15 research outputs found

    Retrofitting parallelism onto OCaml.

    Get PDF
    OCaml is an industrial-strength, multi-paradigm programming language, widely used in industry and academia. OCaml is also one of the few modern managed system programming languages to lack support for shared memory parallel programming. This paper describes the design, a full-fledged implementation and evaluation of a mostly-concurrent garbage collector (GC) for the multicore extension of the OCaml programming language. Given that we propose to add parallelism to a widely used programming language with millions of lines of existing code, we face the challenge of maintaining backwards compatibility--not just in terms of the language features but also the performance of single-threaded code running with the new GC. To this end, the paper presents a series of novel techniques and demonstrates that the new GC strikes a balance between performance and feature backwards compatibility for sequential programs and scales admirably on modern multicore processors

    Cautiously Optimistic Program Analyses for Secure and Reliable Software

    Full text link
    Modern computer systems still have various security and reliability vulnerabilities. Well-known dynamic analyses solutions can mitigate them using runtime monitors that serve as lifeguards. But the additional work in enforcing these security and safety properties incurs exorbitant performance costs, and such tools are rarely used in practice. Our work addresses this problem by constructing a novel technique- Cautiously Optimistic Program Analysis (COPA). COPA is optimistic- it infers likely program invariants from dynamic observations, and assumes them in its static reasoning to precisely identify and elide wasteful runtime monitors. The resulting system is fast, but also ensures soundness by recovering to a conservatively optimized analysis when a likely invariant rarely fails at runtime. COPA is also cautious- by carefully restricting optimizations to only safe elisions, the recovery is greatly simplified. It avoids unbounded rollbacks upon recovery, thereby enabling analysis for live production software. We demonstrate the effectiveness of Cautiously Optimistic Program Analyses in three areas: Information-Flow Tracking (IFT) can help prevent security breaches and information leaks. But they are rarely used in practice due to their high performance overhead (>500% for web/email servers). COPA dramatically reduces this cost by eliding wasteful IFT monitors to make it practical (9% overhead, 4x speedup). Automatic Garbage Collection (GC) in managed languages (e.g. Java) simplifies programming tasks while ensuring memory safety. However, there is no correct GC for weakly-typed languages (e.g. C/C++), and manual memory management is prone to errors that have been exploited in high profile attacks. We develop the first sound GC for C/C++, and use COPA to optimize its performance (16% overhead). Sequential Consistency (SC) provides intuitive semantics to concurrent programs that simplifies reasoning for their correctness. However, ensuring SC behavior on commodity hardware remains expensive. We use COPA to ensure SC for Java at the language-level efficiently, and significantly reduce its cost (from 24% down to 5% on x86). COPA provides a way to realize strong software security, reliability and semantic guarantees at practical costs.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/170027/1/subarno_1.pd

    High-Fidelity Provenance:Exploring the Intersection of Provenance and Security

    Get PDF
    In the past 25 years, the World Wide Web has disrupted the way news are disseminated and consumed. However, the euphoria for the democratization of news publishing was soon followed by scepticism, as a new phenomenon emerged: fake news. With no gatekeepers to vouch for it, the veracity of the information served over the World Wide Web became a major public concern. The Reuters Digital News Report 2020 cites that in at least half of the EU member countries, 50% or more of the population is concerned about online fake news. To help address the problem of trust on information communi- cated over the World Wide Web, it has been proposed to also make available the provenance metadata of the information. Similar to artwork provenance, this would include a detailed track of how the information was created, updated and propagated to produce the result we read, as well as what agents—human or software—were involved in the process. However, keeping track of provenance information is a non-trivial task. Current approaches, are often of limited scope and may require modifying existing applications to also generate provenance information along with thei regular output. This thesis explores how provenance can be automatically tracked in an application-agnostic manner, without having to modify the individual applications. We frame provenance capture as a data flow analysis problem and explore the use of dynamic taint analysis in this context. Our work shows that this appoach improves on the quality of provenance captured compared to traditonal approaches, yielding what we term as high-fidelity provenance. We explore the performance cost of this approach and use deterministic record and replay to bring it down to a more practical level. Furthermore, we create and present the tooling necessary for the expanding the use of using deterministic record and replay for provenance analysis. The thesis concludes with an application of high-fidelity provenance as a tool for state-of-the art offensive security analysis, based on the intuition that software too can be misguided by "fake news". This demonstrates that the potential uses of high-fidelity provenance for security extend beyond traditional forensics analysis

    Design and evaluation of a Thread-Level Speculation runtime library

    Get PDF
    En los próximos años es más que probable que máquinas con cientos o incluso miles de procesadores sean algo habitual. Para aprovechar estas máquinas, y debido a la dificultad de programar de forma paralela, sería deseable disponer de sistemas de compilación o ejecución que extraigan todo el paralelismo posible de las aplicaciones existentes. Así en los últimos tiempos se han propuesto multitud de técnicas paralelas. Sin embargo, la mayoría de ellas se centran en códigos simples, es decir, sin dependencias entre sus instrucciones. La paralelización especulativa surge como una solución para estos códigos complejos, posibilitando la ejecución de cualquier tipo de códigos, con o sin dependencias. Esta técnica asume de forma optimista que la ejecución paralela de cualquier tipo de código no de lugar a errores y, por lo tanto, necesitan de un mecanismo que detecte cualquier tipo de colisión. Para ello, constan de un monitor responsable que comprueba constantemente que la ejecución no sea errónea, asegurando que los resultados obtenidos de forma paralela sean similares a los de cualquier ejecución secuencial. En caso de que la ejecución fuese errónea los threads se detendrían y reiniciarían su ejecución para asegurar que la ejecución sigue la semántica secuencial. Nuestra contribución en este campo incluye (1) una nueva librería de ejecución especulativa fácil de utilizar; (2) nuevas propuestas que permiten reducir de forma significativa el número de accesos requeridos en las peraciones especulativas, así como consejos para reducir la memoria a utilizar; (3) propuestas para mejorar los métodos de scheduling centradas en la gestión dinámica de los bloques de iteraciones utilizados en las ejecuciones especulativas; (4) una solución híbrida que utiliza memoria transaccional para implementar las secciones críticas de una librería de paralelización especulativa; y (5) un análisis de las técnicas especulativas en uno de los dispositivos más vanguardistas del momento, los coprocesadores Intel Xeon Phi. Como hemos podido comprobar, la paralelización especulativa es un campo de investigación activo. Nuestros resultados demuestran que esta técnica permite obtener mejoras de rendimiento en un gran número de aplicaciones. Así, esperamos que este trabajo contribuya a facilitar el uso de soluciones especulativas en compiladores comerciales y/o modelos de programación paralela de memoria compartida.Departamento de Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia Artificial, Lenguajes y Sistemas Informáticos

    The Decentralized File System Igor-FS as an Application for Overlay-Networks

    Get PDF

    Performance Test Selection Using Machine Learning and a Study of Binning Effect in Memory Allocators

    Get PDF
    Performance testing is an essential part of the development life cycle that must be done in a timely fashion. However, checking for performance regressions in software can be time-consuming, especially for complex systems containing multiple lengthy tests cases. The first part of this thesis presents a technique to performance test selection using machine learning. In our approach, we build features using information extracted from the previous software versions to train classifiers that assist developers in deciding whether or not to execute a performance test on a new version. Our results show that the classifiers can be used as a mechanism that aids test selection and consequently avoids unnecessary testing. The second part of this work investigates the binning effect on user-space memory allocators. First, we examine how binning events can be a source of performance outliers in Redis and CPython object allocators. Second, we implement a \textit{Pintool} to detect the occurrence of binning on Python programs. The tool performs dynamic binary instrumentation on the interpreter and outputs information that helps developers in performing code optimizations. Finally, we use our tool to investigate the presence of binning in various widely used Python libraries

    Real-time operating system support for multicore applications

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia de Automação e Sistemas, Florianópolis, 2014Plataformas multiprocessadas atuais possuem diversos níveis da memória cache entre o processador e a memória principal para esconder a latência da hierarquia de memória. O principal objetivo da hierarquia de memória é melhorar o tempo médio de execução, ao custo da previsibilidade. O uso não controlado da hierarquia da cache pelas tarefas de tempo real impacta a estimativa dos seus piores tempos de execução, especialmente quando as tarefas de tempo real acessam os níveis da cache compartilhados. Tal acesso causa uma disputa pelas linhas da cache compartilhadas e aumenta o tempo de execução das aplicações. Além disso, essa disputa na cache compartilhada pode causar a perda de prazos, o que é intolerável em sistemas de tempo real críticos. O particionamento da memória cache compartilhada é uma técnica bastante utilizada em sistemas de tempo real multiprocessados para isolar as tarefas e melhorar a previsibilidade do sistema. Atualmente, os estudos que avaliam o particionamento da memória cache em multiprocessadores carecem de dois pontos fundamentais. Primeiro, o mecanismo de particionamento da cache é tipicamente implementado em um ambiente simulado ou em um sistema operacional de propósito geral. Consequentemente, o impacto das atividades realizados pelo núcleo do sistema operacional, tais como o tratamento de interrupções e troca de contexto, no particionamento das tarefas tende a ser negligenciado. Segundo, a avaliação é restrita a um escalonador global ou particionado, e assim não comparando o desempenho do particionamento da cache em diferentes estratégias de escalonamento. Ademais, trabalhos recentes confirmaram que aspectos da implementação do SO, tal como a estrutura de dados usada no escalonamento e os mecanismos de tratamento de interrupções, impactam a escalonabilidade das tarefas de tempo real tanto quanto os aspectos teóricos. Entretanto, tais estudos também usaram sistemas operacionais de propósito geral com extensões de tempo real, que afetamos sobre custos de tempo de execução observados e a escalonabilidade das tarefas de tempo real. Adicionalmente, os algoritmos de escalonamento tempo real para multiprocessadores atuais não consideram cenários onde tarefas de tempo real acessam as mesmas linhas da cache, o que dificulta a estimativa do pior tempo de execução. Esta pesquisa aborda os problemas supracitados com as estratégias de particionamento da cache e com os algoritmos de escalonamento tempo real multiprocessados da seguinte forma. Primeiro, uma infraestrutura de tempo real para multiprocessadores é projetada e implementada em um sistema operacional embarcado. A infraestrutura consiste em diversos algoritmos de escalonamento tempo real, tais como o EDF global e particionado, e um mecanismo de particionamento da cache usando a técnica de coloração de páginas. Segundo, é apresentada uma comparação em termos da taxa de escalonabilidade considerando o sobre custo de tempo de execução da infraestrutura criada e de um sistema operacional de propósito geral com extensões de tempo real. Em alguns casos, o EDF global considerando o sobre custo do sistema operacional embarcado possui uma melhor taxa de escalonabilidade do que o EDF particionado com o sobre custo do sistema operacional de propósito geral, mostrando claramente como diferentes sistemas operacionais influenciam os escalonadores de tempo real críticos em multiprocessadores. Terceiro, é realizada uma avaliação do impacto do particionamento da memória cache em diversos escalonadores de tempo real multiprocessados. Os resultados desta avaliação indicam que um sistema operacional "leve" não compromete as garantias de tempo real e que o particionamento da cache tem diferentes comportamentos dependendo do escalonador e do tamanho do conjunto de trabalho das tarefas. Quarto, é proposto um algoritmo de particionamento de tarefas que atribui as tarefas que compartilham partições ao mesmo processador. Os resultados mostram que essa técnica de particionamento de tarefas reduz a disputa pelas linhas da cache compartilhadas e provê garantias de tempo real para sistemas críticos. Finalmente, é proposto um escalonador de tempo real de duas fases para multiprocessadores. O escalonador usa informações coletadas durante o tempo de execução das tarefas através dos contadores de desempenho em hardware. Com base nos valores dos contadores, o escalonador detecta quando tarefas de melhor esforço o interferem com tarefas de tempo real na cache. Assim é possível impedir que tarefas de melhor esforço acessem as mesmas linhas da cache que tarefas de tempo real. O resultado desta estratégia de escalonamento é o atendimento dos prazos críticos e não críticos das tarefas de tempo real.Abstracts: Modern multicore platforms feature multiple levels of cache memory placed between the processor and main memory to hide the latency of ordinary memory systems. The primary goal of this cache hierarchy is to improve average execution time (at the cost of predictability). The uncontrolled use of the cache hierarchy by realtime tasks may impact the estimation of their worst-case execution times (WCET), specially when real-time tasks access a shared cache level, causing a contention for shared cache lines and increasing the application execution time. This contention in the shared cache may leadto deadline losses, which is intolerable particularly for hard real-time (HRT) systems. Shared cache partitioning is a well-known technique used in multicore real-time systems to isolate task workloads and to improve system predictability. Presently, the state-of-the-art studies that evaluate shared cache partitioning on multicore processors lack two key issues. First, the cache partitioning mechanism is typically implemented either in a simulated environment or in a general-purpose OS (GPOS), and so the impact of kernel activities, such as interrupt handlers and context switching, on the task partitions tend to be overlooked. Second, the evaluation is typically restricted to either a global or partitioned scheduler, thereby by falling to compare the performance of cache partitioning when tasks are scheduled by different schedulers. Furthermore, recent works have confirmed that OS implementation aspects, such as the choice of scheduling data structures and interrupt handling mechanisms, impact real-time schedulability as much as scheduling theoretic aspects. However, these studies also used real-time patches applied into GPOSes, which affects the run-time overhead observed in these works and consequently the schedulability of real-time tasks. Additionally, current multicore scheduling algorithms do not consider scenarios where real-time tasks access the same cache lines due to true or false sharing, which also impacts the WCET. This thesis addresses these aforementioned problems with cache partitioning techniques and multicore real-time scheduling algorithms as following. First, a real-time multicore support is designed and implemented on top of an embedded operating system designed from scratch. This support consists of several multicore real-time scheduling algorithms, such as global and partitioned EDF, and a cache partitioning mechanism based on page coloring. Second, it is presented a comparison in terms of schedulability ratio considering the run-time overhead of the implemented RTOS and a GPOS patched with real-time extensions. In some cases, Global-EDF considering the overhead of the RTOS is superior to Partitioned-EDF considering the overhead of the patched GPOS, which clearly shows how different OSs impact hard realtime schedulers. Third, an evaluation of the cache partitioning impacton partitioned, clustered, and global real-time schedulers is performed.The results indicate that a lightweight RTOS does not impact real-time tasks, and shared cache partitioning has different behavior depending on the scheduler and the task's working set size. Fourth, a task partitioning algorithm that assigns tasks to cores respecting their usage of cache partitions is proposed. The results show that by simply assigning tasks that shared cache partitions to the same processor, it is possible to reduce the contention for shared cache lines and to provideHRT guarantees. Finally, a two-phase multicore scheduler that provides HRT and soft real-time (SRT) guarantees is proposed. It is shown that by using information from hardware performance counters at run-time, the RTOS can detect when best-effort tasks interfere with real-time tasks in the shared cache. Then, the RTOS can prevent best effort tasks from interfering with real-time tasks. The results also show that the assignment of exclusive partitions to HRT tasks together with the two-phase multicore scheduler provides HRT and SRT guarantees, even when best-effort tasks share partitions with real-time tasks

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 31st European Symposium on Programming, ESOP 2022, which was held during April 5-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 21 regular papers presented in this volume were carefully reviewed and selected from 64 submissions. They deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems
    corecore