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Abstract 
 

Recent advancements in vehicle automation have led to a proliferation of studies in traffic control 

strategies for the next generation of land vehicles. Current traffic signal based intersection control 

methods have significant limitations on dealing with rapidly evolving mobility, connectivity and social 

challenges. Figures for Europe over the period 2007-16 show that 20% of road accidents that have 

fatalities occur at intersections. Connected and Automated Mobility (CAM) presents a new paradigm 

for the integration of radically different traffic control methods into cities and towns for increased travel 

time efficiency and safety. Vehicle-to-Everything (V2X) connectivity between Intelligent 

Transportation System (ITS) users will make a significant contribution to transforming the current 

signalised traffic control systems into a more cooperative and reactive control system. This research 

work proposes a disruptive unsignalised traffic control method using a Reinforcement Learning (RL) 

algorithm to determine vehicle priorities at intersections and to schedule their crossing with the 

objectives of reducing congestion and increasing safety. Unlike heuristic rule-based methods, RL agents 

can learn the complex non-linear relationship between the elements that play a key role in traffic flow, 

from which an optimal control policy can be obtained. This work also focuses on the data requirements 

that inform Vehicle-to-Infrastructure (V2I) communication needs of such a system. The proposed traffic 

control method has been validated on a state-of-the-art simulation tool and a comparison of results with 

a traditional signalised control method indicated an up to 84% and 41% improvement in terms of 

reducing vehicle delay times and reducing fuel consumption respectively. In addition to computer 

simulations, practical experiments have also been conducted on a scaled road network with a single 

intersection and multiple scaled Connected and Automated Vehicles (CAV) to further validate the 

proposed control system in a representative but cost-effective setup. A strong correlation has been found 

between the computer simulation and practical experiment results. The outcome of this research work 

provides important insights into enabling cooperation between vehicles and traffic infrastructure via 

V2I communications, and integration of RL algorithms into a safety-critical control system. 
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Chapter 1  

1. Introduction 
 

1.1. Motivation 

The increasing volume of road transport creates several problems, among which the most serious 

challenges are congestion growth, rise in energy consumption and carbon emissions (European 

Commission, 2019b). Energy consumption of the transportation sector including air, road, railway, 

marine in total accounts for 31% of all sectors in Europe where road transport has the greatest share at 

94% of all transport options mainly due to an increase in number of vehicles by 1-2% on average every 

year since 1990, reaching up to 516 cars per 1000 inhabitants in 2017 (European Commission, 2019a). 

Therefore, there is an urgent need to address road transport issues to prevent their negative impacts on 

economy, air quality, journey times and environment. 

 

Technological advancement in recent years, targeting more efficient, safe and sustainable road transport 

systems, has been instrumental in achieving a paradigm shift when considering the next generation of 

Intelligent Transportation Systems (ITS). Connected and Automated Vehicles (CAV) and Cooperative 

ITS (C-ITS) technologies are among these emerging fields that have the potential to radically reshape 

how our current transport system operates in a response to the aforementioned challenges (Milakis, van 

Arem and van Wee, 2017). In short, C-ITS involves communication between different users and 

providers of ITS such as vehicles, traffic infrastructure etc. to establish cooperation by information 

exchange, while CAV technologies aim to eliminate humans from the driving task in a vehicle. 

  

Traffic management at intersections is one of the most important areas in ITS that can improve the 

highlighted mobility and congestion issues in a cost-effective way (Mladenovic et al., 2016). The 

figures in Europe over the period 2007-16 show that 20% of road accidents that have fatalities occur at 

intersections (European Commission, 2018), and because of  safety this puts traffic management at the 

forefront of areas that need to be addressed as a priority. With penetration of C-ITS and CAV 

technologies, traffic management methods are expected to harness the power of cooperation as well, in 

order to better match the traffic demand to the existing infrastructure capacity. Signalised control is the 
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most common traffic management method worldwide that utilises traffic lights to inform right-of-way. 

It generally uses static road sensors such as loop detectors, radars and cameras to capture the traffic 

demand, and as a result, the performance of such systems heavily depends on the number of sensors 

installed (Atkins, 2016a). Use of C-ITS shared data between the traffic infrastructures and traffic users 

can overcome this challenge whilst reducing infrastructure costs. 

 

The advancements in computing power and data science has brought a resurgence of Artificial 

Intelligence (AI) techniques in recent years which are broken down into three main categories: 

supervised learning, unsupervised learning and Reinforcement Learning (RL) (Sutton and Barto, 2018). 

Supervised learning deals with finding a relationship between input and output based on example data 

provided whereas unsupervised learning attempts to find a pattern in a dataset without having any prior 

knowledge about this data. On the other hand, RL is framed as a sequential decision making paradigm 

that enables learning by trial-and-error. Among these categories, RL is considered to be the most 

promising approach for traffic management applications (Haydari and Yilmaz, 2020) mainly due to its 

ability to deal with stochastic environments such as traffic. 

 

With this in mind, this research project seeks to propose a disruptive traffic control method with no 

traffic lights, hereinafter referred to as unsignalised traffic control, that integrates C-ITS and CAV 

features to make better use of the road transport infrastructure. In this method, the intention is to 

implement RL-based decision making mechanism to manage intersection crossing of vehicles in a 

proactive way in order to reduce journey times, congestion and improve safety. Unlike a typical Traffic 

Light Control (TLC) method where each direction of traffic on the road is given right-of-way as a batch 

of vehicles in turn with traffic lights, in the proposed method, vehicles are assigned with priorities 

individually by the AI control algorithm, and a dedicated intersection crossing time window is allocated 

for each vehicle. Another key differentiating point between the two control methods is that TLC 

systems, in general, are based on complex mathematical traffic models in order to optimise signal 

timings (Zhao, Dai and Zhang, 2012) for a given intersection whereas the proposed AI based control 

method in this research work uses a model-free approach in which learning the traffic environment 

dynamics happens in a trial-and-error way. 

 

1.2. Research Questions 

The main research questions are connected to each other and focused on the central research topic in 

the area of traffic control considering the future of mobility. The questions are formulated as follows: 
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Q1. How can an AI control strategy improve signalised control based on traffic lights in terms of 

achieving less congestion, journey time and gas emissions by considering the integration of C-ITS 

communication features, various levels of CAV penetration rates and different driving behaviours 

from cautious to assertive? 

 

Q2. What is the impact of the stochastic nature of the traffic environment on how an AI control 

algorithm is designed? How is the operation of such a control method influenced by the neural 

network architecture, traffic state representation, reward mechanism and the training strategy?  

 

Q3. How can an AI traffic control method be validated with a generalised framework in both 

simulation and practical settings? What is the most feasible, representative and cost-effective way 

to benchmark the performance of the proposed control method against the fixed-time TLC method 

in order to determine how robust and proactive they are under different traffic scenarios? 

 

1.3. Structure of the Thesis 

The structure of the thesis closely follows the research objectives in Section 2.6 and it is divided into 9 

chapters including this first chapter where an introduction to the research work is presented. Chapter 2 

presents the literature review and necessary background information on wireless communications in 

ITS, various traffic management approaches at intersections, RL strategies and CAV technologies. 

Chapter 3 then goes on to outline the wireless communication protocol used between CVs and RSU in 

conjunction with the data requirements. Chapter 4 presents the details of the RL algorithm for vehicle 

priority assignment and the methods used for collision avoidance while granting intersection crossing 

access to vehicles with conflicting trajectories. Chapter 5 explains the concept of algorithm training, in 

the context of RL, and gives details of the simulation platform and the created traffic environment. 

Chapter 6 and 7 are concerned with the validation of the proposed traffic control method in the 

simulation and the scaled testbed scenarios in addition to focusing on the performance comparison of 

different traffic control methods. Chapter 8 presents the key findings of the research work by analysing 

the simulation and the testbed experiments results. Chapter 9 draws conclusions on the research work 

while providing insights and recommendation for future research. 
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Chapter 2 

2. Literature Review 
 

2.1. Vehicle Connectivity and Autonomy 

2.1.1. Vehicular Communications in Intelligent Transportation Systems (ITS)   

Vehicle connectivity is one of the key enabler technologies for the next generation of ITS infrastructure 

which will enable information exchange with traffic users to coordinate their actions. This cooperation 

between different users in traffic is expected to provide significant improvements in road safety and 

more efficient use of limited road space (European Commission, 2017). Therefore, the European 

Commission adopted the Cooperative ITS (C-ITS) strategy in November 2016 towards facilitating the 

regulatory frameworks for the future of land traffic across Europe where Cooperative, Connected and 

Automated Mobility (CCAM) technologies and services are deployed (European Commision, 2016). 

 

C-ITS Deployment Platform was set up by the European Commission after the C-ITS strategy was 

adopted as one of the key milestones to develop a shared and synchronised approach for the C-ITS 

deployment in Europe with all stakeholders (European Commission, 2017), and this platform has been 

working towards using mature short range communication technology like ITS-G5 (ETSI, 2010a) at 

5.9 GHz or wide-area communication technologies like 3G, 4G or 5G. The wireless local area network 

based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11p/bd standard (IEEE, 2014) 

is the US market equivalent of ITS-G5 in Europe which offers similar features. 

 

Several applications are supported within the ITS communications architecture in which data can either 

be transmitted periodically via Cooperative Awareness Messages (CAM) (ETSI, 2014a) or event-based 

via Decentralized Environmental Notification Message (DENM). DENM is especially important for 

information dissemination on irregular traffic activities such as road works, hazards and events that has 

potential impact on road safety (ETSI, 2010b). 
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CAM messages are transmitted in a single hop communication. Therefore, direct communication range 

is required to exchange CAM data. Unlike CAM, DENM can be disseminated to other users within the 

same local geographical area in a multi-hop communication method (ETSI, 2010b). The data exchange 

frequency for mobile users such as vehicles can be between 10 Hz and 1 Hz whereas it can be greater 

than 1Hz for static stations such as Road Side Units (RSU) (ETSI, 2014b).  

 

A study by Asselin-Miller et al., (2016) on the deployment of C-ITS in Europe reports that using cellular 

networks like 5G can accelerate the deployment of these systems greatly as the underlying technology 

has already been implemented and in use today. However, uncertainties exist around the latency times 

that can be experienced for safety-critical applications when this technology is used. The authors also 

highlight that the benefits of C-ITS can be significant especially in urban areas however, there is not 

enough data to measure the effectiveness of some applications including traffic control. With this in 

mind, it is expected that this research work will provide data in this domain. 

 

2.1.2. Vehicle-to-Infrastructure (V2I) Communications 

Within ITS, the Vehicle-to-Everything (V2X) umbrella term is used to represent wireless 

communications between vehicles and all other users. Infrastructure is one of these users and Vehicle-

to-Infrastructure (V2I) communications has great importance for traffic control applications which will 

be reviewed in this section. 

 

Vehicle On-Board Unit (OBU) and RSU are two main components in a V2I architecture for traffic 

control. Varga et al. (2017) implements a proof of concept system in the field that conforms to the C-

ITS standards (See Section 2.1.1). Vehicles receive broadcasted local MAP (physical intersection 

geometry data) and Signal Phase and Time (SPaT) data from the RSU and transmit CAM data for 

intersection crossing. The feasibility of the proposed solution is demonstrated for various environments 

including rural, highway and urban traffic. On the other hand, Parra et al., 2017 argue that 

communication reliability becomes a challenge in busy urban traffic scenarios and the authors suggest 

this could be solved by improving the channel usage mechanism for heavily congested traffic scenarios. 

 

Steinmetz et al. (2014) study V2I communication performance for an intersection control problem. The 

main objective of the study is to determine the optimum uplink and downlink parameters to ensure 

reliable communication. The simulation results show that a minimum of 100 uplink channels and 

relatively high uplink power are required for a reasonable quality of service based on 100 ms of vehicle 
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data broadcast interval. In terms of downlink, the authors found that a time interval of 300-400ms is the 

most appropriate value to disseminate vehicle coordination data from the intersection controller. In the 

same vein, Lee and Park (2015) found out that when there are less than 30 vehicles in the 

communication zone of 150m, the packet drop is 0.01% which is insignificant. 

 

There is also a growing body of literature that recognises the problems associated with redundant, 

irrelevant, large data exchange between ITS users. Drawing on an extensive range of sources, Rettore 

et al., 2019 focuses on the concept of vehicular data space in which V2X communication scenarios are 

described from data point of view. It is argued that for a traffic control scenario, acquiring data on 

vehicle states, weather and road conditions are fundamental. 

 

2.1.3. Connected and Automated Vehicles (CAV) 

The driving task in land transportation requires a complex skillset for safe and efficient movement of 

vehicles between locations. Autonomous vehicles must be equipped with sufficient tools to be able to 

handle unpredictable situations and make timely and safe decisions. Even though the state-of-the-art 

CAV solutions today cannot yet achieve the performance level that is acceptable for unsupervised 

driving under any condition and environment (Schwarting, Alonso-Mora and Rus, 2018), the 

automotive industry has witnessed a rapid progress recently on CAV technologies with cost reduction 

of vehicle sensors and computing resources together with an increase in their availability (Pendleton et 

al., 2017).  

 

The Society of Automotive Engineers (SAE) provides a taxonomy that describes a range of vehicle 

automation levels between SAE Level 0-5, and the autonomous driving capabilities increase as the level 

number increases (SAE International, 2018). For example, SAE Level 5 vehicle refers to a fully 

autonomous vehicle where there is no human driver, and the vehicle has the capability to drive 

everywhere on the road network under all conditions. 

 

The CAV technology is expected to disrupt many aspects of our mobility and lives in general. The 

sequential effects of CAVs on mobility and society from short to long term are shown in three steps in 

Figure 1 based on the rippled effect diagram by Milakis, van Arem and van Wee (2017). Congestion, 

road capacity and value of time are all part of the first step effects of CAVs to which traffic control 

applications are closely related. The second step effects include vehicle design and infrastructure while 

the third step effects contain wider implications such as air pollution, energy consumption etc. When 
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CAV-enabled traffic control systems are used, it is highlighted that more than two-fold road and 

intersection capacity benefits can be realised as CAV penetration rate increases in traffic. 

 

 

Figure 1 – The sequential effects of autonomous driving from short to long term are shown in 3 steps  

(Modified from source: Milakis, van Arem and van Wee (2017)). 

 

It has commonly been assumed that removing the human driver element out of the driving task will 

increase safety and reduce incidents in our transport network (Mladenovic, Abbas and McPherson, 

2014) as the great majority of incidents occur due to human error (Fagnant and Kockelman, 2015). 

Based on the statistics reported by European Commission (2018), obstruction to view, distraction, 

inadequate plan and insufficient knowledge are among the reasons for incidents caused by human 

drivers at traffic intersections, and the most common reason is the information failure between drivers 

and traffic infrastructure, or between driver and vehicle (16% of fatal incidents). This points out a clear 

need for better information exchange between traffic users at intersections. 

 

The aforementioned advantages of  CAVs compared to legacy vehicles are not only due to autonomous 

features, but connectivity will also play a key role to enable cooperation between vehicles and 

infrastructure via V2X communications (Fagnant and Kockelman, 2015). Taken together, the literature 

on this subject supports the notion that many processes and systems will be affected by the advancement 

of CAV technologies, and the evidence reviewed so far suggests a pertinent role for CAV-enabled 

traffic infrastructure. 
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2.1.4. The Impact of CAVs on Traffic Flow 

CAV technology is expected to have significant impact on how vehicles operate on the transport 

network. Speed profiles, platoon formations, the interaction with legacy vehicles, lane positioning and 

alignment and spacing between vehicles while driving are some of the characteristics that will influence 

vehicle dynamics, road capacity, safety, carbon emissions and journey times (Atkins, 2016a). 40% 

penetration rate of CAVs is reported to be a critical threshold to gain significant benefits (>10%) on 

road capacity, and 100% penetration rate of CAVs could double the road capacity (Milakis, van Arem 

and van Wee, 2017). 

 

The choice of vehicle behaviour, cautious to assertive, that is implemented by vehicle manufacturers 

and configurable by the end user can have a great impact on road capacity as the rate of CAV penetration 

increases (Atkins, 2016a). Cautious driving behaviour, in this case, refers to an autonomous driving 

style with user comfort (i.e. smaller rates of acceleration or deceleration) and more safety (i.e. larger 

headways1 between vehicles than traditional human-driven vehicles) as the main considerations. 

Considering that human drivers will co-exist in traffic with CAVs for the foreseeable future, it is 

essential to measure the impacts of different driving behaviours in the presence of CAV-enabled traffic 

infrastructure at intersections. 

 

Travel time reliability can be improved with CAVs due to advanced vehicle motion control, reduced 

headways between vehicles and quicker reaction times (Fagnant and Kockelman, 2015). In terms of 

travel time optimisation with CAVs, intersection control scenarios have more room for improvements 

compared to highway scenarios (Milakis, van Arem and van Wee, 2017). 

 

2.2. Signalised Traffic Control Systems 

There are several TLC methods which will be placed in three broad categories in this literature review: 

fixed-time, actuated and adaptive control. All of these three control categories make use of the concepts 

of “phases” and “stages”, and therefore, it is important to understand what they refer to. British 

Standards Institution (2007) defines the phase as a set of traffic movements that can take place 

simultaneously, and the stage is defined as part of the control cycle during which a specific set of phases 

are granted right-of-way with green light. The rest of this section will present the key research work in 

the aforementioned categories. In addition, traffic control methods for the next generation of vehicles 

with connectivity and autonomy features are also presented.    

 
1 Headway is the distance between vehicles on the road measured in time or space. 
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2.2.1. Fixed-Time Traffic Signal Control 

In fixed-time traffic signal control, green phase durations for the approaching lanes and their orders are 

set offline prior to field deployment with optimisation tools such as TRANSYT (Robertson, 1969), 

SYNCHRO (Husch and Albeck, 2003) and VISGAOST (Stevanovic et al., 2008). The optimisation is 

done based on the historical traffic data for a given intersection and there are two main optimisation 

techniques under the fixed-time control, namely stage-based and phase-based optimisations. The 

aforementioned tools can generate a series of signal plans prior to deployment in the field for different 

times of a day or for rush-hour type recurring events. 

 

The fixed-time traffic control does not meet the fluctuating traffic demand and is not capable of 

responding to any disruptive events such as accidents which is considered as the main drawback (Li, 

Elefteriadou and Ranka, 2014). On the other hand, it is cost-effective as there is no requirement for 

installation of sensors and communication devices for real-time data collection. 

 

2.2.2. Vehicle-Actuated Traffic Signal Control 

Vehicle actuated methods were introduced to overcome the inefficiencies of offline traffic timing 

optimisation methods (Gokulan and Srinivasan, 2010). MOVA (Peirce and Webb, 1990), LHOVRA 

(Kronborg and Davidsson, 1993) and SOS (Kronborg, Davidsson and Edholm, 1997) are prime 

examples of vehicle actuated methods in which loop detectors play an important role to detect 

approaching vehicles and set the green time duration accordingly (Abdulhai, Pringle and Karakoulas, 

2003). Under this method, the phase time is extended in steps of seconds based on the traffic demand 

that is detected by the sensors. 

 

Even though the vehicle actuated methods responds to fluctuating traffic demands unlike the fixed-time 

control methods, it is argued that the control decisions are suboptimal due to their myopic nature in time 

(Yau et al., 2017; Xie et al., 2012). Another disadvantage of this method is that it only considers the 

traffic demand on the current phase when deciding whether to increase the green time duration or not 

for that phase without taking into account the demand on other phases, and this can significantly limit 

the optimal usage of time and intersection space (Zhao, Dai and Zhang, 2012). 
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2.2.3. Adaptive Traffic Signal Control 

Adaptive control is a combination of the fixed-time and actuated methods in which signal time 

optimisation is done online at every control cycle i.e. every 15 minutes based on the traffic demand. 

More precisely, adaptive control includes a traffic network model that takes real-time measurements 

rather than historical values as input to the model. The split, offset, cycle and/or switching times are the 

outputs of the model for the subject traffic intersection. 

 

Some of the well-known adaptive control methods are SCATS (Sims and Dobinson, 1980), SCOOT 

(Hunt et al., 1981), GLIDE (Keong, 1993), ACS-Lite (Luyanda et al., 2003) which are used for urban 

intersections worldwide (Gokulan and Srinivasan, 2010). Other adaptive control methods include 

OPAC (Gartner, 1983), PRODYN (Henry, Farges and Tuffal, 1984), RHODES (Head, Mirchandani 

and Sheppard, 1992), TUC (Dinopoulou, Diakaki and Papageorgiou, 2006), COP (Sen and Head, 1997), 

DYPIC (Robertson and Bretherton, 1974), ALLONS-D (Porche and Lafortune, 1999), CRONOS 

(Boillot, Midenet and Pierrelée, 2006) and RT-TRACS (Gartner, Pooran and Andrews, 2002). 

 

Adaptive control can be coordinated for large networks to deal with oversaturation in traffic and the 

inaccuracies of local sensor measurements, and, it is also considered widely for integration with further 

traffic control strategies such as freeways (Papageorgiou et al., 2003). Integrated traffic control can 

maximize the technical and performance benefits of multiple different subsystems by combining 

different traffic signal parameter update strategies (Wang et al., 2018). On the other hand, achieving 

real-time performance with adaptive control methods has shown to be very challenging as the model 

state space grows exponentially with the number of steps in the optimisation horizon (Papageorgiou et 

al., 2003). Xie et al. (2012) list some of the methods that are implemented such as shorter optimisation 

horizon, smaller number of phase switches, value approximations and heuristic searches to achieve real-

time tractability with adaptive traffic control. 

 

2.2.4. Traffic Signal Control with Vehicular Communications 

The traffic signal control methods presented so far summarised the performance improvement efforts 

made over the years to meet the ever-increasing demand in land traffic without using vehicular 

communications. The research work presented in this section focuses on advanced real-time traffic 

control methods that support V2X communications. The core idea is to extract and utilise valuable 

information in the data that is exchanged between traffic users. 
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In the absence of vehicular communications, traffic flow parameters are estimated such as flow rate, 

lane occupancy, average vehicle speed etc. to calculate signal timings. When vehicular communications 

is used, estimation inaccuracies and challenges are overcome by providing actual real-time data (Li, 

Wen and Yao, 2014). de Luca et al. (2017) study the traffic signal optimisation problem with vehicular 

communications under a mixed traffic environment with traditional vehicles and CVs. Stage sequence 

of the traffic light, the departure times and routes of the approaching CVs are optimised through a meta-

heuristic algorithm which is formulated as a Mixed-Integer Program. Similarly, Chang and Park (2013) 

and Gokulan and Srinivasan (2010) propose signal control strategies that replace estimation functions 

with real-time data acquired via vehicular communications.  

 

Vehicular communications technology also paved the way for further research work in traffic control 

that would otherwise not be possible. One prime example is vehicle trajectory optimisation to smooth 

traffic flow which is commonly referred to as Green Light Optimised Speed Advisory (GLOSA) 

systems (Katwijk and Gabriel, 2015). The key idea is to exchange signal timings with CVs so that they 

can apply optimised acceleration and deceleration profiles while approaching an intersection from a 

certain distance to prevent stop-and-go movements and to reduce energy consumption. Traffic signal 

timing and vehicle trajectory optimisations together can be considered as a bi-level optimisation 

problem in which speed profiles are generated based on methods such as model predictive control (Du, 

HomChaudhuri and Pisu, 2017)(Katwijk and Gabriel, 2015), branch-and-bound (Yang, Guler and 

Menendez, 2016), heuristic rules (Zhou, Li and Ma, 2015) and rolling horizon (Li, Elefteriadou and 

Ranka, 2014). 

 

Based on the research work in this field, it becomes apparent that prevalence of vehicular 

communications also triggered a transition in the design philosophy of traffic control systems. 

Estimation of current traffic state based on loop detectors is enhanced by accurate real-time data enabled 

by V2X communications (Chang and Park, 2013).  

 

2.3. Unsignalised Traffic Control Systems 

In this research work, unsignalized traffic control is used to define traffic control systems that do not 

involve traffic lights to indicate right of way. Traditionally, at unsignalized intersections such as 

roundabouts, T-junctions etc., the driver must make the decision of when to enter the intersection as 

there is no positive indication or control signal given to the driver by any traffic control infrastructure. 

The driver waits for a safe opportunity to cross and this driver behaviour is modelled and named as gap 

acceptance (FHWA, 2001). 



39 

 

Unsignalised intersection control can be categorised as centralised or decentralised based on the 

decision-making strategy. In centralised intersection control, there is at least one decision made for all 

vehicles in the control region by a central controller whereas in decentralised intersection control, all 

decision making is done by vehicles themselves (Rios-Torres and Malikopoulos, 2016). This section 

will review the literature in intersection control without traffic lights for CHVs and CAVs. 

 

2.3.1. Centralised Control 

The vehicle scheduling problem at intersections can be considered as a shared resource allocation in 

which space and time are discretised and allocated to vehicles. A study published by Naumann, Rasche 

and Tacken (1998) is the first to propose an alternative centralised traffic control strategy considering 

the foreseen features of CAVs. The authors proposed a reservation-based intersection control method 

for vehicles with advanced automated and wireless communication features. 

 

Another seminal study in this area is the work of Dresner and Stone (2004). They also propose a 

reservation-based intersection control system for CAVs. In this control system, vehicles request and 

receive time slots via V2I communication interface during which they can traverse the intersection 

space they reserved. To allow simultaneous access of vehicles with non-conflicting trajectories, the 

intersection is divided into a n x n grid of tiles. Therefore, each tile can be reserved by only one vehicle 

per time step based on the First-Come-First-Served (FCFS) scheduling policy. The authors show 

through simulations that the proposed control system outperforms traditional signal control significantly 

in terms of average delay experienced by vehicles. Some of the limitations of this system are the 

inability of vehicles to make a turn and to change their velocity while in the intersection. These 

limitations are addressed in a follow-up study by Dresner and Stone (2005) and they demonstrate 

through simulations and field tests (Quinlan et al., 2010) that this augmented system outperforms the 

signalised control and the stop sign control in terms of average vehicle delays. 

 

Levin, Boyles and Patel (2016) argue that there are certain scenarios in which traffic signal control 

outperforms reservation-based intersection control with FCFS vehicle scheduling approach. For 

instance, the fairness objective of a reservation-based control was found to increase the total vehicle 

delay in an arterial road as side roads were given priority based on their waiting time to cross. Another 

scenario is that vehicles on the side roads disrupt the platoon progression on the arterial road by 

obtaining reservations that conflict with the platoon members. It is also reported by Khayatian et al. 
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(2020) that the FCFS method performance degrades as the traffic demand increases which can limit the 

usage of such a method in the field. However, these limitations can be overcome by implementing a 

priority-based scheduling with appropriate objective functions. 

 

Taken together, the studies presented thus far support the notion that the FCFS scheduling policy 

performs worse than the traffic light policy in terms of average delays under heavy traffic conditions. 

Much of the current literature on scheduling policies for unsignalized traffic control pays particular 

attention to priority assignment based on Model Predictive Control (MPC) (Camacho and Bordons, 

2007) with optimization objectives that include reducing average vehicle delays (Cai et al., 2014; Jin et 

al., 2012; Zhu et al., 2009) increasing vehicle throughput and shared intersection space utilisation 

(Fayazi, Vahidi and Luckow, 2017; Altche and de La Fortelle, 2016; Ghaffarian, Fathy and Soryani, 

2012), reducing carbon emissions (Lee et al., 2013; Lee and Park, 2012; Huang, Sadek and Zhao, 2012), 

increasing passenger comfort by considering vehicle dynamics (Dai et al., 2016; Yang et al., 2016), 

increasing platoon formations (Vial et al., 2016; Tachet et al., 2016; Cheng et al., 2016; Tallapragada 

and Cortés, 2015; Chen and Kang, 2015; Shahidi, Au and Stone, 2011; Lam and Katupitiya, 2013), and 

introducing auction and market-based token systems (Carlino, Boyles and Stone, 2013; Vasirani and 

Ossowski, 2009; Schepperle and Böhm, 2008). 

 
The priority assignment strategy runs in discrete time in the aforementioned studies. The centralised 

Intersection Control Agent (ICA) gathers the information from each vehicle every control cycle via V2I 

communication interface. In each cycle, the right-of-way list is generated and communicated back to 

the vehicles. One of the important outcomes of the studies presented under priority assignment is that 

finding an optimal crossing sequence of vehicles is more effective in terms of reaching the target 

objectives than finding an optimal vehicle trajectory for a given sequence of vehicles (Altche and de La 

Fortelle, 2016). Vehicle trajectory, in this case, refers to the path that a vehicle drives through at an 

intersection as a function of time. This emphasizes the importance of vehicle sequencing for 

unsignalized intersection control. 

 

There are a number of studies (Yan, Wu and Dridi, 2014; Gregoire and Frazzoli, 2016; Wu, Abbas-

Turki and Moudni, 2009; Ahn and Del Vecchio, 2016) that examine the relationship between scheduling 

problem in operational research and vehicle sequencing problem at intersections. Vehicles are modelled 

as jobs whereas the central intersection controller is modelled as a single machine. Yan, Wu and Dridi 

(2014) extends the single machine job scheduling problem to parallel scheduling for vehicle stream 

groups that can traverse the intersection simultaneously due to non-conflicting trajectories. Wu, Abbas-

Turki and Moudni (2009) argue that a job scheduling algorithm does not meet the real-time operation 
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requirements that are expected from a safety-critical system as the number of vehicles and lanes 

increase. For this reason, Ahn and Del Vecchio (2016) convert the job scheduling problem into a Mixed-

Integer Linear Programming (MILP) problem to meet real-time requirements. This modified scheduling 

approach is claimed computationally more efficient as there are significantly smaller number of 

decision variables.  

 

Hult et al. (2015) investigate the problem of optimal autonomous vehicle control at intersections with 

safety constraints. The key contribution of their study is the decomposition method that separates 

vehicle sequencing problem from optimal vehicle trajectory planning. Approaching vehicles are ordered 

in a centralised way and intersection occupancy time windows are calculated as a first step. The 

occupancy time windows are then communicated back to the vehicles for the trajectory optimiser that 

runs locally in vehicles to find optimal and feasible trajectories for crossing. It is claimed that the 

proposed solution reduces the computational cost on the central controller significantly whilst providing 

the ability to implement various objective functions on the local trajectory optimiser.  

 

Centralised control strategies have their challenges. Single point of failure, scalability to much larger 

road networks, processing overhead are some of the major issues that require solution prior to 

deployment in the field. It is also important to highlight that research on centralised control strategies 

presented so far has been mostly restricted to all vehicles having a wireless communications interface 

or all vehicles having fully autonomous features. However, this will not be realised in the near future. 

 

2.3.2. Decentralised Control 

In decentralised traffic control, cooperation among vehicles is established through wireless 

communication without requiring a road side unit acting as the central controller. This is an overlapping 

area with vehicle autonomy and the integration of these two concepts gives us cooperative and 

autonomous vehicles (Englund et al., 2016). A preliminary work on decentralised control is studied by 

(Neuendorf and Bruns, 2004) for platoon of autonomous vehicles. In the concept they introduced, 

vehicles calculate the right-of-way in a cooperative way as they exchange data among themselves and 

reach a consensus on when each vehicle should cross an intersection.  

 

Much of the decentralised research has focused on formulating an optimisation problem for sequencing 

vehicle crossings. Katriniok et al. (2017) adopt an MPC-based approach to generate speed profiles for 

each vehicle over a finite horizon window such that a cost function is minimised. The cost function is 

the weighted sum of multiple optimisation parameters including mobility and safety constraints. The 
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control method does not particularly decide on a crossing order for vehicles but gives a priority relation 

in the case of trajectory conflicts. Other optimisation methods in the literature focus on minimising the 

acceleration rate (Zhao, Malikopoulos and Rios-Torres, 2017), calculating the vehicles’ degree of 

freedom to avoid collisions (de Campos, Falcone and Sjoberg, 2013; Hafner et al., 2013), taking the 

inertia of the vehicles into account to reduce overall energy consumption (Makarem and Gillet, 2011) 

and minimising the average crossing time through an intersection (Gregoire, Bonnabel and de La 

Fortelle, 2013). 

 

Game-theoretic approaches are also applied in the literature (Elhenawy et al., 2015; Wu et al., 2016) 

for vehicle negotiation at intersections in a distributed way. The reward function determines which one 

of the vehicles with conflicting trajectories need to yield in order to prevent collision. Heuristic rule-

based methods are also proposed to solve the distributed control problem (Rodrigues de Campos et al., 

2017; Yang and Monterola, 2016; Wu et al., 2015; Hassan and Rakha, 2014). It is also shown via 

simulation work in these studies that even though a heuristic rule-based strategy offers reduced 

processing complexity and high scalability features, the solution is sub-optimal (Rodrigues de Campos 

et al., 2017). 

 

In view of all that has been mentioned so far, decentralised control offers some advantages over 

centralised control such as no requirements for costly traffic infrastructure deployment with V2I 

capabilities and no single point-of-failure. On the other hand, Khayatian et al. (2020) argue that 

decentralised control can have higher overheads in wireless communications as vehicles need to 

broadcast their information much frequently than a centralised control approach, and time 

synchronisation between vehicles is also considered as a major challenge in the absence of a centralised 

control unit. 

 

2.4. Artificial Intelligence in Traffic Control 

AI based algorithms and models enable machines to learn tasks without being explicitly programmed 

to do so, and they have demonstrated great potential in complex environments such as strategic long-

term decision making problems, process control with set point tracking or regulation, and partially- 

observable systems in which unmeasurable, and/or unreliable data exists (Nian, Liu and Huang, 2020). 

The aformentioned points are important advantages over traditional control methods that are presented 

in Sections 2.2 and 2.3.  
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Traffic control can be considered as a sequential decision making problem which is too complex to 

apply simple heuristics or rule-based solutions (Bakker et al., 2010). Therefore, computational 

intelligence algorithms are widely used for traffic control in the literature including fuzzy logic, neural 

networks and probabilistic methods. Adaptive signal control systems such as OPAC (Gartner, 1983), 

PRODYN (Henry, Farges and Tuffal, 1984), RHODES (Head, Mirchandani and Sheppard, 1992) are 

based on dynamic programming. However, dynamic programming requires the state transition model 

of the system and in this case, due to the stochastic nature of traffic, it is difficult to obtain a model for 

traffic control (El-Tantawy and Abdulhai, 2010). Besides, the real-time implementation of a dynamic 

programming based algorithm is challenging due to the curse of dimensionality phenomenon in the 

state space (Cai, Wang and Geers, 2010). The curse of dimensionality refers to the issue of data sparsity 

that occurs as the size and dimension of a state space increases. 

 

RL is one of the main machine learning branches alongside supervised and unsupervised learning. RL 

methods in the context of traffic control will be presented in this section. 

 

2.4.1. Background on Reinforcement Learning 

RL is a goal-directed computational approach that involves a sequential decision process to take actions 

in a given situation in order to maximise a scalar reward signal. In RL, the dynamics of the environment 

is not given as a priori to the agent, and therefore, the agent has to interact with the environment to 

discover which actions give more reward. The background information in this section summarises the 

key concepts and ideas in RL from the book by Sutton and Barto (2018). 

 

Learning by trial and error, optimal control and temporal difference are the three fundamental subjects 

that formed RL in the late 1980s. RL differs from supervised learning in that there is no human expert 

that provides labelled data to take correct actions. Most importantly, the actions taken by the agent 

influence the environment and the next state of the agent whereas in supervised learning, the 

environment is not affected by the agent’s actions. 
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Figure 2 – The interaction between the agent and the environment in RL 

 

RL consists of three main building blocks, a policy, a reward signal and a value function as shown in 

Figure 2. A policy can be defined as the mapping from states to actions and it forms the behaviour of 

an agent. A policy can be deterministic or stochastic. A reward signal is used to determine whether an 

action taken in a certain state gives an immediate good or bad outcome in order for the agent to reach 

its goal. RL is a goal-oriented learning method in which an agent tries to maximise a scalar reward 

signal over a period of time. This reward is given by the environment that the agent resides in and is 

not directly under the agent’s control. A value function, on the other hand, is used to define the expected 

total reward that an agent can receive in the future starting from the current state. Unlike rewards which 

are given directly by the environment, a value function must be estimated by the agent repeatedly 

throughout its operation in the environment. 

 

There are several algorithms under the RL umbrella which can be categorised as being either model-

based or model-free. The model here refers to a collection of functions that predict the environment 

dynamics such as state transitions and rewards when a certain action is taken. However, for complex 

environments, such as traffic, obtaining a representative environment model is challenging (Arel et al., 

2010), and therefore, model-free algorithms are predominantly used.  

 

There are two training approaches in model-free methods, namely Policy Optimisation (Silver et al., 

2014) and Q-Learning (Mnih et al., 2013). In policy optimisation, the parameters of the agent policy 

are updated directly while interacting with the environment using the most recent version of the policy. 
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On the other hand, in Q-learning, the agent policy is not optimised directly but the action-value pair is 

optimised with data collected at any point during the interaction with the environment. Q-Learning 

tends to be less stable during training as it indirectly updates the agent policy, however, it has the 

advantage of being substantially more sample efficient (Szepesvári, 2010). Sample efficiency refers to 

the amount of training data required to reach a target level in agent performance. With this in mind, 

there also exists a range of algorithms that can benefit from the advantages of both approaches by 

concurrently learning an agent policy and an action-value pair. These algorithms are Deep Deterministic 

Policy Gradient (DDPG) (Lillicrap et al., 2015), Soft Actor-Critic (SAC) (Haarnoja et al., 2018) and 

Twin-Delayed DDPG (TD3) (Fujimoto, van Hoof and Meger, 2018) which also form the foundations 

for the proposed unsignalised traffic control method in this research work. 

 

Over the past decade, RL methods in the context of traffic control have been extensively studied by 

many researchers to improve current TLC methods and to design the next generation systems with 

CAVs. The next section will summarise the key research work in this area. 

 

2.4.2. Traffic Control Based on RL Methods 

RL was first applied to traffic signal control by Thorpe and Anderson (1996). The authors demonstrated 

through simulation work that RL outperforms the fixed-time traffic signal control in terms of average 

waiting time in an isolated intersection scenario. Since then, a considerable amount of literature has 

been published on the application of RL algorithms for traffic control. 

 

There is a large volume of published studies (Abdulhai, Pringle and Karakoulas, 2003; Arel et al., 2010; 

El-Tantawy and Abdulhai, 2010; Gao et al., 2017; Casas, 2017; Khamis and Gomaa, 2014; Mousavi et 

al., 2017) describing the role of RL to improve the existing traffic control methods with traditional 

vehicles. Connectivity and autonomy are not taken into consideration in these studies. The proposed 

solutions are validated through simulation work and it is argued that accurate traffic state representation 

improves convergence rate and stability of the RL agent (Van Der Pol and Oliehoek, 2016). The 

consequence of taking a sub-optimal action in a traffic control application, especially in a busy traffic 

situation, might lead to a traffic jam which makes returning to a desirable state difficult. 

 

There is also another large body of literature (Gritschneder et al., 2016; Altche, Qian and de La Fortelle, 

2016; Ahn et al., 2015; Qian et al., 2014; Perronnet, Abbas-Turki and El Moudni, 2013) that is 

concerned with RL based traffic control for CAVs. Considering that there will be a long transitional 

period in which traditional human-driven vehicles and fully autonomous vehicles will co-exist in traffic 
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(Liu, Ma and Kumar, 2015), it is crucial to accommodate human-driven vehicles while creating traffic 

control methods (Dresner and Stone, 2006). 

 

2.5. Research Gaps 

The main research gaps based on the literature review presented in this chapter can be summarised as 

below: 

• Mladenovic et al. (2016) draw our attention to the technology path dependency for traffic 

control methods, and it is argued that the legacy traffic control methods should not be the 

foundation when considering a next generation disruptive technology such as unsignalised 

traffic control with CAVs. There has been a limited amount of work reported on AI-based 

unsignalised intersection control and there is research gap to address the challenges of how an 

AI algorithm should be formulated, trained and validated.  

 

• Much uncertainty still exists about the impact of CAVs on unsignalised intersections in mixed-

fleet traffic scenarios where CAVs and CHVs co-exist. The interactions between CAVs and 

human-driven vehicles at intersections also remain unclear (Atkins, 2016a). Vehicle delays at 

road intersections are mainly caused by conflicting turning manoeuvres (Fagnant and 

Kockelman, 2015) which is difficult to address by distributed traffic control strategies. 

Therefore, a centralised traffic control method plays an important role in this case. 

 

• Recent trends in vehicle automation and connectivity have led to a proliferation of studies in 

traffic control strategies for the next generation of land vehicles. However, vehicle automation 

is still in its infancy, and therefore, there is little empirical data from field tests. The state-of-

the-art studies mainly used simulation tools to explore the effects of CAVs in traffic and to 

validate methods and algorithms (Milakis, van Arem and van Wee, 2017). Even though the 

experimental data gathered from simulation works is based on various assumptions, there is a 

general agreement that CAVs will increase the efficiency of the transportation system. This 

indicates a need for practical experiments to investigate the impacts of CAVs in traffic flow at 

intersections when different traffic control methods are used.  

 

This research work will address the gaps identified and propose an unsignalised intersection control 

method for CAVs which is based on the RL branch of machine learning. RL can learn the non-linear 

relationship between the elements that play a role in the intersection control (Arel et al., 2010), from 

which the agent can derive a control policy for traffic scheduling. 
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2.6. Goal and Objectives 

The primary goal of the research work is the proposal of an unsignalised traffic control method based 

on the RL branch of machine learning to advance the current state-of-the-art by considering the future 

of land traffic where CAVs and C-ITS communication systems are prevalent. The purpose is to make 

real-time control decisions in a proactive way under constantly evolving traffic conditions whilst 

ensuring a higher degree of safety in the absence of any physical traffic light system. The objectives of 

the project are as follows: 

 

O1. Identify research gaps during literature review in terms of traffic intersection control methods, 

wireless communication solutions for ITS applications, CAV technologies and RL strategies that 

are applicable for stochastic environments such as traffic,   

 

O2. Propose a Vehicle-to-Infrastructure (V2I) wireless communication protocol between 

Connected Vehicles (CV) and the Road Side Unit (RSU) acting as the intersection control agent, 

and to identify a data set for the traffic control application,  

 

O3. Design and implement a neural network architecture, traffic state representation, action space 

and reward mechanism, in the context of RL, to learn an optimal traffic control policy whilst 

preventing any vehicle trajectory conflicts for collision avoidance, 

 

O4. Create a realistic traffic environment in simulation to validate the proposed unsignalised traffic 

control method under various scenarios, and benchmark against identified traffic control methods 

for performance comparison, 

 

O5. Develop a scaled testbed for practical trials in a controlled environment with multiple scaled 

CAVs and the digital twin of the scaled testbed in the simulation environment to further validate 

the proposed traffic control method in a cost-effective way, 

 

O6. Analyse the results of simulation work and scaled testbed experiments, and highlight the key 

findings and the impacts of the proposed control method on traffic flow, congestion and 

environment, 
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O7. Draw conclusions on the research work and provide recommendations on potential real-world 

deployment of the proposed traffic control method considering the challenges in terms of technical, 

commercial and policy.  
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Chapter 3 

3. Development of Vehicular Communications 
Protocol for Intersection Crossing 

 
3.1. Introduction 

The problem of vehicle coordination at an unsignalised intersection with multiple approaching and exit 

links and multiple lanes on each link is considered in this work as shown in Figure 3. Permitted left, 

right turn and through movements are shown with road markings. The Intersection Critical Area (CrA) 

is defined as the intersection area of incoming lanes 𝑙1. . 𝑙𝑛  𝑛 ∈ 𝑁 where N is the total number of 

incoming lanes. CrA has the potential for lateral vehicle collision and it consists of Conflict Points (CP). 

Essentially, only a single vehicle must occupy a CP at any moment in time. With this in mind, 

unsignalised intersection control problem turns into a spatio-temporal control in which time windows 

are allocated for each vehicle at CPs to enable safe crossing.   
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Figure 3 – An example traffic intersection setup and visualisation of key definitions 

 

In a centralised intersection control system, the RSU with V2I communication capabilities collects 

vehicular data from approaching CVs, and disseminates intersection crossing time windows for each 

and every approaching vehicle. CVs transmit data such as vehicle identification number, position, 

velocity, desired trajectory through the intersection etc. when they enter the communication area of the 

local ICA.  

 

The rest of this chapter gives more detailed information about the wireless communications protocol 

developed for the intersection crossing of vehicles, data requirements for the unsignalised intersection 

control and the role of the key components in the control system. 
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3.2. Assumptions 

In this research work, the following set of assumptions are made in order to focus on the proposed 

contributions. Firstly, vehicles in traffic are assumed to be a mixture of CHVs and CAVs. Traditional 

vehicles with no connectivity are not considered. Secondly, human drivers have access to an on-board 

display in their vehicles where appropriate intersection crossing information is displayed, and they obey 

the allocated crossing time window. Thirdly, all vehicles are equipped with Global Positioning System 

(GPS) sensors with measurement accuracy of no worse than 1 metre. Finally, Vulnerable Road Users 

(VRU) such as pedestrians and cyclists are not considered.  

 

Vehicle interactions and driving behaviour outside the intersection communication range is beyond the 

scope of this research work. The underlying wireless technology and communication concepts for the 

rest of this chapter is based on the C-ITS standards as explained in Section 2.1.1. 

 

3.3. V2I Communication Model 

The communication model for the unsignalised intersection control is shown in Figure 4 as a Unified 

Modelling Language (UML) deployment diagram and it is a simplified version of the work by Gáspár, 

Szalay and Aradi (2014) that highlights the essential components for this research work.  

 

The model in Figure 4 demonstrates the holistic view of traffic control and it is designed to handle data 

for spatially and temporally dynamic traffic environment. In this view of the system architecture, the 

Local Traffic Control System consists of an RSU, wireless communications radio equipment and 

supporting sensors that can include video detection, temperature sensors etc. and this research work fits 

in this component where proposed algorithms and methods are implemented locally in the RSU.  

 

It is also possible that the RSU may not be required at every intersection and that some of the traffic 

control functions could be supported remotely (Gáspár, Szalay and Aradi, 2014) by a Remote Traffic 

Management Centre as shown in the far left box in Figure 4 that essentially has regional transportation 

management responsibilities. Another key component in the communication model is the Vehicle OBU 

that can be a part of either CAV or CHV to provide secure and reliable wireless communication 

capabilities. In alternative system designs, some of these responsibilities can be assigned to different 

components. In the rest of the chapter, the interactions between the ICA and CVs will be detailed and 

their roles in the unsignalised traffic control will be explored. 
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Figure 4 – Communications model UML deployment diagram  
(Modified from source: Gáspár, Szalay and Aradi (2014)) 

 

3.3.1. The Area of Interest 

ICA is responsible for broadcasting regular messages to announce the presence of the unsignalised 

traffic control service. CVs that are approaching an intersection monitor such messages so that they can 

participate in the traffic control service, by exchanging data on the designated radio channels (ETSI, 

2010b). Therefore, the Area of Interest (AoI) for the unsignalised traffic control system can be defined 

as the area that CVs can establish direct wireless communication with the RSU.  

 

The AoI is further divided into three areas; Control Area (CoA), Critical Area (CrA) and Exit Area 

(ExA) in which CVs and the ICA have to execute certain control and monitoring tasks. Figure 5 

demonstrates these key tasks in a spatio-temporal way in which the x-axis is the time and the y-axis is 

the distance from the intersection where 𝑑0 is the intersection entry point. The tasks marked as “V” are 

executed by OBUs of each Vehicle Agent (VA) whereas the ICA executes the tasks marked as “I”. The 

CVs also transition into different modes as “Approaching”, “Crossing” and “Exiting” within the AoI as 

shown on the left side of the diagram. 
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Figure 5 – The Interaction diagram that demonstrates the key tasks of VAs and the ICA in a spatio-temporal 
way 

 

When a CV enters the AoI, the first task it executes is the Approach Planning which includes mapping 

its own geo-location on the intersection map data received, positioning itself on the correct lane based 

on its desired trajectory through the intersection and the turning manoeuvre restrictions within the CrA. 

The map data is based on the common data dictionary by ETSI (2014b). Once a vehicle is positioned 

in the correct lane, it calculates an Estimated Time of Arrival (ETA) to the intersection entry point with 

free flow traffic assumption as in Highway Capacity Manual by Transportation Research Board (2010) 

and given by the equation: 

 𝑡𝐸𝑇𝐴 =
𝑑𝑖𝑛𝑡

𝑣𝑡𝑎𝑟
+ 𝑡𝑖𝑛𝑖𝑡 (1) 

where 𝑣𝑡𝑎𝑟 is the target speed of the vehicle which depends on its driving behaviour and the speed limit 

in the local road network and 𝑑𝑖𝑛𝑡 is the distance of the subject vehicle to the intersection entry point 

once target speed is reached. 𝑡𝑖𝑛𝑖𝑡 is the initial acceleration or deceleration time that it takes for the 

subject vehicle to reach the target speed starting from its current speed 𝑣𝑐𝑢𝑟𝑟 and is calculated as below: 
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 𝑡𝑖𝑛𝑖𝑡 =
𝑣𝑡𝑎𝑟 − 𝑣𝑐𝑢𝑟𝑟

𝑎𝑑
 (2) 

where 𝑎𝑑 is the desired acceleration or deceleration value. Finally, the vehicle displacement 𝑑𝑖𝑛𝑖𝑡 during  

𝑡𝑖𝑛𝑖𝑡 period is calculated by the equation: 

 𝑑𝑖𝑛𝑖𝑡 =
𝑣𝑡𝑎𝑟

2 − 𝑣𝑐𝑢𝑟𝑟
2

2𝑎𝑑
 (3) 

from which, the 𝑑𝑖𝑛𝑡 can simply be found as: 

 𝑑𝑖𝑛𝑡 = 𝑑𝑐𝑢𝑟𝑟 −  𝑑𝑖𝑛𝑖𝑡 (4) 

where 𝑑𝑐𝑢𝑟𝑟 is the current distance of the vehicle from the intersection entry point. It is important to 

highlight that desired vehicle driving behaviour in terms of target speed, acceleration etc. is decided by 

the vehicle itself and respected by the ICA rather than imposing on speed profiles determined by the 

ICA for all approaching vehicles.  

 

The Crossing Time Estimation task calculates the time that it takes for the subject vehicle to cross the 

CrA depending on the target manoeuvre i.e. left turn, straight etc. and the target speed while making 

manoeuvre. Once the subject vehicle executes the aforementioned set of tasks, it transmits this 

information to the ICA for intersection crossing request. The data requirements within the context of 

unsignalised intersection control are detailed in the following section.   

 

3.3.2. Vehicle Agent Data 

When a CV is within the AoI and executes the initial tasks that are explained in the previous section, it 

is then responsible for transmitting its data to the ICA for traffic control actions to be taken. The vehicle 

data includes information such as vehicle dynamic state, driving behaviour, vehicle configuration, 

communication parameters and trajectory path through the intersection. ICA receives this information 

from all vehicles in the AoI, executes data authentication checks with the remote TMC, and captures 

the real-time local traffic state. 

 

SAE International (2020) specifies a V2X communications message set dictionary that is agnostic from 

the underlying communication technology i.e. ITS-G5, IEEE 802.11, 4G etc., and it is named as J2735. 

This dictionary is intended specifically for applications that use V2X communications systems, and it 

describes a message set and its data frames. Table 1 lists a key sub-set of this dataset which is used as 

part of the proposed unsignalised traffic control method between the vehicles and the ICA. 
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VA Data Description 

veh_id Unique vehicle identification number 

msg_id Message identification number 

msg_t_tx Transmit message timestamp 

ica_id ICA identification number 

veh_type Vehicle type including the autonomy level 

dist_to_cra Distance to the intersection CrA 

veh_v Current vehicle speed 

veh_a Current vehicle acceleration / deceleration 

veh_length Vehicle length 

veh_width Vehicle width 

veh_t_arr Estimated arrival time to the critical area 

veh_lane_arr Intersection arrival lane 

veh_lane_exit Intersection exit lane 

veh_v_cross Vehicle target crossing speed 

veh_dt_cross Time to cross the entire CrA at veh_v_cross  

 
Table 1 – Vehicle dataset transmitted by all CVs within the Area of Interest when Unsignalised Traffic Control 

service is available. 

 

3.3.3. Intersection Control Agent Data 

The ICA processes the received data from the CVs every control cycle to generate vehicle priorities and 

schedule their crossing time windows. The control cycle term refers to the iterative process of buffering 

approaching vehicle information, assigning priorities for each buffered vehicle and sending crossing 

time windows to those vehicles. From the ICA point of view, buffering more vehicles by extending the 

duration of the control cycle helps towards making more optimal decisions as solution space for giving 

priority to vehicles increases. However, the trade-off is that a less frequent crossing time window 

allocation may cause vehicles to reach at the intersection entry point and stop due to having no valid 

crossing time window yet. Therefore, in this research work, the control cycle duration is implemented 

as 5 seconds based on the experiments conducted in the simulation tool.  

 

The key data transmitted by the ICA to all vehicles is summarised in Table 2 and this includes the 

details of the addressed vehicle, the assigned vehicle priority relative to other vehicles in the local 

network, the allocated time window to cross the intersection and any deviations from the proposed 
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request to cross by the vehicle itself such as reduced crossing speed or exit lane etc. No vehicle is 

allowed to cross the intersection if no crossing time window slot is allocated by the time a vehicle 

reaches to the intersection entry point. This can happen due to multiple reasons including wireless 

communication issues, traffic jam in the exit link, traffic incident in the intersection CrA etc. Therefore, 

It can be considered as a safety feature to prevent crashes. 

 

ICA Data Description 

veh_id Unique vehicle identification number 

msg_id Message identification number 

msg_t_tx Transmit message timestamp 

ica_id ICA identification number 

veh_t_cross Crossing window start time 

veh_prio 
Allocated vehicle priority relative to other 
vehicles 

 

Table 2 – Intersection control dataset transmitted by the RSU for each CV within the Area of Interest when 
Unsignalised Traffic Control service is available. 

 

3.4. V2I Communication Protocol 

Unsignalised traffic control system can be considered as a point-to-multipoint communication system 

as specified in ETSI (2010) from the ICA point of view. The data between the ICA and CVs is 

exchanged from the originating source in a single hop to the receiving node located in the direct 

communication range by using the control channel G5-CCH of the C-ITS communication architecture. 

 

The ICA is responsible for sending two types of messages: CAM and DENM (ETSI, 2010b). A CAM 

message includes the presence of intersection control service, detailed topological and geometrical 

information about the intersection and information related to intersection crossing for each vehicle. 

DENM is an event-based message, and it is used to report any road hazards or abnormal traffic 

conditions in the local road network. The maximum communication latency for both cases must be 

100ms (ETSI, 2009). 
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3.4.1. Intersection Crossing Request 

CVs in the AoI subscribe to the unsignalised traffic control service by sending a “Request for Crossing” 

message. This message essentially registers the vehicle details in the ICA for spatio-temporal crossing 

window allocation by the ICA. After the request is sent, the vehicle receives an acknowledgement 

message back from the ICA as shown in the communication diagram in Figure 6.  

 

  

Figure 6 – Request for crossing communication diagram. 

 

A timestamp of the transmitted data is one of the most important parameters for the ICA to realize the 

unsignalised traffic control application as the age of highly dynamic data affects safety. The ICA might 

take incorrect actions if the transmitted data does not correspond to the latest state of the vehicle i.e. 

trajectory, speed etc (ETSI, 2013). For that reason, the safety and efficiency of the unsignalised traffic 

control service depends on the timely delivery of the transmitted data from the approaching vehicles. 
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When the “Request for Crossing” message is sent, the vehicle expects a crossing time window from the 

ICA which may start at the estimated arrival time of the vehicle to CrA entry point. This is the ideal 

condition in which the stop-and-go movement of the vehicle is prevented (Katwijk and Gabriel, 2015). 

However, when traffic is congested, the majority of the approaching vehicles will have to wait at the 

CrA entry point until their allocated crossing time window starts which is also the assumption that 

vehicles make until they receive a valid crossing time window on their approach to the CrA entry point. 

This assumption ensures safety as vehicles stop at the CrA entry. 

 

The ICA buffers the received vehicle data until the next control cycle, and it processes the vehicles in 

batches starting from the Vehicle Data Validation task as shown in Figure 7. In this stage, cybersecurity 

management is done according to the security layer processes in ETSI (2010). This ensures that vehicles 

that are participating in the unsignalised traffic control service are genuine and their data is validated. 

For the sake of simplicity and focusing on the communication between the ICA and the vehicles, Figure 

7 does not include any communication details between the ICA and the Remote TMC for the security 

certificate management and authentication of the vehicles. Following this stage, the ICA updates its 

perception of the local traffic state in terms of vehicles that: are in the AoI, require crossing time 

windows, exit the AoI and report anomaly. 
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Figure 7 – Transmit schedule data communication diagram. 

 

Vehicle priority assignment, sequencing and scheduling are the tasks which will be explained in detail 

in Chapter 4. In short, an unordered list of approaching vehicles is ordered and given priorities based 

on the intersection control objective and crossing time windows are allocated to these vehicles by 

applying conflict resolution techniques. The output of these stages is the crossing time window data to 

be transmitted back to the vehicles as a response to their “Request for Crossing” message. 
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3.4.2. Crossing Time Change Request 

When approaching vehicles transmit their unsignalised traffic control service subscription message and 

obtain a crossing time window from the ICA, their motion tracking algorithm on-board ensures that 

vehicles arrive no later than the allocated crossing start time. However, if an approaching vehicle is late 

for the start time due to any problem or change of vehicle trajectory such as selecting different entry or 

exit lane, they must request for an updated crossing time window as shown in Figure 8. 

 

The ICA processes the request for an updated crossing time window in the next control cycle. Firstly, 

the previously allocated time window is cancelled, and then, a new time slot is generated in the exact 

same way as before when “Request for Crossing” message was transmitted. It is important to note that 

the new crossing time window might affect other vehicles that already hold valid crossing time 

windows. A special procedure within the Conflict Resolution algorithm (See Section 4.4) is executed 

to identify the vehicles with conflicting trajectories. These vehicles are also allocated new crossing time 

windows which are no sooner than their initial crossing time windows and they are notified with a 

“Crossing Time Update Notification” message. 
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Figure 8 – Crossing time change request communication diagram. 

 

3.4.3. Intersection Exit Notification 

The final stage of the unsignalised traffic control service is the exit notification transmitted by the CVs 

when they are in the Exit Area of the AoI as shown in Figure 9. The ICA de-registers these vehicles 

from the traffic control service and no longer tracks their status. 

 

In the case of a vehicle malfunction or a traffic incident, a DENM message is transmitted according to 

ETSI (2014) so that any necessary safety actions can be taken including cancelling all allocated time 

windows and stopping traffic until the emergency situation is handled appropriately. This type of 

emergency handling methods is outside the scope of this research work. 
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Figure 9 – Inform intersection crossing complete in the Exit Area communication diagram. 
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3.5. Summary 

This chapter presents the unsignalised traffic control problem statement and the V2I wireless system 

details including the communication protocol and the data requirements. There are certain assumptions 

taken into account and listed in this chapter for the development of the communication strategy in order 

to focus on the main contributions of this research work. 

 

Unsignalised traffic control is one of the ITS applications that target at reducing congestion and the risk 

of collision. Therefore, the communication latency between the CVs and the ICA must not be greater 

than 100 ms as specified in SAE J2735 even though the performance may vary according to wireless 

network characteristics, load and radio obstacles. CAM and DENM transmission concepts are used for 

bi-directional data exchange between the users of the traffic control system based on ETSI 

communication architecture for V2X applications. 

 

The V2I communication architecture presented in this chapter is based on comprehensive research work 

and standardisation activities in Europe and the rest of the world. Therefore, the feasibility and 

compatibility of the proposed system with the existing ITS services and products are targeted. It is 

important to highlight that the unsignalised traffic control service and the algorithms that will be 

presented in the following chapters do not depend on a particular communication technology used such 

as Wi-Fi, cellular, ITS-G5 etc. and it is agnostic from the V2I communication layer. This is primarily 

to make sure the proposed traffic control system can be deployed at different locations (i.e. urban cities, 

small villages, near tall buildings etc.) where certain communication technology may perform better 

than others.  
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Chapter 4 

4. Algorithm Design: AI Traffic Control for 
Unsignalised Intersections 

 
4.1. Introduction 

RL mainly originates from the optimal control and dynamic programming research fields (Nian, Liu 

and Huang, 2020) in the early 1980s. RL is formulated as a sequential decision making algorithm for 

problem domains which require consideration for randomness within the system and are too complex 

to apply simple heuristics or rule-based solution like traffic control (Bakker et al., 2010). Even though 

the stochastic elements within an environment cannot be controlled, an agent can learn to optimise its 

actions in the presence of stochasticity. 

 

The RL paradigm in the context of traffic control is shown in Figure 10. There are two main 

components; the TCA and the traffic environment in which the TCA operates. The TCA receives 

observation and reward values from the environment, and it makes a decision on the next action based 

on its policy. 

 

 

Figure 10 – Environment and agent interactions in RL 
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In the rest of this chapter, the details of how the TCA probabilistically maps the observations to actions 

in order to maximise the rewards that it receives are explained. The neural network processes the traffic 

observations in order to establish the aforementioned mapping and to determine the priority of the 

approaching vehicles so that the intersection crossing sequence can be generated. 

 

The conflict resolution of the shared intersection space is the next stage in the traffic control cycle once 

a list of vehicles with priorities are generated. The methodology that ensures vehicles cross the 

intersection safely at their allocated crossing time windows will be explained. 

 

4.2. Assumptions 

The following set of assumptions have been made in order to focus on the proposed contributions and 

innovation in this section. Firstly, the traffic control system has sufficient computational resource and 

constant power source to process all required data and to execute algorithms detailed in this section. 

Secondly, the intersection crossing of all vehicles through the AoI is controlled by the proposed traffic 

control system that disseminates space-time crossing information. 

 

4.3. Neural Network Model 

4.3.1. State Representation 

A state in RL gives a complete description of an environment whereas an observation gives a partial or 

limited description of an environment. A chess game can be given as an example for an environment 

from which a state can be obtained with no missing or hidden information (Sutton and Barto, 2018). In 

real world applications, identifying a state is very challenging and generally not possible to obtain, and 

instead, observations are used. Traffic control is an environment which is too complex to obtain a state 

and the sheer scale of the control problem requires a carefully constructed observation vector among a 

plethora of available information. The “curse of dimensionality” is a term used in RL that refers to the 

exponential growth in computational resource requirements with the number of observation vector 

variables (Sutton and Barto, 2018). In this research work, an observation vector is constructed that 

captures the current traffic flow and vehicle states as comprehensive as possible for the TCA to make 

control decisions while keeping the number of variables in the vector to a minimum. 
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Figure 11 – The representation of the traffic flow and the vehicle states which is updated every control interval. 

 

Figure 11 demonstrates an example of a 4-way intersection with two lanes on each approaching link 

which are numbered sequentially clockwise direction starting from the west approaching link. The lead 

vehicle is defined as the vehicle with the shortest distance to CrA on a particular lane and these vehicles 

are highlighted with black frames in Figure 11. Given that, 𝑠𝑡 denotes the observation vector at time 

step t for the TCA and it is given as: 

𝑠𝑡 = { 𝑠1,  𝑠2,  … ,  𝑠𝑁} (5) 

 

Where N is the total number of approaching lanes for an intersection and 𝑠𝑡 is an aggregation of the 

observation vectors on each approaching lane. Following that, 𝑠𝑛 denotes the observation on a particular 

approaching lane of an intersection where 𝑛 ∈ ℕ and it represents the lane number. 𝑠𝑛 is defined as: 

 

 𝑠𝑛 = { 𝑎𝑙𝑣𝑒ℎ, 𝑑𝑖𝑛𝑡,  𝑡𝑎𝑟𝑟,  𝑙𝑎𝑟𝑟,  𝑙𝑒𝑥𝑖𝑡 ,  𝑣𝑙𝑎𝑛𝑒 ,  𝑡𝑑𝑒𝑙𝑎𝑦 ,  𝑟𝑑𝑒𝑙𝑎𝑦} (6) 
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where: 

• 𝑎𝑙𝑣𝑒ℎ: Autonomy level of the lead vehicle i.e. SAE Level 0, 5 etc. Each autonomy level is 

represented with a unique identification number.  

• 𝑑𝑖𝑛𝑡: Distance of the lead vehicle to CrA in meters on lane n. 

• 𝑡𝑎𝑟𝑟: Arrival time of the lead vehicle to CrA in seconds on lane n. 

• 𝑙𝑎𝑟𝑟: Arrival lane ID of the lead vehicle. 

• 𝑙𝑒𝑥𝑖𝑡: Exit lane ID of the lead vehicle. 

• 𝑣𝑙𝑎𝑛𝑒: Average vehicle speed in km/h on lane n. This is the weighted average of speed of all 

vehicles on lane n. The weight is the respective travel time of the vehicles. It means that vehicles 

that have just entered the network have less influence on the value of this calculation than 

vehicles that have been travelling on the approaching lane longer time. 

• 𝑡𝑑𝑒𝑙𝑎𝑦: Average vehicle delay in seconds on lane n. Average vehicle delay is calculated by 

dividing the total vehicle delay on lane n to the number of vehicles on lane n, and the total 

vehicle delay is the aggregation of the delay values per vehicle which is obtained by dividing 

the actual distance travelled in the current timestep to the difference of desired vehicle speed 

and actual vehicle speed.    

• 𝑟𝑑𝑒𝑙𝑎𝑦: Ratio of the average vehicle delay on lane n to the total vehicle delay on all approaching 

lanes. 

 

The observation vector variables are normalized with respect to a pre-determined maximum value such 

that all values are in the range of [0, 1]. For example, if the average vehicle speed is 15 km/h and the 

speed limit is 30 km/h on that lane, then  𝑣𝑙𝑎𝑛𝑒 will have the value of 0.5. The scale and distribution of 

the observation vector values differ from each other, and larger weight values are required in the neural 

network as the spread of a vector value gets larger (i.e. thousands of units as opposed to tens of units). 

Therefore, it is common in deep learning applications to apply linear transformations to an input vector 

before it is fed to a neural network (Bishop, 1995) in order to prevent unstable behaviour, poor 

performance during model training and high generalisation error during model evaluation. 

 

The state representation that is introduced above essentially consists of the lead vehicle (𝑎𝑙𝑣𝑒ℎ, 𝑑𝑖𝑛𝑡, 

 𝑡𝑎𝑟𝑟,  𝑙𝑎𝑟𝑟,  𝑙𝑒𝑥𝑖𝑡) and the average traffic flow parameters (𝑣𝑙𝑎𝑛𝑒 ,  𝑡𝑑𝑒𝑙𝑎𝑦 ,  𝑟𝑑𝑒𝑙𝑎𝑦) for each lane on the 

approaching links. This kind of representation reduces the observation vector size significantly as 

opposed to representing the parameters of all vehicles in the observation vector.  
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4.3.2. Action Space 

The set of actions in an environment that an agent can take to reach its goal is called the action space in 

an RL framework. There are two types of actions, discrete and continuous. A chess game is an example 

environment with a discrete action space as there are a finite set of available moves for an agent to take 

whereas a throttle and steering control environment for a CAV has continuous action space where the 

actions are real number within certain limits. The action space A for the TCA is continuous, and it 

contains the vehicle priorities for all approaching lanes as shown below: 

𝐴𝑡 = { 𝑝1,  𝑝2,  … ,  𝑝𝑁} (7) 

 

where 𝐴𝑡 denotes the action space at time step t and 𝑝𝑛 identifies the lead vehicle priority on 𝑙𝑛 (lane 

n) for N total number of approaching lanes which is a fixed-value for a given intersection i.e. N equals 

8 for the intersection in Figure 12. The action 𝑎𝑡 = max (𝐴𝑡) is the selected action at timestep t which 

is essentially the vehicle with the highest 𝑝𝑛 in 𝐴𝑡. The selected vehicle is then put into the priority 

assignment list for intersection crossing. There are two cases where certain actions can be masked out 

for selection; a) when there is no vehicle approaching the intersection on a particular lane, b) when there 

is no vehicle left to process on a particular lane for priority assignment. 𝐴(𝑠) ⊆ 𝐴 denotes the set of 

masked actions in state s that are available for selection by the TCA. 

 

 

Figure 12 – Action selection is demonstrated through an example traffic flow at a 4-way junction. The vehicles 
with black frame are considered by the TCA for sequencing at that particular timestep, and the vehicles with red 
frame are the selected vehicles that have the next highest priority to cross the intersection after the TCA 
consideration. 
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The vehicle priority assignment via action selection is demonstrated with an example traffic flow at an 

intersection in Figure 12. The intersection has 8 approaching lanes, and in this case,  A = { 𝑝i}𝑖=1
𝑁 . Let’s 

assume that the vehicle priority list is empty at 𝑡0 and all lanes apart from 𝑙1 have approaching vehicles 

for intersection crossing where A(s) = { 𝑝i}𝑖=2
𝑁 . Therefore, the TCA will be restricted to select 𝑙1. The 

vehicles highlighted with black frames in Figure 12.a are the vehicles to be considered next for the 

priority assignment and the TCA selection is 𝑙6 which is highlighted with a red frame. The selected 

vehicle is put into the priority list accordingly. Bear in mind that one vehicle is selected at a time from 

all available lanes which is why all vehicles highlighted with black frames Figure 12.a are the same in 

Figure 12.b apart from 𝑙6. The next vehicle in the queue on 𝑙6 is now highlighted as the next vehicle in 

the queue. The priority assignment process is repeated until all vehicles are sequenced for intersection 

crossing.  Figure 12.c shows the very last vehicle selected with TCA having A(s) = { 𝑝4}. In other 

words, all actions apart from 𝑙4 are masked in the last step. 

 

The vehicle priority assignment process is executed every T_CONTROL control interval (See Section 

3.3.3) and the approaching vehicles with no priority yet are all buffered. It is important to note that the 

generated priority list of vehicles do not have any crossing time windows allocated yet. This will be 

done as part of conflict resolution stage that will be explained in Section 4.4. The role of AI in the 

unsignalised traffic control system is essentially to determine the priority of the vehicles for intersection 

crossing.  

 

4.3.3. Reward Mechanism 

Determining a reward mechanism is another challenge in the RL framework which has great impact on 

what an agent learns. Reward mechanisms should be structured in a way to encourage or discourage an 

agent on a selected action based on the objective of that agent. In other words, an objective function is 

encoded in the form of a reward function in the RL setting. A reward is a scalar value that represents 

how good or bad an action taken by an agent on a particular environment state and it depends on the 

selected action, current and next states of the environment in which an agent operates. This dependency 

can be shown as: 

𝑟𝑡 = R(𝑠𝑡 ,  𝑎𝑡 ,  𝑠𝑡+1) (8) 

 

where, at timestep t, 𝑟𝑡 is the reward, 𝑎𝑡 is the action taken, 𝑠𝑡 is the current state and  𝑠𝑡+1 is the next 

state. The goal of an agent is to get as high a cumulative reward as possible over a horizon as it correlates 

to going in the right direction of achieving the objective of that agent. The aforementioned horizon can 

be finite (i.e. computer or board games etc.) or infinite as in this research work in which the traffic 
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control system is in operation continuously. Cumulative reward over an infinite horizon is intractable. 

Hence, a discount factor is applied to the cumulative reward to make it mathematically convenient and 

it refers to how significant the future rewards are with respect to the current state. The discounted 

cumulative reward which is also called discounted return over an infinite horizon is: 

R(τ) = ∑ 𝛾𝑡𝑟𝑡

∞

𝑡 = 0

 (9) 

 

where 𝛾 ∈ (0,1) is the discount factor and τ is a sequence of states and actions. Many different 

objectives can be considered when defining the reward for a traffic control application, and these 

objectives can include journey time, junction queue waiting time, junction throughput, preventing stop-

and-go movements, accident avoidance and fuel consumption. In this research work, the objective is to 

reduce traffic congestion and it is related to reducing the vehicle delay times during intersection 

approach and crossing. The reward for the TCA at timestep t is a weighted sum of three factors. These 

reward terms are decided based on the initial experiments in the simulation tool with various different 

weight factors and reward terms. 

  

𝑟1 =

𝑇𝑚𝑎𝑥
2 −  𝑡𝑛_𝑑𝑒𝑙𝑎𝑦_𝑚𝑎𝑥  

𝑇𝑚𝑎𝑥
 (10) 

𝑟2 =

𝑇𝑚𝑎𝑥
2 − 𝑡𝑛_𝑚𝑎𝑠𝑘𝑒𝑑_𝑑𝑒𝑙𝑎𝑦_𝑚𝑎𝑥  

𝑇𝑚𝑎𝑥
 (11) 

𝑟3 = {

0, 𝑖𝑓 𝑡𝑟𝑎𝑗𝑎𝑡−1  ∩ 𝑡𝑟𝑎𝑗𝑎𝑡
=  ∅

−
1  

𝑘𝑛
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (12) 

 

from which, the final reward value is obtained as a weighted sum of the reward terms in Eq. 10-12.  

𝑟𝑡 = 𝑤1 ∗ 𝑟1 + 𝑤2 ∗ 𝑟2 + 𝑤3 ∗ 𝑟3 (13) 

 

where 𝑟𝑡 is clipped within [-1, 1] range. In Eq. 10, 𝑟1 term gives more reward as the average vehicle 

delay times get smaller on all lanes where 𝑡𝑛_𝑑𝑒𝑙𝑎𝑦_𝑚𝑎𝑥 represents the maximum of average vehicle 

delays on all lanes (same as 𝑡𝑑𝑒𝑙𝑎𝑦 in Section 4.3.1 in state representation) and 𝑇𝑚𝑎𝑥 is a fixed 

configuration value to normalise the reward term. 𝑟1 essentially ensures that all lanes have equal 

importance in reducing overall congestion at the intersection. In Eq. 11, 𝑟2 term gives more reward 
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when the most congested lane is prioritised for vehicle sequencing. 𝑡𝑛_𝑚𝑎𝑠𝑘𝑒𝑑_𝑑𝑒𝑙𝑎𝑦_𝑚𝑎𝑥 denotes the 

maximum of the average vehicle delays excluding the masked lanes. In other words, if TCA assigns 

vehicle priorities starting from the most congested lane to the least, 𝑟2 term will increase. 𝑟3 in Eq. 12 

is actually a negative reward (also known as a punishment term) to discourage frequent lane switch in 

the priority assignment. 𝑟3 will decay exponentially when more vehicles are selected in a row from the 

same approaching lane, meaning less punishment for TCA. For 𝑟3, an exponential decay term is used 

instead of a linear decay as it resulted in less congestion and vehicle delays during the initial experiments 

in the simulation tool. 

 

Traffic control decisions can cause deviation from equilibrium in traffic flow (for instance, stopping the 

lead vehicle of a platoon at CrA entry point), and this perturbation propagates along the stretch of an 

approaching lane gradually. This phenomenon is called shockwave formation (FHWA, 2001). With this 

in mind, it becomes more important for the reward mechanism to capture the average traffic flow 

behaviour and change in time as a direct mid- to long-term consequence of the action selections made 

by the TCA. 

 

4.3.4. Neural Network 

The neural network for the proposed traffic control application consists of multiple layers. The input 

layer is the first layer which receives the observation vector, and the data is passed forward to the hidden 

layers where feature extraction happens. The hidden layers are a mixture of Fully Connected (FC) and 

Long Short Term Memory (LSTM) layers that extract some spatio-temporal features about the traffic 

environment. The final layer is the output layer that produces the vehicle priorities for each approaching 

lane.  
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Figure 13 – Neural network setup with LSTM layers 

 

Figure 13 shows the details of the neural network in which 𝑥𝑡 is the observation vector at timestep t. 

The objective of FC layers in the network is to extract spatial features i.e. the hidden relationship 

between vehicle positions, speeds, distances etc. On the other hand, LSTM layers extract the temporal 

features i.e. the effect of previous outputs on the current state. Hence, there exists the LSTM connection 

with dashed lines in Figure 13 between timesteps.  

 

A closer look at the structure of the LSTM cells for each time step is shown in red boxes in Figure 13. 

At timestep t, the LSTM unit gets the previous cell state vector 𝑐𝑡−1 and hidden state vector ℎ𝑡−1 as an 

input together with the observation vector 𝑥𝑡. The information flow inside the LSTM cell is regulated 

via three gates, namely input, output and forget gates. These gates are composed of sigmoid functions 

and pointwise product blocks in order to control to which extent the current input data should be 

remembered or forgotten in the next timestep. 

 

4.3.5. Policy 

In RL, the policy can be defined as the strategy that an agent adopts in order to achieve its goals. With 

this in mind, the policy brings together the state representation, action space, reward mechanism and 

the neural network under Markov Decision Process (MDP) framework (Sutton and Barto, 2018). The 
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policy determines the way an agent behaves at a given time in the environment by having a probability 

distribution over the action space for the environment states. 

 

A policy 𝜋 can formally be structured as a tuple of the form (S, A, P, R) where S is the state 

representation, A is the action space, P is the probability matrix of transition from one state to another, 

and finally, R is the reward mechanism. A policy in RL is parameterized via the neuron weights and 

biases of the neural network, and this is done via an optimisation process during the training session 

which will be explained in detail in Chapter 5. 

 

In this research work, the policy is used in the context of the actor-critic architecture (Sutton and Barto, 

2018) in which the actor essentially updates the policy parameter set, 𝜃, for 𝜋𝜃(𝑎|𝑠) as guided by the 

critic. The value of an action-state pair, 𝑄𝜋(𝑠, 𝑎), when started with a random action in state s and acted 

according to policy 𝜋 afterwards is defined as below and it is also called as the expected return: 

 

𝑄𝜋(𝑠, 𝑎) = E [R(τ)|𝑠0 = s,  𝑎0 = a] (14) 

 

where R(τ) is the sum of discounted rewards from Eq. 9. 𝑄𝜋(𝑠, 𝑎) can also be interpreted as the 

expected cumulative future reward. When the optimal policy (the best strategy that leads the agent to 

achieve its goals) is used by an agent, the expected return 𝑄𝜋(𝑠, 𝑎) is maximised as optimal action 

decisions are taken every timestep. The optimal action-state pair value is given by: 

 

𝑄∗(𝑠, 𝑎) = max
𝜋

 𝑄𝜋(𝑠, 𝑎) (15) 

 

It is also important to note that there might be multiple action sequences that lead to optimal value 

𝑄∗(𝑠, 𝑎). In that case, all of those action decision sequences are considered optimal. If 𝑄∗(𝑠, 𝑎) is 

obtained, then in a given state, the optimal action to take is also found by solving the equation (Watkins, 

1989) below: 

𝑎∗(𝑠) = 𝑎𝑟𝑔 max
𝑎

 𝑄∗(𝑠, 𝑎) (16) 

 

In Section 4.3.2, it is explained that the proposed traffic control action space is continuous. With this in 

mind, finding 𝑎∗(𝑠, 𝑎) among infinite action choices is not trivial and intractable as it requires 
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computing the Q-values for each possible action every timestep to determine which one is the optimal 

action. Therefore, in this research work, TD3 (Fujimoto, van Hoof and Meger, 2018) algorithm is 

utilised which is a modified version of DDPG (Lillicrap et al., 2015) algorithm. TD3 overcomes the 

aforementioned challenge with continuous action spaces by using a gradient-based learning rule for a 

policy 𝜋(𝑠) that presumes 𝑄∗(𝑠, 𝑎) is differentiable with respect to the action and the following 

approximation can be made (Sutton and Barto, 2018): 

 

max
𝑎

 𝑄∗(𝑠, 𝑎) ≈ 𝑄∗(𝑠, 𝜋(𝑠))  (17) 

 

TD3 algorithm is specifically developed for continuous action spaces as in this project and it is an off-

policy algorithm, meaning the TCA have the ability to learn from historical data obtained from the 

traffic environment. Chapter 5 will give more details on how this algorithm is used to train an agent for 

the unsignalised traffic control application.  

 

4.4. Conflict Resolution of the Shared Intersection Space and Time for Vehicle Crossing 

The problem statement given in Chapter 2 considers a scenario where multiple vehicles approach a 

traffic intersection from multiple lanes. Safe intersection crossing in the absence of a traffic light 

requires a vehicle trajectory conflict management method to avoid collisions. This section will give 

details on the developed conflict management method which takes the vehicle priority list generated by 

the AI agent as an input and produces crossing time windows for all vehicles in the queue as an output. 

The proposed vehicle trajectory conflict management method is derived from a study by Levin and Rey 

(2017) in terms of the conflict point modelling and travel time estimations of vehicles through those 

CPs.  

 

4.4.1. Vehicle Trajectory Conflicts 

In the trajectory conflict stage, the primary focus is the prevention of the side collisions at CPs. 

Transportation institutions worldwide release guidelines and manuals on various aspects of road 

networks in order or standardise and synchronise activities across the country. With this in mind, CPs 

are also determined by these institutions for different intersection geometries, and FHWA (2004) is an 

example guidelines document by Federal Highway Administration in the USA that describes the CPs 

for a given intersection. 
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An example 4-way intersection (left-hand side drive) is shown in Figure 14 where there are three types 

of CPs, crossing, merge and diverge as shown with different colours inside the CrA. There are 32 CPs 

in total where there is a risk of lateral vehicle collision. The objective of the conflict management 

method is to schedule vehicles crossing with time windows so that only one vehicle occupies each CP 

at any given time. 

 

 

Figure 14 – Vehicle trajectory CPs inside the CrA 

 

Each approaching vehicle i has a pre-determined trajectory 𝑡𝑟𝑎𝑗𝑖 through the intersection which is 

represented as an ordered list of CPs. For each crossing vehicle i, 𝑡𝑖(𝑝) must be determined which is 

the time that vehicle i occupies CP p where 𝑝 ∈ 𝑡𝑟𝑎𝑗𝑖. For the sake of simplicity, the vehicle type (i.e. 

van, truck etc.) is assumed to be a passenger car and the vehicle speed during intersection crossing, 

𝑣𝑐𝑟𝑜𝑠𝑠, is assumed to be uniform which is decided by the vehicle and communicated to TCA via V2I 

communication as explained in Chapter 2. If a vehicle is entering the CrA from an initially stopped 

condition at the entry point of the intersection, then the vehicle acceleration, 𝑎𝑐𝑟𝑜𝑠𝑠, is assumed to be 

uniform until 𝑣𝑐𝑟𝑜𝑠𝑠 is reached. Even though 𝑎𝑐𝑟𝑜𝑠𝑠 and 𝑣𝑐𝑟𝑜𝑠𝑠 are assumed to be uniform, a safety 

buffer of ±∆𝑣𝑐𝑟𝑜𝑠𝑠 and ±∆𝑎𝑐𝑟𝑜𝑠𝑠 is added to the calculations which essentially ensures that there is 

room for error as vehicles cross the intersection and there is sufficient safe spatio-temporal space 

between vehicles with conflicting trajectories. 
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4.4.2. Trajectory Conflict Table 

There is a fixed number of CPs for a given intersection geometry. With this in mind, this research work 

uses a Trajectory Conflict Table (TCT) to track the CP occupation for each crossing vehicle per 

timestep. Let us imagine a scenario where there is only one vehicle requesting to cross an intersection 

similar to Figure 15. In this case, the vehicle 𝑡𝑟𝑎𝑗𝑖 is composed of 6 CPs. Figure 15.a shows the vehicle 

crossing on the road whilst Figure 15.b highlighting with red dots the conflict table state as the vehicle 

moves from one CP to another. 

 

Figure 15 – a) Vehicle trajectory through the intersection is shown with a set of conflict points that must be 
occupied by a single vehicle at any moment in time, b) Conflict points occupation by the crossing vehicle is 

shown over time. 

 

The TCT approach for collision avoidance and vehicle conflict resolution brings some advantages. 1) 

The approaching vehicles may change their trajectory decisions after securing a crossing time window 

(i.e. lane change, exit lane change, crossing speed update etc.). When that happens, TCT can facilitate 

allocation of an alternative crossing time window and updating the CP occupation times. 2) The fact 

that the TCT has a fixed number of CPs offers a deterministic processing time when deployed in the 

field.  

  

a) 

b) 
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4.4.3. Vehicle Crossing Time Allocation 

Vehicle crossing time start and duration times are calculated based on the vehicle trajectory 𝑡𝑟𝑎𝑗𝑖 

through the intersection. Firstly, the travel time between CPs for a given vehicle is calculated. For 

vehicle i, the travel time  𝑡𝑡𝑟𝑎𝑣𝑖
 constraints between two consecutive CPs  𝑝1, 𝑝2 ∈ 𝑡𝑟𝑎𝑗𝑖 with a distance 

of  𝑑𝑐𝑝𝑖
(𝑝1, 𝑝2) considering ±∆𝑣𝑐𝑟𝑜𝑠𝑠 safety buffer is given by: 

 𝑑𝑐𝑝𝑖
(𝑝1, 𝑝2)

𝑣𝑐𝑟𝑜𝑠𝑠 − ∆𝑣𝑐𝑟𝑜𝑠𝑠
≤  𝑡𝑡𝑟𝑎𝑣𝑖

≤
 𝑑𝑐𝑝𝑖

(𝑝1, 𝑝2)

𝑣𝑐𝑟𝑜𝑠𝑠 + ∆𝑣𝑐𝑟𝑜𝑠𝑠
 (18) 

 

Once  𝑡𝑡𝑟𝑎𝑣𝑖
 is calculated between all 𝑡𝑟𝑎𝑗𝑖 = {𝑝}𝑗=0

𝐾  where K is the total number of CPs along the 

trajectory of vehicle i, a suitable crossing time window search can be done in the TCT.  

 

 

Figure 16 – Vehicle trajectory conflict resolution table for crossing time allocation. 

 

The crossing time window allocation will be shown with an example intersection crossing scenario as 

in Figure 16. Let us assume that Vehicle 1, 2 and 3 have already been allocated crossing time windows 

and Vehicle 4 is the next vehicle to consider. Vehicle 4 has 𝑡𝑟𝑎𝑗𝑖 = {𝑝}𝑗=0
𝐾=5 and CPs are shown with 

red dots starting from CP0 to CP4 on its trajectory through the intersection. Even though, Vehicle 4 is 

ready to cross at 𝑡0, it is not allowed to cross as there are trajectory conflicts with Vehicle 1 on CP3-4, 
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with Vehicle 2 on CP3 and with Vehicle 3 on CP2. Therefore, the first suitable crossing window for 

Vehicle 4 starts from 𝑡6 which is the crossing start time that the vehicle is allowed to enter the CrA for 

crossing. 

 

4.5. Summary 

In this chapter, the details of the AI algorithm and methods are presented in the context of an 

unsignalised traffic control. Traffic is stochastic in nature, meaning the reaction of the environment 

might not be predicted precisely. In addition, traffic environment is one of the prime examples where 

the traffic control actions affect the flow of vehicles gradually in time rather than immediately after 

taking a particular action. This led this research work to explore and implement methods that can handle 

stochasticity and delayed outcome. 

 

The state representation, the action space and the reward mechanism are explained, all of which will be 

combined together under TD3 algorithm in the next chapter. This algorithm is off-policy and has the 

ability to handle continuous action spaces. The parameterisation of the AI model will be done in the 

next chapter during what is called a training session. The main task of the AI algorithm is to determine 

the vehicle priorities every control cycle.  

 

The vehicle trajectory conflict management and the crossing time window generation processes are 

separated from the AI algorithm. The rationale is to differentiate achieving the objectives of traffic 

congestion reduction and ensuring safety via two independent processes. 
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Chapter 5 

5. Algorithm Training: AI Traffic Control in 
Computer Simulations 

 
5.1. Introduction 

The term training, in the context of AI, is used to define the learning procedure by using an optimisation 

algorithm. There are many different optimization algorithms, among which the most popular ones are 

gradient descent (Curry, 1944), conjugate gradient (Hestenes and Stiefel, 1952), quasi-newton method 

(Wright and Nocedal, 1999), levenberg-marquardt (Levenberg, 1944), stochastic gradient descent 

(Robbins and Monro, 1951) and adaptive linear momentum (Kingma and Ba, 2014). The objective of 

the training is to achieve the minimum loss possible which can be translated into obtaining the 

maximum possible cumulative reward for the RL algorithm. This is essentially done in an iterative way 

during training by searching for an optimum parameter set that fits the neural network to the input data 

from the environment. 

 

Training an agent to achieve the objective of controlling traffic at intersections with minimum vehicle 

delays requires a simulation environment so that the agent can learn by trial-and-error as it interacts 

with the environment. In this research work, Vissim simulation tool from PTV Group (PTV – Planung 

Transport Verkehr AG, 2019) was used. The rest of this chapter explains the details of the training 

process and how the Vissim traffic model was setup as the control environment. 

 

5.2. Training Methodology 

The learning problem for the traffic control task is formulated in terms of a loss factor minimisation by 

using the adaptive linear momentum (Kingma and Ba, 2014) optimisation algorithm, hereafter referred 

to as the Adam optimizer. The Adam optimizer is widely used in machine learning applications and it 

has been chosen mainly due to its computational efficiency, suitability for problems with noisy and 

sparse gradients and small memory space requirements when coded in software. 
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The Adam optimizer executes a search through the neural network parameter space in order to decrease 

the loss at every epoch, which refers to one full cycle through the training data, and it is done by 

adjusting the neural network parameters. In particular, Adam optimizer calculates the exponential 

moving average of the gradient and the squared gradient when determining the parameter adjustment 

rate and direction. At first, a neural network is initialised with a random parameter set and it is updated 

every epoch in the direction that minimizes the loss value until a training stop criterion is reached i.e. 

the loss decrement in one epoch reaches a plateau.  

 

5.2.1. Training Steps 

In this section, the training procedure is explained step-by-step and the TD3 algorithm breakdown is 

presented. Figure 17 shows an overview of the forward pass and back propagation stages. Forward pass 

refers to the process of obtaining the output layer data after the traffic observation vector is given as an 

input to the neural network during which the data cascades through the network layers. Back 

propagation, on the other hand, refers to the process of neural network parameter update via the Adam 

optimizer. 

 

 

Figure 17 – TD3 algorithm overview during forward pass and back propagation  
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The training steps can be given as below: 

 

Step 1:   

The replay buffer is initialised as the first step. As mentioned in Chapter 4, the TD3 algorithm is off-

policy, and it uses a replay buffer to store past transitions when executing the policy in Vissim traffic 

environment. Each transition can be represented as a tuple in the form of (𝑠, 𝑠′, 𝑎, 𝑟) where, 𝑠 and 𝑠′ 

are the current and next observations, 𝑎 is the selected action and 𝑟 is the reward value. During training, 

the transition tuples in the replay buffer are queried to essentially replay the agent's experience either 

in a shuffled way or in the original order they are stored. 

 

Step 2: 

The neural networks (See Section 4.3.4) are built as a next step by using TensorFlow (Abadi et al., 

2016) open source machine learning libraries. There are 6 neural networks in total each with exactly 

the same number of layers and neurons, one each for the Actor and Actor Target models and two each 

for the Critic and Critic Target models as shown in Figure 17. The actor networks learn the policy 

𝜋(𝑠|𝑎) while the critics learn 𝑄𝜋(𝑠, 𝑎). 

 

The rationale behind having target networks for both actor and critic is to be more conservative when 

updating the neural network parameters. In other words, the target network parameters are constrained 

to change at a slower rate which is determined by polyak averaging (Fujimoto, van Hoof and Meger, 

2018): 

∅𝑡𝑎𝑟𝑔𝑒𝑡 = ρ∅𝑡𝑎𝑟𝑔𝑒𝑡 + (1 − ρ)∅ (19) 

 

Where ρ is in the range [0,1] and determines the rate of change in the target network parameter set.  

 

Step 3:  

The agent starts taking actions according to the initial policy in the Vissim traffic environment. Forward 

pass is repeated until the replay buffer is full after which batch_size number of transitions are sampled 

from the buffer. For each transition in the sampled batch, the Actor target produces the next action 𝑎′ 

as shown in Figure 17, and (𝑠′, 𝑎′) pair is given as an input to two Critic targets. The Critic targets 

return the values of the state-action pair, 𝑄𝑡𝑎𝑟1(𝑠′, 𝑎′) and 𝑄𝑡𝑎𝑟2(𝑠′, 𝑎′), independent from each other. 

The final Critic target Q-value is obtained by: 
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𝑄𝑡𝑎𝑟 = r +  γ(min(𝑄𝑡𝑎𝑟1, 𝑄𝑡𝑎𝑟2)) (20) 

 

where γ is the discount factor in the range [0, 1]. Taking the minimum of two Q-values has been found 

to stabilize the optimisation process (Fujimoto, van Hoof and Meger, 2018) as optimistic Q-value 

estimates are avoided by ignoring the higher 𝑄𝑡𝑎𝑟 value. Following this, the two Critic networks take 

(𝑠, 𝑎) pair as an input and produces 𝑄1(𝑠, 𝑎) and 𝑄2(𝑠, 𝑎) in order to compute the final Critic loss: 

 

𝐿𝑜𝑠𝑠𝑐𝑟𝑖𝑡𝑖𝑐 = MSE(𝑄1(𝑠, 𝑎), 𝑄𝑡𝑎𝑟) + MSE(𝑄2(𝑠, 𝑎), 𝑄𝑡𝑎𝑟) (21) 

 

where MSE refers to mean-squared error loss. This loss value is used during backpropagation to update 

the Critic network parameters. This training step where the agent tries to reduce the Critic loss is called 

the Q-learning. Q-learning step aims to find the optimal parameter set for the Critic networks. The next 

step moves on to policy learning step. 

 

Step 4:  

Policy learning aims to find the optimal parameter set for the Actor network in order to maximise the 

expected return (See Eq. 14). Based on the approximation made in Eq. 17, the Q-value from the Critics 

is correlated with the expected return, meaning as the Q-value is increased, the expected return goes 

towards being optimal. In this case, the loss for the policy learning is the mean value of the Q-values 

from the Critics: 

𝐿𝑜𝑠𝑠𝑎𝑐𝑡𝑜𝑟 = −
𝑄1(𝑠, 𝑎) + 𝑄2(𝑠, 𝑎)

2
 (22) 

 

During backpropagation, gradient ascent is used, hence the negative sign in Eq. 22, by differentiating 

the actor loss with respect to the Actor network parameters in the direction that maximises the expected 

return.  

 

The important point to note here is that policy learning is done every other step whereas Q-learning in 

Step 3 is done every step. If the Q-learning is poor, the policy becomes poor as well, and it can cause 

divergence of the loss moving towards minima. It is why Q-learning is done at double the rate of policy 

learning to increase the performance of convergence to the optimal parameter set. 
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Step 5:  

The final step in the training cycle is to do an update on the target network parameters of the Actor and 

the Critic which has not been done up until this point. The target network parameters are updated based 

on Eq. 19 which is also called a soft update, and it essentially copies the weights of the Actor and Critic 

networks with polyak averaging into the target networks. Similar to the policy learning, the target 

network updates are done every other step to improve training performance stability. 

 

Steps 2-5 are repeated until any of the training stop conditions are met as previously explained. The 

replay buffer is overwritten with the new transitions starting from the oldest entry as the agent continues 

to operate in the Vissim environment. 

 

5.2.2. Exploration-Exploitation 

The exploration-exploitation dilemma in RL refers to the trade-off that an agent makes when taking 

actions in the environment in terms of exploring the new actions in the action space versus exploiting 

the previously gained knowledge about certain actions. Therefore, it is crucial in RL problems to set 

the ratio of exploration to exploitation appropriately. 

 

There were three techniques applied in this research work to increase exploration whilst ensuring that 

the agent also exploited the good actions when required: 

 

• The authors of the TD3 algorithm (Fujimoto, Van Hoof and Meger, 2018) adds a mean-zero 

Gaussian noise to the target actions 𝑎′ as in training step 3 in the previous section prior to 

provide the tuple of (𝑠′, 𝑎′) to Critic target networks. This noise is found to be useful in 

exploring new actions. In this research work, the scale of noise over the course of training was 

reduced linearly rather than keeping it fixed as in the original paper. This meant that the agent 

explored the new actions less as training progressed. 

 

• A mean-zero Gaussian noise, exploration noise, was also added to the actions during forward 

pass and the scale of the noise was reduced linearly over the course of training.  

 
• At the beginning of the training, the replay buffer was originally filled with data by the agent 

taking actions according to the initial policy. This was essentially equivalent to taking random 

actions from which most of the action sequences did not yield high rewards. Therefore, in this 
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work, the fixed-time traffic light policy was utilised when taking actions until the replay buffer 

was full after which the agent followed its own policy. This was found to be useful in terms of 

reducing the training time. 

 

5.2.3. Training Parameters 

The training procedure was executed with 4 environments that were independent from each other as 

shown in Figure 17. The reason for using 4 environments was due to the Vissim licence restrictions 

where more than 4 instances of the software tool were not possible to run in parallel. It meant that the 

replay buffer contained experiences of multiple agents. This is a common technique in RL training to 

speed up the learning process and to reduce correlation between transitions. During backpropagation, 

the global gradient was calculated by averaging all local gradients of individual agents. 

 

The hyperparameters for the agent and the training procedure are given in Table 3. These 

hyperparameter values was decided after executing a manual tuning process in which each 

hyperparameter was changed one at a time to observe their effect on the training process. 

 

Hyperparameter Value 
FC layer 1 size 128 
FC layer 2 size 128 
LSTM layer size 64 
FC layer 3 size 64 
FC layer 4 size 32 
FC layers activation ReLu 
LSTM layer activation Tanh 
Discount factor 𝛾 0.998 

 

 

Polyak averaging ρ 0.05 
Learning rate actor 1𝑒−4 
Learning rate critic 1𝑒−3 
Target action 𝑎′ noise initial scale 0.15 
Target action 𝑎′ noise decay steps 15 ∗ 103 
Exploration noise initial scale 0.2 
Exploration noise decay steps 15 ∗ 103 
Batch size 256 

 
Replay buffer size 50 ∗ 103 
Adam optimizer 𝜖 = 10−8, 𝛽1

= 0.9, 𝛽2

= 0.99  

Table 3 – The hyperparameter list 
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Reward mechanism parameter 𝑇𝑚𝑎𝑥 was set to 60 seconds and the weights for the reward terms (See 

Eq. 13) were 𝑤1 = 1.0, 𝑤2 = 1.0 and 𝑤3 = 0.5. 

 

5.3. Traffic Environment in Simulation 

Many RL applications, that are deployed in the field, require a simulation platform for the training 

procedure as it is not safe for an agent to learn by trial-and-error in a real-world setting. The Vissim 

traffic simulation tool was adopted in this research work to proxy the effects of unsignalised traffic 

control on traffic flow and congestion under mixed-driving conditions where CHVs and CAVs at SAE 

Level 5 co-existed in traffic.  

 

The core principles of how CAVs may impact traffic flow at intersection crossings are related to the 

configuration of these vehicles including but not limited to wireless connectivity, longitudinal and 

lateral motion control behaviour and gap acceptance times. Therefore, it is essential to let the agent 

operate under as many different traffic conditions and driving behaviours as possible during the training 

procedure so that the trained agent parameters can be scaled and deployed in a real-world setting. 

 

5.3.1. Introduction to Vissim 

Vissim simulation tool is a microscopic, time-step oriented, and behaviour based simulation tool for 

modelling traffic in urban and rural settings, pedestrians, public transportation as well as rail 

transportation. The interaction between each element can be modelled and simulated. The simulation 

resolution is configurable in Vissim which determines how many times, in a simulation second, data 

can be exchanged between the vehicles and the traffic control algorithm. In this research work, the tool 

was run at 10 Hz speed throughout all experiments which corresponds to 10 data exchange in a 

simulation second. 

 

In Vissim, lateral and/or longitudinal control of multiple vehicles is possible. Parameter sets can be 

identified that allow for the representation of different driving behaviours in the traffic flow. With 

regards to the wireless communication, there is no built-in model in Vissim for V2X communications. 

However, it is possible to integrate external tools via Component Object Model (COM) interface for 

additional functionality such as V2X communications.  
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The aforementioned COM interface also allows write or read access to all simulation data and 

parameters from the external software while simulation is running. The data available from this interface 

includes but not limited to the road network parameters, location and speed of all vehicles. This ability 

of Vissim is a particular interest in this research work in order to control the behaviour of the vehicles 

dynamically at every control cycle dependent on the unsignalised traffic control strategy. For example, 

a vehicle approaching an intersection for crossing may be requested to wait or slow down if the TCA 

gives priority to the vehicles on other approaching lanes. Further details on the implementation of the 

AI traffic control algorithm and its integration with the Vissim tool will be given in Section 5.3.5. 

 

5.3.2. Road Network Setup 

Road networks in the real-world contain several stochastic elements, and in many cases, there are 

multiple traffic control systems on the stretch of a link where roads with different capacities intersect 

and have an impact on each other. In this work, a 4-way intersection with two lanes on each approach 

and exit link was modelled as shown in Figure 18 in order to focus on the impacts of the proposed 

control method on traffic flow in an isolated way from other factors.  

 

 

Figure 18 – The road network setup in Vissim traffic simulation for the training procedure 

 

The modelled approach and exit links had a length of 600m and a speed limit of 50 km/h. The RSU 

with V2I capabilities was located near the shared space of the intersection area and it had a 

communication radius of 150m. The vehicles did not interact with any other infrastructure other than 

the TCA which operated inside the RSU.  
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The simulated road network was constructed as per the UK traffic rules and standards i.e. left-hand 

drive etc. However, the simulation results and data obtained are still relevant for other countries mainly 

due to the fact that an isolated intersection was studied with similar traffic flow and driving behaviour 

worldwide.  

 

5.3.3. Driving Behaviour Generation 

The driving behaviour in Vissim is based on the Wiedemann-99 car following model (Wiedemann and 

Reiter, 1992) and the parameters of this model can be adjusted to create different driving behaviours. 

The approach taken in this work was to have one general CHV behaviour and four different CAV 

driving behaviours (CAV B1, B2, B3 and B4) by systematically varying the parameters to enable CAVs 

to be more cautious or assertive than CHVs. To this end, the aforementioned parameter sets are based 

on the research work by Atkins (2016) in which the impacts of CAVs on traffic flow are analysed in 

detail in Vissim. There are 9 parameters in total as listed in Table 4 for each driving behaviour. It should 

be noted here that all CAV driving behaviours are still considered SAE Level 5 with different driving 

styles and CHV is considered SAE Level 0.    

 

Param. Description CHV CAV B1 CAV B2 CAV B3 CAV B4 
CC0 Desired standstill distance between vehicles (m) 1.5 1.0 0.9 0.6 0.5 

CC1 Headway time from the vehicle in front (s) 0.9 0.8 0.7 0.6 0.5 

CC2 Headway longitudinal distance oscillation (m) 4.0 0.0 0.0 0.0 0.0 

CC3 Time to recognise a preceding slower vehicle (s) 8.0 8.0 8.0 8.0 8.0 

CC4 Negative desired speed difference (m/s) 0.35 0.05 0.05 0.05 0.05 

CC5 Positive desired speed difference (m/s) 0.35 0.05 0.05 0.05 0.05 

CC6 Influence of vehicle distance on speed oscillation 0.0 0.0 0.0 0.0 0.0 

CC7 Oscillation during acceleration (m/s2) 0.25 0.3 0.35 0.40 0.45 

CC8 Acceleration when starting from standstill (m/s2) 3.5 3.6 3.7 3.8 3.9 

CC9 Acceleration at 80 kph (m/s2) 1.5 1.6 1.7 1.8 1.9 

Table 4 – Driving behaviour parameters for connected human-driven vehicles and automated vehicles. 

 

The rationale behind simulating multiple CAV driving behaviours is based on the assumption that, in 

the future, CAV manufacturers will enable end-users to set the driving behaviour as an option to suit 

their needs. In Table 4, the CAV driving behaviour becomes more aggressive from B1 to B4, meaning 

higher acceleration rate, shorter gaps between vehicles etc. CAV B1 is parameterised in a way to make 
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it more cautious then CHV whereas CAV B2-B4 are more assertive than CHV. Atkins (2016b) argues 

that the focus for mixed-fleet simulation models should not be on the fidelity of the CHV driving 

behaviour as it has been studied and understood in the literature, but the changes CAVs imply once 

deployed.  

 

5.3.4. Traffic Demand and Vehicle Routes 

Traffic demand and vehicle route choices are another configuration set in Vissim that is essential to 

vary during training for an agent to experience the potential impacts of CAVs under different 

operational scenarios i.e. peak time, off-peak time etc. In order to achieve that, three levels of traffic 

demand were parameterised to represent low (500 veh/h), medium (1000 veh/h) and high volume of 

traffic (2000 veh/h) similar to Atkins (2016). The traffic demand levels were changed during training 

at set intervals which was set as 2 hours. 

 

Vehicle routes are represented as a fixed sequence of links and lanes in Vissim that a vehicle is requested 

to follow on the road network. The turning decision at intersection, whether to go left, right or straight, 

depends on this configuration. The relative ratio of turning decisions were set as 0.33 for left turn, 0.33 

for right turn and 0.66 for straight during training. The vehicles that would turn left and right position 

themselves on the inner or outer lane as they approached the intersection as per the road markings 

whereas the vehicles that went straight could be on either lane. 

 

5.3.5. Software Tools Integration 

The complex nature of the proposed traffic control system required multiple software tools to be 

integrated as no single tool solution existed, at the time of writing this thesis, for the AI traffic control 

algorithm implementation and simulations. The interface diagram between the tools and the software 

components are shown in Figure 19. As explained previously, there are multiple agents running in 

parallel during training and collecting experiences independent from each other.  

 

To this end, Vissim traffic environment and TensorFlow based AI model run in parallel processes 

having an exact copy of parameters and computing resources. V2I connectivity and driving behaviour 

control was implemented in the C++ programming language with an interface to Vissim in the form of 

a Dynamic Link Library (DLL) file. During training, the DLL file was called every 100 ms for each 

vehicle in the network.  
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The National Instruments (NI) LabVIEW tool was also integrated to provide test automation, data 

analysis, visualisation and logging features. The NI LabVIEW tool can be considered as the central hub 

where the experiments were started and monitored during training. Please also note that the integration 

of this tool was optional, and it was done mainly due to the author’s vast experience of using it in 

various other industrial projects. Otherwise, NI LabVIEW tool could be replaced by a Python-based 

custom code. 

 

 

Figure 19 – The software tools setup integrating Vissim simulation tool, NI LabVIEW platform and the RL 
library. 
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5.4. Summary 

In this section, the agent training methodology and the associated parameters and configurations have 

been explained in the context of the RL framework. The main objective of the training procedure was 

to enable the agent to experience all potentially possible situations in the traffic environment so that it 

could learn what action sequences result in better policy. Model-free RL algorithms like TD3 are 

sample-inefficient, meaning they require a lot of interactions to learn a good policy. The exploration 

and exploitation dilemma section has explained the techniques implemented in order to overcome the 

sample-inefficiency challenge and to reduce the training time. Filling the experience replay buffer 

initially with the traffic light policy has been found to be useful in terms of faster convergence to the 

optimal policy. 

 

When the training is complete, the agent can be deployed at different traffic intersections as long as the 

number of approaching links to the intersection are the same as the training scenarios i.e. 4-way, 5-way 

etc. Otherwise, the agent has to be re-trained so that it can learn the optimum control policy with the 

target number of links on the road network.  

 

The traffic simulation methodology and the tool chain have also been explained in this section. The 

penetration rate of CAVs is too small, worldwide as of today, to gather any real-world evidence about 

their impact on traffic flow. Therefore, any research work in this field of research utilises simulation 

tools to model their behaviour. In this work, this approach was also taken where various different 

driving styles were modelled in conjunction with traditional human driving behaviour in order to 

simulate mixed-driving scenarios. The selected tools represent the state-of-the-art solutions which are 

widely used within the machine learning and traffic engineering fields in academia and industry. 

 

The next chapter focuses on the validation strategy of the proposed traffic control method which is also 

called the evaluation stage in RL. The trained agent operates under various different traffic conditions 

and the performance is compared against the traffic light based control method that exists in our road 

networks today. The software toolchain explained in this section is also used during the validation stage. 
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Chapter 6 

6. Validation of AI Traffic Control in Computer 
Simulations 

 
6.1. Introduction 

RL algorithms can be evaluated based on how their policy performs in the environment after the training 

procedure is complete. The measure of performance is quantified with metrics that are specific to the 

traffic control task and the traffic environment. In general, when agents are trained on specific tasks, it 

is important to evaluate the capability of generalising the final policy to unseen situations in training. 

In this research, the TCA was validated under such traffic scenarios in Vissim to determine how well 

the agent generalised its traffic control policy. In this chapter, the details of the validation procedure 

will be given including the identified performance metrics and the generated traffic scenarios in Vissim. 

 

6.2. Validation Scenarios 

The previous chapters of this thesis have explained the objectives of the proposed unsignalised traffic 

control method and the mechanisms implemented that bring together wireless connectivity, operation 

of CAVs and the machine learning strategies. In the following sub-sections, these objectives will be 

translated into a methodological approach in which the impacts of the traffic control method can be 

measured and quantified. 

 

To this end, multiple scenarios in the traffic environment are defined that involve the following key 

features: 

• Road geometry i.e. roundabout, 4-way junction etc. 

• Traffic demand range on the road network, 

• Traffic demand ratio where intersecting roads have different demand levels, 

• Driving behaviour from cautious to assertive, 

• Mixed-driving where vehicles at different SAE Levels co-exist in traffic, 

• Traffic control methods, 
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A combination of these key features was used in the validation scenarios to measure the impact of the 

traffic control methods on traffic flow and congestion. The main reason for validation via computer 

simulations in this work is to be able to easily change the physical properties and features of the testbed 

as listed above in order to ensure TCA performance is generalised to different traffic scenarios.  

 

6.2.1. Road Geometry 

Road geometry, in the context of intersection design, refers to the way that intersecting roads are 

connected to each other. There were two types of geometric designs considered for the validation 

procedure. The first one was a 4-way junction which was the exact replica of what was used during 

training, and the second one was a 4-way roundabout as shown in Figure 20. The allowed turning 

movements and the number of lanes on each link were the same for both scenarios. The conflict 

resolution for the roundabout has been updated from the 4-way junction as there are less CPs (8 in total) 

in the intersection CrA compared to 32 CPs in 4-way junction as shown in Figure 14. 

 

 

Figure 20 – Intersection road geometry types used during validation, 4-way junction (on the left), 4-way 
roundabout (on the right) 

 

6.2.2. Traffic Demand 

Traffic demand represents the number of vehicles per hour (veh/h) on the road network. Similar to the 

training scenarios (See Section 5.3.4), three levels of traffic demand were defined to represent low (500 

veh/h), medium (1000 veh/h) and high (2000 veh/h) volumes of traffic. In Vissim, the time that a vehicle 

enters the road network is defined stochastically even though the traffic demand per hour is set as a 

fixed value. Firstly, an average time gap between two vehicles was calculated based on the defined 

traffic demand scenarios, which was then used as the average value of a negative exponential 

distribution. The actual time gaps between two vehicles entering the network were obtained from this 

distribution which relates to a Poisson distribution. 
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Additionally, two more traffic demand related scenarios were generated that represented situations 

where two links intersected with same or different traffic demand levels. The traffic demand ratio of 

1.0 (Major link / Major link) and 2.0 (Major link / Minor link) were used which refer to the traffic 

demand ratios of the intersecting links. For example, if the North-South and the West-East links have 

traffic demands of 1000 veh/h, then the demand ratio is 1.0. Similarly, if one of the links has half the 

level of traffic demand i.e. 500 veh/h, then the demand ratio is 2.0. 

 

6.2.3. Driving Behaviours 

The driving behaviours generated for the training were used in the exact same way during evaluation. 

See Section 5.3.3 for a detailed explanation. In summary, there were 5 different driving behaviours, 

CHV and CAV B1 to B4. 

 

6.2.4. Penetration Rate 

Penetration rate is defined as the percentage of SAE Level 5 vehicles in the total vehicle fleet in the 

road network. Mixed-driving fleet operations will be the case in the near future until all vehicles are of 

type Level 5. To consider a variety of potential future cases, 5 levels of penetration rates were 

considered during validation: 10%, 25%, 50%, 75% and 90%. For example, if the penetration rate of 

Level 5 vehicles was 10%, then the other 90% was considered as CHV. Also note that Level 5 vehicles 

were all considered to have the most assertive driving behaviour, CAV B4, in the mixed-driving 

scenarios. 

 

6.2.5. Traffic Control Methods 

The AI traffic control method proposed in this research work was benchmarked against two control 

methods during the validation procedure: the fixed-time TLC and the FCFS (Dresner and Stone, 2008) 

heuristic rule-based control methods. 

 

AI traffic control method: 

The parameter set obtained after the training process for the AI model was frozen during validation, 

meaning the agent no longer executed backpropagation for further parameter optimisation. With this in 

mind, Critic, Actor Target and Critic Target networks were no longer required as the agent only operated 

in forward-pass mode during validation. In addition, the agent only exploited the knowledge and 
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experience it learned about the environment rather than exploring new policies for action selection. 

During training, stochasticity in the agent policy was introduced by adding a mean-zero Gaussian noise 

in the action selection. That meant that the agent did not always take the same action that gave good 

reward in a certain state, but it explored other actions to determine whether there were any other better 

actions that could give higher rewards. During validation, this exploration was not required, and the 

noise was removed in order to make decisions according to the optimal policy. 

 

Fixed-time TLC method: 

The fixed-time TLC method used in this work utilised the V2I communication interface to inform the 

approaching vehicles about the signal switch times so that they could set their speed profiles as they 

approached to the intersection accordingly based on the Wiedemann driving model in Vissim. In 

Vissim, the TLC model is provided by Vissig (PTV – Planung Transport Verkehr AG, 2019) add-on 

software module in which the control parameters for the model can be set via the Graphical User 

Interface (GUI). It is important to mention that the great majority of the traffic control systems do not 

have the V2I communication capability implemented as of today. The rationale behind considering this 

as part of the TLC method was to have a stronger benchmark control method that also considered a 

realistic near-future scenario. 

 

The TLC method uses the concept of phases and stages. Phase refers to a group of traffic movement 

directions. For example, at a 4-way junction with 4 approaching links, there are 4 phases. Stage refers 

to a group of non-conflicting phases. The phase split and offset times were determined via an in-built 

optimisation process in Vissim. This process involved changing the green and red traffic light duration 

times for each phase iteratively until the best results were obtained in terms of the lowest average vehicle 

delay and the highest traffic flow. The aforementioned optimisation process steps are given in detail in 

Appendix A. The TLC method and the optimisation of its parameters represent the real-world 

deployment process of such control methods by traffic engineers. 
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Figure 21 – Stage-based fixed-time TLC setup user interface in Vissim. Green light duration is shown with green 
tubes, red light duration is shown with red line and the switching times (amber/red light) are highlighted with 
yellow crossed box.  

 

At the end of the optimisation procedure, the optimal phase and split times were found. The control 

cycle time was considered as 60 seconds and the optimised green light durations for each phase is shown 

in Figure 21. Each phase is defined as a group of traffic lights and the notations SG_N, SG_S, SG_W 

and SG_E are used that refer to Signal Group (SG) North, South, West and East for the road networks 

used in Figure 20 during validation. 

 

FCFS control method: 

The main difference between the FCFS and the AI methods is the way approaching vehicles are 

prioritised for intersection crossing. Essentially, the FCFS method gives priority to the vehicles based 

on their arrival time to the intersection without considering any other traffic condition i.e. queue length, 

vehicle delays etc. This method is widely used in the literature as a benchmark for unsignalised traffic 

control (Khayatian et al., 2020). 

 

6.2.6. Scenarios Overview 

The overview of the generated validation scenarios is given in Figure 22. The scenarios are split into 2 

sections, A and B. Section A represents the base validation scenarios whereas section B represents the 

key use cases in traffic. The combination of Section B use cases was used for validation on all base 
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scenarios in Section A. With this in mind, the total number of validation scenarios, 𝑛_𝑣𝑠𝑡𝑜𝑡𝑎𝑙 can be 

found as: 

𝑛_𝑣𝑠𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐶(𝑢𝑖, 1) ∗ 𝑛_𝑣𝑠𝐴

𝑛=4

𝑖=1

 (23) 

 

where 𝑛_𝑣𝑠𝐴 is the total number of base scenarios in Section A, 𝑢𝑖 is the number of use cases for each 

category from Section B and 𝐶(𝑢𝑖, 1) is the combination of those use cases within a category. This 

gives 360 validation scenarios in total. 

 

 

Figure 22 – Simulation test cases overview 

 

The duration of each validation scenario was set as 2 hours and every scenario was run 5 times in order 

to capture the average behaviour among all simulation runs. In summary, a total number of 1800 (5 

scenario repeats x 360 total scenarios) simulation runs were executed that added up to 3600 hours of 

traffic environment simulation. Random seed parameter in Vissim was varied for each simulation run 

to reflect the inherent uncertainty in traffic environment. 

 

The results of each simulation run were automatically saved into a folder by Vissim that enabled 

performance analysis and comparison of the proposed unsignalised traffic control against the two 

benchmarked control methods. 
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6.3. Performance Metrics 

The performance of the traffic control methods used during validation was measured and compared to 

each other based on a set of performance metrics. The identified metrics are associated with the 

environmental, congestion, travel time impacts of the control method under test on the traffic 

environment. In this research work, 8 performance metrics were defined in total; vehicle delay, number 

of vehicle stops, vehicle speed, queue length, fuel consumption and gas emissions. All performance 

metrics were calculated by Vissim during a simulation run and the results were logged into a file for 

data analysis afterwards. The details of these metrics are given in the following sub-sections.  

 

6.3.1. Vehicle Delay 

Vehicle delay time per vehicle in Vissim considers the additional time incurred due to congestion and 

the traffic control method by subtracting the theoretical attainable travel time from the actual travel 

time. Dividing the total delay of all vehicles in the network by the total number of vehicles in the 

network gives the average vehicle delay, and it was used as a performance metric. The same average 

vehicle delay was also used as one of the observation vector features as explained in Section 4.3.1. 

 

6.3.2. Number of Vehicle Stops 

A vehicle is considered as stopped when its speed in the previous timestep was greater than 0 (zero) 

and it is 0 (zero) in current timestep. Following this, the stop counter for that vehicle is incremented by 

one. Dividing the total number of stops of all vehicles by the total number of vehicles in the network 

gives the average number of vehicle stops, and it was used as a performance metric.  

 

6.3.3. Vehicle Speed 

Average vehicle speed is used as a performance metric, and it is also used in the state representation. 

Please refer to Section 4.3.1 for an explanation of its calculation. 

 

6.3.4. Queue Length 

Queue length is measured per lane from the upstream position of the queue, the CrA 

 entry point, up to the last vehicle that satisfies the “in-queue” condition which is determined as below: 

• If the speed of a vehicle is less than 5 km/h, then that vehicle is considered as entering a queue. 
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• A vehicle remains in the queue as long as the speed of that vehicle has not yet exceeded 10 

km/h. 

 

Queue length is measured in Vissim in terms of units of length (i.e. metres), not in terms of number of 

vehicles. Average queue length was used as a performance metric, and it is calculated by measuring the 

queue length on each lane at each timestep and taking the arithmetic mean of the measured values, 

including 0 (Zero) values as queue length, for the duration of the validation scenario. 

 

6.3.5. Fuel Consumption 

All vehicles in Vissim were modelled as petrol vehicles and there was no other type of vehicle in the 

network. Fuel consumption was measured for each vehicle in terms of US liquid gram and the average 

fuel consumption was used as a performance metric. 

 

6.3.6. Gas Emissions 

Environmental impact assessment of the traffic control methods is done based on the measurement of 

exhaust emission of the vehicles in the network. The gas emission calculations in Vissim are based 

Traffic Network Study Tool Version 7F (TRANSYT7-F) simulation and optimisation tool by Penic and 

Upchurch (1992). Carbon monoxide (CO), nitrogen oxide (NOx) and volatile organic compounds 

(VOC) were the gas emission of interest for the validation scenarios. The average gas emissions for the 

duration of the validation scenario were used as performance metrics, and they were measured in terms 

of grams. 
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6.4. Summary 

The validation procedure for the trained AI model have been explained in this section. In particular, the 

AI model is expected to generalise its optimal policy by applying the learned knowledge to previously 

unseen data during validation. To this end, 360 validation scenarios were generated that differ from the 

training scenarios in terms of road geometry (i.e. roundabout), mixed-driving and traffic demand ratios. 

In addition to this, benchmark traffic control methods were also tested under the same scenarios in order 

to compare their performance in terms of the identified metrics.  

 

The validation traffic scenarios were designed to isolate the impacts of particular traffic control methods 

on traffic flow, journey times and congestion in the presence of CAVs. Whilst they did not represent 

real world situations exactly, due to the assumptions made in this research work, the validation results 

gave an indication of relative performance improvements in the traffic environment.  

 

The computer simulation validation results and the discussions are presented in Chapter 8 together with 

the validation results of the scaled real-world experiments. The next chapter will focus on the 

development of the scaled road network with scaled CAVs for the validation of the unsignalised traffic 

control on the scaled testbed.  
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Chapter 7 

7. Validation of AI Traffic Control in Scaled Testbed 
Experiments 

 
7.1. Introduction 

A simulation based validation process can offer great benefits in terms of avoiding costly installations 

with physical assets, speeding up experiments, varying conditions and scenarios easily and generating 

edge cases for safety-critical situations. On the other hand, practical testing and validation is also not 

avoidable mainly due to the fact that a thorough understanding of a traffic environment for modelling 

in simulation including all factors involved is very challenging, if not impossible. Therefore, simulation 

work can accelerate the validation and testing activities of complex systems such as traffic control in 

real-world, but not necessarily replace these activities. 

    

Taking that into consideration, a scaled testbed setup with scaled CAVs is presented in this chapter for 

executing validation scenarios with physical assets and measuring performance of the proposed traffic 

control system. Although the road network and the CAVs are scaled, the testbed can be seen as a bridge 

between a simulation work and a full-scale deployment in a real-world setting. Indoor localisation, V2I 

communication, traffic monitoring and visualisation capabilities are some of the key features 

implemented. Unlike the scaled testbed setup by Stager et al. (2017), all scaled cars in this work have 

the capability to run vehicle behaviour, decision making and motion control algorithms on-board 

without requiring an external processing unit. In addition, a digital twin of the scaled testbed was also 

created in Vissim to cross-validate the vehicle behaviour and the traffic control performance, and is 

presented in the following sections. 

 

7.2. Scaled Testbed Environment 

7.2.1. Road Network Setup 

The scaled road network in this research work was used as a testbed to further validate the traffic 

scenarios in a controlled environment. It incorporated realistic cues with regards to the traffic 
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environment including a 2-way intersection with a single lane on each link, scaled CAVs running on 

AI-enabled embedded systems, V2I wireless communications based on Wi-Fi, vehicle positioning and 

localisation system. 

 

Different versions of the road network have been used during the initial stages of the project in an 

iterative manner until all required traffic environment features and functions were implemented. Figure 

23 shows three versions of the road network in which the top-left picture is the Version 1 (V1), and the 

bottom picture is the Version 3 (V3) that is the final version used for the validation scenarios. 

 

 

Figure 23 – Scaled road network setup for unsignalised traffic control experiments. Version 1 (top-left), Version 
2 (top-right) and Version 3 (bottom) of the road network setup are shown. 
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The final version of the road network spanned over 30.24 square metres (7.2m x 4.2m), and the road 

surface was constructed out of 84 interlocking Ethylene-Vinyl Acetate (EVA) foams (0.6m x 0.6m) 

with 10 mm thickness. The road lanes were built with white matt gaffer tape, and the middle of the road 

was marked with orange tape. The intersection entry and exit points were marked with black tapes. The 

initial experiments on V1 and V2 showed that marking only the outer boundaries of the lanes made it 

very challenging for the scaled cars to determine which side of the white lane boundary to drive on the 

curved sections of the road due to the on-board car camera not being able to see both lane boundaries 

at the same time. This problem was resolved by marking the whole road lane with white colour in V3. 

 

 

Figure 24 – Demonstration of the unsignalised control method at an event in the UK 

 

Having a portable road network also facilitated the demonstration of the traffic control method at 

various different academic and industrial events during the project. Figure 24 shows the road network 

setup process at one of those events in the UK, it took 30 minutes for one person to complete the full 

system setup for the demonstration. The complete list of the Bill of Materials (BOM) for the scaled 

testbed is given in Appendix B. 

 

7.2.2. Wireless Communications 

The V2I communication between the scaled cars and the TCA was established via Netgear Nighthawk 

Smart Wi-Fi Router AC1900. The router supported IEEE 802.11 b/g/n variants at 2.4 GHz and IEEE 

802.11 a/n/ac variants at 5.0 GHz. In this project, 2.4 GHz range was used for communication. The 

TCA was run on a Windows 10 machine acting as the RSU on the scaled testbed. 

 

7.2.3. Indoor Localisation and Positioning 

Vehicle localisation is one of the key requirements to satisfy in order to determine the distance of the 

scaled cars to the intersection entry point. GPS based localisation would fail to work or lack precision 
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required indoors. Therefore, the adopted method in this research work was based on external cameras 

and ArUco markers (Garrido-Jurado et al., 2014) that were placed on top of the scaled cars. There were 

2 external cameras (Logitech C922 Pro Stream) on tripods as shown in Figure 24 that captured the 

whole testbed when combined.  

 

ArUco marker was composed of a white binary matrix on a black background. In this work, the marker 

size of 4x4 was used in terms of the number of bits per marker. The ArUco marker concept is originated 

from the pose estimation requirements of robotic applications, and the concept enables 3D translation 

of position and rotation vectors from the binary matrix of the markers to be obtained. The software 

implementation of this concept was based on OpenCV library (Itseez, 2015) in which marker detection, 

identification and pose estimation functions were all defined and provided as a library in Python 

programming language. The ArUco markers that were used on the scaled cars are shown in Figure 25 

with their embedded IDs written underneath the markers. 

 

 

Figure 25 – Unique ArUco markers for the scaled car identification 

 

The ArUco markers were placed on top of the scaled cars as the screen capture of the external cameras 

show in Figure 26. A cube-shaped paper with a triangle roof was used to display the ArUco marker on 

every surface to ensure visibility from all locations on the testbed. The indoor localisation and 

positioning software function run every 25 ms. Firstly, it detected all the markers on the testbed and 

identified each car. Secondly, it calculated the direction and location of the cars in terms of distance to 

the intersection entry points. Finally, the latest localisation data was sent over to the vehicles via V2I 

communication interface. The accuracy of the localisation was measured to be better than 1 cm. 
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Figure 26 – Indoor localisation and positioning with Aruco markers. The laptop screen shows side by side what 
both cameras capture. The shared intersection space is captured by both cameras whereas the curved sections of 
the road network are only captured by one camera. 

 

When the testbed is moved to another location for demonstration purposes, it is important to position 

the cameras correctly. To this end, a calibration procedure was implemented to accelerate the setup of 

the cameras in the correct position. The green dots on the intersection entry and exit lines in Figure 26 

are essentially the calibration points which must overlay on top of the intersecting point where black 

and orange lines meet. 

 

7.2.4. Digital Twin 

A digital twin is defined as the relevant abstraction of a physical system, rather than being an exact 

replica of that system, including modelling of complex behaviours and interactions. In this project, the 

digital twin of the scaled testbed was created in Vissim in order to cross validate the scaled testbed 

experiment results and to calibrate the driving behaviour parameters on the scaled cars to achieve 

uniform behaviour in both platforms. 
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Figure 27 – The digital twin (left-image) of the scaled testbed (right-image) in Vissim. 

 

The length of a passenger car model in Vissim was similar to a real size passenger car i.e. 4.5 m. 

However, the length of the scaled cars was 0.25 m. This necessitated a scaling factor to be applied to 

the road network as well in order to achieve similar performance results in both platforms. The radius 

of each loop on the figure of eight scaled road network was 2.5 m which is 10 times greater than the 

length of the scaled car. With this in mind, the radius on the digital twin was also set as 10 times of a 

passenger car length i.e. 45 m. 

 

In computer simulations, 5 different driving behaviours (1 CHV, 4 CAV B1 to B4) were generated by 

configuring the driving model parameters within Vissim. However, implementing these driving 

behaviours in the scaled cars was challenging due to the Vissim driving model not being available in 

the scaled cars. Therefore, the driving behaviour in the scaled car was calibrated to behave similar to 

CAV B1 driving behaviour in the simulation tool by utilising the digital twin setup. The calibration 

process involved iterative 15-min experiments on the scaled testbed with different sets of driving 

behaviour parameters, which provided the intersection throughput values in terms of the total number 

of vehicles that crossed the intersection, and choosing the parameter set that gave the nearest results 

when compared to the digital twin simulation experiments. 

 

The reason for choosing CAV B1 driving behaviour only was mainly due to the limitations of the 

sensors on the scaled cars which did not make it possible to follow the preceding car on the scaled 

testbed with reduced headways. The validation scenarios that will be presented in the next section were 

executed both in the scaled testbed and in the digital twin. The digital twin simulations did not run in 

parallel or real-time as the scaled testbed experiments. The experiment results were obtained 

independent from each other. 
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7.2.5. Validation Scenarios 

The validation scenarios on the scaled testbed mainly focused on the comparison of the TLC and the 

AI control methods under varying traffic demand conditions. It is important to mention that the variety 

of scenarios that can be implemented on the scaled testbed is much more limited compared to the 

simulation work in terms of the number of vehicles. There were 10 scaled cars in total built for the 

purpose of these experiments. However, maximum 6 of these cars could run at the same time due to the 

size restrictions of the testbed. 

 

In summary, the validation scenarios were a combination of traffic control methods and the traffic 

demands as shown in Figure 28. Each square box represents one unique scenario in which the number 

of scaled cars to run is listed on top and the demand ratio, in terms of Right-Turn (RT), Straight (S) or 

Left-Turn (LT) at the intersection crossing, is given as the distribution of the scaled cars for each 

potential route. This gives a total of 16 validation scenarios. The combination of LT, S and RT routes 

were used in order to vary the vehicle trajectory choices during intersection crossing. 

 

 

Figure 28 – The scaled testbed scenarios overview 
 

Each validation scenario was run for 15 minutes, and it was repeated twice both in the scaled testbed 

and in the digital twin. The experiment results that will be presented in Chapter 8 are the average value 

of these multiple runs for each scenario. Two performance metrics were defined to quantify the 

performance of the traffic control methods; average vehicle delay and the intersection throughput which 

is the total number of vehicles that cross the intersection. Some of the performance metrics used during 

the simulation work could not be used in the scaled testbed i.e. fuel consumption, gas emissions as they 

depended on the algorithms and models implemented in Vissim. 
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7.3. Scaled CAVs 

7.3.1. Vehicle Hardware Components  

The key hardware components of a scaled CAV are explained in this section. A total of 10 scaled cars 

have been built to the exact same standards. In a nutshell, each car has the ability to run complex AI 

algorithms in real-time, capture images for driving, communicate wirelessly with the RSU, detect 

objects, measure speed, control steering and throttle. 

 

Chassis, Motor and Batteries: 

The scaled CAVs were based on an off-the-shelf Remote-Controlled (RC) car at 1/16 scale with a 

brushed motor and an Electronic Speed Control (ESC) unit as shown in Figure 29. The chassis was 

large enough to carry all required components, and it was also small enough to operate in the scaled 

testbed area. The original RC car 1100 mAh 7.2V Nickel–Cadmium (Ni-Cd) battery was replaced with 

a 4200 mAh 7.2V Nickel–Metal Hydride (NiMH) battery with increased battery capacity for longer 

operation time. When fully charged, a scaled CAV could drive for about 45 minutes continuously. A 

charging station was setup near the experiment area to manage battery charging under safe conditions 

by using fire and explosion proof safety bags. 

 

 

Figure 29 – The original remote-controlled car that was purchased off-the-shelf (top-left-image), fleet of cars 
during the electronics assembly process (right-image) and the final version of the assembled car (bottom-left-
image) are shown. 
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During the initial experiments with the scaled CAVs, a performance comparison was carried out 

between a brushed motor and a brushless motor to determine the suitability of these options for the 

project. The experiments revealed that the speed control with a brushless motor was very difficult at 

low speeds (under 5 m/s). Therefore, a brushed motor was used in all cars. The scaled cars could go up 

to 50 km/h speed, and the chassis was equipped with axle trees to reduce friction of the components 

and to run smoother. In addition to that, there were front/rear bumpers and spring shock units that 

provide protection against impacts. 

 

The brushed motor was controlled with Pulse Width Modulation (PWM) signal, and for that reason, a 

dedicated 16-Channel 12-bit PWM driver board was used supplied by Adafruit Industries. The PWM 

driver acted as a bridge between the computing platform and the brushed motor that converted the 

digital control requests into analogue signals. 

 

Computing Platform: 

An onboard computing platform was integrated into the vehicle that handled the automated driving 

operations in the scaled testbed. A trade-off was made between cost and computing speed in terms of 

frames per second (fps) by deciding on a minimum viable fps of 20. This was determined based on the 

maximum speed limit of 2 m/s set for the scaled CAVs. In other words, a scaled car would travel 

maximum 5 cm between two consecutive frames which was deemed as satisfactory. With this in mind, 

Raspberry Pi 3 Model B+ and NVIDIA Jetson Nano Developer Kit platforms were selected for the 

initial experiments, and the two cars in Figure 30 were built to the same specification apart from the 

computing platform. At the time of writing this thesis, the cost of Raspberry Pi solution was three times 

less than that of NVIDIA solution. However, the performance comparison testing showed that the 

Raspberry Pi board processing speed was 12 fps on average whereas it was 96 fps for the NVIDIA 

board. As a result, NVIDIA solution was selected as the main computing platform for the project. 
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Figure 30 – Comparison of the scaled CAV design based on Raspberry Pi 3 Model B+ (left-image) and NVIDIA 
Jetson Nano (right image) 

 

The computing platform and other electronic components were not powered by the same battery as the 

motor control. The secondary battery was a 10 Ah lithium-ion polymer battery with 3A maximum 

current capability. All electronic components were housed on a 3D printed black assembly which was 

made out of polylactic acid (PLA) material, and the design was based on the open-source donkeycar 

platform (Donkeycar, 2021). 

 

The NVIDIA board did not include any wireless connectivity Integrated Circuit (IC) unlike the 

Raspberry Pi solution. Therefore, the Edimax N150 USB dongle that provided Bluetooth and Wi-Fi 

connectivity was used on all cars for V2I communications. 

 

Camera: 

The on-board camera is one of the key components that capture the traffic environment as an image 

input for the automated driving AI model. Logitech HD Webcam C525 was selected due to its compact 

size, ease of integration with the computing platform via USB interface and low cost. The resolution in 

pixels was not a key requirement as down-sampling was performed on the camera image prior to feeding 

it into the neural network. 

 

Sensors: 

All vehicles were fitted with some additional sensors which were controlled and monitored by the main 

computing platform. HC-SR04 ultrasonic sensor from SparkFun Electronics was one of the sensors 

integrated for object detection. Two ultrasonic sensors were placed at 45 degree angle on the front left 
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and front right sides of the scaled cars. The validation scenarios did not require the cars to reverse at 

any moment in time. Hence, no sensor was placed on the back side of the cars. The ultrasonic sensor 

provided 2-400 cm of non-contact distance measurement functionality from the object with an accuracy 

of no worse than 10 mm. 

 

 

Figure 31 – Speed measurement of the CAVs with hall effect sensors 

 

Speed measurement was achieved by a hall-effect sensor that was installed inside of the back wheels of 

the scaled cars as shown in Figure 31. The sensor produced a trigger signal when the magnetic field 

density around it exceeded a set threshold value, and this was captured by the computing platform as a 

digital input signal. Magnetic discs (6 in total) with 5 mm radius were placed inside one of the wheels 

at an equal distance from each other. By doing this, the distance travelled by a scaled car could be found 

based on the fact that one revolution of the wheel was 24 cm, and 6 trigger signals were generated per 

revolution. Then, the average speed of a vehicle within a monitoring cycle of 200 ms could be found 

by solving the equation, distance = speed * time. 
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An Inertial Measurement Unit (IMU) based speed measurement was also considered and tested on the 

scaled cars. The MPU6050 sensor from InvenSense Inc. was used due to its low cost and compatibility 

with the computing platform. The sensor had 3-axis gyroscope and a 3-axis accelerometer for 

directional speed measurement. However, the scaled vehicle testing showed that the accuracy was very 

poor, reaching up to 0.5m, and the error accumulated if the sensor was not calibrated continuously. 

Therefore, an IMU based speed measurement method was not chosen as a viable solution in this project.  

 

This concludes the key hardware components. The complete list of BOM for the scaled cars is given in 

Appendix B with the associated cost information. 

 

7.3.2. Vehicle Software Components  

The vehicle software in this project refers to the automated driving application that runs on the 

computing platform, and the software architecture was inspired by the open-source donkeycar software 

library (Donkeycar, 2021). The software was executed in a multi-threaded way where key tasks run in 

parallel at different cycle rates. The aforementioned key tasks are shown in Figure 32 with their cycle 

rates listed underneath, ranging from 20 Hz to 100 Hz. The arrows indicate the producer-consumer 

relationship between the tasks in which a producer generates the required data to be used by the 

consumer task for decision making or post-processing.  

 

The main system task run at 100 Hz and responsible for starting, terminating and monitoring other tasks 

in the software in addition to handling data exchange between these tasks when required. Object 

detection and camera vision tasks had the next fastest cycle rates as they had the greatest impact on 

driving within the lanes and preventing collisions with other cars. All vehicle software components run 

on Linux Operating System (OS), and they were coded in Python programming language.  
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Figure 32 – The scaled CAV key software modules for automated driving application that runs on the 
computing platform. 

 

7.3.3. Automated Driving AI Model Setup 

The neural network for the automated driving AI model is given in Figure 33. The network consists of 

an input layer, 6 Convolutional Layers (CL), 5 Fully-Connected (FC) layers and 2 output layers with 

their corresponding number of neurons as shown in the figure. 

 

 

Figure 33 – AI network for the automated driving task 
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The input layer takes the down-sampled (160x120 pixels) camera image as an input and performs 

normalisation on the pixel values in the target range of [0, 255]. The CLs perform feature extraction, 

and the process of an input image being abstracted to a feature map is shown on top of the CLs in Figure 

33. The sequence of images helps to visualise what happens to the original input image after each CL. 

The CLs are followed with FC layers leading to 2 output layers for throttle and steering control values 

which are produced in the range of [-1, 1] by the network, and then, they are scaled accordingly 

afterwards for actual steering and throttle command to the electric motor.  

 

The neural network architecture can be considered as an end-to-end model, similar to Bojarski et al. 

(2016), based on the fact that the network parameters are optimised by considering the input and output 

data directly without including any intermediate data points. The next section will present the training 

procedure for the AI model. 

 

7.3.4. Automated Driving AI Model Training 

The training method for the automated driving AI model is based on supervised learning. This means 

that the training data is collected and labelled offline unlike the RL training where an agent is trained 

online by interacting with an environment. In the context of automated driving with scaled cars, the 

objective of the training for the agent is to predict throttle and steering angle control values for the given 

input image based on the labelled data acting as the ground truth.  

 

The training data was collected in the scaled testbed by driving one of the scaled cars with a remote 

control device. In other words, the ground truth values came from a human driver as the scaled car was 

controlled remotely. It was important to control the scaled car as smoothly as possible without going 

outside the road lanes or changing the speed frequently. Because the agent was trained on this collected 

data to behave as close to the human driver as possible.  

 

Data collection was done over 20 minutes of driving the scaled car remotely around the testbed per each 

potential route at the intersection crossing. There were 3 potential routes, LT, S and RT. As a result, 60 

minutes of driving data was collected which corresponds to about 60k labelled records. A single record 

refers to a collection of data points that include the camera image, timestamp, throttle, steering angle, 

distance from the intersection entry and the route choice if crossing the intersection. An example set of 

data collected during training is shown in Figure 34. In this figure, the images on the left and right hand 

sides correspond to driving within the lane and crossing the intersection. As can be seen, crossing an 
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intersection can be challenging for an AI model due to the complexity of the road markings. This is 

why the training data was collected for each route option so that the agent could be taught how to turn 

left, right or go straight accordingly. 

 

 

Figure 34 – Training data collection for automated driving AI model within the scaled road network 

 

Training data collection is a lengthy process during which the human driver may not always be able to 

control the scaled car perfectly in the middle of the road. However, this does not pose a serious problem 

as long as it is only a small portion of the collected data. 

 

Generalisation of automated driving behaviour to unseen situations during training is very important. 

To this end, data augmentation was applied to the training data. Data augmentation refers to the process 

of applying little variations to the original image in order to multiply the amount of training data in a 

synthetic way. This technique reduces overfitting of the neural network parameters, and thus makes the 

AI model to be more robust in the automated driving task. Figure 35 shows an original image on the far 

left and the 3 synthetic versions of it from left to right where the image attributes, in terms of brightness 

contrast and gamma correction, are varied. In summary, 60k original training data was increased to 

240k in this project by applying data augmentation on each image.  
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Figure 35 – Data augmentation for improving the quality of the training data. a) Original image, b) Brightness 
contrast filter applied, c) night vision filter applied, d) gamma correction filter applied 

 

7.4. Summary 

The testbed introduced in this chapter is a scaled road network in a figure of eight shape with a single 

road lane. It has been constructed with an objective of replicating real-world traffic control scenarios in 

a scaled, cost-effective and controlled environment. It can be seen as a bridge between a simulation 

work and a real-world deployment of such a system. Realistic environmental cues have been included 

in the scaled testbed such as V2I communications, road markings and intersection crossing shared space 

so that the impact of an unsignalised traffic control could be obtained and compared with a traffic light 

based control method. Furthermore, the digital twin of the scaled testbed has also been created in Vissim 

to cross validate the experiment results. 

 

The technical details of the scaled CAVs are also presented in this chapter. During the development of 

the scaled cars, some methods or approaches did not work and all of these important “lesson-learned” 

points are also presented. The NVIDIA Jetson Nano processor was used as the main computing platform 

which run the software for the automated driving application. The automated driving task itself required 

a training data collection process with a human driver controlling one car remotely around the testbed. 

10 cars have been assembled that were built to the same specification, and they could drive 

autonomously around the scaled testbed simultaneously.  

 

The validation cases presented in this section have been executed in the scaled testbed and the results 

are presented in Chapter 8 together with a discussion of the key findings.  
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Chapter 8 

8. Performance Evaluation of AI Traffic Control 
 

8.1. Introduction 

This chapter presents the results of the simulation work from Chapter 6 and the scaled testbed 

experiments from Chapter 7. The discussions focus on the impacts of the traffic control methods on 

traffic flow, congestion, journey times and the environment. The measure of effectiveness of the traffic 

control methods are quantified with metrics and the rest of this chapter is organised to present the key 

results based on these performance metrics. The remaining results in the form of data tables and graphs 

can be found in Appendix C.  

 

8.2. Traffic Simulation Results 

8.2.1. Vehicle Delay 

The average vehicle delay times for the validation scenarios is shown in Figure 36. In this figure, the 

top and bottom three charts are for the scenarios where the demand ratio is major/major and major/minor 

respectively. The x-axis of all charts has a series of discrete points that represent five different driving 

behaviours and five different CAV penetration rates in mixed-fleet operation conditions (See Section 

6.2). For example, 90% CHV label is used to represent a mixed-fleet traffic flow condition where 90% 

of the vehicles are CHV and 10% CAV B4.  

 

Simulation data in Figure 36 shows that vehicle delay times decrease as traffic demand decreases from 

high to low in common for all traffic control methods as expected. Another common trend for all control 

methods was that the delay times dropped as CAV penetration ratio increased, and as vehicle driving 

behaviour became more assertive from B1 to B4. This trend was more pronounced when the traffic 

demand was high and the FCFS method was used. The FCFS method had the highest delay times in 

high traffic demand scenarios compared to the AI and the TLC methods, reaching up to 88.34 sec and 

270.23 sec under major/major and major/minor demand ratios respectively. The AI method was shown 

to perform the best in all high demand traffic scenarios with minimum delay times of 12.26 sec and 
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12.67 sec under major/major and major/minor demand ratios respectively. When the traffic demand 

was medium or low, the TLC method displayed the worst performance in terms of vehicle delay time 

which was in the range of 20.52-21.96 sec while the AI and the FCFS methods were on a par in all 

scenarios with a maximum vehicle delay difference of 2 sec between the two methods.  

 

Interestingly, the vehicle delay time for CAV B1 was observed to be greater than CHV by 8.36 sec 

when the demand ratio was major/major in high traffic demand scenario under only the FCFS method. 

A note of caution is due here since this difference in vehicle delay between CAV B1 and CHV was not 

found when the demand ratio was major/minor. A possible explanation for this can be the fact that CAV 

B1 is a more cautious driving behaviour than CHV and the effects of this is more pronounced under 

high traffic demand scenarios when two major roads intersect. 

 

 

Figure 36 – Average vehicle delay for each driving behaviour and CAV penetration ratio under high, medium 
and low traffic demand scenarios a) when the demand ratio is major / major  (top 3 graphs) and b) when the 

demand ratio is major / minor  (bottom 3 graphs) 
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Figure 37 – Average vehicle delay box plot that shows the range of delay times for all driving behaviours and 
CAV penetration rates under each traffic control method. The middle line of the boxes and the x inside the boxes 
represent the median and mean values respectively. 1st quartile (bottom line of the boxes) and 3rd quartile (top line 
of the boxes) of the range are also shown together with the whiskers that represent the maximum (top) and 
minimum (bottom) values in the range a) when the demand ratio is major / major  (top 3 graphs) and b) when the 
demand ratio is major / minor  (bottom 3 graphs). 

 

The range of vehicle delay values that were obtained from all scenarios of driving behaviour and CAV 

penetration ratio are shown in a box plot in Figure 37 for each traffic control method. From this figure, 

it can be seen that the TLC method has the most constrained range of delay times under all traffic 

demand conditions with the largest delay range of 24.44-25.96 sec under high traffic demand. This 

indicates that the CAV penetration rate and driving behaviour being assertive or cautious have minimum 

impact on the delay times with the TLC control. On the other hand, the FCFS method was shown to be 

very sensitive to changes in driving behaviour of vehicles and CAV penetration rate in the traffic flow 

as this control method had the widest range of delay times under all traffic demand conditions with a 

maximum delay range of 33.84-88.34 sec under high traffic demand. What stands out in this figure is 

that the AI method performance gets significantly better as traffic demand increases compared to the 

TLC method. 
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The average vehicle delay percentage improvement in all scenarios against the baseline scenario of 

CHV where the traffic flow consists of 100% CHV driving behaviour is shown in Figure 38. This figure 

is important mainly because it makes a performance comparison between the potential future traffic 

conditions and the traffic conditions of today where CAVs do not exist on a mass scale. What is striking 

in this figure is that a maximum of 10% improvement in vehicle delays could be obtained when the 

TLC method was used even if 90% of the traffic flow was CAV B4. On the other hand, the AI and the 

FCFS methods offered much greater improvements as the driving behaviour became more assertive or 

CAV penetration rate became higher. 

 

 

Figure 38 – Average vehicle delay percentage improvements of all scenarios are shown against the CHV 
scenario where the traffic flow consists of 100% CHV driving behaviour a) when the demand ratio is major / 

major  (top 2 graphs) and b) when the demand ratio is major / minor  (bottom 2 graphs). 

 

During training of the AI method, as explained in Chapter 5, only a 4-way junction geometry was used 

as the road network. However, validation scenarios included a roundabout geometry as well which has 

not been used during training in order to validate the operation of AI method in an unseen geometric 

road network. Figure 39 shows the comparison of average vehicle times for 4-way junction and 4-way 

roundabout under major/major traffic demand ratio scenarios when AI method is used. It can be seen 

from this figure that the trend in vehicle delay under all scenarios are the same for both road networks 
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where the delay times are slightly higher in roundabout with a maximum difference of 3.69 sec between 

two road networks in high traffic demand scenarios. It is apparent from this figure that the AI method 

generalises well to other road networks that are not used during the training session. 

 

 

Figure 39 – Comparison of average vehicle delay for each driving behaviour and CAV penetration ratio 4-way 
junction and 4-way roundabout scenarios when the demand ratio is major / major. 

 

8.2.2. Number of Vehicle Stops 

In an ideal intersection crossing scenario, there should be no stop-and-go movement in order to incur 

no vehicle delays. Therefore, the number of vehicle stops metric gives useful insights with regards to 

congestion build-up. Figure 40 provides the results obtained from the validation scenarios in terms of 

the number of vehicle stops for each control method.  

 

As can be seen in Figure 40, the number of vehicle stops reduces as more CAVs penetrate into the 

traffic flow or as driving behaviour gets more assertive with the AI and the FCFS methods. However, 

a closer inspection of the figure demonstrates that this trend does not hold true for the TLC method, and 

the greatest number of vehicle stops (1.03, 1.19, 1.35 under high, mid and low traffic demands 

respectively) was observed with CAV B4 driving behaviour. With the TLC method, the number of 

vehicle stops decreased as the CAV penetration rate reduced or driving behaviour became more 

cautious. In addition to that, the number of vehicle stops increased as traffic demand decreased with the 

TLC method which was the other way around with the AI and the FCFS methods. This result may be 

explained by the fact that the TLC method gives right-of-way to all approaching links in turn in a control 

cycle even though there are no vehicles waiting to cross in the queue on a particular approach link which 

becomes the case as traffic demand decreases. 
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Figure 40 – Average number of vehicle stops for each driving behaviour and CAV penetration ratio under high, 
medium and low traffic demand scenarios a) when the demand ratio is major / major  (top 3 graphs) and b) when 

the demand ratio is major / minor  (bottom 3 graphs). 

 

There were no control methods that eliminated the stop-and-go movement for the given traffic demand 

scenarios. However, the AI method specifically was shown to perform the best in majority of the 

scenarios except for the low traffic demand scenarios where the FCFS method outperformed the AI 

method marginally with a maximum difference of 0.1 average number of vehicle stops. It is also 

important to highlight that data from Figure 36 can be compared with the data in Figure 40 which shows 

that there is a strong correlation between vehicle delay times and the number of vehicle stops when the 

AI and the FCFS methods are used but there is no correlation found when the TLC method is used as 

shown in Figure 41. 

 

Figure 41 – Scatter graph that shows the correlation between vehicle delay times and the number of vehicle 
stops at an intersection based on the results obtained from mid traffic demand scenarios with major/major 

demand ratio. 
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8.2.3. Vehicle Speed 

A speed limit of 50 km/h was applied in all validation scenarios for all vehicles. This meant that free-

flow speed of all vehicles in traffic was expected to be near this speed limit when there was no 

congestion. Figure 42 shows the average vehicle speed for each traffic control method under all traffic 

demand scenarios. The AI and the FCFS methods gave similar results with a vehicle speed range of 

42.43-46.18 km/h and 45.27-47.62 km/h under all mid and low traffic demand scenarios including both 

demand ratios. When the TLC method was used in the aforementioned scenarios, the average vehicle 

speed reached up to 40.66 km/h.  

 

 

Figure 42 – Average vehicle speed for each driving behaviour and CAV penetration ratio under high, medium 
and low traffic demand scenarios a) when the demand ratio is major / major  (top 3 graphs) and b) when the 

demand ratio is major / minor  (bottom 3 graphs). 

 

The data in Figure 42 also shows that free-flow vehicle speed breakdown occurs for scenarios with high 

traffic demand. In particular, average vehicle speed fluctuations were more pronounced when the FCFS 

method was used, and higher average vehicle speed was observed as CAV penetration rate increased or 

driving behaviour became more assertive. 

 

It is also important to highlight that the AI and the TLC methods could successfully deal with two 

different demand ratios based on the fact that average vehicle speed decrease was no more than 4% 

when traffic demand was high, and the demand ratio was changed from major/major to major/minor. 
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However, the FCFS method was significantly worse in major/minor traffic demand ratio scenarios when 

the traffic demand was high with speed values dropping down to 9.06 km/h. 

 

8.2.4. Queue Length 

Average queue length of all approaching links for each control method is shown in Figure 43. It can be 

seen from this figure that it is common in all validation scenarios for the queue length to decrease as 

the CAV penetration rate increases or driving behaviour becomes more assertive. This trend was more 

pronounced as traffic demand increased. This outcome can be attributed to the standstill distance (CC0) 

parameter of driving behaviour model within Vissim. The expectation was that CAVs would stop with 

reduced gaps from each other in a queue as driving behaviour became more assertive, which in turn 

would reduce the queue length. 

 

 

Figure 43 – Average queue length for each driving behaviour and CAV penetration ratio under high, medium 
and low traffic demand scenarios a) when the demand ratio is major / major  (top 3 graphs) and b) when the 

demand ratio is major / minor  (bottom 3 graphs). 

 

When the traffic demand was low or mid, the TLC method had the greatest queue lengths under all 

scenarios with a maximum value of 5.68 m for CAV B1 driving behaviour. The impact of driving 

behaviour on queue length was more visible for the TLC method under low and mid traffic demand 

scenarios whereas the FCFS method showed the greatest variance in queue length values under high 

traffic demand scenarios. The AI method in general demonstrated the best performance in terms of 
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having the smallest queue length values for all except for the low traffic demand scenarios in which the 

FCFS method slightly outperformed the AI method. 

 

8.2.5. Fuel Consumption 

Average fuel consumption of all vehicles for the duration of each validation scenario is shown in Figure 

44. The effects of CAV penetration rate or driving behaviour on fuel consumption became marginal as 

traffic demand decreased from high to low. The AI method consistently gave the lowest fuel 

consumption in all validation scenarios apart from the low traffic demand scenarios where the FCFS 

method was slightly better with a range of 0.86-1.62 gallons of fuel consumption difference between 

the two methods. 

 

 

Figure 44 – Average fuel consumption for each driving behaviour and CAV penetration ratio under high, 
medium and low traffic demand scenarios a) when the demand ratio is major / major  (top 3 graphs) and b) when 

the demand ratio is major / minor  (bottom 3 graphs). 

 

A comparison of the data in Figure 44 with Figure 40 shows that there is a strong correlation between 

the number of vehicle stops and fuel consumption for all validation scenarios. This relationship between 

the results is shown in Figure 45 for the mid traffic demand scenarios. 
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Figure 45 – Scatter graph that shows the correlation between fuel consumption and the number of vehicle stops 
at intersection based on the results obtained from mid traffic demand scenarios with major/major demand ratio. 

 

8.2.6. Gas Emissions 

Gas emission results collected during the simulation work included CO, NOx and VOC. Figure 46 

shows the average CO emissions of all vehicles for the duration of each validation scenario. The same 

trend was observed in NOx and VOC results, and therefore, only CO emission results are presented in 

this section. The graphs for the rest of the gas emission results can be found in Appendix C. 

 

As shown in Figure 46, CO emissions decreased for all control methods as traffic demand decreased 

from high to low. Similar to previous results, CAV penetration rate and driving behaviour had 

significant impacts on CO emissions in high traffic demand scenarios and this impact became marginal 

as traffic demand decreased. 
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Figure 46 – Average carbon monoxide emission for each driving behaviour and CAV penetration ratio under 
high, medium and low traffic demand scenarios a) when the demand ratio is major / major  (top 3 graphs) and b) 

when the demand ratio is major / minor  (bottom 3 graphs). 

 

A comparison of the data in Figure 46 with Figure 40 shows that there is a strong correlation between 

the number of vehicle stops and CO emissions for all validation scenarios. This relationship between 

the results is shown in Figure 47 for the mid traffic demand scenarios. 

 

 

Figure 47 – Scatter graph that shows the correlation between CO emissions and the number of vehicle stops at 
intersection based on the results obtained from mid traffic demand scenarios with major/major demand ratio. 
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8.3. Scaled Testbed Experiment Results 

In this section, the results of the scaled testbed experiments and its digital twin are presented. A 

comparison of the data obtained from the two platforms was expected to give similar results in terms 

of intersection throughput. On the other hand, a direct comparison with absolute performance metric 

values between the results of the simulation work (Section 8.2) and the scaled testbed experiments 

(Section 8.3) would not offer a meaningful data analysis. This is mainly due to the difference in the 

number of vehicles used for the simulation work (in the range of thousands) and the scaled testbed (in 

the range of tens). Instead, the experiment results are presented in terms of relative vehicle delay 

improvements in percentage between the AI and the TLC methods which can be considered as a 

normalisation technique to enable direct comparison of the experiment results. 

 

8.3.1. Intersection Throughput 

The experiments in the scaled testbed and the digital twin were run for 15 minutes for each scenario, 

and each scenario was repeated twice. The results represent the average values of all runs which is also 

scaled from 15 min to 1 hour by simply multiplying the obtained experiment result by 4. The 

intersection throughput data in Figure 48 makes a comparison between the scaled testbed and the digital 

twin results for TLC and the AI traffic control methods. The y-axis shows the intersection throughput 

in terms of number of vehicles and the x-axis has a series of discrete points that represent each validation 

scenario (See Chapter 7.2.5). The naming convention for the validation scenarios is wCars_xS_yL_zR 

where w denotes the traffic demand in total number of scaled cars and x, y, z denote the traffic demand 

at figure-of-eight intersection to go straight, turn left and turn right respectively. Furthermore, the 

percentage values on top of the data series Figure 48 indicate how far the scaled testbed results are from 

the digital twin results. 
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Figure 48 – Intersection throughput data that is obtained from the scaled testbed and the digital twin experiments 
for all scenarios under the AI and the TLC traffic control methods. The percentage values represent how far the 

scaled testbed results are from the digital twin results. 

 

The most interesting aspect of the data in Figure 48 is the small variation between the scaled testbed 

and the digital twin results. The maximum intersection throughput difference was measured to be 6.2% 

for the TLC method and 6.7% for the AI method. This result is encouraging, and the evidence support 

that the driving behaviour of the scaled cars were implemented as close to CAV B1 as possible in the 

simulation environment. It is also shown in this figure that the intersection CrA was utilised more 

efficiently with the AI method under all traffic demand scenarios as the intersection throughput was 

consistently more that the TLC method and it reached a maximum of 912 veh/h, while it stayed at 660 

veh/h with the TLC method.   

 

8.3.2. Vehicle Delay 

The average vehicle delay for the validation scenarios under the AI and the TLC methods in the scaled 

testbed is shown in Figure 49. CAV B1 driving behaviour was implemented in the scaled cars as 

explained in Section 7.2.4. It can be seen that the vehicle delay times increased as traffic demand 

increased for both control methods as expected. The data shows that the AI method consistently 

outperformed the TLC method in all scenarios in terms of vehicle delay times. The range of vehicle 

delay values was measured to be 69.1-400 sec with the AI method whereas this was measured to be 

353.6-510 sec with the TLC method. 
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Figure 49 – Average vehicle delay data that was obtained from the scaled testbed experiments for all scenarios 

under the AI and the TLC traffic control methods. 

 

The average vehicle delay percentage improvement when the AI method is used instead of the TLC 

method is calculated as: 𝑡_𝑑𝑒𝑙𝑎𝑦𝑡𝑙𝑐−𝑡_𝑑𝑒𝑙𝑎𝑦𝑎𝑖

𝑡_𝑑𝑒𝑙𝑎𝑦𝑡𝑙𝑐
∗ 100 where 𝑡_𝑑𝑒𝑙𝑎𝑦𝑡𝑙𝑐 and 𝑡_𝑑𝑒𝑙𝑎𝑦𝑎𝑖 denote the average 

vehicle delay data obtained when the TLC and the AI methods are used respectively. Based on this 

calculation, the vehicle delay improvement can also be calculated for the data obtained from the 

simulation work (See Figure 36). The rationale is to make a relative improvement comparison between 

the results obtained independently from the simulation work and the scaled testbed experiments. 

 

Figure 50.d gives a summary of vehicle delay percentage improvements for each driving behaviour and 

CAV penetration ratio in the simulation work and the scaled testbed. Figure 50.a, Figure 50.b and Figure 

50.c show, as an example, in three steps how the percentage improvement value for 90% CHV in Figure 

50.d have been obtained. First of all, the average vehicle delays for the AI and the TLC methods are 

shown in Figure 50.a under high, mid and low traffic demand scenarios. The percentage value on top 

of the bars in Figure 50.a represent the vehicle delay improvement when the AI method is used 

compared to the TLC method. Following this, in Figure 50.b, the percentage improvement values are 

displayed as a scatter graph to highlight the range of percentage improvement. Finally, Figure 50.c 

displays the improvement range as a box plot where median and mean values are marked. The other 

percentage improvement values in Figure 50.d have been calculated in the same way. 
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Figure 50 – a) Average vehicle delay comparison between the AI and TLC methods for 90% CHV scenarios. b) 
Average vehicle delay percentage improvement is shown in a scatter graph to highlight the improvement range. 
c) The scatter graph in b) is transformed into a box plot. The middle line of the boxes and the x inside the boxes 
represent the median and mean values respectively. d) Average vehicle delay percentage improvement is shown 
for each driving behaviour in simulation work and the scaled testbed when the AI method is used compared to the 
TLC method. The range of percentage values represent the results obtained from all traffic demand scenarios. 

 

The scaled car percentage improvement range in all 8 validation scenarios is shown as 22-85% in Figure 

50.d which is labelled as Scaled Car. As explained previously, the scaled cars were essentially calibrated 

to have similar driving behaviour as CAV B1, and a closer inspection of Figure 50.d shows that the 

range of vehicle delay improvements obtained in Vissim for CAV B1 is 19-82% which has a strong 

correlation with the results of the scaled testbed. The vehicle delay percentage improvement became 

better as CAV penetration rate increased or as the driving behaviour became more assertive. 
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8.4. Discussion and Key Findings 

The validation scenarios were constructed to measure and analyse the impacts of traffic control methods 

on traffic flow, congestion, journey times and environment. The results obtained from the simulation 

work and the scaled testbed combined together provided extremely useful insights on the performance 

comparison of different traffic control methods in realistic real-world scenarios. Based on the 

comprehensive results presented in this chapter, particular key findings are explained below. 

 

Higher CAV penetration rate brings various benefits as long as more advanced traffic control 

methods are used  

The results of this research work indicate that the penetration of CAVs into the traffic flow will bring 

variety of benefits in terms of reduced vehicle delays, congestion, fuel consumption and gas emissions. 

These benefits were shown to increase as the CAV penetration ratio increased. Another important 

finding was that the aforementioned benefits highly depended on the traffic control method used. When 

the TLC method was used, no significant benefits (<10% under all scenarios) were seen in terms of 

vehicle delays whereas the AI method offered 7.61% reduced vehicle delays even when there was only 

10% CAV penetration rate. It can thus be suggested that unless more advanced traffic control methods 

are used, such as the proposed AI method in this work, no significant benefits can be gained with 

increased CAV penetration rates which is also supported by Atkins (2016b) and Fagnant and 

Kockelman (2015). 

 

Driving behaviour choice can have significant impact on traffic flow 

The literature review highlighted the fact that CAVs with different driving style configurations will 

exist in traffic as CAV penetration rate increases (Atkins, 2016c). The range of driving behaviour is not 

necessarily expected to be more assertive than a human driver, and therefore, some CAVs may represent 

driving behaviour more cautious than a human driver. The evidence found in this work suggests that 

marginal benefits can be obtained in terms of vehicle delay times under mid or low traffic flow 

conditions when the traffic flow is 100% CAVs that are more cautious than a human driver, and more 

importantly, the delay times can be worse than a human driver when the traffic is congested under high 

traffic demand. Therefore, the driving behaviour should be a key consideration when rolling out CAVs 

into our road networks as the driving style will have an influence on the relative benefits compared to 

CHVs in terms of vehicle delays and congestion among many other factors that will determine the roll 

out of CAVs. 
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Marginal benefits in low traffic demand 

The results presented in this chapter show that benefits in terms of vehicle delay, congestion, preventing 

stop-and-go movements, fuel consumption and gas emissions were much greater when traffic demand 

is high. Under low traffic demand conditions, all traffic control methods showed marginal 

improvements in all performance metrics as CAV penetration rate increased or CAV driving behaviour 

became more assertive. This finding has important implications when deciding the initial mass-scale 

deployment strategy for any automated public transportation services i.e. buses, taxies etc. In other 

words, the evidence suggests that urban areas and congested networks will benefit more from having 

CAVs in the traffic flow. 

 

There is no single traffic control method that fits all real-world scenarios 

The AI traffic control method has shown to perform the best, based on all performance metrics, in all 

traffic conditions apart from the low traffic demand scenarios where the FCFS method performed on a 

par with or slightly better than the AI method. Considering that there are development, installation and 

maintenance costs associated with each control method, the findings in this study suggest that even 

simple heuristic-based control methods, such as FCFS, can be implemented as a traffic control method 

in areas that do not experience high volumes of traffic. This could be attractive to local authorities and 

transport service providers in terms of keeping the cost and complexity of the control system to 

minimum. 

 

An AI-based traffic control can adapt to changes in traffic flow 

This research work demonstrated that an AI-based control method can perform well in a traffic control 

domain which is stochastic in nature, and it can adapt to unseen states and conditions during training. 

It is therefore likely that once an AI neural network is trained under a simulation environment, it can be 

deployed to multiple locations without requiring a special training procedure for every single 

intersection. It is also important to bear in mind that 4-way junction and 4-way roundabout geometries 

were used in this work during validation. Therefore, there is limited evidence to suggest that the AI 

control method could work on geometries with a different number of lanes and links when it is trained 

on 4-way junction type only. In theory, it is possible to train an AI network to operate in multiple 

intersection geometries as long as the training scenarios are setup appropriately for this objective. 
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A scaled testbed coupled with a digital twin in simulation can accelerate the development and the 

validation of advanced traffic control methods 

Simulation tools can offer great benefits in terms of avoiding time-consuming and expensive 

experiments with physical assets. On the other hand, practical testing and validation is also not 

avoidable mainly due to the fact that a thorough understanding of a traffic environment for modelling 

in simulation including all factors involved is very challenging, if not impossible. This research work 

demonstrated that it was possible to set up a cost-effective scaled testbed with scaled cars in order to 

generate traffic flow with CAVs and validate the operations of advanced traffic control methods. The 

digital twin approach was extremely useful when making associations with the simulation experiments 

in terms of results obtained. The present work suggests the possibility that much larger scaled testbeds 

where multiple intersections and road types are implemented can help towards understanding the 

impacts of CAVs in traffic flow at a fraction of the cost and duration that would otherwise be required 

in a real world setting. 

 

8.5. Summary 

The validation results from the simulation work and the scaled testbed experiments are presented in this 

chapter.  The impacts of different traffic control methods on traffic flow, congestion, journey times and 

environment are quantified with performance metrics. Key findings are drawn out from the 

comprehensive experiment results and a discussion on these findings is provided. Together these 

findings provide important insights into enabling CAV support from an infrastructure point of view. 

The next chapter moves on to presenting the conclusions of this work together with recommended future 

research directions in order to expand the ideas and methods proposed in this work. 
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Chapter 9 

9. Conclusions and Future Work 
 

9.1. Research Summary 

In this thesis, a novel traffic control method has been proposed that integrates cooperative ITS features 

and supports the integration of CAVs into mixed-fleet operations to make better use of the road transport 

infrastructure. To this end, an extensive literature review has been presented in Chapter 2 in traffic 

control methods, focusing on the recent advancements in CAVs, AI techniques and cooperation 

between traffic users via wireless communications. The traffic control problem definition, the V2I 

communication protocol, the RL algorithm set up and training, and the validation methodology has 

provided a series of insights into the future use of the road networks, vehicles and transport services 

that will allow the delivery of a positive disruptive change on how traffic is managed at intersections. 

The main conclusions derived from this research work are summarised below: 

 

The AI traffic control method with C-ITS communication features achieves less congestion, 

journey time, fuel consumption and gas emissions when compared to the fixed-time signalised 

control method and the heuristic rule-based FCFS method. 

Chapter 3 has presented the unsignalised traffic control problem statement and the V2I wireless system 

details including the communication protocol and the data requirements under certain assumptions in 

order to focus on the main contributions of this research work. The proposed unsignalised traffic control 

is one of the ITS applications that targets the reduction of congestion whilst preventing collisions. 

Therefore, the communication latency between the traffic users was considered to be less than 100ms 

as specified in SAE J2735 standard. The communication protocol presented in Chapter 3 forms the 

foundation for the proposed unsignalised intersection control, enabling bi-directional data exchange 

between the vehicles and the infrastructure.  

 

The ICA, in the context of RL has been presented in Chapter 4. The main task of this agent has been to 

determine the individual vehicle priorities based on the objective of reducing average vehicle delays on 

all approaching links of the intersection. To this end, the information received from the approaching 
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vehicles by using the communication protocol from Chapter 3 has been instrumental. The current traffic 

observation vector has been constructed with this information to capture the dynamics of the traffic 

state. This input vector is essentially the “eyes” and the “ears” for the traffic control agent to make sense 

of the current traffic state and take actions accordingly. Chapter 4 has also established the conflict 

resolution method in order to calculate the crossing time windows for all vehicles waiting to cross the 

intersection. The conflict resolution method takes the vehicle priority list, generated by the agent, as an 

input and produces safe crossing time windows so that collision avoidance is ensured during intersection 

crossing. 

 

The results obtained from the simulation work in Chapter 6 and the scaled testbed in Chapter 7 

combined together have provided extremely useful insights on the performance comparison of different 

traffic control methods in realistic real-world scenarios. The impacts of different traffic control methods 

on traffic flow, congestion, journey times and environment have been quantified with performance 

metric, and key findings have been drawn out from the comprehensive experiment results in Chapter 8. 

Together these findings have provided important insights into enabling CAV support from 

infrastructure point of view. The key findings can be summarised as below and suggest that the proposed 

AI traffic control method outperforms the benchmarked control methods in all identified performance 

metrics: 

• An AI-based traffic control method can adapt to changes in traffic flow and generalise its 

strategy well to unseen traffic states. 

• Higher CAV penetration brings various benefits as long as more advanced traffic control 

methods are used. 

• Driving behaviour choice can have significant impact on traffic flow and congestion. 

• Marginal benefits have been gained from of having more assertive driving behaviour or more 

CAV penetration rate in low traffic demand with all traffic control methods. 

• There is no single traffic control method that fits all real-world scenarios. 

• A scaled testbed coupled with a digital twin in simulation can accelerate the development and 

the validation of an advanced traffic control method. 

 

The stochastic nature of traffic environment has significant implications on how a traffic control 

algorithm, based on RL techniques, should be designed and trained. 

The details of the AI algorithm and methods have been presented in Chapter 4. Traffic is stochastic in 

nature, meaning the reaction of the environment might not be predicted precisely. In addition, traffic 

environment is one of the prime examples where the traffic control actions affect the flow of vehicles 
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gradually in time rather than immediately after taken a particular action. This has led us to explore and 

implement methods that can handle stochasticity and delayed outcome. 

 

The state representation, action space and the reward mechanism have all been combined together under 

the TD3 algorithm. The agent training methodology and the associated parameters and configurations 

have been explained in Chapter 5. The main objective of the training procedure has been to enable the 

agent to experience all potentially possible situations in the traffic environment so that it could learn 

what action sequences result in better policy. Model-free RL algorithms like TD3 are sample-

inefficient, meaning they require a lot of interactions to learn a good policy. The exploration and 

exploitation dilemma section in Chapter 5 explained the techniques implemented in order to overcome 

the sample-inefficiency challenge and reduce the training time. Filling the experience replay buffer 

initially with the traffic light policy has been found to be useful in terms of faster convergence to the 

optimal policy. 

 

In order to validate and test advanced traffic control methods in real-world traffic scenarios with 

hundreds or thousands of CAVs, in a cost-effective way, in a controlled and repeatable 

environment, it is essential to consider the integration of virtual elements and physical assets. 

The penetration rate of CAVs is too small, worldwide as of today, to gather any real-world evidence 

about their impact on traffic flow. Therefore, any research work in this field of research utilises 

simulation tools to model their behaviour. In this work, this approach has also been taken where various 

different driving styles have been modelled in conjunction with traditional human driving behaviour in 

order to simulate mixed-driving scenarios. The traffic simulation methodology and the tool chain have 

been presented in Chapter 6 and the scaled testbed setup has been presented in Chapter 7. The selected 

tools are state-of-the-art solutions which are widely used within the machine learning and traffic 

engineering fields both in academia and industry. 

 

The scaled testbed introduced in Chapter 7 is a scaled road network in a figure of eight shape with a 

single road lane. It has been constructed with an objective of replicating real-world traffic control 

scenarios in a scaled, cost-effective and controlled environment. It can be seen as a bridge between a 

simulation work and a real-world deployment of such a system. Realistic environmental cues have been 

included in the scaled testbed such as V2I communications, road markings and intersection crossing 

shared space so that the impact of an unsignalised traffic control can be obtained and compared with a 

traffic light based control method. Furthermore, the digital twin of the scaled testbed has been also 

created in Vissim to cross validate the experiment results. 
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The technical details of the scaled CAVs have also been presented in Chapter 7. The NVIDIA Jetson 

Nano processor has been used as the main computing platform which runs the software for the 

automated driving application. The automated driving task required a training data collection process 

with a human driver controlling one car remotely around the testbed. 10 cars have been assembled that 

were built to the same specification, and they could drive autonomously around the scaled testbed 

simultaneously. 

 

9.2. Original Contributions 

This research work advances the current state-of-the-art in traffic control at intersection further by 

making the following main contributions: 

 

C1. Proposal of a novel centralised and unsignalised traffic control method based on the Twin-

Delayed Deep Deterministic Policy Gradient (TD3) RL algorithm for mixed-fleet operations where 

CAVs and Connected Human-driven Vehicles (CHV) co-exist in traffic. The proposed method 

achieved up to 84% less average vehicle delays and 41% less fuel consumption during intersection 

crossing compared to the fixed-time TLC method both in simulation and practical experiments. 

 

C2. Proposal of a novel state representation and a reward mechanism for the traffic control agent 

which are put together under the TD3 algorithm as part of the RL framework. The state space has 8 

values for each road lane approaching an intersection that consist of the average traffic flow 

parameters and the lead vehicle parameters. The proposed state space captures the traffic 

environment state as comprehensive as possible while keeping the number of variables in the vector 

to a minimum. The reward mechanisms has been structured in a way to reduce average vehicle 

delays at the intersection whilst considering safety and platoon formations. 

 

C3. Creation of a training and validation software platform for an AI-based traffic control method. 

The software platform consists of the state-of-the-art Vissim traffic simulation tool, TensorFlow 

open source machine learning library and National Instruments (NI) LabVIEW tool. The platform 

brings together the aformentioned tools that complement each other in order to generate a realistic 

traffic environment and scenarios where CAV penetration rates, traffic demand levels, driving styles 

and road geometry are varied systematically in a repeatable way. The software platform has been 
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created by comprehensive coding work that includes three programming languages, C++ (Vissim), 

Python (TensorFlow) and Visual Programming (NI LabVIEW). 

 

C4. Development of a scaled testbed with realistic cues about the traffic environment together with 

multiple scaled CAVs. The digital twin of the scaled testbed has also been created in the simulation 

environment for cross-validation of the scaled testbed experiment results. This validation and testing 

approach can be seen as an extremely useful intermediate step when taking a complex system such 

as traffic control from simulation to real-world deployment in a cost-effective and controlled way. 

The experiment results obtained from the scaled testbed and its digital twin indicated strong 

similarities, based on a maximum difference of 6.8% in intersection throughput metric between both 

platforms, which proved the relaibility of the scaled testbed approach with the scaled CAVs. 

 

The original contributions of this research work are expected to influence the new ways of thinking 

about the use of road networks, vehicles and transport services that will allow delivering positive 

disruptive change on how traffic is managed at intersections whilst providing the catalyst for new 

experiments in the future of mobility. 

 

9.3. Future Work 

This section highlights some particular open research questions and the knowledge gap that remains, 

and finally makes recommendations for future research in this field. Unsignalised traffic control with 

reinforcement learning in the presence of CAVs represents an integration of emerging technology areas, 

and therefore, there is definitely scope for substantial future work. This is specifically relevant for 

intelligent transport planners, road network operators, local authorities and ITS technology providers 

where increased knowledge of the potential for such advanced control systems can allow for a more 

accurate assessment of their potential impacts on the traffic flow. The recommendations for future work 

are summarised below: 

 

Mixed-fleet operations 

CAVs will be operating in traffic with human drivers for a foreseeable future where the number of 

scenarios that can be encountered is practically infinite, as human drivers tend to find alternative ways 

to deviate from expected behaviour in traffic. For this reason, the mixed-fleet operations should be 

understood thoroughly when considering a disruptive technology like unsignalised intersection control. 

As of today, the work towards having formalised standards or approval schemes for the integration of 
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CAVs into the transport system is still in its infancy. In order for safe and rapid adoption of unsignalised 

traffic control method, mixed-fleet operations should be initially modelled in simulation environments 

for complex driving scenarios. These scenarios should include but not limited to the impacts of CHVs 

not following the instructions or traffic rules. 

 

Multi-intersection operations in the context of multi-agent systems 

In this work, a single intersection control has been studied without considering the wider impacts of 

upstream or downstream traffic intersections. The management of multi-intersection network with a 

single agent can be challenging, and therefore, consideration for multi-agent system should be made 

where agents synchronise their activities and make decisions jointly to meet the design objectives such 

as keeping local area congestion under a certain level. In a multi-intersection network, when traffic 

demand is high, congestion in one intersection can have a knock-on effect ono other neighbour 

intersections. Thus, an efficient control method that maximises a collaborative long-term reward 

between neighbour intersections is desired. The training methodology for such scenarios for neural 

networks is also an area that is recommended for future research where neighbour intersections share 

traffic state data with each other for more pro-active decision making. 

 

Implications on field deployment and commercialisation 

One of the key considerations of integrating unsignalised traffic control as a key transportation service 

is to determine what is the optimal positioning of such technology in the immediate and longer term 

future. In creating such a disruptive and novel traffic control method, the question of enabling 

infrastructure investment and deployment challenges rises. Rigorous testing procedure must be in place 

prior to deployment of such a system that considers CAV operations and any edge cases so that rare 

occurrence of a particular situation would not jeopardise the safety of the system and the traffic users. 

Further study in this area is definitely needed to guide the integration of an unsignalised traffic control 

system into the transportation network and how the associated government and industry business cases 

for commercialisation could be structured. 

 

Consideration for other type of road users 

In this work, certain assumptions have been made in order to focus on the isolated impacts of the 

proposed unsignalised traffic control method on the traffic flow. One of the assumptions that must be 

relaxed and considered in future work is the inclusion of vulnerable road user such as pedestrians, 

cyclists, and other types of vehicles such as buses, lorries etc. As CAV penetration rate increases in the 
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future, they are likely to operate in increasingly complex traffic environments. It is therefore essential 

to understand the interaction between CAVs and other road users that has not been studied in this work. 

 

The impact of unsignalised traffic control on safety and user acceptance  

Safety and user acceptance are two key drivers when it comes to scaling up a disruptive technology. 

The Vissim simulation tool that has been used in this study does not include a built-in safety assessment 

and analysis software component. Therefore, no safety impacts could have been measured in this 

research work. Further work in simulation is recommended that integrates safety assessment tools for 

collision risk analysis. In parallel to this, it will also be necessary to gain user trust, and this can be 

achieved by proving safety of the traffic control system in all potential real-world scenarios with 

methodical test and validation procedures. 

 

Closed-loop operation of priority assignment and conflict resolution stages of the control 

algorithm 

Conflict resolution stage of the proposed traffic control algorithm in this research work receives a list 

of assigned priorities by the TCA, and following this, crossing time windows are allocated for each 

vehicle. It might be possible in the future to feedback the output of conflict resolution stage back to the 

reward mechanism for the TCA to develop a full picture of the consequences of its actions. 

 

Cybersecurity 

Further reseach into solutions for secure connectivity between RSUs and CAVs/CHVs on the road is 

recommended as it has been assumed in this reseacrh work that the V2I connectivity and data was 

secure. The function of the RSU is to broadcast the traffic control, map and safety related data to all 

vehicles at the traffic intersection. Potential security threats to this communication link include spoofing 

the RSU communication unit to send false information to the approaching vehicles and signal jamming. 

The techniques that could be used to mitigate against these threats should be investigated for 

unsignalised traffic control. 
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Appendices 

Appendix A 
 

A1. Signal Time Optimisation Process Steps in Vissim (from the User Manual) 

Vissim repeatedly runs simulations of the entire network during the optimisation process. The 

optimisation process is continued as long as changes in green times of the stages lead to an increase in 

the traffic flow or to a reduction in the average vehicle delay. The stage lengths with the best result have 

the highest flow and the lowest average vehicle delay and are stored in a file after the optimisation. The 

process steps are given below: 

1. Vissim determines the average delay of all vehicles that have passed through the intersection, 

automatically evaluating each signal group over the entire simulation run. 

2. For optimisation, the signal group in which the vehicles have the highest delay is determined 

for each stage. 

3. The stage with the lowest maximum average delay is selected as the best stage. 

4. The stage with the highest maximum average delay is selected as the worst stage. 

5. A second of green time is deducted from the best stage. 

6. A second of green time is added to the worst stage. 

7. If a second can no longer be deducted from the best stage, the second best stage is used. If this 

can no longer be shortened, the next worst stage is always taken iteratively. If no other stage 

can be shortened, the optimisation is terminated. 

8. A signal program is considered to be better than another if one of the following criteria is met: 

• If the flow formed by the total number of vehicles driven through the node during the 

simulation run has increased significantly by at least 25 vehicles or by 10% if this is less. 

• If the flow has not significantly decreased by 25 vehicles or by 10% and the average delay 

across all vehicles has decreased. 

9. If a signal program is better than the best rated, it replaces this as the best. The optimization is 

continued with the next step. 

10. The optimisation is terminated if one of the following criteria is met: 

• Once the signal program does not improve within 10 simulation runs. 

• Once the flow decreases by more than 25% compared to the best signal program. 

• Once the average delay increases by more than 25%. 
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Appendix B 
 
B1. BOM for A Single Scaled Car 

Part # Part Name Description Qty Supplier Unit Cost Cost 

945-13450-
0000-100 

NVIDIA Jetson 
Nano Dev Kit 

NVIDIA JETSON 
NANO 4GB 
DEVELOPER KIT 
(B01) 

1 Silicon 
Highway  

 £        82.50   £        82.50  

SSCF-M2-
6-A2-R360 

M2 X 6mm Full 
Thread Cap Head 
Screws (DIN 912) - 
Thread Locking A2 
Stainless Steel 

M2 Metric Thread 
Size (2mm), Length 
(L): 6mm, Fully 
Threaded: Yes 

4 Accu   £          0.22   £          0.88  

SSCF-
M2.5-12-
A2 

M2.5 X 12mm Full 
Thread Cap Head 
Screws (DIN 912) - 
Thread Locking A2 
Stainless Steel 

M2.5 Metric Thread 
Size (2.5mm), Length 
(L): 12mm, Fully 
Threaded: Yes 

8 Accu   £          0.28   £          2.24  

HPN-M2.5-
A2 

M2.5 Hexagon 
Nuts (DIN 934) - 
A2 Stainless Steel 

A2-70 cold-worked 
Stainless Steel, also 
known as 18-8 or 304 
Stainless Steel 

8 Accu   £          0.03   £          0.24  

HPW-
M2.5-A2 

M2.5 Form A Flat 
Washers (DIN 125) 
- A2 Stainless Steel 

A2 Stainless Steel, 
also known as 18-8 or 
304 Stainless Steel 

8 Accu   £          0.03   £          0.24  

SDSQXAF-
032G-
GN6MA 

SanDisk 32GB 
Extreme A1 V30 
Micro SD Card 
(SDHC) + Adapter 
- 90MB/s 

microSDHC™ 
(32GB), 
microSDXC™ 
(64GB-256GB) 

1 MyMemory  £        13.99   £        13.99  

N/A 
Logitech C525 
Portable HD 
Webcam 

Logitech C525 
Portable HD Webcam 
with Fast Autofocus 

1 Amazon  £        54.99   £        54.99  

136-3088 
Edimax Bluetooth, 
WiFi USB 2.0 
Dongle 

Edimax 2-in-1 N150 
Wi-Fi and Bluetooth 
4.0 Nano USB 
Adapter 

1 RSOnline   £        16.96   £        16.96  

N/A 

Adafruit 16-
Channel 12-bit 
PWM/Servo Driver 
- I2C interface - 
PCA9685 

12-bit resolution for 
each output - for 
servos, 4us resolution 
at 60Hz update rate 

1 The PiHut   £        14.00   £        14.00  

RB-Spa-
1388 

HC-SR04 
Ultrasonic Range 
Finder 

Ultrasonic sensor 
distance measuring 
module 

2 RobotShop  £          3.65   £          7.30  

N/A 

Adafruit Premium 
Female/Female 
Jumper Wires - 20 
x 3" (75mm) 

N/A 1 The PiHut   £          2.00   £          2.00  

N/A 
HOBBYMATE 
Lipo Battery Safe 
Bag 

20 x 15 x 15 cm 1 Amazon  £          5.41   £          5.41  

     Total  £      200.75  
 

https://www.siliconhighwaydirect.com/product-p/945-13450-0000-100.htm
https://www.siliconhighwaydirect.com/product-p/945-13450-0000-100.htm
https://www.accu.co.uk/en/cap-head-screws/3792-SSCF-M2-6-A2
https://www.accu.co.uk/en/cap-head-screws/250410-SSCF-M2-5-12-A2-R360
https://www.accu.co.uk/en/hexagon-nuts/7886-HPN-M2-5-A2
https://www.accu.co.uk/en/flat-washers/72477-HPW-M2-5-A2
https://www.mymemory.co.uk/sandisk-32gb-extreme-a1-v30-micro-sd-card-sdhc-adapter-90mb-s.html?utm_source=google_shopping&gclid=EAIaIQobChMI1pDDivm-2gIViD4bCh0B7Al0EAkYAyABEgL86_D_BwE
https://www.amazon.co.uk/Logitech-Portable-Autofocus-360-degree-Rotating/dp/B01BGBJ8SQ/ref=sr_1_3?s=computers&ie=UTF8&qid=1540897538&sr=1-3&keywords=logitech+webcam&refinements=p_89%3ALogitech%2Cp_36%3A428445031#HLCXComparisonWidget_feature_div
https://uk.rs-online.com/web/p/wireless-adapters-wifi-dongles/1363088?cm_mmc=UK-PLA-DS3A-_-google-_-PLA_UK_EN_Computing+%26+Peripherals_Whoop-_-Wireless+Adapters+%26+WiFi+dongles_Whoop-_-PRODUCT_GROUP&matchtype=&pla-304990621831&s_kwcid=AL!7457!3!413122817731!!!g!304990621831!&gclid=Cj0KCQjwx7zzBRCcARIsABPRscOnBvCB7i0Gk8V4o20DNHqc_jgDM-7TAqhUh9IHtQ9jKcsQ0CdSTVUaAsKjEALw_wcB&gclsrc=aw.ds
https://thepihut.com/products/adafruit-16-channel-12-bit-pwm-servo-driver-i2c-interface-pca9685?variant=27740507729&gclid=EAIaIQobChMIyYClh6CH2gIVTowZCh0KnQLlEAkYAiABEgKiU_D_BwE#fo_c=1889&fo_k=8540ee869ffe3598e5a1c5c6faad3fd8&fo_s=gplauk
https://www.robotshop.com/uk/hc-sr04-ultrasonic-range-finder-sparkfun.html?gclid=EAIaIQobChMIyumJqrHj3gIVCflRCh3WvgSvEAkYASABEgJVpvD_BwE
https://thepihut.com/products/adafruit-premium-female-female-jumper-wires-20-x-3-75mm?variant=27739698577&gclid=EAIaIQobChMI3I2UqZ-H2gIVDJ4bCh0sYwhXEAkYASABEgLRZPD_BwE#fo_c=1889&fo_k=36c4bbb8344ce772fad19900f9aaf236&fo_s=gplauk
https://www.amazon.co.uk/HOBBYMATE-Lipo-Battery-Safe-Fireproof/dp/B07521JTLP/ref=asc_df_B07521JTLP/?tag=googshopuk-21&linkCode=df0&hvadid=222573034714&hvpos=&hvnetw=g&hvrand=4723073597563471111&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=1006839&hvtargid=pla-803587746954&psc=1
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B2. BOM for the Scaled Testbed 

Part # Part Name Description Qty Supplier Unit Cost Cost 

N/A 
EVA Foam (96 
square feet / 24 
tiles) 

EVA Foam Play Puzzle 
Mat Interlocking 
Exercise Tiles Floor 
Mat Grey 

96 ebay  £ 0.40   £ 38.29  

N/A 
Economy Matt 
Gaffer Tape 
(White) 

Matt (non-reflective 
finish), high strength 
adhesive 

4 GafferTape  £ 6.20   £ 24.80  

N/A 

Fluorescent 
Economy Matt 
Gaffer Tape 
(50m)(Fluorescent 
Orange) 

Anti-Reflection 
Coating, glows under 
artificial UV/Black 
light 

1 GafferTape  £ 8.26   £ 8.26  

N/A 

NETGEAR 
Nighthawk Smart 
Wifi Router 
(R7000) - 
AC1900 

NETGEAR Nighthawk 
Smart Wifi Router 
(R7000) - AC1900 

1 Amzon  £ 103.98   £ 103.98  

N/A 

Samsung 43" 
TU7100 HDR 
Smart 4K TV 
with Tizen OS 
[Energy Class A] 

Samsung 43" TU7100 
HDR Smart 4K TV 
with Tizen OS [Energy 
Class A] 

1 Amazon  £ 319.00   £ 319.00  

N/A 
Logitech C922 
Pro Stream 
Webcam 

Logitech C922 Pro 
Stream Webcam, Full 
HD 1080p 

2 Amazon  £ 119.99   £ 239.98  

      Total  £ 734.31  
 

  

https://www.ebay.co.uk/i/152869835325?chn=ps&var=452619973755&dispItem=1&adgroupid=51456996475&rlsatarget=pla-401454472228&abcId=1130076&adtype=pla&merchantid=118945322&googleloc=1006976&device=c&campaignid=1030309171&crdt=0
http://www.gaffatape.com/economy-matt-gaffer-tape/Default.aspx
http://www.gaffatape.com/Fluorescent-Economy-Matt-Gaffer-Tape-50m-1/Default.aspx
https://www.amazon.co.uk/NETGEAR-R7000-Nighthawk-WiFi-Router/dp/B00HDK4GAK
https://www.amazon.co.uk/Samsung-TU7100-HDR-Smart-Tizen/dp/B085RYF94Z/ref=sr_1_1?dchild=1&keywords=samsung+tv&qid=1610317049&refinements=p_n_size_browse-bin%3A9591878031&rnid=161398031&s=home-theater&sr=1-1
https://www.amazon.co.uk/Logitech-Stream-Streaming-3-month-License/dp/B01L6L52K4/ref=sr_1_1?s=computers&ie=UTF8&qid=1540897053&sr=1-1&keywords=C922%2BPro%2BStream&th=1
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Appendix C 
 
C1. Simulation Results on Average Vehicle Delay 
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C2. Simulation Results on Average Number of Stops 
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C3. Simulation Results on Average Vehicle Speed 
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C4. Simulation Results on Average Queue Length 
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C5. Simulation Results on Average Fuel Consumption 
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C6. Simulation Results on Average CO Emissions 
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C7. Simulation Results on Average NOx Emissions 
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C8. Simulation Results on Average VOC Emissions 
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Appendix D 
 

D1. Published Work 

 

The full text view version of the published paper can be accessed by using the link below: 

 

https://link.springer.com/epdf/10.1007/s10470-018-1152-
2?author_access_token=w0WJFa4wUghOauFDxMNEw_e4RwlQNchNByi7wbcMAY6E-
rJOAtBoilRadzYbo0PfAsS545Dd0gTtUUIRRIpRPfziNttrGoa7_gN2D3V4dGrh9s6bF3nz7NfgHTclL
Cq3k9l1Pru6PKOhEXpaU3QpwA%3D%3D 

 

 

 

 

https://link.springer.com/epdf/10.1007/s10470-018-1152-2?author_access_token=w0WJFa4wUghOauFDxMNEw_e4RwlQNchNByi7wbcMAY6E-rJOAtBoilRadzYbo0PfAsS545Dd0gTtUUIRRIpRPfziNttrGoa7_gN2D3V4dGrh9s6bF3nz7NfgHTclLCq3k9l1Pru6PKOhEXpaU3QpwA%3D%3D
https://link.springer.com/epdf/10.1007/s10470-018-1152-2?author_access_token=w0WJFa4wUghOauFDxMNEw_e4RwlQNchNByi7wbcMAY6E-rJOAtBoilRadzYbo0PfAsS545Dd0gTtUUIRRIpRPfziNttrGoa7_gN2D3V4dGrh9s6bF3nz7NfgHTclLCq3k9l1Pru6PKOhEXpaU3QpwA%3D%3D
https://link.springer.com/epdf/10.1007/s10470-018-1152-2?author_access_token=w0WJFa4wUghOauFDxMNEw_e4RwlQNchNByi7wbcMAY6E-rJOAtBoilRadzYbo0PfAsS545Dd0gTtUUIRRIpRPfziNttrGoa7_gN2D3V4dGrh9s6bF3nz7NfgHTclLCq3k9l1Pru6PKOhEXpaU3QpwA%3D%3D
https://link.springer.com/epdf/10.1007/s10470-018-1152-2?author_access_token=w0WJFa4wUghOauFDxMNEw_e4RwlQNchNByi7wbcMAY6E-rJOAtBoilRadzYbo0PfAsS545Dd0gTtUUIRRIpRPfziNttrGoa7_gN2D3V4dGrh9s6bF3nz7NfgHTclLCq3k9l1Pru6PKOhEXpaU3QpwA%3D%3D
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