length

Average Queue Length (Proposed) Average Queue Length (FCFS) Average Queue Length (Signalised)
Demand Ratio 1.0 Demand Ratio 1.0 Demand Ratio 1.0
50.000 50.000 50.000
__ 45.000 _ 45.000 _. 45.000
E 10000 E ap000 E a0000
£ 35.000 £ 35.000 £ 35000
$ 30,000 5 30000 5 30000
£ 25000 3 25000 3 25.000
2 20.000 Z 20.000 3 20.000
% 15.000 ‘g- 15.000 é"“ 15.000
£ 10000 ¢ 10000 ¢ 10.000
o |l o |l
0.000 e - 0.000 " n 0.000 I 1
1352 1329 0.863 1.352 1329 0.863 1352 1.329 0.863
90% CHV 10.850 1.560 0.530 90% CHY 39.160 2530 0.220 90% CHV 11.300 4910 2.590
75% CHV 9.840 1.580 0.510 W 75% CHY 31.780 2.540 0.210 m75% CHV 10.400 4,680 2530
W 50% CHY 8510 1.450 0.370 W 50% CHY 25.390 1.960 0.180 W 50% CHV 8.970 4.270 2390
W 25% CHV 6.660 1.390 0.320 W 25% CHY 20.170 1530 0.150 W 25% CHV 7.520 3.760 2.250
W 10% CHV 6330 1.320 0.320 W 10% CHY 17.390 1320 0.140 W 10% CHV £.490 3.410 2.160
HCAV L4 5.600 1.240 0.320 W CAV B4 16.280 1.180 0.130 W CAV B4 5.790 3.230 2.100
mCAV B3 8170 1.470 0.400 mCAV B3 24.270 1.800 0.170 mCAV B3 10.700 5.230 2.830
W CAV B2 9.340 1.640 0.390 " CAV B2 38.340 2130 0.190 W CAV B2 11.720 5.510 2.900
HCAV B1 10.050 1.840 0.430 mCAV B1 46.050 2630 0.220 mCAV B1 12.600 5680 2.950
mCHY 11.490 1.780 0.380 m CHY 43.290 2.740 0.230 mCHY 11.740 5.590 2.926
traffic flow traffic flow traffic flow
Average Queue Length (Proposed) Average Queue Length (FCFS) Average Queue Length (Signalised)
Demand Ratio 0.5 Demand Ratio 0.5 Demand Ratio 0.5
140.000 140.000 140.000
F 120.000 £ 120.000 F 120,000
£ 100.000 £, 100.000 E, 100.000
g £0.000 g 80.000 g £0.000
a 50.000 E 60.000 i 60.000
% 40000 & 40,000 & a0000
§ ] g
@ 20.000 s 20000 ‘I I| & 20.000
0.000 (T TTTY ] | [, S 0.000 III _________ 0.000 [T 11 | et ———
1.352 1.329 0.863 1.352 1.329 0.863 1.352 1.329 0.863
90% CHV 10.630 1.520 0.400 90% CHY 94.990 1.770 0.180 90% CHV 11.240 4.590 2520
W 75% CHV 9.250 1.520 0.380 W 75% CHV 61.780 1.740 0.190 W 75% CHV 10.380 4.380 2.450
W 50% CHY 7.780 1.370 0.350 W 50% CHY 28.870 1.400 0.160 W 50% CHV 9,030 3.980 2.320
W 25% CHY 6.520 1.290 0.430 W 25% CHY 22,610 1.130 0.130 W 25% CHV 7.670 3.570 2.180
W 10% CHV 6.090 1.250 0.440 W 10% CHV 20.500 0.990 0.130 W 10% CHV 6.700 3.300 2.080
HCAV L4 5.820 1.180 0310 B CAV B4 16.660 0.900 0130 W CAV B4 6.020 3.040 2,020
WCAV B3 8.080 1.490 0.390 mCAV B3 24.190 1.330 0.160 W CAV B3 10.890 4.810 2.740
wCAV B2 7.450 1.470 0.390 uCAV B2 51.370 1.560 0170 = CAV B2 11.880 5.060 2.800
W CAV B1 9.680 1.630 0.380 W CAV B1 102.800 1.790 0.190 m CAV B1 12.720 5.190 2.830
mCHY 10.960 1.890 0.380 mCHY 123.420 1.880 0.200 mCHY 12.490 5.120 2810
traffic flow traffic flow traffic flow
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CS. Simulation Results on Average Fuel Consumption

Average Fuel Consumption (Proposed)
Demand Ratio 1.0

250,000

200.000

150.000

100,000

50.000

average fuel consumption (gallon)

0.000

W 90% CHV
W 75% CHV
W 50% CHV
W 25% CHV
W 10% CHV
HCAV L4
mCAV B3
mCAV B2
HCAV B1
mCHV

1352
86.578
83.719
82.534
78.019
78.289
75.849
80.412
82.444
83.604
86.864

1.329
33.856
33.729
33.370
33.432
33.181
32.898
32.507
33.454
34,593
34.769

traffic flow

Average Fuel Consumption (Proposed)
Demand Ratio 0.5

600,000

500,000

400,000

300.000

200.000

100.000

average fuel consumption (gallon)

o
o
8

W 90% CHV
W 75% CHV
W 50% CHV
W 25% CHV
W 10% CHV
HCAV L4
W CAV B3
mCAV B2
W CAV BL
W CHV

0.863
15315
15.034
15.208
15.033
15.033
15.193
15.449
15.180
14.681
15376

Average Fuel Consumption (FCFS)
Demand Ratio 1.0

250.000

200.000

150.000

100.000

50.000

average fuel consumption (gallon)

0.000

W 90% CHV
W 75% CHV
W 50% CHV
W 25% CHV
W 10% CHV
W CAV B4
mCAV B3
m CAV B2
W CAV B1
mCHY

1.352
185.233
160.206
147.205
134.758
125.284
121,578
140.460
194.657
225,141
201.371

1329
36.420
36.614
35117
33731
33.002
32590
33.910
34934
36308
36.753

traffic flow

Average Fuel Consumption (FCFS)
Demand Ratio 0.5

600.000

500.000

400.000

300.000

200.000

100.000

average fuel consumption (gallon)

0.000

W 90% CHV
W 75% CHV
W 50% CHV
W 25% CHV
m 10% CHV
B CAV B4
mCAV B3
w CAV B2
mCAV B1
N CHV

1352
436.323
302.376
173.680
157.865
157.927
135.165
151.162
287.456
343.382
531.298

152

33.927
traffic flow

0.863
13.959
14.215
14.104
13.966
13.929
13.915
13,995
14.091
14.201
14.038

Average Fuel Consumption (Signalised)
Demand Ratio 1.0

250.000
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C6. Simulation Results on Average CO Emissions
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C7. Simulation Results on Average NOx Emissions
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C8. Simulation Results on Average VOC Emissions
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Appendix D
D1. Published Work

The full text view version of the published paper can be accessed by using the link below:

https://link.springer.com/epdf/10.1007/s10470-018-1152-
2?author_access_token=wOWJFadwUghOauFDxMNEw_e4RwIQNchNByi7wbcMAY6E-
rJOAtBoilRadzYboOPfAsS545Dd0gTtUUIRRIpRPfziNttrGoa7 gN2D3V4dGrh9s6bF3nz7NfgHTclL
Cq3k911Pru6PKOhEXpaU3QpwA%3D%3D
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