
Edward Mauricio Alférez Salinas

Derivation and Consistency Checking of
Models in Early Software Product Line

Engineering

Dissertação para obtenção do Grau de Doutor em
Engenharia Informática

Orientadora : Prof. Dra. Ana Maria Diniz Moreira,
Associate professor, Universidade Nova de Lisboa

Co-orientador : Prof. Dr. Vasco Miguel Moreira do Amaral,
Assistant professor, Universidade Nova de Lisboa

Júri:

Presidente: Prof. Dr. Luís Manuel Marques da Costa Caires

Arguentes: Prof. Dr. Xavier Franch
Prof. Dr. Jean-Michel Bruel

Vogais: Prof. Dr. António Rito Silva
Prof. Dr. Ademar Manuel Teixeira de Aguiar
Prof. Dr. João Batista da Silva Araújo Júnior
Prof. Dra. Ana Maria Diniz Moreira
Prof. Dr. Vasco Miguel Moreira do Amaral

Dezembro, 2012

iii

Derivation and Consistency Checking of Models in Early Software Product
Line Engineering

Copyright c© Edward Mauricio Alférez Salinas, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito,
perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de
exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro
meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios
científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de
investigação, não comerciais, desde que seja dado crédito ao autor e editor.

iv

a mi amada familia

vi

Acknowledgements

The path to pursue a Ph.D. is not only embellished of fresh ideas, sudden inspiration and
scientific beauty; it is often a path with many obstacles and throwbacks. However, thanks
to God I was able to make my way regardless all the difficulties.

Also, I want to thank special people that accompanied and supported me. First, I want
to thank to my parents who supported me, my dreams, ideas, and plans from the very
beginning of my life. Furthermore, I want to acknowledge my brother that believed in me,
and that together with my parents encouraged me to start and finish this Ph.D. project.

In my life I had many teachers, mentors, and professors – too many to mention here.
Certainly, my advisers played a key role in my dissertation. It is worth noting that I had
not just one adviser, but two advisers who supported me in different ways. First, Ana
Moreira helped me to refine my style in scientific thinking, working, and writing. She
called me to work in her team in Portugal for a European project and next gave me the
opportunity for doing my Ph.D. Second, I want to thank my co-advisor Vasco Amaral who
believed in my abilities and supported me unconditionally. I learned many invaluable
truths from him about the world of research, science, and academics. I thank to Ana and
Vasco for every discussion about fundamental issues of my research. It was an honour
and a real pleasure working with them. Their support, encouragement, and advice have
gone further than I would have imagined and expected.

As further mentors I want to thank Marta Silvia Tabares and Raquel Anaya. I met and
worked with them before starting my Ph.D. work. I profited always from our discussions
and useful advice that helped me to believe in research and to continue my studies in
Europe. During the years of my Ph.D. studies I worked and discussed with many other
researchers that contributed to the evolution of my thinking and understanding of many
problems in computer science. Apart from my advisers and mentors some of the most
influential persons were João Araújo, Uirá Kulesza and Roberto Lopez-Herrejon.

A special thank-you goes to the Centro de Informática e Tecnologias de Informação
(CITI), Portugal, the Departamento de Informática of the Universidade Nova de Lisboa,
the European Project AMPLE, contract IST-33710, and the Fundação para a Ciência e a
Tecnologia that through the grant SFRH/BD/46194/2008 supported me financially and

vii

viii

organizationally over all this time.
Lastly, I offer my regards and blessings to all my friends and relatives that supported

me in any respect during this period of my life.

Abstract

Software Product Line Engineering (SPLE) should offer the ability to express the derivation of
product-specific assets, while checking for their consistency. The derivation of product-specific
assets is possible using general-purpose programming languages in combination with techniques
such as conditional compilation and code generation. On the other hand, consistency checking can
be achieved through consistency rules in the form of architectural and design guidelines, program-
ming conventions and well-formedness rules. Current approaches present four shortcomings: (1)
focus on code derivation only, (2) ignore consistency problems between the variability model and
other complementary specification models used in early SPLE, (3) force developers to learn new,
difficult to master, languages to encode the derivation of assets, and (4) offer no tool support.

This dissertation presents solutions that contribute to tackle these four shortcomings. These
solutions are integrated in the approach Derivation and Consistency Checking of models in early
SPLE (DCC4SPL) and its corresponding tool support.

The two main components of our approach are the Variability Modelling Language for Require-
ments (VML4RE), a domain-specific language and derivation infrastructure, and the Variability
Consistency Checker (VCC), a verification technique and tool. We validate DCC4SPL demonstrat-
ing that it is appropriate to find inconsistencies in early SPL model-based specifications and to
specify the derivation of product-specific models.

Keywords: Software Engineering, Software Product Line Engineering, Model-Driven Develop-

ment, Domain-Specific Languages Engineering, Software Verification, Modelling.

ix

x

Resumo

Engenharia de Linhas de Produtos de Software (ou SPLE, do inglês Software Product Line
Engineering) deve ser capaz de expressar a derivação de artefactos para produtos específicos, ao
mesmo tempo que verifica a sua consistência. A derivação de artefactos para produtos específicos é
possível usando linguagens de programação de propósito geral em combinação com técnicas como
compilação condicional e geração de código. Por outro lado, a verificação de consistência pode
ser alcançada através de regras de consistência na forma de diretrizes de desenho e arquitetura,
convenções de programação e regras de boa formação. As abordagens atuais apresentam quatro
insuficiências: (1) concentram-se apenas na derivação de código, (2) ignoram problemas de
consistência entre o modelo de variabilidade e outros modelos de especificação complementares
utilizados nas fases iniciais do SPLE, (3) forçam aos desenvolvedores a aprender novas linguagens,
difíceis de dominar, para codificar a derivação de artefactos, e (4) não oferecem suporte ferramental.

Esta dissertação apresenta soluções que contribuem para enfrentar estas quatro insuficiências.
Estas soluções são integradas na abordagem DCC4SPL (do inglês Derivation and Consistency
Checking of models in early SPLE) e suas ferramentas de suporte.

As duas principais componentes da nossa abordagem são o VML4RE (do inglês Variability Mo-

delling Language for Requirements), uma linguagem de domínio específico e infraestrutura derivação,

e o VCC (do inglês Variability Consistency Checking), uma técnica e ferramenta de verificação. A

abordagem foi validada, demonstrando que o DCC4SPL é apropriado para identificar inconsistên-

cias nas especificações de Linhas de Produtos de Software baseadas em modelos e para especificar

a derivação de modelos para produtos específicos.

Palavras-chave: Engenharia de Software, Engenharia de Linha de Produto de Software, Desen-

volvimento Dirigido por Modelos, Engenharia de Linguagens de Domínio Específico, Verificação

de Software, Modelação.

xi

xii

Contents

I Overview 3

1 Introduction 5

1.1 Research Question . 7

1.2 Research Topics . 9

1.3 Contribution Overview . 10

1.4 Research Method . 13

1.5 Research Context . 15

1.6 Structure of this Dissertation . 16

2 Background 19

2.1 Overview . 19

2.2 Fundamentals . 20

2.2.1 Separation of Concerns (SoC) . 22

2.2.2 Software Composition and Decomposition 22

2.2.3 Modelling and Resulting Models 22

2.2.4 Consistency . 23

2.2.5 Reuse . 23

2.2.6 Customization . 23

2.2.7 Variability and Commonality . 23

2.3 Approaches and Models . 24

2.3.1 Software Product Line Engineering (SPLE) 24

2.3.2 Model-Driven Development (MDD) 28

2.3.3 Domain-Specific Language Engineering (DSLE) 30

2.3.4 Consistency Checking . 32

2.4 Summary . 33

xiii

xiv CONTENTS

3 DCC4SPL Approach 35

3.1 DCC4SPL Process Overview . 35

3.2 DCC4SPL Example . 39

3.2.1 Create or Modify Feature Model . 39

3.2.2 Create or Modify Model-Based Specifications 39

3.2.3 Create or Modify VML4RE Composition Specification 43

3.2.4 Check Consistency Using VCC . 44

3.2.5 Create Feature Model Configuration(s) 46

3.2.6 Derive Model-Based Specifications for Product(s) Using VML4RE . 46

3.3 Main Elements . 47

3.3.1 Preliminars . 47

3.3.2 Abstract Syntax . 49

3.3.3 Semantics . 58

3.4 Inside VML4RE . 59

3.4.1 Abstract Syntax . 59

3.4.2 Syntactic Mapping . 63

3.4.3 Semantics . 66

3.5 Inside VCC . 70

3.5.1 Abstract Syntax . 70

3.5.2 Semantics . 73

3.6 Tool Support . 77

3.6.1 DCC4SPL External Tools . 77

3.6.2 DCC4SPL Tool . 80

3.7 Summary . 81

4 Validation 83

4.1 Goal and Research Questions . 83

4.2 Attributes and Metrics . 84

4.2.1 Attributes with Quantitative Metric Values 85

4.2.2 Attributes with Qualitative Metric Values 87

4.3 Case Studies . 89

4.4 Validation Settings . 90

4.4.1 Study Phases and Assessment Procedures 90

4.5 Quantitative and Qualitative Validation . 93

4.5.1 Qualitative Validation . 93

4.5.2 Quantitative Validation . 96

4.6 Summary of Results . 97

4.7 Summary . 98

CONTENTS xv

5 Conclusions 99
5.1 Summary of Contributions . 99
5.2 Future Work . 100
5.3 Final Remarks . 101

6 Bibliography 103

II Research Papers 115

7 Introduction 117

8 A Model-Driven Approach for Software Product Lines Requirements Engineer-
ing 119

9 Multi-View Composition Language for Software Product Line Requirements 127

10 VML* – A Family of Languages for Variability Management in Software Prod-
uct Lines 149

11 Model-Driven Requirements Specification for Software Product Lines 173

12 Evaluating Approaches for Specifying Software Product Line Use Scenarios 187

13 Supporting Consistency Checking between Features and Software Product Line
Use Scenarios 215

14 Ensuring Consistency Between Feature Models and Model-Based Specications
- The VCC Approach 233

xvi CONTENTS

List of Figures

2.1 Informal sketch representing some of the fundamental concepts, approaches,
models, and their relationships presented in this dissertation. 21

2.2 SPL process framework (adapted from [79]). 26

2.3 Example of feature model for an E-Shop SPL [32]. 28

2.4 (Left) Four-layers metamodel hierarchy, (Right) An example of the four-
layer metamodel hierarchy using Meta-Object Facility (MOF). 29

3.1 DCC4SPL main activities and artefacts. 36

3.2 (a) Simplified sample of the Smart Home feature model, (b) Sample configu-
ration that includes all features, and (c) Sample configuration that excludes
the Automated Windows feature. 40

3.3 (a) Sample customized model-based specifications for Product-1, (b) Map-
ping between feature expressions and model fragments, and (c) Notation
used in use case and activity diagram in (a). 41

3.4 Sample use case diagram for SMART HOME containing only model elements
related to mandatory features. 42

3.5 Composition specification of variants A-W (associated to an atomic feature
expression - AUTOMATED WINDOWS) and R-H (associated to a compound
feature expression - AND ("REMOTE HEATING CTRL" , "AUTOMATED

HEATING" , "INTERNET"). 43

3.6 Sample configuration that excludes all the features except Automated Win-
dows. 47

3.7 Main parts in the DCC4SPL metamodel. 49

3.8 Some of the UML metaclasses related to scenario modelling and to the Use
Scenarios Model and Model Element metaclasses of DCC4SPL. 51

3.9 Part of the UML metamodel focused on activity diagrams. 52

3.10 Part of UML focused on use case diagrams. 54

3.11 Metaclasses from SPLOT for feature models. 56

xvii

xviii LIST OF FIGURES

3.12 Parts of the DCC4SPL metamodel related to VML4RE. 60
3.13 Actions in VML4RE. 62
3.14 First part of the concrete syntax specification of VML4RE related to VML4RE

and Variant. 63
3.15 Second part of the concrete syntax specification of VML4RE related to actions. 65
3.16 Third part of the concrete syntax specification of VML4RE related to Mod-

elElement and Expressions. 66
3.17 (c) Sample VML4RE model fragment related to the variant remote heating

control in the Smart Home and its corresponding: (a) metamodel, (b) con-
crete syntax specification, and (d) relationships between model elements
related to the sample model fragment. 67

3.18 Graph rule to insert an Association between actorY and useCaseX 69
3.19 Graph rule to replace useCaseB by useCaseC. 70
3.20 Parts of DCC4SPL metamodel related to VCC. 71
3.21 Mapping feature model elements to propositional logic and CNF ([22][28]). 78
3.22 DCC4SPL tool support high-level architectural view. 79

4.1 Feature model for the CCCMS SPL. 91

List of Tables

1.1 Publications mapped to their contributions. 13

4.1 Main research questions related to the research topics and the sub-questions
used to address them. 84

4.2 Attributes used during quantitative validation. 85
4.3 Attributes used during qualitative validation. 87
4.4 Summary of the rules implemented in our study and applied (*) for Smart

Home (SH), CCCMS (CC), Mobile Photo (MP). 93
4.5 Information of the size in the case studies. 95
4.6 Number of elements in the composition specifications and consistency

checking time in the case studies. 96
4.7 Summary of quantitative validation. The upwards arrow means “Good”,

the rightwards arrow means “Average”, and the downwards arrow means
“Bad”. 96

4.8 Summary of validation results for DCC4SPL. 98

xix

xx LIST OF TABLES

Abbreviations

AMPLE Aspect-Oriented, Model-Driven Product Line Engineering
AOM Aspect-Oriented Modelling
AOSD Aspect-Oriented Software Development
CCCMS Car Crash Crisis Management System
CNF Conjunctive Normal Form
DCC4SPL Derivation and Consistency Checking of models in early SPLE
DSL Domain Specific Language
DSLE Domain Specific Language Engineering
EBNF Extended Backus–Naur Form
Ecore Eclipse Modelling Framework Core
EMF Eclipse Modelling Framework
HUTN Human Usable Textual Notation
MDD Model-Driven Development
MOF Meta-Object Facility
OMG Object Management Group
OOP Object-Oriented Programming
SPL Software Product Line
SPLE Software Product Line Engineering
UML Unified Modelling Language
VCC Variability Consistency Checker
VML4RE Variability Modelling Language for Requirements

1

LIST OF TABLES LIST OF TABLES

2

Part I

Overview

3

1
Introduction

The current trend of globalization is pressuring organizations developing software-
intensive products to explore efficient ways to provide high-quality products of increasing
size and complexity customized to the special needs of individual customers of market seg-
ments. Software Product Line Engineering (SPLE) [79, 27, 31] is a software development
paradigm that aims at addressing this challenge based on the observation of three facts:
(1) most products in a market segment or application domain are not new, (2) products
usually share many common features, and (3) most organizations build software systems
in a particular domain, repeatedly releasing product variants by removing features or
adding new features. SPLE takes into account these three insights to provide an approach
to increase the productivity of software development organizations, enabling them to cope
with the diversity of the global market to develop product variants through systematic
reuse of software assets which have been proactively planned with respect to expected
future requirements [86].

During the first years of SPLE, attention has been focused on detailed design and code
generation for new products. To date there is no effective approach to deal with the issue
of derivation and consistency checking of models during early modelling of Software
Product Lines (SPLs). Early modelling is requirements specification and architectural
design. This part of the software development process eases reasoning about the products
to be derived, establishes critical trade-offs early in the software life cycle, and supports
the creation of software specifications for the developers before implementation in code
(where changes may be difficult and expensive to make).

This dissertation addresses the issue of derivation and consistency checking of models
with a focus on early modelling. To ease the derivation of products, which should
be automated as much as possible, it is not enough to collect software assets such as

5

1. INTRODUCTION

requirements and architectural models in a repository, expecting that they will be reused
for the creation of new products. Instead, it is required to describe what assets are available,
what variable and common features the assets have, which features will be part of each
product, and how each selection of features triggers the transformation of reusable assets
to create concrete software products. The way these descriptions are made, used, and
processed represents a significant research challenge due to the difficulty to modularize
variabilities and to express and derive concrete products at the level of abstraction that
the modellers require.

Products derivation cannot be addressed in isolation because the quality of the prod-
ucts is also determined by the consistency between the feature model (an SPL variability
model) and other assets that model the features. The problem of deriving products using
inconsistent inputs is that it produces products that do not satisfy their requirements,
therefore of low-quality and less cost-effective (due to the effort and time to find inconsis-
tencies and repair their effects during code derivation). In the context of this dissertation,
inconsistencies are violations of consistency rules (architectural and design guidelines,
programming conventions and well-formedness rules) established between a variability
model and other models. Inconsistencies are rarely simple in practise because they may
involve several interrelated features and model fragments in different models which are
usually developed by diverse stakeholders.

In addition to the derivation of products and consistency checking, a common factor
that adds complexity to the development of SPLs is that there is not one customer or com-
pany supplying the requirements. In fact there are potentially hundreds of yet unknown
customers which make the number of features, assets, and their incompatibilities and
dependencies to rise exponentially. To derive products or to check consistency given a
large number of combinations of features is not feasible without an adequate approach
and proper automation support.

This dissertation addresses models derivation and consistency checking by proposing
a novel and tool-supported approach called Derivation and Consistency Checking of
models in early SPLE (DCC4SPL). One of the main characteristics of DCC4SPL is that it
employs models that help developers to work at the level of abstraction that they require.
This right level of abstraction is reached by hiding or masking implementation details,
using a specification vocabulary familiar to system modellers, bringing out the big picture,
or focusing on different aspects of a system. The use of models favours the application of
Model-Driven Development (MDD) [94, 85] where models are the primary development
assets, and concrete systems are produced as a result of model transformations. Thus,
DCC4SPL uses SPL assets as input models that are transformed to derive customized
models expressing product requirements specifications or architectural models. Given that
the languages used to write the models have a well-defined form (syntax) and meaning,
DCC4SPL automates the mining and processing of dependencies and incompatibilities
the variability model and other models to check consistency of the SPL specification.

The two main parts of DCC4SPL are models derivation and consistency checking.

6

1. INTRODUCTION 1.1. Research Question

Models derivation is supported by VML4RE. VML4RE is a Domain Specific Language
(DSL) that specifies how to derive models for specific products based on the transformation
of reusable model fragments. This language eases the derivation of models by specifying
usually complex model transformations employing a vocabulary familiar to requirements
engineers and software architects. VML4RE is inspired in the Aspect-Oriented paradigm
[44, 19] and, therefore, it refers to the process of derivation of models as a composition
process designed to weave different models and model fragments related to several
systems concerns (each concern corresponds to a feature or groups of features in the SPL
context) to finally produce the models for concrete systems.

The second part of DCC4SPL is VCC, which addresses consistency checking between
feature models and other models that design the features, for example: activity and com-
ponent diagrams. VCC mines relationships between features from the feature model and
from other models that design the features. Then, it employs propositional formulas to
relate all the mined relationships. Checking if all the products in an SPL satisfy consistency
rules is based on searching for a satisfying assignment of a propositional formula. The
novelty of VCC, is fourfold: (1) it can be applied to early model-based SPLE such as
requirements specification and architectural design, (2) it considers complex composition
situations where the customization of models for specific products depends on the pres-
ence or absence of sets of features (or any other variability unit), (3) it checks consistency
for the entire SPL instead of individual products, without compromising efficiency, and
(4) since our focus is on early modelling, VCC does not assume a correct and complete
feature model; instead, it helps developers to complete the feature model based on the
detected inconsistencies with respect to other models.

As noted at the beginning of this section, one of the important objectives of SPLE is the
efficient derivation of high-quality products. While the results related to the achievement
of these challenges demonstrate the value of DCC4SPL, the organizational and economical
aspects also determine the success in SPLE but are out of the scope of this dissertation. We
believe that no single tool or approach can provide the optimal and general solution for
any software engineering problem. Instead, the contributions of this dissertation provide
significant pieces in SPLE and its technology tool box that consist of the tool-supported
approach DCC4SPL.

1.1 Research Question

Based on the need to support the derivation of particular products from reusable assets,
and the need to check consistency between the SPL feature model and the assets that are
modelling its features, the main research statement of our work is to investigate:

How to guarantee effective consistency checking and derivation of product-specific
models in early Software Product Line Engineering?

7

1. INTRODUCTION 1.1. Research Question

To understand the meaning of this research question we will analyse it into its six major
keywords1:

• Guarantee means “to assure a particular outcome”2. In the context of this dissertation
the main outcome is the derivation of products and consistent specification in early
modelling (i.e., requirements and architecture modelling). This outcome includes
two parts: (1) specifications on how to derive product-specific early models (or
model-based specifications) expressed at the level of abstraction that developers require,
and (2) the guarantee that the early models and the feature model of the SPL are
consistent between them. (These will be explained further in Section 1.2 - Research
Topics)

• Effective means two things: first, “producing or capable of producing an intended
result” and second, “presently existing in fact and not merely potential or possible”3.
This means that apart from providing a conceptual base and process we are also
interested in a prototypal tool support that concretizes them.

• Consistency means “ability to be asserted together without contradiction” and “agree-
ment or harmony of parts or features to one another or a whole”4. Inconsistencies
result from the violations of consistency conditions that can be as diverse as architec-
tural and design guidelines, programming conventions and well-formedness rules.
In the context of this dissertation, consistency checking implies the verification of
consistency conditions related to the relationships between the feature model and
its related model-based specifications. Such relationships may be dependencies and
incompatibilities between parts of models, and dependencies and incompatibilities
between features.

• Derivation means “the act of obtaining something from a source or origin”5. In the
context of this dissertation, derivation of products means to transform requirements
and architectural models to obtain product-specific requirements and architectural
models. In Aspect-Orientation it is common to use the term “composition” to
refer the idea of “bringing together separately created software elements” [44].
Given that the VML4RE tool that supports the derivation of products is inspired in
the Aspect-Orientation paradigm, we usually employ the term “composition” to
refer to the derivation process. We use model transformations to actually perform
the composition. Model transformations allow adding, removing, connecting, or
replacing parts of models with new or already existing parts of other models.

• Early Modelling means to specify system concerns at the requirements specification
and architectural design development stages. Examples of models used during early

1Some of them will be further discussed during Chapter 2 - Background.
2http://www.thefreedictionary.com/guarantee
3http://www.thefreedictionary.com/effective
4http://www.merriam-webster.com/dictionary/consistency
5http://www.thefreedictionary.com/derivation

8

1. INTRODUCTION 1.2. Research Topics

modelling of software are use case, activity and components diagrams written in the
Unified Modelling Language (UML). In a model-driven perspective of software de-
velopment the use of models provide a vehicle to direct the course of understanding,
design, construct, deploy, operate, maintain and modify software [70].

• Software Product Line means “a set of software-intensive systems that share a com-
mon, managed set of features satisfying the specific needs of a particular market
segment or mission and that are developed from a common set of core assets in a
prescribed way” [27]. We provide background information about software product
line engineering in Subsection 2.3.1 - Software Product Line Engineering (SPLE).

The previous six keywords that compose our main research question establish the central
goal of this dissertation: to provide an approach with tool support that guarantees the
derivation of product-specific early models assuring that what it is supposed that the SPL
can produce (expressed in a variability model such as a feature model) does not contradict
with the definition of what can be actually produced (expressed with early models).

1.2 Research Topics

The research question sets the context of our research agenda, which we decomposed
into two finer-grained, more focused topics that constitute the main concerns of this
dissertation:

1. Support to express and perform product-specific models derivation. General-
purpose model transformation languages, such as ATL [52], AGG [89], QVT 6 [75]
require that developers have a deep knowledge of the abstract syntax of the models
to describe their composition. However, most developers do not know the details
of the abstract syntax of the languages that they use [51]. Also, even if developers
know those details, there is still a barrier of learning and applying correctly the
specifities (e.g., syntax and computing style) of new highly specialized languages
such as model transformations languages. This research topic leads to the following
research question:

Question 1. How to support expressing and perfoming product-specific model
derivation?

2. Support for consistency checking between variability model and other models.
To produce product-specific models from an SPL, models have to be composed
according to a specific selection of variability units (e.g., features) from a variability
model (e.g., a feature model). This process requires a mapping between variability
units, and artefacts, such as models, that specify them. A number of different
approaches have been proposed to create mappings among variability models

6http://www.eclipse.org/projects/project.php?id=modeling.m2m.qvt-oml

9

1. INTRODUCTION 1.3. Contribution Overview

and other models [48, 31]. However, ensuring consistency between variability
models and not code-based assets has not been thoroughly researched. Consistency
checking is particularly important given the need to assure that variability and
models’ constraints are reliable. Failures in consistency will produce customized
systems that do not satisfy their requirements. This research topic leads to the
following research question:

Question 2. How to support consistency checking between the variability model
and other models?

The definition of these two research topics was necessary to set the boundaries and
the focus of the research presented in this dissertation. The results of the research and
development on these two research topics, guided by Question 1 and Question 2, lead to
the major contributions of this Ph.D. dissertation.

1.3 Contribution Overview

The three main contributions of DCC4SPL organized by research question are as follow:

1. Model derivation using VML4RE. The research question 1: “How to support express-
ing and performing product-specific model derivation?” is addressed with the Variability
Modelling Language for Requirements (VML4RE). VML4RE is both a domain spe-
cific language and derivation infrastructure specifically tailored to express how
to derive product-specific requirements models. We provided a specialization of
VML4RE to model use scenarios as it provides language constructs (e.g., actions7)
specifically designed for compositions of UML use cases and activity diagrams.
VML4RE was one of the base languages used to create Variability Modelling Lan-
guage (VML*) which was a common contribution created as a collaboration between
the partners of the research project AMPLE (Section 1.5 - Research Context). VML*
is used as an infrastructure to support the creation of new languages similar to
VML4RE, each one specialized in a different kind of models. For example a ver-
sion for architecture called VML4Arch was developed [97]. VML4RE presents the
following benefits:

• Vocabulary familiarity. It supports the process to specify the derivation of
product-specific models, using a vocabulary (i.e., syntax) and concepts fa-
miliar to SPL developers. This hides the details of the model transformation
language and process from the SPL developers. Thus, helping them to avoid
thinking about many of the implementation details of general purpose model
transformation languages.

7Action is the term used to refer to calls to model transformations written using a language familiar to
developers.

10

1. INTRODUCTION 1.3. Contribution Overview

• Derivation flexibility. It provides actions types for both positive8 and negative9

models’ derivation mechanims.

• Modularity. It supports a better modularization of feature specifications. It
allows to model each feature, or group of closely related features, in separated
models. Also, it separates variability information (i.e., configuration knowl-
edge10), instead of integrating it directly into the SPL models as other authors
propose (e.g., [30, 45, 25]). Modularity to express feature specifications and vari-
ability information leads to better stability of the early models specifications,
composition specifications and configuration knowledge.

2. Consistency checking between variability model and other models using VCC.
The research question 2: “How to support consistency checking between the variability
model and other models?” is addressed with the Variability Consistency Checking
(VCC). VCC is a verification approach and tool that supports consistency checking
between a variability model (e.g., a feature model), and the models that design the
variability units of the variability model (e.g., features). There are different kinds of
models used to design (sometimes we say, realize) the meaning of variability units,
for example: use case, activity, and component diagrams.
VCC mines constraints between variability units from the variability model and from
the models that design variability. Then, VCC employs propositional formulas to
relate all the mined constraints. Checking if all the products in an SPL satisfy consis-
tency constraints is based on searching for a satisfying assignment of a propositional
formula. VCC also presents the elements involved in a violation of a consistency rule
and explains the cause of the inconsistency. VCC presents the following benefits:

• Consistency checking genericity. It can be applied to check consistency of any
model. We show examples of features models and several types of UML
models, such as use case, activity and component diagrams. Also, it considers
complex composition situations where the derivation of models for specific
products depends on the evaluation of variability unit expressions11, and not
only depending on the presence or absence of individual variability units.

• Consistency checking multi-view awareness. It can check consistency between
multiple models and the variability specification independently of the number
of languages employed.

8Positive variability is a derivation mechanism where new models are created adding parts to an initial
model.

9Negative variability is a derivation mechanism where new models are created removing parts from an
initial model.

10Configuration knowledge is the mapping between features and model fragments and the information on
how to derive product-specific models according to selections of features.

11Variability unit expressions (e.g., feature expressions) are represented as different kinds of propositional
formulas: variability unit name, negation, conjunction and disjunction.

11

1. INTRODUCTION 1.3. Contribution Overview

• Consistency checking scalability. It checks consistency of all possible products
during domain engineering, without compromising the performance of the
verification process.

3. Tool support. The tool support contributes both research topics: “support to express
and perform product-specific models derivation” and “support for consistency
checking between variability model and other models”. We developed three tool
prototypes:

• VML4RE. VML4RE uses EMFTEXT12 which provides the software infrastruc-
ture to derive a concrete syntax and Eclipse plug-in editor based on the meta-
model of each language written in EMF13 Ecore14. This technology separates
concrete syntax and abstract syntax, easing maintenance of the languages.
The style of the concrete syntax chosen for VML4RE is HUTN (Human Us-
able Textual Notation)15 provided by EMFTEXT. This style and the VML4RE
language constructs, provide a suitable notation for describing requirements
composition.

• VCC. This tool alleviates developers from the tedious and error-prone task of
manually checking variability models and their related model-based specifi-
cations for consistency. VCC has several reusable components, for example
to map variants and model elements, to assign and persist identifiers for vari-
ability units, to translate from propositional logic to Conjunctive Normal Form
(CNF) form (a format readable by satisfiability solvers), and to create constraints
based on composition specifications and model-based specifications.

• Feature model metamodel and editor. This implementation is written in EMF
Ecore. The metamodel was a translation to EMF Ecore of the features model
implemented as a Java library by the Software Product Lines On-line Tools
(SPLOT) research community. All our implementation is open-source and
relased as two Eclipse plug-ins in the SPLOT website16.

The contributions of this work have been published and presented in international confer-
ences and in specialized book chapters (Part II - Research Papers includes a copy of the
most relevant). The publications target the research topics and contribute to specific parts
of the DCC4SPL approach (described in Chapter 3). Part II - Research Papers provides
more information about each publication such as authors, summary, authors’ contribution,
publication event and references to workshops, technical reports and papers presented in
journals and conferences that complement the main publications.

12http://www.emftext.org/: EMF textual concrete syntax mapper.
13www.eclipse.org/emf/: Eclipse Modeling Framework.
14www.eclipse.org/emf/: EMF Core.
15http://www.omg.org/spec/HUTN/: The HUTN specification.
16http://www.splot-research.org/: Software Product Line Online Tools.

12

1. INTRODUCTION 1.4. Research Method

No Title of the Publication Contrib.

A A Model-Driven Approach for Software Product Lines Requirements Engineering [9] 1

B Multi-View Composition Language for Software Product Line Requirements [15] 1, 3

C VML* – A Family of Languages for Variability Management in Software Product Lines [97] 1, 3

D Model-Driven Requirements Specification for Software Product Lines [13] 1

E Evaluating Approaches for Specifying Software Product Line Use Scenarios [6] 1

F Supporting Consistency Checking between Features and SPL Use Scenarios [12] 2, 3

G Ensuring Consistency between Feature Models and Model-Based Specifications 2, 3

- The VCC Approach [11]

Table 1.1: Publications mapped to their contributions.

Table 1.1 lists the publications and assigns to them an identifier to facilitate the descrip-
tion of each contribution and the reference of each publication. Table 1.1 also summarizes
the relationships between contributions and publications. The research papers that con-
tributed the most to define the specification of models derivation are papers A to E, and
the research papers that contributed the most to define the consistency checking are papers
F to G. Tool support is defined in several papers, from B to C, and from F to G.

1.4 Research Method

In this dissertation we based our research in the Technology17 Research method. This method
is suitable for the purpose of producing new or better artefacts [84]. Once new artefacts
are ready, researchers have to show that they actually fulfil the posed requirements and
thereby satisfying the need on which they are based. Technology research does not always
produce artefacts that are complete, regarded from a user’s point of view. It is common
to make a so-called functional prototype, which must be able to undergo the necessary
evaluation. If the prototype looks promising, it can later on be elaborated to a complete,
commercial product. Such finalization is typically done by other people than researchers
[84].

The main steps in the technology research process are:

• Problem analysis where researchers answer “what is the potential need” for a new
technology. In this step researchers identify a need for new or better artefacts .

• Innovation where researchers answer “how to make an artefact that satisfies the need”
identified during problem analysis. In this step researchers produce new or better
artefacts.

• Validation where researchers answer “how to show that the artefact satisfies the need”.
In this step it is necessary to check that the artefacts created during innovation satisfy
their requirements. When new artefacts are obtained, the researcher has a basis for

17Technology: “the knowledge of artefacts emphasizing their manufacturing” [84].

13

1. INTRODUCTION 1.4. Research Method

new questions, leading to new investigations. Therefore, technology research is an
iterative process.

Next, for each step we outline a summary on how we followed the technology research
process in this work:

1. Problem analysis. Based on the literature review and the analysis of existing
approaches for SPLE, we found two problem areas which were introduced in
Section 1.1: “support to express and perform product-specific models derivation”,
and “support for consistency checking between variability model and other mod-
els”. We presented the literature review in a technical report of the state-of-the-art
in model-driven SPL [60]. Also, the industrial partners of our European research
project AMPLE18, Siemens A.G, SAP A.G and Holos, helped to identify the problem
areas addressed in this dissertation.

2. Innovation. The innovation phase tackled the problem areas identified during
problem analysis with three contributions (described in Section 1.3 - Contribution
Overview): “model derivation using VML4RE”, “consistency checking between
variability model and other models using VCC” and “tool support”. The new
technology represented by DCC4SPL, is described in the research papers in Part II -
Research Papers, and in the Chapter 3 - DCC4SPL Approach of this dissertation.

3. Validation. The results were validated with literature search, examples and case stud-
ies, prototypes, comparative metrics, and feedback obtained during the elaboration
and presentation of peer-reviewed scientific publications.

• Literature search of existing techniques and tools has been applied related to all
research results. A continuous process of reviewing other research results and
technology developments has been undertaken.

• Examples and case studies were established and reused to validate our approach
and those of others. The main two case studies are the SPL Smart Home and
the Car Crash Crisis Management System. Smart Home [71] was defined as a
case study in the AMPLE project. The Car Crash Crisis Management system
was proposed by a group of international researchers as a common case study
to compare different modelling approaches [56]. Both case studies were used
along this dissertation to illustrate DCC4SPL.

• Several prototypes support this dissertation to illustrate and validate the concepts
and languages defined. The main two prototypes are the domain specific lan-
guage and derivation infrastructure VML4RE (Variability Modelling Language
for Requirements) and the verification approach and tool VCC (Variability Con-
sistency Checker) that checks consistency between feature models and other

18European project, www.ample-project.net

14

1. INTRODUCTION 1.5. Research Context

models. Also, we built a feature model metamodel and editor based on an
existing feature modelling library provided by the SPLOT research community.

• Comparative metrics were used to validate and further strengthen the results.
We apply quantitative and qualitative methods that gathered statistical data to
support the research claims. For example, the paper “Evaluating Approaches
for Specifying Software Product Line Use Scenarios” presents an empirical
evaluation that takes into account relevant quality attributes for variability
management (e.g., modularity, expressivity and stability). It compares four key,
representative techniques that aim at a better management of common and vari-
able model specifications between products of an SPL. The techniques chosen
to be evaluated span from type of notation (graphical or text-based), style to
resolve variability (based on annotations or compositions), and quantification
expressiveness. The result of this study concluded that our approach improves
both modularity of the specifications of features along the models as well as
stability of the models. Also, Chapter 4 - Validation, employs more attributes
and metrics.

• Peer-reviewed scientific publications were produced for our main contributions.
Having our main results evaluated by international specialized researchers
further strengthens the validity of our claims. A copy of the main papers is
given the Part II - Research Papers of this dissertation.

We believe that validating our research results using case studies, examples, prototypes,
comparative metrics, and peer-reviewed scientific publications, as well as the positive
feedback of our academic and industrial partners in the European project AMPLE, shows
the relevance of the results obtained.

1.5 Research Context

The research work leading to this dissertation started in the context of the European project
AMPLE (Aspect-Oriented, Model-Driven Product Line Engineering). The aim of AMPLE
was to provide an SPL development methodology to offer improved modularization of
variations, their holistic treatment across the software lifecycle and maintenance of their
traceability during SPL evolution. AMPLE combined AOSD (Aspect-Oriented Software
Development) [44, 19] and MDD [58, 94, 85] techniques to both address variability at
each stage in the SPLE lifecycle and manage variations in associated artefacts, from
requirements through architecture to code.

Our team at the Universidade Nova de Lisboa was responsible for coordinating the
work package dedicated to Requirements Engineering (WP1) and several other tasks in
other work packages. The work conducted for this dissertation started mainly under
WP1, focusing on variability modelling and composition. Consistency checking is a topic
that we developed after the end of AMPLE mainly with researchers from the Institute for

15

1. INTRODUCTION 1.6. Structure of this Dissertation

Software Engineering and Automation (SEA) at the Johannes Kepler University, Austria19.
Also, part of the evaluation of our approach related to variability modelling and compo-
sition was performed together with researchers from the Software Productivity Group
(SPG), Brazil. SPG is a multi-institutional group formed by researchers from the Infor-
matics Center of the Federal University of Pernambuco (CIn/UFPE)20, the Department of
Computing Systems of the Federal University of Campina Grande (DSC/UFCG)21 and
the Department of Informatics e Applied Mathematics of the Federal University of Rio
Grande do Norte (DIMAp/UFRN)22.

1.6 Structure of this Dissertation

This dissertation is organized in two parts. The first part “Overview” gives a motivation
for this work, the research context and background of the work done. The second part
“Research Papers” contains the set of research papers produced related to this dissertation.
Next, we introduce each one of the two parts of this dissertation and how they are
composed.

Part I - Overview. In addition to this introductory chapter, the first part of this
dissertation reviews the most important aspects relevant to understand our contributions
in:

• Chapter 2 - Background provides a review of the base concepts, techniques, tools and
practices related to the subject of this dissertation, such as Software Product Line
Engineering, Model-Driven Development and consistency checking. This chapter is
not intended to provide an historical overview nor a comprehensive survey. It rather
concentrates on the aspects we think are more useful to understand this dissertation
and to highlight the relationships between them.

• Chapter 3 - DCC4SPL Approach gives an overview of our approach and highlights the
relationships between its components, VML4RE and VCC, as well as their respective
tool support.

• Chapter 4 - Validation addresses the questions raised by each research topic and the
methods used to answer them.

• Chapter 5 - Conclusions summarizes the main contributions of this dissertation and
identifies future work.

Part II - Research Papers contains a copy of some of the main book chapters and peer-
reviewed papers accepted and presented in international events describing the main
results of this dissertation.

19http://www.sea.uni-linz.ac.at/
20http://www.cin.ufpe.br/
21http://www.dsc.ufcg.edu.br/~spg
22http://www.dimap.ufrn.br/

16

1. INTRODUCTION 1.6. Structure of this Dissertation

• Chapter 8 - A Model-Driven Approach for Software Product Lines Requirements Engineer-
ing [9] presents how model-driven techniques can be used to automatically derive
requirements models for specific products of an SPL, and traceability views that
explicitly illustrate the relationships between features and UML requirements model
elements.

• Chapter 9 - Multi-View Composition Language for Software Product Line Requirements
[15] presents details about the design criteria and use of the Variability Modeling
Language for Requirements (VML4RE). This chapter and the previous one set the
bases for the VML4RE description provided in Chapter 3.

• Chapter 10 - VML* – A Family of Languages for Variability Management in Software
Product Lines [97] presents how to build new VML* languages for new SPL contexts
avoiding error-proneness of language development. Some features of VML* such
as the use of feature expressions instead of only atomic features were exported to
new versions of VML4RE that improved the language implementation described in
paper [15].

• Chapter 11 - Model-Driven Requirements Specification for Software Product Lines [13]

presents different approaches for specifying and composing requirements in SPLs
as well the motivation and description of some of the design patterns followed by
DCC4SPL.

• Chapter 12 - Evaluating Approaches for Specifying Software Product Line Use Scenarios
[6] presents an empirical evaluation of four key and representative techniques that
aim at a better management of common and variable use scenario specifications
between products of an SPL. This evaluation takes into account relevant quality
attributes for variability management, such as modularity, expressivity and stability.
This evaluation is one of the key parts of Chapter 4 - Validation.

• Chapter 13 - Supporting Consistency Checking between Features and Software Product Line
Use Scenarios [12] presents an approach whose driving objective is to enable consis-
tency checking in the problem space between requirements models and features.

• Chapter 14 - Ensuring Consistency Between Feature Models and Model-Based Specications
- The VCC Approach [11] proposes an approach to support consistency checking
between a feature model and its corresponding model-based specifications. The
resulting approach is called Variability Consistency Checking (VCC). Also, this
paper exemplifies how to use VML4RE composition language with VCC. This paper
supports the consistency checking activity of DCC4SPL provided in Chapter 3.

There are also more authored publications that inspired and supported the work presented
in this dissertation, e.g., [49, 88, 96, 78, 2, 3, 8, 33, 7, 60, 10, 5, 4].

17

1. INTRODUCTION 1.6. Structure of this Dissertation

18

2
Background

This chapter lays the foundations to understand the subjects related to this dissertation. It is
composed of three sections: “Overview” offers a glimpse of the fundamentals, approaches
and models employed, “Fundamentals” presents some concepts in software engineering,
and “Approaches and Models” provides an overview of some approaches and their
corresponding models where those fundamentals are applied.

2.1 Overview

This section introduces the essential concepts and their relationships required to under-
stand this dissertation. To ease the understanding of the whole “puzzle” of concepts, Fig-
ure 2.1 shows an informal sketch representing some of the main fundamentals, approaches,
models, and their relationships presented in this dissertation. The most important concepts
introduced here will be further explained in Sections 2.2 and 2.3.

Figure 2.1 shows that Software Product Line Engineering (SPLE) applies planned reuse of
software assets in a domain. In SPLE, a functionality or non-functional property is called
feature and each feature can be common to all (or a subset of) the products in a domain
or be unique (i.e., varies) for some products. SPLE manages variability and commonality
by supporting the overall process to identify common and variable features, as well as to
manage the set of products configurations. During feature modelling developers create a
feature model that presents the available features in an SPL and shows the constraints on
their usage. For example, the selection of one feature may preclude or require the selection
of other features.

To create a new product developers perform a configuration process that consists
of a selection of features. Next, developers compose the assets related to the selected

19

2. BACKGROUND 2.2. Fundamentals

features with the assets related to common features. The result of this composition is the
customization of reusable assets in the context of a specific software product variant. There
is not standard way to customize reusable assets for specific product variants. In our
approach, the way to describe how to weave the assets related to variable features with
those related to common features is through a composition specification.

In what concerns supporting technologies for SPLE, our approach uses Model-Driven
Development (MDD) and Domain-Specific Language Engineering (DSLE). MDD is driven by
modelling and resulting models that represent different perspectives of a system. In MDD
the act of writing models using a language is called modelling, while the act of writing a
language (i.e., modelling a language) is called metamodelling. Models can be transformed
to other model(s) usually to produce a translated model written in other language or to
customize some of its model fragments (i.e., to perform a model transformation). There are
languages such as UML that can be used to model requirements and architecture. Also, it
is possible to create custom-made languages that employ a vocabulary that is specific to a
domain using DSLE. DSLE and MDD are related very closely. DSLE is supported by MDD
which provides the conceptual bases for metamodelling, modelling and using the resulting
models as the main development assets. MDD is implemented using DSLE which provides
specialized languages for writing models, metamodels and model transformations.

Principles such as Separation of Concerns (SoC) aim at improving modularization of
systems. SoC advocates that developers should decompose a system in such a way that
each one of the resulting decompositions (e.g., models, classes, packages) implements,
if possible, only one concern. If each part of a system is focused on a special concern of
the system, each part can be modified easily and with fewer side effects on other parts.
Applying SoC in SPL modelling eases to reason about software composition and decomposition
encouraging developers to implement and evolve concerns (e.g., a feature or set of features
in an SPL) more separately, so they can be reused to compose new products.

After specifying an SPL using different models, they may evolve and changes in
these models may result in inconsistencies with what is specified in the feature model.
Consistency checking is useful in early SPLE to guarantee consistency among the various
models. For example, to verify that the models that document, design and implement
features do not have contradictions with respect to the specification of the feature model.

2.2 Fundamentals

This section presents the main fundamentals that form the basis for the approaches
addressed in this dissertation. Next we describe briefly the list of fundamentals that
compose the top part of Figure 2.1, some of them will be later extended during the
description of the approaches.

20

2. BACKGROUND 2.2. Fundamentals

Cu
st

om
iza

tio
n

al
lo

w
s

Va
ria

bi
lit

y
an

d
Co

m
m

on
al

ity

Se
pa

ra
tio

n
of

 C
on

ce
rn

s (
So

C)

Re
us

e

Co
ns

ist
en

cy
 C

he
ck

in
g

m
od

el
le

d
us

in
g

Fe
at

ur
e

M
od

el
lin

g

So
ft

w
ar

e
Co

m
po

sit
io

n
an

d
De

co
m

po
sit

io
n

M
od

el
-B

as
ed

Sp

ec
ifi

ca
tio

ns

ca
n

be
 b

as
ed

 o
n

su
pp

or
ts

 th
e

m
od

el
lin

g
of

Fe
at

ur
e

M
od

el

M
od

el
-D

riv
en

 D
ev

el
op

m
en

t (
M

DD
)

m
an

ag
es

su
pp

or
ts

Do
m

ai
n-

Sp
ec

ifi
c

La
ng

ua
ge

En

gi
ne

er
in

g
(D

SL
E)

im
pl

em
en

te
d

us
in

g

ap
pl

ie
s

ea
se

s

ea
se

s

Co
m

po
sit

io
n

Sp
ec

ifi
ca

tio
n

M
od

el

Fr
ag

m
en

ts
co

m
po

se
d

of
sp

ec
ifi

es
 th

e
co

m
po

sit
io

n
of

M
et

am
od

el
lin

g
Ba

se
d

on

Ba
se

d
on

M
od

el
 T

ra
ns

fo
rm

at
io

n

M
od

el
lin

g
an

d
Re

su
lti

ng
 M

od
el

s

dr
iv

en
 b

y

su
pp

or
ts

 th
e

m
od

el
lin

g
of

Co
ns

ist
en

cy

re
qu

ire
s

ap
pl

ie
s

M
DD

SP
LE

su
pp

or
te

d
by

su
pp

or
te

d
by

So
ft

w
ar

e
Pr

od
uc

t L
in

e
En

gi
ne

er
in

g
(S

PL
E)

ap
pl

ie
d

to

Fi
gu

re
2.

1:
In

fo
rm

al
sk

et
ch

re
p

re
se

nt
in

g
so

m
e

of
th

e
fu

nd
am

en
ta

lc
on

ce
p

ts
,a

p
p

ro
ac

he
s,

m
od

el
s,

an
d

th
ei

r
re

la
ti

on
sh

ip
s

p
re

se
nt

ed
in

th
is

di
ss

er
ta

ti
on

.

21

2. BACKGROUND 2.2. Fundamentals

2.2.1 Separation of Concerns (SoC)

This is a fundamental principle of software engineering that is credited to Dijkstra [36, 35]
and Parnas [76, 77]. It states that in software development it is easier to manage a problem
by breaking it down into smaller pieces than to solve the problem as is. Such pieces are the
concerns of a software system, where a concern is a semantically coherent issue of interest
to the problem domain. Concerns are the primary criteria for decomposing software
into smaller, more manageable and comprehensible parts. Thus, we should decompose
a program in such a way that each one of the resulting modules implements one single
concern. Indeed, a non-modular design, without a clear separation of concerns leads to bad
modularization (resulting in scattering and tangling of concerns) that advanced software
engineering approaches, such as Aspect-Oriented Software Development (AOSD), aim to
address [38, 19, 44].

2.2.2 Software Composition and Decomposition

In all phases of the software life cycle, concerns of a software system are separate
pieces, distinguishable from other concerns. However, such separation is non-trivial
to achieve, especially in large-scale and evolvable software [16]. Design and implementa-
tion techniques have to support separation of concerns explicitly by providing appropriate
(de)composition mechanisms. Decomposition means to break down a software design
into pieces; composition ties these pieces together to get a complete software product.
Design and implementation techniques have to provide different kinds of (de)composition
mechanisms at different levels of abstraction in order to account for the diversity of
possible concerns. Prominent examples of decomposition modules are the concepts of
functions in structured programming and classes in Object Oriented Programming (OOP).
While functions decompose a software system along its instructions, classes decompose a
software system along the data to be encapsulated [16].

2.2.3 Modelling and Resulting Models

"Modelling, in the broadest sense, is the cost-effective use of something in place of some-
thing else for some cognitive purpose. It allows us to use something that is simpler, safer,
or cheaper than reality” [80]. A model represents a perspective of reality for a given
purpose; the model is an abstraction of reality as it cannot represent all aspects of reality.
This allows us to deal with the world in a simplified manner, avoiding the complexity,
danger and irreversibility of reality" [80]. We complement this definition of model with
another specific to software development that states that “a model is a description of (part
of) a system written in a well-defined language” [59], where a well-defined language is “a
language with well-defined form (syntax), and meaning (semantics), which is suitable for
interpretation by a computer” [59].

22

2. BACKGROUND 2.2. Fundamentals

2.2.4 Consistency

A system is consistent when there is logical coherence (i.e., no contradictions) bewteen
its parts. Consistency depends on the verification of consistency conditions that should
be guaranteed in a system. These can be as diverse as architectural and design guide-
lines, programming conventions and well-formedness rules. Consistency conditions may
involve several different and interrelated models required to represent the perspectives
(also called: views or concerns) and information needed by diverse system stakeholders
[40]. A traditional example of consistency conditions (or consistency rule) among different
models is that “if a sequence diagram has a message M whose target is an object of class C,
the class diagram of class C must contain method M” [66].

2.2.5 Reuse

Software reuse is the process of creating software systems from existing software rather
than building software systems from scratch [63]. Separated concerns in software devel-
opment can be more easily reused in different contexts than intermingled ones. The more
independent a concern is, the easier it can be detached from or attached to a (different)
software system. Reuse can be applied to employ part of the implementation or design of
a concern (e.g., a use scenario, a component, a model, or library) in different variants of
one software product or in different software systems.

2.2.6 Customization

Customizing a software system means adjusting the given system structure and behaviour
in the boundaries of the supported variability [93]. This means to choose the concerns
desired for a system and to select those implementations that best fit a requirements
specification. Customization is required to meet the specific needs of different stakeholders
on a software system, therefore, software design and implementation ideally should
support the easy customization and derivation of system variants.

2.2.7 Variability and Commonality

Software variability represents the need of a software system or artefact to be changed,
customized or configured for use in different contexts [93]. High variability means that
the software is more reusable and, therefore, it may be used in a broader range of contexts.
The degree of variability of a particular system is given by its variation points, which are
the parts that support configuration and consequently customization of the product for
different contexts or for different purposes. The identification of what is subject to change
is intimately related to that of what does not change, i.e., commonality. Variability and
commonality are base concepts in SPLE, which will be discussed further in Section 2.3.1.

23

2. BACKGROUND 2.3. Approaches and Models

2.3 Approaches and Models

This section introduces the approaches that will be addressed in this dissertation and
the models that they use or help to produce. The middle part of Figure 2.1 shows four
main approaches: Software Product Line Engineering (SPLE), Model-Driven Develop-
ment (MDD), Domain-Specific Language Engineering (DSLE) and Consistency Checking.
They are related to other sub-approaches shown into dashed lines: feature modelling,
metamodelling and model transformation. All approaches are related to the fundamentals
explained in Section 2.2 and use or help to produce different kinds of models (shown at
the bottom of Figure 2.1).

Software Product Line Engineering (SPLE) is the application domain of this disser-
tation. SPLE is supported by feature modelling which is a key technique employed to
describe variability and commonality in an SPL and to produce a feature model. This
dissertation employs the feature model as one of the input artefacts in SPLE.

Model-Driven Development (MDD) is described through two of its distinctive tech-
niques: metamodelling and model transformations. A connection to Domain-Specific
Languages Engineering (DSLE) is established where MDD techniques, such as metamod-
elling, are applied to create new domain-specific languages. This dissertation uses DSLs
to create languages to express composition specifications and the actual transformation of
the models.

Consistency Checking is an activity applied to guarantee logical coherence between
different interrelated parts in a system. Some common types of consistency checking
are described in this section. This dissertation applies consistency checking to guarantee
that the models employed to specify an SPL, such as feature model and model-based
specifications, are logically coherent. Consistent models are more reliable as they have
not contradictions between them, therefore, they can be used to derive product-specific
models.

2.3.1 Software Product Line Engineering (SPLE)

Software Product Line Engineering is an approach to increase software quality and pro-
ductivity through systematic reuse of assets [79, 27, 31]. SPLE encompasses the creation
and management of products’ families for a particular domain. In SPLE each product in
the family is derived from a shared set of core assets, following a set of prescribed rules
[27]. A core asset can be any relevant artefact in the software process, such as code units
(packages, classes, methods, etc.) or models, documentation, configuration files, etc.

Products in an SPL are characterized by their features, which are useful to express
product functionalities or properties concisely [79]. Features may be common to all
products or vary between products. The terms commonality and variability are often used
to denote the common and variable features within a product line, respectively.

To facilitate the understanding of our proposal we briefly present the Pohl et al. SPLE

24

2. BACKGROUND 2.3. Approaches and Models

process conceptual framework [79] as well as an overview on feature modelling. We
chose this conceptual framework because it considers that all kind of artefacts may be
reused, from requirements through code, to testing units. However, in comparison with
our work, it does not address the development of effective solutions for models derivation
and consistency checking based on MDD and DSLE.

SPL Process Framework [79]. This conceptual framework uses a collection of reusable
artefacts as input and offers the possibility of mass customization. Reusable artefacts, or
core assets, encompass not only code-based units such as packages, libraries and compo-
nents, but also all types of software development artefacts such as requirements models,
architectural models, test plans, and test designs. According to Pohl et al., “to facilitate
mass customization, the platform (i.e., the collection of reusable artefacts1) should provide
the means to satisfy different stakeholder requirements. For this purpose, the concept
of variability is introduced in the platform. As a consequence of applying this concept,
the artefacts that can differ in the applications of the product line are modelled using
variability” [79].

Figure 2.2 shows an adaptation of the original figure of the Pohl’s SPLE conceptual
framework [79]2. It has two main processes: Domain Engineering (also known as Core Asset
Development) and Application Engineering (also known as Product Development) [79, 27].

Domain Engineering is the process responsible for “establishing the reusable platform
and thus for defining the commonality and the variability of the product line” [79].
Traceability links between these artefacts facilitate systematic and consistent reuse. Product
management is also part of the domain engineering process and deals with the economic
aspects of the SPL such as the market strategy and the management of the product portfolio
of the company. Domain engineering sub-processes include:

• Domain Requirements Engineering encompasses all activities for eliciting and docu-
menting the common and variable requirements of the product line. The output of
this sub-process comprises the common and variable requirements for all foresee-
able applications3 of the product line as well as a variability model (e.g., a feature
model)4.

• Domain Design encompasses all activities for defining the reference architecture of the
product line. The reference architecture provides a common, high-level structure for
all the product line applications. The input for this sub-process consists of the domain

1The definition of platform can be also extended to the technologies on which other technologies or
processes are built.

2Our adaptation considers the cases where: (1) variabilities and commonalities may be modelled in the
same model. This is represented by single geometrical shapes with white and black parts representing
models with fragments related to commonalities and variabilities, respectively; and (2) models used in each
sub-process of SPLE can be modelled separately; this is represented by disconnected shapes.

3Along this dissertation we also refer to “applications” as the “products” or “product-variants” of the SPL.
4In Figure 2.2 sub-processes such as domain requirements engineering should include different kinds of

geometrical shapes representing the different kinds of models created by each stakeholder. However, we only
use one kind of geometrical shape by sub-process to avoid adding unnecessary extra complexity in the figure.

25

2. BACKGROUND 2.3. Approaches and Models

Application N ‐ Artefacts

D
om

ai
n
En

gi
ne

er
in
g

Ap
pl
ic
at
io
n
En

gi
ne

er
in
g

Domain Artefacts Including Feature Model

Domain
Requirements
Engineering

Domain Design Domain
Implementation Domain Testing

Application 1 ‐ Artefacts

Application
Requirements
Engineering

Application
Design

Application
Implementation

Application
Testing

Specification and
Derivation of
Requirements

and Architectural
Models

Figure 2.2: SPL process framework (adapted from [79]).

requirements and the variability model from domain requirements engineering. The
output encompasses the reference architecture and a refined variability model that
includes the so-called internal variability, i.e., the variability that is necessary for
technical reasons.

• Domain Realization deals with the detailed design and the implementation of reusable
software components. The input of this sub-process consists on the reference ar-
chitecture including a list of reusable software artefacts to be developed in domain
realization. The output of domain realization encompasses the detailed design and
implementation assets of reusable components.

• Domain Testing deals with the validation and verification of reusable components.
Domain testing tests the components against their specifications, i.e., requirements,
architecture and design artefacts. In addition, domain testing develops reusable test
artefacts to reduce the effort for application testing.

Application Engineering is the process responsible for “deriving product line applications
from the platform established in domain engineering” [79]. Application Engineering
exploits the commonality of the product line and ensures the correct binding of the
variability according to the applications’ specific needs. The application engineering
sub-processes are:

• Application Requirements Engineering encompasses all activities for developing the
requirements specifications for specific applications.

26

2. BACKGROUND 2.3. Approaches and Models

• Application Domain Design encompasses all activities for producing the application
architecture.

• Application Realization encompasses all activities for creating a running application
together with the detailed design artefacts.

• Application Testing encompasses all activities necessary to validate and verify an
application against its requirements.

It is important to note that neither the domain and application engineering nor their
sub-activities have to be performed sequentially. This is expressed in Figure 2.2 with a
loop with an arrow for each process. A dotted line marks the part of the framework that is
directly related with the subject of this dissertation. We also make explicit that there is a
composition process that derives models for specific target products (or “applications” in
Figure 2.2) from reusable requirements and architectural models for the entire SPL created
during Domain Requirements Engineering and Domain Design.

Another important aspect of this framework is that testing does not consider consis-
tency between the variability model and other assets, focusing only on testing imple-
mented components against their requirements and architecture specifications. In this
dissertation we address some of the gaps in the SPL process considering consistency
between feature models and other model-based assets (e.g., requirements and architecture
models) and automatic derivation of model-based assets.

Feature Modelling. Feature modelling is a method and notation to capture the available
common and variable features of the systems in a family and to describe the incompatibil-
ities and dependencies between features [53, 31].

Feature modelling was first proposed by Kang et al [53] and since then it has been
extended with several concepts. For example, feature and group cardinalities, attributes,
and diagram references [32]. A classic example of a feature model is illustrated in Figure
2.3. This feature model expresses an electronic commerce system that supports one or more
different payment methods, provides tax calculation taking into account either the street-
level address, or postal code, or just the country, and it may or may not support shipment
of physical goods. Such feature model may be complemented with additional information,
such as binding times (features may be intended to be selected at certain points in time),
domain constraints (e.g., dependencies and incompatibilities, where selecting a certain
feature may require or exclude the selection of another feature), default attribute values
and default features, stakeholders interested in a given feature and priorities [32].

DeBaud and Shmith show that feature models are useful in the early stages of software
family development [34]. They provide the basis for scoping an SPL by recording and
assessing information such as which features are important to enter a new market or
remain in an existing market, which features incur a technological risk, what is the

27

2. BACKGROUND 2.3. Approaches and Models

E-shop

Tax
Calculation

Shipping

Mandatory

Optional

Inclusive OR

Notation

Payment

Credit

Card

Debit

Card

Electronic

Cheque

Address
Resolution

Country
Street

Address

Postal

Code

Exclusive OR

Figure 2.3: Example of feature model for an E-Shop SPL [32].

projected development cost for each feature, and so forth. In the context of generative
software development [31], feature models are used during domain analysis are the
starting point in the development of both SPL architecture and DSLs.

2.3.2 Model-Driven Development (MDD)

Model-Driven Development (MDD) refers to the systematic use of models as first-class
entities throughout the entire software lifecycle [85, 59]. MDD is based on metamod-
elling, which helps to express well-defined languages, and model transformations, which
automate the software development process. This section introduces these base MDD
techniques and presents Domain-Specific Languages (DSL) as a way to put MDD into
practise.

Metamodelling. Metamodelling can be defined as the analysis, construction and de-
velopment of the frames, rules, constraints, models and theories applicable and useful
for modelling a predefined class of problems [94]. In other words, metamodelling is the
practice of constructing models that specify other models.

A metamodel is known as the abstract syntax of a language and encompasses all the
constructs that can be used in that language. A model is said to conform to its metamodel,
or that it is an instance of its metamodel in the way that a particular computer program
conforms to the grammar of the programming language in which it is written.

The left-hand side of Figure 2.4 presents a four layers metamodelling framework.
This framework is exemplified using MOF, a modelling formalism employed to define
metamodels 5. The right-hand side of Figure 2.4 depicts a short example based on the
modelling of a film released as DVD. It can be interpreted as follows:

• M0, Data Layer shown in the left hand side of Figure 2.4 describes the instances

5http://www.omg.org/mof/ : OMG’s MetaObject Facility (MOF)

28

2. BACKGROUND 2.3. Approaches and Models

M2,
UML 2.4

Meta
metamodel

Metamodel

Model

Data

Conforms to

Conforms to

Conforms to

M2,
Metamodel
Layer

M1,
Model
Layer

M3,
Meta
Metamodel
Layer

M0,
Data
Layer

Conforms to

Data Element

Model Element

Meta Metamodel
Element

Meta Model
Element

Metaclass

Metaclass

Metaclass

<<InstanceOf>>

<<InstanceOf>>

<<InstanceOf>>

Class

Class

Property

KungFuPanda

<<InstanceOf>> <<InstanceOf>>

DVD

M1,
User
Model

M3,
MOF

M0,
Run‐time
Instances

<<InstanceOf >>

<<InstanceOf>>

<<InstanceOf>>

Generalization

<<InstanceOf>>

Medium
Name: String<<InstanceOf>>

general

specific

<<InstanceOf>>

ownedAttribute

Figure 2.4: (Left) Four-layers metamodel hierarchy, (Right) An example of the four-layer
metamodel hierarchy using Meta-Object Facility (MOF).

of the models in layer M1. Usually M0 contains data, runtime instances of user
created objects, or source code derived from the M1 layer for different programming
languages (e.g. Java and C++). In MOF, M0 contains the instances, sometimes
referred to as runtime instances, of model elements defined in a model contained in
the M1 layer. The corresponding right-hand side level represents an instance, “Kung
Fu Panda”, of the model element DVD.

• M1, Model Layer describes the information in layer M0. M1 contains the models
from which the data, objects, or source code in M0 is generated. The models written
using UML, such as the class diagram in Figure 2.4 (right-hand side) are examples
of models contained in the M1 layer.

• M2, Metamodel Layer describes the models in layer M1. M2 contains the metamodels
that define the abstract syntax of the languages needed to write model elements in
M1. Metamodels determine which kind of elements can be present in the model at
the M1 level. In MOF, M2 is represented by UML which contains metamodel ele-
ments that are the metaclases of the model elements in M1 (e.g., “Class”, “Attribute”,
and “Generalization”).

• M3, Meta Metamodel Layer describes the metamodels in layers M2 and M3. Similarly
to EBNF, MOF could be defined in MOF; this is represented in Figure 2.4 as the
recursive relationship of “conforms to” in the M3 layer.

29

2. BACKGROUND 2.3. Approaches and Models

An example of a MOF implementation is EMF [85], which is an open source framework
targeted to Java. EMF defines Ecore as meta metamodel and can create Java code for
graphically editing, manipulating and serialising data based on a model specified in an
XML Schema, UML class diagrams, or annotated Java classes. The tool support Section
3.6 of this dissertation will elaborate on how we employ this technology.

Model Transformations. Model transformations can be seen as taking a set of input
parameters including source and target models, and producing a set of target model ele-
ments as output [83]. Consequently, there is a mapping relation between the source model
elements and the target model elements (a one-to-many or many-to-one relationship).

There are two main approaches for models transformation:

• Graph transformation systems. These use graph rewriting techniques to manipulate
graphs [81]. A graph transformation is defined in terms of a set of production rules.
A production rule consists of a Left-Hand Side (LHS) graph and a Right-Hand Side
(RHS) graph. Such rules are the graph equivalent of term rewriting rules; intuitively,
if the LHS graph is matched in the source graph, it is replaced by the RHS graph.

• Program transformation techniques. These are also known as Meta-Programing or Gener-
ative Programing [31]. They are used in many areas of software engineering, ranging
from program synthesis to program optimisation and program re-factoring, to
reverse engineering and documentation generation. Program and model transforma-
tion is an approach that allows automatic generation of software from a generative
domain model [31]. A generative domain model is a model of a system family that
consists of a problem space, a solution space, and the configuration knowledge.
The problem space defines the appropriate domain-specific concepts and features.
The solution space defines the target model elements that can be generated and
all possible variations [72]. The configuration knowledge specifies illegal feature
combinations, default settings, default dependencies, construction rules, and optimi-
sation rules. Generative Programming introduces generators as the mechanisms for
producing the target.

2.3.3 Domain-Specific Language Engineering (DSLE)

Some of the MDD approaches are based on Domain-Specific Language Engineering
(DSLE). DSLE provides the technology and methodology to design and implement DSLs.
A DSL offers expressive power for a particular problem domain, such as a specific class
of applications or application aspect [18]. DSLs can be implemented in different ways:
textual or graphical languages, interactive GUIs (wizards, editors, forms), or as extensions
of other programming languages [46]. Different tools and platforms are now being defined

30

2. BACKGROUND 2.3. Approaches and Models

to support DSL implementation and processing, such as, Microsoft Visual Studio Visual-
ization and Modeling SDK6, Generic Modeling Environment (GME)7, Eclipse Modeling
Project 8 and MetaEdit+ 9.

Advantages over General-Purpose Languages. In comparison with general purpose
programming languages, such as Java or C#, that were designed to be appropriate for any
kind of application domain, DSLs simplify the development of applications in specialized
domains at the cost of their generality. A DSL can offer several important advantages over
a general purpose language [29]:

• Domain-specific abstractions. A DSL provides pre-defined abstractions to represent
concepts directly from the application domain.

• Domain-specific concrete syntax. A DSL offers a natural notation for a given domain
and avoids syntactic clutter that often results when using a general-purpose lan-
guage.

• Domain-specific error checking. A DSL enables building static analysers that can find
more errors than similar analysers for a general-purpose language and that can
report the errors in a language familiar to the domain expert.

• Domain-specific optimizations. A DSL creates opportunities for generating optimized
code based on domain-specific knowledge, which is usually not available to a
compiler for a general purpose language.

• Domain-specific tool support. A DSL creates opportunities to improve any tooling
aspect of a development environment, including editors, debuggers, version control,
etc. The domain-specific knowledge that is explicitly captured by a DSL can be used
to provide more intelligent tool support for developers.

An example DSL is the feature models [53, 31] used to express common and variant
features among products in an SPL. In this dissertation we propose the VML4RE [15]
(described in Section 3.4) which is a DSL that describes requirements models derivation.

Elements of a Language Definition. There are three main elements in a language defi-
nition which are generic to textual languages as well as graphical languages [58]:

• Abstract syntax defines the concepts of a language and their relationships. It is inde-
pendent of any particular concrete syntax representation of the language. Metamod-
elling is a popular method to define the abstract syntax of languages. It simplifies the
language development by allowing developers to map classes of a domain analysis
model to metaclasses in a metamodel.

6http://code.msdn.microsoft.com/vsvmsdk
7http://www.isis.vanderbilt.edu/Projects/gme/
8http://www.eclipse.org/modeling/
9http://www.metacase.com

31

2. BACKGROUND 2.3. Approaches and Models

• Syntactic mapping consists of a set of rules that relates the concepts of a language
(in the abstract syntax) to their representation (in a concrete syntax). The concrete
syntax of a language may be textual or graphical. For textual languages the concrete
syntax defines how to form sentences while for graphical languages defines the
graphical appearance of the language concepts and how they may be combined.

• Semantics describes the meaning of a program or model specified in some language.
Often, language definers explain the meaning of concepts in the abstract syntax
informally through examples and plain natural language [47]. However, various
ways have been developed to describe the semantics of languages in more rigorous
ways [58]. A popular way to express semantics is operational semantics, where the
meaning of a language construct is specified by the computation it induces when it
is executed on a machine. Concepts in the abstract syntax relate to semantic domain
elements (e.g., which varies from plain natural language to rigorous mathematics)
through a semantic mapping.

2.3.4 Consistency Checking

Using multiple views to describe software, each one focusing on a perspective of the
system (e.g., behaviour, structure, or variability), allows to a more exhaustive modelling
of the system [61, 73]. Using specialised views reduces the complexity of one single view,
making it easier for a developer to build correct models [61, 73]. However, modelling
software using multiple views implies the need for consistency between them.

Some research has been done in classifying and dealing with consistency problems
related to multi-view modelling, for example [91, 67, 39, 66]. The five most relevant classes
of consistency identified are:

• Intra-model consistency, applied to exactly one model type (e.g., to check name crashes
or unconnected items [39]).

• Inter-model consistency, applied to multiple model types (e.g., to check that the class
names used in a sequence diagram appear in their associated class diagram [67]).

• Syntactic consistency, applied to check that a model conforms to its language defini-
tion, usually specified by its metamodel and language grammar (e.g., to check that a
model does not contain any model element that is not defined in its language).

• Semantic consistency, applied to check that the semantic information a modeller is
able to derive from different models must be compatible, i.e., not contradictory
(e.g., to check that the events produced in a sequence diagram should not pro-
duce inconsistent states in the state diagrams of the objects that participate in the
interaction).

32

2. BACKGROUND 2.4. Summary

In this dissertation we focus on inter-model and semantic consistency. The other types
of consistency (intra-model and syntactic) have been studied intensively in SPLE. Intra-
model consistency in SPLE is mainly focused on feature model analysis and it has been
comprehensively documented by other authors (e.g., [23, 21, 22]). Syntactic consistency
is addressed for example by EMF that allows generating editors from metamodels. The
models created with these editors allow creating only models that conform to their meta-
models.

Consistency checking in SPLE is a complex task given that the number of feature
combinations and dependencies between model elements can grow exponentially [57, 90].
To date, there is no approach that guarantees that the feature model is semantically
consistent with the requirements and architectural models that design its features. Our
approach helps to fill this gap with an automated technique to detect inter-model semantic
inconsistencies between feature model and other models created during domain engi-
neering, showing the model elements involved in each inconsistency and the cause of the
inconsistency.

2.4 Summary

The application domain of this dissertation is Software Product Line Engineering. This
domain is located in the broader area of strategic, planed reuse of software artefacts,
from which we focus on models specification, verification and derivation. This chapter
summarizes and associates the fundamental concepts, approaches and models applied in
our work.

Model-Driven Development employs models as the primary development asset. This
means that models are the input of the product derivation process that is implemented as
transformation of models. Models are written using modelling languages such as UML or
any specific DSL. These modelling languages are defined using metamodels that define
and restrict the abstractions that can be used during the models specification process.

Another important concept in this chapter is “feature modelling”. Feature modelling
is a method and notation to capture the available common and variable features (i.e.,
functionalities and qualities) of the products in an SPL and describe the incompatibilities
and dependencies between the features.

Given that feature models and other requirements and architectural models are created
and evolved separately they may become inconsistent. Hence, consistency checking is
necessary to verify that there are no violations of consistency conditions that ensure that
what is written in the feature model does not contradict what is represented in other
models and vice-versa. To ease the consistency checking process, it is necessary to process
the models by software tools that can understand the language in which the models are
written.

The next chapter will present our approach to models derivation and consistency
checking in SPLE.

33

2. BACKGROUND 2.4. Summary

34

3
DCC4SPL Approach

Derivation and Consistency Checking of models in early SPLE (DCC4SPL) integrates
the solutions that contribute to tackle our research question “How to guarantee effective
consistency checking and derivation of product-specific models in early Software Product Line
Engineering?”. DCC4SPL is based on Model-Driven Development (MDD) and Domain-
Specific Language Engineering (DSLE). MDD is used to perform the derivation of product-
specific models through models transformations, and to ease the integration of consistency
checking based on the interpretation of the models and the languages used to write
them. DSLE is used to create languages to help developers to abstract from much of the
implementation details of writing model transformations used to derive product-specific
models.

This chapter first provides an overview of DCC4SPL and next presents its two main
parts, the Variability Modelling Language for Requirements (VML4RE) and the Variability
Consistency Checker (VCC). Finally, this chapter describes the tool support developed for
DCC4SPL.

3.1 DCC4SPL Process Overview

DCC4SPL is organized as a set of activities that involve core asset development (Domain
Engineering) and product development (Application Engineering) using the core assets.
Figure 3.1 shows these activities and the artefacts that they produce.

Domain Engineering in DCC4SPL is achieved through repeated cycles (iterations) and
in small portions at a time (incremental), allowing software developers to benefit of
what was learned during earlier iterations. In DCC4SPL there are new iterations when
the Consistency Checking Report generated by VCC shows inconsistencies between

35

3. DCC4SPL APPROACH 3.1. DCC4SPL Process Overview

Model-Based Specifications

Composition Specification

Feature Model

Check Consistency Using VCC

Consistent Specifications?[Inconsistent]

Consistency Checking Report

Create N Feature Model Configuration(s)

Derive Model-Based Specifications for N Product(s) Using VML4RE

[Consistent]

N Feature Model Configuration(s)

Model-Based Specifications for N Product(s)

D
o

m
ai

n
 E

n
gi

n
e

e
ri

n
g

A
p

p
lic

at
io

n
 E

n
gi

n
e

e
ri

n
g

Notation

Activity Supported by Internal Tool

Activity Supported by External Tool

Artefact (Object Node)

Start of the Process

End of the Process

Decision Node

[Condition] Conditional Flow

Syncronization Bar (fork/join)

Control Flow / Object Flow

Need More Iterations?

[No]

[Yes]

Create or Modify
Feature Model

Create or Modify VML4RE Composition Specification

Create or Modify
Model-Based Specifications

Figure 3.1: DCC4SPL main activities and artefacts.

36

3. DCC4SPL APPROACH 3.1. DCC4SPL Process Overview

the Feature Model and the Model-Based Specifications. If there are no inconsistencies,
developers may consider either to modify the models to address new requirements or
proceed to Application Engineering. Next, we summarize the Domain Engineering
activities in Figure 3.1.

• Create or modify feature model. A feature model captures the common and variable
features as well as the incompatibilities and dependencies between features of
the products in a product family, describing a set of all possible valid product
configurations. There are different notations to specify feature models and most
of them can be translated to propositional formulas [22]. A formula contains, for
each feature, a boolean variable and expresses the constraints between features.
In each formula the standard ∧ (and), ∨ (or), ¬ (not),→ (implies), and↔ (double
implication) operators of propositional logic can be used.

• Create or modify model-based specifications (or feature realizations1 for short). Features
can be implemented or designed by model-based specifications such as requirements
models, architectural models or code-based modules. Each model-based specifica-
tion, in contrast to mere free-form ambiguous descriptions, conforms to a language
(e.g., UML) which helps to reduce ambiguity in the specifications. In this chapter we
employ use scenarios as an example of model-based specification for feature models.
Use scenarios are a widely used technique that describes, step by step, how an actor
intends to use a system [50]. We employ use cases and activity diagrams to describe
use scenarios as they are commonly used in mainstream UML-based methods such
as RUP [62].

• Create or modify VML4RE composition specification. Composition specifications in SPL
are used to express how to derive models for specific products based on transfor-
mation of models. We use the Variability Modelling Language for Requirements
(VML4RE) [97, 15] as an example of a composition specification language and deriva-
tion tool that is appropriate to customize requirements analysis models. We employ
VML4RE because it offers an easy reference to model elements and their transfor-
mation. Those model transformations usually are not as complex as those typically
sophisticated ones created by general purpose model transformation languages such
as ATL [52], AGG [89] and QVT [75]. VML4RE is inspired in the Aspect-Orientation
paradigm [44]2 and, therefore, it refers to the process of model derivation as a com-
position process. The composition mechanism used by VML4RE allows adding,
removing, connecting, and replacing parts of models with parts of other models to
finally produce the models for specific products. Section 3.4 gives more details about
VML4RE.

1The word realization usually means the implementation of features in code-based modules. However, in
our work we also use it to refer to the design of features using model-based specifications.

2http://aosd.net/

37

3. DCC4SPL APPROACH 3.1. DCC4SPL Process Overview

• Check consistency using VCC. In this activity developers employ the VCC tool to
check consistency between a feature model and its corresponding model-based
specifications. VCC internally employs propositional formulas to relate constraints
between features (called domain constraints and mined from a feature model) and
constraints between model elements in other models (called model-based specifications
constraints and mined from the models that design the features). In an SPL these
domain constraints and model-based specifications constraints must be consistent
between them to guarantee that any valid selection of features in a feature model
derives valid product-specific models. For consistency constraints that are not
satisfied by the SPL, the VCC tool presents to developers the particular features
and fragments in the model-based specifications involved in the violation of the
constraint. Such output is useful to take informed decisions about the modifications
and additions of domain constraints, model-based specifications, and its composition
specification. Section 3.5 gives more details about VCC.

The models produced during Domain Engineering are used in Application Engineering
to derive product-specific models. First, in Application Engineering each product is
characterized by the developers by means of a specific selection of features of the Feature
Model called Feature Model Configuration. In Figure 3.1 we use the letter N to indicate
the number of feature model configurations in the SPL. Next, the VML4RE tool derives
Model-Based Specifications for N Product(s) based on the feature model configuration(s)
and the models created in Domain Engineering. We summarize the activities related to
Application Engineering:

• Create N feature model configuration(s). While a feature model describes a set of all pos-
sible valid product configurations, a feature model configuration specifies a concrete
product in terms of its features. To define a feature model configuration (also known
as product configuration or configuration), developers choose optional and alternative
features available in the feature model created during domain engineering.

• Derive model-based specifications for N product(s) using VML4RE. VML4RE derives
the model-based specifications related to the feature model configurations. Given
that each feature model can have more than one feature model configuration, the
derivation process is performed product by product. The input for the derivation is a
feature model configuration, reusable model-based specifications and a composition
specification. In this process, model-based specifications (e.g., use cases and activity
diagrams) are transformed to fit the specifications of particular products according
to the composition specification defined during domain engineering. The choice
of which transformations will be used to derive a product is based on the selection
of features in its related feature model configuration and the evaluation of feature
expressions contained in the composition specification.

38

3. DCC4SPL APPROACH 3.2. DCC4SPL Example

3.2 DCC4SPL Example

To illustrate the activities and artefacts mentioned in the previous section, we have chosen
a home automation SPL called Smart Home [71]. The Smart Home has a wide variety of
devices and it is designed to coordinate their behaviour to fulfil complex tasks automat-
ically. Also, it enables to its inhabitants to visualize and control some devices remotely.
This system was a case study developed in the European project for Aspect-Oriented,
Model-Driven Product Line Engineering (AMPLE) 3. Due to its complexity, we will focus
on a subset of features described next.

3.2.1 Create or Modify Feature Model

Figure 3.2 (a) shows part of a feature model for the Smart Home SPL [71]. Smart Home
has four optional features, AUTOMATED WINDOWS, AUTOMATED HEATING, REMOTE

HEATING CTRL and INTERNET to control the heater and other devices remotely. Also,
it has a set of common features, such as MANUAL WINDOWS, MANUAL HEATING and
INHOME SCREEN that will be included in all the target products produced from the Smart
Home SPL. Specific product configurations can be defined selecting optional features
in the feature model. Figure 3.2 (b) shows a sample product configuration of the Smart
Home SPL called Product-1 that includes all the features. Figure 3.2 (c) shows another
sample product configuration called Product-2 that has all features except AUTOMATED

WINDOWS, and that will be used to illustrate consistency problems between features and
use scenarios. Domain constraints in the feature model such as the REQUIRES relationship
from REMOTE HEATING CTRL to INTERNET, can be added incrementally when other
model-based specifications that design the features are created (discussed below).

3.2.2 Create or Modify Model-Based Specifications

Use cases and activity diagrams provide a description of what the products in the do-
main should do. Feature models determine which functionality can be selected when
engineering new products from the SPL. Therefore, product requirements specifications
consist of customized use cases and activity diagrams. The customization is guided by a
composition specification discussed in the next subsection.

Figure 3.3 (a) (left and right-hand sides) shows two of the models that are part of the
model-based specifications for Product-1. Figure 3.3 (a) (left-hand side) shows an activity
diagram that depicts the possible scenarios for the use case CTRLTEMPREMOTELY that is
depicted in the use case diagram of Figure 3.3 (a) (right-hand side). The activity diagram
also comprises activities of use cases OPENANDCLOSEWINAUTO, ADJUSTHEATERVALUE

and NOTIFYBYINTERNET. Within this activity diagram it is possible to select several
scenarios that correspond to different paths. Two of all the possible scenarios are:

3http://www.ample-project.net .

39

3. DCC4SPL APPROACH 3.2. DCC4SPL Example

Windows Ctrl

Automated
Windows

Heating Ctrl

SmartHome

Manual
Windows

(a) SPL Feature Model

Manual
Heating

Automated
Heating

Remote Heating Ctrl

UI

InternetInhome
Screen

Optional feature may or may not be selected to be part of
a product when its parent feature is selected.
Mandatory feature is part of a product when its parent
feature is selected.

Windows Ctrl

Automated
Windows

Heating Ctrl

Product-2

Manual
Windows

Manual
Heating

Automated
Heating

RemoteHeating Ctrl

UI

InternetInhome
Screen

Selected featureUnSelected feature

(b) Product‐1

Windows Ctrl

Automated
Windows

Heating Ctrl

Product-1

Manual
Windows

Manual
Heating

Automated
Heating

RemoteHeating Ctrl

UI

InternetInhome
Screen

(c) Product‐2

Constraint “requires” between features.

Figure 3.2: (a) Simplified sample of the Smart Home feature model, (b) Sample configura-
tion that includes all features, and (c) Sample configuration that excludes the Automated
Windows feature.

• Scenario (S1) includes reaching the in-home temperature and save energy by means
of closing some windows, and

• Scenario (S2) to adjust the heater value to reach the desired in-home temperature.

Figure 3.3 (a) (right-hand side) shows part of the use case model composed for Product-
1. The Include relationship (represented with «include») describes the case where one use
case, the base use case, includes the functionality of another use case, the inclusion use case.
The Include relationship supports the reuse of functionality in a use case diagram and is
used to express that the behaviour of the inclusion use case is common to other use cases.
Note that Include relationships between use cases may constrain the relationship between
the features related to them. For example, the Include relationship between the base use
case CTRLTEMPREMOTELY that includes the use case OPENANDCLOSEWINAUTO may
imply that feature REMOTEHEATINGCNTRL requires the feature AUTOMATEDWINDOWS4.
We discuss this and other constraints in Section 3.5.

The customization of model-based specifications depends on the features chosen for
the SPL product, the evaluation of feature expressions (i.e., combinations of feature names
and logical operators) in the composition specification (based on the selection of features),
and the relationship of feature expressions with parts of the diagrams. For example, given
that in Product-2 the feature AUTOMATEDWINDOWS was not selected, the variant with the
feature expression “AutomatedWindows” evaluates to FALSE by the VML4RE interpreter.
Therefore, the model elements related to the “AutomatedWindows” feature expression
such as WINACTUATOR actor in the use case diagram as well as the swimlane (also called

4Developers may decide to add this implication to the feature model after VCC alerts them about it.
Therefore, the version of the Smart Home feature model in Figure 3.2 (a) does not show this implication yet.

40

3. DCC4SPL APPROACH 3.2. DCC4SPL Example

Related to “Automated Windows”

Related to “And (“Remote Heating Ctrl” , “Automated Heating” , “Internet”)”

Related to other features expressions.

Heating

Adjust
HeaterValue

CtrlTemp
Remotely

<<actor>>
Thermostat

<<actor>>
Heater

<<include>>

Open And
Close Win

Open And Close
WinAuto

<<actor>>
WinSensor

<<actor>>
WinActuator

<<include>>

Open And
Close Win
Manual

Inhabitant

Notification

Notify

NotifyInhomeScreen<<include>>

<<include>>

(a) Use Scenario: Sample Customized Model‐Based Specifications for Product‐1:
(Left‐hand side) Sample Activity Diagram “CtrlTempRemotelly” Related to (Right‐hand side) Use Case Diagram

Related Model Elements in Activity Diagram Use Case

NotifyByInternet<<extend>>

Sm
ar
tH
om

e

Inhabitatnt Sends
Desired Temp By Internet

Close Windows

MonitorTemperature

AdjustHeaterValue

Open Windows

[OutOfTDesiredValue]

[OpenWindows]

[UseHeater]

[CloseWindows]

DetermineLowEnergy
ConsumptionStrategy

W
in
Ac
tu
at
or

In
ha

bi
ta
nt

Sm
ar
tH
om

e

NotifyChangeByInternet

He
at
er

...more activity diagrams

…

(b) Mapping Between Feature Expresions and Model Elements

WinMan

Not human
actor.

(c) Notation Used in Use Case and Activity Diagrams
<<actor>>
Name

Human
actor.

Name
<<include>>

Include
relationship

Extend
relationship

Asociation
relationship

na
m
e

Partition

name

<<extend>>

Name

Package

name

Use case
Generalization

relationship

Action

[guard]

Activity edge
Initial
node

Decision
node

Figure 3.3: (a) Sample customized model-based specifications for Product-1, (b) Mapping
between feature expressions and model fragments, and (c) Notation used in use case and
activity diagram in (a).

activity partition) related to WINACTUATOR will not appear in any diagram. Therefore,
scenarios such as S1 described in a previous paragraph, are not realizable due to lack of
windows actuators.

Figure 3.3 (a) presented a final composed model for a specific product that includes all
the possible variable features. Therefore, we could take it as the initial model that we can
transform (e.g., removing or replacing model fragments related to variable features) to
obtain particular models for other products with less features. This kind of composition is
called negative composition.

41

3. DCC4SPL APPROACH 3.2. DCC4SPL Example

Also, we could decide to start with a small model whose parts are related to only
mandatory features. Figure 3.4 shows this core model, that is suitable to be transformed
(e.g., adding model elements related to variable features) to obtain particular models
for products that include variable features. This kind of composition is called positive
composition.

Heating

Adjust
HeaterValue

<<actor>>
Thermostat

<<actor>>
Heater

Open And
Close Win

Open And
Close Win
Manual

Inhabitant

Notification

Notify

NotifyInhomeScreen<<include>>

WinMan

Figure 3.4: Sample use case diagram for SMART HOME containing only model elements
related to mandatory features.

A combination between positive and negative variability composition is also pos-
sible, for example in cases where we want to model a core model together with some
parts related to the most frequently selected variable features. Also, it may be useful to
model together parts of a model that are related to dependent features. For example to
model together the model fragments related to INTERNET, REMOTE HEATING CTRL and
AUTOMATIC HEATING features as we did in Figure 3.3 (a).

Regardless the composition mechanism employed, it is important to employ factor-
ization mechanisms to group common functionality. In the case of use case and activity
diagrams there are inclusion and extension use cases, abstract model elements (e.g., use
cases and actors) and container elements (e.g., packages and swimlanes). Modelling
thinking on reuse of common assets helps to modularize the systems better and help to
identify in the models what parts are related to mandatory or variable features.

42

3. DCC4SPL APPROACH 3.2. DCC4SPL Example

1. Variant { name : "A-W" for : "Automated Windows"
2. + UseCase : "OpenAndCloseWinAuto" in Package : "WinMan"
3. + Partition : "WinActuator" in ActDiagram :“CtrlTempAuto"
4. ...
5. }
6. Variant { name : "R-H"
7. for : And ("Remote Heating Ctrl","Automated Heating","Internet")
8. + UseCase : "CtrlTempRemotely" in Package : "Heating"
9. Includes from UseCase : "CtrlTempRemotely" to UseCase(s) :
10. "NotifyByInternet" and "OpenAndCloseWinAuto" and "AdjustHeaterValue"
11. ...
12. }

Figure 3.5: Composition specification of variants A-W (associated to an atomic feature ex-
pression - AUTOMATED WINDOWS) and R-H (associated to a compound feature expression
- AND ("REMOTE HEATING CTRL" , "AUTOMATED HEATING" , "INTERNET").

3.2.3 Create or Modify VML4RE Composition Specification

Figure 3.5 illustrates a composition specification that guides the specification of the trans-
formation of requirements specifications of products in the Smart Home SPL. VML4RE is
a textual language that allows associating actions5, to combinations of features written as
logic expressions that we call feature expressions. Feature expressions can be:

• Atomic, representing atomic features such as AUTOMATED WINDOWS in Figure 3.5,
Line 1, and

• Compound, containing logic operators such as AND, NOT and OR such as AND ("RE-
MOTE HEATING CTRL","AUTOMATED HEATING","INTERNET") in line 7 of Figure
3.5.

Feature expressions evaluation in a feature model configuration works as follows: if a
feature is selected to be part of a product, that feature evaluates to TRUE; otherwise, if the
feature is not selected it evaluates to FALSE. Thus, a feature expression can be evaluated
to TRUE or FALSE based on the boolean value of each feature in the feature expression.
If a feature expression evaluates to TRUE its corresponding actions will be processed
and applied to the base model. Otherwise, if the feature expression evaluates to FALSE,
the next feature expressions will be read and evaluated until the end of the composition
specification.

In our example, if AUTOMATEDHEATING, REMOTE HEATING CTRL, AUTOMATED

HEATING and INTERNET features are selected in a product configuration, the feature ex-
pression (i.e., the compound feature expression: And ("Remote Heating Ctrl","Automated
Heating","Internet")) associated to the variant named “R-H” will be evaluated to TRUE.
The consequence is that the actions in the “R-H” variant block (Figure 3.5, lines 6-12)
will be processed and applied to a base model. For example, the CTRLTEMPREMOTELY

use case will be inserted into the package HEATING and then it will be related to other

5Each action wraps a set of model transformations for specific requirements models such as use cases and
activity diagrams.

43

3. DCC4SPL APPROACH 3.2. DCC4SPL Example

use cases using Include and Extend relationships. If more than one feature expression is
evaluated to TRUE, the default composition order follows a top-down sequence. Note
that for simplicity of explanation we omitted, in Figure 3.5, some of the actions, such as the
insertion of the actors WINSENSOR and WINACTUATOR and partitions such as HEATER.

Figure 3.3 (a) shows use case and activity diagrams fragments, such as actors and use
cases, related with the variants shown in Figure 3.5. The base mechanism to relate parts of
the model-based specifications to the features they design is to use a correspondence table
(or mapping table), as presented by [48, 97, 30, 9, 45]. It is possible to parse the composition
specification to generate the mapping between variants and parts of the model-based
specifications (more details in Chapter 14). Therefore, for example, if the variant A-W
inserts the OPENANDCLOSEWINAUTO use case, we relate the feature expression of A-W
(“AUTOMATEDWINDOWS”) to OPENANDCLOSEWINAUTO. To facilitate the visualization
of such relationships with the models, we assign different gray tones to the model elements
according to the feature expressions of variants that they are related to (see mapping in
Figure 3.3 (b)). Also, note that specific model fragments could be related to more than one
variant; this may be considered as a M-to-N (where M, N >= 1) mapping between feature
expressions of variants and model fragments (not illustrated in Figure 3.3).

3.2.4 Check Consistency Using VCC

Consistency checking aims at ensuring that inconsistent models do not become part of
the specifications of a given product. Our work aims at ensuring that all the models for
products that can be derived from a feature model have consistent specifications, and
that the feature model is consistent with its corresponding model-based specifications.
This is achieved through the description and verification of consistency constraints of the
relationships between a feature model and its corresponding model-based specifications.

At least two requirements, one inferred from the feature model and one inferred
from the model-based specifications, that cannot be accomplished in at least one product,
generates an inconsistency. From the models described in the previous section we can
infer at least two requirements that cannot be achieved together in at least one product
of the Smart Home. Requirement-1, which is inferred from the domain constraints ex-
pressed in the feature model and from their relationships with the feature expressions,
and Requirement-2, inferred from the relationships between elements in the model-based
specifications:

• Requirement-1: Only one, none or both R-H and A-W variants can be included in a product.
This information is inferred from the feature model and the feature expressions
because all the features in the feature expression of the R-H variant are optional and
not exclusive between them (i.e., REMOTE HEATING CTRL, AUTOMATED HEATING

and INTERNET are optional features), and the only feature in the feature expression
of variant A-W is also optional (i.e., the AUTOMATED WINDOWS feature is optional).

• Requirement-2: If the use case CTRLTEMPREMOTELY is provided in a product, then the use

44

3. DCC4SPL APPROACH 3.2. DCC4SPL Example

case OPENANDCLOSEWINAUTO and related steps in the activity diagram must be pro-
vided too in order to support all the intended use scenarios. This is implicit in the Include
relationship from the use case CTRLTEMPREMOTELY to OPENANDCLOSEWINAUTO

in the use case diagram in Figure 3.3 (a) (right-hand side) and also because of the con-
trol flows between the step: DETERMINE LOW ENERGY CONSUMPTION STRATEGY

and OPEN WINDOWS / CLOSE WINDOWS in Figure 3.3 (a) (left-hand side).

In the particular case of the Smart Home use scenarios, a inconsistency can be detected:
there is at least one product that cannot satisfy Requirement-1 and Requirement-2. Let’s
analyse how both requirements are satisfied or not in each product.

While Requirement-1 is satisfied by all the product configurations, therefore satisfied
by Product-1 and Product-2, since they have the same feature model, Requirement-2 is
satisfied by Product-1 only as its use cases and activities supported all the required use
scenarios for this product. For example, given that the base use case CTRLTEMPREMOTELY

was provided in Product-1, the use cases related to it through an Include relationship,
for example OPENANDCLOSEWINAUTO, are also present in the model. The Include
relationship supports the reuse of functionality in use case diagrams in which one use
case (the base use case) requires the functionality of another use case (the inclusion use
case). Therefore, all possible use scenarios related to CTRLTEMPREMOTELY are supported
only when its inclusion use cases are included.

Requirement-2 is not satisfied by Product-2 because its feature configuration (shown in
Figure 3.2 (c)) does not include the AUTOMATED WINDOWS feature. Therefore, the feature
expression of variant A-W (i.e., AUTOMATED WINDOWS)(Figure 3.5, Line 1) evaluates to
FALSE and the actions inside its variant block are not processed, for example, the inclusion
of the use case OPENANDCLOSEWINAUTO. The result is that the functionality provided
by OPENANDCLOSEWINAUTO will not be present in the requirements of Product-2 and
therefore it will not be taken into account in later stages of its development process, thus
given no support for the scenarios related to CTRLTEMPREMOTELY.

One solution to solve the inconsistency for our example would be to guarantee the
presence of the feature AUTOMATED WINDOWS when AUTOMATIC HEATING or REMOTE

HEATING CTRL are selected, in every possible feature model configuration. This can be
guaranteed, for example, adding a domain constraint REQUIRES. Another solution is to
establish that AUTOMATED WINDOWS will be a mandatory feature in the SPL. However,
the number of possible feature combinations may grow exponentially with the number
of features of the SPL. The result of this combinatory explosion makes it unfeasible to
manually check the consistency of all products.

To guarantee that all the products derived from a feature model have consistent
specifications, we take into account the relationships between constraints specified in
feature models and its model-based specifications. This is an automatic process that we
will describe in detail in Section 3.5. The result of this process is a report generated by our
tool (see tool support in Section 3.6):

45

3. DCC4SPL APPROACH 3.2. DCC4SPL Example

“...Inconsistent use scenario(s) [CtrlTempRemotelly] and feature(s) in feature ex-
pression(s) of variant(s) [A-W], [R-H]. The Action: [Include from UseCase: CtrlTem-
pRemotely to Use Case(s) OpenAndCloseWinAuto] implies a [Requires] relationship
from variant [R-H] to required variant(s) [A-W] that is not enforced in the SPL feature
model...”

Based on this information, developers may consider modifying the models to fix the
inconsistency, for example:

• Modify the feature model: the set of SPL domain constraints that can be extracted from
the feature model can be modified, for example by creating a REQUIRES relationship
for AUTOMATEDHEATING feature to AUTOMATEDWINDOWS, or by changing the
AUTOMATEDWINDOWS feature from optional to mandatory.

• Modify use scenarios and the composition model: for our particular rule, developers may
want to check if indeed the Include association between use cases CTRLTEMPRE-
MOTELY and OPENANDCLOSEWINAUTO is mandatory for every single product, or
not.

3.2.5 Create Feature Model Configuration(s)

We presented two specific product configurations of the Smart Home SPL, one called
Product-1 that includes all the SPL features (Figure 3.2 (b)) and another called Product-2
that has all features except AUTOMATED WINDOWS (Figure 3.2 (c)). It is possible to create
more feature model configurations from the original feature model. For example, Figure
3.6 shows a feature model configuration for an economical smart home which does not
contain any optional features except by AUTOMATED WINDOWS.

According to the SPLOT feature model analyzer it is possible to create 10 different valid
configurations6 for the feature model used in this example. However, for normal-sized
examples the number of valid combinations of features in a feature model increases to
millions (Chapter 4 - Validation shows examples). These numbers show that manual
consistency checking is not a good option; an approach and tool support such as the one
that we proposed in this work are very necessary.

3.2.6 Derive Model-Based Specifications for Product(s) Using VML4RE

In application engineering, the feature model configurations created in the previous
subsection are used as a driver during the process to derive automatically product-specific
model-based requirements specifications. The VML4RE interpreter first copies the initial
model to a new model called the composed model or the target model. After that, it
processes the actions whose features expressions evaluate to TRUE as explained in the
Subsection 3.2.3.

6http://www.splot-research.org/

46

3. DCC4SPL APPROACH 3.3. Main Elements

Windows Ctrl

Automated
Windows

Heating Ctrl

Product-3

Manual
Windows

Manual
Heating

Automated
Heating

RemoteHeating Ctrl

UI

InternetInhome
Screen

Selected featureUnSelected feature

Product‐3: Economical Home

Figure 3.6: Sample configuration that excludes all the features except Automated Win-
dows.

The first example of scenarios derivation was already presented in Figure 3.3 and corre-
sponds to the feature model configuration shown in Figure 3.2 (b). Given the possibility of
defining in a unique VML4RE specification the relationships between a feature model and
several requirements models (e.g., use case and activity models), our interpreter produces
different product-specific requirements models in the same process. In the exemplar fea-
ture model configuration shown in Figure 3.2 (b) all the features were selected, therefore,
all the use cases, actors and activity diagrams, were added into the model.

Figure 3.6 shows the feature model configuration of an Economical Smart Home. The
VML4RE interpreter processes the SPL requirements models and the feature model con-
figuration, to derive a product-specific requirements model. In the economical Smart
Home the actions in the R-H variant were not processed because its respective feature
expression evaluated to FALSE. As explained before, if a feature is selected in the con-
figuration, it evaluates to TRUE; otherwise, if it is not selected, it evaluates to FALSE.
Therefore, the feature expression of the variant R-H: AND ("REMOTE HEATING CTRL",
"AUTOMATED HEATING", "INTERNET") evaluates AND (FALSE, FALSE, FALSE) which
evaluates to FALSE, while the variant A-W, evaluates to TRUE.

3.3 Main Elements

This section starts with definitions that complement some of the concepts presented
informally in Chapter 2 - Background. Following to those definitions, this section describes
the main elements of the abstract syntax and semantics of DCC4SPL. Sections 3.4 and
3.5 of this chapter build upon those main elements to describe the two main parts of
DCC4SPL, VML4RE and VCC.

3.3.1 Preliminars

The abstract syntax of DCC4SPL can be specified by means of a metamodel. There are
different concrete syntaxes to represent metamodels such as tree-based diagrams, class

47

3. DCC4SPL APPROACH 3.3. Main Elements

diagrams and textual languages. In this dissertation we employ the class diagram notation
as it is used frequently in MDD and most developers are familiar with it. A metamodel
using a class diagram notation is represented by classes with attributes that are related
using references. Classes in metamodels are usually referred in literature as metaclasses.
References are further distinguished into containment references and non-containment
references [85]:

• Containment is used to relate a parent model element and a child model element that
is declared in the context of the parent element. An example can be found in the
declaration of a method within the body of a class declaration in object-oriented
programming (OOP) languages.

• Non-containment is used to relate a model element with an element that is declared
elsewhere (not as one of its children). An example in OOP languages can be found
in a method call (declared in a statement in the body of a method declaration) that
relates to the method that it calls using a (non-containment) reference.

Model and metamodel, are defined based on the definition of Typed Graph as it is the
most intuitive way to represent a graph with interrelated nodes. This subsection uses
definitions from the literature whenever possible to guarantee readers not familiar with
these concepts to understand them easily.

Typed Graph. A typed graph is a triple 〈V,E, τ〉 where V is a finite set of vertices,
E ⊆ V × V is a finite set of directed edges connecting the vertices and τ : {V ∪ E} →
Type ∪ {containment, non− containtment} is a typing function for the elements of V
and E such that τ(v) ∈ Type if v ∈ V and τ(e) ∈ {containment, non− containtment}
if e ∈ E. Edges (v, v′) ∈ E are noted v → v′. We furthermore impose that the graph
〈V, {v → v′ ∈ E|τ(v → v′) = containment}〉 is acyclic7. The set of all typed graphs is
called TG (adapted from [20]).

Typed Graph Instance. Let 〈V,E, τ〉 = g, 〈V ′, E′, τ〉 = g′ ∈ TG be typed graphs. g′ is a
typed graph instance of g, written g′ |= g, iff for all v′1 → v′2 ∈ E′ there is a v1 → v2 ∈ E
such that τ(v′1) = τ(v1), τ(v

′
2) = τ(v2) and τ(v′1 → v′2) = τ(v1 → v2). Notice that we only

enforce that connections between vertices of g′ must exist also in g and have the same type
(taken from [20]).

Metamodel. A metamodel 〈V,E, τ〉 ∈ TG is a typed graph where τ is a bijective typing
function. The set of all metamodels is called META (taken from [20]).

7According to Barroca et. al. [20] using containment and reference as types for edges allows to model the
different types of associations between the elements of a metamodel or a model.

48

3. DCC4SPL APPROACH 3.3. Main Elements

Feature

name[0..1] : String

VML4RE

name[1] : String
id[1] : Long

ModelElement

splConsistent[1] : Boolean

VCC

URI[1]

CompositionSpecification

variabilityModel

1
URI[1]

ModelBasedSpecification

modelBasedSpec

1

EarlyModel
FeatureModel

1

units1..*

1

modelElement1..*

ConsistencyModel

URI[1]
name[0..1] : String
description[0..1] : String

DCC4SPL-SPL

compSpec1

consistencyModel1

URI[1]

VariabilityModel

name[1] : String
id[1] : Long

VariabilityUnit

varModel1

FeatureModelConfiguration

VariabilityModelConfiguration

productConfigurations

1..*

selected

0..*

notSelected

0..*

modelBasedSpec1..*

Figure 3.7: Main parts in the DCC4SPL metamodel.

Model. A model is a 4-tuple 〈V,E, τ,M〉 where 〈V,E, τ〉 is a typed graph. Moreover
M = 〈V ′, E′, τ ′〉 ∈META is a Metamodel and the codomain of τ equals the codomain of
τ ′. Finally 〈V,E, τ〉 |=M , which means 〈V,E, τ〉 is an instance of a metamodel M . The set
of all models for a metamodel M is called MODELM (taken from [20]).

Model Fragment. A model fragment mf1 is a model fragment of another model frag-
ment mf2 if all model elements in mf1 are also in mf2 (taken from [74]).

3.3.2 Abstract Syntax

Figure 3.7 shows the main parts of the DCC4SPL metamodel. The abstract metaclasses
Model-Based Specification, Composition Specification, Consistency Model and Variability
Model, are specialized with Early Model, VML4RE, VCC and Feature Model, respectively.
Figure 3.7 shows in grey the metaclasses that will be presented during the description of
VML4RE and VCC in Sections 3.4 and 3.5, respectively.

The rest of this subsection presents the main metaclasses of the DCC4SPL metamodel,
starting by the root metaclass DCC4SPL-SPL. This metamodel considers the concepts
(metaclasses) it deals with, how they interrelate (using containment and non-containment
references) and the properties (attributes) they have.

DCC4SPL-SPL. Represents an SPL created according to our approach for Derivation and
Consistency Checking of models in early SPLE (DCC4SPL). DCC4SPL-SPL has a URI8 and

8Uniform Resource Identifier (URI) is a compact string of characters for identifying an abstract or physical
resource such as a model.

49

3. DCC4SPL APPROACH 3.3. Main Elements

may have a name and a textual description. It also contains a Composition Specification,
its corresponding Variability Model, one or more Model-Based Specifications9 and a
Consistency Model.

The rest of this section groups the metaclasses according to the metaclass where they
are contained: Model-Based Specification (page 50) and Variability Model (page 55).
Composition Specification (page 59) and Consistency Model (page 70) are described in
Sections 3.4 and 3.5.

Model-Based Specification. Represents any of the models that specify behaviour, struc-
ture, or qualities of the SPL system. A Model-Based Specification has a URI, and contains
one or more Model Elements.

Model Element. Represents an element contained in a Model-Based Specification.
VML4RE employs this concept as an abstraction for model elements in model-based
requirements specifications. For example, use cases and activity diagrams are UML-
specific model-based specifications that contain Model Elements such as Package, Use
Case, Activity Partition, Actor, Activity and Action.

Figure 3.8 shows the metaclass Element from UML that is referenced by the DCC4SPL
metaclass Model Element. Element in UML serves as an adapter for all the model elements
used in use cases and activity diagrams as well as almost all the UML metaclasses.

Early Model. Represents models written during requirements modelling and architec-
ture design. VML4RE (Section 3.4) focuses on types of models that are most typically
employed during requirements engineering, for example, use scenarios (or scenarios, for
short).

Use Scenarios Model. Represents a set of scenarios which are essentially short histories
composed of a list of steps. In UML, use cases and activity diagrams can be used to
represent scenarios. Each use case describes how actors (i.e., persons, organizations or
other (sub)systems) interact with the system to achieve a specific goal10.

Figure 3.8 shows the relationships between the part of the DCC4SPL metamodel related
to VML4RE and the part of the UML metamodel related to scenario modelling. The main
metaclasses in UML related to scenarios are: Activity, Actor and Use Case. They, as well
as other metaclasses that have concrete representations in use cases and activity diagrams
(e.g., Activity Partition, Extend, Activity Node, Include, Package, Action), extend the
metaclass Element.

Figure 3.8 shows in grey both the specialization hierarchy from Actor, Activity and
Use Case to Model Element. That figure also shows that Behavior Classifiers, such as Use

9We usually refer to instances of a metaclass by quantifying its name. Hence, “DCC4SPL-SPL contains one
or more Model-Based Specifications” means “An instance of the DCC4SPL-SPL metaclass contains one or
more instances of the Model-Based Specification metaclass”.

10A comprehensive study of the contemporary scenario-based work is presented in [1].

50

3. DCC4SPL APPROACH 3.3. Main Elements

DCC4SPL::UseScenariosModel

uml::Activity
uml::UseCase

uml::CommonBehaviors::BehaviorClassifier

activityDiagrams*
useCases*

uml::Actor

uml::Kernel::Classifier

uml::Kernel::Element

name : String

uml::Kernel::NamedElement

uml::Kernel::Namespace

actors*

Behavior

+ownedBehavior*

+behavioredClassifier 0..1

+behavioredClassifier 0..1
+classifierBehavior

0..1

DCC4SPL::EarlyModel

Figure 3.8: Some of the UML metaclasses related to scenario modelling and to the Use
Scenarios Model and Model Element metaclasses of DCC4SPL.

Cases and Actors, relate to Activities through a containment relationship. This means that
a Use Case can reference behaviour specifications modelled using Activities. Also, each
Activity as a specialization of Behavior, can specify how its context classifier, i.e., a specific
use case, changes state over time. Next we describe in more detail Activity and Use Case
diagrams to help to understand their relationships.

Activity. Represents a major task that must take place in order to fulfil an operation
contract. For example, the invocation of an operation, a step in a business process or an
entire business process. An Activity groups all the model elements of an activity diagram
such as ActivityNode, Action, ActivityEdge and ActivityPartition. Figure 3.9 presents
part of the UML usually employed to model activity diagrams.

• Activity Node is an abstract metaclass that represents Control Nodes and Actions,
which are connected by Activity Edges.

• Control Node is an abstract Activity Node that coordinates flows between nodes in an
Activity. It covers Initial Node, Final Node, Fork Node, Join Node, Decision Node
and Merge Node.

– Initial Node is a control node where a flow starts when the activity is invoked.

– Final Node is an abstract control node where a flow in an activity stops. Activity
Final Node is a final node that stops all flows in an activity, while a Flow Final

51

3. DCC4SPL APPROACH 3.3. Main Elements

um
l::ActivityN

ode

um
l::Activity

nam
e: String

um
l::ActivityPartition

nam
e: String

0..1

partition
*

activity

0..1

node
*

um
l::ControlFlow

U
m
l::Action

effect: String

um
l::ActivityFinalN

ode

um
l::InitialN

ode

um
l::D

ecisionN
ode

decisionInput: FunctionalBehavior

um
l::ControlN

ode

um
l::ActivityEdge

guard: ValueSpecification

activity

0..1

edge
*

inPartition

*

node
*

inPartition *

containedEdge
*

incom
ing

*

source1

outgoing
*

target
1

U
m
l::Kernel::N

am
edElem

ent

nam
e: String

um
l::O

paqueAction

um
l::forkN

ode

um
l::JoinN

ode

um
l::M

ergeN
ode

um
l::FinalN

ode

um
l::Flow

FinalN
ode

Figure
3.9:Partofthe

U
M

L
m

etam
odelfocused

on
activity

diagram
s.

52

3. DCC4SPL APPROACH 3.3. Main Elements

Node destroys all tokens that arrive at it and it has no effect on other flows in
the activity.

– Fork Node is a control node that splits a flow into multiple concurrent flows.

– Join Node is a control node that synchronizes multiple flows.

– Decision Node is a control node that chooses between outgoing flows. Which of
the edges is actually traversed depends on the evaluation of the guards on the
outgoing edges.

– Merge Node is a control node that brings together multiple alternate flows. It
is not used to synchronize concurrent flows but to accept one among several
alternate flows.

• uml::Action11 is an abstract metaclass that specializes Activity Node and that repre-
sents a single atomic step within an activity, i.e. which is not further decomposed
within the activity. An Action is a named element that is the fundamental unit of
executable functionality. Thus, the execution of an Action represents some transfor-
mation or processing in the modelled system.

• Actvity Edge is an abstract metaclass for directed connections between two activity
nodes.

• Activity Partitions are groups of elements in an activity diagram.

Use Case. Represents and defines the interactions between actors and the system under
consideration to accomplish a goal. Figure 3.10 presents a subset of the use cases diagrams
metamodel that includes the elements that are related with VML4RE such as: Package,
Use Case, Actor, Generalization, Include and Association.

• Subject metaclass represents the system under consideration to which the use cases
apply. The required behaviour of the subject is specified by one or more Use Cases
(metaclass), which are defined according to the needs of Actors.

• Actor metaclass are the users and any other systems that may interact with the
subject. In other words, an Actor specifies a role played by a user or any other
system that interacts with the Subject.

• Extends is a Directed Relationship from an extending use case to an extended use
case that specifies how and when the behaviour defined in the extending use case
can be inserted into the behaviour defined in the extended use case.

• Include is a Directed Relationship between two use cases, implying that the behaviour
of the included use case is inserted into the behaviour of the including use case.

11The prefix uml means that we refer to the metaclass Action in the UML metamodel and not the metaclass
Action in VML4RE.

53

3. DCC4SPL APPROACH 3.3. Main Elements

um
l::Include

nam
e: String

um
l::U

seCase

*

addition
1

includingCase

1

include
*

guard: ValueSpecification um
l::Extend

extension 1

extend
*

um
l::BasicBehaviors::BehavioredClassifier*

extendedCase
1

um
l::Actor

um
l::Kernel::Classifier

0..1
ow

nedU
seCase

*
useCase

*

subject*

um
l::Classes::Kernel::D

irectedRelationship

um
l::Classes::Kernel::N

am
edElem

ent

um
l::G

eneralization

specific

1

generalization
*

general
*

generalization*U
m

l::Kernel::Association

Aggregation: AggregationKind=none

um
l::Kernel::Property

um
l::Kernel::Relationship

U
RI um

l::Kernel::Package

um
l::Kernel::PackageableElem

ent

ow
ningPackage

0..1

packageableElem
ent

*

nestingPacakges

0..1

nestedPackage
*

association
0..1

m
em

berEnd

2..

um
l::Kernel::Elem

ent

nam
e:String

um
l::Kernel::N

am
edElem

ent

U
m

l::Kernel::N
am

espace

none
shared
com

posite

«enum
aration»

AggregationKind

Figure
3.10:PartofU

M
L

focused
on

use
case

diagram
s.

54

3. DCC4SPL APPROACH 3.3. Main Elements

It is also a kind of Named Element so that it can have a name in the context of its
owning use case. The including use case may only depend on the result (value)
of the included use case. This value is obtained as a result of the execution of the
included use case. Note that the included use case is not optional, and is always
required for the including use case to execute correctly.

• Namespace is an element in a model that contains a set of named elements that can
be identified by name.

• Named Element is an element in a model that has a name.

• Classifier is a Named Element that is a classification of instances; it means that it
describes a set of instances that have features in common. It is possible to define Gen-
eralization relationships to other classifiers. A Classifier can specify a generalization
hierarchy by referencing its general classifiers.

• Package is used to group elements and to provide a namespace for the grouped
elements. Also, a package may contain other packages.

• Use Case is the specification of a set of actions performed by a system, which yields
an observable result that is typically of value for one or more actors or other stake-
holders of the system.

Variability Model. Represents the central artefact in variability modelling that describes
what variability units a product may have and what constraints govern the selection
of combinations of variability units for individual products [97]. Variability Model and
Variability Unit metaclasses are used as adapters for specific techniques for variability
modelling. A Variability Model has a URI and contains one or more Variability Units and
Variability Model Configurations.

Variability Unit. Represents a property, a functionality or non-functional quality that
can vary among the systems in an SPL. Variability Units may be represented explicitly as
features in a feature model or more implicitly in a DSL [94], or in any other form that is
convenient for modelling variability in a specific project [97].

Variability Model Configuration. Represents the information about which Variation
Units were selected or not selected in a specific Variability Model during the application
engineering activity. Therefore, a Variability Model Configuration references zero or more
instances of selected Variability Units and zero or more instances of not selected Variability
Units.

Feature Model Configuration. Represents a specific kind of Variability Model Configu-
ration that keeps the information about the Features selected and not selected in a Feature
Model.

55

3. DCC4SPL APPROACH 3.3. Main Elements

+name : String

FeatureModel

MetaDataSet

+name : String
+value : String

Data

Root

FeatureTree FeatureModelConfiguration
ConstraintsSet

constraintsSet 0..1

-id : Integer

Constraint

featureModelInfo 0..1
featureTree 1

data 0..*

root 1
-selected : Boolean
+decisionType : DecisionType
+decisionStep : Integer

FeatureChoice

+manual
+propagated
+auto-completion

«enumeration»
DecisionType

configuration 0..*

configuration 0..*

+name : String
+id : String
+treeLevel : Integer
+description : String

Feature

Optional

ContainableElement

ContainerElement

ConstrainableElement

+minCardinality : Integer
+maxCardinality : Integer

CardinalizedElement

GroupedFeature

groups 0..*

+id : String

Group

groupedFeatures 1..*

Mandatory

featureChoice 0..*

childrenFeatures 0..*

VariableFeature

CommonFeature

Atom

Not

Literal

Or

clause 1..*

constraints 0..*

feature 1

or 1

feature1

Figure 3.11: Metaclasses from SPLOT for feature models.

Feature Model. Represents a specific kind of Variability Model that characterizes all
the products of an SPL in terms of Features. An instance of a Feature Model is visually
represented by means of a feature diagram. Feature models are used during SPLE as input
to produce other assets such as pieces of code. We contribute to the industry and research
community with a translation to EMF Ecore of the SPLOT’s SXFM 12 feature model
specification (plugins and more documentation are in the SPLOT website13). Figure 3.11
presents the feature model metamodel whose main metaclass is Feature Model. It has
a name (usually the same name of the SPL) and contains a Feature Tree, zero or more
Feature Model Configurations and optionally, a Constraints Set and a Meta Data Set.

• Meta Data Set represents a set of Data fields that can be attached to a Feature Model
to provide information of the types and values defined by Data instances.

12http://www.splot-research.org/: Software Product Line Online Tools.
13http://gsd.uwaterloo.ca:8088/SPLOT/sxfm.html : Mauricio Alférez SPLOT SXFM specification in EMF

ECore.

56

3. DCC4SPL APPROACH 3.3. Main Elements

• Data represents an attribute attached to a Feature Model to provide more information
about its creation. Examples of useful data are: description, creator, address, mail,
phone, website, organization, department, date, and the reference of any publication
where the feature model was originally created.

• Feature Tree represents the main part of a feature diagram represented as a tree-like
taxonomical structure where the leaves are features with no children.

• Root represents the unique feature that contains all the other Features. Root is
common to all the products in the SPL.

• Feature represents product functionalities, properties or non-functional qualities [79].
Thus, specific products can be characterized in terms of features. Features may be
common to all products or vary between products. Therefore, the terms commonality
and variability are often used to denote the Common and Variable Features within
an SPL, respectively. A Feature has an unique name and id, the number of its tree
level, and an optional textual description.

• Common Feature represents a Feature that is used in several products of an SPL. A
Common feature becomes Mandatory when its predecessors are selected in a feature
model configuration.

• Mandatory represents a Feature that will always be included in a product variant if
their parent feature is included in the product variant. Mandatory features are not
part of variability models in the true sense, but serve to structure or document their
parent feature.

• Variable Feature represents Optional and Grouped Features.

• Optional represents selectable features that are not directly part of a Group of
Grouped Features.

• Grouped Feature represents selectable features in a Group of Grouped Features.

• Cardinalized Element represents the minimum and maximum number of Grouped
Features that can be selected in a Group of Features.

• Group represents a set of Grouped Features and it is identified with an id.

• Containable Element represents a Feature that can be contained by other Feature as a
children.

• Container Element represents a Feature that can contain children Features.

• Constrainable Element represents a Feature that can be referenced in cross-tree Con-
straints.

• Constraints Set represents a set of zero or more cross-tree Constraints.

57

3. DCC4SPL APPROACH 3.3. Main Elements

• Constraint represents an arbitrary cross-tree Constraint that is established among
features that are Constrainable Elements, i.e., Optional, Mandatory, and Grouped
Features. To guarantee compatibility and simplicity of the implementation code
when analysing the consistency of the feature models, the constraints follow a CNF
format. A constraint formula in CNF form is a conjunction of clauses and each
clause is a disjunction of literals. Also, any instance of Or must contain at least
two clauses to make sense the creation of a disjunction. For example, Feature-A
requires Feature-B can be represented with the CNF clause: ¬Feature-A ∨ Feature-B.
Feature-A excludes Feature-B can be represented with the CNF clause: ¬Feature-A∨
¬Feature-B.

3.3.3 Semantics

Much of the semantics of DCC4SPL was explained informally during the process overview
(page 35), the example (page 39) and the abstract syntax (page 49) sections of this chap-
ter. This section is dedicated to complement and harmonize those definitions with a
more structured and rigorous operational semantics. The semantic specifications Consis-
tency Checking Using VCC (page 73) and VML4RE Composition (page 66) complete the
semantics of DCC4SPL.

Let dSpl |= DCC4SPL¯SPL (i.e., dSpl is an instance of DCC4SPL-SPL),
vml4re |= VML4RE, vml4re ∈ dSpl.compSpec, mbs ∈ dSpl.modelBasedSpec, fm ∈
dSpl.varModel, fmcSet = fm.productConfigurations, vcc ∈ dSpl.consistencyModel

and vcc |= V CC. Moreover, let mbs, vml4re, fm 6= ∅. The DCC4SPL process is defined as
follows:

mbs, fm, vml4re

Consistency Checking Using V CC
(3.1)

fmcSet,mbs, vml4re, [vcc.splConsistent] = TRUE

∀fmci| fmci ∈ fmcSet VML4RE Composition
(3.2)

Equation 3.1 means that Consistency Checking Using VCC will be performed based on
a model-based specification (mbs), a particular variability model such as a feature model
(fm), and a composition specification (vml4re). Consistency Checking Using VCC is defined
by Equations 3.5 and 3.6 in Section 3.5. Equation 3.2 means that Derive Model-Based
Specifications for Products Using VML4RE (or VML4RE Composition, for short) will be
performed if the SPL is consistent ([vcc.splConsistent] = TRUE). VML4RE Composition
is defined by Equations 3.3 and 3.4 in Section 3.4 and it is performed for all the variability
model configurations (∀fmci| fmci ∈ fmcSet).

58

3. DCC4SPL APPROACH 3.4. Inside VML4RE

3.4 Inside VML4RE

VML4RE supports the DCC4SPL activities Create or Modify VML4RE Composition Specifica-
tion and Derive Model-Based Specifications for Products Using VML4RE depicted in Figure 3.1.
This section presents the abstract syntax, concrete syntax and semantics of VML4RE. We
leave the description of the tool support to Section 3.6.

3.4.1 Abstract Syntax

Figure 3.12 shows the parts of the DCC4SPL metamodel that support VML4RE. To ease
understanding of the metamodel, Figure 3.12 does not show all the specializations and
details of VML4RE as they will be described during this section. Figure 3.12 presents in
grey the parts already explained in Section 3.3 as well as the metaclasses related to the
Consistency Model abstract metaclass. The specialization and details of the Consistency
Model are related to the consistency checking capability of DCC4SPL that will be presented
during the description of VCC in Section 3.5.

Composition Specification. Represents the description of how to derive the models
for a specific product variant. A Composition Specification has a URI, and references a
Model-Based Specification and a Variability Model.

VML4RE. Represents a composition specification that relates a Feature Model and
an Early Model (a subtype of Model-Based Specification). VML4RE employs Variants
that describe how the use scenarios are transformed into product-specific use scenarios,
depending on a selection of features. VML4RE has an optional name and contains one or
more Variants.

Variant. Represents the language construct that describes how model-based specifica-
tions are varied according to certain combination of features. A Variant has an id and
optionally a name given by the developer. Also, a Variant contains one feature Expression
and one or more Actions that will customize the SPL model-based specifications when the
feature expression associated with the Variant evaluates to TRUE.

Expression. Represents the condition associated to each Variant that must be satisfied to
trigger the execution of the Actions inside the Variant. An Expression can be either atomic
or compound. Atomic, representing an expression composed of a single reference to a
Variability Unit (i.e., a Variability Unit Ref). Compound, containing several Variability
Unit Ref (each one referencing an existing Variability Unit, such as Feature) related by logic
operators such as And, Not, Or and XOr. Instances of the Or, XOr and And metaclasses
make sense when they contain at least two expressions; this is indicated by the cardinality
of 2..* in the metamodel.

59

3. DCC4SPL APPROACH 3.4. Inside VML4RE

value[1] : Boolean

Expression

And
N
ot

Feature

O
r

nam
e[0..1] : String

VM
L4RE

nam
e[0..1] : String

id[1] : Long

Variant

nam
e[1] : String

id[1] : Long

M
odelElem

ent

Action actions
1..*

ex1

ex
2..*

Insert
Connect

variants
1..*

ex
1

Rem
ove

Replace

splConsistent[1] : Boolean

VCC

U
RI[1] Com

positionSpecification
variabilityM

odel1
U

RI[1]

M
odelBasedSpecification

m
odelBasedSpec

1

EarlyM
odel

FeatureM
odel

1
units

1..*

1

m
odelElem

ent
1..*

ConsistencyM
odel

U
RI[1]

nam
e[0..1] : String

description[0..1] : String

D
CC4SPL-SPL

com
pSpec

1

consistencyM
odel

1

U
RI[1]

VariabilityM
odel

nam
e[1] : String

id[1] : Long

VariabilityU
nit

varM
odel

1

FeatureM
odelConfiguration

VariabilityM
odelConfiguration

productConfigurations

1..*

selected

0..*

notSelected

0..*

m
odelBasedSpec

1..*

VariabilityU
nitRef

variabilityU
nit

1

ex
2..*

XO
r ex 2..*

Figure
3.12:Parts

ofthe
D

C
C

4SPL
m

etam
odelrelated

to
V

M
L4R

E.

60

3. DCC4SPL APPROACH 3.4. Inside VML4RE

The composite pattern was used here to model the metaclasses Expression, Variability
Unit Ref, Not, And, Or and XOr. The intent of this pattern is to compose objects into
tree-like structures to represent part-whole hierarchies. The composite pattern allows the
uniform treatment of atomic expressions and compound expressions.

To understand the concept of an Expression, we provide a glimpse of the concrete
syntax for And, Not, Or and XOr (this will be further described in Section 3.4.3). A textual
representation of an instance of these expressions written in prefix notation may have the
form:

AND (EXPRESSIONi, EXPRESSIONi+1,..., EXPRESSIONn)

NOT (EXPRESSION)

OR (EXPRESSIONi, EXPRESSIONi+1,..., EXPRESSIONn)

XOr (EXPRESSIONi, EXPRESSIONi+1,..., EXPRESSIONn)

Where i =1; i<n; i and n are natural numbers, and n is the number of subexpressions.

Variability Unit Ref. Represents an atomic Expression that references an existing Vari-
ability Unit, for example, a Feature.

And. Represents a compound Expression that evaluates to TRUE when all its contained
expressions evaluate to TRUE.

Not. Represents a compound Expression that evaluates to TRUE when its contained
expression evaluates to FALSE.

Or. Represents a compound Expression that evaluates to TRUE when at least one of its
contained expressions evaluates to TRUE.

XOr. Represents a compound Expression that evaluates to TRUE when only one of its
contained expressions evaluates to TRUE.

Action. Represents the description of transformations of SPL Model-Based Specifications.
Actions can add, update or remove model elements as well as add, update or remove
links between existing or newly added model elements. VML4RE offers implementations
of actions that apply to use case and activity diagrams. These actions are depicted in
Figure 3.13. For example, ConnectActorUseCase connects an actor to an use case using an
association; RemovePackage removes a package and its contained model elements; and
InsertUseCase adds an use case in a use case diagram. For activity diagrams, actions such
as ReplaceActivity replaces a generic activity by the activities from other activity diagram
without including its initial and end nodes, and InsertActivityDiagram adds a complete
activity diagram into the model-based specifications of a particular product.

61

3. DCC4SPL APPROACH 3.4. Inside VML4RE

Action

Insert

Connect

Remove

Replace

InsertUseCase InsertPackage InsertActor

InsertPartition InsertActivityDiagram InsertOpaqueAction

ConnectByIncludes ConnectByExtends ConnectUseCasesByGeneralization

ConnectActorsByGeneralization ConnectActorUseCaseConnectUseCaseActor

ReplaceActivityReplaceUseCase

RemoveUseCase RemovePackage RemoveActor

RemovePartition RemoveActivityDiagram RemoveOpaqueAction

Figure 3.13: Actions in VML4RE.

62

3. DCC4SPL APPROACH 3.4. Inside VML4RE

1 VML4RE ::= "VML4RE" "{"

2 ("name" ":" name ['"','"'])?

3 "featuresPath" ":" varModel['"','"']

4 "useScenariosPath" ":" modelBasedSpec['"','"']

5 variants+

6 "}"

7 ;

8 Variant ::= "Variant" "{"

9 ("name" ":" name ['"','"'])?

10 "for" ":" ex

11 actions+

12 "}";

Figure 3.14: First part of the concrete syntax specification of VML4RE related to VML4RE
and Variant.

3.4.2 Syntactic Mapping

Syntactic mapping relates the concepts modelled as metaclasses in a metamodel to a
concrete syntax. The syntactic mapping for the VML4RE metaclasses that we want to
represent consists on syntax rules. Each rule specifies the presentation of the text that
represents instances of its related metaclass. Rules have two sides, left-hand side and
right-hand side separated by the symbol “::=”. The left-hand side denotes the name of the
metaclass, while the right-hand side defines its syntax.

If a metaclass has attributes, we can specify a syntax for their values. To do so,
we add brackets after the name of the attribute: OURMETACLASSWITHATTRIBUTE ::=
OURATTRIBUTE[]; . Optionally, one can specify the name of a token inside the brackets:
OURMETACLASSWITHATTRIBUTE ::= OURATTRIBUTE [MY_TOKEN]; . If the token
name is omitted (i.e., OURATTRIBUTE[]), we mean the token TEXT, which is a predefined
token that includes alphanumeric characters. Another possibility to specify the token
definition that can be used to match the text for the attribute value is to do it in-line, for
example: [’"’,’"’] allows to write arbitrary characters between the initial and final quote
character for the value of attributes.

If a metaclass has a containment reference, we can do it like this: OURCONTAINER-
METACLASS ::= "CONTAINER" OURCONTAINMENTREFERENCE;. It allows to represent
instances of OURCONTAINERMETACLASS using the keyword “CONTAINER” followed by
one instance of the type that OURCONTAINMENTREFERENCE points to.

If zero or more children need to be contained, the following rule is used: OURCON-
TAINERMETACLASS ::= "CONTAINER" OURCONTAINMENTREFERENCE* ;. Similarly, if
one or more children need to be contained, the “*” sign can be replaced by “+”. Next
we will describe the concrete syntax of the main metaclasses in VML4RE that apply the
constructs explained previously.

63

3. DCC4SPL APPROACH 3.4. Inside VML4RE

VML4RE and Variant. Figure 3.14 shows the first part of the syntax rules for VML4RE
related to the metaclasses VML4RE and Variant. Figure 3.14, lines 2-4 and 9 shows that it
is allowed to write arbitrary characters between the initial and final quote character for
the value of attributes name, varModel, and modelBasedSpec.
Almost all the references in VML4RE are containment references. Figure 3.14, line 5 shows
that a VML4RE model can have one or more variants. Also, Figure 3.14, line 10 shows that
each variant can have only one feature expression and line 11 shows that each variant can
have one or more actions.

Action. Figure 3.15 shows the second part of the concrete syntax that is related to the
specializations of the metaclass Action. Lines 13 to 15 show the “?” sign which can be
used to express that zero or one children need to be contained. This means that the last
part of the rules, i.e., “("in Package :" inPkg[’"’,’"’])?”, is optional and therefore to specify
an insertion of UseCase, Package or Actor it is not necessary to write the package name if
we want to insert them in the main use case diagram.

Model Elements and Expression. Figure 3.16 shows the third part of the concrete syntax
that is related to the specializations of some model elements and expresssions. Lines 42
to 45 show the rules for the metaclasses And, Or, XOr and Not. In these rules we define
a prefix notation. We employ prefix notation for compatibility with previous versions
of VML4RE and to abbreviate long feature expressions. Using “ “(” ex “,” ex “)” “ at
the begining of the And, Or and XOr rules forces at least two appearances of children
expressions (Figure 3.16, lines 42 to 44).

Relationship between Concrete and Abstract Syntaxes. We include an example to
show the dependencies between abstract and concrete syntaxes, and models that can
conform to them. Figure 3.17 shows part of a composition specification written using
VML4RE. The dashed arrows represent the dependency relationships between metaclasses
in the abstract syntax (the metamodel) (Figure 3.17 (a)), rules in the concrete syntax (Figure
3.17 (b)), the textual representation that conforms to the grammar specified by the concrete
syntax (Figure 3.17 (c)), and an object diagram that represents one possible representation
of the model elements and their relationships related to the composition specification
(Figure 3.17 (d)).

Figure 3.17 focuses on the specification of a Variant (metaclass) with name (attribute)
“R-H”. Variant R-H has a feature Expression (abstract metaclass) of type And (metaclass)
composed of three atomic features expressions: VariabilityUnitRef (metaclass) “Remote
Heating Control”, VariabilityUnitRef (metaclass) “Automated Heating” and VariabilityU-
nitRef (metaclass) “Internet”. Also, Figure 3.17 shows one Action (abstract metaclass) of
type InsertActivityDiagram (metaclass) that is represented by the token “+ ActDiagram :”
in the concrete syntax.

64

3. DCC4SPL APPROACH 3.4. Inside VML4RE

13 InsertUseCase ::= "+ UseCase :" newUc['"','"'] ("in Package :" inPkg['"','"'])? ;

14 InsertPackage ::= "+ Package :" newPkg['"','"'] ("in Package :" inPkg['"','"'])? ;

15 InsertActor ::= "+ Actor :" newActor['"','"'] ("in Package :" inPkg['"','"'])? ;

16 InsertPartition ::= "+ Partition :" newPartition['"','"']
"in ActDiagram :" inActivityDiagram['"','"'] ;

17 InsertActivityDiagram ::= "+ ActDiagram :" newActivityDiagram['"','"'] ;

18 InsertOpaqueAction ::= "+ OpaqueAction :" newOpaqueAction['"','"']
"in ActDiagram :" inActDiagram['"','"'] ;

19

20 ConnectByIncludes ::= "Includes from UseCase :" fromUseCase['"','"']
"to UseCase(s) :" toUseCase['"','"'] ("and" toUseCase['"','"'])* ;

21 ConnectByExtends ::= "Extends from UseCase :" fromUseCase['"','"']
"to UseCase(s) :" toUseCase['"','"'] ("and" toUseCase['"','"'])* ;

22 ConnectUseCasesByGeneralization ::= "Generalize from UseCase :" fromUseCase['"','"']
 "to UseCase :" toUseCase['"','"'] ;

23 ConnectActorsByGeneralization ::= "Generalize from Actor :" fromActor['"','"']
"to Actor :" toActor['"','"'] ;

24 ConnectActorUseCase ::= "Associate from Actor :" fromActor['"','"']
"to UseCase(s) :" toUseCase['"','"'] ("and" toUseCase['"','"'])* ;

25 ConnectUseCaseActor ::= "Associate from UseCase :" fromUseCase['"','"']
"to Actor(s) :" toActor['"','"'] ("and" toActor['"','"'])* ;

26

27 ReplaceActivity ::= "‐+ Activity :" genericActivity['"','"']
"by ActDiagram :" byActivityDiagram['"','"'] ;

28 ReplaceUseCase ::= "‐+ UseCase :" genericUseCase['"','"']
"by UseCase :" bySpecificUseCase['"','"'] ;

29

30 RemoveUseCase ::= "‐ UseCase :" oldUc['"','"'] ("in Package :" inPkg['"','"'])? ;

31 RemovePackage ::= "‐ Package :" oldPkg['"','"'] ("in Package :" inPkg['"','"'])? ;

32 RemoveActor ::= "‐ Actor :" oldActor['"','"'] ("in Package :" inPkg['"','"'])? ;

33 RemovePartition ::= "‐ Partition :" oldPartition['"','"']
("in ActDiagram :" inActivityDiagram['"','"'])? ;

34 RemoveActivityDiagram ::= "‐ ActivityDiagram :" oldActivityDiagram['"','"'] ;

35 RemoveOpaqueAction ::= "‐ OpaqueAction :" oldOpaqueAction['"','"']
("in ActDiagram :" inActDiagram['"','"'] ("and" inActDiagram['"','"'])*)?;

Figure 3.15: Second part of the concrete syntax specification of VML4RE related to actions.

65

3. DCC4SPL APPROACH 3.4. Inside VML4RE

36 Pkg ::= name['"','"'] ;

37 UseCase ::= name['"','"'] ;

38 Partition ::= name['"','"'] ;

39 ActivityDiagram ::= name['"','"'] ;

40 Actor ::= name['"','"'] ;

41 OpaqueAction ::= name['"','"'] ;

42 And ::= "And" "("(ex "," ex)("," ex)* ")" ;

43 Or ::= "Or" "(" (ex "," ex)("," ex)* ")" ;

44 XOr ::= "XOr" "(" (ex "," ex)("," ex)* ")" ;

45 Not ::= "Not" "(" ex ")" ;

46 VariabilityUnitRef ::= variabilityUnit['"','"'];

Figure 3.16: Third part of the concrete syntax specification of VML4RE related to Mod-
elElement and Expressions.

3.4.3 Semantics

This section describes the operational semantics of VML4RE. It is organized by definitions
ordered according to the precedence of the concepts.

Feature Model Configuration. A feature model configuration fmc is a 2-tuple
〈selected, selected〉 where selected and selected are respectively the set of selected and
not-selected features of a system. Let FSet be the set of features of a feature model, such
that selected, selected ∈ FSet, selected ∩ selected = ∅ and selected ∪ selected = FSet.
Let conf ∈ featureModel.productConfigurations, we use the terms conf.selected and
conf.selected to respectively refer to the set of selected and not-selected features of conf ,
and ∅conf to denote the empty configuration 〈∅, ∅〉 (adapted from [22]).

Derive Model-Based Specifications for Products Using VML4RE. Let
vml4re |= VML4RE, {input, output} |= UseScenariosModel, {input, output} ∈
vml4re.modelBasedSpec, fmc1 |= featureModelConfiguration, fmc1 ∈
vml4re.variabilityModel.productConfigurations, var |= V ariant and var ∈
vml4re.variants. Moreover, let ASet be the set of actions to be applied to input

to obtain output, vml4re.variants 6= ∅, fmc1 6= 〈∅, ∅〉, ASet = ∅, input 6= ∅ and
output = ∅. Derive Model-Based Specifications for Products Using VML4RE (or VML4RE
Composition, for short) is performed product by product and for all the products of
the SPL (i.e., ∀fmci| fmci ∈ vml4re.variabilityModel.productConfigurations). VML4RE
Composition is defined as follows:

fmc1, vml4re, [var.expression] = TRUE

ASet = ASet q var.actions
(3.3)

input, ASet 6=∅
[ASet] = output

(3.4)

66

3. DCC4SPL APPROACH 3.4. Inside VML4RE

2..*

name = R-H

Object1 : Variant

}

Expression

And

VariabilityUnitRef

name[1]

Variant

name[0..1]
id[1]

Action

actions1..*

ex1

Insert

ex

InsertActivityDiagram

newActivityDiagram[1]

Object4 : And

newActivityDiagram

Object5 : InsertActivityDiagram

name = Remote Heating Control

Object2 : VariabilityUnitRef

name = Automated Heating

Object6 : VariabilityUnitRef

name = Internet

Object7 : VariabilityUnitRef

And ::= "And" "("(ex "," ex)
("," ex)* ")" ;

Variant ::=
"Variant" "{"
("name" ":" name ['"','"'])?
"for" ":" ex
actions+

"}";

InsertActivityDiagram ::=
"+ ActDiagram :"
newActivityDiagram['"','"'] ;

VariabilityUnitRef ::=
variabilityUnit['"','"'];

And ("Automated Heating","Remote Heating Control", "Internet") Variant { name : "R-H" for :

+ ActDiagram : "CtrlTempRemotely"

Figure 3.17: (c) Sample VML4RE model fragment related to the variant remote heating
control in the Smart Home and its corresponding: (a) metamodel, (b) concrete syntax
specification, and (d) relationships between model elements related to the sample model
fragment.

67

3. DCC4SPL APPROACH 3.4. Inside VML4RE

Expression Evaluation. Equation 3.3 shows that the expression of each variant contained
in the vml4re model will be evaluated. In case that the expression evaluates to TRUE, the
actions of the variant will be added to ASet.

The value of an expression depends on the values associated with its identifiers. In
VML4RE the identifiers are the names of features in the feature model configuration. If
a variability unit name (e.g., a feature name) is selected in the configuration, we assign
TRUE, otherwise we assign FALSE. Let ex |= Expression, which can be of different types
VariabilityUnitRef, Not, And, Or, XOr. The evaluation of ex depends on its type as it is
shown next:

[ex] =

[V ariabilityUnitRef] if ex |= V ariabilityUnitRef

[Not] if ex |= Not

[And] if ex |= And

[Or] if ex |= Or

[XOr] if ex |= XOr

[V ariabilityUnitRef] =

{
TRUE if (V ariabilityUnitRef.variabilityUnit ⊆ selected)
FALSE if (V ariabilityUnitRef.variabilityUnit ⊆ selected)

[Not] =

{
TRUE if [ex] = FALSE

FALSE if [ex] = TRUE

[And] =

{
TRUE if ∀exi ∈ And.ex | [exi] = TRUE

FALSE if ∃exi ∈ And.ex | [exi] = FALSE

[Or] =

{
TRUE if ∃exi ∈ Or.ex | [exi] = TRUE

FALSE if ∀exi ∈ Or.ex | [exi] = FALSE

[XOr] =

{
TRUE if ∃exi ∈ XOr.ex | [exi] = TRUE, ∀exj ∈ XOr.ex | [exj] = FALSE, i 6= j.

FALSE Otherwise

Action Evaluation. Equation 3.4 shows that given a non-empty set of input and an ASet,
the actions in ASet will be evaluated to produce the output. The output is a customized set
of use scenarios for a specific product. We use graph transformations to express how each
particular Action can transform the input models. Next we define graph transformation
and after that we continue describing Action Evaluation.

68

3. DCC4SPL APPROACH 3.4. Inside VML4RE

LHS RHS

: Package actorY : Actor

useCaseX :
Use Case

: Association

: Property

AggregationKind =
none

: Property

AggregationKind =
none

: Model

memberEndmemberEnd

Type

Type

: Package actorY : Actor

useCaseX :
Use Case

A_src_dst :
Association

Dst: Property

AggregationKind =
none

Src: Property

AggregationKind =
none

: Model

memberEndmemberEnd

Type

Type

Figure 3.18: Graph rule to insert an Association between actorY and useCaseX

Graph Transformation. In general, a graph transformation is a graph rule r: L —› R
for LHS graph L to a RHS graph R. The process of applying r to a graph G involves
finding a graph monomorphism, h, from L to G and replacing h(L) in G with h(R) [81].
The notation used to express our graph transformations in the next definitions in this
subsection is similar to the one used by [69] where the LHS and RHS patterns are denoted
by a generalized form of object diagrams. However, for visual simplicity we added dashed
lines between elements to represent any number of containments (in this case, package’s
containments). To the readers interested in details of this notation, please consult [69].

Action Evaluation (continuation). The semantics of each VML4RE action can be defined
in terms of a model-to-model transformation. For instance, the action “ASSOCIATE FROM

USECASE : “useCaseX” TO ACTOR : “actorY” ” , connects the useCaseX using an association
link to the actorY. The intended transformation of the use case diagram can be presented
by the left hand side (LHS) and right hand side (RHS) graphs shown Figure 3.18, where
the inputs are a use case model, a use case, and an actor. If there is already an association
between the actor and the use case in the same package, the transformation is not applied
to avoid duplicates. This is expressed with the cross in some elements in the LHS graph
that act as negative application conditions (NAC). It means that any match against the
LHS graph cannot have a package with any existing association between useCaseX and
actorY.

Figure 3.19 illustrates the operator replace using the example “Replace Use Case”. A
replace in this context includes to remove a use case (indicated by the “-”) and then insert
a new use case (indicated by the “+”) linked in the place of the old use case. For example,
“-+ UseCase : useCaseB by UseCase : useCaseC”.

69

3. DCC4SPL APPROACH 3.5. Inside VCC

LHS RHS

useCaseB : UseCase

: Model

useCaseC : UseCase

: Model

Figure 3.19: Graph rule to replace useCaseB by useCaseC.

3.5 Inside VCC

Variability Consistency Checking (VCC) supports the activity Consistency Checking Using
VCC of the DCC4SPL process depicted in Figure 3.1. This section defines the metamodel
and semantics of VCC while Section 3.6 describes tool support.

3.5.1 Abstract Syntax

Figure 3.20 shows the parts of the DCC4SPL metamodel that support VCC. This meta-
model has a main abstract metaclass called Consistency Model that DCC4SPL specializes
with VCC. This metamodel shows in grey some of the metaclasses related to the other
parts of DCC4SPL to help readers to understand the relationships between the different
parts.

Consistency Model. Represents a model used for consistency checking of the Variability
Model (e.g., a Feature Model) against Model-Based Specifications. A Consistency Model
contains an instance of Domain Constraints and Mapping Model, zero or more Consistency
Rule Instances and optionally, a Model Elements Relationships Model.

VCC. Represents a Variability Consistency Checking model.

Domain Constraints. Represents a model containing the constraints between Variability
Units which are obtained from Variability Model. Therefore, there is only one instance of
Domain Constraints in all the Consistency Model.

Model Elements Relationships Model. Represents a model that records the informa-
tion about dependencies and incompatibilities between model elements in Model-Based
Specifications. This is an optional component in a Consistency Model that is useful for
approaches that use that information to create Model-Based Specification Constraints
based on the relationships of those model elements with Variants and Variability Units
recorded in the Mapping Model.

70

3. DCC4SPL APPROACH 3.5. Inside VCC

va
lu

e[
1]

 :
Bo

ol
ea

n

Ex
pr
es
si
on

An
d

N
ot

Fe
at
ur
e

O
r

na
m

e[
0.

.1
] :

 S
tr

in
g

VM
L4
RE

na
m

e[
0.

.1
] :

 S
tr

in
g

id
[1

] :
 L

on
g

Va
ria

nt

Pa
irV

ar
M
Es

M
ap

Re
qu

ire
dM

E

mapReq0
..*

M
ap

Pr
ov

id
ed

M
E

na
m

e[
1]

 :
St

rin
g

id
[1

] :
 L

on
g

M
od

el
El
em

en
t

requirer 1

provider 1

provided1

Ac
tio

nac
tio

ns
1.

.*

ex 1

ex
2.

.*

In
se
rt

Co
nn

ec
t

va
ria

nt
s

1.
.*

ex
1

va
ria

nt

1

Re
m
ov
e

Re
pl
ac
e

sp
lC

on
sis

te
nt

[1
] :

 B
oo

le
an

VC
C

U
RI

[1
]Co
m
po

si
tio

nS
pe

ci
fic
at
io
n

va
ria

bi
lit

yM
od

el 1
U

RI
[1

]

M
od

el
Ba

se
dS
pe

ci
fic
at
io
n

m
od

el
Ba

se
dS

pe
c

1

Ea
rly

M
od

el

Fe
at
ur
eM

od
el

va
ria

bi
lit

yM
od

el
1

1
un

its
1.

.*

1

m
od

el
El

em
en

t
1.

.*

M
od

el
El
em

en
ts
Re

la
tio

ns
hi
ps
M
od

el

1

de
pM

od
el

0.
.1

Co
ns
is
te
nc
yM

od
el

U
RI

[1
]

na
m

e[
0.

.1
] :

 S
tr

in
g

de
sc

rip
tio

n[
0.

.1
] :

 S
tr

in
g

D
CC

4S
PL
-S
PL

co
m

pS
pe

c
1

co
ns

ist
en

cy
M

od
el

1

U
RI

[1
]

Va
ria

bi
lit
yM

od
el

na
m

e[
1]

 :
St

rin
g

id
[1

] :
 L

on
g

Va
ria

bi
lit
yU

ni
t

va
rM

od
el

1

Fe
at
ur
eM

od
el
Co

nf
ig
ur
at
io
n

Va
ria

bi
lit
yM

od
el
Co

nf
ig
ur
at
io
n

pr
od

uc
tC

on
fig

ur
at

io
ns 1.
.*

se
le

ct
ed

0.
.* no

tS
el

ec
te

d

0.
.*

M
ap

Co
nf
lic
tin

gM
E

pairIncomp. 0.
.*

incompatible2
..*

required1

na
m

e[
1]

 :
St

rin
g

Co
ns
tr
ai
nt
Ty
pe

co
ns

ist
en

t[
1]

 :
Bo

ol
ea

n
na

m
e[

1]
 :

St
rin

g

Co
ns
is
te
nc
yR

ul
eI
ns
ta
nc
e

So
ur
ce
Pa

irS
et

Pa
ir

Ex
cl
ud

es

Re
qu

ire
s

ty
pe

1

cr
iS

et

0.
.*

va
ria

bi
lit

yU
ni

t
1

1
m

es

1.
.*

1

Ta
rg
et
Pa

irS
et

m
od

el
Ba

se
dS

pe
c

1.
.*

Va
ria

bi
lit
yU

ni
tR
ef

va
ria

bi
lit

yU
ni

t
1

ta
rg

et
s

1.
.*

so
ur

ce
sS

et
1.

.*
ta

rg
et

sS
et

1.
.*

D
om

ai
nC

on
st
ra
in
ts

so
ur

ce
s

1.
.*

Pa
irV

ar
U
ni
tM

Es

mapsProv0.
.*

1

dC
on

s
1

M
od

el
Ba

se
dS

pe
ci
fic
at
io
nC

on
st
ra
in
t

1

m
BS

Co
ns 1

ex
2.

.*

XO
rex2.

.*

dC
on

s
1

1

M
ap

pi
ng

M
od

el

m
ap

M
od

el
1

pa
irs

Se
t

0.
.*

Fi
gu

re
3.

20
:P

ar
ts

of
D

C
C

4S
PL

m
et

am
od

el
re

la
te

d
to

V
C

C
.

71

3. DCC4SPL APPROACH 3.5. Inside VCC

Map Required ME. Represents a 2-tuple 〈required, requirer〉 where the requirer Model
Element depends on the required Model Element to be in the Model-Based Specification.

Map Provided ME. Represents a 2-tuple 〈provided, provider〉where the provider Model
Element supplies the provided Model Element to the Model-Based Specification.

Map Conflicting ME. Represents a set of instances of Model Element that are incompat-
ible between them when they are in the same Model-Based Specification.

Pair. Represents an abstract 2-tuple that references a set of Model Elements.

Mapping Model. Represents the set of Pairs.

Pair Var MEs. Represents a 2-tuple 〈variant,mes〉 that relates a Variant with a set of one
or more Model Elements that depends on that Variant.

Pair Var Unit MEs. Represents a 2-tuple 〈variabilityUnit,mes〉 that relates a Variability
Unit with a set of one or more Model Elements that depends on that Variability Unit.

Consistency Rule Instance. Represents one particular occurrence in a Model-Based
Specification of a pattern described by a Model-Based Specification Constraint which
needs to be evaluated against the Domain Constraints. A Consistency Rule Instance has
a name (it corresponds to the name of the related Consistency Type plus an identifier),
references the Domain Constraints instance and contains one Model-Based Specification
Constraint.

Model-Based Specification Constraint. Represents a 2-tuple 〈sourcesSet, targetsSet〉
where sourcesSet contains instances of Source Pair Set and targetsSet contains instances
of Target Pair Set. A Model-Based Specification Constraint defines well-formedness and
design patters that need to be enforced in the Model-Based Specification.

Source Pair Set. Represents a set of instances of Pairs that contains a list of references to
model elements that cause the creation of the Consistency Rule Instance.

Target Pair Set. Represents a set of instances of Pairs that contains a list of references to
model elements that conflict or require model elements in the Source Pair Set.

Constraint Type. Represents the type of the Model-Based Specification Constraint. The
concrete types considered in VCC are Requires and Excludes, they are described next14.

14This metaclass could be optionally designed as an enumeration type whose fields consist of a fixed set of
constants (REQUIRES and EXCLUDES). We choose this design to better meet our definition of metamodel
which does not explicitly mention enumeration types in metaclasses.

72

3. DCC4SPL APPROACH 3.5. Inside VCC

Requires. Represents a type of constraint that implies that a Pair requires of other Pair.

Excludes. Represents a type of constraint that implies that a Pair is incompatible with
other Pair.

3.5.2 Semantics

This section describes the operational semantics of VCC. It is organized by definitions
ordered according to the precedence of the concepts.

Consistency Checking Using VCC. Let vcc |= V CC, cris = vcc.criSet and d = vcc.dCons.
Consistency checking using VCC is defined as follows:

vcc, cris, d, (∀c|c ∈ cris, [c.consistent] = TRUE)

vcc.splConsistent = TRUE
(3.5)

vcc, cris, d, (∃c|c ∈ cris, [c.consistent] = FALSE)

vcc.splConsistent = FALSE
(3.6)

Equations 3.5 and 3.6 show that all the instances of Consistency Rule Instance (∀c|c ∈
cris), need to be evaluated for consistency. In case that all the instances are consistent
(∀c|c ∈ cris, [c.consistent] = TRUE), the SPL is consistent (vcc.splConsistent = TRUE).
If any Consistency Rule Instance is not consistent (∃c|c ∈ cris, [c.consistent] = FALSE),
the SPL is inconsistent (vcc.splConsistent = FALSE) .

Printing Consistency Checking Results. The results that VCC prints are the informa-
tion about the violated consistency rules found in an SPL. This information includes: (1)
the name of the violated consistency rule, (2) the name of the variant (or variability unit),
and (3) the name and type of the model elements involved. Printing Consistency Checking
Results is defined as follows:

c ∈ cris, [c.consistent] = FALSE

print(c)
(3.7)

Equation 3.7 shows that only instances of Consistency Rule Instance evaluated as
inconsistent ([c.consistent] = FALSE) will be printed. Print(c) is defined as follows:

ss ∈ c.mBSCons.sourcesSet, ts ∈ c.mBSCons.targetsSet
print(c.name), print(ss), print(ts)

(3.8)

Equation 3.8 shows that printing a particular instance of Consistency Rule In-
stance will print its name (print(c.name)) as well as its source set ss and target set ts

73

3. DCC4SPL APPROACH 3.5. Inside VCC

(print(ss), print(ts)). Print(ss) is defined as follows:

sp ∈ ss.sources, sp |= PairV arUnitMEs

print(sp.variabilityUnit.name),

∀me|me ∈ sp.mes {print(me.name), print(getMetaclassName(me))}
(3.9)

sp ∈ ss.sources, sp |= PairV arMEs

print(sp.variant.name),

∀me|me ∈ sp.mes {print(me.name), print(getMetaclassName(me))}
(3.10)

Equation 3.9 and 3.10 show that printing a sources set (print(ss)) will print the sources
pairs. Similarly, print(ts) is defined as follows:

tp ∈ ts.targets, tp |= PairV arUnitMEs

print(tp.variabilityUnit.name),

∀me|me ∈ tp.mes {print(me.name), print(getMetaclassName(me))}
(3.11)

tp ∈ ts.targets, tp |= PairV arMEs

print(tp.variant.name),

∀me|me ∈ tp.mes {print(me.name), print(getMetaclassName(me))}
(3.12)

Equation 3.11 to 3.12 shows that printing a targets set (print(ts)) will print the targets
pairs.

Equation 3.9 to Equation 3.12 show that each pair PairVarUnitMEs and PairVarMEs
involved in the violation of a rule will be printed. That includes the name and type of
each each model element (me) involved in the violation of a constraint rule. The list of
model elements is represented by the attribute mes in the metaclass Pair instantiated by
PairVarUnitMEs and PairVarMEs. The definition of Equation 3.9 throughout Equation
3.12 employs a common function getMetaclassName(me) that returns the name of the
metaclass of the model element received as parameter.

Finally, the meaning of print(x) is defined by Equation 3.13. It shows that given a
string (x |= String), it will produce a chain of characters send to the standard output flow
of the system.

[print(x)] = "x" iff x |= String (3.13)

Evaluation of Consistency Rule Instance. Our objective when evaluating consistency
rule instances is that domain constraints (d) meet model-based specification constraints

74

3. DCC4SPL APPROACH 3.5. Inside VCC

(mBS), and model-based specification constraints (mBS) meet domain constraints (d).
This logic is expressed by Equation 3.14.

[d→ mBS] ∧ [mBS → d] (3.14)

A satisfiability solver15 (SAT for short) can find SAT variable truth assignments of
the products16 that satisfy Equation 3.14. We employ Equation 3.15, which is a modified
version of Equation 3.14, to find inconsistencies. Equation 3.15 evaluates to FALSE (i.e.,
the consistency rule instance is inconsistent) when any of the two sides of the disjunction
is satisfiable. Therefore, one can first evaluate only the left-hand side of the conjuntion
(¬[d→ mBS]). If the left-hand side is satisfiable, the entire equation is FALSE. Otherwise,
if the left-hand side of the conjuntion is not satisfiable (consistent), the right-hand side
(¬[mBS → d]) has to be evaluated.

¬[d→ mBS] ∨ ¬[mBS → d] (3.15)

Based on Equation 3.15 it is possible to evaluate if a specific Consistency Rule Instance
is consistent or not ([c.consistent] = True|[c.consistent] = False). Let vcc |= V CC, d =

vcc.dCons, ss = c.mBSCons.sourcesSet, ts = c.mBSCons.targetsSet, cris = vcc.criSet,
where sat (means satisfiable) and sat (means not satisfiable). The evaluation of a consistency
rule instance c|c ∈ cris is shown next:

[c] =

{
[Excludes] if c.mBSCons.type |= Excludes

[Requires] if c.mBSCons.type |= Requires
(3.16)

[Excludes] =

{
False if [¬[d→ mBSExc] = sat ∨ ¬[mBSExc → d] = sat

True if [¬[d→ mBSExc] = sat ∧ ¬[mBSExc → d] = sat
(3.17)

[Requires] =

{
False if [¬[d→ mBSReq] = sat ∨ ¬[mBSReq → d]] = sat

True if [¬[d→ mBSReq] = sat ∧ ¬[mBSReq → d] = sat
(3.18)

Equations 3.17 and 3.18 show the same structure. In that structure ¬[mBS → d] = sat

means that domain constraints (d) do not meet the model-based specification constraints
15http://www.satisfiability.org/
16Each Variability Unit (e.g., a Feature) is represented by a variable in the SAT solver. A product is represented

by selections of Variable Units in a Variability Model Configuration (e.g., a selection of Features in a Feature Model
Configuration).

75

3. DCC4SPL APPROACH 3.5. Inside VCC

(mBS), and ¬[d→ mBS] = sat means that model-based specification constraints (mBS)
do not meet the domain constraints (d). Equations 3.19 and 3.20 show that each type of
model-based specification constraint (mBS), Exclude (mBSExc) and Requires (mBSReq),
has a particular evaluation. That evaluation vary according to the type of Pair, Pair-
VarUnitMEs or PairVarMEs. Let be cris = vcc.criSet, ss = c.mBSCons.sourcesSet,
ts = c.mBSCons.targetsSet, sp ∈ ss.sources and tp ∈ ts.targets.

[mBSExc] =

{
[mBSExc,varUnit] if sp, tp |= PairV arUnitMEs

[mBSExc,var] if sp, tp |= PairV arMEs
(3.19)

[mBSReq] =

{
[mBSReq,varUnit] if sp, tp |= PairV arUnitMEs

[mBSReq,var] if sp, tp |= PairV arMEs
(3.20)

Equations 3.21 and 3.22 show that in an instance of a Consistency Rule Instance for one
or more source pairs imply that there are no excluding target pairs in the same product
configuration. The name of instances of the Variability Unit are used as terms in the
expressions.

[mBSExc,varUnit] = ∀sp
∧
sp.variabilityUnit.name

→ ¬(∀tp ∨
tp.variabilityUnit.name)

(3.21)

[mBSExc,var] = ∀sp
∧
sp.variant.ex

→ ¬(∀tp ∨
tp.variant.ex)

(3.22)

Equations 3.23 and 3.24 show that in one instance of a consistency rule for one or
more source pairs imply that there are any required target pairs in the same product
configuration. The name of instances of the Variability Unit are used as terms in the
expressions.

[mBSReq,varUnit] = ∀sp
∧
sp.variabilityUnit.name

→ ∀tp ∨
tp.variabilityUnit.name

(3.23)

[mBSReq,var] = ∀sp
∧
sp.variant.ex

→ ∀tp ∨
tp.variant.ex

(3.24)

Obtaining Domain Constraints (d). This subsection addresses how to obtain domain
constraints (d) which are mentioned in several equations (e.g., Equations 3.17 and 3.18).
Domain Constraints are obtained from the SPL Variability Model. Therefore, they are the
same for all possible product configurations. The method to obtain domain constraints
depends on the specific Variability Model. This section describes how to obtain domain
constraints from the Feature Model employing a translation table between feature model

76

3. DCC4SPL APPROACH 3.6. Tool Support

elements and propositional formulas with its corresponding conjunctive normal form
(CNF17) which is the standard input form for satisfiability solvers.

Figure 3.21 shows the mapping between feature model elements and propositional
logic obtained from the following steps [22]:

1. Each feature maps to a variable of the propositional formula,

2. Each relationship (e.g., requires, optional) is mapped onto one or more formulas,

3. The resulting formula is the conjunction of all the resulting formulas of Step 2 plus an
additional constraint assigning TRUE to the variable that represents the root feature,
(e.g SmartHome←→ TRUE).

The right-most column of Figure 3.21 is the translation to CNF form that will be used
by the SAT solver18. The mapping rules from propositional logic to CNF form are based
on classical logical equivalences [28] such as the double negative law, De Morgan’s laws,
and the distributive law.

3.6 Tool Support

DCC4SPL tool19 supports the approach described in this chapter. Figure 3.22 shows a
sketch of the high-level architectural view of our tool support identifying two major parts:
(1) External tools, and (2) DCC4SPL tool, whose internal components are organized in two
subsystems, VCC and VML4RE.

3.6.1 DCC4SPL External Tools

External tools refers to third-party software components developed to be either freely
distributed or sold. DCC4SPL employs external tools such as specialized libraries (SPLOT
parser and EMF), web applications (SPLOT Editor), and modelling editing platforms
for designing and constructing software systems (Ecore-based model editors). They are
presented next:

17A formula is in CNF form when it is a conjunction of clauses and each clause is a disjunction of literals.
CNF formulas have special characteristics: i) a literal and its complement cannot appear in the same clause, ii)
the only connectives are: AND (∧), OR (∨), and NOT(¬), and iii) NOT(¬) can only be used as part of a literal.

18The characters representing the logical operators may change according to the specific SAT solver tool
used.

19A prototype and more detailed description can be found at:
http://www.mauricioalferez.com/dcc4spl/main.htm

77

3. DCC4SPL APPROACH 3.6. Tool Support

1
2

f
f

W
indow

s Ctrl

Autom
ated

W
indow

s

Heating Ctrl

SmartHome

M
anual

W
indow

s
M
anual

Heating
Autom

ated
Heating

Rem
ote Heating Ctrl U

I

Internet
Inhom

e
Screen

requires

1 f
2 f

1 f
2 f

2
1

f
f

2
1

f
f

TRU
E

Root
f

2
1

f
f

requires
1 f

2 f
)

(
2

1
f

f

excludes
1 f

2 f

n f
p

f

n
p

f
f

f

1

1 f
OR relationship

n f
p

f
)

(
)

(
1

1
p f

f
f

p f
n f

fn

1 f
XOR relationship

Mandatory relationship
Optional relationship

PL-FM Mapping

R
elationship

Mandatory

1 f2 f

P
ropositional Logic

Optional

1 f2 f
1

2
f

f

P
ropositional Logic in C

N
F Form

at

(-F2 or F1) and (-F1 or F2
2

1
f

f

1
2

f
f

(~_r_1 or _r)(~_r or _r_1)(~

OrXOr

n

p
f

f
f

f

...

2
1

n f

p f

1 f
2 f

p

n
n

p
n

p
n

f
f

f
f

f
f

f
f

f
f

f
f

f

1
2

1 1
2

2
1

...
... ...

Requires

b f

Excludes

b

a
f

f

b
a

f
f

b
a

f
f

a f

b f
a f

(~_r_30_32_33_34_37
(~_r_30_32_33_34_37
(~_r_30_32_33_34_37
(~_r_30_32_33_34 or
(~_r_30_32_33_34_3 7
(~_r_30_32_33_34_37
(~_r_30_32_33_34_37

1
1

1
1

1
j

n
b

i
j

i
i

i
n

a

i
i n

p
p

i
i n

f
f

f
f

f
f

(~_r_40_41_42 or _r_
(~_r_40_41_43 or _r_
(~_r_40_41_44 or _r_
(~_r_40 or _r_40_41_

i
i n

p
p

i
i n

f
f

f
f

1
1

b
a

f
f

n f

p f

1 f
2 f

2

1
f

f

Figure
3.21:M

apping
feature

m
odelelem

ents
to

propositionallogic
and

C
N

F
([22][28]).

78

3. DCC4SPL APPROACH 3.6. Tool Support

DCC4SPLToolExternal
Tools

VML4RE

Fe
atu

re

Mo
de

l

Co
mp

os
itio

n
Sp

ec
ific

ati
on

Ec
or
e‐
Ba

se
d
SP
L

M
od

el
‐B
as
ed

 S
pe

ci
fic
at
io
ns

Ma
pp

ing

Mo
de

l
Do

ma
in

Co
ns

tra
int

s
in

CN
F

Mo
de

l-B
as

ed
 S

pe
cif

ica
tio

n
Co

ns
tra

int
s

Ec
or
e‐
Ba

se
d
M
od

el
 E
di
to
r

SP
LO

T
Ed
ito

r

M
ap
pi
ng

 M
od

el

M
in
er

M
od

el
 E
le
m
en

ts

Re
la
tio

ns
hi
ps
 M

in
er

SP
LO

T
Fe
at
ur
e
M
od

el

to
 C
N
F
Tr
an
sla

to
r

Mo
de

l E
lem

en
ts

Re
lat

ion
sh

ips
 M

od
el

M
od

el
‐B
as
ed

 S
pe

ci
fic
at
io
n

Co
ns
tr
ai
nt
s
Cr
ea
to
r

CN
F
Fo
rm

ul
as

Co
m
po

se
r

SP
LO

T
Pa
rs
er

Pi
co
SA

T

En
d‐
U
se
r R

es
ul
ts

Co
m
po

se
r a

nd
 P
rin

te
r

SA
T

Co
nt
ro
lle
r

VM
L4
RE

 E
di
to
r

Va
ria

bi
lit
y
U
ni
ts

Id
en

tif
ie
r

Va
ria

bil
ity

 U
nit

-Id

Ma
pp

ing

VM
L4
RE

 In
te
rp
re
te
r

Pr
od

uc
t S

pe
cif

ic
Mo

de
l-

Ba
se

d
Sp

ec
ific

ati
on

s
Fe

atu
re

 M
od

el
Co

nfi
gu

ra
tio

n

Co
ns

ist
en

cy

Ch
ec

kin
g

Re
po

rt

Re
su

lts

SA
T

Re
su

lt
SA

T
Re

qu
es

t

M
BS

Co
ns
tr
ai
nt
s

Tr
an
sla

to
r t
o
CN

F
Mo

de
l-B

as
ed

 S
pe

cif
ica

tio
n

Co
ns

tra
int

s i
n C

NF

Co
ns

ist
en

cy

Ru
le

Ins
tan

ce
s

VCC

Fi
gu

re
3.

22
:D

C
C

4S
PL

to
ol

su
pp

or
th

ig
h-

le
ve

la
rc

hi
te

ct
ur

al
vi

ew
.

79

3. DCC4SPL APPROACH 3.6. Tool Support

Ecore-Based Model Editor. SPL model-based specifications can be written in any Ecore-
based20 modelling tool. Currently, we used Papyrus21 and Topcased22 open-source EMF-
based editors to create models (e.g., use cases, activity and component diagrams). Devel-
opers can also use commercial tools such as Magic Draw23, Enterprise Architect 24 or IBM
Rational Rose25 that can export their metamodels to Ecore.

SPLOT Editor and Parser. SPLOT26 allows us to share and edit our feature models and
feature model configurations collaboratively via web. It generates an initial CNF formula
of the feature models and its constraints that DCC4SPL translates to the CNF format
understood by SAT solvers (It is possible to use other feature model editors that translate
to CNF or to implement the translation based on the mapping patterns described in Figure
3.21).

PicoSAT. We employed PicoSat27 to determine the satisfiability of each formula. We
chose PicoSAT because it is fast, its implementation is very compact (it ranges from 91 KB
to 171 KB according to the platform), and we had the collaboration of an expert in SAT
solvers that helped us to use it appropriately.

3.6.2 DCC4SPL Tool

The main parts of the DCC4SPL tool are two interrelated subsystems (VML4RE and
VCC). The internal components in those subsystems create or manipulate models, and
communicate with external tools. They are deployed as Eclipse plug-ins encoded in the
Java language. The main internal components of the DCC4SPL tool are presented next:

VML4RE Editor. VML4RE language uses EMFTEXT28 which provides the software
infrastructure to derive a concrete syntax and plug-ins based on the metamodel of the
language written in Ecore. EMFText separates concrete syntax from abstract syntax, easing
maintenance of the languages. The concrete syntax chosen for VML4RE is very close to
the HUTN (Human Usable Notation)29 provided by EMFTEXT.

VML4RE Interpreter. The composition specifications created using the VML4RE editor
must be understood to actually perform the composition of the model-based specifications.
Therefore, the interpreter first parses the composition specification file and creates an

20www.eclipse.org/emf/
21www.eclipse.org/papyrus/
22http://www.topcased.org/
23https://www.magicdraw.com/
24http://www.sparxsystems.eu/enterprisearchitect/
25http://www-01.ibm.com/software/awdtools/developer/rose/
26http://www.splot-research.org/: Software Product Line Online Tools
27http://fmv.jku.at/picosat/: PicoSAT: Pico satisfiability solver. We thanks to Alexander Nöhrer for its

Java interface for PicoSAT.
28http://www.emftext.org/: EMF textual concrete syntax mapper.
29http://www.omg.org/spec/HUTN/: The HUTN specification.

80

3. DCC4SPL APPROACH 3.7. Summary

internal representation of the model. Next, using the EMF Ecore API and according to
the feature model configuration, the interpreter decides which actions to execute. The
composition is performed using the Eclipse UML API30 that already has a set of methods
to transform UML models. We are currently developing an alternative method for the
transformation of the model-based specifications based on DSL Trans [68, 20]. DSL Trans is
a model transformation tool that helps to describe in detail the step by step transformation
related to each action and also guarantess that every model transformation terminates.

Model Elements Relationships Miner. We have two implementations of this compo-
nent. For requirements models, such as use cases and activity diagrams, we obtain an
initial list of required and provided elements based on the composition specification
and model-based specifications that realize or design the SPL features. For architectural
models, we parse the component diagram to obtain the set of provided and required
interfaces of each component.

Mapping Model Miner. Parses the composition specification to find the variants and
the model elements that each one introduces into the use cases, activity and component
diagrams.

Variability Units Identifier. Assigns and persists identifiers for each variability unit.
Identifiers are used as variable names when creating constraints in CNF format and
during satisfiability checking.

Model-Based Specification Constraints Creator and Translator to CNF. Given the de-
pendencies between model elements (i.e., a Model Elements Relationship Model) and
their relationships with variants (i.e., a Mapping Model), it creates the model-based speci-
fications constrains as described in Chapter 14. All the constraints are translated to CNF, a
format readable by SAT solvers.

Feature Model CNF Translator. Translates the clauses generated by SPLOT to an appro-
priate CNF form readable by SAT solvers.

CNF Formula Composer. Generates the formulas that will be passed to the SAT solver,
based on the constraints created by the Feature Model CNF Translator and Constraints
Creator and CNF Translator components.

3.7 Summary

This chapter described DCC4SPL (Derivation and Consistency Checking of models in
early SPLE). It started with an overview of DCC4SPL and an illustrative example from

30http://www.eclipse.org/modeling/mdt/?project=uml2

81

3. DCC4SPL APPROACH 3.7. Summary

the domain of home automation. Next, it presented the two main parts of DCC4SPL,
the Variability Modelling Language for Requirements (VML4RE) and the Variability
Consistency Checker (VCC). VML4RE supports the creation of composition specifications
and derivation of early models for products in Software Product Line Engineering. VCC
supports consistency checking between variability models and model-based specifications.

DCC4SPL was described based on its abstract syntax and semantics, and for VML4RE
its representation using a syntactic mapping to a concrete syntax. The abstract syntax of
DCC4SPL was presented using a metamodel. This chapter specifies the abstract syntax
of VML4RE and VCC employing a metamodel. This metamodel considers the concepts
(metaclasses) this language deals with, how they interrelate (using containment and
non-containment references) and the properties (attributes) they have. The semantics of
DCC4SPL and its two main parts, VML4RE and VCC, describes what happens when their
instances are interpreted by their tool support. The semantics harmonizes and comple-
ments with operational semantics the informal descriptions and definitions provided in
previous chapters. The concrete syntax of VML4RE is an exemplar textual syntax specified
by means of a grammar and related to the abstract syntax of the language. Finally, this
chapter presents the tool support created for VML4RE and VCC based on the abstract and
concrete syntaxes and their established semantics.

82

4
Validation

This chapter provides an overview of the validation of DCC4SPL which aims to better
understand how and to what extend it guarantees effective consistency checking and
derivation of product-specific models in early SPLE. We base our validation on different
methods ranging from experimentation with case studies, comparative metrics, prototypes,
and feedback obtained during the elaboration and presentation of peer-reviewed scientific
publications. This chapter presents the goal, questions, attributes and metrics that guided
our validation, summarizes the case studies used in the research papers, reviews the
questions raised by each research topic and the methods used to answer them.

4.1 Goal and Research Questions

There are some base elements that we employed to define the goal: the object and purpose
of the study, the attributes that we focused on, the point of view of the people involved
in the study, and the context in which the study took place. Taking into account those
elements, the goal is defined as follows:

To analyse DCC4SPL (the object) to understand how and to what extend it guaran-
tees effective consistency checking and derivation of product-specific models early in SPLE (the
purpose),

with respect to the attributes of modularity of the features specifications (how localized
is each feature specification along the models), stability (how changes in the specifications
are required to evolve an SPL from one configuration to another), expressiveness (how
verbose are the specifications addressing those changes), vocabulary familiarity (whether
or not the compositions specifications use a vocabulary familiar to the developer), deriva-
tion flexibility (whether or not it supports different variability composition mechanisms),

83

4. VALIDATION 4.2. Attributes and Metrics

Question 1. How to express model derivation at the level of abstraction
that the developers require?
- Question 1.1. Modularity: Which techniques (and to what extent)
support improved modularization of feature specifications?
- Question 1.2. Stability: Which techniques (and to what extent) support
stability of specifications (i.e., early models, composition and
configuration knowledge) after SPL evolution?
- Question 1.3. Expressiveness: Which techniques (and to what extent)
benefit expressiveness of specifications after SPL evolution?
- Question 1.4. Vocabulary familiarity: How to facilitate to developers
to write composition specifications in a language familiar to them?
- Question 1.5. Derivation flexibility: How to support positive and
negative variability composition mechanisms?
Question 2. How to support consistency between the features model and
other models?
- Question 2.1. Consistency checking genericity: How to perform consistency
checking independently from the languages specificities.

- Question 2.2. Consistency checking multi-view awareness: How to check
consistency between multiple models and the variability specification
independently from the number of languages employed.

- Question 2.3. Consistency checking scalability: How to check consistency
of a growing number of products?

Table 4.1: Main research questions related to the research topics and the sub-questions
used to address them.

consistency checking genericity (whether or not it can verify consistency independently of
languages specificities), consistency checking multi-view awareness (whether or not it can
verify consistency between multiple models and the variability specification), and consis-
tency checking scalability (whether or not it can verify consistency of a growing number of
products),

from the point of view of software engineers

in the context of three case studies proposed by the SPLE research community and
industrial partners in the European AMPLE project.

Taking into account this goal in our validation, Table 4.1 shows the two main questions
related to the research topics (Section 1.2) as well as some sub-questions that will be
mapped to attributes and metrics in Subsection 4.2.

4.2 Attributes and Metrics

This section describes the attributes and their corresponding metrics considered in DCC4SPL
validation. The attributes, related to the questions in Table 4.1, can be organized in two
groups according to the type of metric value: (1) Attributes with quantitative metric values
(Section 4.2.1), and (2) Attributes with qualitative metric values (Section 4.2.2).

84

4. VALIDATION 4.2. Attributes and Metrics

Attribute Metric

Modularity Degree of scattering of features [37].
Degree of focus of models [37].

Stability of the specifications Number of steps introduced or changed
between two releases [26].

Stability of the compositions Number of compositions items introduced or
changed between two releases [26].

Stability of the configuration Number of configuration items introduced or
knowledge changed between two releases.

Expressiveness of the composition The ratio between the number of matched join points
and the number of composition items [26].

Expressiveness of the configuration Number of tokens required to specify
knowledge the configuration knowledge.

Table 4.2: Attributes used during quantitative validation.

4.2.1 Attributes with Quantitative Metric Values

This subsection presents the attributes whose metric values are quantities or else quantifi-
able data. Table 4.2 summarizes the attributes and related metrics.

Modularity. Our modularity investigation relies on two metrics customized from [37]
and [24]: Degree of Scattering of Features (DoS) and Degree of Focus of Models (DoF).
According to Equations 4.1 and 4.2, DoS quantifies the concentration of a feature1 over each
model m ∈M (the set of models). Values of DoS are normalized between 0 (completely
localized) and 1 (completely scattered). The greater the DoS of a feature f is, the greater is
the probability of reviewing different models when the specification of f has to evolve. In
Equation 4.1, |M | denotes the cardinality of the set M .

DoS(f) = 1−
|M |∑m∈M (Concentration(f,m)− 1

|M |)
2

|M | −1 (4.1)

Concentration(f, m) =
number of model elements in m assigned to f

number of model elements assigned to f
(4.2)

Likewise, according to Equation 4.3 and 4.5, DoT considers how many model elements
of a model are related to each feature f ∈ F (the set of features). Values of DoT are
similarly normalized between 0 (completely focused) and 1 (completely tangled). The
greater the DoT of a model m is, the greater the probability of reviewing m when one of
the related features changes. Usually we use the metric Degree of Focus (DoF) to refer to
low tangling (DoT near to 0) in models. DoF in Equation 4.4 is easily derived from DoT
and corresponds to 1−DoT . Thus, the lower the DoF of a model m is, the higher is the
tangling (DoT) of features it specifies.

1These metrics can be interpolated to other modularization techniques. Thus, a feature may be replaced by
the more generic term Variability Unit.

85

4. VALIDATION 4.2. Attributes and Metrics

High values in the degree of focus and low values in the degree of scattering are
usually associated to well-modularized systems [37, 64, 65].

DoT (m) = 1−
| F |∑f∈F (Dedication(m, f)− 1

|F |)
2

| F | −1 (4.3)

DoF (m) = 1−DoT (m) (4.4)

Dedication(m, f) =
number of model elements in m assigned to f

number of model elements of m
(4.5)

Note that to evaluate the metrics in equations 4.2 and 4.5 we have to assign features
to the individual model elements of a model specification. We follow the configuration
dependency analysis as a guide [24], considering that a model element me depends on a
feature f if, and only if, the selection of f triggers the configuration (transformation) of
me.

Stability. Regarding our stability assessment, we adapted a metrics suite that has also
been validated and used to compare approaches for requirements engineering modelled
using advanced separation of concerns techniques [26]. These metrics originally quantify
the stability of specifications and code elements that represent a software artefact in the
context of evolutionary scenarios. In our study, we used them to quantify the stability
of early models along the different releases of an SPL. It is possible to measure the
stability of the specifications and the stability of the compositions. According to Equations
4.6 and 4.7, they are quantified by the number of modified or introduced specification
items (i.e., model elements and models), and the number of modified or introduced
composition items (e.g., pointcuts in advices and actions) between two subsequent releases.
In addition, we have also proposed a metric in Equation 4.8 that quantifies the stability of
the configuration knowledge in terms of number of modified or introduced configuration
items (e.g., annotations and expressions).

Stability of specifications
=

number of added and changed

specification items
(4.6)

Stability of compositions
=

number of added and changed

compositions items
(4.7)

Stability of configuration knowledge
=

number of added and changed

configuration items
(4.8)

86

4. VALIDATION 4.2. Attributes and Metrics

Attribute Description

Vocabulary familiarity. Whether or not the compositions specifications
use a vocabulary familiar to the modeller.

Derivation flexibility. Whether or not it supports positive and negative
variability compositions mechanisms.

Consistency checking genericity. Whether or not it can abstract from languages specificities

Consistency checking multi-view Whether or not it can verify consistency between multiple
awareness. models and the variability specification independently

of the number of languages employed.

Consistency checking scalability. Whether or not it can check consistency of a growing
number of products.

Table 4.3: Attributes used during qualitative validation.

Expressiveness. For measuring the expressiveness of the configuration knowledge, we
count how many tokens are required to map features (i.e., Variability Units) to other
models. Although the unit to quantify expressiveness of the configuration knowledge
is rather low level, it allows us to uniformly assess the different representations of the
configuration knowledge. To measure expressiveness of the compositions, we use the
notion of reachability [26]. According to Equation 4.9, reachability is calculated as the
ratio between the number of matched join points (model fragments in model-based
specifications) and the number of composition items.

Reachability =
number of matched join points

number of composition items
(4.9)

4.2.2 Attributes with Qualitative Metric Values

This subection presents the attributes whose metric value answers “whether or not
DCC4SPL satisfies a property”, thus, they can be compared to a binary variable with
two possible values "Yes" and "Not". Table 4.3 summarizes these attributes.

Vocabulary Familiarity. Every language has a concrete syntax which is composed of
different symbols that integrate the vocabulary of the language. To evaluate vocabulary
familiarity we determine whether or not the compositions specifications use a vocabulary
familiar to the modeller. We consider that a modeller is familiar with the vocabulary of the
language used to write the composition specifications when s/he has the knowledge and
awareness of this vocabulary gained by personal experience. Therefore, we consider that
an approach provides a vocabulary familiar to the modeller when it employs the name of
model elements used in the concrete syntax instead of names and operators that refer to
the abstract syntax of the composition specification language.

Derivation Flexibility. The lack of flexibility to choose the derivation mechanism is
related to the problem of tangling between configuration knowledge and model-based

87

4. VALIDATION 4.2. Attributes and Metrics

specifications. Mixing configuration knowledge (e.g., annotations or stereotypes with the
names of features) in the model-based specifications allows only one kind of composition,
generally negative variability composition.

In negative variability composition there is an initial model that is transformed to
obtain particular models for other products with less features. The transformation in per-
formed removing or replacing model elements related through annotations or stereotypes
with variable features that are not selected in the feature model.

However, to have an initial monolithic model with all kinds of variabilities modelled
since the very beginning is not always possible and it does not necessarily facilitates to
understand the models. Also, it can lead to ambiguity when other annotations (e.g., stereo-
types) are used in the models, as usually happens in domain specific languages or models
created based on profiles. Nevertheless, sometimes when the SPL model-specifications
are small, it can be feasible to design all the model fragments related to the features in one
or few initial models.
Therefore, we consider that an approach provides derivation flexibility when, in addition
to negative variability composition, it also provides positive variability composition. Positive
variability composition means to start with a small core model whose parts are related
to mandatory features. The core model is suitable to be transformed (e.g., adding model
elements related to variable features) to obtain particular models for products that include
variable features. Also, a combination between possitive and negative variability com-
position should be possible; for example, when developers want to model a core model
together with some model fragments related to the most frequently selected variable
features.

Consistency Checking Genericity. Genericity means that the approach for consistency
checking should be specified independently of the languages used to model variability
and its related model-based specifications. The concrete consistency checking rules are
then instantiated when needed for specific languages.

Therefore, we consider that an approach supports consistency checking genericity
when it can abstract from concrete languages and formalises the consistency checking
approach as concepts. That formalization should be expressed independently of the
languages used to write model-based specifications and the modularization technique
used to decompose them. Next, when it is necessary, those concepts can be instantiated to
concrete concepts of particular languages to evaluate whether or not the SPL specifications
are consistent with the variability specification.

Consistency Checking Multi-View Modelling Awareness. When model-based specifi-
cations are used to represent early models (e.g., in form of use cases, activity or component
diagrams) and feature models, consistency goes beyond syntactical or semantic errors of
each kind of model in isolation. For example, an actor that is not associated with any use
case, a dangling node in a component diagram, a loop without exit conditions in activity

88

4. VALIDATION 4.3. Case Studies

diagrams or specific set of features that are both simultaneously (and incorrectly) declared
as excluding and depending. It means that we aim at taking into account constraints that
are not merely expressed in terms of only one language’s metamodel which is generally
well supported by UML editors (e.g., using OCL or hard-coded restrictions particular of
each editor) or feature model editors (e.g., using domain constraints expressing features
interdependencies, and hard-coded restrictions that constrain the construction of the
models to conform to their metamodel).

Much of consistency checking difficulty lies on maintaining consistency among several,
interrelated models. This can become a time-consuming and error prone task given that
the number of ways to compose feature realizations grows exponentially with the possible
number of SPL features that can be used in a particular product.

Consistency checking multi-view awareness is similar to the consistency checking
genericity attribute because both aim at making the consistency checking process more
independent of particular variability modelling, system modularization and languages
particularities. However, multi-view awareness focusses on the support for the creation
of consistency rules that involve several views of the system (which may be usually
modelled using different languages). Therefore, we consider an approach to be multi-view
aware if it can check consistency between multiple models and the variability specification
independently of the number of languages employed to write them.

Consistency Checking Scalability. One of the main characteristics of SPLs is the possi-
ble large number of different valid combinations of product features and their relationships
with model fragments. Thus, to apply consistency checking product by product is feasible
only for small SPLs [17]. It is crucial that consistency checking checks the entire SPL
specification against the variability model to guarantee that any possible selection of
variability units (e.g., features) renders a valid product variant.

Therefore, we consider that an approach is scalable in checking consistency, when
the time to find inconsistencies does not grow exponentially with the amount of possible
numbers of products.

4.3 Case Studies

This subsection briefly presents the three case studies employed to validate DCC4SPL and
to answer the research questions. These case studies cover different application domains,
such as home automation, mobile applications and emergency systems. Each one comes
from a different source (e.g., research project technical reports, dissertations and scientific
journal papers):

• Smart Home was defined as a case study in the AMPLE project [71]. The Smart Home
comprises significant aspects of modern home automation domain such as security,
HVAC (Heating, Ventilating, and Air Conditioning), illumination control, remote

89

4. VALIDATION 4.4. Validation Settings

control and multiple user interfaces. Smart Home was discussed in technical reports
[10, 5] and all the papers included in the Part II of this dissertation.

• Car Crash Crisis Management System (CCCMS) was proposed by a group of interna-
tional researchers as a common case study to compare different Aspect-Oriented
Modelling (AOM) approaches [56, 55]. The CCCMS comprises the aspects needed
to facilitate the process of identifying, assessing, and handling a crisis situation by
orchestrating the communication between all parties involved in handling the crisis,
allocating resources and providing information to determined users. CCCMS was
used in Chapter 12.

• Mobile Photo was developed in the University of British Columbia [95, 43]. Mobile
Photo (SPL) comprises the aspects needed to manipulate photos on mobile devices.
Mobile Photo was used in Chapter 14.

These case studies were selected because:

1. They are of different application domains while still understood by readers in general
given their familiarity with the domains.

2. We had previous experience in modelling variability and part of their model-based
specifications. The use scenarios of Smart Home were inspired on the requirements
of the system set by one of our industrial partners in the European AMPLE project
[71]. Mobile Photo has also been used in the context of AMPLE.

3. The Car Crash Crisis Management System case study is a benchmark in AOM and
their models are described in [54].

4.4 Validation Settings

This subsection presents the settings of the DCC4SPL validation employing the three case
studies just introduced. In particular it presents the phases and assessment procedures of
our study, taking into account the metrics suite adopted (Subsection 4.2).

4.4.1 Study Phases and Assessment Procedures

Our study was organized in five major phases:

1. Specification of the CCCMS using four alternative approaches.

2. Specification of evolution scenarios for all the approaches.

3. Quantitative and quantitative assessment of the different specifications and releases
of the CCCMS.

4. Specification of the Smart Home and Mobile Photo in addition to the specification of
CCCMS.

90

4. VALIDATION 4.4. Validation Settings

CCCMS

Mission

Medical
Services

Authenti-
cation

Rescue Observe
R3

Remove
Obstacle R4

Helicopter
Transport

Mandatory Optional Rn Release NumberInclusive OR

Notation

Internal
Resources

External
Resources

WitnessLOG
R2

Figure 4.1: Feature model for the CCCMS SPL.

5. Qualitative and quantitative assessment of the specifications and consistency check-
ing attributes of the Smart Home, Mobile Photo and the rest of the assessment of
CCCMS (part of the assessment of CCCM is already done in Phase 3).

All specifications were written according to alignment rules, which were necessary not
only to verify that good practices were used in the approaches, but also to ensure that
the comparison of the specifications was equitable and fair. Three researchers performed
these alignment activities. All misalignments found were discussed between the study
participants and eventual corrections were applied to the specifications to guarantee their
alignment. For example, we ensured that: (1) every variability was modularized using the
appropriate modularization and composition mechanisms of each approach; (2) textual
and graphic-based approaches used an equal number of elements that represent the same
abstraction (such as activities and textual steps for the scenarios); and (3) the specifications
reflect the same functionalities/features.

Phase 1. CCCMS was specified using four different modularization and composition
mechanisms from four approaches: PLUSS [41, 42], Model Templates (MTs) [30], MSVCM
[24] (see the description of the approaches and details of the evaluation in Chapter 12).

Phase 2. From the models detailed in [56] we developed a set of incremental releases
for the CCCMS (they are available online2). Considering the feature model shown in
Figure 4.1, we have defined a base release (R1), consisting of the features Authentication
System, Rescue Mission, Witness, Medical Services, Internal and External Resources
and Observe Mission. After that, the specifications were evolved to address the change
scenarios corresponding to the releases R2—R4, that appear in Figure 4.1. The features
inserted in the releases required the introduction of new scenarios and changes to existing
ones. These change scenarios allowed us to exercise the different modularization and
composition mechanisms provided by each approach, to observe their modularity, stability,
and expressiveness.

2http://www.mauricioalferez.com/dcc4spl/main.htm

91

4. VALIDATION 4.4. Validation Settings

Phase 3. This phase employed our metrics suite (see Section 4.2) to analyze and compare
the obtained results for the different specifications chosen in Phase 1.

Phase 4. In this phase, our objective was to determine if DCC4SPL can find incon-
sistencies between variability units and different kinds of model-based specifications.
We defined feature models and model-based specifications for each case study, and the
mapping between model elements and variants using VML4RE and lightVC3 (they are
available online4). Table 4.4 summarizes the rules that we used in this evaluation. We
used 7 rules of type Requires and 4 of type Excludes, considering 4 kinds of relationships
between model elements:

1. Rules that consider INCLUDES relationships (Rules 1, 8): an includes relationship, in
which one use case (the base use case) includes the functionality of another use case
(the inclusion use case), supports the reuse of functionality in use-case diagrams.
In DCC4SPL this kind of rule suggests including in a product the inclusion model
element if the base model element is included.

2. Rules that consider CONTAINMENT relationships (Rules 2, 3, 6, 9, 11): the contained
model element is the one that requires a container. In UML a common container
is the PACKAGE, but others exist, such as ACTIVITY that contains model elements
represented in activity diagrams. In DCC4SPL this kind of rule suggests including in
a product the container model element if the contained model element is included.

3. Rules that consider the USAGE and REALIZATION relationships (Rules 7, 10): USAGE

relationship is a type of dependency relationship in which one model element (the
client) requires another model element (the supplier) for full implementation or
operation. In this experiment we consider USAGE and INTERFACE REALIZATION

relationships in component diagrams employing components as clients, and inter-
faces as suppliers. In DCC4SPL this kind of rule suggests including in a product the
supplier model element if the client model element is included.

4. Rules that consider the GENERALIZATION relationships (Rules 4-5): a generalization
relationship is a relationship in which one model element (the child) is based on
another model element (the parent). Generalization relationships are used in class,
component, deployment, and use case diagrams to indicate that the child receives
all of the attributes, operations, and relationships that are defined in the parent. In
our experiment we considered generalization relationships between ACTORS and
between USE CASES. In DCC4SPL this kind of rule suggests including in a product
the parent model element if the child model element is included.

3This is a version of VML with actions used to remove or add components, and connect them through
their interfaces.

4http://www.mauricioalferez.com/dcc4spl/main.htm

92

4. VALIDATION 4.5. Quantitative and Qualitative Validation

Rule # Description Relationship SH CC MP

1 Required inclusion Use Case when base Use Case included Inclusion * *
2 Required Package when any of its Use Cases are included Containment * *
3 Req. Package when any of its contained Packages is included Containment * *
4 Req. Use Case when any of its children Use Cases are included Generalization * *
5 Req. Actor when at least one of its children Actors are included Generalization * *
6 Req. Activity if at least one of its Opaque Actions are included Containment * *
7 Required required Interfaces when Component is included Usage/Realization * *
8 Excluded base Use Case when inclusion Use Case is excluded Inclusion * *
9 Excluded Use Case when its Package is excluded Containment * *
10 Excluded provided Interfaces when its Component is excluded Usage/Realization * * *
11 Excluded Opaque Actions when its Activity is excluded Containment * *

Table 4.4: Summary of the rules implemented in our study and applied (*) for Smart Home
(SH), CCCMS (CC), Mobile Photo (MP).

Phase 5. Finally, in Phase 5 we evaluated the metrics related to consistency checking
from our metrics suite (see Section 4.2) and next we analysed the results.

4.5 Quantitative and Qualitative Validation

This subsection overviews the results shown in research papers in Part II and it is divided
in two parts: qualitative validation and quantitative validation. Each part relates the
validation results with the attributes and metrics described in Subsection 4.2 - Attributes
and Metrics.

4.5.1 Qualitative Validation

Vocabulary Familiarity. It is addressed by DCC4SPL as it requires the developers to use
the name of the symbols in the concrete syntax of the early models in the Actions, instead of
using directly the abstract syntax to express model transformations. Figure 3.18 in Chapter
3 presented some examples of how easy it is to express actions in DCC4SPL. One of those
examples was about the association of a use case with name useCaseX with an actor named
actorY. That association can be expressed in DCC4SPL via VML4RE as: “ASSOCIATE

USECASE : “useCaseX” TO ACTOR : “actorY”. To obtain the same results programming
that action directly in a transformation language would require the developer to know the
name of the metaclasses and their relationships (i.e., the abstract syntax of the language).
If the developer was to implement such association, s/he would have to understand the
UML metaclassses Property, Association, UseCase, Actor, their relationships, as well as
their attributes (e.g., “Aggregation kind” in Association).

Derivation Flexibility. It is addressed by DCC4SPL as it supports positive, negative
and a combination between positive and negative variability composition. Figure 3.13
shows that it has four kinds of actions, Insert, Connect, Replace and Remove. Insert and

93

4. VALIDATION 4.5. Quantitative and Qualitative Validation

Connect actions support positive variability composition, as they add model elements
into a target model. Remove action supports negative variability composition because it
takes out model elements from a target model. Replace and all the others actions support
a combination of both negative and positive variability composition since they allow, in
the same composition process and composition specification, to remove and add model
elements from/to a target model.

Consistency Checking Genericity. It is addressed by DCC4SPL as it formalises the
consistency checking approach with concepts expressed as metaclasses and relationships
in the abstract syntax of VCC. Then, DCC4SPL specifies and performs consistency checking
independently of the specialization of the abstract metaclasses Variability Unit, Variability
Model, Model-Based Specification and Model Element. DCC4SPL also provides two types
of consistency checking according to the kind of modularization employed in the SPL
system. The first is based on Variability Units; the second is based on Variants5. Variability
Units and Variants in DCC4SPL allows using it with, for example (1) Feature-Oriented
Software Development approaches which employ one specialization of Variability Unit
called Feature to identify Feature Modules that contain only the model elements related
to that feature, and (2) Model Templates and VML approaches that employ Expressions,
usually Feature Expressions, that can be associated to any model element contained in
any kind of system module.

Consistency Checking Multi-View Awareness. It is addressed by DCC4SPL as it takes
into account constraints that are not merely expressed in terms of only one language’s
metamodel. With DCC4SPL, developers can check consistency between multiple models
and the variability specification, even if they are written in different languages. This is
supported in VCC where each instance of Model-Based Specification Constraint defines
sets of model elements (i.e., instances of SourcePairSet) that depend or are incompatible
with other sets of model elements (i.e., instances of TargetPairSet). Each model element
can be associated to a different instance of Model-Based Specification that may have its
own language metamodel and designs one or several views of the system.

Consistency Checking Scalability. It is addressed by DCC4SPL because:

1. DCC4SPL does not check each product separately (i.e., verification during SPL ap-
plication engineering). Instead, it checks consistency for the entire SPL specification
against the variability model to guarantee that any possible selection of variability
units renders a valid product variant (i.e., verification during SPL domain engineer-
ing). The result is that the time to find inconsistencies does not grow exponentially
with the amount of possible number of products. However, according to Apel [17]

5According to the DCC4SPL metamodel each Variant is associated to an Expression. Each Expression is
composed of Variability Units and logical operators.

94

4. VALIDATION 4.5. Quantitative and Qualitative Validation

Case Studies Smart Home CCCMS Mobile Photo

Features 60 12 14

Main model elements 36 Use Cases, 11 Activity Diagrams, 12 Components,
in early models 14 Packages, 70 Activities. 15 Interfaces.

12 Activity Diagrams,
59 Activities.

Valid product variants One billion 240 16

Table 4.5: Information of the size in the case studies.

consistency checking performed on a product by product basis (i.e., verification
during application engineering) is still feasible for small SPLs.

2. DCC4SPL transforms the variability model and consistency rule instances to CNF
clauses. Therefore, the performance of our approach related to obtain the satisfia-
bility value of a CNF formula is directly proportional to the efficiency of the SAT
solvers. State-of-the-art SAT solvers, such as PicoSAT6, are able to handle large
number of clauses and are used in industrial applications7.

These two points about scalability are complemented with Table 4.5, which provides
information on the case studies such as the number of features, the number main model
elements, and the number of product variants that can be produced. Smart Home has
60 features and concentrates on use case and activity diagrams, CCCMS has 12 features
and concentrates on activity diagrams, and Mobile Photo has 14 features and focuses on
component diagrams. According to the SPLOT feature model analyser, the Smart Home
feature model allows the generation of one billion product variants, 240 for CCCMS and
16 are possible for Mobile Photo.

Table 4.6 also provides data on the size of the case studies with respect to VML4RE
composition specifications, the number of consistency rules implemented in VCC, the
number of consistency rule instances created automatically when checking consistency,
and the time taken to check consistency and present results to the developers. The
VML4RE composition specification in Smart Home required a larger number of constructs
of type Variant and Action (28 variants and 108 actions) in comparison with CCCMS (7
variants and 17 actions) and Mobile Photo (7 variants and 29 actions). However, the time
to check consistency in the three case studies did not exceed one second when run on an
Intel Core-Duo i5 at 2.4 Ghz. From the rules presented in Table 4.4, Smart Home used 9
while CCCMS and Mobile Photo used 2 each one, according to the kind of model elements
in each case study.

The results in consistency checking consist on the description of each consistency
rule instance analysed and the particular inconsistent pairs (model elements, variants
(including its feature expression)) which require or are incompatible with other pairs.

6fmv.jku.at/picosat/
7http://www.satlive.org/

95

4. VALIDATION 4.5. Quantitative and Qualitative Validation

Case Studies Smart Home CCCMS Mobile Photo

VML4RE variants 28 7 7

VML4RE actions 108 17 20

Implemented rules 9 (all except rules 7,10) 2 (6,11) 2 (7,10)

Rule instances checked 71 10

Time taken to check 805 miliseconds 755 miliseconds 745 miliseconds
consistency

Table 4.6: Number of elements in the composition specifications and consistency checking
time in the case studies.

4.5.2 Quantitative Validation

Table 4.7 summarizes the evaluation results provided in Sections “Modularity Assess-
ment” to “Stability Assessment” included in Chapter 12. For each metric we assigned a
symbol that helps distinguishing which techniques have good, average or bad results in
comparison with the others8. The percentages limits used were: bad ≥ 67; average < 67
and ≥ 33; good < 339. For stability and expressivity of the compositions that only applied
to two techniques (i.e., the compositional approaches: VML4RE and MSVCM), we used
short arrows indicating which one had a better value (upwards arrow) than the other
(downwards arrow).
In general, the lower the value obtained for a metric, the better the approach for the
correspondent attribute. However, metrics such as Degree of Focus (DoF) and Reachability
follow an inverse logic, therefore higher values are interpreted as desired values. For
example, in DoS the percentage limits to assign the symbols were: good ≥ 67; average <
67 and ≥ 33; and bad < 33.

Attribute Metric PLUSS MT MSVCM VML4RE

Modulartiy Average DOS 0,113 0,100 0,058 0,000

Average DOF 2,960 3,310 4,000 4,000

Stability of specifications Added steps 32 25 21 21

Impact 4 5 3 3

Stability of composition Added compositions - - 2,75 4,25

Stability of CK Modifications 2 6 1 2

Insertions 32 18 2 2

Expresiv. of compositions Reachability - - 1,5 1,0

Expresiveness of CK Percentual Growth 321,43 109,62 34,21 134,43

Impact = Added + Modified scenarios

Summary

Table 4.7: Summary of quantitative validation. The upwards arrow means “Good”, the
rightwards arrow means “Average”, and the downwards arrow means “Bad”.

Modularity. Modularity for each technique was measured as the means of DoS and DoF
for the four releases. The compositional approaches VML4RE and MSVCM had better

8The assignment of each symbol was determined automatically using the conditional formatting feature
of MS Excel which assigned symbols to series of values based on percentages.

9These limits only follow an equitative division of 100 in three parts.

96

4. VALIDATION 4.6. Summary of Results

results in both DoS and DoF. Their scenario specifications better applied a modular design.
VML4RE and MSVCM help to specify each feature separately in only one or few scenarios,
which leads to DoS values very close to 0 for MSVCM and 0 for VML4RE. Similarly,
VML4RE and MSVCM specified each scenario focusing on only one or few features which
resulted in a good DOF=4 in comparison with Model Templates (DOF=3,31) and PLUSS
(DOF=2,96). We believe that the annotations mechanism used by Model Templates and
PLUSS fail to improve modularity of scenario specifications, even with few features that
are scattered through the system such as LOG and Authorization.

Stability of the specifications, compositions and configuration knowledge. Stability
of specifications, composition and configuration knowledge (CK) was measured as the sum
of all the individual values for stability metrics obtained in all the releases. Similarly, the
Impact was measured as the sum of added and modified scenarios in all the releases. The
compositional approaches VML4RE and MSVCM obtained the same values for the metrics
of stability of the specifications, this means that the most noticeable differences between the
compositional approaches (apart from their notation) are found in their expressivity and
not in the specification of the scenarios or modularity itself. On the other hand, PLUSS was
the best technique to keep almost intact CK specifications (Modifications=2) however, it
was done at the price of many insertions (Insertions=32). A different phenomenon happens
with the rest of the approaches that faced evolution of CK combining few modifications
and insertions of CK.

Expressiveness. Expressiveness of CK was measured as the mean of Reachability for
the four releases. VML4RE had a low Reachability (=1) compared to MSCVM (=1.5). The
Percentual Growth of Expressiveness of CK in MSCVM (=34,21) was the best while in
PLUSS it was the worse (=321,43). The results of expressivity of VML4RE are similar to
the ones of Model Templates (Percentual Growth of Expressiveness of CK=134.43 and
CK=109.62) that does not have any separate configuration knowledge model. We see that
the lack or presence of quantification mechanisms affected Expressivity, and Expressivity
affected Stability of compositions and CK. For example, the lack of quantification mech-
anisms in VML4RE limited the Reachability of its pointcuts and influenced negatively
the Stability of compositions and CK because of new required variants and compositions
items to match elements introduced in new scenarios.

4.6 Summary of Results

Table 4.8 summarizes the results presented of the validation with respect to the attributes
and metrics defined in Subsection 4.2. The qualitative attributes receive a “Yes” when
DCC4SPL addressed the property while the quantitative attributes receive a “Partial” for
partially addressed or “Good” when it is addressed.

97

4. VALIDATION 4.7. Summary

Attribute Value

Vocabulary familiarity Yes

Derivation flexibility Yes

Consistency checking genericity Yes

Consistency checking multi-view awareness Yes

Consistency checking scalability Yes

Modularity Good

Stability of the specifications Good

Stability of the compositions Less stable than MSCVM

Stability of the configuration knowledge Good

Expressiveness of the composition Less expressive than MSCVM

Expressiveness of the configuration knowledge Average

Table 4.8: Summary of validation results for DCC4SPL.

4.7 Summary

The validation of DCC4SPL aimed at understanding to better understand how and to what
extend it guarantees effective consistency checking and derivation of product-specific
models early in SPLE.

This was accomplished in four steps. First, the research question was divided into two
main questions and each one into sub questions.

Second, we described the metrics suite employed in the evaluation of 11 attributes:
modularity, stability of the specifications, stability of the compositions, stability of the
configuration knowledge, expressiveness of the composition, expressiveness of the con-
figuration knowledge, vocabulary familiarity, derivation flexibility, consistency checking
genericity, consistency checking multi-view awareness and consistency checking scalabil-
ity.

Third, we presented the three case studies employed in the evaluation (Smart Home,
Mobile Photo and Car Crash Crisis Management System), and the phases followed for the
validation. These phases first deal with the validation of different SPL releases of CCCMS,
and then, with the other case studies.

Finally, we discussed the results of the validation. These results show that DCC4SPL
guarantees effective consistency checking and derivation of product-specific models in
early SPLE taken into account nine attributes. However, the two attributes related to
expressiveness of the composition and configuration knowledge of DCC4SPL need to be
improved as it may benefit the stability of compositions which did not get the best values
during the validation presented in this chapter.

98

5
Conclusions

In this dissertation we addressed the issue of guaranteeing effective consistency checking
and derivation of product-specific models early in SPLE with a novel and tool-supported
framework called DCC4SPL. DCC4SPL is composed of the Variability Modelling Language
for Requirements (VML4RE) and the Variability Consistency Checker (VCC) approach
and tool. This chapter summarizes the main contributions of the work presented in this
dissertation, identifies future research work and presents some final remarks about the
course of the work done.

5.1 Summary of Contributions

The three main contributions of DCC4SPL are:

1. Product-specific models derivation using VML4RE. The Variability Modelling Language
for Requirements (VML4RE) is both a domain specific language and derivation
infrastructure specifically tailored to express how to derive product-specific require-
ments models. This dissertation shows that VML4RE satisfies the quality attributes
of vocabulary familiarity, derivation flexibility, as well as quantifiable attributes
such as modularity, stability of the specifications and stability of the configuration
knowledge.

2. Consistency checking between variability model and other models using VCC. The Vari-
ability Consistency Checker (VCC) is a verification approach and tool that supports
consistency checking between a variability model (e.g., a feature model), and the
models that design the variability units of the variability model (e.g., features). VCC
mines constraints between variability units from the variability model and from the

99

5. CONCLUSIONS 5.2. Future Work

models that design variability. Then, VCC employs propositional formulas to relate
all the mined constraints. Checking if all the products in an SPL satisfy consistency
constraints is based on searching for a satisfying assignment of a propositional for-
mula. VCC also presents the elements involved in a violation of a consistency rule
and explains the cause of the inconsistency. This dissertation shows that VCC satis-
fies the quality attributes of consistency checking genericity, consistency checking
multi-view awareness and consistency checking scalability.

3. Tool support. The tool support contributes both research topics: “support to express
and perform product-specific models derivation” and “support for consistency
checking between variability model and other models”. We developed the VML4RE,
VCC and “Features Model Metamodel and Editor Tool” prototypes.

5.2 Future Work

From the work we have accomplished in this dissertation, we see several research threads
worth investigating.

Self-Adaptative Systems. We plan to extend the applicability of DCC4SPL to the run-
time environment of self-adaptative systems. In contrast to development models (such as
the ones used in this dissertation), run-time models are used to reason about the operating
environment and runtime behaviour, and thus these models must capture abstractions
of runtime phenomena. Different dimensions need to be balanced, including resource-
efficiency (time, memory, energy), context-dependency (time, location, platform), as well
as personalization (quality-of-service specifications, profiles)1. The hypothesis is that
because models at run-time provide meta-information for these dimensions during ex-
ecution, run-time decisions can be facilitated and better automated. Thus, according to
the reseach community, this technology will play an integral role in the management of
self-adaptive systems.

Building Automation Systems. Engineers have made notable progress in creating Build-
ing Automation Systems (BASs) to coordinate electrical and mechanical devices to improve
comfort and safety of the users of the buildings. Much less is known, however, about
verifying consistency rules of BAS specifications (expressed as well-formedness conven-
tions and design patterns) against low-carbon energy-aware constraints and end-users
requirements. Existing work in verification does not consider the combinatorial explosion
of different requirements imposed by BAS technology, low-carbon energy-aware con-
straints, and different types of end-users. One of our next steps is to extend DCC4SPL to
effectively manage verification of BAS specifications, to improve BAS quality and end-user
acceptance. Our solution will provide a low-carbon, energy-aware holistic approach for

1http://www.comp.lancs.ac.uk/~bencomo/MRT12/

100

5. CONCLUSIONS

identifying, modelling, and verifying consistency between multiple specification views,
independently of the number and kind of BAS specification languages, underlying imple-
mentation technologies, and coping with the combinatorial explosion of requirements.

Tool Support. Our main goal in this dissertation work was to present tool prototypes as
proof of concepts. Although our goals did not include the development of commercial
tools, we realized that to increase usability of DCC4SPL we need to work more to improve
tool support. In particular, we are interested in showing the use of DCC4SPL using other
requirements views in a more integrated and usable environment. In this regard, we are
considering to develop a graphical concrete syntax for VML4RE and a graphical manager
to specify new consistency rules in VCC.

5.3 Final Remarks

There is currently a significant number of requirements modelling, architectural design,
software verification and product variants derivation approaches. DCC4SPL undertakes
some of the objectives which have been neglected, such as providing a tool-supported
approach and language to express derivation of early models using a concrete syntax
familiar to developers, and a fully integrated consistency checking approach for the
entire SPL specification that harmonizes with the derivation process. There is still room
to improve DCC4SPL, in particular in terms of expressing configuration knowledge
during derivation specification. The low expressivity of DCC4SPL is due to the lack of
designators to point to several different places in the model-based specification using
only one language construct. However, any advance in that respect will be paid at the
cost of more complexity of the language in terms of number of concepts, relationships
and interpreter complexity which will be inevitably more difficult to understand and to
be evolved. This reminds us about the dichotomy between general-purpose languages
and domain-specific languages, with DCC4SPL we chose a domain-specific languages
solution that works very well for its objectives without adding extra (usually) unnecessary
complexity to the approach.

The idea for this PhD work was born at in 2009 when the Portuguese government
granted me a Ph.D. scholarship. That scholarship was granted in an open competition
where the main part of the assessment criteria was the quality of the research proposal.
A part of my research proposal was elaborated based on what I learned after writing
technical reports and papers, and participating in meetings with the project partners of
the European project AMPLE (where I worked as a researcher from 2007 to 2009). Back
in 2007 work in verification and model-driven development in early SPLE was then a
very novel idea. For years SPLE has been a hot and innovative topic, and many more
researchers joined the field in coming years.

Personally, at the end of these years of research, I realize that a work is never strictly
finished. There are many things that are left to be done and the Ph.D. project could last

101

5. CONCLUSIONS

forever. However, my personal goals are achieved and I have acquired new knowledge
and gained new experiences. From the challenges that are still left to investigate in the
near future, I would definitely choose to invest my energy on contributing to extend
DCC4SPL to the topic of models at runtime while improving tool support in terms of
usability and stability of the technological solution.

102

6
Bibliography

[1] Ian F. Alexander and Neil Maiden. Scenarios, Stories, Use Cases: Through the Systems
Development Life-Cycle. Wiley, 2004.

[2] Germán H. Alférez and Mauricio Alférez. An aspect-oriented framework to model
non-functional requirements in software product lines of service-oriented archi-
tectures. In Nikola Milanovic, editor, Non-Functional Properties in Service Oriented
Architecture: Requirements, Models and Methods, chapter 11, pages 246–267. IGI Global,
2011.

[3] Mauricio Alférez, Nuno Amálio, Selim Ciraci, Franck Fleurey, Jörg Kienzle, Jacques
Klein, Max E. Kramer, Sébastien Mosser, Gunter Mussbacher, Ella E. Roubtsova, and
Gefei Zhang. Aspect-oriented model development at different levels of abstraction.
In Robert B. France, Jochen Malte Küster, Behzad Bordbar, and Richard F. Paige,
editors, Modelling Foundations and Applications - 7th European Conference, ECMFA 2011,
Birmingham, UK, June 6 - 9, 2011, Proceedings, volume 6698 of Lecture Notes in Computer
Science, pages 361–376. Springer, 2011.

[4] Mauricio Alférez, Vasco Amaral, João Araújo, Phil Greenwood, Uirá Kulesza, Ricardo
Mateus, Ana Moreira, Afonso Pimentel, Andreas Rummler, Awais Rashid, Rita
Ribeiro, and João Santos. Tool suite for aspect-oriented, model-driven requirements
engineering. TechReport D1.5, European Project AMPLE, 2009.

[5] Mauricio Alférez, Vasco Amaral, João Araújo, João Santos, Christoph Elsner,
Michael C. Jaeger, Uirá Kulesza, Ana Moreira, Afonso Pimentel, Awais Rashid,
Rita Ribeiro, João Santos, Christa Schwanninger, and Nathan Weston. Mdd approach

103

6. BIBLIOGRAPHY

for requirements refinement to architecture. TechReport D1.4, European Project
AMPLE, 2009.

[6] Mauricio Alférez, Rodrigo Bonifácio, Leopoldo Teixeira, Paola Accioly, Uirá Kulesza,
Paulo Borba, Ana Moreira, and João Araújo. Evaluating approaches for specifying
software product line use scenarios. Unpublished Journal Article.

[7] Mauricio Alférez, Uirá Kulesza, Antonielly Garcia, Ana Moreira, João Araújo, and
Vasco Amaral. Towards volatility analysis in software product line engineering.
In Second Workshop on Aspect-oriented Product Line Engineering, AOPLE-2, co-located
with GPCE 2007, Salzburg, Austria, October 4, 2007, Proceedings, Lancaster University,
Computing Department, TechReport COMP-005-2007, pages 43–46, 2007.

[8] Mauricio Alférez, Uirá Kulesza, Ana Moreira, João Araújo, and Vasco Amaral. Tracing
from features to use cases: A model-driven approach. In Patrick Heymans, Kyo Chul
Kang, Andreas Metzger, and Klaus Pohl, editors, Second International Workshop on
Variability Modelling of Software-Intensive Systems, Universität Duisburg-Essen, Germany,
January 16-18, 2008, Proceedings, ICB Research Report, pages 81–87, 2008.

[9] Mauricio Alférez, Uirá Kulesza, André Sousa, João Pedro Santos, Ana Moreira, João
Araújo, and Vasco Amaral. A model-driven approach for software product lines
requirements engineering. In Proceedings of the Twentieth International Conference on
Software Engineering & Knowledge Engineering (SEKE’2008), San Francisco, CA, USA,
July 1-3, 2008, pages 779–784. Knowledge Systems Institute Graduate School, 2008.

[10] Mauricio Alférez, Uira Kulesza, Nathan Weston, João Araújo, Vasco Amaral, Ana
Moreira, Awais Rashid, and Michael C. Jaeger. A metamodel for aspectual require-
ments modelling and composition. TechReport D1.3, European Project AMPLE,
2008.

[11] Mauricio Alférez, Roberto E. Lopez-Herrejon, Ana Moreira, Vasco Amaral, and
Alexander Egyed. Ensuring consistency between feature models and model-based
specifications - the vcc approach. Unpublished Journal Article.

[12] Mauricio Alférez, Roberto E. Lopez-Herrejon, Ana Moreira, Vasco Amaral, and
Alexander Egyed. Supporting consistency checking between features and software
product line use scenarios. In Klaus Schmid, editor, 12th International Conference on
Software Reuse, ICSR 2011, Pohang, South Korea, June 13-17, 2011, Proceedings, volume
6727 of Lecture Notes in Computer Science, pages 20–35. Springer, 2011.

[13] Mauricio Alférez, Ana Moreira, Vasco Amaral, and João Araújo. Model-driven
requirements specification for software product lines. In Janis Osis and Erika Asnina,
editors, Model-Driven Domain Analysis and Software Development: Architectures and
Functions, chapter 17, pages 369–386. IGI Global, 2011.

104

6. BIBLIOGRAPHY

[14] Mauricio Alférez, Ana Moreira, Uirá Kulesza, João Araújo, Ricardo Mateus, and
Vasco Amaral. Detecting feature interactions in spl requirements analysis models. In
Sven Apel, William R. Cook, Krzysztof Czarnecki, Christian Kästner, Neil Loughran,
and Oscar Nierstrasz, editors, Proceedings of the First International Workshop on Feature-
Oriented Software Development, FOSD 2009, Denver, Colorado, USA, October 6, 2009,
ACM International Conference Proceeding Series, pages 117–123. ACM, 2009.

[15] Mauricio Alférez, João Pedro Santos, Ana Moreira, Alessandro Garcia, Uirá Kulesza,
João Araújo, and Vasco Amaral. Multi-view composition language for software
product line requirements. In van den Brand et al. [92], pages 103–122.

[16] Sven Apel. The Role of Features and Aspects in Software Development, Ph.D dissertation.
Ph.d dissertation, Otto-von-Guericke-Universität, Magdeburg, Germany, 2006.

[17] Sven Apel, Wolfgang Scholz, Christian Lengauer, and Christian Kästner. Language-
independent reference checking in software product lines. In Sven Apel, Don S.
Batory, Krzysztof Czarnecki, Florian Heidenreich, Christian Kästner, and Oscar
Nierstrasz, editors, Proceedings of the Second International Workshop on Feature-Oriented
Software Development, FOSD 2010, Eindhoven, Netherlands, October 10, 2010, pages
65–71. ACM, 2010.

[18] Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. An overview of
caesarj. In Awais Rashid and Mehmet Aksit, editors, T. Aspect-Oriented Software Devel-
opment I, volume 3880 of Lecture Notes in Computer Science, pages 135–173. Springer,
2006.

[19] Aspect-Oriented Software Association. Aspect-oriented software development com-
munity & conference :: Aosd. http://www.aosd.net.

[20] Bruno Barroca, Levi Lucio, Vasco Amaral, Roberto Félix, and Vasco Sousa. Dsltrans:
A turing incomplete transformation language. In Brian A. Malloy, Steffen Staab,
and Mark van den Brand, editors, Software Language Engineering - Third International
Conference, SLE 2010, Eindhoven, The Netherlands, October 12-13, 2010, Revised Selected
Papers, volume 6563 of Lecture Notes in Computer Science, pages 296–305. Springer,
2010.

[21] Don S. Batory, David Benavides, and Antonio Ruiz Cortés. Automated analysis of
feature models: challenges ahead. Commun. ACM, 49(12):45–47, 2006.

[22] David Benavides, Sergio Segura, and Antonio Ruiz Cortés. Automated analysis of
feature models 20 years later: A literature review. Inf. Syst., 35(6):615–636, 2010.

[23] David Benavides, Sergio Segura, Pablo Trinidad, and Antonio Ruiz Cortés. First
international workshop on variability modelling of software-intensive systems, va-
mos 2007, limerick, ireland, january 16-18, 2007. proceedings. In Klaus Pohl, Patrick

105

6. BIBLIOGRAPHY

Heymans, Kyo Chul Kang, and Andreas Metzger, editors, VaMoS, volume 2007-01 of
Lero Technical Report, pages 129–134, 2007.

[24] Rodrigo Bonifácio and Paulo Borba. Modeling scenario variability as crosscutting
mechanisms. In Sullivan et al. [87], pages 125–136.

[25] Alexandre Bragança and Ricardo Jorge Machado. Automating mappings between
use case diagrams and feature models for software product lines. In Software Product
Lines, 11th International Conference, SPLC 2007, Kyoto, Japan, September 10-14, 2007,
Proceedings, pages 3–12. IEEE Computer Society, 2007.

[26] Ruzanna Chitchyan, Phil Greenwood, Américo Sampaio, Awais Rashid, Alessandro F.
Garcia, and Lyrene Fernandes da Silva. Semantic vs. syntactic compositions in aspect-
oriented requirements engineering: an empirical study. In Sullivan et al. [87], pages
149–160.

[27] Paul Clements and Linda Northrop. Software Product Lines: Practices and Patterns.
Addison-Wesley, Boston, MA, USA, 2002.

[28] Stephen A. Cook. The complexity of theorem-proving procedures. In Michael A.
Harrison, Ranan B. Banerji, and Jeffrey D. Ullman, editors, Proceedings of the 3rd
Annual ACM Symposium on Theory of Computing, May 3-5, 1971, Shaker Heights, Ohio,
USA, pages 151–158. ACM, 1971.

[29] Krzysztof Czarnecki. Overview of generative software development. In Jean-Pierre
Banatre, Pascal Fradet, Jean-Louis Giavitto, and Olivier Michel, editors, Unconven-
tional Programming Paradigms, volume 3566 of Lecture Notes in Computer Science, pages
326–341. Springer Berlin / Heidelberg, 2005.

[30] Krzysztof Czarnecki and Michal Antkiewicz. Mapping features to models: A template
approach based on superimposed variants. In Generative Programming and Component
Engineering, 4th International Conference, GPCE 2005, Tallinn, Estonia, September 29 -
October 1, 2005, Proceedings, pages 422–437, 2005.

[31] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative programming: methods, tools,
and applications. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA,
2000.

[32] Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eisenecker. Staged configura-
tion using feature models. In Robert L. Nord, editor, Software Product Lines, Third
International Conference, SPLC 2004, Boston, MA, USA, August 30-September 2, 2004,
Proceedings, volume 3154 of Lecture Notes in Computer Science, pages 266–283. Springer,
2004.

[33] Francisco Dantas, Eduardo Figueiredo, Alessandro Garcia, Cláudio Sant’Anna, Uirá
Kulesza, Nélio Cacho, Sérgio Soares, Thaís Vasconcelos Batista, Roberta Coelho,

106

6. BIBLIOGRAPHY

Mauricio Alférez, Ana Moreira, Afonso Pimentel, and João Araújo. Benchmarking
stability of aspect-oriented product-line decompositions. In Goetz Botterweck, Stan
Jarzabek, Tomoji Kishi, Jaejoon Lee, and Steve Livengood, editors, Software Product
Lines - 14th International Conference, SPLC 2010, Jeju Island, South Korea, September 13-17,
2010. Workshop Proceedings (Volume 2 : Workshops, Industrial Track, Doctoral Symposium,
Demonstrations and Tools), pages 21–26. Lancaster University, 2010.

[34] Jean-Marc DeBaud and Klaus Schmid. A systematic approach to derive the scope of
software product lines. In ICSE, pages 34–43, 1999.

[35] Edsger W. Dijkstra. On the role of scientific thought. Unpublished work, August
1974.

[36] Edsger W. Dijkstra. On the role of scientific thought. In Selected Writings on Computing:
A Personal Perspective, pages 60–66. Springer-Verlag, 1982.

[37] Marc Eaddy, Alfred Aho, and Gail C. Murphy. Identifying, assigning, and quantifying
crosscutting concerns. In ACoM ’07: Proceedings of the First International Workshop on
Assessment of Contemporary Modularization Techniques, page 2, Washington, DC, USA,
2007. IEEE Computer Society.

[38] Marc Eaddy, Thomas Zimmermann, Kaitlin D. Sherwood, Vibhav Garg, Gail C.
Murphy, Nachiappan Nagappan, and Alfred V. Aho. Do crosscutting concerns cause
defects? IEEE Trans. Softw. Eng., 34:497–515, July 2008.

[39] Steve Easterbrook, Anthony Finkelstein, Jeff Kramer, and Bashar Nuseibeh. Co-
ordinating distributed viewpoints: the anatomy of a consistency check. Concurrent
Engineering: Research and Applications, 2:209–222, 1994.

[40] Alexander Egyed. Fixing inconsistencies in uml design models. In 29th International
Conference on Software Engineering (ICSE 2007), Minneapolis, MN, USA, May 20-26,
2007, pages 292–301. IEEE Computer Society, 2007.

[41] Magnus Eriksson, Jürgen Börstler, and Kjell Borg. The pluss approach - domain
modeling with features, use cases and use case realizations. In J. Henk Obbink and
Klaus Pohl, editors, Software Product Lines, 9th International Conference, SPLC 2005,
Rennes, France, September 26-29, 2005, Proceedings, volume 3714 of Lecture Notes in
Computer Science, pages 33–44. Springer, 2005.

[42] Magnus Eriksson, Jürgen Börstler, and Kjell Borg. Managing requirements specifica-
tions for product lines - an approach and industry case study. Journal of Systems and
Software, 82(3):435 – 447, 2009.

[43] Eduardo Figueiredo, Nélio Cacho, Cláudio Sant’Anna, Mario Monteiro, Uirá Kulesza,
Alessandro Garcia, Sérgio Soares, Fabiano Cutigi Ferrari, Safoora Shakil Khan, Fer-
nando Castor Filho, and Francisco Dantas. Evolving software product lines with

107

6. BIBLIOGRAPHY

aspects: an empirical study on design stability. In Wilhelm Schäfer, Matthew B. Dwyer,
and Volker Gruhn, editors, 30th International Conference on Software Engineering (ICSE
2008, pages 261–270. ACM, 2008.

[44] Robert E. Filman, Tzilla Elrad, Siobhán Clarke, and Mehmet Akşit, editors. Aspect-
Oriented Software Development. Addison-Wesley, Boston, 2005.

[45] Hassan Gomaa. Designing Software Product Lines with UML: From Use Cases to Pattern-
Based Software Architectures. Addison Wesley Longman Publishing Co., Inc., Redwood
City, CA, USA, 2004.

[46] Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent. Software Factories: Assem-
bling Applications with Patterns, Models, Frameworks, and Tools. John Wiley & Sons,
2004.

[47] David Harel and Bernhard Rumpe. Meaningful modeling: What’s the semantics of
"semantics"? IEEE Computer, 37(10):64–72, 2004.

[48] Florian Heidenreich, Jan Kopcsek, and Christian Wende. Featuremapper: map-
ping features to models. In Companion of the 30th international conference on Software
engineering, ICSE Companion ’08, pages 943–944, New York, NY, USA, 2008. ACM.

[49] Florian Heidenreich, Pablo Sánchez, João Santos, Steffen Zschaler, Mauricio Alférez,
João Araújo, Lidia Fuentes, Uirá Kulesza, Ana Moreira, and Awais Rashid. Relating
feature models to other models of a software product line - a comparative study of
featuremapper and vml*. T. Aspect-Oriented Software Development, 7:69–114, 2010.

[50] Ivar Jacobson. Object-Oriented Software Engineering: A Use Case Driven Approach.
Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 2004.

[51] Praveen K. Jayaraman, Jon Whittle, Ahmed M. Elkhodary, and Hassan Gomaa.
Model composition in product lines and feature interaction detection using critical
pair analysis. In Gregor Engels, Bill Opdyke, Douglas C. Schmidt, and Frank Weil,
editors, Model Driven Engineering Languages and Systems, 10th International Conference,
MoDELS 2007, Nashville, USA, September 30 - October 5, 2007, Proceedings, volume 4735
of Lecture Notes in Computer Science, pages 151–165. Springer, 2007.

[52] Frédéric Jouault and Ivan Kurtev. Transforming models with atl. In Jean-Michel
Bruel, editor, Satellite Events at the MoDELS 2005 Conference, MoDELS 2005 International
Workshops, Doctoral Symposium, Educators Symposium, Montego Bay, Jamaica, October
2-7, 2005, Revised Selected Papers, volume 3844 of Lecture Notes in Computer Science,
pages 128–138. Springer, 2005.

[53] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. Feature-oriented domain analysis (foda) feasibility study. TechReport

108

6. BIBLIOGRAPHY

CMU/SEI-90-TR-021, Carnegie-Mellon University Software Engineering Institute,
1990.

[54] Shmuel Katz, Mira Mezini, and Jörg Kienzle, editors. Transactions on Aspect-Oriented
Software Development VII - A Common Case Study for Aspect-Oriented Modeling, volume
6210 of Lecture Notes in Computer Science. Springer, 2010.

[55] Joerg Kienzle, Nicolas Guelfi, and Sadaf Mustafiz. Crisis manage-
ment systems: A case study for aspect-oriented modeling, June 2009.
http://www.cs.mcgill.ca/ joerg/taosd/TAOSD/TAOSD.html.

[56] Jörg Kienzle, Nicolas Guelfi, and Sadaf Mustafiz. Crisis management systems: A case
study for aspect-oriented modeling. In T. Aspect-Oriented Software Development [54],
pages 1–22.

[57] Tomoji Kishi and Natsuko Noda. Formal verification and software product lines.
Commun. ACM, 49(12):73–77, 2006.

[58] Anneke Kleppe. Software Language Engineering: Creating Domain-Specific Languages
Using Metamodels. Addison-Wesley Professional, 1 edition, 2008.

[59] Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model Driven
Architecture: Practice and Promise. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2003.

[60] Jasna Kovacevic, Mauricio Alférez, Uirá Kulesza, Ana Moreira, João Araújo, Vasco
Amaral, Vander Alves, Awais Rashid, and Ruzanna Chitchyan. Survey of the state-
of-the-art in requirements engineering for software product line and model-driven
requirements engineering. TechReport D1.1, European Project AMPLE, 2007.

[61] Philippe Kruchten. The 4+1 view model of architecture. IEEE Software, 12(6):42–50,
1995.

[62] Philippe Kruchten. The Rational Unified Process: An Introduction. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 3 edition, 2003.

[63] Charles W. Krueger. Software reuse. ACM Comput. Surv., 24(2):131–183, 1992.

[64] Uirá Kulesza, Cláudio Sant’Anna, Alessandro Garcia, Roberta Coelho, Arndt von
Staa, and Carlos José Pereira de Lucena. Quantifying the effects of aspect-oriented
programming: A maintenance study. In 22nd IEEE International Conference on Software
Maintenance (ICSM 2006), 24-27 September 2006, Philadelphia, Pennsylvania, USA, pages
223–233. IEEE Computer Society, 2006.

[65] Martin Lippert and Cristina Videira Lopes. A study on exception detecton and
handling using aspect-oriented programming. In Carlo Ghezzi, Mehdi Jazayeri,
and Alexander L. Wolf, editors, Proceedings of the 22nd International Conference on on

109

6. BIBLIOGRAPHY

Software Engineering, ICSE 2000, Limerick Ireland, June 4-11, 2000, pages 418–427. ACM,
2000.

[66] Roberto Erick Lopez-Herrejon and Alexander Egyed. Detecting inconsistencies in
multi-view models with variability. In Thomas Kühne, Bran Selic, Marie-Pierre
Gervais, and François Terrier, editors, Modelling Foundations and Applications, 6th
European Conference, ECMFA 2010, Paris, France, June 15-18, 2010. Proceedings, volume
6138 of Lecture Notes in Computer Science, pages 217–232. Springer, 2010.

[67] Francisco J. Lucas, Fernando Molina, and José Ambrosio Toval Álvarez. A systematic
review of uml model consistency management. Information & Software Technology,
51(12):1631–1645, 2009.

[68] Levi Lucio, Bruno Barroca, and Vasco Amaral. A technique for automatic validation
of model transformations. In Dorina C. Petriu, Nicolas Rouquette, and Øystein
Haugen, editors, Model Driven Engineering Languages and Systems - 13th International
Conference, MODELS 2010, Oslo, Norway, October 3-8, 2010, Proceedings, Part I, volume
6394 of Lecture Notes in Computer Science, pages 136–150. Springer, 2010.

[69] Slavisa Markovic and Thomas Baar. Refactoring ocl annotated uml class diagrams.
Software and System Modeling, 7(1):25–47, 2008.

[70] Joaquin Miller and Jishnu Mukerji. Mda guide version 1.0.1. TechReport omg/2003-
06-01, Object Management Group, 2003.

[71] Hugo Morganho, Catarina Gomes, João P. Pimentão, Rita Ribeiro, Birgit Grammel,
Christoph Pohl, Andreas Rummler, Christa Schwanninger, Ludger Fiege, and Michael
Jaeger. Requirement specifications for industrial case studies. TechReport D5.2,
European Project AMPLE, 2008.

[72] Andrew Moss and Henk L. Muller. Efficient code generation for a domain specific
language. In Robert Glück and Michael R. Lowry, editors, Generative Programming
and Component Engineering, 4th International Conference, GPCE 2005, Tallinn, Estonia,
September 29 - October 1, 2005, Proceedings, volume 3676 of Lecture Notes in Computer
Science, pages 47–62. Springer, 2005.

[73] Bashar Nuseibeh, Jeff Kramer, and Anthony Finkelstein. A framework for expressing
the relationships between multiple views in requirements specification. IEEE Trans.
Software Eng., 20(10):760–773, 1994.

[74] Jon Oldevik, Øystein Haugen, and Birger Møller-Pedersen. Confluence in domain-
independent product line transformations. In Marsha Chechik and Martin Wirsing,
editors, Fundamental Approaches to Software Engineering, 12th International Conference,
FASE 2009, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings, volume 5503 of Lecture
Notes in Computer Science, pages 34–48. Springer, 2009.

110

6. BIBLIOGRAPHY

[75] OMG. Meta object facility (mof) 2.0 query/view/transformation specification.
TechReport formal/2011-01-01, Object Management Group, 2011.

[76] D. L. Parnas. On the design and development of program families. IEEE Trans. Softw.
Eng., 2:1–9, January 1976.

[77] David Lorge Parnas. Designing software for ease of extension and contraction. IEEE
Trans. Software Eng., 5(2):128–138, 1979.

[78] Afonso Pimentel, Rita Ribeiro, Ana Moreira, João Araújo, João Santos, António Costa,
Mauricio Alférez, and Uirá Kulesza. Hybrid assessment method for software product
lines. In Awais Rashid, Jean-Claude Royer, and Andreas Rummler, editors, Aspect-
Oriented, Model-Driven Software Product Lines: The AMPLE Way, chapter 5, pages
125–158. Cambridge University Press, 2011.

[79] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product Line
Engineering: Foundations, Principles and Techniques. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2005.

[80] Jeff Rothenberg. The nature of modeling. In Lawrence E. Widman, Kenneth A.
Loparo, and Norman R. Nielsen, editors, AI, Simulation & Modeling, AI, Simulation &
Modeling, pages 75–92. John Wiley & Sons, Inc., New York, NY, USA, August, 1989.
Reprinted as N-3027-DARPA, The RAND Corporation, November 1989.

[81] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Foundations. World Scientific, 1997.

[82] Knowledge Systems Institute Graduate School, editor. Proceedings of the Twentieth
International Conference on Software Engineering & Knowledge Engineering (SEKE’2008),
San Francisco, CA, USA, July 1-3, 2008. KSI, 2008.

[83] Shane Sendall and Wojtek Kozaczynski. Model transformation: The heart and soul
of model-driven software development. IEEE Software, 20(5):42–45, 2003.

[84] Ida Solheim and Ketil Solen. Technology research explained. TechReport SINTEF
A313, SINTEF ICT, March 2007.

[85] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF: Eclipse
Modeling Framework 2.0. Addison-Wesley Professional, 2nd edition, 2009.

[86] Vijayan Sugumaran, Sooyong Park, and Kyo C. Kang. Introduction: Software product
line engineering. Commun. ACM, 49:28–32, December 2006.

[87] Kevin J. Sullivan, Ana Moreira, Christa Schwanninger, and Jeff Gray, editors. Proceed-
ings of the 8th International Conference on Aspect-Oriented Software Development, AOSD
2009, Charlottesville, Virginia, USA, March 2-6, 2009. ACM, 2009.

111

6. BIBLIOGRAPHY

[88] Marta-Silvia Tabares, Germán-Harvey Alférez, and Mauricio Alférez. Aspect-oriented
software development: A practical case for an on-line help desk system. Revista
Avances en Sistemas e Informática, 5(2):61–68, 2008.

[89] Gabriele Taentzer. Agg: A graph transformation environment for modeling and
validation of software. In John L. Pfaltz, Manfred Nagl, and Boris Böhlen, editors,
Applications of Graph Transformations with Industrial Relevance, Second International
Workshop, AGTIVE 2003, Charlottesville, VA, USA, September 27 - October 1, 2003,
Revised Selected and Invited Papers, volume 3062 of Lecture Notes in Computer Science,
pages 446–453. Springer, 2003.

[90] Sahil Thaker, Don S. Batory, David Kitchin, and William R. Cook. Safe composition of
product lines. In Charles Consel and Julia L. Lawall, editors, Generative Programming
and Component Engineering, 6th International Conference, GPCE 2007, Salzburg, Austria,
October 1-3, 2007, Proceedings, pages 95–104. ACM, 2007.

[91] Muhammad Usman, Aamer Nadeem, Tai-hoon Kim, and Eun-suk Cho. A survey of
consistency checking techniques for uml models. In Proceedings of the 2008 Advanced
Software Engineering and Its Applications, ASEA ’08, pages 57–62, Washington, DC,
USA, 2008. IEEE Computer Society.

[92] Mark van den Brand, Dragan Gasevic, and Jeff Gray, editors. Software Language
Engineering, Second International Conference, SLE 2009, Denver, CO, USA, October 5-
6, 2009, Revised Selected Papers, volume 5969 of Lecture Notes in Computer Science.
Springer, 2010.

[93] Jilles van Gurp, Jan Bosch, and Mikael Svahnberg. On the notion of variability in
software product lines. In 2001 Working IEEE / IFIP Conference on Software Architecture
(WICSA 2001), 28-31 August 2001, Amsterdam, The Netherlands, pages 45–54. IEEE
Computer Society, 2001.

[94] Markus Volter and Thomas Stahl. Model-Driven Software Development. Wiley, Glasgow,
UK, 2006.

[95] Trevor J. Young and Trevor J. Young. Using aspectj to build a software product line
for mobile devices. Masterthesis, University of British Columbia, British Columbia,
Canada, 2005.

[96] Steffen Zschaler, Pablo Sanchez, João Santos, Mauricio Alférez, Ana Moreira, João
Araújo, Uira Kulesza, and Lidia Fuentes. Variability management. In Awais Rashid,
Jean-Claude Royer, and Andreas Rummler, editors, Aspect-Oriented, Model-Driven Soft-
ware Product Lines: The AMPLE Way, chapter 4, pages 82–124. Cambridge University
press, 2011.

[97] Steffen Zschaler, Pablo Sánchez, João Pedro Santos, Mauricio Alférez, Awais Rashid,
Lidia Fuentes, Ana Moreira, João Araújo, and Uirá Kulesza. Vml* - a family of

112

6. BIBLIOGRAPHY

languages for variability management in software product lines. In van den Brand
et al. [92], pages 82–102.

113

6. BIBLIOGRAPHY

114

Part II

Research Papers

115

7
Introduction

This chapter presents and includes a copy of some of the book chapters and peer-reviewed
papers written for international events.

• Chapter 8 - A Model-Driven Approach for Software Product Lines Requirements
Engineering [9] (Page 119).

• Chapter 9 - Multi-View Composition Language for Software Product Line Require-
ments [15] (Page 127).

• Chapter 10 - VML* – A Family of Languages for Variability Management in Software
Product Lines [97] (Page 149).

• Chapter 11 - Model-Driven Requirements Specification for Software Product Lines
[13] (Page 173).

• Chapter 12 - Evaluating Approaches for Specifying Software Product Line Use
Scenarios [6] (Page 187).

• Chapter 13 - Supporting Consistency Checking between Features and Software
Product Line Use Scenarios [12] (Page 215).

• Chapter 14 - Ensuring Consistency Between Feature Models and Model-Based
Specications - The VCC Approach [11] (Page 233).

Also, there are other publications that helped to shape the work presented in this
dissertation. However, we chose to show here those with larger impact on the research
contributions of this PhD dissertation. Showing all the publications here make this work

117

7. INTRODUCTION

too extensive. The following are the published papers that were not selected to appear
here:

• Journal paper

– Relating Feature Models to Other Models of a Software Product Line - A Com-
parative Study of FeatureMapper and VML* [49].

– Aspect-Oriented Software Development: A Practical Case for an On-line Help
Desk System [88].

• Book chapters

– Variability Management [96].

– Hybrid Assessment Method for SPL [78].

– An Aspect-Oriented Framework to Model Non-Functional Requirements in
Software Product Lines of Service-Oriented Architectures [2].

• International conference paper

– Aspect-Oriented Model Development at Different Levels of Abstraction [3].

• Workshop papers

– Tracing between Features and Use Cases: A Model-Driven Approach [8].

– Detecting Feature Interactions in SPL Requirements Analysis Models [14].

– Benchmarking Stability of Aspect-Oriented Product-Line Decompositions [33].

• Technical reports:

– Survey of State-of-the-Art in Requirements Engineering for Software Product
Lines and Model-Driven Requirements Engineering [60].

– A Metamodel for Aspectual Requirements Modelling and Composition [10].

– Tool Suite for Aspect-Oriented, Model-Driven Requirements Engineering [4].

– MDD Approach for Requirements Refinement to Architecture [5].

118

8
A Model-Driven Approach for

Software Product Lines
Requirements Engineering

Authors: Mauricio Alférez, Uirá Kulesza, André Sousa, João Santos, Ana Moreira, João
Araújo, Vasco Amaral.

Paper Summary: This paper presents a model-driven approach for variability manage-
ment in product lines that addresses traceability between features and UML requirements
models. As a proof of concept we used UML use case and activity diagrams and features
models to specify SPL requirements. The main contribution was to show how model-
driven techniques can be used as a base to automatically derive requirements models
for specific products of a SPL, and views that explicitly illustrate the relationships be-
tween features and UML requirements model elements. The model-driven techniques
applied in our approach were to apply bindings between metamodels, create a tracing
metamodel strategy based on proxy metaclasses that allow a n-to-m (were n, m >=0) map-
ping between features and model elements in use case and activity diagrams, generate
specific product requirements models automatically, and use composition rules to specify
compositions between use cases by means of their respective activity diagrams. Another
main contribution of this paper was to describe the process from requirements specified
textually in sentences to features and use cases, and the way use cases and their respective
activity diagrams should be composed using a composition language. However, we delay
the explanaition of the composition language to Chapter 9 - Multi-View Composition
Language for Software Product Line Requirements.

119

8. A MODEL-DRIVEN APPROACH FOR SOFTWARE PRODUCT LINES REQUIREMENTS ENGINEERING

Authors Contribution: Mauricio Alférez was the main author and responsible for the
main part of the research and writing of this paper, accounting for the 90% of the work.
Other authors gave interesting comments that helped to improve the content of the paper.

Publication: Published in the proceedings of the Twentieth International Conference
on Software Engineering & Knowledge Engineering (SEKE’2008), San Francisco, CA, USA,
July 1-3, 2008 [9, 82]. Acceptance rate (full papers): 36%. Conference classification: CORE
B.

120

A Model-Driven Approach for Software
Product Lines Requirements Engineering

Mauricio Alférez, Uirá Kulesza, André Sousa, João Santos,
Ana Moreira, João Araújo, Vasco Amaral

Dept. Informática, FCT, Universidade Nova de Lisboa, Portugal
{mauricio.alferez, uira, als, jps, amm, ja, vasco.amaral}@di.fct.unl.pt

Abstract

UML and feature models complement each other
well and can be the base techniques for a systematic
method to identify and model software product line
(SPL) requirements. In this paper, we present a model-
driven approach to trace both features and UML
requirements analysis model elements, and to
automatically derive valuable models for domain and
application engineering. The resulting contribution is
a synergetic approach for SPL requirements. We
illustrate it by using a home automation system
product line.

1. Introduction

Software product line (SPL) approaches [1-3] aim
at improving the productivity and quality of software
development by enabling the management of common
and variable features of a system family. A system
family is defined as a set of programs that shares
common functionalities and maintains specific
functionalities that vary according to specific family
product members. A SPL can be seen as a system
family that addresses a specific market segment [1].

Over the past few years, several SPL development
approaches have been proposed [1-4]. Most of them
motivate the identification of common and variable
features of the SPL by means of domain analysis
activities. A feature [4] can be seen as a system
property or functionality that is relevant to some
stakeholder and is used to capture commonalities or
discriminate among products in a SPL. SPL features
are typically represented in domain analysis using
feature models [5]. Other requirements models (e.g.,
use case and activity models) can be used to better
describe and detail the SPL requirements. The feature
and requirements models are then used as a reference

along all the process to guide the development of the
SPL.

Some research works have addressed the use of
feature models in combination with other models.
Approaches like [6] and [7] propose to create
relationships between features and UML models by
means of intrusive graphical elements such as,
presence conditions or notes to indicate variability.
The main disadvantage of these approaches is the
creation of convoluted and polluted models, which
bring difficulties to understand, maintain and scale the
models and trace links between features and UML
elements.

Other approaches [3, 8, 9] give some directions on
how to model and trace variability information.
However, and similarly to what happens with the
previous approaches, they do not provide specific
activities and tool support for modeling, tracing and
generating requirements models for specific products
based on the tracing information.

This paper presents a model-driven approach for
variability management in product lines that addresses
traceability between features and UML requirements
models (like use cases and activity models). The main
contribution is to show how model-driven techniques
can be used to automatically derive, from the
information provided by the trace links, requirements
models for specific products of a SPL, and views that
explicitly illustrate the relationships between features
and UML requirements model elements. These views
are useful in both domain and application engineering
stages. The general idea of our approach is to apply
bindings between metamodels, create a simple tracing
metamodel strategy, generate specific product
requirements models automatically, and use
composition rules to specify compositions between use
cases by means of their respective activity diagrams.

This paper starts with an overview of our
metamodelling strategy and approach main activities in

Copyrighted material reproduced with kind permission of the Knowledge Systems Institute Graduate School.
Originally published in the proceedings of the Twentieth International Conference on Software Engineering & Knowledge Engineering
(SEKE’2008), San Francisco, CA, USA, July 1-3, 2008, pages 779–784. Knowledge Systems Institute Graduate School, 2008.

Section 2. These activities are illustrated using a home
automation system, in Section 3. Section 4 explores
and presents lessons learned from the application of
our approach. Finally, Section 5 concludes the paper
and points out directions to some future work.

2. A Model-Driven Approach for SPL
Requirements Engineering

Traceability between feature and requirements
models is supported in our approach by a
metamodelling strategy. Figure 1(a) introduces the
adopted metamodelling strategy and Figure 1(b) makes
that strategy concrete through feature, use case and
activity metamodels.

A variability model is used to represent the
common and variable SPL features. One or more
requirements models detail the SPL requirements. A
traceability metamodel is used to link abstractions
from the variability and the requirements models. This
enables the navigation across abstractions of the
different types of models using model-driven
techniques and tools. The traceability model also
supports backward and forward traceability between a
feature model (or any of its configurations) and
requirements models. Each configuration defines the
features of a specific product from the SPL.

Variability
Metamodel

Traceability
Metamodel

Requirement
MetamodelsTracesTraces

(a) General Strategy Adopted

(b) Our Approach

Id: String
name: String

Feature

minCardinality : int
maxCardinality : int
type : String

AttributesubFeatures
attributes*

minCardinality : int
maxCardinality : int

SubFeature

Constraint
*

FeatureModel

Node
rootFeatures1..*

*

1..*
childs

UseCaseModel

ActivityModel

TraceLink

TracingModel

Id : String
name : String

UCElement

Id : String
name : String

ADNode

*
*

*

1..*

1..*

1..*

Figure 1. Traceability support strategy

Our approach adopts a feature metamodel based on
[7] as the variability model. UML use case and activity
models specify the SPL requirements. Due to the large
dimension of the their metamodels, we only show the
use case model element “UCElement” and activity
diagram node “ADNode” from which all the traceable
elements of each model can be inherited. Activity
diagrams model the behavior of use cases. Use cases

and activity models are related to each other by means
of the feature to which they are connected.

Our metamodel (Figure 1(b)) supports the set of
models that we create in domain and application
engineering. The metamodel enables the creation of
models in conformance to their respective metamodels
[10], and helps to understand the relationships between
the models elements. Besides the metamodelling
strategy, our approach also defines a set of systematic
activities in the domain and application engineering
stages. The SPL requirements models are created and
manipulated during these stages using model-driven
techniques and tools.

At the domain analysis level, we perform the
activities described next. Although they are organized
sequentially, they are typically executed iteratively and
incrementally.

1. Identify requirements. The SPL requirements can
be elicited using traditional requirements engineering
techniques such as inspection of existing documents
that describe the problem domain, existing catalogues
[11], stakeholders interview transcripts or by using
mining techniques [12]. Other approaches such as [9]
and [3] already address this activity in detail.
2. Group requirements into features. During this
activity, we organize the SPL requirements into
clusters according to the specific SPL features they are
related to. There are semi-automatic clustering
techniques such as [13] that could help to support this
activity. However, the specific steps followed in the
clustering sub-process are out of the scope of this
paper and are not included due to lack of space.
3. Refactor requirements and features. During the
previous activity, requirements could result to be
linked to more than one feature. We propose to
refactor those requirements to be ideally related to only
one feature, whenever possible. It contributes to
achieve a better modularization of the SPL
requirements through the separation of the variable
parts of each requirement [14] as well as facilitate
establishing tracing links between requirements and
features.
4. Model SPL features and use cases. This activity
structures and represents the SPL requirements using
use case and feature models. Use case models specify
the functional requirements and feature models specify
the SPL features and variability-commonality
information.
5. Relate features to use cases. The relationships
between features and use cases are specified visually in
a table of trace links. The table allows defining and
maintaining the trace relationships between features
and UML elements.

6. Generate SPL use cases annotated with features.
A model-driven tool developed for our approach uses
the relationships between use cases and features to
generate specific use case models annotated with
features [15]. In the annotated model, each use case is
shown with the respective(s) feature(s) related to it.
Therefore, it is also possible to obtain the set of use
cases related to a specific feature. This allows the
domain analysis engineers and SPL architects to
reason about how each use case is related to the SPL
features and to analyze the impact of change of
specific features in SPL requirements.
7. Model use cases as activity diagrams. The
detailed behavior of each use case is modeled using
activity diagrams, similarly to what happens in several
UML-based methods, such as RUP [16]. Use cases
specified as activity diagrams, in contrast with textual-
based specifications, allows us to enable the use of
model-driven generation tools by providing models
that conform to a metamodel (i.e., UML activity
diagram metamodel) and to help to avoid ambiguity in
the specifications [3]. The detailed specification of use
cases as activity models also enables us to customize
the behavior of use cases according to the features
selected to a specific SPL configuration.
8. Specify composition rules between use cases.
Each composition rule defines how a variable use case
(i.e., linked to a variable feature) can interfere or
modify the normal execution of a mandatory use case
(i.e., linked to a common feature). Composition rules
are defined in terms of the elements of the activity
diagrams (e.g., activities, initial state or final state).

The models produced during domain engineering
are used in application engineering to generate use
case and activity models for specific SPL
configurations. We define three activities in
application engineering:

1. Define a SPL configuration. The application
engineer specifies a SPL configuration, where s/he
chooses which optional and alternative features are
going to be part of the final application.
2. Generate a use case model from a SPL
configuration. Our tool [15] generates the use case
model related to the SPL configuration defined in the
previous activity. The input for the generation is the
SPL use case model, the SPL configuration and the
table that maintains the trace links between features
and use cases.
3. Generate activity diagrams from a SPL
configuration. Our tool is also used to generate
activity diagrams related to a specific SPL
configuration. In this process, the original activity
diagrams can be composed using the composition rules

defined in the domain engineering stage. The choice of
which composition rules will be used is based on the
features included in the SPL configuration. The
activity diagram of each extension use case, for
example, can be composed with mandatory use cases if
the variable feature related to it was selected by the
application engineer (step 1 of application
engineering).

3. Applying the Approach to a Case Study

To illustrate the activities described in the previous
section, we have chosen a home automation system,
called Smart Home (see also [3]). This system is one of
the SPL case studies proposed by the industrial
partners of the European project AMPLE [17]; due to
its complexity, we will focus only on a subset of the
Security module.

The requirements and feature identification, and
refactoring activities, are described in [18]. They
provided the features and requirements of our case
study. By inspecting those requirements and features,
we modeled the SPL feature and use case models.
Figure 2 shows the most relevant artifacts produced by
the activities of our approach. It shows how each
artifact produced in the domain engineering
perspective is used to create or derive other artifacts
for a specific product in the application engineering
perspective. Next we describe the domain engineering
activities from our approach.

Model SPL features and use cases. Figure 2(a) shows
the feature model of our Security module. It has three
main features: Room Surveillance, Admittance Control
and Intrusion Detection. Room Surveillance is an
optional feature that includes Indoor Camera
Surveillance and, optionally, Indoor Motion Detection.
The inhabitant can be admitted to enter the house after
passing either a Biometrical Analysis, Smart Card, or
entering a PIN. In case of selecting intrusion detection,
the Glass Break Detection must be included and
optionally, motion detection sensors and cameras for
outdoor security. The notation used in Figure 2(a) is
described in Figure 2(j).

We can obtain the SPL use cases from the
requirements and features previously identified. Use
case modeling is used to better structure the SPL
requirements and add more semantics to the features
[6]. Figure 2(b) shows the use case model of the case
study. The initial SPL features and use cases can be
refined and incremented to consider new variabilities
or products that need to be included in the family. Both
use case and feature models must be updated when

new features are considered or existing ones need to be
modified or removed.
Relate features to use cases and generate SPL use
case models annotated with features. So that
traceability can be maintained between use cases and
features, we define an activity to specify the trace
relationships between those artifacts. By inspecting the
requirements and features of the case study, we related,
for example, the Open Front Door use case with
Admittance Control, refined into Biometrical Analysis,
Smart Card, and PIN features because to open the
front door, the system requires Admittance Control.
Figure 2(c) shows one of the views that can be
generated using the trace links relationships between
use cases and features. The open branch in the tree-like
structure shows that the Smart Card feature is related
with the use cases Identify User by Smart Card, Open
Front Door and Configure Security Management.

The traceability views of the relationships between
features and other artifacts allow the domain analysis
engineers and SPL architects to reason about the
domain analysis artifacts interdependencies. Currently,
there are two kinds of traceability views that our
approach can generate in this activity: (i) A use case
model annotated with the respective related features;
and (ii) a tree structure that shows the list of use cases
with the related features and, optionally, the list of
features with the related use cases (as in Figure 2(c)).
Create activity diagrams. The behavior of each use
case can be specified in our approach using activity
diagrams. These diagrams were created by inspecting
the requirements. Figure 2(e) and Figure 2(f) shows,
for example, the activity diagrams of the Identify User
by Smart Card and Identify User use cases.
Specify composition rules between use cases. Use
cases composition is addressed in our approach by
means of a set of composition rules. Each composition
rule defines how a use case can interfere, modify, or
replace the execution of another use case. The
composition rules are defined in terms of activity
diagrams elements (i.e., activities, initial and final
nodes). Composition rules are used during the
application engineering phase to derive the specific
behavior of use cases for a SPL configuration or
product. Figure 2(d) presents the composition rule
between the use cases Identify User and Identify User
by Smart Card. It shows how the Identify User by
SmartCard use case can modify the Identify User use
case to include additional steps related to the Smart
Card variable feature. The application of the
composition rule is shown in the following subsection
where specific activity diagrams can be generated for
each product of the SPL.

Next, we describe the execution of the application
engineering activities of our approach in the context of
the Smart Home case study.

Define a SPL configuration and generate the
related use cases and activity diagrams. The first
activity in application engineering is to specify a SPL
configuration to decide which features will be part of
the final application. Figure 2(g) shows a configuration
of the case study feature model shown in Figure 2(a)
(see the notation used in Figure 2(j)).

Based on the feature model configuration, the
relationships between use cases and features, and the
SPL use case model (Figure 2(b)), a use case model
can be automatically derived using the tool from our
approach [15]. Figure 2(h) shows the use case model
of the product specified in Figure 2(g).

The final activity of application engineering in our
approach involves the automatic customization of the
activity diagrams related to each of the SPL use cases
using the composition rules specified in domain
engineering. Only the activity diagrams of the use
cases that are part of the SPL configuration are
customized. Figure 2(i) shows the composition
between the activity diagrams that describe the Identify
User and Identify User by Smart Card use cases
depicted in Figure 2(f) and Figure 2(e), using a
Replace with composition rule depicted in Figure
2(d). It is not the aim of this paper to present a full-
fledged composition language; we just show how it
would look like. A complete composition language is
one of our aims for future work. For additional details
about the current version of our composition language,
please refer to [17].

4. Benefits and Lessons Learned

In the context of the European project AMPLE,

experiments with our approach have shown that the
information of the relationships among the SPL
requirements models can be used to support: (i)
forward and backward traceability between features
and requirements models like use case and activity
models; and (ii) reasoning about the impact of feature
interactions in the SPL requirements (expressed by the
use cases and activity diagrams). Forward and
backward traceability enables the creation of tracing
queries over all the requirements artifacts and the
derivation of specific requirements models for a
determined product in the SPL using an model-driven
derivation tool, as the one that we have developed
[15]. In addition, it enables to the developers to
visualize the features changes effects in the SPL
requirements through the automatic modification of the

R
ead

 th
e u

ser id
entification

 from
 the S

m
art C

ard

D
etect in

stalled d
evices

S
ho

w
 m

essag
e o

f
succeful identificatio

n

S
h

ow
 error m

essag
e

R
eq

uest to the user
 to p

ass the card

S
earch

 fo
r m

atch
es

S
ho

w
 m

essag
e o

f
n

ot au
to

rizatio
n

N
um

ber of installed devices

U
ser autorized to enter?

 [N
o]

 [=0]
 [>0]

 [yes]

D
etect in

stalled
 d

evices

S
h

o
w

 m
essag

e o
f

su
ccefu

l id
en

tificatio
n

S
h

o
w

 erro
r m

essag
e

S
earch

 fo
r m

atch
es

S
h

o
w

 m
essag

e o
f

n
o

t au
to

rizatio
n

R
eco

g
n

ize u
ser

U
ser autorized to enter?

N
um

ber of installed devices

 [N
o]

 [=0]

 [>
0]

 [yes]

f

R
ead the user identification

 from
 the Sm

art C
ard

R
equest to the user
 to pass the card

C
onfigure Security

 M
anagem

ent

A
ctivate O

utdoor
 Security

A
ctivate C

am
era

 Surveillance

A
ctivate G

lass
 B

reak D
etection

A
ctivate M

otion
 D

etection

Indentify U
ser

by Sm
art C

ard

O
pen Front D

oor

Identify U
ser

H
ouse O

w
ner

Inhabitant

<<extend>>

<<extend>>

<<include>>

<<include>>

Identify U
ser by

B
iom

etrical A
nalysis

C
onfigure S

ecurity
 M

anagem
ent

A
ctivate O

utdoor
 S

ecurity

A
ctivate G

lass
 B

reak D
etection

A
ctivate C

am
era

 S
urveillance

A
ctivate M

otion
 D

etection
A

ctivate Indoor
 S

ecurity

Indentify U
ser

by S
m

art C
ard

O
pen Front D

oor

Identify U
ser

 by P
IN

Identify U
ser

H
ouse O

w
ner

Inhabitant
<<include>>

<<extend>>

<<extend>>

<<extend>>

<<include>>

<<include>>

a
b

g
h

C
om

pose Identify U
ser w

ith
Identify U

ser by Sm
art C

ard
1. R

eplace R
ecognize user

w
ith Identify U

ser by Sm
art

C
ard

d

c

Autom
aticaly D

eselected Feature

U
ser D

eselected Feature

Selected Feature

Feature M
odel C

onfiguration

Xor-Feature G
roup

O
ptional G

rouped Feature

M
andatory G

rouped Feature

O
ptional Feature

M
andatory Feature

R
oot Feature

O
r-Feature G

roup

Feature M
odel N

otation

e

j

U
sed to D

erive C
om

posed
A

ctivity M
odels for the S

P
L C

onfiguration

U
sed to D

erive the U
se C

ase
M

odel for the S
P

L C
onfiguration

U
sed to C

reate the S
P

L
C

onfiguration

i

Figure 2. Some of the artifacts produced in the Smart Home Security module case study.
(a) SPL feature model; (b) SPL use case model; (c) Use cases related to features; (d) Composition rule

between “Identify User” and “Identify User by Smart Card”; (e) Activity diagram of the “Identify
User by Smart Card” use case; (f) Activity diagram of the “Identify User” use case; (g) Configuration
of the SPL feature model; (h) Use case model for a specific product; (i) Composing “Identify User”

with “Identify User by Smart Card”; (j) Feature model notation.

models. On the other hand, the information about
feature interactions offered by our approach is useful
during the design of SPL architectures to allow an
adequate modularization and implementation of their
respective features. However, in this paper we have
only concentrated on describing the traceability
functionalities.

Our metamodelling strategy (Section 2) brings the
following benefits to the definition of our approach: (i)
simplicity – the integration between the metamodels of
the feature and requirements models is very easy to
understand and evolve; and (ii) flexibility – the strategy
can be applied to any requirements notation that has a
well-defined metamodel.

Our approach also enables composition of
crosscutting use cases by representing their steps in
activity diagrams. Composition rules are used to
specify how the behavior of a use case can affect the
behavior of another one. We believe this is an effective
way to represent how the SPL variabilities occur along
the use cases behavior. The integrated use of these
activity diagrams, composition rules and a SPL
configuration allows generating the specific behavior
of a SPL product. The resulting activity diagram
representing the use cases of a product can then be
used with different purposes, such as, for example, to
document the final requirements of the product or to
generate specific test cases for the product.

5. Conclusions and Future Work

This paper presented a model-driven approach to
model, specify and trace SPL features and
requirements supported by an automated tool. We
adopted a simple but useful metamodel integration
strategy to allow tracing between features and other
requirements models. The approach includes domain
and application engineering activities, both illustrated
using the Smart Home SPL case study.

Our work is currently being extended to address
additional perspectives, such as: (i) to provide more
explicit guidance for non-functional requirements and
feature interactions modeling and to create special
trace views for these concerns; (ii) to deal with
uncertainty or volatile requirements in SPLs; (iii) to
continue exploiting the activity diagrams to model
scenarios [19]; and (iv) define a more complete
approach in the context of the AMPLE project to
provide tracing support from features and requirements
models to artifacts of later software development
stages, such as, architecture models and source code.
Finally, a full-fledged composition language will be
defined.

Acknowledgements. The authors are partially
supported by EU Grant IST-33710: Aspect-Oriented,
Model-Driven Product Line Engineering (AMPLE).

References

[1] P. Clements and L. M. Northrop, Software Product Lines:
Practices and Patterns. Boston, USA: Addison-Wesley, 2002.
[2] D. M. Weiss and C. T. R. Lai, Software Product-line
Engineering: a Family-based Software Development Process.
Boston, USA: Addison-Wesley, 1999.
[3] K. Pohl, et al, Software Product Line Engineering:
Foundations, Principles and Techniques. Berlin, Germany:
Springer, 2005.
[4] K. Czarnecki and U. W. Eisenecker, Generative
Programming: Methods, Tools, and Applications: ACM
Press/Addison-Wesley, 2000.
[5] K. Kang, et al, "Feature-Oriented Domain Analysis
(FODA) Feasibility Study", SEI, CMU/SEI-90-TR-021, 1990.
[6] K. Czarnecki and M. Antkiewicz, "Mapping Features to
Models: A Template Approach Based on Superimposed
Variants", presented at GPCE, Tallinn, Estonia, 2005.
[7] A. Bragança and R. J. Machado, "Automating Mappings
between Use Case Diagrams and Feature Models for Software
Product Lines", presented at SPLC, Kyoto, Japan, 2007.
[8] H. Gomaa, Designing Software Product Lines with UML:
From Use Cases to Pattern-Based Software Architectures:
Addison-Wesley, 2004.
[9] M. L. Griss, et al, "Integrating Feature Modeling with the
RSEB", presented at ICSR, 1998.
[10] J. Bézivin, "On the Unification Power of Models",
Software and Systems Modeling, vol. 4(2), pp. 171-188, 2005.
[11] L. Chung, et al, Non-Functional Requirements in Software
Engineering, 1 ed: Kluwer Academic Publishers, 1999.
[12] A. Sampaio, et al "EA-Miner: A Tool for Automating
Aspect-Oriented Requirements Identification", in Proceedings of
ASE, Long Beach, CA, USA, ACM Press, 2005, pp. 352-355.
[13] K. Chen, et al, "An Approach to Constructing Feature
Models Based on Requirements Clustering", in Proceedings of
RE, Paris, France, IEEE Computer Society, 2005, pp. 31-40.
[14] A. Moreira, J. Araújo, and J. Whittle, "Modeling Volatile
Concerns as Aspects", presented at CAiSE, Luxemburg,
Luxemburg, 2006.
[15] "AMPLE Project Research Group at FCT/UNL",
http://ample.di.fct.unl.pt/.
[16] P. Kruchten, The Rational Unified Process: An
Introduction: Addison-Wesley, 2003.
[17] AMPLE, "Ample Project", http://www.ample-project.net/.
[18] M. Alférez, et al, "Traceability between Features and
UML-Based Requirements Models: A Model-Driven Approach
for Product Lines Engineering",
http://ample.di.fct.unl.pt/tool/Alferez-etal-TR-1-2008.pdf
[19] N. Maiden and I. Alexander, Scenarios, Stories, Use Cases:
Through the Systems Development Life-Cycle: John Wiley &
Sons, 2004.

9
Multi-View Composition Language

for Software Product Line
Requirements

Authors: Mauricio Alférez, João Santos, Ana Moreira, Alessandro Garcia, Uirá Kulesza,
João Araújo, Vasco Amaral.

Paper Summary: This paper proposes the Variability Modeling Language for Require-
ments (VML4RE), a requirements composition language for SPLs. VML4RE has two main
goals: (i) to support the definition of relationships between SPL features expressed in
feature models and requirements expressed in multiple models; and (ii) to specify the
composition of requirements models for deriving specific SPL products using a simple set
of operators. This paper details the composition language and refines the composition
activity described in Appendix 8.

Authors Contribution: Mauricio Alférez was the main author and responsible for the
main part of the research and writing of this paper, accounting for the 90% of the work.
Other authors gave interesting comments that helped to improve the content of the paper.

Publication Arena: Published in the book “Software Language Engineering, Second
International Conference, SLE 2009, Denver, CO, USA, October 5-6, 2009, Revised Selected
Papers”. Acceptance rate: 19%. Conference classification: CORE B. [92, 15].

127

Multi-View Composition Language for Software
Product Line Requirements

Mauricio Alférez1, João Santos1, Ana Moreira1,
Alessandro Garcia2, Uirá Kulesza1, João Araújo1, Vasco Amaral1

1 New University of Lisbon, Caparica, Portugal

2 Pontifical Catholic University of Rio de Janeiro, Brazil

{mauricio.alferez, joao.santos, amm, uira, ja, vasco.amaral}@di.fct.unl.pt
afgarcia@inf.puc-rio.br

Abstract. Composition of requirements models in Software Product Line (SPL)
development enables stakeholders to derive the requirements of target software
products and, very important, to reason about them. Given the growing
complexity of SPL development and the various stakeholders involved, their
requirements are often specified from heterogeneous, partial views. However,
existing requirements composition languages are very limited to generate
specific requirements views for SPL products. They do not provide specialized
composition rules for referencing and composing elements in recurring
requirements models, such as use cases and activity models. This paper presents
a multi-view composition language for SPL requirements, the Variability
Modeling Language for Requirements (VML4RE). This language describes
how requirements elements expressed in different models should be composed
to generate a specific SPL product. The use of VML4RE is illustrated with
UML-based requirements models defined for a home automation SPL case
study. The language is evaluated with additional case studies from different
application domains, such as mobile phones and sales management.

Keywords: Requirements Engineering, Software Product Lines, Variability
Management, Composition Languages, Requirements Reuse.

1 Introduction

Software Product Lines (SPLs) engineering [1, 2] is an increasingly-relevant approach
to improve software quality and productivity. It encompasses the creation and
management of systems’ families for a particular domain. Each system (product) in
the family is derived from a shared set of core assets. Thus, a SPL product shares
many features with the other products. SPL features are typically represented in
domain analysis using feature models [3, 4]. A feature [3] is a visible system property
or functionality that is relevant to some stakeholders. Features are either
commonalities or variabilities used to distinguish products of an SPL. A feature

Copyrighted material reproduced with kind permission of Springer Science and Business Media. Originally published in Software
Language Engineering, Second International Conference, Denver, CO, USA, October 5-6, 2009, Revised Selected Papers,
volume 5969 of LNCS, pages 103–122. Springer, 2010. http://dx.doi.org/10.1007/978-3-642-12107-4_8

model is used to capture such commonalities and variabilities of the products’ family
in a SPL, and define their dependencies.

Model-based development methods for SPLs [2, 5, 6] support the construction of
different models to provide a better understanding of each SPL feature. However,
features, which are modeled separately in partial views, must be composed to show
the requirements of the target applications. Composing variable and common
requirements is a challenging task. Requirements are the early software artifacts most
frequently documented in a multi-view fashion. Their description is typically based
on significantly heterogeneous languages, such as use cases [7] (coarse-grained
operational view), interaction diagrams (fine-grained operational view) [8], goal
models (intentional and quality view) [9, 10], and natural language. This varied list of
requirements models is a direct consequence of requirements having to be understood
by stakeholders with different backgrounds, from customers of specific products to
SPL architects, programmers and testers.

However, initial work on compositional approaches [2, 5, 6, 11] for requirements
artifacts is rather limited in language support. These approaches do not offer
composition operators for combining common and varying requirements based on
different partial views. They are also often of limited scope and expressiveness [11].
Therefore, a key problem in SPL remains to be addressed: how to compose elements
defined in separated and heterogeneous requirements models using a simple set of
operators?

This paper answers this question by proposing the Variability Modeling Language
for Requirements (VML4RE), a requirements composition language for SPLs.
VML4RE has two main goals: (i) to support the definition of relationships between
SPL features expressed in feature models and requirements expressed in multiple
models; and (ii) to specify the composition of requirements models for deriving
specific SPL products using a simple set of operators.

VML4RE provides a set of specialized operators for referencing and composing
requirements elements of specific types, based on recognizable abstractions used in
the domain of each requirements modeling notation or technique. Such operators can
help SPL engineers to understand and choose the composition rules for requirements
models. In contrast with conventional and general-purpose languages for model
transformation, such as XTend [12], ATL [13] and AGG [14], VML4RE is tailored to
requirements composition in a way that is accessible to requirements engineers. This
is an important contribution of our work, as it addresses the problem of abstraction
mismatch caused by such general-purpose model transformation languages [15, 16].
VML4RE prevent SPL designers from the burden of language intricacies that are not
part of the abstraction level at which they are used to work.

The remainder of this paper is organized as follows. Section 2 presents a set of
criteria used when creating the requirements variability composition language.
Section 3 describes a case study that is later used to illustrate the VML4RE
composition language and creates an example specification. Section 4 presents
VML4RE and Section 5 discusses its application to the case study. Section 6 presents
the evaluation of the language and discusses its benefits and limitations. Section 7
examines related work and compares it with ours. Finally, Section 8 concludes the
paper and points directions to future work.

2 Criteria to Design VML4RE

SPL Requirements Engineering handles both common and variable requirements that
enable the derivation of customized products of the family. Feature models are used
to specify SPL commonalities and variabilities and feature model configurations are
used as a driver during the process to derive product-specific requirements models.
Requirements variability composition is the ability to customize requirements models
for specific family products. The customization of model-based requirements implies
a composition process where some elements are added, others are removed and,
eventually, some are modified from the initial models. This section describes five
criteria taken into account for the design of the VML4RE. These criteria raised from
the needs for requirements models specification and composition for heterogeneous
SPLs proposed by the industrial partners in the AMPLE project [17]:

C1: Support Multi-View Variability Composition: Requirements are the early
software artifacts most recurrently documented in a multi-view fashion. In this
context, variability manifests itself in different kinds of requirements (e.g., functional
requirements and quality attributes) and design constraints (e.g., different databases,
network types or operating systems) [2]. Modeling the requirements using multiple
views facilitates the understanding of the SPL’s variabilities and its specific products.
This is particularly important in SPL development as it encompasses a number of
stakeholders, from customers and managers of specific products, to core SPL
architects, programmers and testers.

C2: Provide Requirements-Specific Composition Operators: Requirements
descriptions are typically based on significantly-heterogeneous languages. Specific
composition operators for combining common and varying requirements based on
elements used in different views or models facilitate the operators’ adoption by the
SPL developers. General-purpose composition languages, such as XTend [12], ATL
[13] and AGG [14], require a deep knowledge of the abstract syntax of the models to
describe their composition. This highlights the problem of abstraction mismatch and
the need for a composition language that does not require additional developer
expertise. Requirements engineers should work at the same level of abstraction they
are used to [15].

C3: Support Fine- and Coarse-Grained Composition: Requirements models can
represent different levels of detail for a specific product. Coarse-grained modeling
helps to define the scope of the system to be built by expressing the goals or the main
functions of the product. Each coarse-grained element is often associated with a
variety of fine-grained elements. The latter provide detailed requirements for what the
system must do or sub-goals of the different parts of the system. For instance, UML
provides coarse-grained model elements, such as packages and use cases, to organize
the main subsystems and functions of the system to be built. Then, other models, such
as activity diagrams, support further refinements of use cases. As a result, both fine-
grained and coarse-grained composition is required to address the different levels of
abstraction employed in SPL requirements engineering.

C4: Support Positive and Negative Variability: In general, there are three means
to derive models for a specific SPL product: positive variability, negative variability
and a combination of both. Negative variability is the removal of optional elements
from a given structure, whereas positive variability is the addition of optional parts to

a given core [18]. Optional elements are related to optional and alternative features of
the SPL and the core part encompasses features that are common to all the products.
Sanchez et al. [15] presented a positive-negative modeling technique for variability
management, but the composition operators are specific to architectural models. The
flexibility provided by a positive-negative approach for composition is also advisable
for requirements models. For example, in cases where the addition of a model element
requires the removal of other(s) elements, as often happens when modeling mutually-
exclusive features.

C5: Facilitate Trace Links Generation: Variability specification usually keeps
implicit information governing the relationships between each SPL feature and
respective requirements models. Composition methods could support explicit
traceability of varying features through the generation of trace links from variability
specifications. Hence, traceability information could be used to analyze system
evolution properties, such as change impact analysis or requirements coverage.

The five criteria described above formed the basis for the VML4RE design. The
use of the VML4RE language assumes a process workflow, which is described in
Figure 1. Domain Engineering encompasses the creation of a set of artifacts
associated with the SPL. These artifacts are reused in application engineering to
produce specific SPL products. VML4RE is useful at the first stage of domain
engineering, called domain analysis. Variability identification and SPL requirements
modeling are the most important activities, which are performed in parallel during
domain analysis. During variability identification (Figure 1-A), distinction is made
between core (common) SPL features and the features of specific products. SPL
requirements modeling (Figure 1-B) tackles the detailed specification of features
using different requirements modeling techniques and notations (related to C1).
Composition specification (Figure 1-C) relies on requirements-specific composition
rules to specify how to customize requirements models (related to C2). These rules
can be based on operators that address both fine- and coarse grained compositions
(related to C3).

The reusable artifacts created in domain engineering are used in application
engineering to derive specific product models through the definition of
configurations. Existing product derivation tools like pure::variants [19] and Gears
[20] mainly allow to derive the complete or partial source code of a product. The
input to this derivation is the existing code artifacts produced for a SPL architecture.
However, these tools do not provide language support for the derivation of
requirements models for a specific product (related to C2). In a VML4RE-centric
process, variability resolution (Figure 1-D) implies selection of the variable features
to be included in the product. Finally, models derivation (Figure 1-E) is the actual
composition of the different models of a specific product. This supports the addition
and removal of elements from the initial models (related to C4). Additionally, when
deriving the models, appropriate tool support can be able to generate the trace links
(Figure 1-F) between the features chosen for the product and the different parts of the
requirements models (related to C5). This paper focuses on the Composition
Specification activity highlighted in grey in Figure 1. The next section presents the
case study and introduces VML4RE as a way of addressing the five criteria just
discussed.

A. Variability
Identification

B. Multi‐view SPL
Requirements Modelling

Domain Engineering
(Domain Analysis)

C. Composition Specification for Requirements

Application Engineering
(Requirements Specification)

D. Variability Resolution

E. Models Derivation F. Trace Links Generation

Fig. 1. Key Steps of SPL Requirements Composition

3 Case Study: Home Automation

Smart Home is a software product line for home automation being developed by
Siemens AG [21]. For brevity and clarity, we rely on a subset of the Smart Home
features. The left hand side of Figure 2 shows the partial feature model of the product
line, while the middle of the figure presents one of its possible configurations, the
“Economical Smart Home” (to create the models we use the FMP tool [22]). Some
optional features are not included in such an Economical edition. Therefore, camera
surveillance and internet as user interfaces are not part of the final product, for
example. Hence, these features are not ticked in the product feature model (middle).

Figure 3 presents the use case model of the Economical Home as an exemplar of
the set of models that we intend to obtain after the composition process. The elements
highlighted in grey are related to variable features selected to be included in the
Economical Home, while the rest of the elements are related to common features.
Table 2 gives an example of the relationships between features and parts of the
models. Also, the following sections provide more details on how this model was
composed.

Smart Home inhabitants must be able to adjust the heater of the house to their
preferred value (Manual Heating feature). In addition, the Smart Heating feature
might be activated in a house. If so, a heater control will adjust itself automatically to
save energy. For instance, the daily schedule of each inhabitant is stored in the Smart
Home gateway. When the house is empty, the heater is turned off and later turned
back on, on time to reach the desired temperature when the inhabitants return home.
Smart Home can also choose to open or close windows automatically, to regulate the
temperature inside the house as an option to save energy (Electronic Windows
feature). Alternatively to the electronic windows, the inhabitants could always be able
to open and close the windows manually (Manual Windows feature).

There are different types of graphical user interfaces that allow monitoring and
managing the different devices of the smart home as well as receive security
notifications (GUI feature). The available GUIs alternatives are: touch screens inside
the house (Touch Screen feature), or via internet through a website and a notifier
(Internet feature). As far as the Security feature is concerned, inhabitants can initiate
the secure mode by activating the glass break sensors or/and camera surveillance
devices (Glass Break Sensors and Cameras features). If an alarm signal is sent by any
of these devices, and according to the security configuration of the house, the Smart

Home decides to (i) send a notification to the security company and the inhabitants
via internet and touch screens, (ii) Secure the house by activating the alarms (Siren
and Lights features), and/or (iii) closing windows and doors (Electronic Windows
feature). Next we introduce VML4RE and illustrate its use with this case study.

Fig. 2. (left) Smart Home Feature Model; (middle) Feature Model Configuration for the Economic
Home; (right) Feature Model Notation

Heating

Adjust
HeaterValue

Calculate
Energy

Consumption

Control
Temperature
Automatically

<<extend>>
<<actor>>
Thermostat

<<actor>>
Heater

<<include>>

Open And Close
Windows

Open And Close
Windows

Automatically

WindowsManagment

<<actor>>
Window
Sensor

<<actor>>
Window
Actuator

<<include>>

Open And
Close Windows

Manually

Activate Secure
Mode

Security <<include>>

Secure The
House

Notify Using
Touch Screen

Notification <<include>>

Send Security
Notification

<<actor>>
Siren

<<actor>>
Lights

<<actor>>
Glassbreak
Sensor

<<extend>>

<<extend>>

Inhabitant

Fig. 3. Smart Home Economical Edition Use Case Model

4 VML4RE

This section outlines the VML4RE process, its main elements and its composition
semantics.

4.1 VML4RE Process

The VML4RE process is described by instantiating the requirements composition
process outlined in Figure 1. Figure 4 shows the specific artifacts employed in each of
the activities. For variability identification (Figure 4-A), we employ a feature model
that specifies the common and variable features of the SPL, as well as their
dependencies. For requirements modeling, we employ various requirements models.
In particular, we chose use cases whose detailed behavior is modeled using activity
models. This mimics what often happens in mainstream UML-based methods, such as
RUP [23]. The further elaboration of use cases with activity models; in contrast to
free-format textual descriptions, facilitate the adoption of model-driven generation
tools. This alternative provides models that conform to a metamodel (i.e., the
metamodel of UML activity diagrams), thereby reducing the ambiguity in the
specifications [2]. The detailed specification of use cases as activity models also
enables customizations of use cases realizing specific SPL configurations.

During requirements modeling, other models, such as goal models [9, 10], can be
used to specify interactions between functional and non-functional requirements.
Such models also allow studying the actors and their dependencies, thus encouraging
a deeper understanding of the business process. In addition, goal models can be used
as a way to introduce intentionality in the elicitation and analysis of requirements. As
a consequence, these goals allow the underlying rationale to be exploited in the
selection of variants in the application development process [24].

The VML4RE specification (Figure 4-C) references the requirements models and
specifies composition rules (also called actions). The VML4RE interpreter (Figure 4-
E and F) receives as input the SPL REquirements (RE) models (Figure 4-B), the
feature model configuration (Figure 4-D) and the VML4RE specification (Figure 4-
C). As output, the interpreter generates: (i) use cases of a product; (ii) activity models
that describe product usage scenarios; (iii) additional requirements models, such as,
goal models (Figure 4-E); and (iv) the trace links between features and specific
elements in the requirements models (Figure 4-F).

4.2 VML4RE Main Elements

Each VML4RE specification is composed of three main kinds of elements:
1. Importing: it imports the set of requirements and feature model that are used in

the VML4RE specification. This is accomplished using import sentences.
2. Commonalities: it defines the features that are mandatory to every product of a

SPL. It is used to reference the parts of the requirements that are related to SPL
common features.

3. Variabilities: it defines the variable (optional, variation points and variants)
features of the SPL. Optional features are not mandatory and might not be included in
some of the products of the SPL. A variation point identifies a particular concept
within the SPL requirements specification as being variable and it offers a number of
variants. A variant describes a particular variability decision, such as a specific
choice among alternative variants. The variabilities blocks are used to: (i) reference
(sentences initiated by the keyword ref) the requirements related to each variable
feature, and (ii) enclose operators used to compose the requirements related to each
variable feature.

A. Feature
Model

uc :
Use Case Model

B. SPL RE
Models

a :Activity
Models

g: Other
Models

D. Feature
Model

Configuration

E. Product –Specific RE Models
F. Trace Links between Features & RE models

C. Editor of
VML4RE

specifications

VML4RE Tool Suite Interpreter:
SPL RE models and feature model

configuration importer
E. RE models composer
F. Trace links generator

Done using

Imports
Imports

Generates

model SPLName {
import SPL_RE_Models...
common X {
//references...

}
variationPoint Y {
variant Y1 {
//references and actions...

select :
//references and actions...

unselect :
//references and actions...

}
variant Y2 {
//same structure as Y1...

} //...
}
optional Z {
select :
//references and actions...
unselect :
//references and actions...

}
//...

}

C. VML4RE Model

Fig. 4. Artifacts and Composition Workflow

The VML4RE specification outline (in Figure 4-C) contains separated blocks for
import sentences, common features like X, and variable features like Y, Y1, Y2 and
Z. Each optional, variationPoint and variant blocks can have select and unselect sub-
blocks. They indicate the set of references and actions that are taken into account if
the feature was selected or not in the feature model configuration. Thus, given that Y

and Y1 are selected in the feature model configuration, the actions and references
inside the select block of feature Y1 are executed. The actions and references inside
the unselect block of the Y2 and Z features are also executed.

4.3 References and Composition Operators

VML4RE provides references to indicate which elements in the requirements models
are related to specific features. Also, it provides a set of specialized operators for
composing requirements model elements like use cases, packages, activities or goals.

The upper part of Table 1 summarizes the description of the structure of the
elements related with the references. In VML4RE specifications, the ref statements
allow creating a reference between the different common, optional and alternative
features and specific parts of models. In the ref statements, it is possible to use
designators (e.g., “.”, “equal”) and quantification (e.g., “*” that indicates all the
elements inside a model element). Logical operators like “And” and “Or” can be used
to create more complex query expressions over the models. Listing 1 provides
examples of references to packages, activities and use cases that will be explained in
the description of the Smart Home section. Table 1 also summarizes the structure of
some composition operators. These include operators that are relevant to use case,
activity and goal models (in particular, the strategic dependency model of the i* [10]
goal-oriented approach). Analogous to the insert operators that add parts to the base
model, we have replace and remove operators. The complete metamodel and
grammar of the language can be found in [25].

The semantics of each VML4RE composition operator can be defined in terms of
a model-to-model transformation. For instance, the “Insert Use Case Links” operator
using the use case link type “associatedWith”, connects an actor and a use case using
an association link (for example, insert(UCLinks_of_type: associatedWith{from
actorD to useCaseModelA.PackageB.useCaseC});). The intended transformation of
the use case model can be presented by the left hand side (LHS) and right hand side
(RHS) graphs in Figure 5, where the inputs are a use case model, a use case, a use
case’s package, and an actor. If there is already an association between the actor and
the use case in the same package, the transformation is not applied to avoid
duplicates. This is expressed with the cross in some elements in the LHS graph that
act as negative application conditions (NAC). It means that any match against the
LHS graph cannot have a packageB with any existing association between actorD and
the useCaseC.

In general, a graph transformation is a graph rule r: L —› R for LHS graph L to a
RHS graph R. The process of applying r to a graph G involves finding a graph
monomorphism, h, from L to G and replacing h(L) in G with h(R) [26]. The notation
used to define this graph transformation is similar to the one used by [27] where the
LHS and RHS patterns are denoted by a generalized form of object diagrams.
However, for visual simplicity we added dashed lines between elements to represent
any number of containments (in this case, package’s containments). We defer to [27]
for the readers interested in details of this notation.

Figure 6 illustrates the replace operator with the example “Replace use case”. A
replace in this context includes to remove a use case and then insert a new use case

linked in the place of the old use case (for example, replace (useCase

useCaseModelA.useCaseB by UseCase useCaseC }) ;).

Table 1. Some of the VML4RE elements.

Element Description and Structure of Some Elements Related with References

Reference

Identifies one or more requirements model elements. The references are made to specific types of elements in the
models. This is expressed using the designator ofType that allows querying based on the type of model element
(ElementType), e.g., UseCase, Activity, Actor, or Element when the referenced models elements are of different types.
Reference : "ref" ref_name ofType ElementType"{"(RefExpression | ref_name2)
WhereDeclaration?"}";
RefExpression : elementName (("." RefExpression)|".*")?;

Where
Declaration

It is an optional part of a reference expression that allows querying a set of model elements based on their name.
WhereDeclaration : "Where" "(" Expression ")";

Expression

Some of the possible designators are: equal, different, startsBy, finishesWith, and contains. They search for matches
between a literal and the first letters, last letters or in any place in the names of the model elements of a specific type,
respectively. Besides, the expressions can be combined with logical operators like and and or to create more complex
queries.
Expression : BooleanExpression(SubExpression)*;
SubExpression : Operator BooleanExpression ;
BooleanExpression : "contains" literal | "equal" literal | "different" literal
 | "startsBy" literal | "finishesWith" literal

Element Description and Structure of Some Actions
Insert

Package
Insertion of a package in a use case model, or in another package
"package" package_name “into” RefExpression;

Insert
Use Case

Insertion of a use case into a use case model or inside a package(s)
"useCase" useCase_name "into" RefExpression;

Insert
Use Case

Links

Insertion of different relationships between elements in a use case model
"UClinks_of_type:" UseCaseLinkType "{" UCElementsLinkage+ "}" ;

UC Elements
Linkage

Helps to factorize the insertion of relationships in a use case model (Insert Use Case Links) according to the
UseCaseLinkType for a better organization of the actions.
"from " RefExpression "to" RefExpression ("," RefExpression)*;

Use Case
Link Type

Available relationships between use cases (inherits, extends, includes) and between actors and use cases
(associatedWith and biAssociatedWith for bidirectional relationships).
 ("inherits" | "extends" | "includes" | "associatedWith" |
"biAssociatedWith");

Insert
Actor

Insertion of an actor into a use case model or package
"actor" actorName "into" RefExpression ;

Insert
Activity

Inserts an activity into an activity model
"activity" (newActivityName "into" RefExpression) ;

Activity
Elements

Flow

Helps to factorize the insertion of relationships in an activity model (InsertActivityLinks, not shown in this table) and
optionally to add a guard condition.
"from" RefExpression "to" RefExpression ("with guard" guardCondition)?;

Replace
Use Case

Replaces a use case by a new one
"useCase" RefExpression "by" "useCase" newUseCaseName;

Replace
Activity

Replaces an activity by a new activity or a complete activity model.
"activity" RefExpression "by"(("activity" newActivityName)|("activityModel"
RefExpression);

Insert
iGoal

Inserts a goal of I* (indicated by the i in iGoal) in a strategic dependency model.
“iGoal” goalName "into" RefExpression ;

Insert iGoal
dependencies

Insertion of different dependencies relationships between elements in a strategic dependency model.
"IGoalDependencies_of_type:" iGoalDependencyType "{" iGoalElementsLinkage+ "}"
;

iGoal
Elements
Linkage

The links between the nodes in the strategic dependency diagram go from depender to dependee through dependum.
"from " RefExpression "to" RefExpression "through" dependumName;

iGoal
Dependency

Type
("resourceDependency"|"taskDependency"|"goalDependency"|"SoftGoalDependency");

The advantage of specifying model compositions with a pure graph transformation

approach is its expressivity by allowing accessing all the elements of the metamodel.
However, software modelers typically do not have the in-depth knowledge about
intricacies of the requirements metamodels required to specify a graph rule [28]. The
actions in VML4RE do not require any kind of knowledge about the details of the

metamodels. They provide requirements-specific composition operators that facilitate
the specification of the composition of the models.

LHS

: Association

: Property

Aggregation =
none

: Property

Aggregation =
none

Type

Type

packageB: Package

useCaseModelA:
Model

actorD: Actor

useCaseC :
Use Case

memberEndmemberEnd

RHS

A_src_dst:
Association

Src: Property

Aggregation =
none

Dst: Property

Aggregation =
none

Type

Type

packageB: Package

useCaseModelA:
Model

actorD: Actor

useCaseC :
Use Case

memberEndmemberEnd

Fig. 5. Graph Rule to Insert an Association between ActorC and useCaseB in PackageB

LHS useCaseModelA :
Model

useCaseB :
Use Case

RHS useCaseModelA :
Model

useCaseC :
Use Case

Fig. 6. Graph Rule to Replace UseCaseB by UseCaseC

5 Applying VML4RE

This section illustrates the use of the references and some VML4RE actions for
domain and application engineering.

5.1 VML4RE in Domain Engineering

The Smart Home requirements were modeled with use case and activity models
created with the UML Tools plug-in [29]. The FMP tool [22] was used to build a
feature model to specify SPL commonalities and variabilities. This tool supports
cardinality-based feature models. The relations between the models are specified with
VML4RE. The VML4RE editor is implemented using xText [30], a framework for
the development of textual DSLs. It is part of the VML4RE tool suite [25]
implemented in the Eclipse platform as a set of extensible plugins. It is based on
openArchitectureWare [12], a model-driven development infra-structure, and the
Eclipse Modeling Framework (EMF) [31]. Listing 1 shows a partial view of this
specification. Initially, the different requirements and feature models are imported to
be used in the specification (Lines 2-4).

In the VML4RE specification, the modeler can create references to requirements
models. For instance, it is possible to reference a specific element in a model, like an
actor; this happens in “ref Heater ofType Actor {uc.Heater}” (line 10); or all the

elements (e.g., use cases, packages, actors) inside one container element, e.g., “ref
AllHeatingElementsInUCs ofType Element{uc.Heating.*}” (lines 13-15); or elements
in different parts of the models according to a search condition, like “ref SurDev
ofType Activity {ams.* Where equal VerifyInstalledSurveillanceDevice} ” that
searches in the set of activity models for activities with the name
“VerifyInstalledSurveillanceDevice” (lines 51-52).

01 model SmartHome { 33 ref SecHouse ofType UseCase

02 import UseCaseModel '/UCModel.uml' as uc; 34 { Security_Pkg.SecureTheHouse }

03 import FeatureModel '/FeatModel.fmp' as fm; 35 insert (useCase ActivateSecureMode

04 import ActivityModels '/ActModels.uml' as ams; 36 into Security_Pkg) ;

05 /* more imports sentences...*/ 37 ref ActSecMode ofType UseCase

06 Common HomeFunctions { //... 38 { Security_Pkg.ActivateSecureMode }

07 Common HeatingManagement {//... 39 VariationPoint Alarm { //...

08 select: 40 Variant Siren { /*...*/ }

09 ref Heating ofType Package {uc.Heating} 41 Variant Light { /*...*/ }

10 ref Heater ofType Actor {uc.Heater} //... 42 }

11 Common ManualHeating { /*...*/} 43 VariationPoint IntrusionDetection { //...

12 Optional SmartHeating { /*...*/} 44 Variant GlassBreakSensors { //...

13 ref AllHeatingElementsInUCs 45 select :

14 ofType Element { uc.Heating.* } 46 insert (actor GlassBreakSensor into uc) ;

15 } 47 ref GlassSen_A ofType Actor

16 Common WindowsManagement { 48 { uc.GlassBreakSensor }

17 select: 49 insert (UClinks_of_type: associatedWith

18 ref WindowsMngmt ofType Package 50 { from GlassSen_A to SecHouse });

19 { uc.WindowsManagement } 51 ref SurDev ofType Activity {ams.* Where

20 Common ManualWindows { /*...*/ } 52 equal VerifyInstalledSurveillanceDevice }

21 Optional ElectronicWindows { /*...*/ } 53 replace (SurDev by Activity

22 } 54 VerifyInstalledGlassBreakSensors);

23 ref AllWindowsMngmtElements ofType 55 }

24 Element { uc.WindowsManagement.* } 56 Variant Cameras {

25 } 57 select :

26 Optional Security {//... 58 insert (actor Cameras into uc);

27 select: 59 ref Camera_A ofType Actor {uc.Cameras}//..

28 insert (package Security into uc); 60 }

29 ref Security_Pkg ofType 61 }

30 Package { uc.Security } 62 }

31 Insert (useCase SecureTheHouse 63 Common GUI { /*...*/ }

32 into Security_Pkg); 64 }

Listing 1. VML4RE Model for the Smart Home

The VML4RE specification also employs actions to specify how variable

requirements model elements are composed with common requirements model
elements. Listing 1 presents several actions to be applied in activity and use case
models. For example, the insertion of the Security package into the use case uc (line
28), or the insertion of the SecureTheHouse use case in the Security package (line 31-
32) and the insertion of an association between the GlassbreakSensor actor and the
use case SecureTheHouse (lines 49-50).

5.2 VML4RE in Application Engineering

In application engineering, the feature model configuration is used as a driver during
the process to derive product-specific requirements models. Figure 2 (middle) shows
the feature model configuration of an Economical Smart Home. The Economical
Smart Home does not have camera surveillance or use internet to send security
notifications. The VML4RE interpreter processes the SPL requirements models and
the feature model configuration to derive a product-specific requirements model.
During this process, we can use a positive, negative, or a mixture of positive and
negative variability transformation strategies. Our interpreter first includes all the
model requirements elements related to mandatory features by processing the
respective ref statements specified inside of the common feature blocks. These
elements are also called the core model in our approach, since they are included in
every SPL instance. After that, the interpreter processes the ref statements and actions
of the variabilities. In this example of the Smart Home, we will illustrate the use of
the VML4RE in conjunction with a positive variability approach since we mostly
used actions that add optional parts to the base model.

Finally, product-specific requirements models are produced based on processing
the VML4RE specification (Listing 1). Given the possibility of defining, in a unique
VML4RE specification, the relationships between a feature model and several
requirements models (e.g., use case and activity models), our interpreter produces
different product-specific requirements models in just one-step. Our current
implementation [25] supports the derivation of use case and activity models, and we
are working to address other models (i* [10] and KAOS [32], for example).

During the Economical Smart Home derivation process, the actions and references
related to Internet and Cameras were not included; for instance, the reference and
action related to the Cameras actor (Listing 1, lines 58-59). The result of the
composition of the use case model is shown in Figure 3, where the elements added to
the core model were highlighted in grey. In addition to the use case model, other
requirements models were transformed according to the execution of VML4RE
actions. Figure 7 shows the ActivateSecureMode activity model, related to the use
case with the same name. When the Security optional feature is chosen, the actions
contained in the “select” block of the Security variation point are performed (Listing
1, lines 28-38), and the ActivateSecureMode (Figure 7 (left)) activity model is
included into the final requirements product models.

During derivation of product-specific requirements models, some of the generic
activities in the activity model can be replaced with others more specific to the
product that is being configured. This happens in the Economical Home where the
GlassBreakSensors are the only surveillance devices selected in the configuration.
Hence, we could create a simple replacement of the
VerifyInstalledSurveillanceDevices activity by the VerifyInstalledGlassBreakSensors
activity as appears in Listing 1 (lines 47-48). As there are probably other activities for
verification of surveillance devices in the requirements models, we use the Where
operator. The result of the replacement is shown in Figure 7 (right). If two (or more)
variants from an OR feature are selected, such as the Intrusion Detection, our
interpreter produces two (or more) different activity models, one for each instance.

This strategy was developed to avoid conflicts in the transformation of a same activity
model.

VerifyInstalled
SurveillanceDevices

WaitForAlarmSignal

VerifyInstalled
GlassBreakSensors

WaitForAlarmSignal

Fig. 7. Simplified Smart Home ActivateSecureMode Before and After a Replace Activity Action

VML4RE allows the product derivation of trace links between the features and
elements in other models, such as use cases and activity diagrams. This derivation can
be accomplished based on the ref sentences inside each of the common and variable
blocks. Each ref in the VML4RE specification can determine several references
between model elements from the feature model and the SPL requirements models.
There may be also cases when an element in a requirements model is referenced by
more than one feature. VML4RE specifications are processed automatically by our
tool [25, 33] to generate all the set of links involving SPL requirements models (see
Section 2, C5). Table 2 presents a partial set of the trace links relevant to the feature
“Heating Management”. These links are created based on references, such as the ones
in Listing 1, lines 9-10, 13-14. Lines 9-10 refer to the package “Heating” and the
actor “Heater”, and lines 13-14 refer to any kind of element inside the “Heating” use
case package like the use case “Control Temperature Automatically” and “Adjust
Heater Value”.

Table 2. Part of the Trace Links Generated by the References in the Heating Management Feature.

Feature Element

Name Type

Heating Management Heating Package

Heater Actor

Control Temperature Automatically UseCase

Adjust Heater Value UseCase

Smart Heating ActivityModel
… …

6 Evaluation and Discussion

This section discusses the benefits and limitations of VML4RE based on our
experience from the application of the language. We have evaluated the usefulness of
VML4RE in three case studies [21], two of them proposed by partners of the
European AMPLE project [17], the Smart Home proposed by Siemens A.G. [34], and
a slice of the customer relationship management system, developed by SAP A.G [35]
. The third case study is a product line for handling mobile media [36]. These three
product lines are from different domains and exhibit different kinds of variability
(e.g., options and variants). All of them encompassed textual requirements. Feature
models and UML use cases were available for the Mobile Media and Sale Scenario

and an activity model was also available for the latter. The activity models of Mobile
Media and Smart Home were translated from informal textual use case scenarios to
activity models. The output models were validated by the original developers of the
case studies. The goal models for the Sales Scenario system were produced by two
teams of postgraduate students at Universidade Nova de Lisboa, based on the use case
scenarios and market requirements provided by SAP A.G.

We evaluate the VML4RE usefulness based on the criteria for requirements
models composition defined in Section 2 and then we discuss on additional benefits
and limitations of VML4RE.

C1: Support Multi-view Variability Composition: Each feature block in VML4RE
concentrates the actions related only with itself and that can transform models in
multiple views of the requirements. VML4RE was initially designed to support the
composition of two of the most commonly used requirements modeling techniques,
such as use cases and activity models that address coarse and fine grained operational
views of the requirements. We have also started using it with very different kinds of
requirements modeling, like the goal-oriented modeling technique i* [10], that
addresses a quality and intentionality view of the requirements, as happened in the
case of the Sales Scenario.

C2: Provide Requirements-Specific Composition Operators: as presented in Table
1, VML4RE provides specialized operators for composing requirements model
elements of specific types, such as use cases, packages, activities or goals. The
composition operators are simple and did not require from the modeler a deep
knowledge on the relationships between the metamodel’s metaclasses. For instance,
the UML2.0 metamodel for the use cases has metaclasses like property, association
and classifier. These metaclasses are important on the design of the transformations,
but they are not needed when writing compositions with VML4RE. The composition
description was simple in the three case studies because it was based on a vocabulary
used in the domain of each modeling technique (e.g., use case, associatedWith,
package, dependency).

C3: Support Fine and Coarse-Grained Composition: in the three case studies the
coarse-grained composition was performed in terms of broadly-scoped elements, such
as packages, use cases. The operators “remove package” and “insert…use case” are
examples of such cases. VML4RE also addresses fine-grained composition when the
actions are performed within coarse grained elements. The operators “insert activity”,
“insert activity links” are examples of such cases.

C4: Facilitate Trace Links Generation: As explained in Section 5.3, our approach
supports the derivation of trace links. These links record relations between features
specified in feature models and other requirements model elements pertaining to the
SPL or to a specific product. This is accomplished with the reference sentences that
are processed by the tool suite. We are currently exploring different traceability
scenarios that process these relationships to expose useful information. This
information could be exploited in many activities, such as discovering candidates of
bad feature interactions and visualizing variations in different requirements models.
Many of these traceability functionalities also facilitate the job of SPL architects as
they are also valuable to analyze the design change impact when evolving SPL
features and requirements.

C5: Support Positive and Negative Variability: VML4RE offers operators to
support positive variability (e.g., insert) and negative variability through remove or
replace operators. Positive variability presents some advantages for modeling and
composing requirements models. For example, requirements modeling is
characterized by the incremental knowledge acquisition about the system. In this
sense, starting with a relatively small and easy to understand set of models seems to
be a good starting point. Then, while the developer knows more about each feature of
the SPL, s/he can incrementally specify how each new variable feature will modify
the existing models. Positive variability also allows the management of variability in
time. If the core model is created using generic requirements then, the requirements
models are more flexible to include future specific requirements that instantiate the
generic ones. Take for example Figure 7 (Right), it specifies that, at some point, it is
necessary to “verify installed Surveillance devices”. Then this requirement not only
allows its instantiation for current surveillance devices, like “GlassBreak Sensors”
and “Cameras”, but it can also be instantiated by other unknown surveillance devices
that were not initially considered in the SPL.

While modeling with VML4RE we saw additional benefits of the composition of
requirements models. For example:

Testing and Understanding the Behavior of Specific Products: The automatic
derivation of requirements models for a specific product is useful both to understand
which requirements and features are involved in the development of an SPL product,
and to support the testing and documentation activities. In particular, activity models
are an example of requirements artifacts that are well suited for business process
modeling and for modeling the logic captured by a single use case or scenario as
happened during the modeling of the Sales Scenario. Activity models can provide a
base to understand and validate the behavior of parts of a product of the SPL in the
presence or absence of specific features. Also, using the goal-based modeling in the
Sales Scenario allowed us to understand the dependencies between the actors, thus
encouraging a deeper understanding of the business process.

Consistency Checking between Feature Models and other Requirements Models:
Modeling different models in large systems like SPLs can be a difficult, time-
consuming, and highly error-prone task, if appropriate supporting tools are not
available. During the realization of our three case studies, we noticed that the
generated trace links from VML4RE specifications, can be process by our traceability
framework [33] to detect inconsistencies between features and requirements in
different models. Examples of such inconsistencies are: (i) inexistence of features
related to specific requirements; (ii) inexistence of requirements related to specific
features; (iii) conflicts between features acting over the same requirements (which can
be valid or not). The consistency management of the relationships between features
and requirements models is also fundamental to help the functionalities’ tracing
mentioned above, especially in SPL evolution scenarios.

Finally, we came across with some issues during the application of the
compositions. When creating the composition actions for each variation point with the
core model, the modeler could have assumptions regarding the existence, position and
name of the model elements. However, the models change after the application of
each insertion, replacement or deletion of model elements and it could unable the
application of some subsequent actions. It is necessary to determine the best

precedence order for the application of the actions in each variation point and also for
the application of each variation point after model modifications. Existing formal
methods and model-checking techniques and tools like simulation, or critical pair
analysis as introduced by Javaraman, et al.[16] may be the first solution candidates.

7 Related Work

Most of the work on feature composition is focused on implementation, such as
Ahead [37] and pure::variants [19]. There are a couple of languages that focus on the
architecture level like VML4Architecture [38] and Koala [39]. Recently, some
approaches were proposed to support the definition of relationships between SPL
features and requirements and the composition of requirements models. Pohl [2]
separates variability from functional information, in an orthogonal model. He
proposes a variability metamodel that includes the following two relationships: the
Artifact Dependency relationship (that relates variants with development artifacts),
and VP Artifact Dependency (that relates variation points to development artifacts).
These elements enable the definition of links between the variability model and other
development artifacts. Nevertheless, this work is focused on documenting variability,
rather than expressing how to specify the composition of requirements models.

Czarnecki and Antkiewicz [6], and Bragança and Machado [40] create explicit
relationships between features and requirements. Czarnecki and Antkiewicz propose a
general template-based approach which enables the creation of relationships between
elements (abstractions and relationships) from an existing model to the corresponding
features through a set of annotations. The annotations are used mainly to indicate the
presence of conditions of specific model elements or model templates according to
feature occurrences. In contrast with VML4RE that allows positive, negative or
positive-negative variability, Czarnecki and Antkiewicz [6] only employ negative
variability. Bragança and Machado use a simplified feature model based on the one
proposed by Czarnecki and Antkiewicz and employ UML notes in use case diagrams
to indicate variability. These notes are linked to includes and extends relationships,
providing variability data. The main disadvantage with these two approaches [6, 40]
is that they fail to fully separate functional and variability information as they use
intrusive graphical elements such as, presence conditions or notes in their models to
indicate variability. Hence, variability information may be scattered and polluting the
models, making them difficult to understand and maintain.

Gomaa [5] extends UML-based modeling methods for single systems to address
software product lines. He uses stereotypes (e.g., <<kernel>>, <<optional>> or
<<alternative>>) to indicate variability, models use case packages as features in a
feature model, and manually relates features with other model elements using
matrixes. Variability stereotypes and other kinds of stereotypes are mixed in the same
models reducing the understandability of the models.

Although the previous approaches provide techniques to establish the relationships
between feature and requirements models, they lack a language to specify the actual
composition of different requirements models. Our work proposes a requirements

specific language and tool support to deal with composition of requirements models
for software product lines.

There are other approaches that provide languages to create reference expressions
and composition rules. XWeaver [18], for example, supports the composition of
different architectural viewpoints. It composes crosscutting concerns encapsulated as
aspect models into non-aspect-oriented base models, thus following an asymmetric
composition approach (though this could be extended for symmetric approach with
relatively little effort). XWeaver is similar to our approach because the composition is
done based on matching names of elements in the aspect and the base model. It
employs an OCL-like expressions language [12] that play the role of the VML4RE’s
references. However, it does not provide requirements specific composition operators.

MATA [28] is an aspect-oriented approach to model composition based on graph
rewriting formalisms that can be used to compose models of different SPL features to
create models specific of products [16]. It employs graphical patterns that resemble
the concrete syntax of specific kinds of UML models (e.g., state machines). In aspect-
oriented terminology, graphical patterns can be thought of as pointcuts and the
composition operators can be thought of as the advices. Similarly, in VML4RE,
references can be thought of as the pointcuts and the actions as the advices.
VML4RE, in comparison to MATA, provides more simple operators that are
especially tailored to facilitate writing composition of requirements models. However,
VML4RE can complement MATA by providing concrete language support to express
in the same code block of each feature, the references and composition rules for all
the different requirements views. VML4RE together with similar variability
composition languages focused on architecture like VML4Architecture [38] could be
used as an alternative frontend for MATA.

Apel et al. [11] employ superimposition of feature-related model fragments as a
general models’ composition technique. We believe that this technique can be
especially useful in requirements to compose coarse-grained models that keep a
common structure in a positive-variability setting. However, to be more useful in a
broader kind of requirements models, it requires language support to express also
positive-negative variability, and to reference potentially multiple composition points
for model fragments during fine-grained composition.

8 Conclusions and Future Work

VML4RE address the question on how to compose elements defined in separated and
heterogeneous requirements models using a simple set of operators. It was designed
taking into account the five fundamental criteria discussed in Section 2. Section 6
reviewed how these criteria are addressed. VML4RE presents a contribution to the
field of language support for composing SPL requirements due to its unique
characteristics: (1) each feature block (e.g., common, variant) concentrates a cohesive
set of actions that can transform models in multiple requirements views; (2) new
composition operators are especially tailored for canonical requirements models and
rely on a vocabulary familiar to requirements engineers; (3) there is an explicit
separation between the modeling of variability and requirements, without forcing the

intrusive inclusion of variability-related elements in requirements models; (4) the new
operators that can add, remove or replace parts of the models, thus supporting both
positive and negative variability; (5) the use of references to facilitate the creation of
compositions and the generation of trace links.

Currently, we are investigating the application of model-driven techniques to keep
consistent the relationships between SPL variability and requirements models during
models’ evolution. Also, we are studying an effective way to determine the best
precedence order for the application of the actions in each variation point and also for
the application of each variation point after model modifications. Finally, we are
interested in showing the use of our language using other requirements views and
improving the usability of VML4RE by including a graphical concrete syntax.

Acknowledgments. This work is supported by the European FP7 STREP project
AMPLE [17].

References

1. Clements, P., Northrop, L.M.: Software Product Lines: Practices and Patterns. Addison-
Wesley, Boston, MA, USA (2002)

2. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foundations,
Principles and Techniques. Springer, Berlin, Germany (2005)

3. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and
Applications. ACM Press/Addison-Wesley Publishing Co. (2000)

4. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-021, Software Engineering
Institute, Carnegie Mellon University (1990)

5. Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to Pattern-
Based Software Architectures. Addison-Wesley (2004)

6. Czarnecki, K., Antkiewicz, M.: Mapping Features to Models: A Template Approach Based
on Superimposed Variants. In: Glueck, R., Lowry, M.R. (eds.): GPCE'05, Vol. 3676.
Springer, Tallinn, Estonia (2005) 422-437

7. Alexander, I., Maiden, N.: Scenarios, Stories, Use Cases. Wiley, Chichester, UK (2004)
8. Unified Modeling Language (UML) Superstructure , Version 2.1.2 : 2007-11-02,
9. Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software

Engineering. Kluwer Academic Publishers (1999)
10. i* an Agent-oriented Modelling Framework http://www.cs.toronto.edu/km/istar/
11. Apel, S., Janda, F., Trujillo, S., Kästner, C.: Model Superimposition in Software Product

Lines. ICMT'09, Zurich, Switzerland (2009)
12. openArchitectureWare, http://www.openarchitectureware.org/
13. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.): Model

Transformations in Practice Workshop at MoDELS'05, Vol. 3844. Springer, Montego Bay,
Jamaica (2005) 128-138

14. Taentzer, G.: AGG: A Graph Transformation Environment for Modeling and Validation of
Software.: 2nd International Workshop on Applications of Graph Transformations with
Industrial Relevance (AGTIVE), Virginia, USA (2003)

15. Sánchez, P., Loughran, N., Fuentes, L., Garcia, A.: Engineering Languages for Specifying
Product-derivation Processes in Software Product Lines. SLE'08, Toulouse, France (2008)

16. Jayaraman, P., Whittle, J., Elkhodary, A., Gomaa, H.: Model Composition in Product Lines
and Feature Interaction Detection Using Critical Pair Analysis. MODELS'07, Vol. 4735.
Springer, Nashville, USA (2007) 151-165

17. Ample Project, http://www.ample-project.net/
18. Groher, I., Volter, M.: XWeave: Models and Aspects in Concert. 10th International

Workshop on Aspect-oriented Modeling. ACM, Vancouver, Canada (2007)
19. pure::variants, http://www.pure-systems.com/Variant_Management.49.0.html
20. Gears, http://www.biglever.com/
21. Morganho, H., Gomes, C., Pimentão, J.P., Ribeiro, R., Grammel, B., Pohl, C., Rummler,

A., Schwanninger, C., Fiege, L., Jaeger, M.: Requirement Specifications for Industrial Case
Studies. Technical Report, D5.2, AMPLE Project (2008)

22. Antkiewicz, M., Czarnecki, K.: FeaturePlugin: Feature Modeling Plug-in for Eclipse. 2004
OOPSLA workshop on eclipse technology eXchange. ACM Press, Vancouver, British
Columbia, Canada (2004) 67-72

23. Kruchten, P.: The Rational Unified Process: An Introduction. Addison-Wesley Longman
Publishing Co., Inc. (2003)

24. González-Baixauli, B., Laguna, M.A., Leite, J.C.S.d.P.: Using Goal-Models to Analyze
Variability. Variability Modelling of Software-intensive Systems, Limerick, Ireland (2007)

25. Variability Modeling Language for Requirements, http://ample.di.fct.unl.pt/VML_4_RE/
26. Grzegorz, R. (ed.): Handbook of Graph Grammars and Computing by Graph

Transformation: Volume I. Foundations. World Scientific Publishing Co., Inc., River Edge,
NJ, USA (1997)

27. Markovic, S., Baar, T.: Refactoring OCL Annotated UML Class Diagram. MODELS05,
Motengo Bay (2005)

28. Whittle, J., Moreira, A., Araújo, J., Jayaraman, P., Elkhodary, A., Rabbi, R.: An Expressive
Aspect Composition Language for UML State Diagrams. In: G. Engels, e.a. (ed.):
ACM/IEEE MODELS'07, Vol. 4735. Springer, Nashville, TN, USA (2007) 514–528

29. MDT-UML2Tools, http://www.eclipse.org/uml2/
30. Xtext Reference Documentation,

http://www.eclipse.org/gmt/oaw/doc/4.1/r80_xtextReference.pdf
31. Eclipse Modeling Framework, http://www.eclipse.org/modeling/emf/?project=emf
32. Goal-Driven Requirements Engineering: the KAOS Approach,

http://www.info.ucl.ac.be/~avl/ReqEng.html
33. Sousa, A., Kulesza, U., Rummler, A., Anquetil, N., Mitschke, R., Moreira, A., Amaral, V.,

Araújo, J.: A Model-Driven Traceability Framework to Software Product Line
Development. 4th Traceability Workshop held in conjunction with ECMDA, Berlin,
Germany (2008)

34. Siemens AG - Research & Development, w1.siemens.com/innovation/en/index.php
35. SAP A.G, www.sap.com/about/company/research/centers/dresden.epx
36. Figueiredo, E., Cacho, N., Sant'Anna, C., Monteiro, M., Kulesza, U., Garcia, A., Soares, S.,

Ferrari, F.C., Khan, S., Filho, F.C., Dantas, F.: Evolving software product lines with
aspects: an empirical study on design stability. ICSE'08. ACM, Leipzig, Germany (2008)

37. AHEAD Tool Suite, www.cs.utexas.edu/users/schwartz/ATS.html
38. Loughran, N., Sánchez, P., Garcia, A., Fuentes, L.: Language Support for Managing

Variability in Architectural Models. 7th International Symposium on Software
Composition, Vol. 4954. Springer, Budapest, Hungary (2008), pp. 36-51

39. Rob van, O., Frank van der, L., Jeff, K., Jeff, M.: The Koala Component Model for
Consumer Electronics Software. Computer, vol. 33, 3, pp. 78--85. IEEE Comp. Society
(2000)

40. Bragança, A., Machado, R.J.: Automating Mappings between Use Case Diagrams and
Feature Models for Software Product Lines. SPLC, Vol. 0., pp. 3-12, IEEE Computer
Society, Kyoto, Japan (2007)

9. MULTI-VIEW COMPOSITION LANGUAGE FOR SOFTWARE PRODUCT LINE REQUIREMENTS

148

10
VML* – A Family of Languages for

Variability Management in Software
Product Lines

Authors: Steffen Zschaler, Pablo Sánchez, João Santos, Mauricio Alférez, Awais Rashid,
Lidia Fuentes, Ana Moreira, João Araújo, Uirá Kulesza.

Paper Summary: The key contribution of this paper is in the domain of software-
language engineering, where it applies ideas from SPL engineering and model-driven
development to the development of VML* languages. This enables developers to effi-
ciently build new VML* languages for new SPL contexts avoiding error-proneness of
language development. A secondary contribution is that this new approach to language
development supports additional capacities for VML* languages, such as generation of
trace links or syntax verification. The capacity of VML* to use composed expressions
instead of only atomic expressions was implemented in new versions of VML4RE. That
capacity helped us to improve the VML4RE version described in Chapter 9 to finally
obtain the version described in Section 3.4 - Inside VML4RE.

Authors Contribution: Steffen Zschaler was the main author and responsible of the
development of tool support and the main part of the writing of this paper accounting
for the 60% of the work approximately. Research was the result of the generalization of
VML4Arch and VML4RE languages that before the creation of VML* were created in
isolation but sharing important characteristics. Contributions regarding VML4Arch were
mostly provided by Pablo Sánchez and Lidia Fuentes, and for VML4RE by João Santos
and Mauricio Alférez. Ana Moreira, Awais Rashid, João Araújo, and Uirá Kulesza gave

149

10. VML* – A FAMILY OF LANGUAGES FOR VARIABILITY MANAGEMENT IN SOFTWARE PRODUCT LINES

interesting comments that helped to improve the content of the paper.
Publication Arena: Published in the book “Software Language Engineering, Second

International Conference, SLE 2009, Denver, CO, USA, October 5-6, 2009, Revised Selected
Papers”. Acceptance rate: 19%. Conference classification CORE B.[13]

150

VML* – A Family of Languages for Var iability
Management in Software Product Lines1

Steffen Zschaler1, Pablo Sánchez2, João Santos3, Mauricio Alférez3, Awais Rashid1,
Lidia Fuentes2, Ana Moreira3, João Araújo3, Uirá Kulesza3

1 Computing Department, Lancaster University, Lancaster, United Kingdom
{zschaler, awais}@comp.lancs.ac.uk

2 Dpto. de Lenguajes y Ciencias de la Computación, Universidad de Málaga, Málaga, Spain
{pablo,lff}@lcc.uma.es

3 Computer Science Department, Universidade Nova de Lisboa, Lisbon, Portugal
{jps, mauricio.alferez, amm, ja}@di.fct.unl.pt, uirakulesza@gmail.com

Abstr act. Managing variability is a challenging issue in software-product-line
engineering. A key part of variability management is the ability to express ex-
plicitly the relationship between variability models (expressing the variability in
the problem space, for example using feature models) and other artefacts of the
product line, for example, requirements models and architecture models. Once
these relations have been made explicit, they can be used for a number of pur-
poses, most importantly for product derivation, but also for the generation of
trace links or for checking the consistency of a product-line architecture. This
paper bootstraps techniques from product-line engineering to produce a family
of languages for variability management for easing the creation of new mem-
bers of the family of languages. We show that developing such language fami-
lies is feasible and demonstrate the flexibility of our language family by apply-
ing it to the development of two variability-management languages.

Keywords: Software Product Lines, Family of Languages, Domain-specific Languages, Vari-
ability Management.

1 Introduction

Software Product Lines Engineering (SPLE) is seen as a promising approach to in-
creasing the productivity and quality of software, especially where essentially similar
software needs to be provided for a variety of contexts and customers each requiring
customizations and variations for their specific conditions [1-2]. In SPLE, features [3]
are used to capture commonalities or discriminate among products, i.e. capture vari-
abilities, in an SPL. SPL features are often modelled using feature models [3-4].
Management of variability throughout the product line is a key challenge in SPLE.

An important part of variability management is to make explicit the relation be-
tween the variability model (e.g., the feature models referred to in the previous para-

1 The work reported in this paper was supported by the EC FP7 STREP project AMPLE: As-

pect-Oriented Model-Driven Product Line Engineering (www.ample-project.net).

Copyrighted material reproduced with kind permission of Springer Science and Business Media. Originally published in Software
Language Engineering, Second International Conference, Denver, CO, USA, October 5-6, 2009, Revised Selected Papers,
volume 5969 of LNCS, pages 82–102. Springer, 2010. http://dx.doi.org/10.1007/978-3-642-12107-4_7

graph) and other models and artefacts of the SPL. Once this relation has been explic-
itly represented, it can be used for a number of purposes, most importantly to auto-
matically derive product instances based on product-configuration specifications, but
also for other purposes such as trace-link generation and consistency checking of SPL
models. Due to its relevance, this topic is currently an area of intensive research and a
number of approaches have been proposed [5-9]. Initial research focused on using
general-purpose model transformations to encode product derivation [10-11]. Later it
was argued that this placed too heavy a burden on SPL engineers, as they would now
also have to learn the intricacies of model transformations. Consequently, a number of
approaches that hide the model transformations from the SPL engineers have recently
been developed [6-7, 12].

Czarnecki et al and Heidenreich et al [6-7] propose generic techniques that associ-
ate features with arbitrary combinations of model elements and generate a standard
model transformation for product derivation from this. In contrast, we have argued
before [12] [13] that transformation actions that are specific to the types of models
used for describing the SPL are more useful, as they provide a terminology already
known to SPL engineers, allow consideration of model semantics in the definition of
transformations, and allow avoiding some inconsistencies (e.g., dangling references)
in product models by design.

This requires new languages to be developed for each type of model that may be
used in describing an SPL—a costly and error prone task. To make development of
such languages feasible, this paper proposes VML*2

The key contribution of this paper is, thus, in the domain of software-language en-
gineering, where it applies ideas from SPLE and model-driven development to the
development of VML* languages. This enables us to efficiently build new VML*
languages for new SPL contexts, and thus improves over our previous work [12],
which was limited to copy-and-paste-based reuse, limiting efficiency and increasing
error-proneness of language development. A secondary contribution is that this new
approach to language development allows us to support additional evaluations for
VML* languages, such as generation of trace links or SPL consistency checking.

, a family of languages—or a
language product line—for variability management, showing that developing such
languages is a feasible goal. Individual members of the family are described using a
domain-specific language (DSL). Based on such a specification, a generator produces
the complete infrastructure for the specified language. Such a generative approach has
the added benefit of making it easier to support other evaluations beyond product
derivation: they can be implemented in additional code generators from the language
specification.

Section 2 further discusses the motivation for building custom languages instead of
one generic language and derives a set of challenges to be overcome to enable effi-
cient development of such languages. Section 3 then presents how we applied SPLE
techniques to construct a family of languages for variability management and is fol-
lowed by Sect. 4, which shows how concrete languages have been developed based
on our approach. Section 5 reviews some related work and Sect. 6 concludes the pa-
per and points out directions for future work.

2 For Variability Management Languages

2 Motivation

This section describes the motivation that led to the creation of the VML* family of
languages. First, we provide some background on VML languages and then we pre-
sent the motivation of this paper.

2.1 Managing Variability Using Target-Model–Specific Languages

This section explains why we choose to model SPL variability using target-model–
specific languages rather than a single generic language. We use as an example an
architectural model of a lock control framework for a Smart Home Software Product
Line (SPL) [1, 14]. Smart Home applications aim at automating and controlling
houses and buildings in order to improve the comfort and security of their inhabitants.
The lock control is placed on doors of rooms whose access must be controlled. Sev-
eral options are available to end users acquiring a specific Smart Home software in-
stallation:

- Different authentication mechanisms can be used: identification cards, finger-
print scanners or a simple numeric keypad.

- Doors are opened manually and users have a time period to authenticate before
triggering the alarms. Optionally, it is possible to select a computer-controlled
door lock control (Automatic Lock), which will be released upon successful
authentication.

- Automatic sliding doors can also be used (Door Opener). This option requires
that the Automatic Lock control of the door lock be selected.

LockControlclass []

<<component>>
LockControlMng

<<component>>
FingerprintAuth

<<component>>
CardAuth

<<component>>
KeypadAuth

<<component>>
Door

Actuator

<<component>>
Lock

Control

<<component>>
Card

Reader

<<component>>
Keypad
Reader

<<component>>
Fingerprint

Reader

ILockControl

IRegister

IAccess

IVerify

IDoor

Figure 1 A software architecture for the lock control framework

Figure 1 depicts a software architectural design for this lock control framework.
This architectural design is comprised of three different parts, which are explained in
the following.

Firstly, variability inherent to the domain is expressed using a feature model [4, 15]
(Fig. 1 (top)). This feature model represents variability specification or problem
space. It specifies which features of the system are variable and the reasons why. For
instance, the AuthenticationDevice to be used is a variable feature because there
are several alternative devices available but only one must be selected. Automatic-
Lock and DoorOpener are variable features because they are options that may be
included in a specific lock control application or not.

Secondly, once variability has been identified, the software architecture is designed
using the component model of UML 2.0 (Fig. 1 (bottom)). This represents variability
realization or solution space. The mechanism selected for supporting variability in the
architectural design is plugin components. The LockControlMng component is the
central component of this architecture. Each alternative for authentication is designed
as a pair of plugin components: one for controlling the physical device that serves to
authenticate users (e.g. KeypadReader); and the other one encapsulating the logic of
the authentication algorithm (e.g. KeypadAuth). These plugin components communi-
cate with the LockControlMng through the IAccess interface, in the case of reader
components, and the IVerify interface, in the case of authenticator ones. All plugin
components must register in the LockControlMng component using the interface
IRegister. The LockControlMng receives data from the reader components and,
with the data received, it calls the authenticator component. The latter is in charge of
checking if the user has access to the room or not. If the user is authentic, the Lock-
ControlMng component invokes the LockControl component, which releases the
lock. This invocation is placed only if the automatic lock control option has been
selected. If the door is a sliding one, the LockControlMng should also invoke the
DoorActuator component for automatic opening of the door.

Thirdly, we must specify the links between variability specification and variability
design, or problem space and solution space, indicating how the components of the
architectural model must be composed according to the selected features. In our case,
for instance, when a specific authentication device is selected, the corresponding
reader component must be connected to the LockControlMng through the IAccess
interface. In the same way, the LockControlMng component must be connected, to
the corresponding authenticator component though the IVerify interface. Both the
authenticator and the reader components must also be connected to LockCon-
trolMng through the IRegister interface. The components corresponding to non
selected alternatives must simply be removed. Similarly, the DoorActuator and
LockControl components are adequately connected if the corresponding optional
features are selected; otherwise, they should be removed.

These relationships can be expressed using general purpose model transformation
languages, such as demonstrated in [10-11]. Nevertheless, as previously discussed in
[10], these have the following shortcomings:

- Metamodel Burden. A model transformation language is often based on ab-
stract syntax manipulations. According to Jayaraman et al. [16], “Most model

developers do not have this knowledge. Therefore, it would be inadvisable to
force them to use the abstract syntax of the models”.

- Language Overload and Abstraction Mismatch. There are different kinds of
model transformation languages [16], and each of them is based on a specific
computing model. They range from rule-based languages (e.g. ATL [17]) to
expression-based languages (e.g. xTend [18]) and graph-based languages (e.g.
AGG [19]). When employing a model transformation language, software
product line engineers must also understand the underlying computing style
(e.g. rule-based) and learn the language syntax. As a result, software product
line engineers are forced to rely on abstractions that might not be naturally part
of the abstraction level at which they are working.

To overcome these shortcomings, we proposed [12] to create dedicated languages,
for specifying product derivation processes; that is, for specifying how features map
to software models. These dedicated languages must follow a very basic computation
style, where based on a selection of features, small sequence of simple commands are
executed. These commands, moreover, must use syntax familiar to the modeler, using
concepts of the concrete syntax of the model rather than their abstract syntax. These
user-friendly high-level specifications are then translated into a set of low-level gen-
eral purpose model transformations, which support the automation of the product
derivation process. So, the SPL engineer can enjoy the benefits of using model-driven
techniques but without paying the associated cost, i.e. without needing to learn the
intricacies of model transformation languages. Table 1 provides an example of such a
dedicated language for manipulating UML component models.

This specification establishes that whenever the Fingerprint option is selected
(lines 06-11), the KeypadAuth and KeypadReader components must be connected
to the LockControlMng component through the corresponding interfaces, as pre-
viously described. The connect operator is an intuitive composition mechanism to
specify that two components must be connected using the interface specified as a
parameter. The first parameter of the connect operator is the component that requires
the interface while the second parameter is the component that provides it. In the case
where the Fingerprint variant is not selected (lines 03-16), the FingerprintAuth

Table 1 Part of the VML4Arch Specification for Smart Home
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16

import features <"/SmartHome.fmp">;
import core <"/SmartHome.uml">;

...

variant for FingerprintScanner {
 connect("FingerprintReader","LockControlMng","IAccess");
 connect("FingerprintReader","LockControlMng","IRegister");
 connect("FingerprintAuth","LockControlMng","IRegister");
 connect("LockControlMng","FingerprintAuth","IVerify");
} // Fingerprint scanner

variant for not (FingerprintScanner) {
 remove('FingerprintReader');
 remove('FingerprintAuth');
} // not FingerprintScanner

and the KeypadReader components are removed from the architecture, using the
remove operator.

2.2 Automating the generation of new VML languages

Beyond the language from Figure 1, a wide range of languages for managing variabil-
ity in any kind of target modeling language need to be constructed. For instance, we
need to develop a dedicated language with specific operators for managing variability
in use cases models, activity models, business process models or any other kind of
architectural description language. Developing such languages is cost-intensive and
error-prone, especially as so far there is no support for reuse between different such
languages beyond a copy-and-paste approach. This is a serious barrier to the adoption
of our approach in SPL projects.
To make developing such languages feasible, we need to solve the following three
challenges:
1. Support of reuse between different languages. The support infrastructure should

be easily reused for new languages. Reuse should not be based on copying an
existing language implementation and adjusting it, removing unneeded actions
and adding new actions. Otherwise, if errors are found and fixed in the infra-
structure for one language, these corrections would have to be manually trans-
ferred into all other language infrastructures. The same would be true for new
features of the infrastructure, for example, new evaluations of specifications
other than product derivation.

2. Allow the type of variability models to vary. Different approaches to modelling
variability have been proposed: very often, feature trees [4] or cardinality-based
feature models [20] are used. However, DSLs have also been used to represent
variability [21]. Any variability management language should be easily adapted
to any type of variability model.

3. Support for easy customisation of target-model element access. Target-model
model elements need to be accessed from a specification based on a textual ref-
erence (e.g., their fully qualified name or some pattern matching a number of
names). Depending on the target model different forms of such textual refer-
ences may be useful. The evaluation of such textual references should be im-
plemented separately from the individual actions to allow for easy exchange and
customisation of this feature.

In this work, we present a generative infrastructure for creating new VML lan-
guages for a concrete target model that tackles these issues.

3 The VML* Family of Languages

In response to the challenges identified in the previous section, we propose to boot-
strap SPLE techniques using a model-driven and generative approach for creating the
infrastructure (e.g., parser, editor, evaluation engine) for a specific VML* language.
To this end, we have developed the VML* family of languages, which consists of:

1. A common metamodel for VML* languages including variation points that can
be customised for describing specific VML* languages. This provides the con-
cepts common to all VML* languages.

2. A DSL for specifying the choices a specific language makes for each variation
point.

3. A generator-based infrastructure that can instantiate all custom elements of the
process from [12] for any VML* language.

A working prototype of this system is available as a set of Eclipse plugins [22].

3.1 A common metamodel for VML* languages

Figure 2 shows the general concepts required for expressing variability in product-line
models. This metamodel has been developed as a generalisation of the metamodels of
VML4Architecture, or simply VML4Arch [12-13] and VML4Requirements, or sim-
ply VML4RE [23-24], two variability management languages we have previously
developed. VML4Arch is a language for relating feature models and UML2.0 archi-
tectural models of an SPL. VML4RE is a language for relating feature models and
UML2.0 use case and activity models. These languages have been developed in paral-
lel, but independently. They have a number of differences, but they also share a large
number of commonalities, enabling us to derive a common metamodel for VML*
languages.

The metamodel shown in Figure 2 is independent of both the specific models used
for variability modelling (e.g., feature models, domain-specific languages) and the
specific target models (e.g., UML, architecture description models, generation work-

Figure 2 Common metamodel for VML languages. Variation points have been
highlighted in dark grey

flow models). Consequently, a number of concepts are abstract in this metamodel. To
apply the metamodel for a specific combination of target model and variability model,
these concepts (highlighted in dark grey in Figure 2) need to be specialised (how to
specify such specialisations will be discussed in the next section). In the following,
we discuss each of the metamodel concepts in more detail.

VMLModel. A VML model relates a variability model and a target model, using a
set of variants to describe how the target model needs to vary as each of the concerns
of the variability model is selected or unselected.

VariabilityModel. A variability model is the central artefact in variability model-
ling. VariabilityModel and Variability Unit serve as adapters to the specific
form of variability modelling employed in a specific scenario.

Variability Unit. These are the units of variability in variability modelling. A vari-
ability model describes what variability units a potential product may have and what
constraints govern the selection of combinations of variability units for individual
products. From the perspective of variability management, we are mainly interested in
the name of a variability unit and whether it has been selected for a specific product
configuration. Notice that for the purposes of our metamodel we do not care about
how variability units are expressed in a variability model. They may be represented as
explicit features in a feature model [4] or more implicitly in a DSL [21], or in any
other form that is convenient for modelling variability in a specific project. To enable
our metamodel to relate to all these different kinds of representations, we standardise
on the common notion of Variability Unit and require adapters that extract these from
any of the representations discussed above.

TargetModel. Target models describe a product line. There are a large number of
potential target models—for example, requirements models, architecture models, or
code-generation-workflow models.

ModelElement. Model elements represent arbitrary elements of the target model.
This concept serves as an adapter to actual model elements and needs to be special-
ized for each kind of target model (thereby defining the concrete model elements
available). The model elements are typed using metaclasses imported from the target
metamodel.

Variant. A variant describes how the target models must be varied when a certain
combination of variability units is selected or unselected. Notice that for product
derivation it is sufficient to provide a variant for each non-mandatory variability unit,
as we can assume the unvaried target model to represent the model for all the manda-
tory variability units. For some other evaluations (e.g., trace-link generation), how-
ever, a variant must be provided for each variability unit including mandatory ones.
Each variant defines two sets of actions for its variability units: a set of onSelect ac-
tions defines how to vary the target model when the variability units are selected; a set
of onUnSelect actions defines what to do when the variability units are not selected.

ConcernExpression. For certain use cases it is not sufficient to map variability
units directly onto modifications of the target model, as has also been previously
discussed in the literature [6-7]. Therefore, we define variants for so-called concern
expressions, logic expressions over variability units. We support And, Or, and Not
expressions as well as atomic terms.

VariantOrdering. Sometimes the order in which the actions of different variants
are executed during product derivation is important, as actions for one variant may

rely on model elements created by actions for another variant. VariantOrdering pro-
vides SPL developers with a means of defining a partial order of execution over vari-
ants using pairs of variants. The infrastructure will guarantee that all actions of the
first variant in a pair are executed before any action of the second variant of that pair
is executed.

Action. Actions are used to describe modifications to the target model. These need
to be customised for each kind of target model, depending on the kinds of variations
that make sense at the level of abstraction the target model covers. For example, if the
target model is a use case model, one particular action may be to connect an actor and
a use case, while for an architectural model a possible action could be to connect two
components. Actions may add, update or remove model elements in the target model
and may create, update or remove links between existing or newly added model ele-
ments.

PointcutExpression. A pointcut expression is an expression that identifies a model
element or a set of model elements. It is constructed from atomic designators, pointcut
references and combining operators (Not, And, and Or).

Pointcut. A pointcut identifies a model element or set of model elements. The
model elements are denoted by a pointcut expression. The main purpose of the Point-
cut concept is to allow particular pointcut expressions to be named. A named Pointcut
can then be reused using a PointcutReference.

PCOperator. Operators enable the construction of pointcut expressions combining
the set of elements returned from more than one element pointcut. Here, we define
only two operators, namely and and or, which represent intersection and union of the
sets of model elements of their element expressions, respectively.

Designator. A designator is a piece of text that is used to identify a model element
or a set of model elements. It may be a name (possibly qualified), a signature, a wild-
card expression, or anything else that makes sense in the target model. As resolution
of designator text into actual model elements is specific to the target model, the des-
ignator concept needs to be customised for each target model.

3.2 A DSL for specifying individual VML* languages

To enable succinct description of the specificities of a certain VML* language, we
have defined a metamodel and concrete syntax for language-instance description.
Figure 3 shows the key concepts. Based on an instance of this metamodel—a VML*
language description—we can then generate an appropriate infrastructure customised
for that specific VML* language.
The individual concepts in the language-description metamodel are:

LanguageInstanceModel. The central metaclass of VML* language descriptors,
binding together the other parts of a VML* language descriptor.

VariabilityModelImport. This provides information about the type of variability
model to be supported by the VML* language. The key interface between VML* and
a variability model is the set of features defined. The language descriptor, therefore,

contains a snippet of model-query code3 that serves as an adapter between the vari-
ability model and a VML* specification. This snippet is the only place where knowl-
edge about the variability-model metamodel is located in a VML* language descrip-
tor.

TargetModelImport. This provides information about the type of target model to be
supported by the VML* language. Mainly, this defines how pointcut designators
should be evaluated for a specific target model. Depending on the specific kind of
target model, different pointcut designators may be required. While, for example, use-
case models require only simple qualified names (possibly using wildcards for quanti-
fication) to identify individual actors, use cases, or activities, architectural models
may additionally require pointcut designators for operation signatures or component
provided or required interfaces. Therefore, both the syntax of pointcut designators and
their interpretation is specific to the kind of target model. In all VML* languages,
pointcut designators are syntactically represented as simple string values. They are
then passed to a piece of model-query code interpreting them to return a set of model
elements from a given target model. This piece of code is defined for a specific
VML* language using TargetModelImport.

ActionDescriptor. Each action descriptor provides general syntactic information
about one action. This includes the name of the action and the number of parameters
it takes. The concrete syntax for action invocation in the generated VML* language
will be ‘<action_name> (param1, ..., paramn)’. For each parameter, users of the VML*
language will be able to provide a pointcut expression.

3 Our prototype uses openArchitectureWare’s (oAW) xTend language to express model queries

and model transformations. These xTend snippets can be kept as operations in a separate
xTend file and referenced from the language instance descriptor, allowing language design-
ers to take full advantage of oAW’s checking capabilities.

TargetModelImport

ActionDescriptorLanguageInstanceModelVariabilityModelImport

EvaluationAspect

TracingAspect TransformationAspect ActionTransformation

ConfigurationImport

1

*

*

1

1

*

1

Figure 3 Metamodel for VML* language instance descriptions.

EvaluationAspect. Every evaluation aspect describes one form of evaluation of a
VML* specification. The VML* family can be extended with a number of these
evaluation aspects (currently only one aspect—product derivation—has been imple-
mented, but we are working on an implementation for trace-link generation and are
planning to work on consistency evaluation), which can be supported for every con-
crete VML* language, but not all VML* languages will need support for all evalua-
tion aspects. A VML* language description can, therefore, include only those evalua-
tion aspects that are actually required for this VML* language, providing an
additional opportunity for optimisation. Notice that making such a selection manually
based on the architecture presented in the previous subsection can be very difficult, as
the different evaluation aspects actually overlap in some elements of the architecture
(for example, in plugin configuration files). The model-driven approach not only
allows a selection of one aspect or another, it additionally allows this selection to be
changed flexibly, even experimentally.

TransformationAspect. If present, it enables product-derivation for target models.
For each ActionDescriptor this defines an ActionTransformation specifying
the model transformation encapsulated by this action. Furthermore, a Configura-
tionImport defines an adapter for configuration models.

ConfigurationImport. For the construction of models for specific products, the
VML* infrastructure requires access to the set of features selected in a specific prod-
uct configuration. To avoid polluting the VML* infrastructure with knowledge about
the inner structure of product configurations, ConfigurationImport provides a
snippet of model-query code that serves as an adapter to product-configuration speci-
fications by extracting the set of selected features from a product configuration.

ActionTransformation. Provides additional information for an action pertaining to
the transformation of target models by this action. For every ActionDescriptor
there needs to be a corresponding ActionTransformation instance. In particular,
this includes a snippet of model-transformation code that implements the action. In
this code, the parameters can be referenced as ‘param1’ thru ‘paramn’. The type of
each parameter is defined in the ActionTransformation.

TracingAspect. If present, it enables the generation of trace links from a VML
specification. Such trace links connect selected features and added or removed model
elements of the target model. The tracing aspect is specified by naming the model-
transformation operations that create or remove model elements; wildcards may be
used to provide these names. VML* will then generate an aspect for the model trans-
formation that advises these operations and creates appropriate trace links using the
AMPLE Tracing Framework (ATF) [25].

3.3 Generation of VML* language infrastructure

Instances of this metamodel can be defined using a textual concrete syntax. Table 2

Table 2 Excerpt from the language descriptor for VML4RE
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

vml instance vml4req { // Define a new language called vml4req
 // This section defines the type of variability model and
 // how to access it
 features {
 metamodel "/bin/fmp.ecore"
 // Extracts all variability units from a variability model
 function "getAllFeatures"
 }

 // This section defines the type of target model and how to
 // access it
 target model {
 metamodel "UML2"
 type "uml::Package" // Metamodel type of a model
 // Function to interpret pointcut designators
 function "dereferenceElement"
 }

 // Importing plugins and external specifications
 bundles: "unl.vml4req", "ca.uwaterloo.gp.fmp", ...
 extensions: "unl::vml4req::library::umlUtil"

 // Syntactical definition of available actions
 actions:
 createInclude {
 params "List[uml::UseCase]" "List[uml::UseCase]"
 }
 insertUseCase {
 params "String" "uml::Package"
 }
 ...

 // Definition of available evaluation aspects
 aspects:
 transformation { // Evaluation for product derivation
 // Defines adapter for product-configuration access
 features {
 type "String"
 function "getAllSelectedFeatures"
 }
 // Definition of the semantics of actions as
 // model transformations
 createInclude {
 function "createIncludes"
 }
 insertUseCase {
 function "createUseCase"
 }
 ...
 }
}

shows an excerpt of the language descriptor for VML4RE (cf. Sect. 4). Mapping this
concrete syntax to the abstract syntax discussed above is rather straightforward so that
we will not discuss it in any more detail here. It is worth noting, though, that this
language descriptor does not contain complicated model-transformation code; all that
is specified are the names of some functions. These functions with the actual model-
transformation code are contained in an external file4

Furthermore, we have developed a generator that takes language descriptors such
as shown in

, allowing standard editors and
error highlighting to be used when writing the code. Including the fully qualified
name of the external file in the list after the “extensions” keyword ensures that the
extension can be accessed from all relevant places in the generated code. Similarly,
the “bundles” keyword lists other plugins that should be made available to any gener-
ated plugins. Here we include the plugin project containing our extension and the
FMP plugin [26] providing support for cardinality-based feature models.

Table 2 and generates a set of Eclipse plugins containing the infrastruc-
ture for this language. The operational prototype can be obtained from [27]. The code
generated by this generator is based on the work previously presented in [12]. The
generation is completely automatic; the only manual input provided by language
developers is the language instance descriptor and the implementations of the actions
provided in a separate file. The complete infrastructure for editing, compiling, and
executing specifications of the new VML language is encapsulated in the generator
and can, thus, be reused for each new language.

4 Example languages from the VML* family

We have re-implemented both VML4Arch and VML4RE based on our new infra-
structure. As VML4Arch has already been discussed extensively in [12], here we will
focus on VML4RE. For VML4Arch we will only give a brief discussion of what
needed to be changed to make it compatible with VML*. Both implementations can
be downloaded from [24].

4.1 VML4RE

Requirements are most recurrently documented in a multi-view fashion [28-29]. Their
description is typically based on considerably heterogeneous languages, such as use
cases, activity diagrams, goal models, and natural language. Initial work on composi-
tional approaches for early development artefacts does not clearly define composition
operators for combining common and varying requirements based on different views
or models. Therefore, a key problem in SPLE remains how to specify and apply the
composition of elements defined in separated and heterogeneous requirements mod-
els.

With the Variability Modelling Language for Requirements (VML4RE) [23] we
propose an initial solution for this problem by introducing a new requirements com-
position language for SPLs. VML4RE is a textual language with two main goals:

4 An oAW xTend file for our prototype.

(i) to support the definition of relations between SPL features expressed in feature
models and requirements expressed in multiple views (based on a number of UML
diagram types, such as use case diagrams and activity diagrams); and (ii) to specify
the compositions of requirements models for specific products of a SPL. VML4RE
supports composition operators for UML use cases and activity models. It has been
applied to case studies in domains such as home automation [23] and Mobile Applica-
tions [30]. It has shown great flexibility to specify composition rules and references to
different kinds of elements in heterogeneous requirements models. The results of
these experiments are encouraging and comparable with other approaches that support
semi-automatic generation of trace-links relationships and composition between
model elements in SPLs.

Table 3 shows an overview of some of the available actions of the VML4RE lan-
guage for use cases. A more complete list can be found in [23]. VML4RE provides
another set of actions for activity models, which are not shown here due to space
restrictions.

Table 2 shows an excerpt from the language descriptor for VML4RE. It has been
defined to map from feature models expressed using the FMP metamodel [26] to
UML2 use case and activity models. This is expressed in the two sections named
‘features’ and ‘target model’, respectively, which also reference the functions to adapt
to the feature model and to dereference pointcut designators in the target model. The
real dereferencing code is implemented in the extension referenced through the ‘ex-
tensions’ keyword. The full language descriptor also specifies a tracing aspect. This is
not shown in Table 2 for lack of space.

Finally, Table 4 shows an excerpt of a VML4RE specification for the Smart Home
case study [23]. Lines 7 to 20 show the additional use cases needed when the Security
feature is selected in a product configuration. Notice the use of wildcards on Line 13
to select all use cases in a package. If, and what, wildcards are supported and how
they are evaluated is defined in the dereferenceElement operation invoked from the
language instance descriptor in Table 2 on Line 16. Further, notice the use of a
slightly more complex pointcut expression on Lines 16 to 19 of Table 4. This pointcut

Table 3 Selected VML4RE actions for Use Case Models

Action Signature Descr iption
insertUseCase (String name, Package p) A new use case named name is

inserted into package p.
insertPackage (String name, Package p) A new package named name is

inserted into package p.
createActorToUseCaseLink (
 List[Actor] actors,
 List[UseCase] usecases)

A new connection is created be-
tween each of the actors and each of
the use cases.

createInclude (
 List[UseCase] source,
 List[UseCase] target)

A new <<include>> dependency is
created between each of the source
use cases and each of the target use
cases.

expression results in a set of two use cases: Notification::SendSecurityNotification
and WindowsManagement::OpenAndCloseWindowsAutomatically.

4.2 VML4Arch

Re-implementing VML4Arch based on the VML* infrastructure proved surprisingly
easy. However, as any product line requires a certain amount of stream-lining be-
tween individual products to maximise reuse, there were some minor adjustments we
had to make to fit VML4Arch into the family of languages. These adjustments, how-
ever did not affect the functionality provided by VML4Arch. In detail, we had to:
• Adjust the syntax of some VML4Arch operators. VML4Arch originally had some

operators like connect c1, c2 using interface i, which used a concrete
syntax slightly different from the standard concrete syntax for VML* operators.
We had to adjust the concrete syntax of these operators to fit the standard
scheme generated by VML*. For example, the connect operator from above
now is expressed as connect (c1, c2, i).

• Extend some operator definitions to allow for the use of pointcut expressions as
parameters. VML4Arch originally used direct references to model elements
rather than pointcut expressions. This meant that we had to modify some of the
operator definitions so that they would be able to deal with receiving sets of
model elements as parameters rather than individual model elements only.

Table 4 Part of the VML4RE Specification for Smart Home
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20

import features <"/SmartHome.fmp">;

import core <"/SmartHome.uml">;

...

variant Security {

 insertPackage ("Security", "");
 insertUseCase ("SecureTheHouse", "Security");
 insertUseCase ("ActivateSecureMode", "Security");
 createActorToUseCaseLink (
 "Inhabitant", "Security::.*");
 createInclude (
 "Security::SecureTheHouse",
 or (
 "Notification::SendSecurityNotification",
 "WindowsManagement::" _
 "OpenAndCloseWindowsAutomatically"));
}

5 Related Work

The work presented in this paper is related to work in two areas of research: system-
atic development of families of languages and support for variability management in
SPLE. As the main focus of this paper is on constructing a family of languages, we
will begin by discussing literature from this area.

A number of research projects—for example, CAFÉ, Families, or ESAPS—have
explored the notion of software system families (or product lines). In this work, we
are extending these ideas to families of software languages, specifically for the case
of VML languages.

Families of languages have been presented in the research literature for a range of
domains: Voelter presents an approach for a family of languages for architecture
design at different levels of abstraction [31], Akehurst et al. [32] present a redesign of
the Object Constraint Language as a family of languages of different complexity,
Visser et al. [33] present WebDSL, a family of interoperating languages for the design
of web applications. All approaches, including ours presented in this paper, use very
different kinds of technologies for their specific case: Voelter uses conditional compi-
lation to construct an appropriate infrastructure, Akehurst et al. use a special parser
technology that enables modular language specification, Visser et al. use rewriting of
abstract syntax trees and our approach generates a monolithic infrastructure for each
language. Equally, all approaches focus on different purposes of the language family:
the different members of the family presented by Voelter are architectural languages
at different levels of abstraction. The family presented by Akehurst et al. modularises
different features of the OCL language, so that specific languages can be constructed
as required for a project. WebDSL is a set of interoperating languages with purposes
ranging from data modelling to workflow specification. The family of languages
presented in our paper consists of languages that share a common set of core con-
cepts, but adapt these to different languages with which they interface. At this point,
an overview of the different potential uses of families of languages begins to emerge.
What is needed next, is research into systematic development of such language fami-
lies beyond individual examples.

Ziadi et al. [10] and Botterweck et al. [11] both propose the implementation of
product derivation processes as model transformations. Their proposal relies on the
realization of product derivations via a model transformation language. This strategy
requires SPL engineers to deal with low-level details of model transformation lan-
guages. Our approach provides syntax and abstractions familiar to the SPL engineers.
This eliminates the burden of understanding the intricacies associated with model
transformation languages and metamodels. A VML* specification is automatically
compiled into an implementation of the product derivation process in a model trans-
formation language, but SPL engineers need not be aware of this generation process.

In [12] we have presented a process for developing variability management lan-
guages. The structure of these languages has some similarities to the languages devel-
oped using VML*, in fact VML4Arch was previously developed based on this
process. However, focusing on process rather than infrastructure, [12] falls short of
solving the issues discussed in the introduction. In particular, reuse between individu-
al languages is only possible based on a copy-and-paste approach, variability-model
and target-model access are closely intertwined with the other infrastructure code

making it difficult to modify them independently. In contrast, in this paper we have
presented an infrastructure, which tackles all of these issues. The code generated for a
specific VML* language is partially based on code developed for VML4Arch follow-
ing the process from [12].

Czarnecki and Antkiewicz [6] present an approach similar to ours based on using
feature models to model variability. They create a template model, which models all
products in the product line. Elements of this model are annotated with so-called
presence conditions. Given a specific configuration, each presence condition eva-
luates to true or false. If a presence condition evaluates to false, its associated model
elements are removed from the model. Thus, such a template-based approach is spe-
cific to negative variability, which might be critical when a large number of variations
affect a single diagram. Our approach can also support positive variability by means
of actions such as connect or merge. Moreover, presence conditions imply introducing
annotations into the SPL model. Therefore, the actions associated with a feature selec-
tion are scattered across the model, which could also lead to scalability problems. In
our approach, they are well-encapsulated in a VML* specification, where each variant
specifies the actions to be executed. FeatureMapper [7] is another approach similar to
that of Czarnecki and Antkiewicz and our approach, avoiding the pollution of the SPL
model with variability annotations. FeatureMapper is generic for all EMF-based mod-
els and generically integrates into GMF-based editors. In contrast, our approach is
based on languages that are specific to a kind of feature model and a kind of target
model. Genericity is achieved through a generative approach to creating the infra-
structure for these languages from a set of common core concepts. The actual varia-
bility model in FeatureMapper is created implicitly by the designer selecting model
elements in an editor and associating them with so-called feature expressions deter-
mining when the model element should be present in a product model. Negative va-
riability is easily supported by this approach, as model elements can be easily re-
moved if their feature expression is not satisfied by a specific configuration. Positive
variability is more difficult to implement: instead of mapping features to target model
elements, they need to be mapped to elements of a model transformation, again re-
quiring SPL designers to have sufficiently detailed knowledge of that model-
transformation language and the metamodels involved. In contrast, in our approach,
designers of a specific VML* language can provide powerful actions that can support
both negative and positive variability (or any mixture of the two) in a systematic
manner. Finally, Haugen et al. [34] define the common variability language (CVL),
which is a generic extension to DSLs for expressing variability. It provides three
generic operators, but using these to express variability can lead to comparatively
complex models. On the flip side, a VML* language is potentially less flexible than
the two other approaches discussed in this paragraph, as it can only support the varia-
bility mechanisms for which a corresponding action has been defined.

A completely different approach to SPLE is followed in the feature-oriented soft-
ware development community. Here, features are directly related to separate modules
implementing each feature, where these feature modules can be understood as pro-
gram or model transformations (e.g., [35]). This implies that no mapping from fea-
tures to target models is required. Instead, the programming or modelling language
must be sufficiently powerful to support modularizing of features as coherent well-
encapsulated units of compositions. In another publication [36], we have presented a

feature-oriented approach towards SPL development. In this context, we also noted
that a pure feature-oriented approach can lead to a large number of small feature
modules negatively impacting scalability and comprehensibility of the approach,
especially where features are often associated with small-grain changes to the archi-
tecture or implementation. Thus, for such cases, an approach with an explicit mapping
may be beneficial.

Generally, all SPL approaches face the problem of ascertaining that only consistent
and well-formed product models and implementations can be constructed. This prob-
lem becomes even worse when several interconnected types of models representing
different views of the system are used—for example, activity diagrams and class
diagrams. As a consequence, there is a need to analyse the changes of each view and
the inconsistencies that these may cause with other views when instantiating a product
model. In our work on VML*, we have not discussed this issue so far, but some pre-
vious work on this topic exists from other groups—for example, [37-38].

6 Conclusions

This paper presented a generative approach to building a family of languages for
specifying the relationship between variability models and other models in software-
product-line engineering. Our experience shows that the proposed infrastructure is
powerful enough to support generating different language instances (in addition to the
two languages presented here, we are currently developing VML* languages for
mapping to openArchitectureWare workflows as well as a number of project-specific
DSLs) and that it can reduce the effort required to learn about the support infrastruc-
ture for such languages. Specifically, regarding the challenges we identified in
Sect. 2.2, our generative approach to the family of VML* languages provides the
following solutions: reuse is substantially improved over a copy-and-paste approach
as all reusable parts of the infrastructure are encoded in the generator and all variable
parts are explicitly configured through language descriptors (Challenge 1). Because
all dependencies on varying variability and target models have been made explicit in
the language descriptor, model access code could be completely disentangled from
the actual model manipulation code (Challenges 2 and 3).

In implementing our prototype, we identified a need for aspect-oriented code gen-
eration beyond what is offered by current code-generation engines. Our system is
structured such that the code generators for the basic VML* infrastructure and for
each evaluation aspect are kept in separate modules. This is sensible because evalua-
tion aspects can be included or excluded from a specific VML* language as required.
For some files generated (for example, for plugin descriptors contained in
plugin.xml files) there is a conflict between code generators for the evaluation
aspects: each evaluation aspect needs to contribute to the final contents of the file.
Using separate code-generation templates for each evaluation aspect would result in a
file containing only the contributions from one evaluation aspect. Aspect-oriented
code generation could provide a solution here: it effectively allows the results of two
or more different generators to be merged into one output file. However, all current
aspect-oriented code generators [18, 39] only support asymmetric aspect orientation.

This requires one template to be declared as the base template while the other tem-
plates are aspect templates. These aspect templates can then manipulate generation
rules in the base template, providing before, after, and around advice for code genera-
tion. For our purposes this is not appropriate; because evaluation aspects may be in-
cluded or excluded as required, we cannot rely on any one of them being present.
Consequently, no template defined for an evaluation aspect can be made into the base
template. As the basic VML* generator does not provide a template for
plugin.xml, this can also not be designated as the base template. For our proto-
type, this problem has been solved by breaking the encapsulation of evaluation-aspect
code generators in a controlled way. However, a cleaner solution using a more sym-
metric approach to aspect-oriented code generation remains for future work.

References

[1] K. Pohl, et al., Software Product Line Engineering: Foundations, Principles and
Techniques. Berlin, Germany: Springer, 2005.

[2] P. Clements and L. M. Northrop, Software Product Lines: Practices and Patterns.
Boston, MA, USA: Addison-Wesley, 2002.

[3] K. Czarnecki and U. W. Eisenecker, Generative Programming: Methods, Tools, and
Applications: ACM Press/Addison-Wesley Publishing Co., 2000.

[4] K. Kang, et al., "Feature-Oriented Domain Analysis (FODA) Feasibility Study,"
Software Engineering Institute, Technical report, CMU/SEI-90-TR-0211990.

[5] M. Alférez, et al., "A Model-Driven Approach for Software Product Lines
Requirements Engineering," in proceedings of the 20th International Conference on
Software Engineering and Knowledge Engineering, San Francisco Bay, USA, July
2008, pp. 779-784.

[6] K. Czarnecki and M. Antkiewicz, "Mapping Features to Models: A Template
Approach Based on Superimposed Variants," in Proceedings of the 4th International
Conference on Generative Programming and Component Engineering, Tallinn,
Estonia, September-October 2005, pp. 422-437.

[7] F. Heidenreich, et al., "FeatureMapper: mapping features to models," presented at the
Companion of the 30th international conference on Software engineering, Leipzig,
Germany, 2008.

[8] D. Batory, et al., "The Objects and Arrows of Computational Design," in
Proceedings of the 11th international conference on Model Driven Engineering
Languages and Systems, France, Toulouse, 2008, pp. 1-20.

[9] S. Soares, et al., "Supporting software product lines development: FLiP - product line
derivation tool," presented at the Companion to the 23rd ACM SIGPLAN conference
on Object-oriented programming systems languages and applications, Nashville, TN,
USA, 2008.

[10] T. Ziadi and J. M. Jézéquel, "Software Product Line Engineering with the UML:
Deriving Products," Software Product Lines 2006, pp. 557-588.

[11] G. Botterweck, et al., "Model-Driven Derivation of Product Architectures," in
Proceedings of the 22nd International Conference on Automated Software
Engineering (ASE), Atlanta (Georgia, USA), November 2007, pp. 469-472.

[12] P. Sánchez, et al., "Engineering Languages for Specifying Product-Derivation
Processes in Software Product Lines," presented at the Software Language
Engineering 2008, Toulouse, France, 2008.

[13] N. Loughran, et al., "Language Support for Managing Variability in Architectural
Models," in Proc. of the 7th Int. Symposium on Software Composition (SC), March
2008, pp. 36-51.

[14] M. Voelter and I. Groher, "Product Line Implementation using Aspect-Oriented and
Model-Driven Software Development," in Procceedings of the 11th International
Software Product Line Conference (SPLC),, Kyoto (Japan) September 2007, pp. 233-
242.

[15] K. Czarnecki and U. W. Eisenecker, Generative Programming: Methods, Tools, and
Applications: Addison-Wesley, 2000.

[16] P. Jayaraman, et al., "Model Composition in Product Lines and Feature Interaction
Detection Using Critical Pair Analysis," in Proc. of the 10th Int. Conference on
Model Driven Engineering Languages and Systems (MoDELS), Nashville,
(Tennessee, USA) September-October 2007, pp. 151-165.

[17] F. Jouault and I. Kurtev, "Transforming Models with ATL," in Satellite Events at the
MODELS 2005 Conference, Montego Bay, Jamaica, 2005, pp. 128-138.

[18] OpenArchitectureWare. Available: http://www.openarchitectureware.org/
[19] G. Taentzer, "AGG: A Graph Transformation Environment for Modeling and

Validation of Software," in Proceedings of the 2nd Int. Workshop on Applications of
Graph Transformations with Industrial Relevance (AGTIVE), Charlottesville,
(Virginia, USA), September-October 2003, pp. 446-453.

[20] K. Czarnecki, et al., "Staged Configuration Using Feature Models," in Proceedings of
the 3rd International Software Product Line Conference (SPLC 2004), Boston, MA,
USA, pp. 266-283.

[21] M. Volter and T. Stahl, Model-Driven Software Development. Glasgow, UK: Wiley,
2006.

[22] VML* Download. Available: http://www.steffen-zschaler.de/publications/vmlstar/
[23] M. Alférez, et al., "A Metamodel for Aspectual Requirements Modelling and

Composition,"
http://ample.holos.pt/gest_cnt_upload/editor/File/public/AMPLE_WP1_D13.pdf,
AMPLE D1.3, 2007.

[24] M. Alférez, et al., "Multi-View Composition Language for Software Product Line
Requirements," in Proceedings of the 2nd Int. Conference on Software Language
Engineering (SLE), Denver, USA, 2009.

[25] A. Sousa. (2008, AMPLE Traceability Framework Frontend Manual. Available:
http://ample.di.fct.unl.pt/Front-End_Framework/ATF%20Front-end%20Manual.pdf

[26] Generative Software Development Group, U. Waterloo, Feature Modelling Plugin
(FMP) for Eclipse. Available: http://gsd.uwaterloo.ca/projects/fmp-plugin/

[27] (2009, VML* Download.
[28] G. Kotonya and I. Sommerville, Requirements Engineering: Processes and

Techniques: John Wiley, 1998.
[29] S. Ian and S. Pete, Requirements Engineering: A Good Practice Guide: John Wiley

and Sons, 1997.
[30] T. Young, "Using AspectJ to Build a Software Product Line for Mobile Devices -

www.cs.ubc.ca/grads/resources/thesis/Nov05/Trevor_Young.pdf," University of
Waterloo, 2005.

[31] M. Voelter, "A Family of Languages for Architecture Description," presented at the
Conference on Object-Oriented Programming, Systems, Languages, Orlando,
Florida, 2008.

[32] D. H. Akehurst, et al., "Supporting OCL as part of a Family of Languages," in
Proceedings of the MoDELS’05 Conference Workshop on Tool Support for OCL and
Related Formalisms - Needs and Trends, 2005.

[33] E. Visser, "WebDSL: A Case Study in Domain-Specific Language Engineering,"
presented at the International Summer School on Generative and Transformational
Techniques in Software Engineering (GTTSE 2007), Heidelberg, October 2008.

[34] Ø. Haugen, et al., "Adding Standardized Variability to Domain Specific Languages,"
in Proceedings of the Conference on Software Product Lines (SPLC’08), 2008, pp.
139-148.

[35] D. Batory, et al., "Scaling Step-Wise Refinement," in IEEE Transactions on Software
Engineering, 2003, pp. 355-371.

[36] L. Fuentes, et al., "Feature-Oriented Model-Driven Software Product Lines: The
TENTE approach," in Proceedings of the Forum of the 21st International Conference
on Advanced Information Systems (CAiSE), Amsterdam, The Netherlands, 2009.

[37] S. Thaker, et al., "Safe Composition of Product Lines," in Proceedings of the 6th
International Conference on Generative Programming and Component Engineering
(GPCE), Salzburg, Austria, 2007, pp. 95-104.

[38] M. Janota and G. Botterweck, "Formal Approach to Integrating Feature and
Architecture Models," in Fundamental Approaches to Software Engineering (FASE),
Budapest, Hungary, 2008, pp. 31-45.

[39] MOFScript. Available: http://www.eclipse.org/gmt/mofscript/

10. VML* – A FAMILY OF LANGUAGES FOR VARIABILITY MANAGEMENT IN SOFTWARE PRODUCT LINES

172

11
Model-Driven Requirements

Specification for Software Product
Lines

Authors: Mauricio Alférez, Ana Moreira, Vasco Amaral, João Araújo.
Paper Summary: This book chapter provides an overview of different approaches for

specifying requirements models and composing models for specific products of an SPL. In
particular, it emphasizes one of the most recurring specification techniques: model-driven
and use case scenario-based specification. This technique, in combination with feature
models and the Variability Modeling Language for Requirements (VML4RE), integrates
our approach for model-driven requirements specification for SPLs. This book chapter
motivates and describes some of the patterns followed by our approach as well as it gives
an easy to understand usage overview.

Authors Contribution: Mauricio Alférez was the main author and responsible for the
main part of the research and writing of this paper, accounting for the 90% of the work.
Other authors gave interesting comments that helped to improve the content of the paper.

Publication Arena: Published in the book “Model-Driven Domain Analysis and Soft-
ware Development: Architectures and Functions, 2011” [13]

173

1

Model-Driven Requirements Specification for
Software Product Lines

Mauricio Alférez, Ana Moreira, Vasco Amaral, João Araújo

Centro de Informática e Tecnologias da Informação,
Departamento de Informática, Faculdade de Ciências e
Tecnologia, Universidade Nova de Lisboa, Portugal

Abstract—Model-driven methods for requirements specifica-
tion in Software Product Lines (SPLs) support the construction
of different models to provide a better understanding of each
SPL feature and intended use scenarios. However, the different
models must be composed to show the requirements of the
target applications and, therefore, help to understand how
features will be integrated in a new product of a software
product line. Although well-established standards for creating
metamodels and model transformations exist, there is currently
no established foundation that allows practitioners to distinguish
between the different modeling and composition approaches
for requirements models. This chapter provides an overview
of different approaches for specifying requirements models and
composing models for specific products of an SPL. In particular,
it emphasizes one of the most recurring specification techniques:
model-driven and use case scenario-based specification. This
technique, in combination with feature models and the Variability
Modeling Language for Requirements (VML4RE), integrates our
approach for model-driven requirements specification for SPLs.

Index Terms—Variability management, requirements engi-
neering for software product lines, model-driven requirements
specification, scenarios specification, UML, VML4RE.

I. INTRODUCTION.

Software Product Lines are increasingly being adopted by
major and medium-sized industrial players to quickly address
change requests and improving time to market. SPLs enable
modular, coarse-grained reuse through a set of core and
varying software elements addressing a particular application
domain (Clements & Northrop, 2002). Software Product Line
(SPL) engineering is a promising approach to increase soft-
ware quality and productivity. It encompasses the creation and
management of families of products for a particular domain,
where each product in the family is derived from a shared set
of core assets, following a set of prescribed rules (Clements
& Northrop, 2002).

An SPL product shares, with other systems, properties or
functionalities that are relevant to some stakeholders. These are
usually called features and express not only commonalities, but
also variabilities that allow us to distinguish among products.
The term commonalities refers to features that are mandatory
to every product in an SPL. It is used to reference the parts
of the requirements that are related to SPL common features.
The term variabilities refers to the variable (optional, variation
points and variants) features of an SPL. Optional features
are not mandatory and might not be included in some of the

products of an SPL. A variation point identifies a particular
concept within the SPL requirements specification as being
variable and it offers a number of variants. A variant describes
a particular variability decision, such as a specific choice
among alternative variants. Typically, we can model the
available features and their dependencies (e.g., if feature X is
selected, feature Y also must be selected) using a feature model
(Czarnecki & Eisenecker, 2000; Kang, Cohen, Hess, Novak,
& Peterson, 1990), that helps to capture the commonalities
and variabilities of a family of products.

To understand each SPL feature and intended use scenarios
of target products, Model-driven methods for requirements
specification support the construction of different models
that design the product behavior. However, to show the re-
quirements of the target products, different models must be
composed to help to understand and communicate to users,
managers, testers and programmers the intended behavior of
the new product to be produced from the SPL. Although
well-established standards for creating metamodels and model
transformations such as Meta-Object Facility (OMG, 2009a)
exist, there is currently no established foundation for speci-
fying requirements models for SPLs and compositing these
models for specific products. This chapter introduces a classifi-
cation of several existing approaches for model-driven require-
ments specification for Software Product Lines and focuses on
exploiting use scenario-based techniques. We make explicit the
different ways of specification taking into account the concrete
syntax of the requirements models and the separation of three
core components needed to specify and compose requirements
models:

• the base models that specify requirements. For example,
specifications of use scenarios using use cases models
complemented with activity diagrams;

• variability information that makes explicit which are the
SPL features that are common to all the products and
which are the features that are particular to some products
of the SPL; and

• configuration knowledge, which establishes the mapping
between features and base models that specify require-
ments, for example, associating feature expressions, in the
form of logical propositions, to specific model fragments.
Also, in Model-Driven Development (MDD), configu-
ration knowledge may include the specification of the
transformations of SPL requirements models to compose
models for specific products.

This chapter is structured as follows. Section “Requirements
Modeling for SPLs” provides an overview of both textual and

Copyrighted material reproduced with kind permission of IGI Global. Originally published in Model-Driven Domain
Analysis and Software Development: Architectures and Functions, chapter 17, pages 369–386. IGI Global, 2011.
http://www.igi-global.com/chapter/model-driven-requirements-specification-software/49167

2

graphical notations for modeling SPL requirements and dif-
ferent ways to compose requirements. That section motivates
this work, showing some shortcomings in previous approaches.
Section “A Model-Driven Requirements Specification Ap-
proach for SPLs” constitutes the major contribution of this
work. It presents our approach for model-driven requirements
specification for SPLs. This approach employs use case models
and activity diagrams to represent one of the most recur-
ring techniques for requirements modeling such as use case
scenario specifications. We employ feature models to model
variability information in combination with specially tailored
composition rules for requirements models provided by the
Variability Modeling Language for Requirements (VML4RE).
The final sections of this chapter synthesize our contributions
to the field of model-driven requirements specifications for
SPLs, address future research directions, and conclude this
chapter.

II. REQUIREMENTS MODELLING FOR SPLS.

The success of a SPL depends on abstraction and decompo-
sition mechanisms supporting modular treatment of its com-
monalities and variabilities (Alves, et al., 2006; Figueiredo, et
al., 2008). SPLs can most easily accommodate changes and be
instantiated to specific products if all varying and core software
elements are defined in a modular fashion, from requirements
to architecture and implementation. Mainstream techniques
to support modular realization of software variabilities are
focused on code. Typical examples of these techniques are
object-oriented mechanisms, design patterns, and conditional
compilation (Alves, et al., 2006; Figueiredo, et al., 2008).
However, less attention has been given to the use of models
as a key asset during requirements engineering.

One of the most recurring techniques used to specify
requirements both in single and SPL systems is use case
scenario modeling (Alexander & Maiden, 2004; Cockburn,
2001; Jacobson, 1992). Each use case describes how actors
(i.e., persons, organizations or other (sub)systems) will interact
with the system to be developed to achieve a specific goal.
One or more scenarios may be generated from a use case,
corresponding to the detail of each possible way to achieve
that goal. Scenarios can help to (Alexander & Maiden, 2004;
Cockburn, 2001):

• validate requirements;
• generate acceptance criteria for requirements;
• verify the level of abstraction of each requirement;
• help to create initial system architectures.

A number of different approaches for use case scenario
variability modeling have been proposed for SPLs, such as
(Alférez, Santos, et al., 2009; Bonifacio & Borba, 2009;
Czarnecki & Antkiewicz, 2005; Eriksson, Börstler, & Borg,
2005; Gomaa, 2004). These approaches differ in their notation
which is based on graph models such as use case and activity
models (OMG, 2009b), or text, such as the black-box notation
to represent use case scenarios (Alexander & Maiden, 2004).
Each of the approaches has its own advantages and drawbacks.
A free-format textual representation of requirements usually
requires a short-time of elaboration at the expense of some

ambiguity due to interpretation of the natural language. On the
other hand, using a graph-based representation allows using a
standard language to express the requirements, such as, condi-
tionals, control flows and parallelism, therefore, contributing
to avoid ambiguity.

In addition to choosing between textual or graphical nota-
tions for the requirements specifications, developers have to
decide whether or not to mix requirements specifications and
variability data in their SPL models. Adding variability data
to textual or graph-based requirements models is used to make
explicit the relationships between their fragments and SPL
features. Next, we will briefly introduce both approaches using
both text- and graph-based requirements models. In these ap-
proaches we start with free format textual-based requirements
descriptions. This approach was the base for more structured
approaches such as use scenario-based approaches that can be
supported by Model Driven Development (MDD) techniques.
Our objective with this is to establish a foundation that allows
to distinguish between the different modeling approaches for
requirements models and also to motivate the use of model-
driven techniques.

A. Mixing Variability into the Requirements Specification.

1) Unformatted Textual Specifications.: Natural language
can be used to express optional and alternative parts in
the specifications using phrases related to SPL features. For
example, the sentence: “the Security System should support
either PIN entry via Keypad, Fingerprint Scanning or Retina
Scanning”, does not make clear the number of alternatives that
different clients may require for their products. For example,
some may select the cheaper alternative for his product;
others may prefer a more sophisticated one integrated in their
solution, while others may want any possible combination of
the three for extra security. After successive changes in the
specification, the number of possible choices and their impact
in other features may become complex to control, and the
use of natural language will result inefficient and insufficient
to express correctly and unambiguously the variable parts in
the SPL. Therefore, even when the requirements are carefully
written to avoid ambiguities, it is virtually impossible in a large
project to assure their quality after successive modifications.

2) Structured Textual Specifications.: Given what was dis-
cussed in the last section, a way to document variability in
a more concise and unambiguous manner is necessary. Table
I (a) exemplifies a more understandable way to express the
requirements based on formats similar to those provided by
(Gomaa, 2004; Pohl, 2006). This structured textual format also
shows which and how many alternatives of a variation point
can be selected for a specific product.

Therefore, structuring the requirements specifications by
expressing the kind of variability with key phrases such as
“only one”, “two from all”, etc., reduces the ambiguity of
a simply unformatted textual requirements approach. This
intuitive approach can be complemented with a textual lan-
guage to describe variability and features. Using a structured
language usually allows reducing the size of the specification
and helps to restrict the way in which the developer elaborates

3

side. Also, supposing that security is an optional feature, its name is followed by the “?” sign.
However, while this approach works well for small problems, it can be difficult to keep an
overview of variabilities and dependencies as the number of features and options increases.
Furthermore, many times it is necessary to express by means of additional models, usually based
on graphs, what is the expected behavior of the features. Also, it is necessary to specify how the
presence or absence of specific sets of features affects the behavior of the target system.

(a)

SPL-Requirement # X. The security system shall support only one of the
following alternative devices for user authentication:

 V1 (Variation point #1): Authentication Device
 Only one of the following variants can be selected for V1:

 V1.1 PIN using Keypad

 V1.2 Fingerprint Scanner

 V1.3 Retina Scanner

(b)

SmartHome : all (electronicWindows, security?)

Security : all (AuthenticationDevice, AlarmType)

AuthenticationDevice : one-of (keypad, fingerprintScanner, retinaScanner)

AlarmType : more-of (siren, light)

Table 1. (a) Expressing variability textually; (b) Expressing variability textually using a
description language

Graph-Based Specifications
The discussion above highlights the need for a more efficient solution. For this reason, graph-
based models are sometimes preferred to design and communicate the requirements of the
system. A number of authors such as Gomaa (Gomaa, 2004), and Bragança and Machado
(Bragança & Machado, 2007) add variability information into the requirements models.
Currently, there is no standard that restricts the way in which the variability information should
be added and represented in the concrete syntax of the requirements models. However, the use of
stereotypes and model annotations is a common practice for both UML-based models and a
number of Domain Specific Languages (DSL) (DSM forum website). Stereotypes and
annotations help to make explicit what parts of the models are common to all the products of the
product line (also called kernel, mandatory parts, or commonalities) and which parts are variable
(i.e., not common) among all the products (also called variabilities).

Figure 1 is based on the notation proposed by Gomaa (Gomaa, 2004) and uses stereotypes such as
“Kernel” and “Alternative” to mark what is common and what the alternatives are. Similarly,
supposing that not all the products will include the security feature, the security package is
labeled with an “Optional” stereotype.

Table I
(A) EXPRESSING VARIABILITY TEXTUALLY; (B) EXPRESSING VARIABILITY TEXTUALLY USING A DESCRIPTION LANGUAGE.

the requirements specification. Consequently, in the case of
textual requirements descriptions, each model written using
a structured language will have to follow some construction
rules. These rules are defined by the language grammar that
performs the role of a metamodel, as it is known in the MDD
domain.

Table I (b) shows a short example, inspired in the Feature
Description Language (FDL) proposed by Deursen and Klint
(Deursen & Klint, 2001). The base of FDL consists of a
number of feature definitions which is the feature name
followed by “:” and the feature expression. In this example the
variation points start with upper case while the variants (e.g.,
keypad, fingerprints, retinaScanner) and optional features (e.g.,
security) start with lower case in the feature expression side.
Also, supposing that security is an optional feature, its name
is followed by the “?” sign. However, while this approach
works well for small problems, it can be difficult to keep an
overview of variabilities and dependencies as the number of
features and options increases. Furthermore, many times it is
necessary to express by means of additional models, usually
based on graphs, what is the expected behavior of the features.
Also, it is necessary to specify how the presence or absence
of specific sets of features affects the behavior of the target
system.

3) Graph-Based Specifications.: The discussion above
highlights the need for a more efficient solution. For this
reason, graph-based models are sometimes preferred to design
and communicate the requirements of the system. A number
of authors such as Gomaa (Gomaa, 2004), and Bragança
and Machado (Bragança & Machado, 2007) add variability
information into the requirements models. Currently, there is
no standard that restricts the way in which the variability infor-

mation should be added and represented in the concrete syntax
of the requirements models. However, the use of stereotypes
and model annotations is a common practice for both UML-
based models and a number of Domain Specific Languages
(DSL) (DSM forum website). Stereotypes and annotations help
to make explicit what parts of the models are common to all
the products of the product line (also called kernel, mandatory
parts, or commonalities) and which parts are variable (i.e., not
common) among all the products (also called variabilities).

Figure II.1 is based on the notation proposed by Gomaa
(Gomaa, 2004) and uses stereotypes such as “Kernel” and “Al-
ternative” to mark what is common and what the alternatives
are. Similarly, supposing that not all the products will include
the security feature, the security package is labeled with an
“Optional” stereotype.

This kind of diagrams could be complemented with cardi-
nality using, for example, UML notes as shown by (Bragança
& Machado, 2007). For example, a note showing a cardinality
of “1..3” attached to the “Authenticate User” would express
that a minimum of 1 and a maximum of 3 alternatives could
be chosen to be included in a single product. This kind of
specifications has some drawbacks. First, the models could
be polluted with stereotypes, some of them to indicate SPL
variability and others to express standard UML semantics,
such as “extends” and “includes”. Hence, it would not be
clear which “extension” use cases are created to offer possible
alternative use case scenarios for a single product, and which
use cases are created to show SPL alternatives, for example.
This situation may become complex if the modeller is using a
UML profile to model in a specific domain that requires the use
of additional stereotypes. Therefore, to augment the models’
understandability, it would be better to follow a separation

4

<<Kernel>>
Authenticate User

<<Alternative>>
Authenticate Using

Fingerprint
Scanner

<<Alternative>>
Authenticate
Using Retina
Scanner

<<Optional>>
Security

<<Alternative>>
Siren

<<Alternative>>
Light

<<Kernel>>
Activate Alarm

<<extends>><<extends>>

<<Alternative>>
Authenticate
Using Keypad

<<extends>>

Inhabitant

redimensionado

Figure II.1. Expressing variability graphically using stereotypes.

of concerns approach (Filman, Elrad, Clarke, & Aksit, 2004;
Moreira, Rashid, & Araújo, 2005) and separate variability
information from the concern requirements specification.

B. Separating Variability Information and Requirements Spec-
ification.

There are some patterns that have been followed when
variability information and requirements specifications are sep-
arated. The first one is about linking parts of the requirements
specification (also called model fragments) to a feature model.
Feature models (Czarnecki & Eisenecker, 2000; Kang, et al.,
1990) are a well accepted means for expressing requirements
in a domain on an abstract level. They are applied to describe
variable and common features of products in a product line,
and to derive and validate configurations of software systems.
The second pattern is about the use of mechanisms of compo-
sition based on adding or removing optional model fragments
according to features’ selections in a feature model.

1) Linking Requirements Models to Features Models.: One
of the patterns used as prerequisite to compose models for
specific products is to link fragments of the requirements
models to features in a feature model. These links enable
the adaptation of base requirements models based on features’
selection. A feature model groups hierarchically from general
to more specific common and variable features using a re-
finement relationship. This may also include cardinality as in
(Czarnecki, Helsen, & Eisenecker, 2004) to express properties
such as the number of alternative features that can be chosen
for specific variation points, that is for example, “the number
of authentication devices that can be included to guarantee
a secure system”. On the other side, requirements models,
such as use cases and activity diagrams, express the intended
behavior of a system focusing on the clear representation of
use scenarios to the SPL and products’ stakeholders.

The base mechanism to link requirements model fragments
to features is to use a correspondence table (also called:
mapping table), as presented by (Gomaa, 2004), (Pohl, Böckle,
& van der Linden, 2005) and (Alférez, et al., 2008). Also, with

the advent of MDD technologies, the use of tools such as Fea-
tureMapper (Heidenreich, 2010), FMP (Antkiewicz & Czar-
necki, 2004; Czarnecki & Antkiewicz, 2005), and VML4RE
(Alférez, Santos, et al., 2009) ease the linking between features
and other models. The mechanisms used for ease the linking
between requirements models and features range from more
usable visual editors with facilities such as drag-and-drop and
multiple selection of model fragments, to mechanisms to create
links programmatically, for example, using quantification and
queries on the models’ properties to determine correspondence
between features and model fragments. The goal of all these
mechanisms is to ease the arduous task of creating and
maintaining links manually between many features and model
fragments as happens with the use of simple mapping tables.

2) Composition of Requirements Models.: After linking
fragments of the requirements models to features in a feature
model, the model fragments can be composed to show the
requirements of the target applications and, therefore, help to
understand how features will be integrated in a new product
of a software product line. The way of composing the target
model of a product is based on removing (i.e., Negative
Variability) or adding (i.e., Positive Variability) model frag-
ments to a base requirements model. Next we explain these
mechanisms.

a) Negative Variability Composition Mechanism.: Neg-
ative variability selectively takes away parts of a model
based on the presence or absence of features in configuration
models, such as feature model configurations (Volter & Stahl,
2006). When using negative variability, developers have to
model the overall SPL requirements. Then, after linking model
fragments to certain features in a feature model, some model
fragments are taken away from the base model according to a
certain features’ selection for a particular product. Typically,
requirements composition approaches have followed negative
variability mechanisms. Some examples of approaches using
mostly negative variability mechanisms are proposed by Eriks-
son (Eriksson, et al., 2005) and Czarnecki and Antkiewicz
(Czarnecki & Antkiewicz, 2005).

5

b) Positive Variability Composition Mechanism.: To re-
duce requirements models composition to a simple removal
of some fragments (e.g., a use case, a scenario step, etc.)
according to a specific feature model selection (also called
feature model configuration) is straightforward. However, it
may difficult to specify the overall SPL requirements at
the beginning of the development process. The composition
mechanism where the target model is composed adding model
fragments to a base model is called “positive variability”.
This starts with a minimal base model and selectively adds
additional parts (Volter & Stahl, 2006). The base model
generally represents the model fragments that are common
to all products within the product line. Model fragments
related to varying features are attached to the requirements
models based on the presence or absence of features in the
configuration models, such as feature model configurations.
Some authors that propose approaches that employ positive
variability mechanisms are Eriksson (Eriksson, 2006) that
instantiate parametric features with specific values in use case
scenario descriptions, and Alférez et. al. (Alférez, Santos, et
al., 2009) that add and modify specific model fragments in
use cases models and activity diagrams.

However, to compose requirements models for a specific
product may require to insert and remove model fragments.
One situation when it may happen is when we need to insert
model fragments related to a feature that is incompatible with
other feature that was already added into the base model.
Therefore, composition requires to remove and to insert model
fragments. This demands the need of richer composition
mechanisms that allow both negative and positive variability
to derive target requirements models as we show later in this
chapter.

c) Other Mechanisms to Support Variability Composi-
tion.: Apart from the use of positive and negative variability
mechanisms, there are situations in which the adaptation
of the fragments in a model depends on the simultaneous
presence and absence of a specific combination of features.
Czarnecki and Antkiewicz (Czarnecki & Antkiewicz, 2005)
recognize this fact. They expressed use case scenarios using
UML activity diagrams and annotate them with presence
conditions. These presence conditions are expressions that can
be evaluated to false or true according to the set of features
selected for a specific product. Although this approach uses a
separate feature model to express variability information, this,
as well as Eriksson’s approach (Eriksson, 2006), fails to fully
separate “configuration knowledge” from the requirements
specifications. The result is that the requirements models turn
out full of textual annotations expressing presence conditions
for each fragment of the models, including fine-grained ele-
ments like “actions” and control flows.

III. A MODEL-DRIVEN REQUIREMENTS SPECIFICATION
APPROACH FOR SPLS.

Until now we have mentioned three elements in the defini-
tion of Model-Driven Requirements Specification for Software
Product Lines:

• Requirements specification that defines use scenarios de-
scribing the expected behavior of the SPL’s members.

These scenarios might be optional, have parameters, and
modify the behavior of other use scenarios.

• Feature models that make explicit what features are
common or variable and model the dependencies between
features. Feature models also contribute to the composi-
tion process, since they are used for checking if a product
configuration represents a valid member of the product
line.

• Configuration knowledge defined as a set of instructions
that relates feature expressions to transformations (Czar-
necki & Eisenecker, 2000) can be used for automatically
generate product models. However, configuration knowl-
edge is sometimes tangled with the base requirements
specification raising understandability and maintainability
problems.

Next, we describe our approach for keeping separated require-
ments elements, feature models and configuration knowledge
to contribute to the understandability and maintainability of
the three types of models. This approach uses models and
specially-tailored composition rules to customize use case sce-
narios based on activity diagrams and use case models. Graph-
based models such as use case and activity diagrams help to
avoid ambiguity and add more rigor to the specifications (Pohl,
et al., 2005).

A. Separation of Concerns in the Definition of Model-Driven
Requirements Specification.

The idea of linking features and requirements models’
fragments, separating configuration knowledge, and supporting
positive and negative variability mechanisms, is used in the
Variability Modeling Language for Requirements (VML4RE)
(Alférez, Santos, et al., 2009). Figure III.1 sketches the idea
behind the separation of concerns marked with the labels 1-
4:

1) SPL requirements specifications are expressed using
different models such as use case models and activity
diagrams that express use scenarios. These models con-
form to the UML metamodel (OMG, 2009b).

2) Feature model that makes explicit common and variable
features as well as the dependencies between them.
Each feature can be associated to fragments in the SPL
requirements specification, and particular fragments in
the SPL requirements specifications such as use cases,
actors, activities, etc, can be associated to several fea-
tures in the feature model.

3) Product configuration contains the selection of features
that will be included in the specific product and that will
be derived from the SPL.

4) Configuration knowledge establishes the mapping be-
tween features and base models that specify require-
ments, and expresses how to compose the base mod-
els according to some transformation rules to produce
requirements models for target products. This informa-
tion, together with the dependencies between features
described in the feature model (e.g., feature “retina
Scanner” excludes feature “fingerprint Scanner”), helps
to derive target products correctly from a set of reusable

6

... Composition
Process

(VML4RE Tool
Suite)

Activity Model C

Activity Model B

UML Metamodel

SPL Use Case Model A

UML Metamodel

Conforms to

VML4RE Metamodel

Part of Configuration
Knowledge

(Expressed in VML4RE)

Executes

4

Conforms to

...
Product Speciific Activity Model C’

Product Specific Activity Model B’

Product Specific SPL Use Case
Model A’

Feature Model
Metamodel

Conforms to

Feature Model

Product Configuration

2

3

1

Conforms to

5

Figure III.1. Linking features to requirements model fragments separating configuration knowledge.

SPL requirements models. Other information that is part
of configuration knowledge, and that is usually attached
directly to the feature model are the potential bad feature
interactions and default values for features selections.

In our approach the metamodel of the source models such as
A, B and C in Figure III.1 will be the same for the target
models A’, B’, C’, respectively. This means, for example,
that if the model B (Figure III.1-1) is an activity diagram
representing an SPL use case scenario, the resultant product
specific requirements model B’ (Figure III.1-5), where B’
means a composed model created based on B, will be an
activity diagram as well. Product specific models like A’, B’ or
C’ are generated for a specific product described by a product
configuration (Figure III.1-3). Each product configuration con-
tains a selection of features in the feature model (Figure III.1-
2). The composition process is guided by the configuration
knowledge. The VML4RE represent part of the configuration
knowledge for requirements models that is related with the
transformation of the models. This specifies how to link model
fragments with features in the feature model programmatically
using quantification, and also allows describing a composition
workflow. In particular VML4RE uses composition actions
specially tailored for graph-based use case scenarios like use
case models and activity diagrams.

B. Raising the Abstraction Level to Specify Requirements
Models Transformations.

Figure III.2 sketches the idea of using a domain specific
language such as VML4RE to raise the level of abstraction to
express the composition of the requirements models. In com-
parison with the technical background required by developers,
requirements modelers simply have to employ the familiar
vocabulary provided by VML4RE. Naturally, composition

actions used by the requirements modeler in VML4RE are
mapped to low level transformations of the requirements mod-
els. Therefore, to create more composition actions it is neces-
sary the intervention of either a model-driven developer that
knows the details of the UML use case and activity diagrams
and masters general purpose model transformation languages
such as ATL (Jouault & Kurtev, 2005), AGG (Taentzer, 2003),
Xpand (openArchitectureWare.org), or that understands how
to modify programmatically the base specifications using the
Application Programming Interface (API) provided by the
respective tool used to model the requirements, e.g., UML
tools plug-in for the Eclipse Framework (Eclipse Foundation).

Table II shows examples of a subset of composition actions
in VML4RE that are available for the requirements modeler.
The names of specific elements in the models are in italics
while the keywords of the language are in bold. It is impor-
tant to note that the composition actions is address positive
and negative variability as it was described in the Section
“Composition of Requirements Models”.

C. Semantics of VML4RE Composition Actions.

The semantics of each VML4RE composition action can be
defined in terms of a model-to-model transformation where the
metamodel of source and target models is UML. Transforma-
tions can be presented by the left hand side (LHS) and right
hand side (RHS) graphs. In general, a graph transformation
is a graph rule r: L —› R for LHS graph L to a RHS graph
R. The process of applying r to a graph G involves finding a
graph monomorphism, h, from L to G and replacing h(L) in
G with h(R) (Grzegorz, 1997).

Let’s take as an example from (Alférez, Santos, et al.,
2009). It shows the “Insert Use Case Links” action using
the use case link type “associatedWith”, which connects

7

Composition operators
especially tailored for

req. models

Mapping

Uses

Creates

Low level
transformations

-- Vocabulary familiar to
requirements engineers.
-- Uses VML4RE

- Requires deep
knowledge on the
requirements models’
metamodels
- Uses general purpose
transformation languages
e.g., ATL, AGG, Xpand –
or UML plugins’ API

Abstraction
Level

Creates

Requirements
Modeler

MDD Developer

redimensionado

Figure III.2. Raising the abstraction level to ease the use MDD transformations in requirements models.

provided by the respective tool used to model the requirements, e.g., UML tools plug-in for the
Eclipse Framework (Eclipse Foundation).

Figure 3. Raising the abstraction level to ease the use MDD transformations in requirements
models.

Table 2 shows examples of a subset of composition actions in VML4RE that are available for the
requirements modeler. The names of specific elements in the models are in italics while the
keywords of the language are in bold. It is important to note that the composition actions is
address positive and negative variability as it was described in the Section “Composition of
Requirements Models”.

Insert package, use case, actor, use case links, activity, activities and relationships between activities.

Examples:
insert (package packageX into ucModel useCaseModelY);

insert (UClinks_of_type: associatedWith { from actor_X to useCaseA,

 useCaseB, UseCaseC });

insert (InsertActivityLinks activityA to activityB with guard guard);

insert (InsertActivityLinks activityA to activityC);

insert (actor actorX into ucModel useCaseModelY);

Remove the same elements than can be inserted using the Insert types.

Replace activities by activities and activity models, actors by actors, use case by use case, etc.

Table 2. Some composition rules in VML4RE

Semantics of VML4RE Composition Actions
The semantics of each VML4RE composition action can be defined in terms of a model-to-model
transformation where the metamodel of source and target models is UML. Transformations can
be presented by the left hand side (LHS) and right hand side (RHS) graphs. In general, a graph
transformation is a graph rule r: L —› R for LHS graph L to a RHS graph R. The process of
applying r to a graph G involves finding a graph monomorphism, h, from L to G and replacing
h(L) in G with h(R) (Grzegorz, 1997).

Let’s take as an example from (Alférez, Santos, et al., 2009). It shows the “Insert Use Case
Links” action using the use case link type “associatedWith”, which connects an actor and a use
case using an association link
(insert_(UCLinks_of_type:_associatedWith_{_from_actorD_to_useCaseModelA
.PackageB.useCaseC});). The intended transformation of the use case model can be
presented by the left hand side (LHS) and right hand side (RHS) graphs in Figure 4, where the
inputs are a use case model, a use case, a use case’s package, and an actor. If there is already an
association between the actor and the use case in the same package, the transformation is not

Table II
SOME COMPOSITION RULES IN VML4RE.

an actor and a use case using an association link (insert
(UCLinks_of_type: associatedWith { from actorD to useCase-
ModelA.PackageB.useCaseC});). The intended transformation
of the use case model can be presented by the left hand
side (LHS) and right hand side (RHS) graphs in Figure III.3,
where the inputs are a use case model, a use case, a use
case’s package, and an actor. If there is already an association
between the actor and the use case in the same package,
the transformation is not applied to avoid duplicates. This is
expressed with the cross in some elements in the LHS graph
that act as negative application conditions (NAC). It means that
any match against the LHS graph cannot have a packageB with
any existing association between actorD and the useCaseC.

The notation used to define this graph transformation is
similar to the one used by (Markovic & Baar, 2005) where
the LHS and RHS patterns are denoted by a generalized form

of object diagrams. However, for visual simplicity we added
dashed lines between elements to represent any number of
containments (in this case, package’s containments). We defer
to (Markovic & Baar, 2005) for the readers interested in details
of this notation.

It is important to note that VML4RE requirements modelers
do not need to build graph-based transformations, know the
details of the metamodels, or to master general purpose
transformation language or technologies. VML4RE provides
requirements-specific composition actions that facilitate the
specification of the composition of the base models.

D. Home Automation Case Study.

To clarify the idea and the use of these composition rules,
we have modeled a subset of the Smart Home. This is a
home automation software product line being developed by

8

The process of applying r to a graph G involves finding a graph monomorphism, h, from L to G
and replacing h(L) in G with h(R) (Grzegorz, 1997).

Let’s take as an example from (Alférez, Santos, et al., 2009). It shows the “Insert Use Case
Links” operator using the use case link type “associatedWith”, which connects an actor and a use
case using an association link
(insert_(UCLinks_of_type:_associatedWith_{_from_actorD_to_useCase
ModelA.PackageB.useCaseC});). The intended transformation of the use case model
can be presented by the left hand side (LHS) and right hand side (RHS) graphs in Figure 4, where
the inputs are a use case model, a use case, a use case’s package, and an actor. If there is already
an association between the actor and the use case in the same package, the transformation is not
applied to avoid duplicates. This is expressed with the cross in some elements in the LHS graph
that act as negative application conditions (NAC). It means that any match against the LHS graph
cannot have a packageB with any existing association between actorD and the useCaseC.

The notation used to define this graph transformation is similar to the one used by (Markovic &
Baar, 2005) where the LHS and RHS patterns are denoted by a generalized form of object
diagrams. However, for visual simplicity we added dashed lines between elements to represent
any number of containments (in this case, package’s containments). We defer to (Markovic &
Baar, 2005) for the readers interested in details of this notation.

It is important to note that VML4RE requirements modelers do not need to build graph-based
transformations, know the details of the metamodels, or to master general purpose transformation
language or technologies. VML4RE provides requirements-specific composition operators that
facilitate the specification of the composition of the models.

LHS

: Association

: Property

Aggregation =
none

: Property

Aggregation =
none

Type

Type

packageB: Package

useCaseModelA:
Model

actorD: Actor

useCaseC :
Use Case

memberEndmemberEnd

RHS

A_src_dst:
Association

Src: Property

Aggregation =
none

Dst: Property

Aggregation =
none

Type

Type

packageB: Package

useCaseModelA:
Model

actorD: Actor

useCaseC :
Use Case

memberEndmemberEnd

Figure 4. Graph rule to insert an association between actorD and useCaseC in packageB

Home Automation Case Study
To clarify the idea and the use of these composition rules, we have modeled a subset of the Smart
Home. This is a home automation software product line being developed by Siemens AG
(Morganho, et al., 2008). We already used part of this case study to exemplify the different

Figure III.3. Graph rule to insert an association between actorD and useCaseC in packageB.

Siemens AG (Morganho, et al., 2008). We already used part
of this case study to exemplify the different textual approaches
in the Section “Requirements modeling for SPLs” using sev-
eral authentication devices, keypad, retina scanner, fingerprint
scanner. Figure III.4-1 provides a feature model that includes
these features as well as others related with security and
windows management, while the Figure III.4-2 presents one
of its possible configurations, the “Economical Smart Home”.
Some optional features that are expensive and add more cost
to the system are not included in such Economical product.
Therefore, retina and fingerprint scanners, as well as cameras,
are not part of the final product.

As far as the Security feature is concerned, inhabitants can
initiate the secure mode by activating the glass break sensors
or/and camera surveillance devices (Glass Break Sensors and
Cameras features). If an alarm signal is sent by any of these
devices, and according to the security configuration of the
house, the Smart Home decides to (i) Secure the house by
activating the alarms (Siren and Lights features), and/or (ii)
closing windows and doors (Electronic Windows feature) (see
use case model in Figure III.4-3). Smart Home can also
choose to open or close windows automatically to regulate
the temperature inside the house as an option to save energy
(Electronic Windows feature). Alternatively to the electronic
windows, the inhabitants could always be able to open and
close the windows manually (Manual Windows feature). In
Figure III.4-4 we show the intended target use case model for
the Economic home.

We chose use cases whose detailed behavior is modeled
using activity models. This alternative provides models that
conform to a metamodel (i.e., the metamodel of UML activity
diagrams), thereby reducing the ambiguity in the specifications
(Pohl, et al., 2005). The detailed specification of use cases

as activity models also enables customizations of use cases
realizing specific SPL configurations.

Figure III.5-1 shows a simplified SPL scenario for the “acti-
vate secure mode” use case and how it was customized for the
Economic home that only have glassbreak sensors as available
surveillance device (Figure III.5-2). This figure also shows the
links between features in the feature model and specific model
fragments, and links between model fragments in different
levels of abstraction of the requirements specification that
helps to understand the relationships between the different
models. The composition of the elements is expressed using
a VML4RE model as the one shown in Table III.

The VML4RE specification in Table III expresses how
to configure the models for a specific product. Therefore,
it contributes to express configuration knowledge as it was
sketched in Figure III.1-4. The VML4RE specification ref-
erences the requirements models and specifies composition
rules. In the specification it is possible to use expressions
such as “and (glassbreak, not (cameras))” (see Table III - line
8), which means that the composition rules inside brackets
will be executed if the expression evaluates to TRUE. This
is, when the “glassbreak” sensors feature is included but not
the “cameras” feature in the feature model configuration. The
VML4RE tool (AMPLE, 2009) receives as input the SPL use
cases and activity models, the feature model configuration and
the VML4RE specification. As outputs, the VML4RE tool
generates: (i) use cases of a product; and (ii) activity models
that describe product’s use scenarios.

There are composition rules that add elements to the SPL
model and there are others that remove or replace elements.
The specification in Table III shows familiar vocabulary such
as useCase, activity, actor, etc.. The modeler does not require
to know metamodel complexities such as the link between the

9

redimensionado

Inhabitant

Smart Home

Windows
Management

Electronic
Windows

Manual
Windows

Security

Authentication
Device Alarm Type

keypad fingerprint
Scanner

retina
Scanner

siren light

Surveillance
Device

Cameras Glassbreak
Sensors

Smart Home

Windows
Management

Manual
Windows

Security

Authentication
Device Alarm Type

keypad siren light

Surveillance
Device

Glassbreak
Sensors

Optional
feature

Common
feature

Exclusive Alternative
Features

Inclusive Alternative
Features

Authenticate User

Auth.
Using

Fingerprint
Scanner

Auth.
Using
Retina
Scanner

Security

Siren

LightActivate Secure Mode

<<extends>>
<<extends>>

Auth.
Using
Keypad

<<extends>>

Secure the House

Glassbreak
Sensor

Windows Management

Open And
Close

Windows

Open And Close
Windows
Manually

Open And Close
Windows

Automatically

Windows
Actuator

Windows
Sensor

<<inludes>>

1 2

3 4

Camera

Inhabitant
Authenticate User

Security

Siren

LightActivate Secure Mode

Auth.
Using
Keypad

<<extends>>

Secure the House

Glassbreak
Sensor

Windows Management

Open And
Close

Windows

Open And Close
Windows
Manually

Figure III.4. (1) Smart home feature model; (2) feature model configuration for the economic home; (3) use case model for the Smart Home SPL; (4) use
case model for the economical edition of the Smart Home SPL.

UML metaclasses “Use case”, “Association” and “Property” to
express “simply” things such as for example the insertion of an
association relationship between an actor and a use case. Also,
the way of expressing what happens when a variant feature is
selected or not is very intuitive as it can be appreciated for
the case of the variant “cameras” (Table III, lines 25-30).

IV. CONTRIBUTIONS OF MODEL-DRIVEN DEVELOPMENT
TO REQUIREMENTS ENGINEEERING IN SPLS

The use of models, metamodels and models transformations
in MDD provide the possibility of using models as key assets
in the development process. Some of the contributions of
using approaches for model-driven development requirements
engineering in SPLs such as the one presented in Section
“A Model-Driven Requirements Specification Approach for
SPLs” are:

• Rigor of the specifications through the verification of
the conformity of the models with their metamodels: The

models that express the requirements specifications con-
form to metamodels that can be verified. The verification
of the models is important as it is required to produce
models written in a known metamodel. If the metamodel
of the model is known, it is possible to create transfor-
mation rules that are described based on the metaclasses
of the source and target models’ metamodels. Therefore,
a chain of transformation rules and additional increments
of information in the requirements specification models
could be applied to refine them to more detailed models
such as design models, or initial architectural models.

• Employ a correct abstraction level to express the re-
quirements: the use of domain specific languages such as
feature models and VML4RE helps to express efficiently
composition, variability and configuration knowledge of
requirements models in the vocabulary and in the way that
the users understand. This is a big contribution to the so-
lution of the problem of abstraction mismatch (Sánchez,

10

Use
Cases

Security

Activate
Secure Mode

Security

Surveillance
Device

Cameras Glassbreak
Sensors

1

Features

Use Case
Scenarios

Security

Activate
Secure Mode

Security

Surveillance
Device

Glassbreak
Sensors

2SPL Economic Home

Glassbreak
Sensor

Camera

Glassbreak
Sensor

Co
m
po

sit
io
n

Link between feature
and model fragment

Notation Link between model
fragments

Figure III.5. Simplified Smart Home ActivateSecureMode use case scenario before and after a replace activity action.

Loughran, Fuentes, & Garcia, 2008) that difficult the use
MDD techniques use by non technical-oriented people.

• Testing and understanding the behavior of specific prod-
ucts in the SPL: The automatic derivation of requirements
models for a specific product is useful to both (i) under-
standing which requirements and features are involved in
the development of an SPL product, and (ii) to support
the testing and documentation activities. In particular,
activity models are an example of requirements artifacts
that are well suited for business process modeling and
for modeling the logic captured by a single use case or
scenario.

V. FUTURE RESEARCH DIRECTIONS

There are several issues to address that are common for
model-driven specification approaches not only in require-
ments analysis, but also for architectural and detailed design,
for example: co-evolution management of multiple interrelated
models, verification and validation of the produced models,
and usability of composition language. However, there are two

main research directions in requirements specification. The
first is related to the representation of non-functional require-
ments, business rules, and the use of specific requirements
models for systems engineering; and the second is related
to the detection of potential unwanted feature interactions
analyzing the semantic of the composed models.

To specify interactions between functional and non-
functional requirements during requirements modeling, other
models, such as goal models (Chung, Nixon, Yu, & Mylopou-
los, 1999; Yu) can be used. Such models also allow studying
the actors and their dependencies, thus encouraging a deeper
understanding of the business process. Therefore, we plan to
use these kinds of models to specify also non-functional prop-
erties of SPLs systems. Besides, it is important to investigate
the relationship of the models used in our approach and OMG
(Object Management Group (OMG)) standards for business
modeling such as: Business Motivation Model (BMM) (Object
Management Group (OMG), 2008a), Semantics of Business
Vocabulary and Rules (SBVR) (Object Management Group
(OMG), 2008b), and also for systems engineering, such as

11

01 import features <''/featureModel.fmp''>; 17 }

02 import core <''/UseCaseAndActivityModels.uml'>; 18 variant for (GlassbreakSensor) {

03 concern SmartHomeSPL { //…// 19 insert (actor GlassbreakSensor);

04 variant for ElectronicWindows { 20 insert (UCLinks_of_type: associatedWith {

05 remove (useCase OpenWindowsAutomatically); 21 from actor GlassbreakSensor to

06 remove (actor WindowsActuator); 22 useCase ActivateSecureMode})

07 } 23 }

08 variant for and (glassbreak, not (cameras)){ 24 }

09 replace (activity activateSecureMode:: 25 variant for (cameras){

10 VerifyInstalledSurveillanceDevices by 26 insert (actor camera);

11 activity verifyInstalledGlassBreakSensors); 27 }

12 } 28 variant for not (cameras){

13 variant for not (security){ 29 remove (actor camera);

14 remove (package security); 30 }//…//

15 remove (actor glassbreakSensor); 31 }

16 remove (actor camera); 32

Listing 1. Part of the VML4RE Model for the Smart Home

CONTRIBUTIONS OF MODEL-DRIVEN DEVELOPMENT TO REQUIREMENTS
ENGINEERING IN SPLS
The use of models, metamodels and models transformations in MDD provide the possibility of
using models as key assets in the development process. Some of the contributions of using
approaches for model-driven development requirements engineering in SPLs such as the one
presented in Section “A Model-Driven Requirements Specification Approach for SPLs” are:

 Rigor of the specifications through the verification of the conformity of the models with their
metamodels: The models that express the requirements specifications conform to metamodels
that can be verified. The verification of the models is important as it is required to produce
models written in a known metamodel. If the metamodel of the model is known, it is possible
to create transformation rules that are described based on the metaclasses of the source and
target models’ metamodels. Therefore, a chain of transformation rules and additional
increments of information in the requirements specification models could be applied to refine
them to more detailed models such as design models, or initial architectural models.

 Employ a correct abstraction level to express the requirements: the use of domain specific
languages such as feature models and VML4RE helps to express efficiently composition,
variability and configuration knowledge of requirements models in the vocabulary and in the
way that the users understand. This is a big contribution to the solution of the problem of
abstraction mismatch (Sánchez, Loughran, Fuentes, & Garcia, 2008) that difficult the use
MDD techniques use by non technical-oriented people.

 Testing and understanding the behavior of specific products in the SPL: The automatic
derivation of requirements models for a specific product is useful to both (i) understanding
which requirements and features are involved in the development of an SPL product, and (ii)
to support the testing and documentation activities. In particular, activity models are an

Table III
PART OF THE VML4RE MODEL FOR THE SMART HOME.

the requirements package of the Systems Modeling Language
(SysML) (Object Management Group (OMG), 2010).

Another future research trend is the detection of feature
interactions after the composition of their respective models.
A feature interaction occurs when the behavior of a feature
inhibits or subverts the behavior of another one in an unwanted
or unexpected way. Therefore, feature interaction detection
contributes to produce products whose features interact as
expected and without conflicts (Alférez, Moreira, et al., 2009).

VI. CONCLUSION

This chapter provided an overview of both textual and
graphical notations for modeling SPL requirements and dif-
ferent ways to compose requirements. Also, it shows our ap-
proach for model-driven requirements specification for SPLs.
It separates requirements specifications, variability information
and configuration knowledge to reach a better understandabil-
ity of the models. This approach employs use cases whose
detailed scenarios are modeled using activity models. The
further elaboration of use cases with activity models; in
contrast to free-format textual descriptions, facilitates to have
models suitable to be processed by MDD tools and to produce
useful information such as the customized models for specific
products in a SPL.

ACKNOWLEDGMENTS

This work was partially supported by the European
Project AMPLE, contract IST-33710, and the grant
SFRH/BD/46194/2008 of Fundação para a Ciência e a
Tecnologia, Portugal.

REFERENCES

Alexander, I., & Maiden, N. (2004). Scenarios, Stories, Use
Cases. Chichester, UK: Wiley.

Alférez, M., Kulesza, U., Sousa, A., Santos, J., Moreira,
A., Araújo, J., et al. (2008). A Model-Driven
Approach for Software Product Lines Require-
ments Engineering. Paper presented at the 20th
International Conference on Software Engineering
& Knowledge Engineering, Redwood City, CA.

Alférez, M., Moreira, A., Kulesza, U., Araújo, J., Mateus,
R., & Amaral, V. (2009). Detecting Feature In-
teractions in SPL Requirements Analysis Models.
Paper presented at the 1st International Workshop
on Feature-Oriented Software Development, Den-
ver, Colorado.

Alférez, M., Santos, J., Moreira, A., Garcia, A., Kulesza,
U., Araújo, J., et al. (2009). Multi-View Composi-
tion Language for Software Product Line Require-
ments. Paper presented at the 2nd Int. Conference
on Software Language Engineering, Denver, USA.

Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P.,
& Lucena, C. (2006, 2006). Refactoring Product
Lines. Paper presented at the Proceedings of the
5th International Conference on Generative Pro-
gramming and Component Engineering, Portland,
Oregon, USA. AMPLE. (2009).

Ample Project. http://www.ample-project.net/
Antkiewicz, M., & Czarnecki, K. (2004). FeaturePlugin: Fea-

ture Modeling Plug-in for Eclipse. Paper pre-
sented at the 2004 OOPSLA workshop on eclipse
technology eXchange.

Bonifacio, R., & Borba, P. (2009). Modeling Scenario Vari-

12

ability as Crosscutting Mechanisms. Paper pre-
sented at the Aspect Oriented Software Develop-
ment.

Bragança, A., & Machado, R. J. (2007). Automating Map-
pings between Use Case Diagrams and Feature
Models for Software Product Lines. Paper pre-
sented at the 11th International Software Product
Line Conference.

Chung, L., Nixon, B., Yu, E., & Mylopoulos, J. (1999).
Non-Functional Requirements in Software Engi-
neering (1 ed.). Amsterdam: Kluwer Academic
Publishers.

Clements, P., & Northrop, L. M. (2002). Software Product
Lines: Practices and Patterns. Boston: Addison-
Wesley. Cockburn, A. (2001). Writing Effective
Use Cases. Boston: Addison-Wesley.

Czarnecki, K., & Antkiewicz, M. (2005). Mapping Features
to Models: A Template Approach Based on Su-
perimposed Variants. Paper presented at the 4th
International Conference on Generative Program-
ming and Component Engineering.

Czarnecki, K., & Eisenecker, U. W. (2000). Generative
Programming: Methods, Tools, and Applications.
New York: ACM Press/Addison-Wesley Publish-
ing Co.

Czarnecki, K., Helsen, S., & Eisenecker, U. (2004). Staged
Configuration Using Feature Models. Paper pre-
sented at the Third International Conference in
Software Product Lines, Boston, Massachusetts,
USA.

Deursen, A. v., & Klint, P. (2001). Domain-Specific Lan-
guage Design Requires Feature Descriptions.
Journal of Computing and Information Technol-
ogy, 10. DSM forum website. (n.d.).

DSM Forum: Domain-Specific Modeling.
http://www.dsmforum.org/

Eclipse Foundation. (n.d.). MDT-UML2Tools.
http://www.eclipse.org/uml2/

Eriksson, M. (2006). An Approach to Software Product Line
Use Case Modeling. Unpublished Doctoral De-
gree, UMEÅ University, UMEÅ, Sweden. Eriks-
son, M., Börstler, J., & Borg, K. (2005). The
PLUSS Approach - Domain Modeling with Fea-
tures, Use Cases and Use Case Realizations. Paper
presented at the 9th International Conference on
Software Product Lines.

Figueiredo, E., Cacho, N., Sant’Anna, C., Monteiro, M.,
Kulesza, U., Garcia, A., et al. (2008). Evolving
software product lines with aspects: an empirical
study on design stability. Paper presented at the
30th International Conference on Software Engi-
neering (ICSE 2008).

Filman, R. E., Elrad, T., Clarke, S., & Aksit, M.
(2004). Aspect-Oriented Software Development:
Addison-Wesley.

Gomaa, H. (2004). Designing Software Product Lines with
UML: From Use Cases to Pattern-Based Software
Architectures. Reading, MA: Addison-Wesley.

Grzegorz, R. (Ed.). (1997). Handbook of Graph Grammars
and Computing by Graph Transformation: Volume
I. Foundations. River Edge, NJ: World Scientific
Publishing Co., Inc.

Heidenreich, F. (2010). FeatureMapper: Mapping Features to
Models.
http://featuremapper.org/

Jacobson, I. (1992). Object-oriented Software Engineering:
A Use CASE Approach. Reading, MA: Addison
Wesley.

Jouault, F., & Kurtev, I. (2005). Transforming Models with
ATL. Paper presented at the Model Transforma-
tions in Practice Workshop at MoDELS 2005.
Kang, K., Cohen, S., Hess, J., Novak, W., & Pe-
terson, A. (1990). Feature-Oriented Domain Anal-
ysis (FODA) Feasibility Study (Technical report,
CMU/SEI-90-TR-021): Software Engineering In-
stitute, Carnegie Mellon University.

Markovic, S., & Baar, T. (2005). Refactoring OCL Anno-
tated UML Class Diagram. Paper presented at
the International Conference On Model Driven
Engineering Languages And Systems.

Moreira, A., Rashid, A., & Araújo, J. (2005, 2005). Multi-
Dimensional Separation of Concerns in Require-
ments Engineering. Paper presented at the Pro-
ceedings of the 13th IEEE International Confer-
ence on Requirements Engineering, France.

Morganho, H., Gomes, C., Pimentão, J. P., Ribeiro, R., Gram-
mel, B., Pohl, C., et al. (2008). Requirement Spec-
ifications for Industrial Case Studies (AMPLE
Project, Deliverable D5.2).

Object Management Group (OMG). Object Management
Group.
http://www.omg.org/

Object Management Group (OMG). (2008a). Business
Motivation Model.
http://www.omg.org/spec/BMM/1.0

Object Management Group (OMG). (2008b). Seman-
tics of Business Vocabulary and Business Rules
(SBVR).
http://www.omg.org/spec/SBVR/1.0/PDF

Object Management Group (OMG). (2010). Systems
Modeling Language (SysML).
http://www.omg.org/spec/SBVR/1.0/PDF OMG.

OMG’s (2009a). Meta Object Facility (MOF).
http://www.omg.org/mof/

OMG. (2009b). Unified Modeling Language. from
http://www.uml.org/

OpenArchitectureWare.org. (n.d.). openArchitectureWare.
http://www.openarchitectureware.org/

Pohl, K. (2006). Panel on Product Line Research:
Lessons Learned from the last 10 years and
Directions for the next 10 years. In 10th
International Software Product Line Conference
(SPLC 2006).
http://www.sei.cmu.edu/splc2006/SPLC06-
ResearchPanel-KP.pdf

Pohl, K., Böckle, G., & van der Linden, F. (2005).

13

Software Product Line Engineering: Foundations,
Principles and Techniques. Berlin, Germany:
Springer.

Sánchez, P., Loughran, N., Fuentes, L., & Garcia, A. (2008).
Engineering Languages for Specifying Product-
derivation Processes in Software Product Lines.
Paper presented at the 1st International Confer-
ence on Software Language Engineering (SLE).

Taentzer, G. (2003). AGG: A Graph Transformation Envi-
ronment for Modeling and Validation of Software.
Paper presented at the 2nd International Workshop
on Applications of Graph Transformations with
Industrial Relevance (AGTIVE), Virginia, USA.

Volter, M., & Stahl, T. (2006). Model-Driven Software
Development. Glasgow, UK: Wiley.

Yu, E. (n.d.). i* an Agent-oriented Modelling Frame-
work.
http://www.cs.toronto.edu/km/istar/

KEY TERMS & DEFINITIONS

Software Product Line (SPL) engineering: It is a develop-
ment approach to increase software quality and
productivity. It addresses the creation and man-
agement of a family of software products for
a particular domain instead of developing each
product separately.

Feature: It is a property or functionality that is relevant to
some stakeholders and that allows to distinguish
between products in a SPL. In a family of software
products most of the features are common while
some features vary between the family members.

Common feature: It is a kind of feature that expresses a
property that is common to all the products in
a SPL.

Variable feature: It is a kind of feature that expresses a
property that is not common to all the products
in a SPL.

Feature model: It is a model for expressing requirements in a
domain on an abstract level. They are applied to
describe variable and common features of prod-
ucts in a product line, and to derive and validate
configurations of software systems.

Optional feature: It is a kind of feature that may not be
included in some of the products of the SPL.

Variation point: It identifies a particular concept within the
SPL requirements specification as being variable
and it offers a number of variants.

Variant: It describes a particular variability decision, such
as a specific choice among alternative variants.

Model Composition: It means to combine two or more models
to modify one or more models, or to create a new
one. Composition in SPL helps to create models
for specific SPL products using composition ac-
tions and model transformations.

12
Evaluating Approaches for

Specifying Software Product Line
Use Scenarios

Authors: Mauricio Alférez, Rodrigo Bonifacio, Leopoldo Teixeira, Paola Accioly, Uirá
Kulesza, Paulo Borba, Ana Moreira, João Araújo.

Paper Summary: This paper presents an empirical evaluation of four key and repre-
sentative approaches (PLUSS, Model Templates, MSVCM and VML4RE) for specifying
commonalities and variabilities of SPLs using scenarios. First, this paper proposes a
metrics suite that takes into account relevant quality attributes for variability management,
such as modularity, expressivity and stability, that aim at a better management of common
and variable use scenario specifications between products of an SPL. Then, this paper
provides details about the four approaches, the study settings, the CCCMS case study and
the evaluation results. The details provided by this paper complement the evaluation of
the DCC4SPL (represented by VML4RE) related to product-specific models derivation
(Chapter 4 - Validation).

Authors Contribution: This research was the result of the work of a team of re-
searchers from four universities. The team members that lead most parts of the paper
were Rodrigo Bonifacio and I. The rest of the authors gave interesting comments on each
version of the paper, collected results, and prepared model-based specifications for the
evaluated approaches. Each author according to its experience and function helped to
improve the content of the paper.

Publication Arena: This paper is under revision by an international journal.

187

Evaluating Approaches for Specifying Software Product Line Use Scenarios

Mauricio Alféreza,∗, Rodrigo Bonifáciob, Leopoldo Teixeirac, Paola Acciolyc, Uirá Kuleszad, Paulo Borbac,
Ana Moreiraa, João Araújoa

aCITI/Departamento de Informática, FCT,
Universidade Nova de Lisboa, Caparica, Portugal

bComputer Science Department, University of Brasília
Brasília, Brazil

cInformatics Center, Federal University of Pernambuco
Recife, Brazil

dComputer Science Department
Federal University of Rio Grande do Norte

Natal, Brazil

Abstract

A number of requirements engineering approaches have been proposed to specify commonalities and vari-
abilities of software product lines using use scenarios. The existing assessments of these approaches are too
informal, do not integrate di�erent relevant quality attributes and derive conclusions by comparing just a
couple of techniques. This paper presents an empirical evaluation that takes into account relevant quality
attributes for variability management, such as modularity, expressivity and stability. It compares four key,
representative techniques that aim at a better management of common and variable use scenarios speci�ca-
tions between products of an SPL. The techniques chosen to be evaluated span from type of notation (textual
or graphical-based), style to resolve variability (based on annotations or compositions), and quanti�cation
expressiveness. The main contributions of this paper are a comparative study, the de�nition of a metrics
suite, and the discussion on the design issues of the evaluated approaches for specifying variabilities in SPLs.

Keywords: Software Product Line Engineering, Variability Modelling, Use Scenarios, Variability
Modelling, evaluation, Requirements Speci�cation.

1. Introduction

Software Product Lines (SPL) have been pointed
out, by current research and practical experience,
as the way to achieve signi�cant progress in soft-
ware reuse [1, 2]. An SPL is de�ned as a family of
�software-intensive systems that share a common,
managed set of features that satisfy the speci�c
needs of a particular market segment or mission and
that are developed from a common set of core as-
sets in a prescribed way� [2]. In this de�nition, a

∗Principal corresponding author
Email addresses:

mauricio.alferez@campus.fct.unl.pt (Mauricio Alférez),
rbonifacio@cic.unb.br (Rodrigo Bonifácio),
lmt@cin.ufpe.br (Leopoldo Teixeira), prga@cin.ufpe.br
(Paola Accioly), uira@dimap.ufrn.br (Uirá Kulesza),
phmb@cin.ufpe.br (Paulo Borba), amm@fct.unl.pt (Ana
Moreira), ja@fct.unl.pt (João Araújo)

�feature� can be de�ned as �a system property that
is relevant to some stakeholders and is used to cap-
ture commonalities or discriminate among systems
in a family of software systems� [3]. Features that
are common to all the SPL products are known as
�commonalities� and those that are optional and
alternative are known as �variabilities�. Also, �vari-
ability� of an SPL is understood as the common-
alities and di�erences between products in terms
of requirements, architecture, components, and test
artifacts [2].

Most work on SPL variability focuses on the de-
sign and code levels. However, variability manage-
ment during SPL requirements engineering is es-
sential to support requirements reuse [4]. Nonethe-
less, it is also useful when considering the e�ects
of adding new requirements and removing others.
Moreover, it can help when requirements are not
fully understood and should be examined by stake-

Preprint submitted to Journal 13th August 2012

holders that do not necessarily know about techni-
cal development issues such as managers and do-
main experts.
Use scenarios [5] are a recurring technique used in

SPL engineering that is crucial to understand SPL
features. A �use scenario�, �usage scenario�, or �sce-
nario� for short1, describes a real-world example of
how one or more actors (e.g., users, organizations
and sub-systems) interact with a system, describ-
ing the steps (i.e., events and/or actions) that occur
during the interaction [5]. Scenarios can be com-
posed according to speci�c combinations of features
and, therefore, they are also useful to specify the in-
tended behavior of target products of an SPL [6].
They are valuable assets as they provide examples
of the system usage, therefore, playing an impor-
tant role to both design and subsequent usability
testing [5]. Such examples of system usage help dif-
ferent stakeholders, from managers and program-
mers to testers and domain experts, to understand
and develop software products that satisfy their re-
quirements.
Variability management is still a challenge for

SPL engineering, largely due to its crosscutting na-
ture that is evident along all core assets � ranging
from documentation and scenarios to code-based
modules and test cases [2, 7, 8]. In scenario speci�-
cations this challenge manifests mainly because: (i)
the speci�cations of variable features often scatters
through several scenarios; (ii) scenarios speci�ca-
tions are often tangled with information on how
to con�gure the scenarios according to the pres-
ence or absence of di�erent features. These two
factors make it di�cult to control composition of
scenarios consistently along the whole speci�cation
and also hampers to modularize and reason about
each concern of the system separately. To ad-
dress this challenge, several approaches have ap-
plied aspect-oriented techniques [9, 10] for model-
ing scenario variability for SPLs (e.g., MSVCM [11]
and VML4RE [12]). These can also be classi�ed
as compositional-based approaches in SPL termi-
nology [13]. However, not all compositional-based
approaches are necessarily aspect-oriented.
This paper assesses and compares four di�erent

approaches to specify scenarios variability in SPL
against a set of releases from a common case study:
the Car Crash Crisis Management System SPL [14]
(Section 3). Our study takes into account three

1From now on we mostly employ �scenarios� to refer �use
scenarios�.

quality attributes (modularity, stability and expres-
siveness) that reveals di�erences among the four
techniques and that have not been addressed by
existing assessments [11, 15]. Therefore, the main
contributions of this paper are:

• A comparative study of representative ap-
proaches for specifying scenario variability in
SPLs. This considers aspect-oriented (AO)
and non-aspect-oriented approaches which
have di�erent notations (textual or graphical-
based) and di�erent variability representa-
tion mechanisms (compositional or annota-
tive). (We introduce them in Section 4).

• The de�nition of a metrics suite to compare
existing SPL requirements speci�cation ap-
proaches (Section 5.2). Although our metrics
suite is partially adapted from existing aspect-
oriented metrics, it also de�nes new metrics
for quantifying expressiveness and stability of
the relationships (also referred as mapping or
con�guration knowledge) between features and
other artifacts (e.g., scenarios) [3]) in require-
ments speci�cations.

• A discussion on the design issues of the eval-
uated approaches for specifying variabilities in
SPLs (Sections 6 to 8).

The result of this study concludes that aspect-
oriented approaches reduce scattering of features
and tangling of scenarios (Section 6); and improve
expressiveness (Section 7) and stability (Section 8)
of the speci�cations. Finally, we discuss potential
threats to the validity of our �ndings in Section 10.
Section 11 relates our work with other research
topics and Section 12 presents our concluding re-
marks.

2. Goal and Research questions

The goal of this work is to analyze representative
techniques for specifying SPL variability in scenar-
ios, for the purpose of understanding their di�er-
ences and the implications of their characteristics
with respect to modularity of the features spec-
i�cations (how localized is each feature speci�ca-
tion along the scenarios), stability (e�ectively, how
changes are required to evolve an SPL from one
con�guration to another), and expressiveness (how
verbose the speci�cation of those changes are), from

2

the point of view of software engineers in the con-
text of a common case study proposed by the SPL
research community.
Taking into account this goal, there are three

questions and correspondent attributes addressed
in this work (Section 5 gives more details and re-
lates the questions to the metrics suite):

Question 1: Which and to what extent
the techniques bene�t a better mod-
ularization of feature speci�cations?

Question 2: Which and to what extent
the techniques bene�t stability of their
speci�cations (the scenarios, composi-
tion and con�guration knowledge) af-
ter SPL evolution?

Question 3: Which and to what extent
the techniques bene�t the expressive-
ness after SPL evolution?

The next two sections give an overview of the CC-
CMS SPL that we use to perform our study, and the
four representative techniques for specifying SPL
variability in scenarios.

3. Overview of the Car Crash Crisis Man-

agement System

In our study, we compare di�erent speci�cations
for the Car Crash Crisis Management System (CC-
CMS) [14]. A crisis is an unpredictable situation
that can lead to severe consequences if not dealt
with quickly. A car crash crisis management sys-
tem facilitates the process of identifying, assessing,
and handling the crisis situation by orchestrating
the communication between all parties involved in
handling the crisis, allocating resources and pro-
viding information to determined users. Any car
crash crisis management system has a common set
of responsibilities and functionalities. It is there-
fore natural to build an SPL of car crash crisis
management systems, which can be specialized to
create a particular kind of crisis and a particular
context. The CCCMS case study became a bench-
mark in SPL modeling, their models are public and
described in detail in [16] and [14]. The CCCMS
involves single or multiple vehicles, and is limited
to the management of human victims.
In [16], there are various non-aspect-oriented

models that served as basis for our study, such as
a feature model, use scenario textual descriptions,
textual requirements, and a domain model. From

CCCMS

Mission

Medical
Services

Authenti-
cation

Rescue Observe
R3

Remove
Obstacle R4

Helicopter
Transport

Mandatory Optional Rn Release NumberInclusive OR

Notation

Internal
Resources

External
Resources

WitnessLOG
R2

Figure 1: Partial feature model for the CCCMS SPL.

those models, the feature model is the one that re-
lates more directly to the SPL con�gurability. It
identi�es and relates common and variable features
between the products in the domain of the SPL.
Feature models depict a hierarchical decomposition
of features with mandatory (must have if all its an-
cestors are selected), inclusive or (selection of zero
or more), exclusive or (selection from many) and
optional (may or may not have) relationships be-
tween features. A domain model consists of class
diagrams that show the relationships between the
main concepts of a domain.
Figure 1 shows the part of the feature model of

the CCCMS SPL that we considered in our eval-
uation, where 2402 possible di�erent combinations
of features can be chosen. Figure 1 also represents,
in the boxes on the bottom left of some features,
the release (R2, R3, and R4) in which some fea-
tures were introduced, since they were not part of
the �rst release.
To resolve a crisis, the coordinator requests the

employees and external resources to execute appro-
priate missions. A crisis is triggered when a witness
places a call to the crisis center and is answered by a
coordinator. The coordinator captures the witness
report in the system (Witness feature), which rec-
ommends to coordinator the missions that have to
be executed based on the current information about
the crisis and resources (Mission feature). The coor-
dinator selects one or more missions recommended
by the system� for example, rescue (Rescue fea-
ture), observe (Observe feature), order a helicopter
transport (Helicopter Transport feature) or remove
obstacles (Remove Obstacle feature); these missions
can be executed more than once and in parallel,

2An editable version of the feature model and statistics
such as the number of valid product con�gurations are avail-
able in the feature model repository and online editor at
http://www.splot-research.org/

3

if necessary. Then, the coordinator, depending on
the mission, assigns internal resources (Internal Re-
sources feature) or requests external ones (Exter-
nal Resources feature) to ful�ll the mission. After
communication between the resources and the co-
ordinator, other information and new missions or
resources can be called. Finally, all resources sub-
mit a �nal mission report so that the coordinator
can �nalize the crisis resolution process.

During missions, if medical services (Medical Ser-
vices feature) are available in the system, CCCMS
employees such as �rst aid worker can request to
the system the victim's medical history information
relevant to his injury from all connected hospital re-
source systems. Also, if available in the CCCMS,
it will be possible to log all processes and decisions
taken (Log feature). Similarly, while assigning in-
ternal resources, authentication in the system, or
when taking important decisions, if available, it is
necessary to request login and authentication in the
system (Authentication feature).

We present more details on the speci�cation and
evolution of the CCCMS in Section 5.

4. Overview of the Evaluated Approaches

For this study we have chosen four approaches
proposed for modeling variabilities in SPL require-
ments speci�cations: PLUSS, Model Templates,
MSVCM, and VML4RE. These were chosen due
to several reasons. First, they are representative
from existing and recently proposed SPL require-
ments modeling approaches. Second, due to our
knowledge and experience with them, as we wanted
to fully explore the best characteristics of the se-
lected techniques. Finally, because they adopt dif-
ferent composition and annotation based mecha-
nisms, which we were interested in confront and
compare to answer to our research questions. There
are other approaches that can be grouped inside the
previous mentioned categories and are very similar
to the ones presented in this evaluation. For exam-
ple, approaches such as PLUC [17] and PLUS [18]
have inspired other works, but they were not taken
into consideration in this study because more re-
cent techniques such as PLUSS [6] and Model Tem-
plates [19] built upon them and provided more de-
tails in their application.

As stated previously, each approach represents
di�erent breeds of work that can be distinguished
according to some design dimensions, such as the

variability representation style and the speci�ca-
tion notation. To address the crosscutting nature
in the variability management, MSVCM [11] and
VML4RE [12, 20] apply aspect-oriented techniques
for modeling scenario variability for SPL. These can
also be classi�ed as compositional-based approaches
in SPL terminology [13]. These approaches use in-
dependent models to express the relationships be-
tween speci�c fragments of the scenarios and SPL
features. This relationship (also referred as map-
ping) between features and other artifacts (e.g.,
scenarios) is usually designated as �con�guration
knowledge� [3].
Other approaches, such as Model Templates [19]

and PLUSS [6], are annotation-based [13] and dif-
fer from the aspect-oriented approaches in deter-
mining which and how speci�c parts of the scenar-
ios are composed according to speci�c selections of
features. In these approaches, variability in sce-
nario speci�cations can be de�ned by adding an-
notations. These annotations are usually speci�ed
using a mapping table that relates speci�c parts of
the scenarios to SPL features, or using UML stereo-
types or notes with the feature name inserted di-
rectly on speci�c elements of the scenarios speci�-
cations. These annotations are placed throughout
the speci�cations to determine which fragments of
the scenario speci�cations are related to features of
the SPL. Therefore, these approaches do not sep-
arate common and variable scenario speci�cations
and do not use a dedicated con�guration knowledge
model to dictate how to compose the scenarios ac-
cording to speci�c feature selections.
There are di�erent ways to express scenarios, for

example using a black-box textual notation. This
notation textually describes and relates actor in-
puts and system responses into two columns of ta-
bles. UML activity diagrams can be used as an al-
ternative to model scenarios to provide a di�erent
concrete syntax based on diagrams. For instance,
PLUSS and MSVCM specify variabilities in textual
scenarios whereas Model Templates and VML4RE
specify variabilities in scenarios using a graphical
representation of the requirements such as activity
diagrams.
Next subsections give an overview of the ap-

proaches investigated in our study. For each ap-
proach, we mention its variability mechanisms,
composition process, that is, how they manage to
derive a product of an SPL, and relate their mecha-
nisms to three di�erent types of requirements vari-
ability [21]:

4

• Variability in function: occurs when a particu-
lar function (detailed as scenarios) might exist
in some products and not in others.

• Variability in control �ow: occurs when a pat-
tern of user-system interaction within a sce-
nario varies from one product to another.

• Variability in data: corresponds to �ne grained
variations and occurs whenever two or more
scenarios share the same behavior and di�er in
relation to the values of a speci�c concept.

4.1. PLUSS

PLUSS is a domain approach to manage variant
behavior in use case models3 [6]. Indeed, it consists
of a customization for feature modeling and a par-
ticular notation for specifying variant behavior in
textual scenarios. These scenarios detail the whole
use case model of an SPL. Next we present PLUSS
according to the following characteristics.

Variability representation mechanisms. Choos-
ing a feature for a product of an SPL might trig-
ger the �selection� of a complete scenario or some
steps in a scenario, or even a use case that encom-
passes several scenarios. Therefore, in order to al-
low the representation of variabilities, existing use
cases, scenarios and individual steps in the scenario
requirements speci�cation must be related manu-
ally to features in the feature model. This kind
of relationship between feature and parts of the
requirements speci�cation is named �require�. Ta-
ble 4.1 shows an example of this kind of annotation
in steps to represent variability; here, the Execute
Rescue Mission scenario is related to the Rescue
Mission feature. Also, steps 2 and 3 are related
with the Medical Services feature. The remaining
steps are commonalities. As such, we do not asso-
ciate them with any particular feature. Variability
in values along the speci�cation such as numbers
or names, is supported using parameters each one
related to an alternative or optional feature in the
feature model. This kind of relationship is named
�instantiate�. When deriving an SPL member spec-
i�cation, the value assigned to a parameter corre-
sponds to the selected subfeature(s) that the pa-
rameter refers to.

3Use scenarios describe a single path of logic whereas
use cases typically describe several paths (usually the basic
course plus any appropriate alternate paths).

Composition process: The process of deriving
products in PLUSS basically (i) �lters optional use
cases, scenarios and steps that are related to fea-
tures not selected in a speci�c product and (ii) as-
signs the selected features to the related parame-
ters. It is important to emphasize that domain en-
gineers have to annotate the speci�cation detailing
which features are related to use cases, scenarios,
steps, and parameters. Thus, there is no indepen-
dent model relating the use case model to features.
In our comparative study, we annotate optional

scenarios and steps to indicate their dependencies
with speci�c features. For instance, Table 4.1 shows
that the Execute Rescue Mission scenario requires
the Rescue Mission feature. In other words, this
scenario is only present in products con�gured with
the Rescue Mission feature. Moreover, Steps 2 and
3 in Table 4.1 are also optional. They are only
present in products that are con�gured with the
Medical Services feature.
Supported Variability: PLUSS supports the three

types of variability: function, control �ow, and
data. Variability in function and control �ow are
made possible by relating entire scenarios and spe-
ci�c scenario steps, respectively, to features in the
feature model. However, it is limited to only one
feature by scenario or step. Variability in data is
possible by adding parameters in the speci�cation
that are then instantiated according to the feature
selection.

4.2. Model Templates

Model Templates (MTs) use activity diagrams to
specify scenarios. In fact, a model template is an
annotated model expressed in the target notation
de�ned by a metamodel [19, 22]. Thus, a model
template could be speci�ed either using UML dia-
grams or any other domain speci�c notation de�ned
using Meta Object Facility (MOF).
Variability representation mechanisms: Domain

engineers have to relate model elements to features,
in order to compose speci�c scenarios for an SPL
product. In case of activity diagrams, for example,
the model elements that can be related to features
are actions, transitions �ows, start and �nal nodes.
However, di�erently from PLUSS, which relates
each individual asset to one speci�c feature, this re-
lationship is more expressive in Model Templates,
since model elements can be related to feature ex-
pressions, represented as propositional formulas in-
volving features. For example, Figure 4.2 shows
two examples of propositional formulas: �medical

5

Scenario: Execute Rescue Mission (SC07).

Description: The intention of the First Aid Worker is to accept and then execute a rescue mission that involves transporting

a victim to the most appropriate hospital.

Related feature: Rescue Mission

Flow of events:

Code Related Feature User Actions System Responses

1 - First Aid Worker transmits injury System updates crisis record with

information of victims to System. the sent injury information.

2 Medical Services First Aid Worker determines victim's System requests victim's medical history from

identity and communicates it to System. all connected Hospital Resource Systems.

3 Medical Services Hospital Resource System transmits System noti�es First Aid Worker of medical

victim's medical information to System. history of the victim which is relevant for his injury.

4 - - System instructs First Aid Worker to bring

the victim to the most appropriate hospital.

5 - First Aid Worker noti�es System that he -

has dropped o� the victim at the hospital.

6 - First Aid Worker informs System that he -

has completed his mission.

Table 1: PLUSS speci�cation of Execute Rescue mission.

services� and �not medical services�. The
use of feature expressions increases expressiveness
because it avoids the need of polluting feature mod-
els with the introduction of arti�cial features, such
as not medical services.

Composition process. Composition of scenarios is
based on the implicit or explicit mechanisms to keep
or remove model elements in the activity diagram.
The explicit mechanism occurs when parts of the
model are included in a product speci�cation be-
cause they are related to a feature expression that
is satis�ed by the product con�guration. For ex-
ample, in Figure 4.2, the activity �System requests
victim's medical history from all connected hospi-
tal resource systems� will be kept in all the SPL
products that contain the medical services feature.
Di�erently, the implicit mechanism occurs when de-
pendencies among model elements are not satis�ed.
For instance, if one transition points to one activity
that is not selected for a speci�c product, it will be
implicitly removed from the product speci�cation.

The model template that speci�es the �Execute
Rescue Mission� use case is shown in Figure 4.2.
This model template is based on annotated activity
diagrams, as discussed in [19]. Note that some ac-
tivities and transitions between activities are anno-
tated with the Medical Services stereotype, as well
as a transition labeled with �A� in the diagram of
Figure 4.2. These elements only appear in products
con�gured with the Medical Services feature. Sim-

ilarly, the transition labeled with �B� has the �not
Medical Services� stereotype, stating that it will
only be present if a product is con�gured without
the Medical Services feature. Therefore, in a sim-
ilar fashion to PLUSS, Model Templates scatters
the con�guration knowledge concern, represented
by annotated feature expressions throughout the
requirements models, and also presents tangling of
di�erent concerns (i.e., features) inside some mod-
els. Furthermore, because of the complexity of
maintaining a generally large model of the overall
system, it is di�cult to distinguish and maintain
possible alternative �ows and con�gure appropri-
ately their related feature expressions. In our ex-
ample of Figure 4.2, if we add only one optional fea-
ture, we almost duplicate the number of activities
and also use the same stereotypes repetitively in-
side the speci�cation. We will further discuss these
problems in Sections 6 and 7.

Supported Variability. Model Templates supports
variability in function and variability in control
�ow. Variability in function occurs when a whole
scenario is annotated with a feature expression,
whereas variability in control �ow occurs when a
speci�c activity is annotated with a feature expres-
sion. As discussed, this is not limited to mapping
a scenario (or activity) to one single feature; in-
stead it allows a �many-to-many� mapping between
model elements and features. It does not support
variability in data.

6

First Aid Worker transmits injury information of
victim to System.

System updates crisis record with the received
injury information

System instructs First Aid Worker to bring
the victim to the most appropriate hospital

First Aid Worker notifies System that he
has dropped the victim at the hospital.

First Aid Worker informs System that he
has completed his mission.

<<NOT Medical Services>>B

First Aid Worker determines victim’s identity and
communicates it to System.

System requests victim’s medical history from all
connected Hospital Resource Systems.

Hospital Resource System transmits victim’s
medical information to System.

System notifies First Aid Worker of medical history
of the victim which is relevant for his injury.

<<Medical Services>>

<<Medical Services>>

<<Medical Services>>

<<Medical Services>>

A

Figure 2: Model Template speci�cation of Execute Rescue mission.

4.3. MSVCM

Similar to PLUSS, Modeling Scenario Variability
as Crosscutting Mechanisms (MSVCM) is an ap-
proach to manage variant behavior using textual
scenarios [11]. However, it has explicit and sepa-
rated mechanisms to de�ne variability and express
con�guration knowledge.

Variability representation mechanisms. To deal
with variabilities between instances of a same sce-
nario, MSVCM proposes new constructs to describe
use cases: aspectual use cases and parameters. Us-
ing aspectual use cases makes it possible to change
the behavior (represented as a sequence of steps)
of an existing scenario. Scenario parameterization
allows the con�guration of scenarios that di�er ac-
cording to values in a speci�c domain.

Composition process: MSVCM aims at separat-
ing common from variant behavior. For instance,
the scenario in Table 2 details the behavior required
by the Rescue Mission feature. There is no step in
this scenario related to the Medical Services fea-
ture, di�erently from the PLUSS speci�cation de-
picted in Table 4.1. In MSVCM, the speci�cation
of the interaction between the aforementioned fea-
tures can be modularized as an advice (see Table 3).
Note that, in MSVCM, scenarios and advices do not
make explicit references to features. Actually, an in-

dependent model, named con�guration knowledge,
is responsible for relating scenarios and advices to
features. Presenting in more details, a con�gura-
tion model relates feature expressions to transfor-
mations that translate SPL assets into product spe-
ci�c artifacts. If a feature expression is evaluated
as True for a given product, the related transfor-
mations are applied.

Three distinct transformations are supported: (i)
select scenario (includes a given scenario in the �nal
product), (ii) evaluate advice (composes an advice
through matched join points), and (iii) bind param-
eter (replaces parameterized textual sentences by
feature data). Therefore, the con�guration knowl-
edge of Table 4.3 covers the con�gurability of the
�rst release of the CCCMS SPL. Note that aspec-
tual use cases in MSVCM support quanti�cation.
For instance, the advice ADV01 quanti�es over all
steps assigned to @InjuryData (see the pointcut

clause of ADV01), which, di�erently from Model
Template, does not require any transformation re-
lated to the not Medical Services feature expression.

Supported Variability. MSVCM transformations
support the three types of variability previously dis-
cussed (variability in function, data, and control
�ow). For instance, the select scenario transforma-

7

Scenario:Execute Rescue Mission (SC07)

Description: The intention of the First Aid Worker is to accept and then execute a rescue mission

that involves transporting a victim to the most appropriate hospital.

Flow of events:

Code User Actions System Responses

SC07.1 First Aid Worker transmits injury System updates crisis record with the sent .

information of victims to System. injury information

@InjuryData

SC07.2 - System instructs First Aid Worker to bring

the victim to the most appropriate hospital.

SC07.3 First Aid Worker noti�es System that he -

has dropped o� the victim at the hospital.

SC07.4 First Aid Worker informs System that -

he has completed his mission.

Table 2: MSVCM speci�cation of Execute Rescue mission.

ADV01

Advice: Medical Service advising Execute Rescue Mission.

Description: Transmits injury information of victim to System.

Pointcut: @InjuryData

Flow of events:

Code User Action System Response

ADV01.1 First Aid Worker determines System requests victim's medical history

victim's identity and information from all connected

communicates it to System. Hospital Resource Systems.

ADV01.2 Hospital Resource System System noti�es First Aid Worker

transmits victim's medical history of medical history of the victim

information to System. relevant to his injury.

Table 3: MSVCM speci�cation of the Advice for Medical Services.

Expression Transformations

CCCMS select scenario SC01, SC03, SC04

Authentication System select scenario SC10

Rescue Mission select scenario SC07, SC08

Witness select scenario SC02

Remove Obstacle Mission select scenario SC09

Medical Services evaluate advice ADV01

Observe Mission select scenario SC06

Table 4: MSVCM con�guration knowledge for release 1 of
the CCCMS SPL.

tion supports variability in function, allowing us to
select speci�c scenarios for a given product con�g-
uration. Di�erently, the evaluate advice transfor-
mation deals with variability in control �ow (as re-
quired by the Medical Services feature that changes
the behavior of the Execute Rescue Mission use
case). Finally, the bind parameter transformation

deals with variability in data, mapping parameters
within the speci�cations to speci�c data obtained
from the feature con�gurations.

4.4. VML4RE

The Variability Modeling Language for Require-
ments (VML4RE) [12, 20] presents a solution for
the composition of model fragments for require-
ments models of an SPL which includes use case
diagrams and their related scenarios represented by
activity diagrams. This approach aims at specify-
ing the composition of requirements models for spe-
ci�c products of an SPL using a separate composi-
tion model that contains transformations (named
actions) specially-tailored for scenarios.
Variability representation mechanisms.

VML4RE provides a set of specialized opera-
tors for referencing and composing parts of the
scenarios and use case model. It does not add

8

annotations to the scenarios as happens with
Model Templates, and it does not use free-format
textual descriptions that can be ambiguous, due
to the interpretation of the natural language [1].
Similar to MSVCM, it employs a separate model
to specify con�guration knowledge, called compo-
sition model. The composition model allows the
speci�cation of transformations (actions), which
are linked to feature expressions.
Composition process. VML4RE composes spe-

ci�c use case models and scenarios according to the
actions expressed in the composition model. Ac-
tions are responsible for di�erent kinds of modi�ca-
tions in the models, such as insert, connect, merge,
remove and replace use cases, actors, packages, ac-
tivity diagrams, steps and their relationships.
Figure 3 shows the scenario Execute Rescue Mis-

sion (SC07) that details the behavior required by
the Rescue mission feature, and Figure 4 shows the
steps that will be merged to the Execute Rescue
Mission activity diagram. The VML4RE code snip-
pet in Figure 5 merges the Injury Data advice with
the Execute Rescue Mission scenario. This code
snippet is part of the composition model that rep-
resents con�guration knowledge, as it relates the
Medical Services feature to some parts of the sce-
narios. The merge action (Line 2) copies the ele-
ments referenced by the expression given in the sec-
ond argument, the advice, to the model referenced
by the expression given in the �rst argument, the
base model. To avoid duplicated model elements
identi�ers, this operator adds a pre�x (the name
of the advice scenario) to the identi�er of the new
model elements. After copying the model elements,
it is necessary to redirect the control �ow to the
steps included in the advice. This is done by adding
new control �ows (Lines 3 and 4) and removing an
unnecessary control �ow (Line 5).
Supported Variability. In VML4RE, variability in

function and control �ow are possible using a sepa-
rate con�guration knowledge model, which may in-
clude entire scenarios or speci�c scenarios steps re-
spectively, according to a feature expression. Vari-
ability in data is also possible replacing generic ac-
tivities or steps by more speci�c activities.

4.5. Summary

Table 5 summarizes the main characteristics of
the techniques explained. The second column refers
to the notation used to model scenarios. PLUSS
and MSVCM use textual scenarios descriptions fol-
lowing a blackbox format. On the other hand,

Model Templates (MT) and VML4RE use UML ac-
tivity diagrams which employ a graphical notation.
The mechanisms to represent variability can be

divided into two types: annotations and com-
positions. Annotation-based techniques introduce
annotations on the scenarios to indicate variable
parts. PLUSS and Model Templates keep or remove
parts of the scenarios depending on the evaluation
of their annotations according to speci�c product
con�gurations.
Composition-based techniques model the vari-

ations as distinct modules and so, to generate
the scenarios for an SPL member, there must be
a composition of variable and common modules.
VML4RE is a compositional approach because ac-
tivity diagrams are composed to add, replace or re-
move parts of the initial base scenarios. MSVCM
is considered to be both compositional and annota-
tive. MSVCM is compositional because it uses dif-
ferent modules to represent commonality and vari-
ability (advices) but it also uses annotations in the
base scenarios to show where the advices should be
applied.
All the approaches support variability in func-

tion, control �ow and data, except by Model Tem-
plates that does not have speci�c mechanisms to
instantiate data inside the scenarios based on spe-
ci�c feature con�gurations.

5. Study Settings

This section presents detailed information about
our comparative study of the SPL requirements en-
gineering approaches just introduced. Section 5.1
presents the phases and assessment procedures of
our comparative study. Section 5.2 describes the
metrics suite adopted to enable the analysis of mod-
ularity, stability and expressiveness of the require-
ments speci�cations using the approaches investi-
gated in our study.

5.1. Study phases and assessment procedures

Our study was organized in three major phases:

1. Speci�cation of the Car Crash Crisis Manage-
ment System SPL (CCCMS) using the four
chosen requirements approaches.

2. Evolution of the speci�cations in the di�erent
approaches, in order to address the change sce-
narios.

3. Quantitative assessments of the di�erent spec-
i�cations and releases of the CCCMS SPL.

9

First Aid Worker transmits injury
information of victim to System.

System updates crisis record with
the received injury information

System instructs First Aid Worker to bring
the victim to the most appropriate hospital

First Aid Worker notifies System that he
has dropped the victim at the hospital.

First Aid Worker informs System
that he has completed his mission.

SC07 - Execute Rescue Mission

ATV01 ATV02 ATV03

ATV04ATV05

Figure 3: VML4RE speci�cation of Execute Rescue mission.

First Aid Worker determines victim’s identity and
communicates it to System.

System requests victim’s medical history from all
connected Hospital Resource Systems.

Hospital Resource System transmits victim’s
medical information to System.

System notifies First Aid Worker of medical history
of the victim which is relevant for his injury.

ATV01 ATV02

ATV03ATV04

ADV01 – Injury Data

Figure 4: VML4RE speci�cation of the Injury Data advice.

In the �rst phase, the CCCMS SPL was speci-
�ed using the di�erent modularization and compo-
sition mechanisms available in the investigated re-
quirements approaches. From the models detailed
in [14], we have developed a set of incremental re-
leases for the CCCMS (they are available online4).
Considering the feature model shown in Figure 1,
we have de�ned a base release (R1), consisting of
the features CCCMS, Authentication System, Res-
cue Mission, Witness, Medical Services, Internal

and External Resources and Observe Mission. Af-
ter that, all speci�cations were evolved to address
the change scenarios corresponding to the releases
R2�R4, that appear in Figure 1. The features in-
serted in the releases required the introduction of
new scenarios and changes to existing ones. For
example, R2 introduced the Log feature, which af-
fects two existing scenarios: SC06-Execute Super
Observer Mission and SC07-Execute Rescue Mis-
sion. However, in the subsequent releases (R3 and
R4), the new use cases introduced (Remove Ob-

stacle Mission and Helicopter Transport Mission)
also had to deal with Log. These change scenar-
ios allowed us to exercise the di�erent modular-
ization and composition mechanisms provided by
each approach, to observe their modularity, sta-

4http://www.mauricioalferez.com/REJ/REJ-Data.htm

bility, and expressiveness. Finally, we applied our
metrics suite (see Section 5.2), to analyze and com-
pare the obtained results for the di�erent speci�ca-
tions.

All speci�cations were written according to align-
ment rules, which were necessary not only to verify
that good practices were used in the approaches,
but also to ensure that the comparison of the spec-
i�cations was equitable and fair. Three researchers
performed these alignment activities. All misalign-
ments found were discussed between the study par-
ticipants and eventual corrections were applied to
the speci�cations to guarantee their alignment. For
example, we ensured that: (i) every variability
was modularized using the appropriate modular-
ization and composition mechanisms of each ap-
proach; (ii) textual and graphic-based approaches
used an equal number of elements that represents
the same abstraction (such as activities in VML4RE
and Model Templates, and textual steps for the sce-
narios in MSVCM and PLUSS approaches); and
(iii) the speci�cations re�ect the same functionali-
ties/features and are consistent between them.

5.2. The metrics suite

Since we are interested in comparing di�erent
SPL requirements engineering approaches from the

10

1.

2.

3.

4.

5.

6.

Variant for (Medical Services) {

 merge (“SC07” , “ADV01”);

 connect (“SC07:: ATV02” , “SC07::ADV01_ATV01”);

 connect (“SC07:: ADV01_ATV04” , “SC07:: ATV03”);

 removeControlFlow (“SC07::ATV02” , “SC07::ATV03”);

}

Figure 5: VML4RE code snippet to insert InjuryData advice.

Technique Dominant Notation Var. Mechanism Supported Var.

MSVCM Textual Compositional-Annotative F / CF / D

PLUSS Textual Annotative F/ CF / D

VML4RE Graphical Compositional F/ CF / D

MT Graphical Annotative F / CF

Table 5: Summary of the main characteristics of the techniques. Notation: (F) Function, (CF) Control Flow, (D)
Data.

modularity, stability, and expressiveness perspec-
tives, we selected a metrics suite that allows the
quanti�cation of these attributes in the di�erent
speci�cations of the case study. Table 6 gives an
overview of the metrics suite used in our study.

Our modularity investigation relies on two met-
rics that we have customized [25] from [23]: degree
of scattering of features (DoS) and degree of tan-

gling of scenarios (DoT). According to equations
(1) and (2), DoS quanti�es the concentration of a
feature over each scenario s ∈ S (the set of sce-
nario speci�cations). Values of DoS are normalized
between 0 (completely localized) and 1 (completely
scattered). The greater the DoS of a feature f is,
the greater is the probability of reviewing di�erent
scenarios when the speci�cation of f has to evolve.
Note in equation (1) that | S | denotes the cardi-
nality of the set S.

DoS(f) = 1−
| S |∑s∈S(Conc(f, s)− 1

|S|)
2

| S | −1 (1)

Conc(f, s) =
number of steps in s assigned to f

number of steps assigned to f
(2)

Likewise, according to equations (3) and (4), DoT
considers how many steps of a scenario are related
to each feature f ∈ F (the set of features). Values
of DoT are similarly normalized between 0 (com-
pletely focused) and 1 (completely tangled). The
greater the DoT of a scenario s is, the greater the
probability of reviewing s when one of the related
features changes. Usually we use the metric Degree

of Focus (DoF) to refer to low tangling (DoT near
to 0) in scenarios. DoF is easily derived from DoT
and corresponds to 1 − DoT . Thus, the lower the
DoF of a scenario s is, the higher is the tangling
(DoT) of features it speci�es.

High values in the degree of focus and low values
in the degree of scattering are usually associated to
well-modularized systems [23, 26, 27].

DoT (s) = 1−
| F |∑f∈F (Dedi(s, f)− 1

|F |)
2

| F | −1 (3)

Dedi(s, f) =
number of steps in s assigned to f

number of steps of s
(4)

Note that in equations (2) and (4) to evaluate
these metrics we have to assign features to the in-
dividual steps of a speci�cation. We follow the con-
�guration dependency analysis as a guide [25], con-
sidering that a step st depends on a feature f if, and
only if, the selection of f triggers the con�guration
of s. Similarly we assigned the modeled activities
to features in the Model Templates and VML4RE
approaches.

Regarding our stability assessment, we adapted
a metrics suite that has also been validated and
used to compare semantic and syntactic approaches
for aspect-oriented requirements engineering [24].
These metrics quantify the stability of speci�ca-
tions and code elements that represent a software
artifact in the context of evolutionary scenarios. In
our study, we used them to quantify the stability of
the requirements speci�cations along the di�erent

11

Attribute Metric

Modularity Degree of scattering of features [23].

Degree of focus of scenarios [23].

Stability of the speci�cations Number of steps introduced or changed between two releases [24].

Stability of the compositions Number of compositions items introduced or changed between two releases [24].

Stability of the CK Number of con�guration items introduced or changed between two releases.

Expressiveness of the composition The ratio between the number of composition items and number of matched

join points [24].

Expressiveness of the CK Number of tokens required to specify the con�guration knowledge.

Table 6: Metrics suite used in our study.

releases of the CCCMS SPL. We measured the sta-
bility of the speci�cations and the stability of the
compositions. They are quanti�ed by the number
of modi�ed or introduced steps or scenarios, and
the number of modi�ed or introduced composition
items between two subsequent releases. In addition,
we have also proposed a metric that quanti�es the
stability of the con�guration knowledge.

Finally, we investigate the expressiveness of the
speci�cations. For measuring the expressiveness of
the con�guration knowledge, we count how many
tokens are required to map features to other mod-
els. For example, in PLUSS we have the �related
feature� column that associates steps to features.
Therefore, in the case of the PLUSS speci�cation
of Execute Rescue Mission shown in Table 4.1, we
associate steps 2 and 3 with the Medical Services
feature. Thus, the total count of tokens for this
scenario is 4. We count tokens similarly for Model
Templates, using the stereotype annotations. In
the case of MSVCM and VML4RE, we count all
tokens used in their respective dedicated con�gu-
ration knowledge models (Subsection 7.1 provides
concrete examples). Although the unit to quan-
tify expressiveness of the con�guration knowledge
is rather low level, it allowed us to uniformly as-
sess the di�erent representations of the con�gura-
tion knowledge. To measure expressiveness of the
compositions, we use the notion of reachability [24],
computing the ratio between the number of matched
join points and the number of composition items.
Finally, we only measure stability and expressive-
ness of compositions for the MSVCM and VML4RE
compositional-based approaches. Since the other
two approaches are annotation-based, variant be-
havior is already composed into speci�cations.

6. Assessment of Variability Modularity

This section presents our analysis of modularity
regarding scattering of features and tangling of sce-
nario speci�cations. Here we consider the di�erent
releases of the case study speci�ed using each tech-
nique and, as mentioned before, we use a metrics
suite that quanti�es the degree of scattering of fea-
tures (Section 6.1) and the degree of tangling and
degree of focus of speci�cations (Section 6.2).

6.1. Degree of scattering of features

The degree of scattering (DoS) of a feature quan-
ti�es to what extent the speci�cation of a feature is
disperse. In our study, most of the feature speci�ca-
tions are well localized, which led to speci�cations
with low DoS. Actually, only two features present
some scattering: Log and Authentication.
The speci�cation of Log imposes a homogeneous

behavior that scatters throughout all use cases re-
lated to the Mission sub-feature (see Figure 1) in
the case study. Di�erently, the Authentication fea-
ture requires two distinct procedures: (i) one re-
lated to the login behavior; and (ii) another one
that veri�es if an employee had already been au-
thenticated. Using the compositional approaches
(VML4RE and MSVCM), we could modularize these
procedures in independent assets (advices). Never-
theless, such decision leads to the scattering of the
Authentication feature speci�cation, which could
also be realized in the annotative based speci�ca-
tions. Figure 6 shows how we could separate these
procedures using VML4RE. However, after consid-
ering other factors, such as the growth of the con-
�guration knowledge, we decided to merge the com-
plete speci�cation of the Authentication feature in
VML4RE (see Figure 7). In fact, this was a contro-
versial decision, since merging both procedures in a
single asset eliminates the Authentication feature

12

System determines the most
appropriate employee

SC03 – Assign Internal Resource

ATV03

ATV01

System Sends Employee
mission information

ATV02

Employee informs system
he accepts the mission

System assigns Employee to
the crisis

ATV04

System checks whether
Employee is logged in

ADV02 – Authorization

ATV01

If Employee is not logged in,
system prompts to login (SC10)

ATV02

System prompts Employee
for login id and password

SC10 – User Authentication

ATV03

ATV01

Employee enters login id and
password into System

ATV02

System validates the login
information

Variant for (Authentication) {
merge (“SC03” , “ADV02”);
removeControlFlow (“SC03::START” , “SC03::ATV01”);
connect (“SC03::START” , “ADV02::ATV01”);
connect (“ADV02::ATV02” , “SC03:: ATV01”);
. . .

}

Figure 6: Separation of the Authentication feature in one Authorization advice (ADV02) and one Login scenario (SC10) in
VML4RE. In this case, the Authorization advice could be merged into di�erent scenarios.

scattering, even though it increases the coupling
between the mentioned procedures, which hampers
the possibilities to reuse the speci�c steps of the
authorization procedure in other scenarios. Due to
the small overhead on the con�guration knowledge,
we decided to specify the Authentication feature in
MSVCM using a decomposition such as depicted in
Figure 6.

For the �rst release (R1), Table 7 details the re-
sults of the feature assignment process, which re-
lates features to the scenarios (and advice) steps.
As explained in Section 5, the Log feature was not
detailed in the �rst release of the CCCMS speci�ca-
tions. In that case, only the Authentication feature
presents some scattering, leading to a DoS of 0.56
in MSVCM, Model Templates, and PLUSS speci�-
cations. Considering the other features, that were
well modularized in the �rst version (leading to a
DoS of zero), the resulting average DoS of those
techniques was 0.07 (see Figure 8). Since we merged
the speci�cations of the Authentication feature in
VML4RE, all features were completely modularized
in VML4RE� leading to an average degree of scat-
tering of zero.

Tables 8 and 9 summarize the assignment of fea-
tures to the speci�cations' steps of the last release.
Since release R2, we could modularize the Log spec-
i�cation using both MSVCM and VML4RE. For
this reason, introducing new scenarios in the later
releases (R3�R4) of MSVCM reduced the average
degree of scattering (leading to an average DoS of
0,05). Di�erently, the Log speci�cations increased

System checks whether
Employee is logged in

SC10 – User Authentication

ATV01

System prompts Employee
for login id and password

ATV04

ATV02

Employee enters login id and
password into System

ATV03

System validates the login
information

Not valid

Valid

LoggedIn

Not LoggedIn

Figure 7: In this version, both Authorization and Login
behavior are represented as a single scenario (SC10) in
VML4RE. This version, although reducing the scattering of
the Authentication feature, compromises the reuse of speci�c
steps related to authorization.

13

the average degree of scattering in PLUSS as well
as in Model Templates (DoS of 0,13 and 0,11 re-
spectively). Actually, the DoS was even higher in
PLUSS because the complete behavior of the Log
feature was scattered throughout the missions spec-
i�ed using the PLUSS notation (See values of 5 from
SC06 to SC09 in Table 9). In contrast, the Model
Templates speci�cation required basically one Log

Activity in each mission, indicating the right point
in the speci�cation where the log behavior had to
start (See values of 1 from SC06 to SC09 in Table 9).
For this reason, we could say that the Log behavior
in Model Templates was partially extracted from
the missions and speci�ed in a particular activity
diagram (SCLog - Log Service).

To understand the behavior of a mission, for ex-
ample, it would be necessary to compose the Log
behavior with the existing mission speci�cations.
Otherwise, we would not be able to reason about
the complete speci�cation of each mission. There-
fore, without proper mechanisms for composing spec-
i�cations, as supported by MSVCM and VML4RE,
relating speci�cations by means of references could
harm understandability, even though this design
leads to a better modularization. Using PLUSS, we
could have speci�ed the Log behavior in a similar
fashion as we have speci�ed it using Model Tem-
plates, but the mentioned problem would also have
arisen with PLUSS.

After quantifying the average DoS metric (Fig-
ure 8), we noticed that MSVCM and VML4RE re-
duce, or even eliminate, the scattering of features
for the releases of the CCCMS SPL that we mod-
eled. Di�erently, we are not able to eliminate the
Log scattering in PLUSS and Model Templates spec-
i�cations, mainly because they do not support the
composition of common and variant behavior.

6.2. Degree of tangling and degree of focus of spec-

i�cations

Degree of tangling (DoT) and degree of focus
(DoF) (that corresponds to 1-DoT) measure how
dedicated a scenario is to one or more features of the
SPL. Figure 9 summarizes the corresponding aver-
age Degree of Focus (DoF) of the evaluated speci-
�cations. Note that there is no tangling (DoT=0)
in the MSVCM and VML4RE speci�cations in the
CCCMS, which leads to an average DoF equal to
one in those techniques.

0,07

0,12
0,13 0,13

0,07

0,11 0,11 0,11

0,07

0,06
0,05 0,05

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

R1 R2 R3 R4

D
o

S
V

al
u

e

Releases

Degree of Scattering (DoS) Summary

PLUSS

Model Templates

MSVCM

VML4RE

Figure 8: Average degree of scattering.

In contrast, we were not able to remove the tan-
gling associated to the Authentication and Log fea-
tures using either PLUSS or Model Template. This
tangling occurs because:

• In both techniques (PLUSS and Model Tem-
plates), the Authentication behavior was speci-
�ed within the speci�cation of the scenario that
assigns tasks to internal resources of the CC-
CMS. Therefore, using these techniques, the
speci�cations regarding Authentication are tan-
gled with the assignment tasks to internal re-
source speci�cations.

• Similarly, the speci�cations using both tech-
niques tangle the Log behavior within the spec-
i�cations of each mission� since all relevant
information (such as used strategies, duration
of resolution, and problems encountered) have
to be registered for each assigned mission.

In fact, the resulting tangling was even higher in
PLUSS, because the entire Log speci�cation was
scattered throughout several scenarios as it was pre-
viously explained. In a di�erent way, we introduced
just one activity related to the Log behavior in each
mission speci�ed using Model Templates.

The analysis of DoS and DoF here suggests that
most of the features require localized and indepen-
dent speci�cations. This is a di�erent result when
comparing with other studies that evaluated these
metrics in source code. For instance, Marc Eaddy
found that 95% of the concerns are scattered through
the modular units of a source code [23]. Identifying
why those �ndings were so di�erent is a matter of
future work.

14

0,84

0,74
0,7 0,68

0,85 0,82 0,82 0,82

1 1 1 11 1 1 1

0

0,2

0,4

0,6

0,8

1

1,2

R1 R2 R3 R4

D
o

F
V

al
u

e

Releases

Degree of Focus (DoF) Summary

PLUSS

Model Templates

MSVCM

VML4RE

Figure 9: Average degree of focus.

7. Analysis of Expressiveness

This section presents our analysis of expressive-
ness considering the di�erent releases of the case
study for each technique. We used a metrics suite
that quanti�es the expressiveness of the con�gura-
tion knowledge (Section 7.1) and the expressiveness
of the compositions (Section 7.2).

7.1. Expressiveness of the con�guration knowledge

In our study, the expressiveness of the con�gu-
ration knowledge was measured in terms of tokens.
In the case of PLUSS and Model Templates, we
count tokens looking at the annotations on steps
(PLUSS) and transitions between activities (Model
Templates). For example, the annotation �Medical
Services� has 2 tokens in PLUSS or Model Tem-
plates. For MSVCM and VML4RE, we count to-
kens looking at the speci�c models used to describe
the compositions. For example, �Medical Services

evaluate advice ADV01� in the MSVCM con�g-
uration knowledge model in Table 4.3 has 5 to-
kens. An example for VML4RE can be found in
the composition model in Figure 5 lines one, two
and six, where �Variant for (Medical Services)

{merge (�SC07� , �ADV01�);}� has 19 tokens.
Looking at the absolute numbers (Figure 10),

we notice that graphics-based approaches Model
Templates, and specially VML4RE, are more ver-
bose than PLUSS and MSVCM to describe the
con�guration knowledge. PLUSS and Model Tem-
plates only associate features with variant behavior.
MSVCM and VML4RE use dedicated models to de-
scribe all compositions, both common and variable.
If we observe the growth of these numbers, as il-

lustrated in Figure 11, from the �rst release (R1) to
the last (R4), we notice that it is greater in PLUSS

14
34

47
5952

91 100 109

38 43 49 51

122

182

234

286

0

50

100

150

200

250

300

350

1 2 3 4

N
u

m
b

e
r

o
f

To
ke

n
s

Releases

Expressiveness of Configuration Knowledge

PLUSS

Model Templates

MSVCM

VML4RE

Figure 10: Expressiveness of the con�guration knowledge.

(321%) than the others. The graphics-based ap-
proaches Model Templates (109.62%) and VML4RE
(134.43%) grow in a similar rate. The growth rate
for Model Templates could be a lot higher (compa-
rable with PLUSS) if we had not used one separate
diagram for the Log Services feature, as already dis-
cussed. Based on the collected measurements, we
can argue that while composition-based approaches
require a bigger e�ort to build a �rst version of a re-
lease (larger upfront investment) than annotation-
based approaches (PLUSS and Model Templates),
their evolution happens in smaller increments, by
requiring a reduced number of new constructs. The
large numbers for VML4RE indicates that its com-
position language could be improved using new ac-
tions and removing unnecessary syntactic sugar to
reduce verbosity when specifying the con�guration
knowledge.

321,43

109,62

34,21

134,43

0

50

100

150

200

250

300

350

PLUSS Model
Templates

MSVCM VML4RE

P
e

rc
e

n
ta

ge
 (

%
)

Percentual growth of CK

Figure 11: Growth of the con�guration knowledge.

7.2. Expressiveness of compositions

From the four approaches under investigation,
only MSVCM and VML4RE o�er speci�c mecha-

15

nisms to compose common and variant behavior.
To quantify the expressiveness of compositions, we
use the notion of reachability [24], computed as the
ratio between the number of matched join points
and the number of composition items [24]. Com-
position items in MSVCM correspond to the point-
cut clauses of advice. Therefore, MSVCM composi-
tions are de�ned within the speci�cation language,
whereas composition items in VML4RE correspond
to actions such as the connect construct detailed in
each variant element of the VML4RE con�guration

language.

In our study, the reachability of VML4RE com-
positions is one� each VML4RE composition reaches
a particular join point5. In contrast, MSVCM sup-
ports di�erent mechanisms for quanti�cation. For
instance, the Log advice is applied after all sce-
narios named with the pattern %mission%. Con-
sequently, the average expressiveness of the compo-
sition increases (see Figure 12) in the later releases
of MSVCM speci�cations, since new missions are
introduced.

1,00

1,33

1,67

2,00

1 1 1 1

0

0,5

1

1,5

2

2,5

R1 R2 R3 R4

R
at

io
 o

f
Jo

in
p

o
in

ts
 b

y
P

o
in

cu
t

(J
/P

)

Releases

Reachability

MSVCM

VML4RE

Figure 12: Average degree of reachability.

By comparing these results with the stability of
composition assessments (Section 8.2), we could re-
alize a strong correlation between the expressive-
ness and the stability of the compositions� the
greater the stability, the greater the expressiveness
of the compositions. Introducing new speci�cations
that satisfy a composition item does not require
changes in the composition concern. Besides that, a

5An early version of VML4RE [28] had some language
constructs that simplify matching speci�c fragments (i.e.,
join points) in the scenarios reducing the verbosity of the
composition model. For example, pointcut designators such
as �equal�, �startsBy�, ��nishesWith�, �contains�, and quan-
ti�ers such as �*�, �?�.

potential side e�ect regarding expressiveness is that
undesired joinpoints might be caught by a composi-
tion item. In those situations, the composition item
must be re�ned.

8. Analysis of Stability

This section presents our analysis of stability con-
sidering the di�erent releases of the case study spec-
i�ed with each technique. We used a metrics suite
that quanti�es the stability of the speci�cations (Sec-
tion 8.1), the stability of the compositions (Sec-
tion 8.2), and the stability of the con�guration knowl-
edge (Section 8.3).

8.1. Stability of speci�cations

Figure 13 shows how many steps in the MSVCM
and PLUSS approaches (or activities in the Model
Templates and VML4RE approaches) have been in-
troduced to evolve the speci�cations from one re-
lease to another. It can be noticed that more steps
were introduced to evolve the annotative techniques
(PLUSS and Model Templates), since the speci�ca-
tion for the Log feature is not well modularized.
For instance, the second release introduced the

Log feature, whose entire speci�cation is scattered
throughout the Rescue and Observe missions of
PLUSS speci�cations. Since �ve steps were re-
quired to specify the Log feature, we had to in-
troduce a total of ten new steps in the second re-
lease of the PLUSS speci�cations (�ve steps for
each scenario that requires the Log behavior). In
the Model Templates speci�cation, one activity was
introduced in each mission (to indicate where the
Log behavior should start) and a new activity dia-
gram for specifying the Log behavior was created.
Using the compositional approaches (MSVCM and
VML4RE), only steps for describing the Log behav-
ior had to be created, in such a way that no addi-
tional steps were introduced in the original speci�-
cations of Rescue and Observe missions.
The latter releases (R3 and R4) detailed the be-

havior of Helicopter Transport and Remove Ob-
stacle missions, which also require the log behav-
ior. Besides the steps related to those missions, in
PLUSS we had also to detail the steps of the Log
behavior within both missions. For this reason, the
number of introduced steps is higher in PLUSS than
in the other approaches. For instance, in Model
Templates we just had to specify the behavior of
the new missions, plus one speci�c activity for in-
dicating the point where the log behavior starts.

16

10

11 11

5

8 8

7

9 9

5

8 8

0

2

4

6

8

10

12

R2 R3 R4 R2 R3 R4 R2 R3 R4 R2 R3 R4

PLUSS PLUSS PLUSS MSVCM MSVCM MSVCM MT MT MT VML4RE VML4RE VML4RE

Added Steps

Figure 13: Number of steps introduced in each release.

4

3

5

3

0

1

2

3

4

5

6

PLUSS MSVCM ModelTemplate VML4RE

Sc
e

n
a

ri
o

s
In

tr
o

d
u

ce
d
 a

n
d
 M

o
d

if
ie

d
 R

2
‐R

4

Total Impact

Figure 14: Stability of the speci�cations.

Moreover, we did not have to introduce additional
steps using MSVCM and VML4RE, which reduced
the number of introduced steps.
Also regarding the stability of speci�cations, Fig-

ure 14 summarizes the number of scenarios that
have been introduced and modi�ed, according to
changes required to evolve the speci�cations from
the �rst to the last release. In Figure 14 PLUSS
and Model Templates required a higher number of
introduced and modi�ed scenarios. Indeed, the evo-
lution of SPL speci�cations using the annotative
style requires to take into account many places af-
fected by the propagation of the changes.

8.2. Stability of compositions

We measured stability in terms of the number
of composition items required to specify each CC-
CMS release. Since in PLUSS and Model Templates
variability is tangled with core functionality, only
MSVCM and VML4RE were evaluated. Remem-
ber that composition items in MSVCM are speci-
�ed in the pointcut clause of advices, whereas com-
positions in VML4RE are speci�ed in the variant

construct from the textual description in that lan-
guage.
In the �rst release, since each of the optional fea-

tures (Authentication andMedical Services) changes
a speci�c point of CCCMS, the number of compo-
sition items in both techniques is the same (Fig-
ure 15). In the second release, the Log behavior was
speci�ed in one MSVCM advice whose composition

item refers to all missions. Di�erently, two compo-
sition items were required to indicate that Log ad-
vice in VML4RE should be applied to the Observer
and Execute Rescue missions. For that reason, the
number of composition items in MSVCM increased
by one in the second release, while in VML4RE the
number of composition items increased by two in
the second release.
Likewise, introducing new missions that had to

be advised by the Log behavior did not require
new composition items in MSVCM. However, new
composition items had to be introduced to connect
the Log advice speci�ed in VML4RE to the new
missions speci�ed in the third and fourth releases
of the case study. This leads to a worse stability
of the compositions, when compared to MSVCM.
This highlights the bene�ts of using more expres-
sive mechanisms to compose common and variant
behavior.

8.3. Stability of the con�guration knowledge

Stability of the con�guration knowledge is quan-
ti�ed by measuring the modi�cations (changes or
insertions) made to the con�guration knowledge.
PLUSS and Model Templates do not provide spe-
ci�c and separate models to represent the con�gura-
tion knowledge. As a consequence, this knowledge
is scattered throughout the speci�cations in the
form of feature annotations for steps (PLUSS) and

17

2

3 3 3

2

4

5

6

0

1

2

3

4

5

6

7

R1 R2 R3 R4

N
u

m
b

e
r

o
f

ad
d

e
d
 c

o
m

p
o

si
ti

o
n
 i

te
m

s

Releases

Stability of Compositions

MSVCM

VML4RE

Figure 15: Stability of compositions.

stereotypes (Model Templates). While in VML4RE
we observe changes and additions of variants in the
VML4RE composition speci�cation, in MSVCM
we observe changes and additions of con�guration
items in the con�guration knowledge.
Figure 16 summarizes our �ndings (lower is bet-

ter). We can notice that the composition-based ap-
proaches tend to be more stable than annotation-
based approaches PLUSS and Model Templates.
This may be explained by the fact that MSVCM
and VML4RE have speci�c models to deal with
the con�guration knowledge, while in PLUSS and
Model Templates, the knowledge is spread across
multiple artifacts. For Model Templates, due to the
modularization of the Log Service feature in one
diagram, which is re�ered by other scenarios, the
values for insertions in R3 and R4 (Figure 16(b))
do not grow as much as PLUSS that does not mod-
ularize the Log behavior. MSVCM and VML4RE
requires the least numbers of insertions and mod-
i�cations during the evolution scenarios as it will
be shown in the Impact metric in Figure 16(b)).
Further studies could indicate if that holds true for
most cases, and in which cases these compositional
techniques would not be of good use.

9. Summary of Results

Figure 17 complements the analysis already pro-
vided in Sections 6 to 8 with a summary of the
evaluation results for the four CCCMS releases. For
each metric we assigned a symbol that helps to dis-
tinguish which techniques have good, average or
bad results in comparison with the others. The up-
wards arrow means �good�, the rightwards arrow
means �average�, and the downwards arrow means

0 0

1

0

1 1

6

0 0

2

0 0
0

1

2

3

4

5

6

7

R2 R3 R4

N
u

m
b

e
r

o
f

m
o

d
if

ic
at

io
n

s

Stability: Modifications to
Configuration Knowledge

MSVCM

VML4RE

Model Templates

PLUSS

(a) Modi�cations.

1 1
00

1 1

12

3 3

10
11 11

0

5

10

15

R2 R3 R4

N
u

m
b

e
r

o
f

in
se

rt
io

n
s

Stability: Insertions to
Configuration Knowledge

MSVCM

VML4RE

Model Templates

PLUSS

(b) Insertions.

Figure 16: Stability of the con�guration knowledge.

�bad�. The assignment of each symbol was deter-
mined automatically using the conditional format-
ting feature of MS Excel which assigned symbols to
series of values based on percentages. In our metrics
we used the following percentages limits: bad ≥ 67,
average< 67 and≥ 33, good< 33. For stability and
expressivity of the compositions that only applied
to two techniques, we used short arrows indicating
which one had a better value (upwards arrow) than
the other (downwards arrow).

In general, the lower the value obtained for a met-
ric, the better the approach for the correspondent
attribute. However, metrics such as Degree of Fo-
cus (DoF) and Reachability follow an inverse logic,
therefore higher values are interpreted as desired
values. For example, in DoS the percentage limits
to assign the symbols were: good ≥ 67, average <
67 and ≥ 33, and bad < 33.

Modularity for each technique was measured
as the means of DoS and DoF for the four re-
leases. The compositional approaches VML4RE
and MSVCM had better results in both DoS and
DoF. Their scenario speci�cations better applied
a modular design. VML4RE and MSVCM help

18

Attribute Metric PLUSS MT MSVCM VML4RE

Modulartiy Average DOS 0,113 0,100 0,058 0,000

Average DOF 2,960 3,310 4,000 4,000

Stability of specifications Added steps 32 25 21 21

Impact 4 5 3 3

Stability of composition Added compositions - - 2,75 4,25

Stability of CK Modifications 2 6 1 2

Insertions 32 18 2 2

Expresiv. of compositions Reachability - - 1,5 1,0

Expresiveness of CK Percentual Growth 321,43 109,62 34,21 134,43

Impact = Added + Modified scenarios

Summary

Figure 17: Summary of evaluation results.

to specify each feature separately in only one or
few scenarios, which leads to DoS values very close
to 0 for MSVCM and 0 for VML4RE. Similarly,
VML4RE and MSVCM speci�ed each scenario fo-
cusing on only one or few features which resulted
in a good DOF=4 in comparison with Model Tem-
plates (DOF=3,31) and PLUSS (DOF=2,96). We
believe that the annotations mechanism used by
Model Templates and PLUSS fail to improve mod-
ularity of scenario speci�cations, even with few fea-
tures that are scattered through the system such as
LOG and Authorization.

Stability of speci�cations, composition and con-
�guration knowledge (CK) was measured as the
sum of all the individual values for stability metrics
obtained in all the releases. Similarly, the Impact
was measured as the sum of added and modi�ed
scenarios in all the releases. The compositional ap-
proaches VML4RE and MSVCM obtained the same
values for the metrics of stability of the speci�ca-
tions, this means that the most noticeable di�er-
ences between the compositional approaches (apart
from their notation) are found in their expressiv-
ity and not in the speci�cation of the scenarios or
modularity itself. On the other hand, PLUSS was
the best technique to keep almost intact CK spec-
i�cations (Modi�cations=2) however, it was done
at the price of many insertions (Insertions=32). A
di�erent phenomena happens with the rest of the
approaches that faced evolution of CK combining
few modi�cations and insertions of CK.

Expressiveness of CK was taken directly from
Figure 11. It was measured as the mean of Reach-
ability for the four releases. VML4RE had a low
Reachability (=1) compared to MSCVM (=1.5).
The Percentual Growth of Expressiveness of CK in
MSCVM (=34,21) was the best while in PLUSS it
was the worse (=321,43). The results of expres-
sivity of VML4RE are similar to the ones of Model

Templates (Percentual Growth of Expressiveness of
CK=134.43 and CK=109.62) that does not have
any separate con�guration knowledge model. We
see that the lack or presence of quanti�cation mech-
anisms a�ected Expressivity, and Expressivity af-
fected Stability of compositions and CK. For ex-
ample, the lack of quanti�cation mechanisms in
VML4RE limited the Reachability of its pointcuts
and in�uenced negatively the Stability of composi-
tions and CK because of new required variants and
compositions items to match elements introduced
in new scenarios.

10. Threats to conclusion validity

The type and size of the investigated releases
limit our conclusions. However, we chose the CC-
CMS SPL because the original speci�cations [14,
29] as well as the the scenarios for each technique6

are publicly available which helps other researchers
to replicate and extend our study.
We believe that CCCMS SPL is a good choice for

conducting our assessments. The CCCMS became
a benchmarking for SPL development since a call
for a special issue of a journal invited for contribu-
tions using the same set of requirements detailed
here [14, 29]. Therefore, a body of knowledge was
established using the CCCMS SPL. In addition, it
presents several Mandatory, Optional, and Or fea-

tures, and some of the optional features change the
base speci�cation in a single place, whereas oth-
ers (e.g., the Log feature) change the speci�cation
throughout di�erent scenarios.
With respect to the type and size of the releases,

we mainly concentrate our study on increments to
the base speci�cation (the �rst release). Other types
of changes were not covered here, such as bug �xes.

6http://www.mauricioalferez.com/REJ/REJ-Data.htm

19

Besides that, some of our conclusions are still valid
and could be generalized. For instance, evolving
a localized feature speci�cation should not reveal
signi�cant di�erences among the investigated tech-
niques. Di�erently, if we had to evolve the Log
speci�cation, which is not well localized in PLUSS
and Model Templates, our assessment procedure
would reveal that these techniques are less stable
than MSVCM and VML4RE� since several places
of the speci�cations written in PLUSS and Model
Templates are likely to change. Moreover, we do
not have to change or introduce new requirements
to the original SPL speci�cations, using the releases
presented in this paper. Consequently, they have
not been proposed to favor any particular approach.
In addition, the chosen metrics suite could also be

considered a threat to the validity of our work be-
cause it could be engineered to favour one approach
over the others. However, some of the metrics (DoS,
DoF, reachability, and stability of the compositions
and speci�cations) have been previously used in re-
lated works [25, 24]. The other metrics proposed to
evaluate the con�guration knowledge (expressive-
ness and stability) are contributions of this paper,
and we acknowledge their validation as a matter of
future work. Particularly, we use the number of
tokens to count the expressiveness of the con�gura-
tion knowledge. Therefore, our �ndings regarding
this metric depend on the concrete syntax of the
current languages used to specify the con�guration
knowledge in each technique. As a future work, we
want to investigate the use of other abstractions to
quantify the expressiveness of di�erent representa-
tions of con�guration knowledge.

11. Related work

There are several works that are connected to our
research. Here we introduce these works and relate
them to our study.

11.1. Aspect-oriented assessment

Metrics for quantifying scattering and tan-
gling [23, 7] have been applied for assessing mod-
ularity in AO programs. In fact, we could have
adapted absolute measures for quantifying scatter-
ing and tangling in our context, such as Concern
Di�usion over Components and Concern Di�usion
over Lines of Code [30]. However, absolute mea-
sures just reveal if a feature is scattered or not�
without any information about the degree of its

scattering. In fact, this limitation hinders the com-
parison of modularity between di�erent speci�ca-
tions. Consequently, we customized a metrics suite
proposed by Eaddy and his colleagues [23].

To improve our con�dence in the results, we
also measure the stability of the speci�cations and
compositions by means of a suite of metrics that
had already been validated and used in a previ-
ous work [24]. However, here we use these metrics
to evaluate stability of aspect-oriented approaches
for specifying SPL scenarios, whereas Chitchyan et
al. proposed and used those metrics to assess sta-
bility of semantic and syntactic aspect-oriented ap-
proaches for requirements engineering (AORE). For
this reason, we had to extend their metrics suite to
assess not only the stability of speci�cations and
compositions, but also the stability and expressive-
ness of the con�guration knowledge.

Previously, some authors of this paper presented
a comparison of modularity involving MSVCM
and PLUSS [25]. However, here we contribute
with a deeper evaluation, considering other qual-
ity attributes (such as stability and expressiveness)
and additional techniques (Model Templates and
VML4RE). Finally, also regarding assessment of
aspect-oriented approaches for the earlier stages of
software development, Sampaio et al. compared
di�erent AORE approaches with respect to the ac-
curacy of resulting speci�cations and the e�ort re-
quired to build aspect compositions [31]. We post-
pone a similar evaluation in our context to a future
work.

11.2. Aspect-oriented requirements engineering

Here we mainly evaluated four approaches for
specifying variability in SPL scenarios. Indeed,
two of these approaches (MSVCM and VML4RE)
are built upon aspect-oriented constructs. Cer-
tainly, there are a number of other aspect-oriented
approaches for requirements engineering (AORE),
such as [32, 33, 34]. Although these works have not
been proposed to specify SPL requirements, their
support for composition might address the types of
variability shown in this paper.

There are other works speci�cally proposed to
represent variability in requirements models. For
instance, PLUC [17] extends the use case notation
for SPL engineering. It follows an annotative style,
and do not present a good separation between the
problem and the solution spaces. In fact, we had
already investigated PLUC in a previous work [35],

20

which led us to conclude that PLUC is not main-
tainable at all.

The model composition language MATA (Model-
ing Aspects using a Transformation Approach) [36]
allows engineers to specify compositions of UML
class diagrams, sequence diagrams, and state-
charts. Therefore, similarly to MSVCM and
VML4RE, MATA also separates the base speci�ca-
tion (named Kernel models in [36]) and the variant
speci�cations. In [37] there is a possible adap-
tation of MATA for modeling scenarios employing
sequence diagrams for non-SPL systems.

12. Final Remarks

In this paper, we presented an empirical study
that compares and analyzes four existing ap-
proaches that address the modeling and manage-
ment of variabilities in SPL requirements speci�-
cations. The investigated approaches are repre-
sentative of a set of new variability management
approaches. They re�ect di�erent perspectives of
existing approaches, such as: (i) graphics-based
versus textual-based; and (ii) annotation versus
composition-based. In our study, they were eval-
uated from the perspectives of modularity, expres-
siveness and stability through the speci�cation and
evolution of a Car Crash Crisis Management Sys-
tem SPL.

Our �ndings have shown that the composition-
based approaches have greater potential to produce
stabler and modular SPL requirements speci�ca-
tions. In our study, MSVCM and VML4RE pro-
moted the modular speci�cation of the scenarios
and con�guration knowledge, which brought more
stability to SPL requirements speci�cations during
their respective evolution. It was also observed
that the aspect-oriented mechanisms of MSVCM
great contributions to improve the modularization
of variabilities in the scenario speci�cation. In par-
ticular, scenario advices were used to modularize
variabilities which are composed with the SPL core
scenarios. Also, the absence of quanti�cation mech-
anisms in the VML4RE speci�cations have neg-
atively contributed to reduce their expressiveness
and stability.

The following recommendations were derived from
the analysis and results of our study, which might
contribute to the de�nition of new variability man-
agement approaches for requirements speci�cations:

[(a)]

1. provide support to the separated and modu-
lar speci�cation of the con�guration knowledge
between variability and requirements models;

2. adoption of quanti�cation mechanisms in the
speci�cation of the con�guration knowledge,
aiming at simplifying and improving its expres-
siveness;

3. use of early aspects techniques to modularize
crosscutting scenarios and promote their seam-
less composition with SPL core requirements
thus contributing to variability management.

All these derived guidelines re�ect the bene-
�ts and advantages that aspect-oriented techniques
can bring to the variability management in the
SPL requirements speci�cations. In fact, some of
these recommendations are being used to improve
MSVCM and VML4RE.
By the metrics we chose, aspect-oriented ap-

proaches are superior, particularly where highly
cross-cutting features exist, but there may be other
unexamined factors, such as learning curve and us-
ability, where the opposite may be true. As a future
work, we aim to investigate other quality attributes
such as e�ort and usability of the techniques.

Acknowledgments

This work has been partially supported by (a)
the Fundacão para a Ciência e a Tecnologia, Por-
tugal, grant SFRH/BD/46194/2008; (b) the Na-
tional Program of Academic Cooperation, funded
by CAPES, grant Procad Nr 01/ 2007; (c) the Na-
tional Institute of Science and Technology for Soft-
ware Engineering (INES), funded by CNPq and
FACEPE, grants 573964/2008-4 and APQ-1037-
1.03/08; and (d) the EC FP7 STREP project AM-
PLE: Aspect-Oriented Model-Driven Product Line
Engineering.

References

[1] K. Pohl, G. Böckle, F. J. v. d. Linden, Software Product
Line Engineering: Foundations, Principles and Tech-
niques, Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2005.

[2] P. Clements, L. M. Northrop, Software Product Lines:
Practices and Patterns, Professional, Addison-Wesley,
2001.

[3] K. Czarnecki, U. Eisenecker, Generative programming:
methods, tools, and applications, ACM Press/Addison-
Wesley Publishing Co. New York, NY, USA, 2000.

[4] L. Bergmans, M. Aksit, Composing crosscutting con-
cerns using composition �lters, Commun. ACM 44
(2001) 51�57.

21

[5] I. F. Alexander, N. Maiden (Eds.), Scenarios, Stories,
Use Cases: Through the Systems Development Life-
Cycle, John Wiley & Sons, Ltd., 2004.

[6] M. Eriksson, J. Borstler, K. Borg, The pluss approach,
domain modeling with features, use cases and use case
realizations, in: 9th International Conference on Soft-
ware Product Lines, LNCS, 2005, pp. 33�44.

[7] E. Figueiredo, et al., Evolving software product lines
with aspects: an empirical study on design stability, in:
ICSE 2008, ACM, Leipzig, Germany, 2008, pp. 261�270.
doi:http://doi.acm.org/10.1145/1368088.1368124.

[8] AMPLE, Ample project, http://ample.holos.pt/

(2009).
[9] R. Filman, T. Elrad, S. Clarke, M. Ak?it, Aspect-

oriented software development, Addison-Wesley Profes-
sional, 2004.

[10] AOSD-Association, Aspect-oriented software de-
velopment community & conference :: Aosd,
http://aosd.net/ (2010).

[11] R. Bonifácio, P. Borba, Modeling scenario variabil-
ity as crosscutting mechanisms, in: AOSD '09:
Proceedings of the 8th ACM international con-
ference on Aspect-oriented software development,
ACM, New York, NY, USA, 2009, pp. 125�136.
doi:http://doi.acm.org/10.1145/1509239.1509258.

[12] M. Alférez, et al., Multi-view composition language for
software product line requirements, in: SLE'09: Pro-
ceedings of the 2nd International Conference on Soft-
ware Language Engineering, 2009.

[13] C. Kästner, S. Apel, M. Kuhlemann, Granu-
larity in software product lines, in: 30th In-
ternational Conference on Software Engineering,
ACM, New York, NY, USA, 2008, pp. 311�320.
doi:http://doi.acm.org/10.1145/1368088.1368131.

[14] J. K. N. G. S. Musta�z, Crisis management sys-
tems - a case study for aspect-oriented mod-
eling, Tech. rep., School of Computer Sci-
ence, McGill University, Montreal, Canada,
http://www.cs.mcgill.ca/ joerg/taosd/TAOSD/TAOSD.html

(June 2009).
[15] M. Eriksson, J. Börstler, K. Borg, Managing re-

quirements speci�cations for product lines - an ap-
proach and industry case study, Journal of Systems
and Software 82 (3) (2009) 435 � 447. doi:DOI:
10.1016/j.jss.2008.07.046.

[16] S. Katz, M. Mezini, J. Kienzle (Eds.), Transactions on
Aspect-Oriented Software Development VII - A Com-
mon Case Study for Aspect-Oriented Modeling, Vol.
6210 of Lecture Notes in Computer Science, Springer,
2010.

[17] A. Bertolino, S. Gnesi, Use case-based
testing of product lines, in: ESEC/FSE'
2003, Helsinki, Finland, 2003, pp. 355�358.
doi:http://doi.acm.org/10.1145/940071.940120.

[18] H. Gomaa, Designing Software Product Lines with
UML: From Use Cases to Pattern-Based Software Ar-
chitectures, Addison Wesley Longman Publishing Co.,
Inc., Redwood City, CA, USA, 2004.

[19] K. Czarnecki, M. Antkiewicz, Mapping features to mod-
els: A template approach based on superimposed vari-
ants, in: R. Glück, M. R. Lowry (Eds.), Generative
Programming and Component Engineering, 4th Inter-
national Conference, GPCE 2005, Tallinn, Estonia,
September 29 - October 1, 2005, Proceedings, Vol. 3676
of Lecture Notes in Computer Science, Springer, 2005,

pp. 422�437.
[20] S. Zschaler, et al., VML* - a family of languages for

variability management in software product lines, in:
SLE'09: Proceedings of the 2nd International Confer-
ence on Software Language Engineering, 2009.

[21] F. Bachmann, L. Bass, Managing variability in soft-
ware architectures, SIGSOFT Softw. Eng. Notes 26 (3)
(2001) 126�132.

[22] K. Czarnecki, K. Pietroszek, Verifying feature-
based model templates against well-formedness
ocl constraints, in: GPCE '06: Proceedings
of the 5th international conference on Genera-
tive programming and component engineering,
ACM, New York, NY, USA, 2006, pp. 211�220.
doi:http://doi.acm.org/10.1145/1173706.1173738.

[23] M. Eaddy, A. Aho, G. C. Murphy, Identifying, assign-
ing, and quantifying crosscutting concerns, in: ACoM
'07: Proceedings of the First International Workshop
on Assessment of Contemporary Modularization Tech-
niques, IEEE Computer Society, Washington, DC,
USA, 2007, p. 2.

[24] R. Chitchyan, et al., Semantic vs. syntactic composi-
tions in aspect-oriented requirements engineering: an
empirical study, in: K. J. Sullivan (Ed.), AOSD 2009,
ACM, Charlottesville, Virginia, USA, 2009, pp. 149�
160.
URL http://doi.acm.org/10.1145/1509239.1509260

[25] R. Bonifácio, P. Borba, Modeling scenario variability
as crosscutting mechanisms, in: AOSD 2009, ACM,
Charlottesville, Virginia, USA, 2009, pp. 125�136.
doi:http://doi.acm.org/10.1145/1509239.1509258.

[26] U. Kulesza, C. Sant'Anna, A. Garcia, R. Coelho, A. von
Staa, C. J. P. de Lucena, Quantifying the e�ects of
aspect-oriented programming: A maintenance study, in:
ICSM, 2006, pp. 223�233.

[27] M. Lippert, C. V. Lopes, A study on exception detecton
and handling using aspect-oriented programming, in:
ICSE, 2000, pp. 418�427.

[28] M. Alférez, U. Kulesza, N. Weston, J. Araújo, V. Ama-
ral, A. Moreira, A. Rashid, M. C. Jaeger, A metamodel
for aspectual requirements modelling and composition,
TechReport D 1.3, Ample-project (2008).

[29] J. Kienzle, N. Guel�, S. Musta�z, Crisis management
systems: A case study for aspect-oriented modeling, in:
T. Aspect-Oriented Software Development [16], pp. 1�
22 (2010) 1�22.

[30] E. Figueiredo, et al., On the maintainability of aspect-
oriented software: A concern-oriented measurement
framework, 12th European Conference on Software
Maintenance and Reengineering, 2008. CSMR 2008.
(2008) 183�192.

[31] A. Sampaio, et al., A comparative study of aspect-
oriented requirements engineering approaches, in: Em-
pirical Software Engineering and Measurement, 2007.
ESEM 2007. First International Symposium on, 2007,
pp. 166�175. doi:10.1109/ESEM.2007.15.

[32] A. Moreira, A. Rashid, J. ao Araújo, Multi-
dimensional separation of concerns in require-
ments engineering, Requirements Engineering,
IEEE International Conference on 0 (2005) 285�296.
doi:http://doi.ieeecomputersociety.org/10.1109/RE.2005.46.

[33] R. Chitchyan, A. Rashid, P. Rayson, R. Waters,
Semantics-based composition for aspect-oriented re-
quirements engineering, in: AOSD 2007, ACM, Van-
couver, British Columbia, Canada, 2007, pp. 36�48.

22

doi:http://doi.acm.org/10.1145/1218563.1218569.
[34] J. Whittle, et al., An expressive aspect composition lan-

guage for uml state diagrams, in: International Confer-
ence on Model Driven Engineering, Languages and Sys-
tems (MODELS'2007), Vol. 4735 of LNCS, Springer,
2007, pp. 514�528.

[35] R. Bonifácio, P. Borba, S. Soares, On the bene�ts of
variability management as crosscutting, in: Early As-
pects Workshop at AOSD, Brussels, Belgium, 2008.

[36] P. Jayaraman, et al., Model composition in product
lines and feature interaction detection using critical pair
analysis, in: G. Engels, B. Opdyke, D. C. Schmidt,
F. Weil (Eds.), Model Driven Engineering Languages
and Systems, 10th International Conference, MoDELS
2007, Nashville, USA, September 30 - October 5, 2007,
Proceedings, Vol. 4735 of Lecture Notes in Computer
Science, Springer, 2007, pp. 151�165.

[37] A. Moreira, J. Araújo, The need for early aspects, in:
GTTSE, 2009, pp. 386�407.

23

(a) MSVCM

Feature/Scenario SC01 SC02 SC03 SC04 SC06 SC07 SC10 ADV01 ADV02

CCCMS 8 - - - - - - - -

Witness - 4 - - - - - - -

Int.Resources - - 3 - - - - - -

Authentication - - - - - - 2 - 2

Ext.Resources - - - 2 - - - - -

Observe - - - - 5 - - - -

Rescue - - - - - 4 - - -

Med.Services - - - - - - - 2 -

(b) VML4RE

Feature/Scenario SC01 SC02 SC03 SC04 SC06 SC07 SC10 ADV01

CCCMS 14 - - - - - - -

Witness - 8 - - - - - -

Int.Resources - - 4 - - - - -

Authentication - - - - - - 3 -

Ext.Resources - - - 3 - - - -

Observe - - - - 8 - - -

Rescue - - - - - 5 - -

Med.Services - - - - - - - 4

(c) PLUSS

Feature/Scenario SC01 SC02 SC03 SC04 SC06 SC07 SC10

CCCMS 8 - - - - - -

Witness - 4 - - - - -

Int.Resources - - 3 - - - -

Authentication - - 2 - - - 2

Ext.Resources - - - 2 - - -

Observe - - - - 5 - -

Rescue - - - - - 4 -

Med.Services - - - - - 2 -

(d) Model Templates

Feature/Scenario SC01 SC02 SC03 SC04 SC06 SC07 SC10

CCCMS 14 - - - - - -

Witness - 8 - - - - -

Int.Resources - - 4 - - - -

Authentication - - 2 - - - 3

Ext.Resources - - - 3 - - -

Observe - - - - 8 - -

Rescue - - - - - 5 -

Med.Services - - - - - 4 -

Table 7: Assignment of features to the scenarios' steps in the �rst release.

24

(a) MSVCM

Feature/Scenario SC01 SC02 SC03 SC04 SC06 SC07 SC08 SC09 SC10 ADV01 ADV02 ADV03

CCCMS 8 - - - - - - - - - - -

Witness - 4 - - - - - - - - - -

Int.Resources - - 3 - - - - - - - - -

Authentication - - - - - - - - 2 - 2 -

Ext.Resources - - - 2 - - - - - - - -

Observe - - - - 5 - - - - - - -

Rescue - - - - - 4 - - - - - -

Med.Services - - - - - - - - - 2 - -

Log - - - - - - - - - - - 5

Obstacle - - - - - - - 6 - - - -

Helicopter - - - - - - 6 - - - - -

(b) VML4RE

Feature/Scenario SC01 SC02 SC03 SC04 SC06 SC07 SC08 SC09 SC10 ADV01 ADV03

CCCMS 14 - - - - - - - - - -

Witness - 8 - - - - - - - - -

Int.Resources - - 4 - - - - - - - -

Authentication - - - - - - - - 4 - -

Ext.Resources - - - 3 - - - - - - -

Observe - - - - 8 - - - - - -

Rescue - - - - - 5 - - - - -

Med.Services - - - - - - - - - 4 -

Log - - - - - - - - - - 5

Obstacle - - - - - - - 8 - - -

Helicopter - - - - - - 8 - - - -

Table 8: Assignment of features to the scenarios' steps in the fourth release.

25

(a) PLUSS

Feature/Scenario SC01 SC02 SC03 SC04 SC06 SC07 SC08 SC09 SC10

CCCMS 8 - - - - - - - -

Witness - 4 - - - - - - -

Int.Resources - - 3 - - - - - -

Authentication - - 2 - - - - - 2

Ext.Resources - - - 4 - - - - -

Observe - - - - 5 - - - -

Rescue - - - - - 4 - - -

Med.Services - - - - - 2 - - -

Log - - - - 5 5 5 5 -

Obstacle - - - - - - - 6 -

Helicopter - - - - - - 6 - -

(b) Model Templates

Feature/Scenario SC01 SC02 SC03 SC04 SC06 SC07 SC08 SC09 SC10 SCLog

CCCMS 14 - - - - - - - - -

Witness - 8 - - - - - - - -

Int.Resources - - 4 - - - - - - -

Authentication - - 2 - - - - - 3 -

Ext.Resources - - - 3 - - - - - -

Observe - - - - 8 - - - - -

Rescue - - - - - 5 - - - -

Med.Services - - - - - 4 - - - -

Log - - - - 1 1 1 1 - 5

Obstacle - - - - - - - 8 - -

Helicopter - - - - - - 8 - - -

Table 9: Assignment of features to the speci�cation's steps in the fourth release (cont.).

26

12. EVALUATING APPROACHES FOR SPECIFYING SOFTWARE PRODUCT LINE USE SCENARIOS

214

13
Supporting Consistency Checking

between Features and Software
Product Line Use Scenarios

Authors: Mauricio Alférez, Roberto E. Lopez-Herrejon, Ana Moreira, Vasco Amaral,
Alexander Egyed.

Paper Summary: This paper presents the first version of VCC, whose driving objective
is to enable consistency checking in the problem space between requirements models
such as use scenarios and features. It transforms generic constraints expressions between
single features to rules specifically tailored for use scenarios and set of features. Then, it
employs propositional formulas to relate these specialized rules to the models involved
in the creation of customized use scenarios for specific products. These propositional
formulas are produced based on the relationships between: (1) domain constraints that
can be obtained from the SPL feature model, (2) the meaning of the relationships between
fragments in the use scenarios and SPL features, and (3) a composition model that specifies
how to vary SPL use scenarios. Checking if all the products in an SPL satisfy consistency
constraints is based on searching for a satisfying assignment of a propositional formula.
Therefore, our tool translates propositional formulas that can be evaluated by satisfiability
(SAT) solvers. This paper supports part of the consistency checking activity of DCC4SPL
(Section 3.5 - Inside VCC) and is exemplified using the VML4RE composition language
described in Section 3.4 - Inside VML4RE. However, the version of VCC presented here
evolved to the one presented in Chapter 14 - Ensuring Consistency Between Feature
Models and Model-Based Specications - The VCC Approach.

215

13. SUPPORTING CONSISTENCY CHECKING BETWEEN FEATURES AND SOFTWARE PRODUCT LINE USE

SCENARIOS

Authors Contribution: Mauricio Alférez was the main author and responsible for
the main part of the research and writing of this paper, accounting for the 90% of the
work. This work started during a staying in the Institute for Software Engineering and
Automation at the Johannes Kepler University, Austria where Mauricio worked in close
collaboration with Roberto E. Lopez-Herrejon and Alexander Egyed, which are experts
in the subject of verification of models. Ana Moreira and Vasco Amaral gave interesting
comments mainly in the areas of requirements engineering and model-driven development
that helped to improve the content of the paper.

Publication: Published in the proceedings of the 12th International Conference on
Software Reuse (ICSR 2011), Pohang, South Korea, June 13-17, 2011 [9, 82]. Acceptance
rate: 40%. Conference classification: CORE A.

216

Supporting Consistency Checking between Features and
Software Product Line Use Scenarios

Mauricio Alférez1, Roberto E. Lopez-Herrejon2, Ana Moreira1, Vasco Amaral1,
Alexander Egyed2

1CITI/Departamento de Informática, Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa, Caparica, Portugal

2Institute for Systems Engineering and Automation
Johannes Kepler University Linz, Austria

{mauricio.alferez,amm,vasco.amaral}@di.fct.unl.pt
{roberto.lopez,alexander.egyed}@jku.at

Abstract. A key aspect for effective variability modeling of Software Product
Lines (SPL) is to harmonize the need to achieve separation of concerns with the
need to satisfy consistency of requirements and constraints. Techniques for vari-
ability modeling such as feature models used together with use scenarios help to
achieve separation of stakeholders’ concerns but ensuring their joint consistency
is largely unsupported. Therefore, inconsistent assumptions about system’s ex-
pected use scenarios and the way in which they vary according to the presence
or absence of features reduce the models usefulness and possibly renders invalid
SPL systems. In this paper we propose an approach to check consistency the
verification of semantic relationships among the models between features and
use scenarios that realize them. The novelty of this approach is that it is specially
tailored for the SPL domain and considers complex composition situations where
the customization of use scenarios for specific products depends on the presence
or absence of sets of features. We illustrate our approach and supporting tools
using variant constructs that specify how the inclusion of sets of variable fea-
tures (that refer to uncommon requirements between products of a SPL) adapt
use scenarios related to other features.

1 Introduction

A Software Product Line (SPL) can be defined as “a set of software–intensive systems
sharing a common, managed set of features that satisfy the specific needs of a particular
market segment or mission and that are developed from a common set of core assets in
a prescribed way”[7]. In SPLs, requirements are organized by features that are useful
to express product functionalities concisely [19]. There are common features between
all the products in the product line (sometimes called mandatory features), and there
are variable features that allow distinguishing between products in a product line. In
SPL development the problem space focuses on variability modeling and describes the
different features available in an SPL and their interdependencies. A common repre-
sentation to model variability are the feature models, where features are realized with
correspondent artifacts, for example use scenarios diagrams [8].

Copyrighted material reproduced with kind permission of Springer Science and Business Media. Originally published in
proceedings of the 12th International Conference on Software Reuse, Pohang, South Korea, June 13-17, 2011,
volume 6727 of LNCS, pages 20–35. Springer, 2011. http://dx.doi.org/10.1007/978-3-642-21347-2_3

To produce particular products from a SPL, feature realizations have to be composed
according to a specific selection of features from a feature model usually called product
configuration (also referred to feature model configuration). This process requires a
mapping between features from a feature model, and artifacts such as use scenarios
that realize them. A use scenario is a widely used technique that describes, step by
step, how an actor is intending to use a system [14]. A number of different approaches
have been proposed to create mappings among features and models [13,8,20]. However,
ensuring consistency between feature models and recurring requirements specifications
techniques such as use scenario modeling has not been thoroughly researched. In this
context, by consistency checking we mean the verification of semantic relationships
among features and use scenarios. Inconsistent assumptions about system’s expected
use scenarios and their variations according to the selection of different features, reduce
the models usefulness and possibly renders invalid systems. Therefore, it is essential in
SPL to determine whether the variability model and its use scenarios defined in the
domain requirements specification enable the derivation of any product requirements
specification that contains inconsistent requirements.

When a model-based approach is used to represent use scenarios (e.g., in form of
use cases or activity diagrams), consistency goes beyond syntactical or semantic errors
of each kind of model in isolation. For example, an actor that is not associated with any
use case, a dangling node, a loop without exit conditions in activity diagrams or specific
set of features that are both simultaneously (and incorrectly) declared as excluding and
depending. It means that we aim at taking into account constraints that are not merely
expressed in terms of only one language’s metamodel which is generally well supported
by UML editors in the case of use cases and activity diagrams (e.g., using OCL or
hard-coded restrictions particular of each editor) or feature model editors (e.g., using
domain constraints expressing features interdependencies, and hard-coded restrictions
that constrain the construction of the models to conform to their metamodel). In our
work, much of consistency checking difficulty lies on maintaining consistency among
several, interrelated models. This can become a time-consuming and error prone task
given that the number of ways to compose feature realizations grows exponentially with
the possible number of SPL features that can be used in a particular product.

In this paper, we present an approach whose driving objective is to enable consis-
tency checking in the problem space between requirements models such as use scenar-
ios and features. It transforms generic constraints expressions between single features to
rules specifically tailored for use scenarios and set of features. Then, it employs propo-
sitional formulas to relate these specialized rules to the models involved in the creation
of customized use scenarios for specific products. These propositional formulas are pro-
duced based on the relationships between: i) domain constraints that can be obtained
from the SPL feature model, ii) the meaning of the relationships between fragments
in the use scenarios and SPL features, and iii) a composition model that specifies how
to vary SPL use scenarios. Checking if all the products in an SPL satisfy consistency
constraints is based on searching for a satisfying assignment of a propositional formula.
Therefore, our tool translates propositional formulas that can be evaluated by satisfiabil-
ity (SAT) solvers [1]. In case there are constraints that are not satisfied by the SPL, our
tool presents to the developer the particular features and fragments of the use scenarios

involved in the violation of the constraint. In our home automation case study this infor-
mation was useful to take informed decisions about the modifications and additions of
domain constraints, use scenarios and its composition specification. The results of the
application of our approach are encoraging because they did not show scalability and
performance issues, however, we need more extensive validation of our approach with
different case studies.

2 Background and Motivation

To understand consistency between features and use scenarios let us introduce first the
models we use: features model, use case/activity diagrams, mapping model between
features and use cases/activity models, and a composition specification model. After
this, we exemplify inconsistency using these models.

2.1 Models Involved in Consistency Checking

Feature Model. A feature model describes a set of all possible valid product configu-
rations [8]. A configuration specifies a concrete product in terms of its features.

Figure 1-1 shows a sample feature model of part of our running example, the Smart
Home SPL [18]. Smart Home has four optional features, AUTOMATED WINDOWS(AW),
AUTOMATED HEATING (AH), REMOTE HEATING CONTROL (RHC) and INTERNET
as a mean to control the heater and other devices remotely. Also, it has a set of common
features, such as MANUAL WINDOWS and MANUAL HEATING that will be included
in all the target products to be produced using the Smart Home SPL.

Specific product configurations can be defined selecting optional features in the fea-
ture model 1-1. Figure 1-2 shows a sample product configuration of the Smart Home
SPL called PRODUCT-1 that will be used to illustrate consistency problems between
features and use scenarios. PRODUCT-1 has all features except AUTOMATED WIN-
DOWS (AW). Domain constraints in the feature model such as the REQUIRES rela-
tionship from RHC to INTERNET, can be added incrementally and in parallel with the
creation of use scenarios (discussed below).��������	
���
���
��������� ���
����	
��SmartHome�����������������������	
��	����	� ���������
��� �
���
�����
�������
�����
����	
���� ��
����
������������ ��������Optional featureMandatory feature ��������	
���
���
��������� ���
����	
��Product-1������������� ���������
��� �
���
�����
�������
����
����	
�� �� ��
����
������������Selected featureUnSelected feature

�������������
Fig. 1. (1) Simplified sample of the Smart Home feature model; (2) Sample SmartHome configu-
ration that excludes the Automated Windows feature.

Use Scenarios. Features can be realized with other models such as use scenarios. To
model use scenarios we employ use case and activity diagrams because they are com-
monly used in mainstream UML-based methods such as RUP [16] and, in contrast to
mere free-form textual scenario descriptions, they help to reduce ambiguity in the spec-
ifications [19].

Use case and activity diagrams provide a description of what products in the do-
main should do. Feature models determine which functionality can be selected when
engineering new products from the SPL. Therefore, product requirements specifica-
tions consist of customized use cases diagrams and specific paths through those use
cases represented in activity diagrams. The customization is guided by a composition
specification discussed in next subsection.

Figure 2-1 (Left) shows part of the final target model composed for PRODUCT-1.
The INCLUDES relationship describes the case where one use case, the base use case, in-
cludes the functionality of another use case, the inclusion use case. The INCLUDES rela-
tionship supports the reuse of functionality in a use case diagram and is used to express
that the behavior of the inclusion use case is common to two or more use cases. Note that
INCLUDES relationships between use cases may constrain the relationship between the
features related to them. For example, the INCLUDES relationship between the base use
case CTRLTEMPREMOTELY that includes the use case OPENANDCLOSEWINAUTO
may imply that feature REMOTEHEATINGCNTRL(SH) requires feature AUTOMATED-
WINDOWS (AW). We discuss this and other consistency constraints in Section 3.

Figure 2-1 (Right) shows an activity diagram that depicts the possible scenarios
for the use case CNTRLTEMPREMOTELY that comprises activities for the use cases
OPENANDCLOSEWINAUTO, CALCENERGYCONSUMPTION and ADJUSTHEATER-
VALUE. Within this activity diagram it is possible to select several scenarios that cor-
respond to different paths. Two of all the possible scenarios are: Scenario i) includes
reaching the in-home temperature and save energy by means of closing some windows,
and Scenario ii) to use the heater to reach the desired in-home temperature. It is im-
portant to note that the customization of activity diagrams and scenarios depends on
the features chosen for the SPL product and also on the relationship with the use case
model. For example, in PRODUCT-1 the feature AUTOMATEDWINDOWS was not se-
lected, therefore the WINACTUATOR actor in the use case diagram as well as the swim-
lane (also called activity partition) related to WINDOWSACTUATOR should not appear
in any diagram. Therefore, scenarios such as i) are not realizable because of the lack of
windows actuators. This and other constraints will be discussed in Section 3.

Composition Specification To evidence consistency problems between features and
use scenarios we employ a composition process (also called, derivation process) for
use cases and activity diagrams. Languages such as the VML4RE (Variability Mod-
elling Language for Requirements) [20,4] help to specify how use scenarios can be
customized.

Figure 3 illustrates a composition specification that guides the specification of
the transformation of requirements specifications of products in the SmartHome SPL.
VML4RE [20,4] is a textual language that allows associating actions, that wrap a set of
model transformations for specific requirements models such as use cases and activity

��������	
����������������������������������� �����������������������	�� ���	���
������	�������� ����������	
��������
��� �� �����
���������
������
�����������
��������	���������	�������� ������������	��!���"�����
#���$�������#���$� #���$�%�!�������#���$�%�!�����&������������	����������	�� ��������� !���"������&��	�'�����	����%�!�������

�	
������
�� �����������������
�	
����������������������
��(����$����'�����	�����)��������
��� (*��������)�	
�����
���'��������+�,�����������������&�������	
��������

�����
����
��������� #���$�������%�!�������������

���������	
��������������������	�������
�����������������������
���������������� ��!����������
���
�������	��� A-W variantR-H variantR-H variant not composed in Product-1�����"�##����

Undefined references during compostion of Product -1 ...more activity Diagrams
89 111111

Fig. 2. (1) Referencing undefined model fragments during composition for PRODUCT-1 in the
Use Case model (left side) and in the Activity Diagram for the CntrlTempRemotely scenario
(right side). (2) Mapping variants to model fragments

diagrams, to combinations of features written as logic expressions that we call feature
expressions. Feature expressions can be i) atomic that represent single features such as
“Automated Windows” in Figure 3, Line 1, and ii) compound that also contain logic op-
erators such as AND, NOT and OR such as “And ("Remote Heating Ctrl","Automated
Heating","Internet")” in line 7. Feature expressions evaluation works as follows: if AU-
TOMATEDHEATING, REMOTE HEATING CTRL, AUTOMATED HEATING and INTER-
NET features are selected in a product configuration, the feature expression associated to
the variant named “R-H” (i.e., the compound feature expression: And ("Remote Heat-
ing Ctrl","Automated Heating","Internet")) will be evaluated to TRUE. The conse-
quence of this is that the actions that are inside the “R-H” variant block (Figure 3, lines
6-13) will be processed and applied to a base model. For example, the CNTRLTEM-
PREMOTELY use case will be inserted into the package HEATING and then it will be
related to other use cases using INCLUDES and EXTENDS relationships. If more than
one feature expression is evaluated to TRUE, the default composition order follows a
top-down sequence (which corresponds to a left-right sequence in Figure 3).

Fig. 3. Composition specification of variants A-W and R-H

Mapping Model. Figure 2-1 (Left) and (Right) show use case and activity diagrams
fragments, such as actors and use cases, related with the variants shown in Figure 3.
The base mechanism to relate requirements model fragments to features is to use a
correspondence table (or mapping table), as presented by [11], [19] and [3]. In our
case, we parse the composition specification to generate the mapping between variants
and parts of the use cases, therefore, for example if variant named A-W inserts the
OPENANDCLOSEWINAUTO use case, we link A-W to OPENANDCLOSEWINAUTO.
To facilitate the visualization of such relationships with the models, in the figure we
assign different gray tones to the models fragments according to the features that they
are related to (see mapping in Figure 2-2). Please note that specific model fragments
could be related also to more than one variant. This may be considered as a m-to-n (m
and n >= 1) mapping between variants and model fragments and is not illustrated in
Figure 2.

2.2 Consistency Checking Motivation

Consistency checking has to ensure that inconsistent requirements do not become part
of the requirements specifications of a given product. Our work aims at guaranteeing
that all the products that could be derived from a feature model indeed have consistent
requirements specifications. This is achieved through the description and verification of
semantic relationships between feature model and use scenarios. One of the possible
inconsistencies between features and use scenarios in the Smart Home SPL happens
between the relationship of variants R-H and A-W, and the INCLUDES relationship be-
tween the use cases CNTRLTEMPREMOTELY and OPENANDCLOSEWINAUTO which
are related to R-H and A-W variants respectively. The domain requirements are:

R1- Only one, none or both R-H and A-W variants can be included in a product. (This
is implicit in the feature model and composition model because all the features in
the feature expression of R-H variant are optional (i.e., REMOTE HEATING CNTRL,
AUTOMATED HEATING and INTERNET are optional features), and the only feature
in the feature expression A-W is also optional (i.e., the AUTOMATED WINDOWS
feature is optional)); and

R2- If the use case CNTRLTEMPREMOTELY is provided in a product then the use case
OPENANDCLOSEWINAUTO must be provided too, (This is implicit in the includes
relationship from the use case CNTRLTEMPREMOTELY to OPENANDCLOSEWIN-
AUTO in the use case diagram in Figure 2-1 (Left)).

Figure 2-1 shows PRODUCT-1 built using the composition model shown in Figure
3. In PRODUCT-1 the feature expression of variant R-H (3, line 7) evaluates to TRUE.
However, because Figure 1-2 does not include the AUTOMATED WINDOWS feature, the
feature expression of variant A-W (i.e., AUTOMATED WINDOWS) (3, Line 1) evaluates
to FALSE and the actions inside its variant block are not processed. We annotated the
diagrams with numbers that represent the line in Figure 3 where a composition action is
specified. Note that we omitted some of the actions, for example, the insertion of some
actors such as WINSENSOR and WINACTUATOR and some partitions such as HEATER.

PRODUCT-1 presents inconsistent requirements R1 and R2. This is evident during
composition of use scenarios. See lines 10-11 when the action “Includes from UseCase

: "CtrlTempRemotely" to UseCase(s) : "NotifyByInternet" and "OpenAndCloseWin-
Auto" and "AdjustHeaterValue" ” references elements such as the use case OPENAND-
CLOSEWINAUTO that do not exist in the model. In this case, PRODUCT-1 fulfills re-
quirement R1, but not requirement R2. The result is that the functionality provided by
OPENANDCLOSEWINAUTO will not be present in the requirements of PRODUCT-1
and therefore it will not be taken into account in later stages of its development process.

It is not too difficult to check consistency manually in small examples with a re-
duced number of features such as the one mentioned previously. One solution to solve
the inconsistency for our example would be to guarantee the presence of the feature
AUTOMATED WINDOWS when AUTOMATIC HEATING or REMOTE HEATING CTRL
are selected, in every possible feature model configuration using a domain constraint
REQUIRES. Another solution is to establish that AUTOMATED WINDOWS will be a
mandatory feature in the SPL. However, the number of possible feature combinations
may grow exponentially with the number of features of the SPL. The result of this
explosion is that it becomes unfeasible to manually check the consistency of all the
products.

To guarantee that all the products that could be derived from a feature model in-
deed have consistent requirements specifications we take into account the relationships
between domain requirements specified using use scenarios and feature models to pro-
pose rules and constraints to support consistency checking in SPLs use scenarios as it
is shown in the next section.

3 Consistency Checking between Features and Use Scenarios

While some product configurations of a feature model may generate consistent use sce-
narios, other product configurations based on the same feature model could lead to in-
consistencies in the requirements specifications. In this section we present our approach
for consistency checking between SPL features and use scenarios.

3.1 Approach Overview

Figure 4 presents an overview of our approach. Section 2 explained and exemplified
the specification of a feature model, use scenarios (Figure 4, Step 1), and the mapping
between variants and fragments of the use scenarios (Step 2). Based on previous work
[17], we have developed a consistency checking approach for use scenario composition
based on variants. This approach relies on the domain evaluation of feature expressions,
written as propositional formulas that are associated to a variant and transformations of
use scenarios called actions. We denote Df the domain constraints that can be derived
from a feature model of an SPL and are expressed in terms of atomic featuresf (Step 3),
and CV ARf

denote composition constraints that will be derived in next section (Step 4)
and are expressed in terms of variants (V ARf). We use propositional logic to express
and relate Df and CV ARf

(Step 5). Because we are interested in verifying that all mem-
bers of the product line satisfy a given composition constraint, Equation 1 should not
be “satisfiable”. If it is satisfied, it means that there is a product of the product line that
does not meet constraint CV ARf

. The violating product configurations can be identified

Derive Domain Constraints -Derive Composition ConstraintsDerive Requires Composition Constraint
SPL Feature ModelComposition Specification Use Scenario SpecificationMapping: Variants / Use Scenarios FragmentsObtain Mapping Variants / UseScenarios

Find
if reqVAR

Find
fVAR

fVARCDerive Conflicts Composition ConstraintFind
if confVAR

Find
fVARReplace Terms fVar if reqVARfVar if confVAR Replace Terms

if

k

fVAR reqVARVARC
f

¬≅ ∧
..1

if

k

fVAR confVARVARC
f

∨≅
..1

fD
Replace Terms in eq.1

()
fVARf CD ⇒¬

fVARf CD ∧≅Check SATisfabilitySATisfiable = (True | False)Show Results

SPL Models Elaboration/Modification 12 34 5 6 7
89

10

True = Show ViolationsFalse = SPL Consistent
Fig. 4. Overview of Our Consistency Checking Approach

using a SAT solver (Step 7 and 8). This can support the developer to take informed de-
cisions on modifications of the initial SPL models, for example, creating or modifying
domain constraints (Step 10).

¬
(
Df ⇒ CV ARf

)
(1)

Section 2-1 shows that at least one product (i.e., PRODUCT-1) from the products
that can be configured based on the feature model of the Smart Home SPL is incon-
sistent. In that case, composition constraints (also called implementation constraints)
between the elements in use scenarios such as the INCLUDES between use cases, imply
the application of domain constraints for example, turning the AUTOMATEDWINDOWS
feature from optional to mandatory or creating a REQUIRES dependency (also called
domain constraint) from AUTOMATEDHEATING to AUTOMATEDWINDOWS. That par-
ticular inconsistency that will help to explain our approach can be defined as:

– Rule Required Inclusion Use Case: at least one variant (V ARfreqi), defines an
inclusion use case that must be selected in every feature configuration that contains
the variant (V ARf) which introduces a base use case linked to the inclusion use
case.

3.2 Deriving Domain Constraints (Df)
Figure 4 - Step 3 shows that the domain constraints are derived from a SPL feature
model. Therefore the Df in a SPL is the same for all the possible products configura-

tions and do not vary depending on the consistency rule. Using a well-known translation
table between feature models and propositional formulas (see Figure 5) helps to get Df

in Equation 1. In Equation 2 we only show the HEATING-CTRL branch because it is
the most complex branch in Figure 1-1 and relates directly with our exemplar “Re-
quired Inclusion Use Case” rule. The translation obtained in the first line of Equation
1 means that all products unconditionally must contain the root feature SMARTHOME.
The second line means that given that HEATING CTRL is a mandatory feature, it must
be included in all the products. The third line means that MANUALHEATING is included
in all the products that include their parent feature (i.e., HEATINGCTRL), in contrast to
AUTOMATEDHEATING and REMOTEHEATINGCTRL (lines 3-4), that may be or not
included when their respective parents HEATINGCTRL and AUTOMATEDHEATING are
included in a product. Line 5 means that REMOTEHEATINGCTRL requires of the IN-
TERNET feature.

1.(SmartHome ⇔ TRUE)∧ (2)

2. (SmartHome ⇔ HeatingCtrl)∧
3. (HeatingCtrl ⇔ ManualHeating) ∧ (AutomatedHeating ⇒ HeatingCtrl)∧
4. (RemoteHeatingCtrl ⇒ AutomatedHeating)∧
5. (RemoteHeatingCtrl ⇒ Internet)

Fig. 5. Mapping from Feature Model to Propositional Logic [6].

In this section we addressed Df , the first part of Equation 1. Next section presents
CV ARf

that comprises a set of constraints that are essential for consistency between
use scenarios and the set of domain constraints expressed in Equation 2.

3.3 Deriving Composition Constraints (CV ARf)

Composition constraints act as consistency rules describing the semantic relationships
that must hold among the different models. Figure 4-4 shows two kinds of composition
constraints that can be expressed in propositional logic. We classified them according
to the type of domain constraint that they relate with: i) a constraint that implies a
REQUIRES relationship between features that therefore implies dependencies between
variants (Figure 4- Step 4), and ii) a constraint that implies a EXCLUDES relationship
(Figure 4- Step 6) between features and therefore implies incompatibilities between
variants (Figure 4- Step 5). This section shows those constraint equations expressed in
propositional logic.

EXCLUDES Relationship: Let V ARf be a variant that defines a model element e.
A variant V ARfconf I conflicts with V ARf if V ARfconf I defines a model element
c which cannot be present in the same requirements specifications of a product where
element e is also present. Therefore, because of the incompatibility between elements

e and c, if variant V ARf is selected then variant V ARfconf I should not be selected
in the same product configuration. This is denoted in the following expression where k
represents the number of variants in the composition specification:

CV ARf ≡ V ARf ⇒ ¬
(∨
1..k (V ARfconf i)

)
≡ ¬V ARf ∨ ¬

(∨
1..k (V ARfconf i)

)
(3)

≡ V ARf ∧
∨

1..k V ARfconf i

REQUIRES Relationship: Let V ARf be a variant that refers to a model element e
defined by another variant. To be consistent, the requirements specifications of a prod-
uct that includes variant V ARf must also include at least one other variant V ARreqI

(required variant) where element e is defined. This is denoted in the following expres-
sion where k represents the number of variants in the composition model:

CV ARf ≡ V ARf ⇒
∨

1..k (V ARfreqi) ≡ ¬V ARf ∨
∨

1..k (V ARfreqi) (4)

≡ V ARf ∧
∧

1..k ¬V ARfreqi

The rule “Required Inclusion Use Case” mentioned at the beginning of this section
is an example of this last kind of constraint expression. An instance of this constraint
is found in our motivation example related to the use scenario of CNTRLTEMPRE-
MOTELY. For example, given that the variant V ARf = R-H is selected (i.e., a product
with REMOTE HEATING CNTRL, AUTOMATED HEATING and INTERNET features),
and it is related to the base use case CTRLTEMPREMOTELY, we want to guarantee that
there are at least one variant (e.g., V ARf reqI = A-W) related to the inclusion use case
OPENANDCLOSEWINAUTO (i.e., model element e = use case OPENANDCLOSEWIN-
AUTO), and that its feature expression evaluates to TRUE in all possible feature model
configurations. This way, we guarantee the presence of the functionality required by
CTRLTEMPREMOTELY, such as to include a WINDOWSACTUATOR that regulates the
temperature opening and closing windows. Thus, we can get a constraint instance re-
placing the variants by their corresponding feature expressions:

(RemoteHeatingCntrl ∧ AutomatedHeating ∧ Internet) (5)

∧¬(AutomatedWindows)

3.4 Replacing Terms in Equation
The replacing step depicted in Figure 4- Step 7 depends on the kind of constraint that
we created in previous section. If we replace CV ARf

of Equation 4 in Equation 1 and
perform some logic manipulation to translate expressions of the form x⇒ y to ¬x ∨ y,
and x ∨ y to ¬x ∧ ¬y respectively, we obtain the expression in Equation 6.

REQUIRES : ¬
(
Df ⇒

(
V ARf ∧

∧
1..k¬V ARfreqi

))
≡ Df∧V ARf∧

∧
1..k¬V ARfreqi

(6)

Similarly, if we replace CV ARf
of Equation 3 in Equation 1, and perform some logic

manipulation, we obtain the expression in Equation 7.

EXCLUDES : ¬
(
Df ⇒

(
V ARf ∧

∨
1..kV ARfconf i

))
≡ Df∧V ARf∧

∨
1..kV ARfconf i

(7)

3.5 Checking SATisfability

Figure 4- Step 8 shows that the input for satisfability checking are expressions such as
the ones in 6 and 7. Each expression to be checked is instantiated with:

i) the specific domain constraints, Df of the SPL produced in Equation 2,
ii) the feature expressions related to the variants V ARf and either the set of required

variantsV ARf reqi, or the set of conflictant variants V ARf conf i.
Equation 4 evaluates to true when any action inside variant V ARf requires an ele-

ment or set of required elements that are not composed in the use scenarios. It happens
because none of the correspondent variants V ARf reqi that introduce the required el-
ements was selected in the product configuration. Also, expression 3 evaluates to false
when variant V ARf defines an element or set of elements that are introduced in the use
scenarios that also contain elements defined by other variant(s) V ARf confi.

3.6 Show Results and SPL Models Modification

The possible results generated by a SATisfability checker for each expression (Fig-
ure 4- Step 9) can be TRUE (satisfiable) or FALSE (insatisfiable). In case we obtain
FALSE for all the expressions, we know that the SPL is consistent because there are not
inconsistencies between the relationships and dependencies (e.g., excludes, optional,
mandatory, requires) between features depicted in the SPL feature model, and the use
scenarios. In case we obtain a TRUE in an expression, our tool based on the mapping
between variants and model elements in the use scenarios shows a list of the variants
and the model fragments related to the inconsistency. Taking the example of the Smart
Home feature model depicted in Figure 1, the result of the SAT solver for the Rule -
Required Inclusion Use Case is that it is satisfiable (i.e., it evaluates to TRUE). Which
means that there is an inconsistency between the features and use scenarios. An example
of the type of message generated by our tool to the user 4 is:

“...Inconsistent use scenario(s) [CTRLTEMPREMOTELLY] and feature(s) in feature ex-
pression(s) of variant(s) [A-W], [R-H]. The Action: [Includes from UseCase: “Ctrl-
TempRemotely” to Use Case(s) “OpenAndCloseWinAuto”] implies a [REQUIRES] re-
lationship between variant [R-H] and required variant(s) [A-W] that is not enforced in
the SPL feature model...”.

Based on this information, for the SAT solver to evaluate to FALSE, the developers may
consider for example to:

- Modify the feature model: the set of SPL domain constraints that can be extracted
from the feature model can be modified for example creating a REQUIRES relation-
ship for AUTOMATEDHEATING feature to AUTOMATEDWINDOWS, or changing the
AUTOMATEDWINDOWS feature from optional to mandatory.

- Modify use scenarios and composition model: for our particular rule, developers
may want to check if in fact the INCLUDES association between use cases CTRLTEM-
PREMOTELY and OPENANDCLOSEWINAUTO is mandatory for every single product
or not.

4 Tool Support

Tools for consistency checking can be highly effective for detecting errors in SPL re-
quirements specifications. Such tools not only can find errors people miss, but also they
can alleviate developers from the tedious and error-prone task of checking requirements
specifications for consistency. Our tool prototype Variability Consistency Checker for
Requirements (VCC4RE) [2] was designed to support the process described in Section
3.1 and consist on several components: (i) composition models editor for the VML4RE
language, (ii) two translators: one from propositional formulas in prefix notation to con-
junctive normal (CNF) form in DIMACS format [1], and the other from the CNF clauses
provided by the feature model editor to DIMACS format; and finally (iii) the consistency
checker.

We created the composition model editor using EMFTEXT 1. It provides the soft-
ware infraestructure to derive an initial concrete syntax and plug-in based on the meta-
model of our VML4RE language written in Ecore 2. We employ this technology mostly
because of two reasons: first, it separates concrete syntax and abstract syntax which
eases the maintenance of the language, and second, it provides a default Human Usable
Notation (HUTN) 3 as concrete syntax. Using the HUNT concrete syntax in compari-
son with our previous tool version [20] allows a more usable and suitable notation for
describing requirements composition.

We created a translator for feature models created with the SPLOT editor 4. We
chose SPLOT because it allows us to share and edit our models collaboratively via
web, and because it generates the CNF formula that represents the domain constraints
(Df) in our equations that later we transform to a widely accepted standard format for
boolean formulas in CNF called DIMACS.

Also, we created another translator to obtain the feature expressions related to each

variant in V ARf ∧
∧
1..k ¬V ARfreqi and V ARf ∧

∨
1..kV ARfconf i from our com-

position model. It translates from a prefix notation of propositional formulas of our
composition specification, to CNF formulas in DIMACS format. Composition model,
consistency rules, as well as the use cases and activity diagrams modelled in any Ecore-
based UML tool are interpreted by our consistency checker to produce a set of con-
straints expressions in CNF DIMACS format. Then, it is possible to use a standard SAT
solver to determine the satisfability of each formula. In our case, we experimented with
PicoSAT 5 and SAT4J6.

5 Evaluation

The complete Smart Home SPL was used to evaluate our approach. We chose this case
study because, despite of being a large-scale embedded system, this can be understood

1 http://www.emftext.org/: Concrete syntax mapper
2 http://www.eclipse.org/modeling/emf/: Eclipse Modelling Framework based on Ecore
3 http://www.omg.org/spec/HUTN/: The OMG HUTN specification.
4 http://www.splot-research.org/: Software Product Line Online Tools
5 http://fmv.jku.at/picosat/: PicoSAT: Pico satisfability solver
6 http://sat4j.org/: SAT for Java

by a general reader given its application in everyday’s life. Also, we had previous expe-
rience modelling variability and part of the use scenarios of the Smart Home supported
by one of our industrial partners who set the requirements of the system [18].

Features 59 Variants 27
CNF clauses 79 Rules 6
Use Cases 36 Rule instances checked 74
Activity Diagrams 13 Domain constraints created after consistency checking 16
Scenarios 48 Time taken in consistency checking in milliseconds 810

Table 1. Evaluation results using VCC4RE in the Smart Home SPL

Table 1 summarizes some information about the evaluation. The Smart Home has 59
features and comprises significant aspects of modern home automation domain such as
security, HVAC (Heating, Ventilating, and Air Conditioning), illumination control, fire
control and multiple user interfaces. These features describe variability at the use sce-
narios therefore, it is relevant to all kind of SPL stakeholders which are not necessarily
experts in domotics and its implementation technologies. When mapped to proposi-
tional formulas the feature model produced 79 clauses in CNF format.

We modelled the use scenarios manually using an open source Ecore-based UML
tool called Papyrus 7. In total we modelled 36 use cases, 13 activity diagrams that can
represent 48 different possible scenarios, and an initial set of 6 rules for use scenario
consistency that follow a very similar reasoning than the rule Required Inclusion Use
Case explained in Section 2. They vary only in the kind of model elements and their
relationships with other model elements, for example: inclusion, generalization, spe-
cialization, aggregation and mapping between activity diagram partitions to actors and
use cases. Based on the scenarios and feature model we specify 27 variant modules us-
ing VML4RE. Before applying our approach for consistency checking, we found that
using the Smart Home feature model it was possible to generate ONE BILLION prod-
uct configurations. This information can be obtained using the feature model analyzer
provided by the SPLOT tool and allows us to evidence the complexity of checking con-
sistency without any approach and tool support such as the one that we proposed in this
paper.

In our experiments we found in total 74 rules instances to check. Using this infor-
mation we created 16 domain constraints, mainly dependencies of type REQUIRES
between features in the feature model that finally help us to solve consistency between
use scenarios and features. 16 errors is a significant number taking into account mainly
two things: i) Use scenarios, feature model and composition were first carefully mod-
eled and before applying our approach they were apparently “perfect”, and ii) The large
number of possible combinations of features, the number of variants and use scenarios
makes this task challenging, however our approach and tool support gives results in
a “blink of an eye”. The time taken to evaluate consistency rules using the Pico SAT
solver and produce the results is in the order of milliseconds when run on an Intel

7 http://www.eclipse.org/modeling/mdt/?project=papyrus : Papyrus

Core-Duo i5 at 2.4 Ghz. Given that in VCC4RE, feature models and constraints are
mapped to clauses, the performance and scalability of our approach are proportional
to the efficiency of the SAT solvers which are able to handle large number of clauses
in industrial applications. However, though encouraging results, the scalability of our
approach needs to be more extensively validated with more complex case studies and
probably using more consistency rules. Doing that is part of our future work.

6 Discussion and Related Work

An issue in the development of SPLs is the lack efficient approaches for consistency
checking among all the artifacts, including requirements specifications. In model-driven
development this becomes a crucial issue as software is built by means of a chain of
transformations. This can start from assets such as requirements specification models,
to code-based assets that typically depend on a particular implementation technology.
In this setting, the quality of the final code of target products depends mostly on (i) the
transformations, (ii) the source models of each transformation and (iii) the information
added after each transformation. Therefore, to create constraints helps not only to com-
pose models that helps to understand the intended products to the SPL stakeholders, but
also to obtain good quality source models that are the base for deriving good quality
code.

The idea of this paper was to explore whether it was possible to use so called “hard”
methods for consistency checking as early as requirements analysis. Usually such meth-
ods are used much later in the development. We believe now that they can be used much
earlier and therefore some inconsistencies do not have to be left until later to be de-
tected. The use of these methods is transparent for the SPL developer and therefore, it
does not add extra complexity to the modeling process. SAT solvers are implemented
by libraries that are used internally by VCC4RE.

The effective use of use scenarios in SPL demands mechanisms for consistency
checking that cope with variability. However, to the best of our knowledge, this issue
has not been extensively researched except by Czarnecki, et al [9]. They observed that
implementation constraints should follow from domain constraints. Their findings ap-
ply to a different composition technique that uses model templates to generate concrete
models for product configurations. That work ensures that no ill-structured template
instances (i.e., concrete models of products) will be generated from a correct product
configuration. In comparison with that work, we check consistency between use sce-
narios and feature models of domain requirements specifications and we do not assume
that the feature model contains all domain constraints since its creation as it usually hap-
pens in incremental SPL development processes. In fact, our approach benefits from the
semantic of the use scenarios to deduce domain constraints.

There are different research areas related to our work and that have been taken
into account the importance of consistency constraints in models. In the field of well-
formedness of models for example Egyed [10]. Also, for single systems modeling, Ja-
cobson [15] used aspect-oriented use case models. However, none of those works check
consistency of SPL models, and their composition mechanism does not support model

weaving of model fragments as it is possible with a requirements-tailored composition
language as VML4RE.

Previous work [17] addressed consistency in composition in multi-view modeling
in SPL following a FOSD [5] approach for models closer to the product implementa-
tion. Also, Harhurin and Hartmann [12] provided denotational semantics and a notation
called Service Diagram to describe system functionality and variability. Both works fo-
cus only on depedencies between atomic features. Our work addresses composition of
requirements specifications and an advanced way for model composition based on an
aspect-oriented framework VML4RE that is capable to manage variants in addition to
atomic features.

7 Conclusions and Future Work

This paper establishes constraints and presents tool support for consistency check-
ing between use scenarios and features in the SPL domain, using feature models and
VML4RE. However, our approach does not depend on the use of VML4RE. We use it
because its actions facilitate expressing the composition in use scenarios. The objective
of checking consistency is to guarantee that all the products that could be derived from
a feature model indeed have consistent requirements specifications. This means without
omitting information or containing conflicting requirements that eventually may cause
errors when transformed and implemented into more platform dependent models and
code.

The feasibility of our approach was evaluated using a prototype tool and a home
automation case study. The results show that performance and scalability were not an
issue. However, these aspects need further assessment with larger and more complex
SPLs and consistency rules. Such assessment is part of our future work.

We think that the application of constraints is necessary but do not satisfy com-
pletely the problem of consistency checking of models. This problem also depends on
the composition order of the variants and in the application order of the actions inside
each variant block. Currently, we are researching algorithms to calculate the precedence
order between variants and its application in non-monotonic composition. Our proposal
here is a proof of concept. Our strategy can be extended for other models, for example
to model variability of system qualities, that is not within the scope of our paper and is
part of our future work. Here, we are addressing part of the problem for some models.

8 Acknowledgements

This work was partially supported by the CITI, Portugal, the European project AMPLE, con-
tract IST-33710 and the grant SFRH/BD/46194/2008 of Fundação para a Ciência e a Tecnologia,
Portugal. It was also partially funded by the Austrian FWF under agreement P21321-N15 and
Marie Curie Actions—IEF project number 254965. We thanks to Alexander Nöhrer for its Java
interface for PicoSAT.

References

1. Int. confs. on theory and applications of satisfiability testing, http://www.
satisfiability.org/

2. Alférez, M.: Variability consistency checking for requirements tool, http://citi.di.
fct.unl.pt/prototype/prototype.php?id=116

3. Alférez, M., Kulesza, U., Sousa, A., Santos, J., Moreira, A., Araújo, J., Amaral, V.: A model-
driven approach for software product lines requirements engineering. In: SEKE. pp. 779–784
(2008)

4. Alférez, M., Santos, J., Moreira, A., Garcia, A., Kulesza, U., Araújo, J., Amaral, V.: Multi-
view composition language for software product line requirements. In: SLE. pp. 103–122
(2009)

5. Batory, D.: Ahead tool suite, hhttp://www.cs.utexas.edu/users/schwartz/
ATS.html

6. Benavides, D., Segura, S., Cortés, A.R.: Automated analysis of feature models 20 years later:
A literature review. Inf. Syst. 35(6), 615–636 (2010)

7. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-Wesley,
Boston, MA, USA (2002)

8. Czarnecki, K., Eisenecker, U.W.: Generative programming: methods, tools, and applications.
ACM Press/Addison-Wesley Publishing Co., New York, NY, USA (2000)

9. Czarnecki, K., Pietroszek, K.: Verifying feature-based model templates against well-
formedness ocl constraints. In: Proc. of the GPCE’06. pp. 211–220. GPCE ’06, ACM, New
York, NY, USA (2006)

10. Egyed, A.: Fixing inconsistencies in uml design models. In: Proc. of the 29th Int. Conf. on
Software Engineering. pp. 292–301. ICSE ’07, IEEE Computer Society, Washington, DC,
USA (2007)

11. Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to Pattern-Based
Software Architectures. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA,
USA (2004)

12. Harhurin, A., Hartmann, J.: Towards consistent specifications of product families. In: FM.
pp. 390–405 (2008)

13. Heidenreich, F., Kopcsek, J., Wende, C.: Featuremapper: mapping features to models. In:
Companion of the 30th Int. Conf. on Software Engineering. pp. 943–944. ICSE Companion
’08, ACM, New York, NY, USA (2008)

14. Jacobson, I.: Object-Oriented Software Engineering: A Use Case Driven Approach. Addison
Wesley Longman Publishing Co., Inc., Redwood City, CA, USA (2004)

15. Jacobson, I., Ng, P.W.: Aspect-Oriented Software Development with Use Cases (Addison-
Wesley Object Technology Series). Addison-Wesley Professional (2004)

16. Kruchten, P.: The Rational Unified Process: An Introduction. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 3 edn. (2003)

17. Lopez-Herrejon, R.E., Egyed, A.: Detecting inconsistencies in multi-view models with vari-
ability. In: ECMFA. pp. 217–232 (2010)

18. Morganho, H., Gomes, e.a.: Requirement specifications for industrial case studies. Deliver-
able D5.2, Ample Project (2008), www.ample-project.net

19. Pohl, K., Böckle, G., Linden, F.J.v.d.: Software Product Line Engineering: Foundations, Prin-
ciples and Techniques. Springer-Verlag New York, Inc., Secaucus, NJ, USA (2005)

20. Zschaler, S., Sánchez, P., Santos, J., Alférez, M., Rashid, A., Fuentes, L., Moreira, A.,
Araújo, J., Kulesza, U.: Vml* - a family of languages for variability management in soft-
ware product lines. In: SLE. pp. 82–102 (2009)

14
Ensuring Consistency Between

Feature Models and Model-Based
Specications - The VCC Approach

Authors: Mauricio Alférez, Roberto E. Lopez-Herrejon, Ana Moreira, Vasco Amaral,
Alexander Egyed.

Paper Summary: This paper proposes our approach to support consistency checking
between a feature model and its corresponding model-based specifications. The resulting
approach is called Variability Consistency Checking (VCC). VCC employs propositional
formulas to relate constraints between features in feature models and constraints inferred
from model-based specifications. Checking if all the products in an SPL satisfy a con-
sistency constraint is based on searching for a satisfying assignment of a propositional
formula. VCC and its supporting tool were validated based on two case studies from
different application domains. This paper supports the consistency checking activity of
DCC4SPL described in Section 3.5 - Inside VCC.

Authors Contribution: Mauricio Alférez was the main author and responsible for
the main part of the research and writing of this paper, accounting for the 90% of the
work. This work started during a staying in the Institute for Software Engineering and
Automation at the Johannes Kepler University, Austria. All the authors gave interesting
comments that helped to improve the content of the paper.

Publication: This paper is under revision by an international journal.

233

Ensuring Consistency between Feature Models and Model-Based

Speci�cations - The VCC Approach

Mauricio Alféreza,∗, Roberto E. Lopez-Herrejonb, Ana Moreiraa, Vasco Amarala, Alexander Egyedb

aCITI/Departamento de Informática, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa, Caparica, Portugal

bInstitute for Systems Engineering and Automation,
Johannes Kepler University, Linz, Austria

Abstract

Context: Software Product Line Engineering (SPLE) is a successful paradigm to produce a family of
product variants for a speci�c domain. A challenge in SPLE is to ensure that the speci�cation of all
products (expressed in a feature model), does not diverge from the speci�cation of what can be produced
(based on other model-based speci�cations). This challenge is di�cult to address due to the high number of
possible combinations of features and model fragments.
Objective: The objective of this paper is to propose an approach to support consistency checking between

a feature model and its corresponding model-based speci�cations.
Method: The resulting approach is called Variability Consistency Checking (VCC). VCC employs propo-

sitional formulas to relate constraints between features in feature models and constraints inferred from
model-based speci�cations. Checking if all the products in an SPL satisfy a consistency constraint is based
on searching for a satisfying assignment of a propositional formula. VCC and its supporting tool were
validated based on two case studies from di�erent application domains.
Results: The results related to consistency between models demonstrate the value of VCC from four

di�erent dimensions: (1) VCC can be applied to early model-based SPL development such as requirements
and architecture speci�cations, (2) VCC considers complex composition situations where the customization
of models for speci�c products depends on the presence or absence of sets of features, (3) VCC checks
consistency of all possible products at once and not only for a small set of them, and (4) since our focus is on
early development, VCC does not assume a correct and complete feature model; instead, it helps developers
to complete the feature model based on the detected inconsistencies with respect to other models.
Conclusion: VCC guarantees consistency between a feature model and other models that specify its

features without forcing the composition of the models for all the possible product variants. We argue that
VCC is useful in early SPL development and that our results are encouraging since no signi�cant performance
penalties were observed.

Keywords: Model-based Speci�cation, Requirements Speci�cation, Software Product Lines, Variability
Modelling, Software Veri�cation, Consistency Checking.

∗Principal corresponding author
Email addresses:

mauricio.alferez@campus.fct.unl.pt (Mauricio Alférez),
roberto.lopez@jku.at (Roberto E. Lopez-Herrejon),
amm@fct.unl.pt (Ana Moreira), vasco.amaral@fct.unl.pt
(Vasco Amaral), alexander.egyed@jku.at (Alexander
Egyed)

1. Introduction

A Software Product Line (SPL) is �a set of soft-
ware�intensive systems sharing a common, man-
aged set of features that satisfy the speci�c needs of
a particular market segment or mission and that are
developed from a common set of core assets in a pre-
scribed way� [1]. SPLs are described in terms of fea-
tures that express product functionalities concisely
[2]. There are common features between products

Preprint submitted to Journal 19th December 2012

in a SPL (known as commonalities), and there are
variable features that allow distinguishing between
products in a SPL (known as variabilities). A com-
mon model to represent commonality and variabil-
ity is the feature model [3] that represents the dif-
ferent features available in an SPL and describes
their interdependencies.
To create a product from an SPL, feature real-

izations such as use cases, component diagrams,
or code modules have to be composed according
to a speci�c selection of features from a feature
model. This composition process requires a map-
ping between the features and the artefacts that
realize them. Although a number of di�erent ap-
proaches have been proposed to create such map-
pings [4, 5, 6, 7], ensuring the consistency between
features and their realizations has not been thor-
oughly researched for model-based SPL speci�ca-
tions.
Thus, in the context of this paper, consistency

checking refers to the veri�cation of consistency
conditions of the relationships between the feature
model and early model-based feature realizations,
such as requirements and architecture speci�ca-
tions. Such relationships take into account depen-
dencies and incompatibilities between model frag-
ments, and dependencies and incompatibilities be-
tween features. In an inconsistent SPL, valid mod-
els may be invalid in terms of the feature model
and invalid models may be valid in terms of the
feature model. According to Apel et al., [8] the
latter case is di�cult to address because it is usu-
ally detected only after generating speci�c prod-
uct variants based on a selection of features. How-
ever, due to the possible very large number of dif-
ferent valid features' selections and their relation-
ships with model fragments, consistency checking
for every product is feasible only for small SPLs
[8]. Therefore, it is essential to check the entire SPL
speci�cation against the feature model to guarantee
that any possible selection of features in the feature
model renders a valid product variant.
The goal of this paper is to enable consistency

checking between feature models and entire model-
based SPL speci�cations, not only for a single prod-
uct. The resulting approach employs propositional
formulas that are produced based on the relation-
ships between: (1) domain constraints that can
be obtained from the SPL feature model, and (2)
the relationships between fragments in model-based
speci�cations and feature expressions (i.e., combi-
nations of features and logical operators). Check-

ing if all the products in an SPL satisfy consistency
constraints is based on searching for a satisfying
assignment of a propositional formula. Therefore,
the VCC tool translates propositional formulas that
can be evaluated by satis�ability (SAT) solvers [9].
For constraints that are not satis�ed by the SPL,
the VCC tool presents to the developer the features
and fragments in the model-based speci�cations in-
volved in the violation of the constraint. Such out-
put is useful to take informed decisions about pos-
sible modi�cations and additions of domain con-
straints, model-based speci�cations, and their com-
position speci�cation.

Our aim of checking consistency for an entire SPL
instead of only for a single product is in line with
other approaches [10, 11, 12, 13, 14]. The research
area of these works is Generative Programming [3]
applied to code-based modules. The goal of these
approaches is to guarantee that every valid feature
selection produces a type-correct program (see Sec-
tion 6). Our work shares the same solution strat-
egy of using propositional logic to encode the re-
lationships and dependencies between features and
artefacts. However, we focus on model-based spec-
i�cations mainly used in early development of SPL
such as requirements and architecture speci�cation.
Since our focus is on early development, the VCC
approach does not assume a correct and complete
feature model. Instead, it helps developers to com-
plete the feature model based on the detected incon-
sistencies with respect to other models. The results
of applying our approach to two case studies from
di�erent application domains are encouraging as no
signi�cant performance penalties were observed.

2. Background and Motivation

This section introduces the models we use during
consistency checking. After this, it presents a moti-
vating example that illustrates inconsistency based
on these models.

2.1. Models Involved in Consistency Checking

Let us introduce �rst the models we use: (1)
feature models, (2) model-based speci�cations, (3)
mapping model between features and model-based
speci�cations, and (4) composition speci�cation
model.

2

Feature Model. A feature model describes a set of
all possible valid product con�gurations [3]. A fea-
ture model con�guration speci�es a concrete prod-
uct in terms of its features. There are di�erent no-
tations to specify feature models and most of them
can be translated to propositional formulas. A for-
mula contains, for each feature, a boolean variable
and expresses the constraints between features. In
each formula the standard ∧ (and), ∨ (or), ¬ (not),
→ (implies), and ↔ (double implication) operators
of propositional logic can be used.

Model-based Speci�cations. Features can be real-
ized by other models such as requirements analysis
models, architectural models or code-based mod-
ules. In this section we employ use scenarios as
an example of model-based speci�cation for fea-
ture models. Use scenarios are a widely used tech-
nique that describes, step by step, how an actor
intends to use a system [15]. We employ use cases
and activity diagrams to describe use scenarios as
they are commonly used in mainstream UML-based
methods such as RUP [16]. Thus, in contrast to
mere free-form ambiguous textual scenario descrip-
tions, use case and activity diagrams conforming to
the UML language help to reduce ambiguity in the
speci�cations [2]. Section 3 presents how VCC uses
this and other kinds of realizations such as archi-
tectural components diagrams.

Composition Speci�cation. A way to produce spe-
ci�c product models is through a composition pro-
cess, also called, derivation process. Without com-
posing the models for all the possible product vari-
ants VCC guarantees that a feature model and
the models that specify its features are consistent.
Thus, in this paper we show composition of model-
based speci�cations only to illustrate inconsisten-
cies when producing product variants in our moti-
vating example. We use the Variability Modelling
Language for Requirements (VML4RE) [5, 17] as
an example of a composition speci�cation language
and derivation tool that is appropriate to customize
use scenarios. We employ VML4RE because it of-
fers an easy reference to model elements and their
transformation. Those model transformations usu-
ally are not as complex as typically sophisticated
model transformations created by general purpose
model transformation languages such as ATL [18],
AGG [19] and QVT [20].

Mapping Model. Derivation of products in an SPL
requires a mapping between features from a feature

model and their feature realizations (e.g., use cases
and component diagrams, or code modules). A
number of di�erent approaches have been proposed
to create mappings among features and feature re-
alizations [4, 5, 6, 7]. Additionally, feature model
editors and supporting tools such as pure::variants1,
Feature Mapper2, and FeatureIDE3 support the
mapping activities. The mapping is usually accom-
plished using annotation tables containing pairs of
�feature� and �related asset� or presence conditions
attached to parts of the assets such as code anno-
tations, model stereotypes and notes.

2.2. Motivating Example

Creating a Feature Model. Figure 1 (a) shows part
of a feature model for one of our case studies, the
Smart Home SPL [21]. Smart Home has four op-
tional features, Automated Windows, Auto-
mated Heating, Remote Heating Ctrl and
Internet to control the heater and other devices
remotely. Also, it has a set of common features,
such as Manual Windows, Manual Heating
and Inhome Screen that will be included in all
the target products produced from the Smart Home
SPL. Speci�c product con�gurations can be de�ned
by selecting optional features in the feature model.
Figure 1 (b) shows a sample product con�guration
of the Smart Home SPL called Product-1 that in-
cludes all the features. Figure 1 (c) shows another
sample product con�guration called Product-2
that has all features except Automated Win-
dows, and that will be used to illustrate consis-
tency problems between features and use scenarios.
Domain constraints in the feature model such as
theRequires relationship fromRemote Heating
Ctrl to Internet, can be added incrementally
when realizations are created (discussed below).

Creating Model-based Speci�cations. Use cases and
activity diagrams provide a description of what
products in the domain should do. Feature models
determine which functionality can be selected when
engineering new products from the SPL. Therefore,
product requirements speci�cations consist of cus-
tomized use cases and activity diagrams. The cus-
tomization is guided by a composition speci�cation
discussed in the next subsection.

1http://www.pure-systems.com/
2http://featuremapper.org/
3http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/

3

Windows Ctrl

Automated
Windows

Heating Ctrl

SmartHome

Manual
Windows

(a) SPL Feature Model

Manual
Heating

Automated
Heating

Remote Heating Ctrl

UI

InternetInhome
Screen

Optional feature
Mandatory feature when all its ancestors are selected

Windows Ctrl

Automated
Windows

Heating Ctrl

Product-2

Manual
Windows

Manual
Heating

Automated
Heating

RemoteHeating Ctrl

UI

InternetInhome
Screen

Selected featureUnSelected feature

(b) Product‐1

Windows Ctrl

Automated
Windows

Heating Ctrl

Product-1

Manual
Windows

Manual
Heating

Automated
Heating

RemoteHeating Ctrl

UI

InternetInhome
Screen

(c) Product‐2

Domain constraint “requires”

Figure 1: (a) Simpli�ed sample of the Smart Home feature model; (b) Sample con�guration that includes all features; and (c)
Sample con�guration that excludes the Automated Windows feature.

Figure 2 (a) (left and right-hand sides) shows
two of the models that are part of the real-
izations for Product-1. Figure 2 (a) (left-
hand side) shows an activity diagram that de-
picts the possible scenarios for the use case Ctrl-
TempRemotely that is depicted in the use
case diagram of Figure 2 (a) (right-hand side).
The activity diagram also comprises activities of
use cases OpenAndCloseWinAuto, AdjustHe-
aterValue and NotifyByInternet. Within this
activity diagram it is possible to select several sce-
narios that correspond to di�erent paths. Two of
all the possible scenarios are: Scenario (S1) includes
reaching the in-home temperature and save energy
by means of closing some windows, and Scenario
(S2) to use the heater to reach the desired in-home
temperature.

Figure 2 (a) (right-hand side) shows part of the
use case model composed for Product-1. The in-
cludes relationship describes the case where one
use case, the base use case, includes the function-
ality of another use case, the inclusion use case.
The includes relationship supports the reuse of
functionality in a use case diagram and is used
to express that the behavior of the inclusion use
case is common to other use cases. Note that in-
cludes relationships between use cases may con-
strain the relationship between the features related
to them. For example, the includes relationship
between the base use case CtrlTempRemotely
that includes the use case OpenAndCloseWin-
Auto may imply that feature RemoteHeatingC-
ntrl requires the feature AutomatedWindows.

It is important to note that the customization of

realizations such as activity diagrams and scenarios
depends on the features chosen for the SPL prod-
uct and also on the relationship with the use case
diagram. For example, given that in Product-
2 the feature AutomatedWindows was not se-
lected, theWinActuator actor in the use case di-
agram as well as the swimlane (also called activity
partition) related to WindowsActuator will not
appear in any diagram. Therefore, scenarios such
as Scenario (S1) described in a previous paragraph,
are not realizable due to the lack of windows actu-
ators. This and other constraints will be discussed
in Section 3.

1. Variant { name : "A-W" for : "Automated Windows"
2. + UseCase : "OpenAndCloseWinAuto" in Package : "WinMan"
3. + Partition : "WinActuator" in ActDiagram :“CtrlTempAuto"
4. ...
5. }
6. Variant { name : "R-H"
7. for : And ("Remote Heating Ctrl","Automated Heating","Internet")
8. + UseCase : "CtrlTempRemotely" in Package : "Heating"
9. + UseCase : "CalcEnergyConsumption" in Package : "Heating"
10. Includes from UseCase : "CtrlTempRemotely" to UseCase(s) :
11. "NotifyByInternet" and "OpenAndCloseWinAuto" and "AdjustHeaterValue"
12. ...
13. }

...more variants

Figure 3: Composition speci�cation of variants A-W and
R-H.

Creating a Composition Speci�cation. Figure 3 il-
lustrates a composition speci�cation that guides the
speci�cation of the transformation of requirements
speci�cations of products in the SmartHome SPL.
VML4RE [5, 17] is a textual language that allows
associating actions, that wrap a set of model trans-

4

Related to “Automated Windows”

Related to “And (“Remote Heating Ctrl” , “Automated Heating” , “Internet”)”

Related to other features expressions.

Heating

Adjust
HeaterValue

CtrlTemp
Remotely

<<actor>>
Thermostat

<<actor>>
Heater

<<include>>

Open And
Close Win

Open And Close
WinAuto

<<actor>>
WinSensor

<<actor>>
WinActuator

<<include>>

Open And
Close Win
Manual

Inhabitant

Notification

Notify

NotifyInhomeScreen<<include>>

<<include>>

(a) Use Scenario: Sample Customized Model‐Based Specifications for Product‐1:
(Left‐hand side) Sample Activity Diagram “CtrlTempRemotelly” Related to (Right‐hand side) Use Case Diagram

Related Model Elements in Activity Diagram Use Case

NotifyByInternet<<extend>>

Sm
ar
tH
om

e

Inhabitatnt Sends
Desired Temp By Internet

Close Windows

MonitorTemperature

AdjustHeaterValue

Open Windows

[OutOfTDesiredValue]

[OpenWindows]

[UseHeater]

[CloseWindows]

DetermineLowEnergy
ConsumptionStrategy

W
in
Ac
tu
at
or

In
ha

bi
ta
nt

Sm
ar
tH
om

e

NotifyChangeByInternet

He
at
er

...more activity diagrams

…

(b) Mapping Between Feature Expresions and Model Elements

WinMan

Not human
actor.

(c) Notation Used in Use Case and
Activity Diagrams

<<actor>>
Name

Human
actor.

Name

<<include>>

Include
relationship

Extend
relationship

Asociation
relationship

na
m
e

Partition

name

<<extend>>

Name

Package

name

Use case

Generalization
relationship

Action

[guard]

Activity edge

Initial
node

Decision
node

Figure 2: (a) Sample customized realizations for Product-1; (b) Mapping between feature expressions and model fragments;
and (c) Notation used in use case and activity diagram in (a).

formations for speci�c requirements models such as
use cases and activity diagrams, to combinations
of features written as logic expressions that we call
feature expressions. Feature expressions can be:

• Atomic, representing single features such as
�Automated Windows� in Figure 3, Line 1, and

• Compound, containing logic operators such
as AND, NOT and OR such as �And
("Remote Heating Ctrl","Automated Heat-
ing","Internet")� in line 7 of Figure 3.

Feature expressions evaluation works as follows: if
in a feature model con�guration a feature is selected
to be part of a product, that feature evaluates to
TRUE and if the feature is not selected it evalu-
ates to FALSE. Thus, a feature expression can be
evaluated to TRUE or FALSE taking into account
the Boolean value of each feature in the feature ex-
pression. If a feature expression evaluates to TRUE
its corresponding actions will be processed and ap-
plied to the base model. Otherwise, if the feature
expression evaluates to FALSE, the next feature ex-
pressions will be read and evaluated until the end
of the composition speci�cation.
In our example if AutomatedHeat-

ing,Remote Heating Ctrl, Automated

Heating and Internet features are selected in
a product con�guration, the feature expression
associated to the variant named �R-H� (i.e., the
compound feature expression: And ("Remote
Heating Ctrl","Automated Heating","Internet")
) will be evaluated to TRUE. The consequence
is that the actions inside the �R-H� variant block
(Figure 3, lines 6-13) will be processed and applied
to a base model. For example, the CtrlTempRe-
motely use case will be inserted into the package
Heating and then it will be related to other use
cases using includes and extends relationships.
If more than one feature expression is evaluated
to TRUE, the default composition order follows
a top-down sequence. Note that for simplicity of
explanation we omitted in Figure 3 some of the
actions, such as , the insertion of some actors such
as WinSensor and WinActuator and some
partitions such as Heater.

Creating a Mapping Speci�cation. Figure 2 (a)
shows use case and activity diagrams fragments,
such as actors and use cases, related with the vari-
ants shown in Figure 3. The base mechanism to
relate parts of the realizations to features is to use
a correspondence table (or mapping table), as pre-
sented by [4, 5, 8, 7]. It is possible to parse the

5

composition speci�cation to generate the mapping
between variants and parts of the realizations (more
details in Section 3.3). Therefore, for example, if
the variant A-W inserts theOpenAndCloseWin-
Auto use case, we relate the feature expression
of A-W (�automatedWindows�) to OpenAnd-
CloseWinAuto. To facilitate the visualization of
such relationships with the models, we assign di�er-
ent gray tones to the model elements according to
the feature expressions of variants that they are re-
lated to (see mapping in Figure 2 (b)). Also, note
that speci�c model fragments could be related to
more than one variant; this may be considered as a
M-to-N (where M, N >= 1) mapping between fea-
ture expressions of variants and model fragments
(not illustrated in Figure 2).

2.3. Consistency Checking Motivation

Consistency checking aims at ensuring that re-
quirements and constraints related to the feature
model and model-based speci�cations are consistent
between them. Let's analyse two requirements in
the Smart Home example. Requirement-1, which is
inferred from the feature model and the feature ex-
pressions in the mapping model, and Requirement-
2 which is inferred from the model-based speci�ca-
tions:

Requirement-1 : Only one, none or both R-H and
A-W variants can be included in a product.
This information is inferred from the feature
model and mapping model because all the fea-
tures in the feature expression of the R-H vari-
ant are optional and not exclusive between
them (i.e., Remote Heating Ctrl, Auto-
mated Heating and Internet are optional
features), and the only feature in the feature
expression of variant A-W is also optional
(i.e., the Automated Windows feature is op-
tional).

Requirement-2 : If the use case CtrlTempRe-
motely is provided in a product, then the use
case OpenAndCloseWinAuto and its re-
lated steps in the activity diagram must be pro-
vided too in order to support all the intended
use scenarios. This is implicit in the includes
relationship from the use case CtrlTempRe-
motely to OpenAndCloseWinAuto in the
use case diagram in Figure 2 (a) (right-hand
side) and also because of the control �ow be-
tween: �Determine Low Energy Consumption

Strategy� and �Open Windows� / �Close Win-
dows � in Figure 2 (a) (left-hand side).

In the particular case of the Smart Home use sce-
narios, an inconsistency can be detected: there is at
least one product that cannot satisfy Requirement-
1 and Requirement-2. Let's analyse how both re-
quirements are satis�ed or not in each product.

While Requirement-1 is satis�ed by all the prod-
uct con�gurations, therefore satis�ed by Product-
1 and Product-2, since they have the same fea-
ture model and mapping models, Requirement-2
is satis�ed by Product-1 only as its use cases
and activities supported all the required use sce-
narios for this product. For example, given that the
base use case CtrlTempRemotely was provided
in Product-1, the use cases related to it through
an Includes relationship, for example OpenAnd-
CloseWinAuto, are also present in the model.
The include relationship supports the reuse of func-
tionality in use case diagrams in which one use case
(the base use case) requires the functionality of an-
other use case (the inclusion use case). Therefore,
all possible use scenarios related to CtrlTempRe-
motely are supported only when its inclusion use
cases are included.

Requirement-2 is not satis�ed by Product-2 be-
cause its feature con�guration (shown in Figure 1
(c)) does not include the Automated windows
feature. Therefore, the feature expression of vari-
ant A-W (i.e., Automated windows)(Figure 3,
Line 1) evaluates to FALSE and the actions inside
its variant block are not processed, for example,
the inclusion of the use case OpenAndCloseWin-
Auto. The result is that the functionality provided
by OpenAndCloseWinAuto will not be present
in the requirements of Product-2 and therefore it
will not be taken into account in later stages of its
development process, thus given no support for the
scenarios related to CtrlTempRemotely.

One solution to solve the inconsistency for our
example is to guarantee the presence of the feature
Automated Windows when Automatic Heat-
ing or Remote Heating Ctrl are selected, in
every possible feature model con�guration. This
can be achieved in any of two ways (1) creating one
domain constraint requires from Remote Heat-
ing Ctrl to Automated Windows or (2) to es-
tablish that Automated Windows is a manda-
tory feature. However, the number of possible fea-
ture combinations may grow exponentially with the
number of features of the SPL and makes unfeasible

6

to manually check the consistency of all products,
one by one.
To guarantee that all the products derived from

a feature model have consistent speci�cations, we
take into account the relationships between con-
straints speci�ed in feature models and its model-
based speci�cations. We will discuss this in the next
section.

3. Ensuring Consistency between Feature

Models and Model-Based Speci�cations -

The VCC Approach

3.1. Overview

Figure 4 presents an overview of the VCC ap-
proach. Section 2 explained and exempli�ed the
activity �Create or Modify Models�: Feature Model,
Model-based Speci�cations (during this section we
called them Realizations for short) as well as its
corresponding Composition Speci�cation.
Domain Constraints are denoted as DCf and are

translated from a Feature Model4. Section 3.2 ex-
plains how to obtain and express DCf in terms of
features (f).
Realization Constraints are denoted as RCf and

are obtained from:

• Dependencies and Incompatibilities between
model elements in realizations (Section 3.4),
and

• Mapping between variants and model elements
in realizations (Section 3.3).

Section 3.5 explains how to obtain RCf from the
Mapping, and Dependencies and Incompatibilities
in terms of features.
We employ propositional logic to express and re-

late DCf and RCf . We want to guarantee that
Domain Constraints meet Realization Constraints
(i.e., RCf → DCf) and that Realization Con-
straints meet Domain Constraints (i.e., DCf →
RCf).
A Consistency Checking Report is the output of

the process. To Check Consistency, Equation 1
should not be �satis�able� for each and every con-
sistency rule that we want to check. If it is satis-
�ed, it means that domain constraints do not meet

4There are several works in the area of feature model
veri�cation and analysis that can be used to derive domain
constraints from feature models (for a comprehensive survey
see [22]).

the realizations constraints (i.e., ¬ (RCf → DCf) is
satis�able), or that the realizations constraints do
not meet domain constraints (i.e., ¬ (DCf → RCf)
is satis�able).

¬ (RCf → DCf)
∨
¬ (DCf → RCf) (1)

Section 3.6 explains how VCC and a SAT solver
can identify the inconsistent domain constraints
and the fragments of the associated models that
realize them. This information can support the de-
veloper to take informed decisions on modi�cations
of the initial SPL models, for example, creating or
modifying domain constraints or relationships be-
tween model elements.
It is important to note that feature model

editors and supporting tools such as SPLOT5,
pure::variants , Feature Mapper , and FeatureIDE
support two activities of VCC �Obtain Mapping be-
tween Variants and Realizations� and �Obtain Con-
straints between Features�. For example, SPLOT
generates a propositional formula (i.e., the domain
constraints DCf) from feature models and Feature
Mapper helps to relate model fragments to feature
expressions (i.e., the Mapping).
Section 2.1 shows that at least one product (i.e.,

Product-2) from the Smart Home SPL is inconsis-
tent. In that case, constraints that can be inferred
from the realizations between elements in use sce-
narios, such as the includes between use cases and
related control �ows, and actions in activity dia-
grams, imply the application of domain constraints
(i.e., (RCf → DCf)). The particular consistency
condition that guarantees that ¬ (RCf → DCf) be
not satis�able is de�ned by the rule (more rules in
Section 5):

• Required Inclusion Use Case: at least one vari-
ant de�ning an inclusion use case must be se-
lected in every feature con�guration contain-
ing the variant that introduces a base use case
linked to the inclusion use case.

3.2. Obtain Constraints between Features (DCf)

The constraints between features (domain con-
straints) are obtained from an SPL feature model
as shown in Figure 4. Therefore DCf is the same
for all possible product con�gurations. DCf is
obtained from a translation table between feature

5http://www.splot-research.org/

7

Obtain Constraints between
Model Elements in Realizations

Model-based Specifications (Realizations) Composition Specification Feature Model

Obtain Mapping between
Variants and Realizations

Obtain Constraints
between Features

Ensuring Consistency Checking

Dependencies and Incompatiblities Mapping

Derive Realizations’ Constraints

Realizations’ Constraints (RCf) Domain Constraints (DCf)

Check Consistency

Consistency Checking Report
Notation

Artefact

Create or Modfy Models

Consistent Specifications?

Decision Node

Syncronization Bar [Inconsistent]

Need More Iterations?

[Consistent]

[Yes]

[guard]

Final Node

Initial Node

[No]

Action or Activity

Activity Edge (can be Control Flow or Object Flow)

Figure 4: Overview of the Variability Consistency Checking (VCC) approach.

model elements and propositional formulas with
its corresponding conjunctive normal form (CNF6)
which is the standard input form for satis�ability
solvers.
The idea of translating feature models to propo-

sitional logic was proposed by Mannion et al. [23]
and Batory et al. [24] for example. Based on
these works Table 1 shows the translation between
feature model elements and propositional logic ob-
tained from the following steps [22]:

1. Each feature maps to a variable of the propo-
sitional formula,

2. Each relationship, e.g., requires, optional, is
mapped into one or more formulas,

3. The resulting formula is the conjunction of
all the resulting formulas of step 2 plus an

6A formula is in CNF form when it is a conjunction of
clauses and each clause is a disjunction of literals. CNF for-
mulas have special characteristics: i) a literal and its comple-
ment cannot appear in the same clause, ii) the only connec-
tives are: AND (∧), OR (∨), and NOT(¬), and iii) NOT(¬)
can only be used as part of a literal.

additional constraint assigning True to the
variable that represents the root feature (e.g.,
SmartHome←→ TRUE).

The right-most column of Table 1 is the trans-
lation to CNF form that will be used by the SAT
solver7. The mapping rules from propositional logic
to CNF form are based on classical logical equiv-
alences [25] such as the double negative law, De
Morgan's laws, and the distributive law.
Equation 2 shows an example for the Heating

Ctrl branch, the most complex branch in Figure 1
(a), and relates directly with the example �Required
Inclusion Use Case� rule. The translation obtained
in the �rst line of Equation 2 means that all prod-
ucts unconditionally must contain the root feature
Smart Home. Line 2 means Heating Ctrl must
be included in all the products, since it is a manda-
tory feature. Line 3 means thatManual Heating
is included in all the products that include their

7The characters representing the logical operators may
change according to the speci�c SAT solver tool used.

8

Windows Ctrl

Automated
Windows

Heating Ctrl

SmartHome

Manual
Windows

Manual
Heating

Automated
Heating

Remote Heating Ctrl

UI

InternetInhome
Screen

requires

1f 2f 1f 2f21 ff 21 ff

TRUERootf 21 ff requires
1f 2f)(21 ff excludes

1f 2f

nf
pf np fff 1

1f OR relationship

nf
pf

)(
)(

1
1

pfff
pfnff

n

1f XOR relationshipMandatory relationship Optional relationship

PL-FM Mapping

Relationship

M
an

da
to

ry

Propositional Logic

O
pt

io
na

l

1f

2f
12 ff

(-F2 or F1) and (-F1 or F2

21 ff

(~_r_1 or _r)(~_r or _r_1)(~

O
r

X
O

r

 np ffff ...21

nf

pf

1f 2f

 pnn

pn

pn

fffff
ffff

ffff

121

12

21

...
...

...

R
eq

ui
re

s

bf

E
xc

lu
de

s

 ba ff

ba ff af

bfaf

(~_r_30_32_33_34_37
(~_r_30_32_33_34_37
(~_r_30_32_33_34_37
(~_r_30_32_33_34 or
(~_r_30_32_33_34_37
(~_r_30_32_33_34_37
(~_r_30_32_33_34_37

(~_r_40_41_42 or _r_
(~_r_40_41_43 or _r_
(~_r_40_41_44 or _r_
(~_r_40 or _r_40_41_

pf

1f

2f

nf1f 2f

Table 1: Mapping feature models to propositional logic and
CNF (based on [25, 22, 24]).

parent feature (i.e., Heating Ctrl), in contrast
to Automated Heating and Remote Heating
Ctrl (lines 3-4), that may be, or not, included
when their respective parents Heating Ctrl and
Automated Heating are included in a product.
Line 5 means that Remote Heating Ctrl re-
quires the Internet feature.

1. (SmartHome↔ TRUE)∧
2. (SmartHome↔ HeatingCtrl)∧
3. (HeatingCtrl↔ManualHeating)∧

(AutomatedHeating → HeatingCtrl)∧
4. (RemoteHeatingCtrl→ AutomatedHeating)∧
5. (RemoteHeatingCtrl→ Internet)

(2)

This Section addresses DCf of Equation 1. The
following sections show how to obtain RCf , which
comprises a set of constraints that are essential for
consistency between realizations and domain con-
straints such as the ones expressed in Equation 2.

3.3. Obtain Mapping between Variants and Realiza-
tions

To obtain Realizations' Constraints (RCf) it is
necessary to know two kinds of relationships as
shown in Figure 4: (1) Mapping relationships be-
tween each variant (each one with an assigned fea-
ture expression) and the model elements that de-
pend on the variant, and (2) Dependencies and In-
compatiblities between model elements of the real-
izations. Figure 5 shows in red and dashed outline
the VCC metaclasses that help to support the ac-
tivity �Obtain Mapping between Variants and Re-
alizations�. Also, Figure 5 shows in blue and dotted
outline the metaclasses that help to support the ac-
tivity �Obtain Constraints between Model Elements
in Realizations�, explained in the next section.

The VCC metamodel of Figure 5 is indepen-
dent of the concrete syntax employed to repre-
sent concrete instances of ModelElement meta-
class. Our work focuses on early development of
SPL and employs Use Cases, Activity and Compo-
nent diagrams therefore, Figure 6 shows only some
of the metaclasses that extend the ModelEle-
ment metaclass of UML that are related to these
diagrams (e.g., Component, Interface, Asso-
ciation, Action, UseCase, Actor, Activity,
Partition and Package). As part of our future
work we will research how well VCC can be applied
to not UML-based models.

#name

ModelElement

+URI

ModelBasedSpecification
modelElement

1..*

UML-based Model
UML::ModelElement

UML::UseCase UML::Actor UML::ActivityUML::Partition

UML::Component

UML::Interface

UML::Asociation

UML::Package

UML::Action

Figure 6: Example of the specialization of the abstract meta-
classes ModelElement and ModelBasedSpecification

with an UML-based model and concrete ModelElement

metaclasses.

To derive realization constraints it is necessary
to map variants to concrete instances of model el-
ements in the model-based speci�cations. In Fig-
ure 5 a Variant in VCC has a name and one fea-
ture expression. In VCC we generalize the rela-
tionship between variants and model elements us-
ing a metaclass MapVarMe. The mapping can be

9

#value : Boolean

Expression

And Not FeatureNameOr

#name

Variant

MapVarME

MapRequiredME

mapRequiredME 0..*

MapProvidedME

mapProvidedME 0..*

#name

ModelElement

modelElement1

requiredModelElement 1 requirer 1

provider1

providedModelElement

1

featureExpression

1

ex 1..*ex 1..*2..* ex 1..* 2..*

variant 1

VCC

+URI

ModelBasedSpecification

+URI

FeatureModel
featureModel

1

realization 1..*

1

modelElement

1..*

+URI

MappingModel

ModelElementsDependenciesModel
1

1
1

1

1

mapVarME 0..*

features 1..*

#name

Feature

feature

1

Figure 5: VCC metaclasses related to mappings between model elements (blue colour and dotted outline) and between model
elements and variants (red blue colour and dashed outline).

done instantiating MapVarMe and assigning ex-
isting model elements and variants to it.

There are two ways to instantiate the mapping
model between variants and model elements:

1. Manually. Each instance of MapVarMe re-
lates an existing variant with one model el-
ement. Modelling tools such as EMF8 pro-
vide libraries with specialized methods. For
example, given a metamodel EMF provides in-
terfaces and a factory to create objects that
represent instances of each metaclass. The re-
quirements to create a mapping model are the
elements that will be mapped. Thus, we need
(1) to create a model-based speci�cation (e.g.,
use case, activity and component diagrams),
and (2) one or more instances of variants (i.e.,
objects of the metaclass Variant). The steps
are the following:

• Create an instance of the Mapping-
Model metaclass.

• Create one or more instances of Map-
VarMe. Each instance will contain a

8http://www.eclipse.org/modeling/emf/

pair of references (Variant,ModelEle-
ment).

• Add all the instances of MapVarMe cre-
ated in the previous step to the empty list
of mappings of the MappingModel.

To facilitate the creation of the mapping, de-
velopers can employ model creation wizards
and model editors o�ered by modelling frame-
works such as EMF.

2. Automatically, based on the actions of the
composition speci�cation. Part of the map-
pings can be discovered reading all the variants
with their contained actions. Figure 7 shows
that each variant contains any number of ac-
tions in a composition speci�cation. Abstract
Action types, such as Insert and Connect
(shown in yellow and dashed outline), have
to be specialized by some metaclasses (shown
in green and dotted outline), for example,
InsertUseCase, ConnectByIncludes
and InsertComponent (shown in green
and dotted outline). Then, for actions of
type Insert, VCC creates an instance of
MapVarMe and assigns to it the variant and
the inserted model elements.

10

Variant

MapVarMe

variant 1

MappingModel

mapVarME 0..*

Action

Insert Connect

1 0..*

InsertByIncludes InsertComponent ConnectByIncludes
...

Figure 7: Abstract metaclasses (shown in yellow and dashed
outline) and some of their specializations (shown in green
and dotted outline) that help to infer some mappings be-
tween variant and model elements.

Figure 8 shows an example based on Line 2 of
the composition speci�cation of Figure 3 also
shown in Figure 8 (c). We will obtain an in-
stance of MapVarMe (Figure 8 (b)) that ref-
erences the variant with name A-W and the
model element OpenAndCloseWinAuto of
type UseCase.

Variant

#name

MapVarMe
ModelElement

#name
#id

modelElement

1variant

1
Uml::UseCase

name = A-W

Object1 : Variant Object2 : MapVarMe

name = OpenAndCloseWinAuto
id = uniqueId

Object3 : Uml::UseCase

1. Variant { name : "A-W" for : "Automated Windows"
2. + UseCase : "OpenAndCloseWinAuto" in Package : "WinMan"

…
5. }

Figure 8: (a) VCC metaclasses related to mappings between
model elements and variants; (b) Object diagram of the map-
ping generated for the composition speci�cation fragment
shown in (c); and (c) Composition speci�cation fragment
from the example.

3.4. Obtain Constraints between Model Elements in
Realizations

The process in Figure 4 shows that one of the
inputs for the activity �Derive Realizations' Con-
straints� is the list of dependencies between model
elements in feature realizations. The requirement
to create an instance of ModelElementsDepen-
denciesModel is to have a model-based speci�-
cation (e.g., use case, activity and component di-
agrams). There are three not mutually exclusive
ways of obtaining dependencies between model ele-
ments:

1. Manually, instantiating the metaclasses
MapRequiredMe and MapProvidedMe.
Each instance of MapRequiredMe relates
one required model element with one of the
model elements that requires it. Also, it is
possible to instantiate the metaclass Map-
ProvidedMe to relate one model element
with one of the models that it provides. The
concept of �provides� and �requires� is similar
to the one used in component-based develop-
ment, where each component provides (i.e.,
realizes) some interfaces or requires (i.e., uses)
some other interfaces. In VCC we generalize
this concept so it can be applied for any kind
of model element. The steps required to create
a model elements dependencies model are:

• Create an instance of the ModelEle-
mentsDependenciesModel metaclass.

• Create one or more instances of Map-
ProvidedMe and add them to the
ModelElementsDependencies-
Model. Each instance will contain a
pair of references (Provider, Provid-
edModelElement).

• Create one or more instances of MapRe-
quiredMe and add them to the Mod-
elElementsDependenciesModel.
Each instance will contain a pair of
references (Requirer, RequiredMod-
elElement).

2. Automatically instantiating MapRe-
quiredMe and MapProvidedMe based
on the actions of the composition speci�cation.
All the actions that suggest the pre-existence
of model elements are good candidates to be
analysed. This is the case presented in Figure
9 (b) where the use case CtrlTempRe-
motely includes the behavior represented by
OpenAndCloseWinAuto. Therefore, the
requirer is CtrlTempRemotely and the
required model element is OpenAnd-
CloseWinAuto.
Obtaining dependencies based on actions that
are read from the composition speci�cation
is supported by the specializations of the
metaclass Action shown in Figure 5. The
following steps should be followed to create a
model elements dependencies model:

• Create an instance of the ModelEle-
mentsDependenciesModel metaclass.

11

• For each instance of ConnectAction
create one instance of MapRequiredMe
and add them to the ModelEle-
mentsDependenciesModel. Each in-
stance will contain a pair of ref-
erences (Requirer, RequiredMod-
elElement).

Figure 9 shows an example of the relationships
between model elements and their metaclases
based on a line of a composition speci�cation
written using VML4RE (Figure 9 (c)). Con-
nectByIncludes in Figure 9 (a) is a meta-
class in VML4RE that represents the action
(Figure 9 (c)) that links from a use case to one
or more use cases using the Include relation-
ship as it is shown in Figure 9 (b). Connect-
ByIncludes is one of the actions that special-
izes the action Connect from the VCC meta-
model shown in Figure 5, and UseCase is a
type of ModelElement referenced by Con-
nectByIncludes that is de�ned in UML.

3. Automatically instantiating MapRe-
quiredMe and MapProvidedMe based
on the realization models. This is probably the
best way to derive dependencies when there
is explicit information about the elements
provided and required. This is the case of
UML component diagrams where each com-
ponent declares explicitly a list of provided
and required interfaces. Programmatically, it
is straightforward to parse a realization model
and create instances of MapProvidedMe
and MapRequiredMe. Thus, each instance
will relate a component that plays the role
of either provider or requirer, and an
interface that plays the role of provided
or required model element, respectively.
In this case, the steps required to create a
model elements dependencies model are the
following:

• Create an instance of the ModelEle-
mentsDependenciesModel metaclass.

• For each instance of ModelElement
that plays the role of provider create an
instance of MapProvidedMe and add
it to the ModelElementsDependen-
ciesModel. Each instance will contain
a pair of references (provider, provid-
edModelElement).

• For each instance of ModelElement
that plays the role of provider create an

instance of MapRequirerMe and add
it to the ModelElementsDependen-
ciesModel. Each instance will contain a
pair of references (requirer, required-
ModelElement).

(b) Realization Model

(c) Composition Specification

MapRequiredMe

#name

#id

ModelElement

requirer

1

Includes from UseCase : to UseCase(s) :

CtrlTemp

Remotely

OpenAndClose

WinAuto

<<Include>>

Uml::UseCase

ConnectByIncludes

Connect

toUseCase

1..*
fromUseCase

1

"CtrlTempRemotely" "OpenAndCloseWinAuto”

Action

requiredModelElement 1

Figure 9: (a) Set of metaclases that support the depen-
dencies for the ConnectByIncludes action; (b) Exemplar
model fragment related to an Includes relationship between
use cases; and (c) the composition speci�cation

3.5. Deriving Realizations' Constraints (RCf)

Realizations' constraints act as consistency rules
describing the relationships that must hold among
the di�erent model elements. There are two ba-
sic types of realization constraints that we classify
according to the type of domain constraint that
they relate with: (1) constraints that imply an ex-
cludes relationship between features, therefore im-
plying incompatibilities between variants, and (2)
constraints that imply a Requires relationship be-
tween features that therefore imply dependencies
between variants. This section shows the equations
that express each of these. In the de�nition of the
equations, the function F receives as input a variant
and returns its corresponding feature expression.
Thus, we can express the realizations' constraints
in terms of feature expressions and not in terms of
their related variants.

Excludes Relationship: Let V ar be a vari-
ant that de�nes a model element e. Another vari-
ant V arExci con�icts with V ar if V arExci de�nes
a model element c which cannot be present in the
same realization of a product where element e is.
Due to the incompatibility between the elements
e and c, if variant V ar is selected then variant
V arExci should not be selected for the same prod-
uct con�guration. This is denoted in Equation 3,
where n represents the total number of con�icting
variants:

12

RCf, Exc ≡ F (V ar)→ ¬∨n
i=1 F (V arExci)

(3)

Requires Relationship: Let V ar be a vari-
ant that refers to a model element e de�ned by an-
other variant. To be consistent, the model-based
speci�cations of a product that includes V ar must
also include at least one other variant V arReqi (re-
quired variant) where element e is de�ned. This
is denoted in Equation 4, where n represents the
number of required variants:

RCf,Req ≡ F (V ar)→ ∨n
i=1 F (V arReqi) (4)

Equation 4 evaluates to FALSE when any action
in variant V ar requires an element or set of required
elements that are not composed, for example. This
happens because none of the corresponding vari-
ants V arReqi that introduce the required elements
was selected in the product con�guration. Also, ex-
pression 3 evaluates to FALSE when variant V ar
de�nes an element or set of elements that are intro-
duced in the realizations that also contain con�ict-
ing elements de�ned by other variant(s) V arConfi.

The rule �Required Inclusion Use Case� men-
tioned at the beginning of this section is an example
of RCf,Req. An instance of this constraint is found
in our motivational example related to the use sce-
nario of CntrlTempRemotely. For example,
given that variant V ar = R-H is selected (i.e., a
product with Remote Heating Cntrl, Auto-
mated Heating and Internet features) and it is
related to the base use case CtrlTempRemotely,
we want to guarantee that there is at least one vari-
ant (e.g., V arReqi = A-W) related to the inclusion
use caseOpenAndCloseWinAuto (i.e., model el-
ement e = use case OpenAndCloseWinAuto)
and that its feature expression evaluates to TRUE
in all possible feature model con�gurations. In this
way we guarantee the presence of the functional-
ity required by CtrlTempRemotely, such as to
include a WindowsActuator that regulates the
temperature opening and closing windows. Hence,
with that information, it is possible to create the re-
alization constraint RCV ar ≡ R-H→A-W. We can
get a constraint instance replacing the variants by
their corresponding feature expressions using func-
tion F to obtain Equation 5:

RCf,Req ≡ F (R−H)→ F (A−W) ≡
(RemoteHeatingCntrl ∧ AutomatedHeating ∧

Internet) → (AutomatedWindows)
(5)

3.6. Check Consistency

The �Check Consistency� activity depicted in
Figure 4 depends on the kind of constraint created
in the previous section. If we replace RCf of Equa-
tion 4 in Equation 1 and perform some logic manip-
ulation we obtain the expression in Equation 6 (for
a step by step process see the Appendix section).

RealizationConstraint of typeRequires :
¬ (RCf, Req → DCf)

∨¬ (DCf → RCf, Req)
≡
((
¬F (V ar)

∨n
i=1 F (V arReqi)

)
∧ ¬DCf

)
∨ (

DCf ∧ F (V ar) ∧ ∧n
i=1 ¬F (V arReqi)

)
(6)

Similarly, if we replace RCf of Equation 3 in
Equation 1, and perform some logic manipulation,
we obtain the expression in Equation 7.

RalizationConstraint of typeExcludes :
¬ (RCf, Exc → DCf)

∨¬ (DCf → RCf, Exc)
≡
((
¬F (V ar) ∨ ∧n

i=1 ¬F (V arExci)
)
∧ ¬DCf

)
∨ (

DCf ∧ F (V ar) ∧∨n
i=1 F (V arExci)

)

(7)

The input for satis�ability checking are expres-
sions such as the ones in Equations 6 and 7. Each
expression to be checked is instantiated with:

• The speci�c domain constraints, DCf of the
SPL produced in Equation 2,

• The feature expressions related to the variants
V ar and either the set of its required variants
V arReqi or the set of its con�icting variants
V arExci.

To know which part of the disjuntion in Equation 6
and Equation 7 evaluates to TRUE (i.e., it is incon-
sistent), each term of the disjunction is evaluated
separately. Therefore, we consider that the feature
model and its realizations are consistent only when
both terms of the disjunction evaluate to FALSE.

13

The possible results generated by a satisfability
(SAT) checker for each expression (Figure 4 - �Con-
sistency Checking Report�)) can be True (satis�-
able) or False (not satis�able). If FALSE is ob-
tained for all the expressions, we know that the
SPL is consistent because there are no inconsis-
tencies between the relationships and dependencies
(e.g., excludes, optional, mandatory, requires) be-
tween features depicted in the SPL feature model,
and their realizations. If TRUE is obtained, our
tool, based on the mapping between variants and
model elements in the realizations, shows a list of
the variants and the model elements related to each
inconsistency.
Taking the example of the Smart Home feature

model depicted in Figure 1, the result of the SAT
solver for rule �Required Inclusion Use Case� is that
it is satis�able (i.e., it evaluates to TRUE). This
means that there is an inconsistency between the
features and use scenarios. An example of the type
of message generated by our tool to the user is (see
tool support in Section 4):

�...Inconsistent use scenario(s)

[CtrlTempRemotelly] and feature(s)

in feature expression(s) of variant(s)

[A-W], [R-H]. The Action: [Includes

from UseCase: �CtrlTempRemotely� to

Use Case(s) �OpenAndCloseWinAuto�]

implies a [Requires] relationship

between variant [R-H] and required

variant(s) [A-W] that is not enforced

in the SPL feature model...�.

Based on this information, for the SAT solver to
evaluate to FALSE, developers may consider, for
example:

• Modify the feature model: the set of SPL do-
main constraints that can be extracted from
the feature model can be modi�ed, for exam-
ple by creating a Requires relationship for
AutomatedHeating feature to Automat-
edWindows, or by changing the Automat-
edWindows feature from optional to manda-
tory.

• Modify use scenarios and composition model:
for our particular rule, developers may want
to check if indeed the Includes association
between use cases CtrlTempRemotely and
OpenAndCloseWinAuto is mandatory for
every single product, or not.

4. Tool Support

Tools for consistency checking can be highly ef-
fective for detecting errors in variability modelling.
Such tools can �nd errors people miss, but they can
also alleviate developers from the tedious and error-
prone task of checking feature models and their re-
alizations for consistency [26].
VCC 9 tool supports the process described in Sec-

tion 3.1. Figure 10 shows the architecture of the
VCC tool identifying two major parts: (1) external
components and tools, and (2) internal components
we implemented.

4.1. External Components

Ecore-Based Editor: Realizations can be written
in any Ecore-based10 modelling tool. Currently, we
used Papyrus and Topcased open-source editors to
create realizations of use case, activity, and compo-
nent diagrams.
VML4RE and lightVC: We created VML4RE

and a lightweight version of composition spec-
i�cation editor for architecture called lightVC
(Lightweight Variability Composer). These lan-
guages use EMFText11 which provides the soft-
ware infrastructure to derive a concrete syntax and
plug-in based on the metamodel of each language
written in Ecore. This technology separates con-
crete syntax and abstract syntax, easing mainte-
nance of the languages. The concrete syntax cho-
sen for VML4RE is HUTN (Human Usable No-
tation)12 provided by EMFText. In comparison
with our previous tool version [5], HUTN allows
a more usable and suitable notation for describing
requirements composition.
SPLOT Editor and Parser: SPLOT allows us

to do several activities such as to share and edit
our models collaboratively via web, write arbitrary
cross-tree constraints between features and gener-
ate an initial CNF formula of the feature models
and its constraints. However, it is possible to use
other feature model editors that translate to CNF
or to implement the translation based on the map-
ping patterns described in Table 1.

9A prototype can be found at:
http://www.mauricioalferez.com/JSS/JSS-Data.htm

10http://www.eclipse.org/modeling/emf/
11http://www.emftext.org/
12http://www.omg.org/spec/HUTN/

14

VC
C
 In
te
rn
al

SPL Feature ModelComposition SpecificationRealizations
Ex
te
rn
al

Mapping Domain
Constraints

Realizations’
Constraints

lightVC
Editor

Ecore‐based
Editor

SPLOOT
Editor

Variant‐and‐Model
Elements Mapper

Required‐and‐
Provided‐Mapper

Feature Model
CNF Translator

Dependencies

Constraints creator and
CNF Translator

CNF Formula
Composer

SPLOT
Parser PicoSAT

Results Composer
and Printer

SAT Controller

VML4RE
Editor

Feature
Identifier

Feat-ID
Maping

Figure 10: VCC tool support high-level architectural view.

PicoSAT: We employed PicoSat1314 as SAT
solver to determine the satis�ability of each formula
(we have also experimented SAT4J15).

4.2. VCC-Internal Components

Required-and-Provided Mapper: We have two im-
plementations of this component. For requirements
models, such as use case and activity diagrams, we
obtain an initial list of required and provided ele-
ments based on the composition speci�cation and
realizations. For architectural models, we parse the
component diagram to obtain the set of provided
and required interfaces of each component.
Variant-and-Model Elements Mapper: It parses

the composition speci�cation to �nd the variants
and the model elements that each one introduces
into the use cases, activity and component dia-
grams.
Features' Identi�er: It assigns and persists iden-

ti�ers for each feature. Identi�ers are used as vari-
able names when creating constraints in CNF for-
mat and during satis�ability checking.
Constraints creator and CNF Translator: Given

the dependencies between model elements and their
relationships with variants, it deduces the realiza-
tion constrains as described in Section 3.5. In the
case of VML4RE and lightVC which use feature ex-
pressions written as propositional formula in pre�x
notation, it is necessary to translate to CNF, a for-
mat readable by SAT solvers.

13http://fmv.jku.at/picosat/
14We thanks to Alexander Nöhrer for its Java interface for

PicoSAT
15http://sat4j.org/

Feature Model CNF Translator: Translates the
clauses generated by SPLOT to an appropriate
CNF form readable by SAT solvers [9].
CNF Formula Composer: Generates the formu-

las that will be passed to the SAT solver accord-
ing to the patterns shown in Section 3.6, based
on the constraints created by the Feature Model
CNF Translator and Constraints Creator and CNF
Translator components.

5. Evaluation

Experiments have been carried out to demon-
strate the applicability of VCC for consistency
checking in SPL systems (they are available on-
line16).

5.1. Setup

We have evaluated VCC with two case studies.
The �rst case study was the complete Smart Home
SPL from which we used a small part as example
in the �rst sections of this paper. The second case
study is Mobile Photo [27] a SPL for applications
that manipulates photos on mobile devices, such as
mobile phones (there is another version called Mo-
bile Media that includes more evolution releases).
These case studies were selected because:

1. They are of di�erent application domains while
still be understood by readers in general given
their everyday life utility.

16http://www.mauricioalferez.com/JSS/JSS-Data.htm

15

2. They use di�erent kinds of features realiza-
tions: use scenarios for the Smart Home and
component models for the Mobile Photo.

3. We had previous experience modelling variabil-
ity and part of their realizations. The use sce-
narios in Smart Home were inspired on the
requirements of the system [21] set by one of
our industrial partners in the European Union
project, AMPLE [28]. Together with Smart
Home, Mobile Photo was used in the AMPLE
project as an initial case study to research com-
position mechanisms in SPLs.

The objective of this evaluation was to determine
if VCC can indicate where to �nd inconsistencies
between features and di�erent kinds of realizations.
For the experiment, we de�ned feature models for
each case study, realizations for each one, and the
mapping between model elements and variants us-
ing VML4RE and lightVC. Next, we ran the VCC
tool and analyzed the results.
Table 2 summarizes the rules that we used in this

evaluation. We used 6 rules of type Requires and 4
of type Excludes, considering 4 kind of relationships
between model elements.

• Rules that consider Includes relationships:
an include relationship, in which one use case
(the base use case) includes the functionality
of another use case (the inclusion use case),
supports the reuse of functionality in use-case
diagrams. In VCC this kind of rule suggest
including in a product the inclusion model el-
ement if the base model element is included.

• Rules that consider Containment relation-
ships: the contained model element is the one
that requires a container. In UML a com-
mon container is the package, but others ex-
ist, such as Activity that contains model el-
ements represented in activity diagrams. In
VCC this kind of rule suggest including in a
product the container model element if the con-
tained model element is included.

• Rules that consider the Usage and Realiza-
tion relationships: usage relationship is a
type of dependency relationship in which one
model element (the client) requires another
model element (the supplier) for full implemen-
tation or operation. In this experiment we con-
sider Usage and Interface Realization re-
lationships in component diagrams employing

Rule Description Relationship

1 Required inclusion Use Case when Inclusion

base Use Case included

2 Required Package when any of its Containment

Use Cases are included

3 Req. Package when any of its Containment

contained Packages is included

4 Req. Use Case when any of its Generalization

children Use Cases are included

5 Req. Actor when at least one of its Generalization

children Actors are included

6 Req. Activity if at least one of its Containment

Opaque Actions are included

7 Required required Interfaces when Usage/Realization

Component is included

8 Excluded base Use Case when Inclusion

inclusion Use Case is excluded

9 Excluded Use Case when its Containment

Package is excluded

10 Excluded provided Interfaces when Usage/Realization

its Component is excluded

11 Excluded Opaque Actions when its Containment

Activity is excluded

Table 2: Summary of the rules implemented as realization
constraints in our study

components as clients, and interfaces as suppli-
ers. In VCC this kind of rule suggests including
in a product the supplier model element if the
client model element is included.

• Rules that consider the Generalization re-
lationships: a generalization relationship is a
relationship in which one model element (the
child) is based on another model element (the
parent). Generalization relationships are used
in class, component, deployment, and use case
diagrams to indicate that the child receives
all of the attributes, operations, and relation-
ships that are de�ned in the parent. In our
experiment we considered generalization rela-
tionships between Actors and between Use
Cases. In VCC this kind of rule suggest in-
cluding in a product the parent model element
if the child model element is included.

Each rule instance requires at least two calls
to the SAT solver, the �rst to check satis�abil-
ity of the left-hand side of the disjunction (i.e.,
¬ (Cf → FMf)) in Equation 1 and the second to
check the right-hand side (i.e., ¬ (FMf → Cf)).

16

Case Studies Smart Home Mobile Photo

Features 60 14

Main model elements 36 Use Cases, 12 Components,

12 Activities, 15 Interfaces.

14 Packages.

Variants 28 7

Rules 10 2

Rule instances checked 71 10

Product variants One billion 16

Table 3: Evaluation results using VCC in the Smart Home
SPL.

If VCC shows that it is satis�able it means that
there is an inconsistency. VCC provides informa-
tion about the concrete variant, feature expression,
action in the variant, and model elements in the
realization that are related to the rule instance.

5.2. Results

Table 3 summarizes our evaluation for both cases
studies17. Smart Home has 60 features and com-
prises signi�cant aspects of modern home automa-
tion domain such as security, HVAC (Heating, Ven-
tilating, and Air Conditioning), illumination con-
trol, �re control and multiple user interfaces. The
Mobile Photo has 14 features and less variety and
number of model elements than Smart Home. It
has interconnected components, some acting as con-
trollers for albums and photos and others imple-
menting speci�c operations such as, view, create,
delete, edit labels, and manage data access.

According to SPLOT feature analyzer, the Smart
Home feature model allows the generation of one
billion product con�gurations and sixteen are pos-
sible for Mobile Photo. These numbers show that
manual consistency checking is not a good option;
an approach and tool support such as the one that
we proposed in this paper is very necessary.

In our experiments we found a total of 81 rules
instances to check. The number of possible com-
binations of features, variants and model elements
makes this task time consuming and error prone.
The VCC approach and tool produces the results
in the order of milliseconds when run on an Intel

17The Smart Home was initially evaluated in a previous
work [29] focusing only on consistency checking between fea-
tures and use scenarios. In this evaluation we use extended
equations for Excludes and Requires, and generalize VCC
for any kind of realization.

Core-Duo i5 at 2.4 Ghz. Given that feature mod-
els and constraints are mapped to clauses in VCC,
the performance and scalability of our approach are
proportional to the e�ciency of the SAT solvers
which are able to handle large number of clauses in
industrial applications.

6. Discussion and Related Work

An issue in the development of SPL is the lack of
e�cient approaches for consistency checking among
models. In model-driven development this becomes
an important issue as software is built by means
of a chain of transformations. This can start from
assets such as requirements speci�cation models, to
code-based assets that typically depend on a partic-
ular implementation technology. In this setting, the
quality of the �nal code of target products depends
mostly on (1) the transformations, (2) the source
models of each transformation and (3) the informa-
tion added after each transformation. Therefore,
to create constraints not only helps stakeholders to
understand the intended products, but also to ob-
tain good quality source models that aim to derive
good quality code.
We explore the use of SAT solvers and propo-

sitional logic to support consistency checking be-
tween a feature model and its corresponding model-
based speci�cations. Usually SAT solvers and
propositional formulas to represent dependencies
between software assets are used much later in the
development. The result of this work showed that
they can be used much earlier and therefore some
inconsistencies do not have to be left until later to
be detected. The use of these methods is trans-
parent for the SPL developer and therefore it does
not add extra complexity to the modelling pro-
cess. SAT solvers and the processing of proposi-
tional logic are implemented by libraries that are
used internally by VCC.
Our work is related to previous work on type sys-

tems for SPL [11, 30, 12, 10, 13, 8]. Most of these
works are based on feature-oriented programming
where a feature is implemented by a code unit called
feature module. When composed to a base program,
a feature module introduces new structures, such as
classes and methods, and re�nes existing ones. A
program that is decomposed into features is called
therefore, a feature-oriented program.
Thaker et al. address consistency checking as

a Safe Composition problem [14, 31] for feature-
oriented programs [13]. Safe Composition guar-

17

antees that all programs in a SPL are type safe,
i.e., absent of references to unde�ned elements such
as classes, methods, and variables. They show
how safe composition properties can be veri�ed for
AHEAD SPL [32] using feature models and SAT
solvers. Delaware et al. developed a formal model
of the type system of Thaker et al. and proved its
soundness [12].
Kastner and Apel provide a formal approach for

type-checking of SPL systems [10]. They employ a
calculus named Color Featherweight Java (CFJ) to
develop an SPL of which variants can be generated
as Featherweight Java (FJ) programs. They prove
that given a well-typed CFJ SPL, all possible pro-
gram variants that can be generated are well-typed
FJ programs, i.e., generation preserves typing. Al-
though this formalization covers only a small subset
of Java, it provides theoretical insights about typing
during the products generation mechanism.
Similarly to Thaker et al, [13] and, Kastner and

Apel [10]., Apel et al. addresses feature-oriented
programming, however, focusing on type checking
independently of the target programming language
and a subclass of possible type errors: dangling ref-
erences [8]. In an SPL, code related to one fea-
ture may refer to code related to another feature,
for example in the form of a method invocation
or �eld access. If the former feature is selected
and the latter is not, the former has a dangling
reference, reported by the type system. Feature
Structure Trees (FST) extended by references pro-
vide insight into the structural interactions. An
FST organizes the feature module's structural ele-
ments (e.g., �les, classes, �elds, or methods) hier-
archically while a reference is a pair of a name of
source FST structural element and a name of a des-
tination FST structural element. For a SPL to be
checked, FSTs and references have to be extracted
by language-speci�c code analysis tools. This ap-
proach was applied to two sample code-based SPLs
written in Java and C. However, it provides two al-
gorithms, Global and Local Reference Checking that
are claimed to be independent of any programming
technique. The two algorithms expect domain and
structural information and provide information on
dangling references and potential target features.
Their di�erence is that the Global algorithm creates
one propositional formula to be checked and the Lo-
cal creates several formulas, each one describing the
constraints implied by a di�erent reference.
Similarly to Thaker et al., Kastner and Apel [10],

and Apel et al. [8], VCC employs propositional for-

mulas and SAT solvers to check its satis�ability.
The Local Reference Checking algorithm of Apel et
al. [8] is analogous in the way that VCC checks
satis�ability because VCC generates one proposi-
tional formula by each consistency rule. However,
in contrast to Apel et al., VCC does not use FST ex-
tended by references. VCC uses a ModelElements-
DependenciesModel metaclass whose instances con-
tain instances of the mappingsMapProvidedMe and
MapRequiredMe between model elements. Each
model element can play several roles in the Map-
ProvidedMe andMapRequiredMe mappings accord-
ing to its relationships with other model elements:
requirer, requiredModelElement, provider and pro-
videdModelElement. Thaker et al., and Apel et
al., have references that are the analogous to the
MapRequiredMe kind of mappings.
Another di�erence between VCC and Thaker et

al., Kastner and Apel [10], and Apel et al. [8] is
that it does not use feature modules but Variant
modules (each one identi�ed by a name and a fea-
ture expression). Therefore in VCC there is an
M-to-N (where M, N >= 1) relationship between
features and related model fragments. The impli-
cation of using variant modules instead of feature
modules is that �individual features or small sets
of related features typically change more or less in-
dependently from other features� [33], and thus a
group of changes to code or models (such as the
Actions in the Variants modules of VML4RE) can
be related to threads drawn from a few related fea-
tures. Particularly in domain speci�c application
such as e-commerce systems, the ability to rapidly
and consistently evolve sets of related features is
key [33].
Even previously to the work of Thaker et al.,

Czarnecki and Pietroszek [30] presented an auto-
matic veri�cation procedure to ensure that no ill-
structured template instances (i.e., concrete mod-
els of products) will be generated from a correct
product con�guration. Czarnecki and Pietroszek
suggested the development of a type system that
checks the entire assets of the feature-oriented SPL,
instead of all individual feature-oriented programs.
VCC as well as Thaker et al., Kastner and Apel
follow that strategy and check consistency for the
entire SPL assets instead of for individual products.
VCC complements the work of Czarnecki and

Pietroszek with the fact that domain constraints
obtained from the feature model could follow from
constraints obtained from other model-based spec-
i�cations. Therefore, this makes our general equa-

18

tion for consistency checking more complete. The
implication of this fact is that when we check consis-
tency between model-based speci�cations and fea-
tures we do not assume that the feature model con-
tains all domain constraints since its creation as
it usually happens during early modelling in incre-
mental SPL development. In fact, our approach
bene�ts from the model-based speci�cations to sug-
gest domain constraints in the feature model. Also,
VCC does not rely on model templates annotated
with feature expressions but on a separated compo-
sition model. However, using proper tool support it
may be possible to obtain an instance of ModelEle-
mentsDependenciesModel based on the annotations
and annotated model elements.
Previous work of Lopez-Herrejon and Egyed [34]

also addressed consistency with an extension for
multi-view modelling (MVM). Similar to the ap-
proaches mentioned in the previous parragraphs
[10, 8, 13], a feature module captures the multiple
views of a feature. Each view is represented by a
di�erent type of model, from which the authors fo-
cus on artefacts closer to software implementation,
such as class, sequence and state diagrams. Lopez-
Herrejon and Egyed observed that their approach
for feature-oriented software development composes
elements such as methods or classes (coarser gran-
ularity) but not their nested elements (�ner granu-
larity). VCC builds upon this previous work to take
into account more than one type of model as well,
and addressing models used in early SPL develop-
ment. However, VCC proposes a metamodel and
guidance on how to obtain instances of their meta-
classes based on model-based speci�cations. The
VCC metamodel makes explicit the relationships of
key elements in consistency checking such as vari-
ants, feature expressions and the actions. Lopez-
Herrejon and Egyed [34] use a single feature to
identify a set of related model fragments of dif-
ferent type. Also, they employ a speci�c model
transformation technique, called FOSD composi-
tion based on merging of feature modules. VCC
considers more types of model transformations (Ac-
tions), such as connections and insertions of model
elements and use them to obtain dependencies be-
tween model elements and mappings between vari-
ant modules (each variant module related to a fea-
ture expression) and model elements.
Another di�erence between VCC and other type

systems such as the approach of Lopez-Herrejon
and Egyed is the way they support modularization
of the model or code fragments. In feature-oriented

programming and development the modularization
is mainly based on feature modules, however, VCC
can support a dominant modularization di�erent to
features modules. For example, we employ a core
use case diagram to represent a use case model for
the entire system, instead of modelling each part of
the use case diagram fragmented by feature mod-
ules. However, feature modules can be checked in
VCC when each variant is related to a feature ex-
pression that contains only one feature (i.e., an in-
stance of the metaclass FeatureName of type Fea-
ture Expression), and related to a set of model frag-
ments that are related exclusively to that feature as
possible. We do not speculate about which modu-
larization technique for the model-based speci�ca-
tions is better. We just argue that more freedom
to the developers should be provided to decide how
their models should be modularized and composed.
There are other research areas related to our

work but designed for single systems and designed
for code-based assets. For example, SafeGen is a
meta-programming language for writing statically
safe generators of Java programs [31]. If a program
generator written in SafeGen passes the checks of
the SafeGen compiler, then the generator will only
generate well-formed Java programs, for any gener-
ator input. SafeGen's static checking algorithm is a
combination of traditional type checking for Java,
and a series of calls to a theorem prover to check the
validity of �rst-order logical sentences constructed
to represent well-formedness properties of the gen-
erated program under all inputs.
Still for single systems but related to model-based

speci�cations, authors such as Egyed considers well-
formedness of UML based diagrams [35] and Jacob-
son and Ng consider aspect-oriented use cases dia-
grams [36]. These works do not check consistency of
SPL models, and their composition mechanism does
not support model weaving of model fragments as it
is possible with a composition language. However,
key ideas from these approaches may bene�t consis-
tency checking in SPL. For example, the knowledge
about consistency rules between model elements of
Egyed [35] can inspire the creation of consistency
rules for SPL. Also, the idea of Jacobson [36] to
modularize a system by use case packages, each one
including all sort of model types that specify and
implement an use case, is similar to the notion of
feature modules and may be a starting point to con-
sider early modelling in SPL development.
Other authors have worked on checking tempo-

ral properties in behavioural model-based speci�-

19

cations [37, 38]. This approach requires translating
the SPL speci�cations to transition systems that ex-
plicitly relate individual transitions to atomic fea-
ture expressions. In comparison to that work, VCC
is focused on checking structural properties, does
not require from the developer to create other mod-
els such as transition systems, employs atomic and
composed feature expressions, and it is not limited
to negative variability composition mechanisms.
The approaches presented here are the ones closer

to our work and a source of inspiration. However,
there is a plethora of approaches related to software
veri�cation, consistency checking, safe composition,
software testing and quality assurance that can be
considered as related work but that cannot be ex-
amined in details. These cover other development
paradigms [39], modelling techniques [40] and appli-
cation domains [41, 42, 43]. Furthermore, there is
a Common Variability Language (CVL) standard-
ization initiative18 of the OMG which is related
to our approach because it also aims at express-
ing SPL variability and concrete changes in mod-
els according to the selection of features in a fea-
ture model. However, CVL does not propose how
to check consistency between di�erent model-based
speci�cations and feature model.

7. Conclusions and Future Work

This paper de�nes constraints and presents tool
support for consistency checking between features
models and its model-based realizations in early
SPL development. The aim of checking consistency
is ensuring that the models for speci�c products de-
rived from a feature model are consistent between
them. VCC has been applied to requirements anal-
ysis and architectural models but it may be applied
for other kind of models. The feasibility of VCC
and its tool was evaluated with two case studies
where the results showed that performance is not
an issue.
As part of our future work in consistency check-

ing, we will address the aspect of co-evolution of the
models, it means to understand how the changes
on each model (i.e., feature model, realizations and
composition speci�cation), in�uence its consistency
with respect to the others. Also, as part of fu-
ture work we will establish consistency rules and
constraints for realizations that were not explicitly

18http://variabilitymodeling.org.

addressed in this paper, such as code modules or
quality models. Here, we are addressing part of the
problem in general.

Appendix

In this Section we include the complete derivation
of the requires and excludes rules. We use the fol-
lowing logical equivalences to translate expressions:
a) ¬ (x→ y) ≡ x ∧ ¬y , b) x→ y ≡ ¬x ∨ y, and
c) ¬(z ∨ w) ≡ ¬z ∧ ¬w. At the right side of each
line appears the letter that identi�es each logical
equivalence.

Requires

The requires constraint in Equation 6 can be ob-
tained from a disjunction of Equation 8 and Equa-
tion 9:

¬
(
Cf,Req → FMf

)

≡ ¬
((

F (V ar) → ∨n
i=1 F

(
V arReqi

))
→ FMf

)

≡
(
F (V ar) → ∨n

i=1 F
(
V arReqi

))
∧ ¬FMf (applying A)

≡
(
¬F (V ar)

∨n
i=1 F

(
V arReqi

))
∧ ¬FMf (applying B)

(8)

¬
(
FMf → Cf,Req

)

≡ ¬
(
FMf →

(
F (V ar) → ∨n

i=1 F
(
V arReqi

)))

≡ FMf ∧ ¬
(
F (V ar) → ∨n

i=1 F
(
V arReqi

))
(applying A)

≡ FMf ∧ F (V ar) ∧ ¬∨n
i=1 F

(
V arReqi

)
(applying A)

≡ FMf ∧ F (V ar) ∧ ∧n
i=1 ¬F

(
V arReqi

)
(applying C)

(9)

Excludes

The Excludes constraint in Equation 7 can be ob-
tained from a disjunction of Equation 10 and Equa-
tion 11:

¬
(
Cf,Exc → FMf

)

≡ ¬
((

F (V ar) → ¬∨n
i=1 F

(
V arExci

))
→ FMf

)

≡ ¬
((
¬F (V ar) ∨ ¬∨n

i=1 F
(
V arExci

))
→ FMf

)
(applying B)

≡
(
¬F (V ar) ∨ ¬∨n

i=1 F
(
V arExci

))
∧ ¬FMf (applying A)

≡
(
¬F (V ar) ∨ ∧n

i=1 ¬F
(
V arExci

))
∧ ¬FMf (applying C)

(10)

¬
(
FMf → Cf,Exc

)

¬
(
FMf →

(
F (V ar) → ¬∨n

i=1 F
(
V arExci

)))

¬
(
FMf →

(
¬F (V ar) ∨ ¬∨n

i=1 F
(
V arExci

)))
(applying B)

FMf ∧ ¬
(
¬F (V ar) ∨ ¬∨n

i=1 F
(
V arExci

))
(applying A)

FMf ∧ F (V ar) ∧ ∨n
i=1 F

(
V arExci

)
(applying C)

(11)

Acknowledgments

This work was partially supported by the Por-
tuguese research centre CITI, under the grant

20

PEst-OE/EEI/UI0527/2011, Portugal, the Euro-
pean project AMPLE, contract IST-33710 and the
Portuguese grant SFRH/BD/46194/2008 of Fun-
dação para a Ciência e a Tecnologia, Portugal. It
was also partially funded by the Austrian FWF
under agreement P21321-N15 and Marie Curie Ac-
tions�IEF project number 254965.

References

[1] P. Clements, L. Northrop, Software Product Lines:
Practices and Patterns, Addison-Wesley, Boston, MA,
USA, 2002.

[2] K. Pohl, G. Böckle, F. J. v. d. Linden, Software Product
Line Engineering: Foundations, Principles and Tech-
niques, Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2005.

[3] K. Czarnecki, U. W. Eisenecker, Generative pro-
gramming: methods, tools, and applications, ACM
Press/Addison-Wesley Publishing Co., New York, NY,
USA, 2000.

[4] F. Heidenreich, J. Kopcsek, C. Wende, Featuremapper:
mapping features to models, in: Companion of the 30th
Int. Conf. on Software Engineering, ICSE Companion
'08, ACM, New York, NY, USA, 2008, pp. 943�944.

[5] S. Zschaler, P. Sánchez, J. Santos, M. Alférez,
A. Rashid, L. Fuentes, A. Moreira, J. Araújo,
U. Kulesza, Vml* - a family of languages for variability
management in software product lines, in: SLE, 2009,
pp. 82�102.

[6] K. Czarnecki, M. Antkiewicz, Mapping features to mod-
els: A template approach based on superimposed vari-
ants, in: GPCE, 2005, pp. 422�437.

[7] M. Alférez, U. Kulesza, A. Sousa, J. Santos, A. Mor-
eira, J. Araújo, V. Amaral, A model-driven approach
for software product lines requirements engineering, in:
SEKE, 2008, pp. 779�784.

[8] S. Apel, W. Scholz, C. Lengauer, C. Kästner, Language-
independent reference checking in software product
lines, in: FOSD, 2010, pp. 65�71.

[9] Int. confs. on theory and applications of satis�ability
testing (2011).
URL http://www.satisfiability.org/

[10] C. Kästner, S. Apel, Type-checking software product
lines - a formal approach, in: ASE, 2008, pp. 258�267.

[11] S. Apel, C. Kästner, A. Gröÿlinger, C. Lengauer, Type
safety for feature-oriented product lines, Autom. Softw.
Eng. 17 (3) (2010) 251�300.

[12] B. Delaware, W. R. Cook, D. S. Batory, Fitting the
pieces together: a machine-checked model of safe com-
position, in: ESEC/SIGSOFT FSE, 2009, pp. 243�252.

[13] S. Thaker, D. S. Batory, D. Kitchin, W. R. Cook, Safe
composition of product lines, in: GPCE, 2007, pp. 95�
104.

[14] S. S. Huang, D. Zook, Y. Smaragdakis, Statically safe
program generation with safegen, in: GPCE, 2005, pp.
309�326.

[15] I. Jacobson, Object-Oriented Software Engineering: A
Use Case Driven Approach, Addison Wesley Longman
Publishing Co., Inc., Redwood City, CA, USA, 2004.

[16] P. Kruchten, The Rational Uni�ed Process: An Intro-
duction, 3rd Edition, Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2003.

[17] M. Alférez, J. Santos, A. Moreira, A. Garcia,
U. Kulesza, J. Araújo, V. Amaral, Multi-view compo-
sition language for software product line requirements,
in: SLE, 2009, pp. 103�122.

[18] F. Jouault, I. Kurtev, Transforming models with atl, in:
MoDELS Satellite Events, 2005, pp. 128�138.

[19] G. Taentzer, Agg: A graph transformation environment
for modeling and validation of software, in: AGTIVE,
2003, pp. 446�453.

[20] OMG, Meta object facility (mof) 2.0
query/view/transformation speci�cation, Tech. rep.,
OMG (2008).
URL http://www.omg.org/spec/QVT/1.0/PDF

[21] H. Morganho, e. a. Gomes, Requirement speci�cations
for industrial case studies, Deliverable D5.2, Ample
Project (2008).
URL www.ample-project.net

[22] D. Benavides, S. Segura, A. R. Cortés, Automated anal-
ysis of feature models 20 years later: A literature re-
view, Inf. Syst. 35 (6) (2010) 615�636.

[23] M. Mannion, Using �rst-order logic for product line
model validation, in: SPLC, 2002, pp. 176�187.

[24] D. S. Batory, Feature models, grammars, and proposi-
tional formulas, in: SPLC, 2005, pp. 7�20.

[25] S. A. Cook, The complexity of theorem-proving proce-
dures, in: STOC, 1971, pp. 151�158.

[26] A. Reder, A. Egyed, Model/analyzer: a tool for detect-
ing, visualizing and �xing design errors in uml, in: ASE,
2010, pp. 347�348.

[27] E. Figueiredo, N. Cacho, C. Sant'Anna, M. Monteiro,
U. Kulesza, A. Garcia, S. Soares, F. C. Ferrari, S. S.
Khan, F. C. Filho, F. Dantas, Evolving software prod-
uct lines with aspects: an empirical study on design
stability, in: ICSE, 2008, pp. 261�270.

[28] AMPLE, Ample project (2009).
URL http://www.ample-project.net

[29] M. Alférez, R. E. Lopez-Herrejon, A. Moreira, V. Ama-
ral, A. Egyed, Supporting consistency checking between
features and software product line use scenarios, in:
K. Schmid (Ed.), ICSR, Vol. 6727 of Lecture Notes in
Computer Science, Springer, 2011, pp. 20�35.

[30] K. Czarnecki, K. Pietroszek, Verifying feature-based
model templates against well-formedness ocl con-
straints, in: Proc. of the GPCE'06, GPCE '06, ACM,
New York, NY, USA, 2006, pp. 211�220.

[31] S. S. Huang, D. Zook, Y. Smaragdakis, Statically safe
program generation with safegen, Sci. Comput. Pro-
gram. 76 (5) (2011) 376�391.

[32] D. S. Batory, Feature-oriented programming and the
ahead tool suite, in: ICSE, 2004, pp. 702�703.

[33] M. L. Griss, Implementing product-line features by
composing aspects, in: SPLC, 2000, pp. 271�289.

[34] R. E. Lopez-Herrejon, A. Egyed, Detecting inconsisten-
cies in multi-view models with variability, in: ECMFA,
2010, pp. 217�232.

[35] A. Egyed, Fixing inconsistencies in uml design models,
in: Proc. of the 29th Int. Conf. on Software Engineering,
ICSE '07, IEEE Computer Society, Washington, DC,
USA, 2007, pp. 292�301.

[36] I. Jacobson, P.-W. Ng, Aspect-Oriented Software Devel-
opment with Use Cases (Addison-Wesley Object Tech-
nology Series), Addison-Wesley Professional, 2004.

[37] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay,
J.-F. Raskin, Model checking lots of systems: e�cient
veri�cation of temporal properties in software product

21

lines, in: ICSE (1), 2010, pp. 335�344.
[38] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay,

Symbolic model checking of software product lines, in:
ICSE, 2011, pp. 321�330.

[39] I. Schaefer, L. Bettini, F. Damiani, Compositional type-
checking for delta-oriented programming, in: AOSD,
2011, pp. 43�56.

[40] G. Gröner, C. Wende, M. Boskovic, F. S. Parreiras,
T. Walter, F. Heidenreich, D. Gasevic, S. Staab, Val-
idation of families of business processes, in: CAiSE,
2011, pp. 551�565.

[41] W. E. Wong, W. K. Chan, T. H. Tse, F.-C. Kuo, Spe-
cial issue on dynamic analysis and testing of embedded
software, Journal of Systems and Software 85 (1) (2012)
1�2.

[42] D. Bucur, M. Z. Kwiatkowska, On software veri�ca-
tion for sensor nodes, Journal of Systems and Software
84 (10) (2011) 1693�1707.

[43] A. Bertolino, S. Daoudagh, F. Lonetti, E. Marchetti,
Automatic xacml requests generation for policy testing,
in: ICST, 2012, pp. 842�849.

22

	I Overview
	Introduction
	Research Question
	Research Topics
	Contribution Overview
	Research Method
	Research Context
	Structure of this Dissertation

	Background
	Overview
	Fundamentals
	Separation of Concerns (SoC)
	Software Composition and Decomposition
	Modelling and Resulting Models
	Consistency
	Reuse
	Customization
	Variability and Commonality

	Approaches and Models
	Software Product Line Engineering (SPLE)
	Model-Driven Development (MDD)
	Domain-Specific Language Engineering (DSLE)
	Consistency Checking

	Summary

	DCC4SPL Approach
	DCC4SPL Process Overview
	DCC4SPL Example
	Create or Modify Feature Model
	Create or Modify Model-Based Specifications
	Create or Modify VML4RE Composition Specification
	Check Consistency Using VCC
	Create Feature Model Configuration(s)
	Derive Model-Based Specifications for Product(s) Using VML4RE

	Main Elements
	Preliminars
	Abstract Syntax
	Semantics

	Inside VML4RE
	Abstract Syntax
	Syntactic Mapping
	Semantics

	Inside VCC
	Abstract Syntax
	Semantics

	Tool Support
	DCC4SPL External Tools
	DCC4SPL Tool

	Summary

	Validation
	Goal and Research Questions
	Attributes and Metrics
	Attributes with Quantitative Metric Values
	Attributes with Qualitative Metric Values

	Case Studies
	Validation Settings
	Study Phases and Assessment Procedures

	Quantitative and Qualitative Validation
	Qualitative Validation
	Quantitative Validation

	Summary of Results
	Summary

	Conclusions
	Summary of Contributions
	Future Work
	Final Remarks

	Bibliography

	II Research Papers
	Introduction
	A Model-Driven Approach for Software Product Lines Requirements Engineering
	Multi-View Composition Language for Software Product Line Requirements
	VML* – A Family of Languages for Variability Management in Software Product Lines
	Model-Driven Requirements Specification for Software Product Lines
	Evaluating Approaches for Specifying Software Product Line Use Scenarios
	Supporting Consistency Checking between Features and Software Product Line Use Scenarios
	Ensuring Consistency Between Feature Models and Model-Based Specications - The VCC Approach

