19 research outputs found

    Model Driven Mutation Applied to Adaptative Systems Testing

    Get PDF
    Dynamically Adaptive Systems modify their behav- ior and structure in response to changes in their surrounding environment and according to an adaptation logic. Critical sys- tems increasingly incorporate dynamic adaptation capabilities; examples include disaster relief and space exploration systems. In this paper, we focus on mutation testing of the adaptation logic. We propose a fault model for adaptation logics that classifies faults into environmental completeness and adaptation correct- ness. Since there are several adaptation logic languages relying on the same underlying concepts, the fault model is expressed independently from specific adaptation languages. Taking benefit from model-driven engineering technology, we express these common concepts in a metamodel and define the operational semantics of mutation operators at this level. Mutation is applied on model elements and model transformations are used to propagate these changes to a given adaptation policy in the chosen formalism. Preliminary results on an adaptive web server highlight the difficulty of killing mutants for adaptive systems, and thus the difficulty of generating efficient tests.Comment: IEEE International Conference on Software Testing, Verification and Validation, Mutation Analysis Workshop (Mutation 2011), Berlin : Allemagne (2011

    Application of pure aspect-oriented design patterns in the development of AO frameworks: A case study

    Get PDF
    The paper discusses results of a case study on the advantages applying pure aspect design patterns in the development of aspect-oriented (AO) application frameworks. By an AO application framework we mean a framework which, alongside with traditional object-oriented (OO) framework customization mechanisms, provides also abstract aspects as hot spots. We have tested the hypothesis that pure AO design patterns should promote the ease of designing collaborating abstract aspects representing hot spots. To this end, we studied the process of reworking of the OO simulation application framework into the AO framework. During this study, appropriate qualitative and quantitative data have been collected. The paper presents the generalization of the collected data and concludes that the above hypothesis has been proven.Objektinio karkaso pertvarkymas naudojant aspektinius projektavimo šablonusŽilvinas Vaira, Albertas Čaplinskas SummaryStraipsnyje pateikiami aspektinių projektavimo šablonų naudojimo aspektiniams dalykiniams karkasams projektuoti eksperimentinio tyrimo rezultatai. Aspektinis dalykinis karkasas – tai toks karkasas, kuriame greta tradicinių objektinio karkaso riemonių naudojami ir abstraktūs aspektai. Atliekant tyrimą siekta išsiaiškinti, kokiu mastu aspektiniai projektavimo šablonai palengvina abstrakčiųjų aspektų ansamblių projektavimą tokiuose karkasuose. Eksperimentas atliktas kaip atvejo analizė. Analizuotas imitacinio modeliavimo uždavinių sprendimo karkaso pertvarkymas iš objektinio į aspektinį. Straipsnyje iškeltos kelios hipotezės apie aspektinių projektavimo šablonų naudojimo rezultatus ir pateikti tas hipotezes patvirtinantys šiame eksperimentiniame tyrime surinkti kokybiniai ir kiekybiniai duomenys.: 18px;">&nbsp

    A graph-based aspect interference detection approach for UML-based aspect-oriented models

    Get PDF
    Aspect Oriented Modeling (AOM) techniques facilitate separate modeling of concerns and allow for a more flexible composition of these than traditional modeling technique. While this improves the understandability of each submodel, in order to reason about the behavior of the composed system and to detect conflicts among submodels, automated tool support is required. Current techniques for conflict detection among aspects generally have at least one of the following weaknesses. They require to manually model the abstract semantics for each system; or they derive the system semantics from code assuming one specific aspect-oriented language. Defining an extra semantics model for verification bears the risk of inconsistencies between the actual and the verified design; verifying only at implementation level hinders fixng errors in earlier phases. We propose a technique for fully automatic detection of conflicts between aspects at the model level; more specifically, our approach works on UML models with an extension for modeling pointcuts and advice. As back-end we use a graph-based model checker, for which we have defined an operational semantics of UML diagrams, pointcuts and advice. In order to simulate the system, we automatically derive a graph model from the diagrams. The result is another graph, which represents all possible program executions, and which can be verified against a declarative specification of invariants.\ud To demonstrate our approach, we discuss a UML-based AOM model of the "Crisis Management System" and a possible design and evolution scenario. The complexity of the system makes con°icts among composed aspects hard to detect: already in the case of two simulated aspects, the state space contains 623 di®erent states and 9 different execution paths. Nevertheless, in case the right pruning methods are used, the state-space only grows linearly with the number of aspects; therefore, the automatic analysis scales

    Interim research assessment 2003-2005 - Computer Science

    Get PDF
    This report primarily serves as a source of information for the 2007 Interim Research Assessment Committee for Computer Science at the three technical universities in the Netherlands. The report also provides information for others interested in our research activities

    CrySL: An Extensible Approach to Validating the Correct Usage of Cryptographic APIs

    Get PDF
    Various studies have empirically shown that the majority of Java and Android apps misuse cryptographic libraries, causing devastating breaches of data security. It is crucial to detect such misuses early in the development process. To detect cryptography misuses, one must first define secure uses, a process mastered primarily by cryptography experts, and not by developers. In this paper, we present CrySL, a definition language for bridging the cognitive gap between cryptography experts and developers. CrySL enables cryptography experts to specify the secure usage of the cryptographic libraries that they provide. We have implemented a compiler that translates such CrySL specification into a context-sensitive and flow-sensitive demand-driven static analysis. The analysis then helps developers by automatically checking a given Java or Android app for compliance with the CrySL-encoded rules. We have designed an extensive CrySL rule set for the Java Cryptography Architecture (JCA), and empirically evaluated it by analyzing 10,000 current Android apps. Our results show that misuse of cryptographic APIs is still widespread, with 95% of apps containing at least one misuse. Our easily extensible CrySL rule set covers more violations than previous special-purpose tools with hard-coded rules, with our tooling offering a more precise analysis

    Derivation and consistency checking of models in early software product line engineering

    Get PDF
    Dissertação para obtenção do Grau de Doutor em Engenharia InformáticaSoftware Product Line Engineering (SPLE) should offer the ability to express the derivation of product-specific assets, while checking for their consistency. The derivation of product-specific assets is possible using general-purpose programming languages in combination with techniques such as conditional compilation and code generation. On the other hand, consistency checking can be achieved through consistency rules in the form of architectural and design guidelines, programming conventions and well-formedness rules. Current approaches present four shortcomings: (1) focus on code derivation only, (2) ignore consistency problems between the variability model and other complementary specification models used in early SPLE, (3) force developers to learn new, difficult to master, languages to encode the derivation of assets, and (4) offer no tool support. This dissertation presents solutions that contribute to tackle these four shortcomings. These solutions are integrated in the approach Derivation and Consistency Checking of models in early SPLE (DCC4SPL) and its corresponding tool support. The two main components of our approach are the Variability Modelling Language for Requirements(VML4RE), a domain-specific language and derivation infrastructure, and the Variability Consistency Checker (VCC), a verification technique and tool. We validate DCC4SPL demonstrating that it is appropriate to find inconsistencies in early SPL model-based specifications and to specify the derivation of product-specific models.European Project AMPLE, contract IST-33710; Fundação para a Ciência e Tecnologia - SFRH/BD/46194/2008

    Modular verification of dynamically adaptive systems

    Full text link

    UML consistency rules: a systematic mapping study

    Get PDF
    Context: The Unified Modeling Language (UML), with its 14 different diagram types, is the de-facto standard tool for objectoriented modeling and documentation. Since the various UML diagrams describe different aspects of one, and only one, software under development, they are not independent but strongly depend on each other in many ways. In other words, the UML diagrams describing a software must be consistent. Inconsistencies between these diagrams may be a source of the considerable increase of faults in software systems. It is therefore paramount that these inconsistencies be detected, ana
    corecore