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OCaml is an industrial-strength, multi-paradigm programming language, widely used in industry and academia.
OCaml is also one of the few modern managed system programming languages to lack support for shared
memory parallel programming. This paper describes the design, a full-fledged implementation and evaluation
of a mostly-concurrent garbage collector (GC) for the multicore extension of the OCaml programming language.
Given that we propose to add parallelism to a widely used programming language with millions of lines of
existing code, we face the challenge of maintaining backwards compatibility–not just in terms of the language
features but also the performance of single-threaded code running with the new GC. To this end, the paper
presents a series of novel techniques and demonstrates that the new GC strikes a balance between performance
and feature backwards compatibility for sequential programs and scales admirably on modern multicore
processors.
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1 INTRODUCTION
Support for shared-memory parallelism is quite standard in managed system programming lan-
guages nowadays. Languages and runtimes such as Go, Haskell, Java, the .NET CLR platform and
various parallel extensions of the ML programming language [Fluet et al. 2010; Sivaramakrishnan
et al. 2014; Ueno and Ohori 2016; Westrick et al. 2019] all support multiple parallel threads of
execution. There has been extensive research and development into efficient garbage collector (GC)
designs for these languages and runtimes. Our challenge is to retrofit parallelism to the OCaml pro-
gramming language, which has been in continuous use since 1996 in large codebases, particularly
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in verification tools or mission-critical systems components. Adding shared-memory parallelism to
an existing language presents an interesting set of challenges. As well as the difficulties of memory
management in a parallel setting, we must maintain as much backwards compatibility as practicable.
This includes not just compatibility of the language semantics, but also of the performance profile,
memory usage and C bindings.

1.1 Performance backwards compatibility
The main challenge in adding support for shared-memory parallelism to OCaml is the implemen-
tation of the multicore-capable GC. OCaml users have come to rely on allocation and memory
access being relatively cheap (for a managed language) in order to write performant code. Being a
functional programming language, OCaml code usually exhibits a high rate of allocation with most
objects being small and short-lived. Hence, OCaml uses a small minor heap with a generational GC
to collect the small, short-lived objects. Objects are allocated in the minor heap by bumping the
allocation pointer. Hence, the minor heap allocations are very fast.
Many objects in OCaml are immutable. For immutable objects, the initialising writes (the only

ones) are done without barriers and reads require no barriers. For mutable fields, the writes require
a (deletion/Yuasa/snapshot-at-the-beginning [Yuasa 1990]) barrier, and the reads do not. Hence,
reads are fast and updates are comparatively slower.
Objects that survive a minor collection are promoted to the major heap, which is collected

by an incremental, non-moving, mark-and-sweep collector, with an optional compaction phase.
This design minimizes pause times, and indeed, OCaml is used to write latency sensitive appli-
cations such as network services (MirageOS [Madhavapeddy et al. 2013]) and user interfaces
(ReasonML [ReasonML 2019]). Our aim with the multicore capable GC is to preserve the fast
performance characteristics of operations as they currently exist on single-core OCaml, with some
compromises for mutable objects to deal with the possibility of racy access between multiple
mutator and GC threads. We strive to retain the low pause times of single-core OCaml.

An alternative way to achieve performance backwards compatibility for those programs that do
not utilise parallelism would be to have two separate compilers and runtimes for the serial and
parallel code. For example, GHC Haskell comes with two separate runtimes, one which supports
parallelism and another which is purely single-threaded [Marlow et al. 2009]. GHC provides a
compiler flag -threaded to choose the runtime system to link to. In order to avoid the maintenance
burden of two separate runtimes, we chose to go for a unified runtime.

1.2 Feature backwards compatibility
Given the millions of lines of OCaml code in production, it would serve us well to ensure that the
addition of parallelism to OCaml breaks as little code as possible. OCaml is a type-safe language
and the addition of parallelism should not break type safety under data races. Dolan et al. present
a memory model for shared-memory parallel programs that gives strong guarantees (including
type safety) even in the presence of data races [Dolan et al. 2018b]. They describe the instantiation
of the memory model for the OCaml programming language and demonstrate that the memory
model has reasonable overheads. Our work inherits this memory model.

Beyond type safety, OCaml has several features that closely interact with the garbage collector.
These include weak references, finalisers, ephemerons [Hayes 1997], and lazy values, whose
semantics will have to be preserved with the new GC so as to not break programs that use those
features. OCaml’s C API exposes quite a lot of the internals of the memory representation, and
has an expressive API to access the heap efficiently [OCamlCAPI 2019]. While this allows users to
write fast code, the API also bakes in the invariants of the GC. For example, reading any OCaml
object, be it mutable or not, using the C API does not involve a read barrier, and is compiled as a
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plain read of memory. A new GC scheme that adds a read barrier only to reads of mutable fields
will need to deprecate the old API or suffer the risk of breaking code silently. Either way, the users
will have to modify their code to work correctly under the new GC. Given that the compiler does
not check incorrect uses of the C API, it is already difficult to write correct and efficient FFI code.
We would like to strike a balance between the added complexity of the C API and the performance
impact of the missed opportunities.

1.3 Requirements
In summary, we strive towards the following ideal goals in our parallel extension of OCaml:
R1 A well behaved serial program does not break on the parallel extension. That is, a well-typed

serial program remains well-typed in the parallel extension, and the semantics of such a
program remains the same on the serial and parallel runtimes.

R2 The performance profile of a serial program on the parallel runtime remains the same as the
serial runtime. That is, the program on the parallel runtime should run as fast as it does on
serial runtime. Additionally, the GC pause times of the serial program on the parallel runtime
remain the same as the serial runtime.

R3 The parallel programs should aim to minimize pause times, and then aim to run as fast as
possible on the available cores. We order the sub goals this way since minimising pause times
in the GC is much harder than achieving good throughput. We believe that once the pause
times are optimised for, optimising for throughput is easier, but the vice versa is much harder.

We develop a generational garbage collector with two generations where the old generation
(major heap) is shared between all of the mutators and is collected with a non-moving, mostly-
concurrent, mark-and-sweep collector modelled on VCGC [Huelsbergen and Winterbottom 1998].
VCGC avoids having explicit phase transitions between marking and sweeping, which is the
traditional source of bugs in concurrent collector designs. For programs that do not use weak
references or ephemerons, the mutator and the GC threads need to synchronize only once per cycle
to agree that the current cycle is done. This minimizes the pause times. The major heap allocator is
based on the Streamflow [Schneider et al. 2006] design, which uses size-segmented thread-local
pages. This has been shown to have good multicore behaviour and fragmentation performance.
For the young generation (minor heap), survivors are copied to the shared major heap. We

present two alternative collectors for the minor heap with different tradeoffs (§4). The first is a
concurrent collector with thread-privateminor heaps [Anderson 2010; Auhagen et al. 2011; Doligez
and Leroy 1993; Domani et al. 2002; Marlow and Peyton Jones 2011; Sivaramakrishnan et al. 2014].
The original quasi-real-time collector design by [Doligez and Leroy 1993] maintains the invariant
that there are no pointers from major to minor heaps. Thus, storing a pointer to a private object into
the shared major heap causes the private object and all objects reachable from it to be promoted
to the shared heap en masse. Unfortunately, this eagerly promotes many objects that were never
really shared: just because an object is pointed to by a shared object does not mean another thread
is actually going to attempt to access it. A good example is a shared work-stealing queue, where
stealing is a rare operation. It would be unwise to promote all the work to the major heap.

Our concurrent minor collector design (§4.3) is similar but lazier, along the lines of GHC’s local
heaps [Marlow and Peyton Jones 2011], where objects are promoted to the shared heap whenever
another thread actually tries to access them. This has a slower sharing operation, since it requires
synchronisation of two different threads, but it is performed less often. However, this design
requires that reads be safe points where garbage collection can occur. Consider the case of two
mutators both of which are trying to read an object in the minor heap of the other mutator. In
order to make progress, the mutators will have to service promotion requests that they receive
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while waiting for their request to be satisfied. Recall that stock OCaml does not use read barriers
and the C API also works under this assumption. By making the reads safe points, it is likely that
every user of the C API will need to update their code to conform with the new semantics. This
conflicts with our first requirement.
To this end, we develop a stop-the-world parallel minor collector (§4.4) where all the mutators

will need to synchronize to perform the minor collection, at the cost of possible worse pause
times. The memory access invariants remains the same, and hence, no change is necessary for
the C API. One surprising result we will justify in our evaluation (§6) is that the stop-the-world
minor collector outperforms the concurrent minor collector in almost all circumstances, even as
we cranked up the number of cores. This result gives us a clear choice in the design space to pick a
backwards-compatible and performant concurrent garbage collector.

1.4 Contributions
Our contributions are to present:

• the design of a mostly-concurrent, non-moving, mark-and-sweep GC for the older generation
that minimizes pause times for a parallel extension of OCaml.

• two collector designs for the young generation: (i) a concurrent collector that minimizes
pause times at the cost of breaking the C API and; (ii) a stop-the-world parallel collector that
retains the backwards compatibility of the existing C API.

• extensions of our baseline collectors to advanced language features that interact with the GC
such as lazy values, finalisers, weak references and ephemerons. Our novel design minimizes
the number of global synchronizations necessary for collecting a deeply nested hierarchy of
ephemerons. This design has been verified in the SPIN model checker.

• support for fibers that run in parallel, which are language level lightweight threads imple-
mented as runtime managed stack segments. The implementation of fibers is similar to
lightweight threads in Haskell GHC and Goroutines in the Go language. While the details
of the language support for fibers is beyond the scope of the paper, we describe the subtle
interaction of our concurrent GC algorithm with fibers.

• extensive evaluation of the collector designs in a full-fledged implementation of a parallel ex-
tension of OCaml. Our experiments illustrate that (i) serial programs retain their performance
profile on the new collectors, and (ii) parallel programs achieve good multicore scalability
while preserving low pause times with increasing number of cores.

The rest of the paper is organized as follows. In the next section, we give an overview of memory
management and garbage collection in OCaml, which applies to both stock OCaml and our parallel
extension. §3 gives a detailed description of the major heap allocator and collector, and the changes
required to make it parallel, while §4 does the same for the minor heap. §5 describes the extension
of the new GC with lazy values, finalisers, weak references, ephemerons, and fibers. §6 presents
extensive performance evaluation of the new GC against the goals set in §1.3. In the light of this
performance evaluation, §7 discusses the path ahead for retrofitting parallelism onto OCaml. §8
and §9 present the related work and conclusions.
In the remainder of the paper, we call our parallel extension of OCaml “Multicore OCaml” to

distinguish it from stock OCaml. Following standard GC terminology, we refer to the user program
as “the mutator”, even though actual mutation is relatively rare in OCaml programs.

2 AN OVERVIEW OF MEMORY MANAGEMENT IN OCAML
OCaml uses a uniform memory representation in which each value has the same size [Leroy 1990],
making it possible to compile just one copy of polymorphic functions [Appel 1990]. Values are
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always one word long (either 32 or 64 bits, depending on architecture), and consist of either an
integer or a pointer. The least significant bit (LSB) is used to distinguish integers and pointers: since
all allocations are word-aligned, the LSB of pointers is guaranteed to be zero, whereas integers are
encoded by left-shifting the integer value by one, and setting the LSB to one. Hence, integers in
OCaml are 31- or 63-bits long. Every OCaml object has a word-sized header, which encodes the
length and type of the object, and has two bits reserved for encoding the colours used by the major
collector. (For more details of OCaml’s memory representation, see Minsky et al. [2013, Ch. 20]).

OCaml uses a generational GC with a major and minor heap [Doligez 1989]. The minor heap is
small (256K words, by default), where new objects are allocated by bumping the allocation pointer.
The minor heap is collected when it is full by a copying collector which copies live objects to the
major heap. The minor collection proceeds by first promoting all the roots (globals, local roots
registered in C calls, registers, the remembered set of inter-generational pointers from the major to
the minor heap, and the program stack) that point to the minor heap to the major heap, and then
transitively promoting all the referenced objects. All references from live objects to objects in the
minor heap are updated to point at the new location, including references from the major heap to
the minor heap (recorded in the remembered set), and the old minor heap is then reused in the
next cycle. The copying collector only needs to touch the live objects. Given that the survival rate
in the minor collection is low, a copying collector minimizes pause times.

The major heap contains objects which have survived a minor collection (as well as objects above
a certain size, which are allocated there directly). Instead of a bump-pointer algorithm, allocation
in the major heap uses a more sophisticated allocator, which differs between stock and Multicore
OCaml. The major GC is incremental, except for an optional stop-the-world compaction phase.

3 MAJOR HEAP
Next, we present the details of OCaml’s major heap and garbage collector, and the changes necessary
to retrofit parallelism. OCaml’s major collector is:

Mark-and-sweep Collection is divided into two phases: marking determines which allocations
are still in use, and sweeping collects those that are not and makes them available for reuse.

Non-moving Once allocated in the major heap, objects remain at the same address until collected.
Incremental Rather than stopping the program for the whole duration of GC (which would cause

a pause bounded in length only by the size of memory), the OCaml major collector pauses
the program in many small slices.

Multicore OCaml’s collector retains these properties, and is also parallel: the virtual machine
contains a number of domains, each running as a separate system thread in the same address space.
Domains can be dynamically created and brought down.

A garbage collector uses a large amount of shared mutable state, as the collector must track how
each byte of memory is being used. The central challenge in writing a multicore garbage collector
is controlling access to this state without introducing too much expensive synchronisation. To
understand this challenge, we first review how this state is used in the stock OCaml collector.

3.1 Tricolour collection in stock OCaml
OCaml uses the standard tri-colour abstraction [Dijkstra et al. 1978]: allocations on the major heap
are given one of three colours black, gray and white. The colour of an object is stored in the two
GC bits in the object’s header. The fourth possible value of these bits, named blue by OCaml, is
used to indicate blocks that are not objects but free memory, available for future allocations.
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Mutator Roots Mark Sweep

End of Major Cycle

…

Start of Major Cycle

Idle Mark roots Mark main Sweep

Roots Mark Sweep

Fig. 1. Major collection in stock OCaml

The collector operates in two
phases, first marking and then
sweeping. These phases are in-
cremental and so are interleaved
with the user program (Figure 1),
which in particular may mutate
the heap and allocate new ob-
jects.

Marking. The goal of the
marking phase is to colour all live objects black, leaving dead (garbage) objects coloured white. The
gray objects represent the frontier, that is, those objects which have themselves been marked but
which have not yet been scanned for outgoing pointers.

The first part of marking is to mark the roots. Marking makes a white object grey and pushes it
into the mark stack. The root marking is itself split into two phases – a non-incremental phase
where the registers and the program stack are scanned, and an incremental phase for scanning the
global roots. Given that real world programs may have a large number of global roots, incrementally
marking them reduces pause times.
After the roots are marked, marking is continued by popping the mark stack, marking the

children of the object popped, and then marking the object black. This process is repeated until the
mark stack becomes empty, meaning that there are no more gray objects.

Sweeping. When marking is completed, the objects that are still in use are black and the garbage
is white. The sweeping pass does a single traversal of the whole heap (again, incrementally), turning
black objects back to white and turning white objects blue, to indicate that their storage is now
free to be used for future allocations.

Mutation. When mutating a field of an object, the program invokes the write barrier. During the
mark phase of the GC, the write barrier loads the object pointed to by the old value of the field, and
if it is white, grays it and adds it to the mark stack. This preserves the invariant that every object
reachable at the start of marking eventually gets marked (the snapshot-at-the-beginning property).
The write barrier also keeps track of the inter-generational pointers from major to minor heap

in a remembered set, which is used as a root for the minor collection. (See section 4).

Allocation. New allocations must be coloured so that they are not immediately collected. During
the marking phase, this means that they are coloured black. During the sweeping phase, their
allocation colour depends on whether sweeping has yet reached their position: if so, they are
coloured white, but if not, they are coloured black so that the sweeper later turns them white.

This is just one possibility from a large design space. OCaml grays the old value of a field during
mutation (a deletion barrier [Yuasa 1990]) and marks the roots before marking anything else (a black
mutator). This has the advantage that the total amount of work to do during a GC cycle is bounded,
regardless of what the mutator does (guaranteeing termination of GC), but the disadvantage that
anything allocated on the major heap during the marking phase of one cycle can be collected at the
earliest a full cycle later. See Vechev et al. [2005] or Jones et al. [2011] for further discussion of these
details. We will not discuss them further here, as the trade-offs involved are largely independent of
the switch from a single-threaded to a multi-threaded GC.
What we do discuss here is the shared state involved in this design. Mutable state is shared

between marking and sweeping (the object colours, whose meaning changes between phases),
between mutation and marking (the write barrier supplies new gray objects to the collector) and
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between allocation and sweeping (allocation must determine the phase of the collector and position
of sweeping, as well as coordinating with the sweeper to manage free memory).

In a single-threaded collector, organising access to such shared state is easy, but doing so correctly
and efficiently is the central challenge of a parallel collector. Even the seemingly-simple state of
whether the collector is marking or sweeping is problematic: many designs have had errors in
the case where the GC transitions phase during a write barrier, relying on the precise order of
operations [Gries 1977], which becomes even trickier under weak memory [Gammie et al. 2015].

3.2 Multicore OCaml’s collector
The approach we take in multicore OCaml is to avoid as much as possible of this shared state. First,
to reduce state shared between mutators and GC, we do not use an explicit gray colour. Instead,
each domain maintains its own stack of gray objects, and when the write barrier needs to gray
an object it marks it and adds it to the local domain’s gray stack. Since GC and OCaml code are
interleaved on a single domain, no synchronisation is necessary. (This scheme does mean that it’s
possible for an object to be on the mark stack of two separate domains. See below).

…RootsMark
Roots MarkMarkSweepSweep

Mutator …

Start of Major Cycle End of Major Cycle

Domain 0

Domain 1

Fig. 2. Major collection in Multicore OCaml. Our design permits
the marking and sweeping phase to overlap and avoids the global
synchronization between the phases.

Avoiding shared state between
marking and sweeping is trickier,
and to this end we reuse a design
from the Very Concurrent Garbage
Collector (VCGC) [Huelsbergen and
Winterbottom 1998], which does not
have distinct marking and sweeping
phases. Instead of colouring objects
black and white (with the meaning of
black and white changing as wemove
between mark and sweep phases),
Multicore OCaml uses three states:
Marked, Unmarked and Garbage. For regions of free memory, there is a fourth state Free, correspond-
ing to OCaml’s blue.
Marking proceeds by changing Unmarked objects into Marked ones, while sweeping proceeds by

collecting Garbage objects into Free blocks. Note that the sets of objects affected by marking and
sweeping are disjoint, so no synchronisation between them is necessary. Likewise, new allocations
are always Marked, ensuring that they will not be immediately collected. No synchronisation with
the collector is required to determine allocation colour.
As well as state shared between the various phases of the collector and the mutator itself, in a

parallel collector we must also think about state shared between multiple domains doing the same
phase of the collector in parallel. We resolve this by making marking idempotent and sweeping
disjoint. Multiple domains may attempt to mark the same object at the same time, and we make
no attempt to avoid this. Instead, we allow the occasional object to be marked twice, knowing
that this gives the same result as marking once. Allowing for this possibility is much cheaper than
synchronising each access to an object by the collector.
Sweeping is not idempotent. Instead, we ensure that the areas swept by different domains are

disjoint: each domain sweeps only the memory that it allocated, keeping the interaction between
sweeping and allocation local to a domain.
There is only one synchronisation point, at the end of the collection cycle. When marking is

completed (that is, all domains have empty mark stacks, leaving only unreachable objects Unmarked)
and sweeping is completed (that is, there are no more Garbage objects, all having been made Free),
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def majorSlice (budget ):

budget = sweepSlice (budget)

budget = markSlice (budget)

if (budget && !dlMarkingDone ):

dlMarkingDone = 1

atomic:

gNumDomsToMark --

if (gNumDomsToMark == 0):

runOnAllDoms (cycleHeap)

def cycleHeap ():

barrier:

/* run only by last domain to reach barrier */

newc.Unmarked = gColours.Marked

newc.Garbage = gColours.Unmarked

newc.Marked = gColours.Garbage

newc.Free = gColours.Free

gColours = newc

gNumDomsToMark = gNumDoms

dlMarkingDone = 0

markNonIncrementalRoots ()

Fig. 3. Pseudocode for slice of major heap work. We use the prefix g and dl to distinguish global and
domain-local variables.

all of the domains simultaneously stop. With all domains stopped, we relabel the states: the bit-
patterns used to represent Marked now mean Unmarked, those for Unmarked now mean Garbage and
those for Garbage now mean Marked. This must be done with all domains stopped, but is a small,
constant amount of work, for which the only difficulty is deciding when it should happen.

3.2.1 Termination Detection. Due to the use of deletion barrier and the fact that new objects are
allocated Marked, the amount of marking work in a given cycle is fixed (snapshot-at-the-beginning
property). Any object that was alive at the end of the previous cycle will be marked in this cycle.
Having fixed amount of mark work is crucial to determine when the marking phase (and also the
major cycle) is done, especially when new domains may be created dynamically.

Domains may also be destroyed dynamically. Before exiting, a terminating domain will sweep all
of its local pages returning them to the global pool and keep marking until its mark stack is empty.
The pseudocode in Figure 3 illustrates the termination detection and heap cycling algorithms.

We use the prefix g and dl for global and domain-local variables. majorSlice performs a slice of the
major GC work. The functions sweepSlice and markSlice take in a budget (in words) and return
the unspent budget. At the start of the cycle, we record the number of active domains in the global
variable gNumDomsToMark. If the call to markSlice returns a non-zero value and the domain had some
marking work to do before the call, then it indicates that the mark stack on that domain has now
been emptied, which we record by decrementing gNumDomsToMark. In the absence of ephemerons
and weak references, this variable monotonically decreases to 0.

3.2.2 Heap cycling. The domain which completes marking last requests barrier synchronization to
complete the major cycle (cycleHeap). The last domain that enters the barrier executes the code in
the body of the barrier block. We swap the meaning of the GC colours as described above, and
record the number of domains at the barrier (gNumDoms) as the number of domains to mark in the
next cycle. Hence, the stop-the-world phase is quite short in our GC design.

After the stop-the-world phase, the domains reset dlMarkingDone variable to indicate that marking
is not complete for the next cycle. The domains also mark the non-incremental roots (local roots,
current stack and register set) before continuing with the mutator. Similar to stock OCaml, global
roots are marked incrementally as part of the regular marking work.

Any new domains that are created in a cycle will not have any marking work to do in that cycle.
This is because any of the new domain’s roots will have to (transitively) come from one of the
domains that were running at the end of the previous cycle, and will either have been marked by
another domain or were allocated already Marked. Hence, they are not included in gNumDomsToMark.
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3.3 Allocator
Since all values allocated in OCaml are immediately initialised, a performance goal for the allocator
is to make the cost of allocation roughly proportional to the cost of initialisation. In other words,
small objects (lists, options, etc.) must be allocated quickly, but larger allocations may be slower.

In stock OCaml, there is a choice of major heap allocators. The first-fit and next-fit policies are
classical single-free-list allocators, satisfying allocation requests from the first sufficiently large
free block or the next one after the previous allocation, respectively. Recently, a best-fit allocator
has been incorporated into OCaml [Doligez 2019] which uses segregated free-lists [Standish 1980]
for small object sizes (the common case), and a splay tree [Sleator and Tarjan 1985] of blocks of
different sizes for larger allocations. Best-fit has been observed to beat the existing algorithms on
both time spent and space used through fragmentation.
However, all of these allocators are single-threaded. Due to the high allocation rates in OCaml,

using a lock to protect the allocator would have an unacceptably high performance penalty. For
this reason, Multicore uses a different major heap allocator based on the Streamflow [Schneider
et al. 2006] design. Our allocator maintains a domain-local, size-segmented list of pages for small
allocations (less than 128 words). Each page of 4K words is carved into equal-sized slots, with size
classes chosen so that there is less than 10% wasted space.

Large allocations (at least 128 words) are forwarded to the system malloc, maintained in a domain-
local list of large blocks, and returned via system free when swept. Before a domain terminates, all
of the pages it owns are moved to a global size-segmented list of pages. Such pages are said to be
orphaned and must be serviced by the other domains as they might contain live objects referenced
by other domains. The access to this global list of pages is protected by a mutex.

Streamflow uses BiBoP [Steele Jr 1977] to track which slots in a page are free without requiring
object headers. However, since every OCaml object already has a header, we use it instead to encode
which slots are free.

In order to service an allocation request to the major heap, the domain searches for a suitable slot
in the corresponding size class in its local list of pages. If no such slot is found, the domain sweeps
the local unswept pages of that size class to find a free slot. Failing that, the domain adopts one of
the global pages of the appropriate size class with an available slot. Failing that, the domain adopts
one of the full global pages of the appropriate size class, sweeps it, and looks for a free slot. If that
case fails too, the domain will request the operating system to allocate an additional page. Thus,
most allocations can be serviced without the need for synchronization and atomic operations.

3.4 Safe points
In order to support the stop-the-world pauses required by major collector cycle changes and the
parallel minor collector, multicore OCaml uses safe points in addition to the existing allocation
points. This is implemented using the algorithm from [Feeley 1993] and bounds the number of
instructions until a safe point is encountered. These safe points are necessary to avoid deadlocks in
certain situations e.g one domain in a non-allocating loop spin-waiting on an empty queue while all
other domains need a minor collection in order to allocate new items to put on the queue. It should
be noted that safe points are required by stock OCaml for correct language semantics independent
of multicore.

3.5 Opportunistic work
The incremental, concurrent nature of the major collector allows work to be carried out oppor-
tunistically when domains might otherwise be idle or in a state where it is unsafe for mutators
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to be running. Multicore OCaml makes use of this property of the major collector to schedule
opportunistic marking and sweeping work in the following cases:
Yielding Many non-blocking algorithms involve some form of looping when attempting to make

progress in the face of contention and involve some relaxing e.g PAUSE on x86. We use this as
an opportunity to do a small amount of opportunistic marking or sweeping.

Stop-the-world entry waits In the parallel minor collector domains entering a stop-the-world
pause will carry out opportunistic work until all domains are ready.

There are additional areas where opportunistic work could be implemented in Multicore OCaml
in the future, such as via read faults or stop-the-world leave waits, but these are left as future work.

4 MINOR HEAP
The minor heap is much smaller than the major heap, but must sustain a much higher rate of
allocation and collection. Unlike the major collector, the minor collector is:
Copying At collection time, live objects in the minor heap are moved to the major heap. The

minor heap is emptied by this process, and its space is reused in the next cycle.
Non-incremental The mutator is paused for the entire duration of the minor collection.
As in the previous section, we first review OCaml’s single-threaded algorithm.

4.1 Copying minor collection in stock OCaml
Like the major collector, the minor collector traces objects from the roots to find the live objects.
Unlike the major collector, the set of roots also includes the remembered set, which consists of the
references from the major heap to the minor heap. This way, all objects in the minor heap that are
pointed to by something in the major heap at the time of minor collection get promoted, without
having to traverse the major heap to find them.

The number of objects to be copied by the minor collector is often small. This is for two reasons:
first, the minor heap is relatively small, and second, only that part of the minor heap that is live at
collection time must be traversed. The limited work needed by the copying collector enables low
pause times to be achieved.
Since objects in the minor heap will be discarded or moved soon, there is no need to use a

sophisticated allocator to place them. Allocation is therefore fast with a simple bump-pointer
allocator.

4.2 Parallelising the minor collector
Compared to the major collector, the minor collector is more difficult to parallelise as it moves
objects, and an object must not be moved by one thread while another is using it.

It is possible to parallelise a copying collector by carefully coordinating the collector and the mu-
tator, sharing state about which objects have been moved. Such an approach comes at a heavy price,
however, in either performance or implementation cost, as it requires fine-grained synchronisation
between the collector and mutator not just on mutations but on all memory accesses.
So, we avoid designs which involve copying objects in parallel with their use by the mutator.

This leaves two possibilities: to separate the minor collector from the mutator in time or in space.
Separation in time When the minor heap fills, stop all domains simultaneously, and have all

domains collect the minor heap in parallel before resuming the mutator.
Separation in space Give each domain a private minor heap, preventing any access by one domain

to another’s heap, and allow them to collect their minor heaps independently.
We have implemented both of these approaches, as described below and evaluated in section 6.
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4.3 Concurrent minor collector with private minor heaps
Our concurrent minor collector uses domain-local, private, minor heap arenas, each tracking their
own remembered set. We maintain the invariant that there are no pointers between the minor
heaps of different domains, which permits each of the minor heaps to be independently collected.
We do allow pointers from the shared major heap to the minor heap to avoid paying the cost for
early promotion, similarly to multicore GHC [Marlow and Peyton Jones 2011].

4.3.1 Read faults and interrupts. Whenever a read follows a pointer from major to a remote minor
heap, it triggers a read fault. The faulting domain issues an interrupt to the remote domain to
request promotion of the desired object and waits for the response. Each domain maintains a
multiple-producer single-consumer queue for receiving inter-domain interrupts. The sender pushes
the request into the target domain’s queue and modifies the minor heap allocation limit pointer
on the target domain such that the next allocation on the target domain would fail. This enables
timely handling of inter-domain interrupts. We use the same interrupt mechanism for signalling to
other domains when a stop-the-world phase is necessary at the end of the major cycle (§3.2.2).

When the target domain receives a promotion request, it promotes the transitive closure of the
requested object to the major heap (possibly triggering a minor GC on this domain), and returns
the location of the new object in the major heap to the source domain. Since two domains may
concurrently request promoting objects from each other’s domains, while the faulting domain
waits for a response from the remote domain, it polls its interrupt queue and handles requests.

…0 1 14 15

0x4200 0x4210 0x4220 0x42e0 0x42f0

1

0x42ff

0x4300 0x43ff

Reserved

Fig. 4. An example virtual memory mapping of
the minor heaps for the concurrent minor collec-
tor on a 16-bit address space.

4.3.2 Read Barrier. The main challenge in the con-
current GC design is optimising the read barrier,
which is a code size and execution time burden not
present in stock OCaml.
There is an efficient way to implement the read

barrier through careful virtual memory mapping for
minor heap arenas and bit twiddling. When reading
a value from a mutable location, the read barrier
must classify the value as: (a) an integer; or (b) a
value in the major heap; or (c) a value in its own
minor heap; or (d) a value in a remote minor heap.
We must distinguish the last case from the others,
as it requires a read fault.

/* ax = value of interest */

/* bx = allocation pointer */

xor %bx , %ax

sub 0x0010 , %ax

test 0xff01 , %ax

/* ZF set => ax in remote minor */

Fig. 5. Read barrier test

Figure 4 shows an example layout of the minor
heap arenas, using only 16-bit addresses for clarity.
The minor heaps are all allocated in a contiguous
power-of-2 aligned virtual memory area, where each
minor heap is also a power-of-2 aligned and sized.
Not all of the virtual memory area needs to be allo-
cated, but only needs to be reserved to prevent it be-
ing used for the major heap. In the figure, the shaded
regions indicate committed memory currently used
for minor heap arenas.
In this example, the minor heap arenas are all

carved out of the virtual memory space between 0x4200 and 0x42ff. We also reserve the virtual
memory space 0x4300 to 0x43ff, and allocate neither minor or major heap pages in this space. We
have chosen a layout with support for 16 domains, each with a maximum minor heap size of 16
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/* low_bit(ax) = 1 */

/* low_bit(bx) = 0 */

xor %bx , %ax

/* low_bit(ax) = 1 */

sub 0x0010 , %ax

/* low_bit(ax) = 1 */

test 0xff01 , %ax

/* ZF not set */

(a) Case: Integer

/* PQ(ax) = 0x42 */

/* PQ(bx) != 0x42 , PQ(bx) != 0x43 */

xor %bx, %ax

/* PQ(ax) != 0, PQ(ax) != 1 */

sub 0x0010 , %ax

/* PQ(ax) != 0 */

test 0xff01 , %ax

/* ZF not set */

(b) Case: major heap

/* PQR(bx) = PQR(ax) */

xor %bx , %ax

/* PQR(ax) = 0 */

sub 0x0010 , %ax

/* PQ(ax) = 0xff */

test 0xff01 , %ax

/* ZF not set */

(c) Case: Own minor heap

/* PQ(bx) = PQ(ax) */

/* lsb(bx) = lsb(ax) = 0 */

/* R(bx) != R(ax) */

xor %bx, %ax

/* R(ax) != 0 */

/* PQ(ax) = lsb(ax) = 0 */

sub 0x0010 , %ax

/* PQ(ax) = lsb(ax) = 0 */

test 0xff01 , %ax

/* ZF set */

(d) Case: Remote minor heap. lsb returns least significant bit.

Fig. 6. Cases of the read barrier.

bytes. Addresses in this 16-bit address space can be written as 4 quads 0xPQRS. In OCaml, integer
values are represented by tagging the least significant bit to be 1. Hence, in this example, integers
have low bit of S to be 1. Minor heap values have PQ to be 42, and R determines the domain.
We can implement the read barrier check by comparing the given address with an address

from the minor heap. Luckily, we have such an address handily available in a register– the minor
heap allocation pointer. Let us assume the x86 architecture, with the allocation pointer in the bx

register, and the value that we want to test in ax. The read barrier test is given in Figure 5. The
test instruction performs bitwise and on the operands, and sets the zero-flag (ZF) if the result is 0.
At the end of this instruction sequence, if the zero-flag is set, then ax is in a remote minor heap. To
see how this works, let us consider each of the four cases (Figure 6).

Consider the case when ax contains an integer (Figure 6a). Since the allocation pointer is always
word aligned in OCaml, the least significant bit of the allocation pointer bx will be 0. Hence, zero
flag will not be set at the end of the instruction sequence.

Consider the case when ax contains a major heap pointer (Figure 6b). Due to our virtual memory
layout for minor heaps which reserves additional unused virtual memory area adjacent to the used
minor heap area, the most significant eight bits in bx (written PQ(bx)), will neither be 0x42 nor
0x43. Hence, PQ(ax) after xor will be non-zero. Hence, zero flag will not be set at the end of the
instruction sequence.
Consider the case when ax contains a pointer to the domain’s own minor heap (Figure 6c). In

this case, PQR(ax) = PQR(bx). After xor, PQR(ax) is 0. The subsequent subtraction underflows, and
hence, the test does not set the zero flag.
Consider the case when ax contains a pointer to a remote minor heap (Figure 6d). In this case,

PQ(ax) = PQ(bx), the least significant bits (lsb) of ax and bx are 0, and R(ax) != R(bx). Hence, after
xor, R(ax) != 0, PQ(ax) = lsb(ax) = 0. Subtracting 1 from the non-zero R(ax) will not underflow.
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Hence, PQ(ax) and lsb(ax) are still 0 after subtraction, and the zero flag is set. At this point, the
domain raises the interrupt to the target domain to promote the object to the major heap.

Our implementation allows the maximum size of the minor heap and the maximum number of
minor heap arenas (and hence, the number of domains) to be configured at the compiler build time.
On 64-bit architectures, by default, the compiler is configured to host a maximum of 128 domains,
each with a maximum minor heap size of 16 MB. This necessitates reserving (not allocating) 4GB
of virtual address space, which is a small portion of that available on a 64-bit machine.

4.3.3 Promotion. When a domain receives a promotion request, how should it go about doing it?
Because of mutable fields (and finalisers), it is not valid to duplicate the requested object closure in
the major heap, and we must ensure all references are updated to the promoted version.

A correct but inefficient implementation would be to perform a minor garbage collection, which
will ensure that the requested object and everything else in the minor heap is promoted to the
major heap. This strategy suffers from early promotion, and both the requester and the target
domain will suffer the pause time for a full minor GC on the target domain.
Observe that we can fix the early promotion problem by promoting only the transitive closure

of the requested object, and then scanning the minor GC roots and the minor heap for pointers
to the promoted objects and forwarding them to the major heap copy. However, this solution is
also inefficient, as it would touch the entire minor heap (recall that the copying collector need only
touch live objects during a minor GC, a small portion of the heap).
Our solution is a hybrid of the above techniques. In our experiments, we observe that most

promoted objects were recently allocated (as was observed in the case of a parallel extension of
the MLton Standard ML compiler [Sivaramakrishnan et al. 2012]). We enhance the write barrier to
record in a domain-local minor remembered set the writes from old to younger minor heap objects.
How do we identify whether an intra-minor-heap pointer is from an old to a younger object? In
OCaml, the allocation pointer starts at the end of the minor heap area, and objects are allocated in
the minor heap by subtracting the allocation pointer by the required size. During a write r := v, if
both r and v are objects in the minor heap, and r is at a higher address than v, then r is older than
v. We add r to the minor remembered set.

When an object closure being promoted is recently allocated (in the last 5% of the minor heap),
we promote the object closure. The pointers to those promoted objects may only appear in either the
minor GC roots, the minor remembered set, or one of the objects allocated after the oldest promoted
object, which is by definition in the last 5% of the minor heap. We scan those data structures
after object promotion. In our experiments, 95% of the promoted objects were the youngest 5% of
objects. If the object closure being promoted is not one of the youngest 5%, we perform a full minor
collection. The minor remembered set is cleared at the end of a minor collection.

4.3.4 Rewriting remembered set. In Multicore OCaml, the domain-local remembered set records
the pointers from the shared major heap to the minor heap, which must be updated during minor
collection. Consider that a major heap object r points to the minor heap object m. After promoting m,
r should be rewritten to point to the new location of m in the major heap, say m'. However, care must
be taken to ensure that this write by the minor GC does not overwrite a concurrent write to r by a
different domain. To this end, we perform the write to r by the minor GC with an unconditional
atomic compare-and-swap CAS(r,m,m'), which will fail if r does not contain m. If it fails, then r has
been written to by a different domain, and hence, we ignore the failure.

4.4 Stop-the-world parallel minor collector
In this section, we describe the stop-the-world parallel minor collector which is an alternative to
the concurrent minor collector. Our stop-the-world parallel minor collector retains domain-local
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minor heaps but relaxes the invariant disallowing references between minor heaps. Inter-heap
references requires a stop-the-world synchronisation involving all domains to carry out a minor
heap collection. With stop-the-world minor collection, we do not need read barriers and the read
barriers need not be safe points. Hence, we can retain the stock OCaml’s C API.

4.4.1 Interrupts and synchronization. When a domain finds that it needs to collect its minor heap,
it utilizes the interrupt mechanism to signal that all domains should do a stop-the-world collection.
Care is taken to ensure that stop-the-world minor and major collection requests are serialized so
that only one can be executing at a given time.
Given the increase in the frequency of interrupts, safe points become necessary for the stop-

the-world minor collector to avoid long synchronization times before a minor collection can start.
When all domains have entered the interrupt a barrier is used to agree that a minor collection can
start; at this point we know that all the blocks in the minor heap can be safely moved.

4.4.2 Parallel promotion. Within the stop-the-world section, all domains promote reachable objects
in parallel. Care is needed to ensure that if two domains attempt to promote an object, they are
serialized using CAS operations on the object header. This is a little more involved than a single CAS

due to the need to update the object’s first field to forward to the new location in the major heap.
Other domains must never see a minor heap object with a zeroed header (indicating promoted)
before the first field is updated. In order to avoid this, the header is CASed to an intermediate state
which indicates that a domain is currently promoting the object. If a domain sees this intermediate
state when attempting to promote an object they spin until the header is set to 0, at which point
the first field now contains the forwarding pointer to the promoted object in the major heap.
Additionally, we incorporate fast paths for the case when there is only one domain running,

which elides the CAS and the intermediate states. The minor collection algorithm in the case when
only one of the domains is running involves the same steps as stock OCaml minor collection.

4.4.3 Parallel work sharing. We implement a static work sharing policy for speeding up the stop-
the-world remembered set promotion. This is necessary because each domain maintains its own
remembered set and there can be workloads where this leads to imbalance e.g only one domain
continually updates a set of globals with newly allocated data. The static work sharing policy
equally splits the remembered set entries across all domains participating in the minor collection
and aims to ensure each one has an equal number of roots to promote.
Static work sharing only balances the roots in the remembered set. It is entirely possible that

one domain may end up needing to promote a large object graph reachable from one of its roots
while other domains remain idle. This could be addressed with dynamic work sharing, though it is
unclear whether the benefits would outweigh additional synchronisation between domains.

5 COMPLETING OCAML LANGUAGE COVERAGE
OCaml has a substantial existing base of production code that has been developed with single-core
performance in mind. Some of the popular areas the language is used involve symbolic computation
(theorem provers, proof assistants, static analysis, etc.) and these will take some years to migrate to
parallel execution. Therefore, our decisions about how to retrofit parallelism have been heavily
influenced by the need to preserve fast single-core performance, as it is impractical to maintain
multiple runtimes.
We will now describe the extensions of our GC model needed to handle the complete set of

features in OCaml that interface with the GC, paying careful attention to single-core performance
to minimise impact on existing code.
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5.1 Weak References and Ephemerons
Weak references introduce the notion of weak reachability in the heap. An object x is said to be
weakly reachable if it is referred to by a weak reference. If x is not also strongly reachable (through
normal pointers), the garbage collector may collect x. The weak reference is said to be full if it
points to a value, and empty if the value was erased by the GC.
An ephemeron [Bobot 2014; Hayes 1997] is an extension of a weak reference. It consists of a

key and a value. The ephemeron weakly points to the key. The value is considered reachable if the
ephemeron is reachable and the key is strongly reachable. Observe that ephemerons provide the
mechanism to express conjunction of reachability relations, whereas the usual GC mechanism can
only express disjunctions. If the key is not strongly reachable, the GC erases the reference to the
key and the value. We call this process ephemeron sweeping. OCaml implements weak references
as ephemerons with only the key but no value. Hence, we will only discuss ephemerons for the
remainder of this section. Ephemerons in OCaml may have more than one key, and the behaviour
is that, for the value to be considered reachable, the ephemeron and all of the keys are strongly
reachable.
We would like the ephemeron marking and sweeping to also not require synchronizing all of

the mutators and GC threads. To this end, each domain maintains a list of ephemerons it has
created. This list is incrementally marked and swept by the owning domain concurrently with the
execution on other domains. During domain termination, the ephemeron list is appended to a
global ephemeron list which is adopted by one of the running domains.

5.1.1 Challenges. Ephemerons bring in several challenges for a concurrent GC. Since the reacha-
bility of ephemeron values can only be decided based on whether the keys are strongly reachable,
ephemeron marking must be performed after all the domains have finished marking. During
ephemeron marking, the domain local list of ephemerons is walked, and for each ephemeron, if
the ephemeron and its key are strongly reachable, then the value is marked. Thus marking the
ephemeron may introduce additional marking work. This complicates our termination algorithm
(Section 3.2.1), as the number of domains with marking work no longer monotonically decreases.
Moreover, the ephemeron value when marked may make other ephemerons reachable, which may
be on the ephemeron list of another domain. Thus, if ephemeron marking introduces new mark
work, we will need to go through another round of ephemeron marking.

OCaml ephemerons provide a get_key function which returns a strong reference to the key if
the key is full (not erased by the GC). This strong reference is obtained by marking the key. If there
were no other strong references to the key, then the get_key operation introduces additional mark
work in the current cycle. Hence, just running the mutator may bring in additional mark work and
cause a domain to need to mark even though it had previously finished the round’s mark work.
Only after all of the domains have marked their ephemerons and have not produced any new mark
work can we proceed to the ephemeron sweep phase.

5.1.2 Ephemeron marking. We extend the algorithm presented in Figure 3 to handle ephemeron
marking (Figure 7). Due to the strict ordering requirements between ephemeron marking and
sweeping, we introduce two phases in the GC – MARK and SWEEP_EPHE. If a program does not
use ephemerons, then the SWEEP_EPHE phase can be skipped. The key idea is this: we say that
an ephemeron marking round is complete when a domain empties its mark stack. If all of the
domains are able to mark the ephemerons in the same round and there is no new marking work
generated, then the ephemeron marking phase is completed. Importantly, our solution does not
require synchronization between each round of ephemeron marking.
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/* Assume: pushing an object into an empty mark stack will increment

[gNumDomsToMark] and set [dlMarkingDone = false]. */

1 def majorSlice (budget ):

2 budget = sweepSlice (budget)

3 budget = markSlice (budget)

4 if (budget && !dlMarkingDone ):

5 dlMarkingDone = 1

6 atomic:

7 gNumDomsToMark --

8 gEpheRound ++

9 gNumDomsMarkedEphe = 0

10 /* Ephemeron Mark */

11 cached = gEpheRound

12 if (cached > dlEpheRound ):

13 budget=markEphe(budget ,cached)

14 if (budget && dlMarkingDone)

15 dlEpheRound = cached

16 atomic:

17 if (cached == gEpheRound ):

18 gNumDomsMarkedEphe ++

19 /* Ephemeron Sweep */

20 if (gPhase == SWEEP_EPHE ):

21 budget = sweepEphe(budget)

22 if (budget && !dlSweepEpheDone ):

23 dlSweepEpheDone = 1

24 atomic: gNumDomsSweptEphe ++

25 /* Change Phase */

26 changePhase ()

27 def changePhase ():

28 if (gPhase == MARK && gNumDomsToMark == 0

29 && gNumDomsMarkedEphe == gNumDoms ):

30 barrier:

31 if (gPhase ==MARK && gNumDomsToMark ==0

32 && gNumDomsMarkedEphe == gNumDoms ):

33 gPhase = SWEEP_EPHE

34 if (gPhase == SWEEP_EPHE &&

35 gNumDomsSweptEphe == gNumDoms ):

36 runOnAllDoms (cycleHeap)

37

38 def cycleHeap ():

39 barrier:

40 newc.Unmarked = gColours.Marked

41 newc.Garbage = gColours.Unmarked

42 newc.Marked = gColours.Garbage

43 newc.Free = gColours.Free

44 gColours = newc

45 gNumDomsToMark = gNumDoms

46 gEpheRound = gNumDomsMarkedEphe = 0

47 gNumDomsSweptEphe = 0

48 gPhase = MARK

49 dlMarkingDone = dlEpheRound = 0

50 dlSweepEpheDone = 0

51 markNonIncrementalRoots ()

Fig. 7. Pseudocode for a slice of major heap work with ephemerons.

For the sake of exposition, we assume that the number of domains (gNumDoms) remains constant.
The global gNumDomsMarkedEphe tracks the number of domains that have marked their ephemerons
in the current round. The global gNumDomsSweptEphe tracks the number of domains that have swept
their ephemerons. The domain-local variable dlSweepEpheDone records whether the current domain
has swept its ephemerons. We maintain the global ephemeron round in gEpheRound, and the last
round for which a domain has marked its ephemerons in dlEpheRound. All of these variables are
initialised to 0 at the start of the major cycle (see cycleHeap).

Whenever a domain empties itsmark stack, it increments gEpheRound and sets gNumDomsMarkedEphe
to 0 to indicate that no domains have marked ephemerons in the new round (lines 8–9). Before
marking its ephemerons, a domain caches a copy of gEpheRound (line 11). If it completes marking
and no new mark work has been generated, then it records that it has completed marking for the
cached round (line 15). If another domain had not concurrently emptied its mark stack, then the
cached round will be the same as the global round, and the domain increments the global count of
domains that have completed marking in this current ephemeron round (lines 16–18).

5.1.3 Termination. How do we know that marking is done? In each major cycle,
gNumDomsMarkedEphe either increases from 0 to gNumDoms or is reset to 0. Because of
Ephemeron.get_key, gNumDomsMarkedEphe == gNumDoms and gNumDomsToMark == 0 can both be
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simultaneously true, however, running the mutator may create new mark work. This increments
gNumDomsToMark, which will in turn necessitate an additional round of ephemeron marking. Hence,
we check the termination condition again in a global barrier to verify that new mark work has
not been created before switching to the SWEEP_EPHE phase (lines 28 – 33). We have verified the
implementation of the major slice work and termination in SPIN model checker [Holzmann 1997].

5.1.4 Ephemeron sweeping. Sweeping ephemerons is comparatively simple. Each domain sweeps
its ephemerons, clearing keys and values if necessary and increments gNumDomsSweptEphe. This
variable monotonically increases to gNumDoms, at which point we cycle the major heap.

5.2 Finalisers
Each domain maintains a domain-local list of finalisers that it has installed, and handles finalization
locally. OCaml has two variants of finalisation function:
val finalise : (a -> unit) -> a -> unit

val finalise_last : (unit -> unit) -> a -> unit

finalise applies the higher-order function on the object being finalised, and the function may
revive the object by storing it in a global variable. Hence, as part of finalisation, the object is marked.
Hence, these finalisers are marked to run when gNumDomsToMark first goes to 0, but before any of the
domains start marking ephemerons. Due to Ephemeron.get_key, we need a barrier to move from
the main marking phase to marking finalisers.

The finalise_last finalisers do not get hold of the object being finalised. OCaml finalises them
after all the marking has been completed for this major cycle i.e., after we enter SWEEP_EPHE phase.
Similar to the other cases, we maintain a global variable each to keep track of the number of
domains that have run their finalise and finalise_last finalisers. These variables are initialised
to 0 and monotonically increase to gNumDoms. These variables are consulted before moving to
the next corresponding GC phase. This mirrors the stock OCaml behaviour. The pseudocode
for major slice with ephemerons and finalisers can be found in the Appendix A of the technical
report [Sivaramakrishnan et al. 2020].

5.3 Lazy values
OCaml has support for deferred computations through the use of lazy values, which interact with
the GC. In stock OCaml, a lazy value 'a Lazy.t has one of the following representations:

• A block of size 1 with Lazy tag with a closure of type unit -> 'a in the first field.
• A block of size 1 with Forward tag with the computed value of type 'a in the first field.
• The computed value of type 'a1.

When a lazy value with Lazy tag and closure f is forced, the field is first updated to
fun () -> raise Undefined, so that recursive forcing of a lazy value raises an exception. Then, the
deferred computation f is evaluated. If f raises an exception e, then the computation is replaced
with fun () -> raise e. Otherwise, the mutator modifies the header to Forward and updates the
first field to the result. Whenever the GC finds a reference to a Forward object, it may short-circuit
the reference to directly point to the object.

This scheme is incompatible with a concurrent GC since the mutator modifying the word sized
header may race with a GC thread which is marking the object, leading to one of the writes being
lost. Moreover, the writes to update the header to Forward and the field to the result of the deferred
computation are non-atomic. Hence, one of the two domains concurrently forcing a lazy may
witness one of the writes but not the other, leading to violation of type safety (segmentation fault).
1We elide a subtlety with floats for the sake of exposition
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Moreover, given that the deferred computation may perform arbitrary side effects, it would be
undesirable to duplicate the effects when two domains concurrently force a lazy value.

For Multicore OCaml, we have redesigned lazy values to make them safe for concurrent mutators
and GC threads. We introduce a Forcing tag to indicate a lazy value currently being forced. When
forcing a Lazy tagged lazy value, the tag is first updated to Forcing using a CAS. Then, the first field
is updated to store the identifier of the current domain. Following this, the deferred computation is
evaluated.

If the deferred computation encounters a lazy value with Forcing tag and the domain identifier
in the first field matches the current domain identifier, then it indicates recursive forcing of this
lazy value. If the domain identifiers are different, then it indicates concurrent forcing of this lazy
by more than one domain. In both of these cases, we raise the Undefined exception.

let rec safe_force l =

match Lazy.try_force l with

| None ->

(* emits PAUSE instruction on x86 *)

Domain.Sync.cpu_relax ();

safe_force l

| Some v -> v

Fig. 8. Safely performing memoized computations in a
concurrent setting

If the computation results in a value, the first
field is updated with the result, and the tag is
now updated to Forward using a CAS. If the com-
putation results in an exception, the first field
is updated to a closure which when evaluated
raises the same exception. Then, the tag is reset
to Lazy using a CAS so that subsequent forcing of
this lazy value raises the Undefined exception.
The GC also marks Lazy and Forcing tagged
objects with a CAS to handle the race between
the mutator and the GC. Multicore-safe lazy
still uses the same object layout as stock OCaml, but uses two CASes in the mutator and one CAS for
GC marking each lazy value.
This design permits the common case of using lazy values for memoization in a concurrent

setting. Given that we can distinguish between concurrent and recursive forcing of a lazy value,
Multicore OCaml provides a Lazy.try_force: 'a Lazy.t -> 'a option primitive which behaves
similar to Some (Lazy.force l) except that it returns immediately with None if the lazy value l

is already being forced concurrently by another domain. Using Lazy.try_force, one may safely
access memoized computations by busy-waiting, for example, as shown in Figure 8.

5.4 Fibers
Multicore OCaml supports lightweight concurrency through language-level threads implemented
using runtime support for heap-allocated, dynamically resized, stack segments (fibers) [Dolan et al.
2018b]. While the language support for concurrency is beyond the scope of the paper, care has to
be taken towards the interaction between the concurrent GC and fibers. Multicore OCaml uses a
deletion barrier which requires that the program stack be scanned at the start of the cycle. Since
fibers are program stacks, before switching control to a fiber, all the objects on the fiber stack
must be marked. This can lead to a race between a mutator wanting to switch to a fiber and other
domains marking the fiber stack. Whenever a fiber stack is being scanned for marking, we obtain a
lock on the fiber. If a mutator attempts to switch to a locked fiber, it spin waits until marking is
complete. If a GC thread attempts to mark a locked fiber, it skips marking since the fiber is being
marked.

6 EVALUATION
In this section, we evaluate the performance of the two Multicore OCaml GC variants against the
requirements listed in Section 1.3. We have implemented the multicore support by extending the
OCaml 4.06.1 compiler.
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The performance evaluation was performed on a 2-socket, Intel®Xeon®Gold 5120 x86-64 server,
with 28 physical cores (14 cores on each socket), and 2 hardware threads per core. Each core runs
at 2.20GHz and has 32 KB of L1 data cache, 32 KB of L1 instruction cache and 1MB of L2 cache.
The cores on a socket share a 19.25 MB L3 cache. The server has 64GB of main memory and runs
Ubuntu 18.04.
Since pause time measurements are sensitive to the operating system scheduling, we carefully

set up the machine to eliminate measurement noise. We disable hardware threads, powersave and
force a constant frequency of 2.20GHz. We isolate 12 physical cores on each socket using Linux
isolcpus for benchmarking. The kernel will not schedule any processes on these isolated cores
unless explicitly requested. Thus, we have 12 cores each on 2 NUMA domains for benchmarking.

6.1 Sequential Performance
In this section, we analyse the performance of sequential OCaml programs on OCaml 4.06.1 (Stock),
Multicore OCaml with the concurrent minor GC (ConcMinor) and the stop-the-world parallel minor
GC (ParMinor). We ran Stock with default GC settings (next-fit collector, compaction is enabled).

Our aim is to determine whether unmodified sequential programs (modulo the changes required
for the C API on the ConcMinor variant) running on the multicore variants retain throughput
(running time) and latency (GC pause times). The sequential benchmark suite comprises of a mix
of workloads including parsers (menhir, setrip, yojson), utilities (cpdf, decompress), option pric-
ing (lexifi-g2pp), ray tracer (minilight), concurrency (*lwt*), bioinformatics (fasta, knucleotide,
revcomp2, regexredux2), numerical analysis (matrix_multiplication, LU_decomposition), and sim-
ulation (game_of_life, nbody). The programs were run one after the other on one of the isolated
cores with no other load on the machine.

6.1.1 Throughput. Figures 9a, 9b and 9c respectively show the normalized running time, the
normalized maximum major heap size and the normalized major collection count of the sequential
benchmarks on Multicore OCaml with Stock OCaml running time as the baseline.
On average (using geometric mean of the normalized running times), ConcMinor and ParMinor

are 4.9% and 3.5% slower than Stock, respectively. ConcMinor is slower than ParMinor due to the
overhead of the read barrier. This overhead itself manifests in two ways. First is the additional
instructions that ConcMinor will have to execute over ParMinor. Secondly, since the read barrier is
inlined at reads, the additional instructions tend to affect instruction cache efficiency. We have also
observed that additional instructions due to read barrier in tight loops sometimes tend to disable
or enable micro architectural optimisations, which tend to affect overall running time by a few
percentage points. Hence, we believe that observed overheads are within reasonable bounds.
Focussing on specific benchmarks, pidigits5 on Stock is 2.9× slower than the both of the

multicore variants. This is due to the fact that pidigits5 allocates 12.7GB in the major heap
in total, most of which are short-lived. This causes Stock to schedule 895 compactions and the
benchmark spends 50% of its running time in the kernel allocating and freeing memory. By turning
off compaction for pidigits, the runtime reduces to 2.21 seconds which is 5%(9%) faster than
ConcMinor(ParMinor).
On the other side, game_of_life on multicore variants is 20% slower than Stock. game_of_life

uses exceptions to encode the behaviour on out-of-bounds array access. Exceptions in the multicore
variants are more expensive than Stock for two reasons. Firstly, the dedicated exception pointer
register on x86-64 is now used for the pointer to the domain-local runtime structure, which holds
the domain-local state including the exception pointer. Secondly, due to fibers in the multicore
runtime, the stacks need to move to grow on stack overflow, unlike Stock. While Stock uses absolute
addresses into the stack for exception pointers, we use relative addressing to encode the exception
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Fig. 9. Throughput of unmodified sequential OCaml programs on Multicore OCaml
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pointer to avoid rewriting the exception pointer when stacks are moved. Hence, the multicore
variants need to execute additional instructions for setting up the exception handler and raising
exceptions. We verified this by rewriting the benchmark using an optional type to capture the
exception behaviour and the performance matches that of Stock. We experimented with the idea
of retaining the dedicated exception pointer register in addition to the register for domain-local
runtime state. In this case we observed performance that was generally worse; there was increased
register pressure and consequently more spilling. Implementing absolute addressing for exceptions
in the multicore variants would improve performance of exceptions, while making the (rarer) stack
move operations slower.

On average, ConcMinor and ParMinor use 54% and 61% less memory than Stock (Figure 9b). Many
of the benchmarks where the multicore variants do better than Stock do not use much memory.
However, multicore variants do better even on those benchmarks that allocates a lot of memory. For
example, menhir.ocamly uses a maximum heap size of 5.3 GB on Stock and the multicore variants
consume 3.3 GB. The next-fit collector that we use in Stock is susceptible to fragmentation whereas
the size-segmented free list used in the multicore variants are tolerant to fragmentation. We ran the
benchmark with first-fit collector and the benchmark did not terminate after 30 minutes. With the
new best-fit collector which was added in OCaml 4.10.0, the benchmark runs in 250 seconds and
consumes 3.3 GB, which matches the behaviour of multicore variants. The results show that the
runtime and memory usage of sequential OCaml programs on the multicore variants is competitive
with stock OCaml.

In our experiments, we use the same minor heap size (the OCaml default of 2 MB) for all the
three variants. We observed that all the three variants allocate similar amount memory in the major
heap. The average difference was less than 1%. Hence, we report only the total allocations in the
major heap for Stock (Figure 9c). We observe that the multicore variants tend to do a few more
major collections than Stock. Although the variants allocate similar amounts of memory in the
major heap, the allocators are different between Stock and the multicore variants, and vary in the
amount of fragmentation in the heap. This induces differences in the GC major slice scheduling
algorithm causing more major collections in the multicore variants.
6.1.2 Latency. Figure 10a and 10b shows the maximum and 99.9th percentile GC pause times
of unmodified OCaml programs running on the different variants. We observe that both of the
multicore variants remain competitive with Stock.

The most unresponsive benchmark is menhir.ocamly where the maximum pause times are 1125
ms, 689 ms and 635 ms on Stock, ParMinor (39% lower than Stock) and ConcMinor (44% lower then
Stock). There are a number of benchmarks whose maximum pause times are over 10 ms. We
observed that in all of these programs, the maximum pause time is attributed to a large slice of
major GC work.
While the GCs are incremental, the runtime computes a mark slice budget, the amount of

incremental work (in memory words) that should be done in each cycle. The budget is computed
based on the space overhead setting (percentage of memory used for live data), the current size of
the major heap, the allocations since the last major slice, and a summarised history of work done
in previous slices. In these benchmarks, there is a large amount of allocation since the last slice
of major work, which causes the runtime to compute a very large budget, which in turn causes
the large pause times. However, such huge imbalances are rare events. We can observe that the
99.9th percentile pause times are much better than the maximum pause times. For menhir.ocamly,
99.9th percentile pause times for Stock, ConcMinor and ParMinor are 47 ms, 155 ms and 171 ms,
respectively.
While these benchmarks are not interactive programs, the large pause times observed are

antithetical to the common wisdom that OCaml is suitable for interactive programs. Are these large
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Fig. 10. Pause times of unmodified sequential OCaml programs

pause times indicative of the fundamental lack of responsiveness in the GC design or are they an
artefact of the GC pacing algorithm? OCaml does not have an explicit setting for responsiveness;
the space overhead parameter controls memory usage and only indirectly affects the pause times.
We first observed that increasing the space overhead did not bring down the maximum pause time
in menhir.ocamly.
We experimented with a threshold for the maximum budget for a mark slice. The threshold

was chosen such that no major slice is longer than roughly 10 ms on the benchmarking machine.
Without the maximum budget, menhir.ocamly on ConcMinor completed in 213 s, with a maximum
major heap size of 3.3 GB and a maximum latency of 635 ms. With the maximum budget, the
benchmark completed in 203 s, with a maximummajor heap size of 6.07 GB and a maximum latency
of 10 ms. While this approach will not ensure that the space overhead constraints are met, we are
able to trade space for improvements in both the running time as well as maximum latency. This
illustrates that our GC design does not fundamentally lack responsiveness.

6.2 Parallel Benchmarks
With parallel benchmarking, our aim is to determine whether the multicore variants scale with
additional cores, and how the GC pause times are affected by additional core count. Our parallel
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Fig. 11. Speedup of parallel benchmarks. The baseline running time in seconds is given in the parenthesis
next to the benchmark name. The line parallel to the x-axis is at y=1.

benchmark suite is composed of numerical kernels (LU_decomposition, matrix_multiplication,
spectralnorm2), ray tracing (minilight), GC stress test mirroring real workloads (binarytrees5),
Zlib compression and decompression (test_decompress), simulations (game_of_life, nbody), all-
pairs shortest path algorithm (floyd_warshall) and Mandelbrot set plotting (mandelbrot6).
As mentioned earlier, we had isolated 12 cores each on the two sockets in the server. We ran

each benchmark with the same input at different domain counts. For the domain counts less than
or equal to 12, we pin them to the same socket using Linux taskset command. By default, Linux
allocates pages in the same NUMA domain as the process generating the request. Hence, pinning
the domains to the same NUMA domain minimises NUMA effects. For domain counts greater than
12, they are allowed to span both sockets.

Figure 11 shows the speedup of the multicore variants. The baseline for speedup is the fastest
sequential version of the program. The results show that ParMinor scales linearly for floyd_warshall,
game_of_life and spectral_norm, whereas ConcMinor scales linearly only for spectral_norm. All of
these benchmarks have a number of iterations with parallelisable work available in each iteration.
In each iteration, the master domain farms out the work to the worker domains over a point to
point channel data structure and synchronizes with the workers at the end.
In the case of ConcMinor, since the channels themselves are shared between the domains, they

are in the major heap. When the master adds work in the channel, a pointer is created from the
channel in the major heap to the work in the master domain’s minor heap arena. When the worker
fetches the work, it faults on the read and has to send an interrupt to the master domain to promote
the work to the major heap. Until the master finishes promoting the work, the worker sits idle. This
causes the gradual tapering out of speedup with increasing domain count. The master can eagerly
promote the work, but this too has non-trivial overheads since at least the roots have to be scanned
to ensure that there are no dangling references to the promoted object (Section 4.3.3). On the
other hand, in the case of ParMinor, the worker directly reads the work item from master’s minor
heap arena. The other benchmarks have large non-parallelisable sections which causes sublinear
speedup. Overall, when there is parallelisable work available, Multicore OCaml can effectively
parallelise it.
Table 1 presents the GC statistics for the benchmark runs with 24 domains. We observe that

ParMinor performs more minor GCs than ConcMinor. In the case of ParMinor whenever the heap
arena of a domain fills up, the domain forces all the other domains to also collect their minor heaps.
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Benchmark Major GCs Minor GCs Major Allocs (MB) Max Heap (MB)
Conc Par Conc Par Conc Par Conc Par

LU_decomposition 98 15 66402 83469 141 134 100 101
binarytrees5 20 17 14084 17800 8088 7729 5124 7752
floyd_warshall 15 15 409 424 19 13 13 13
game_of_life 3 3 2 9 12 12 12 12
mandelbrot6 0 0 0 0 1 1 1 1
matrix_multiplication 0 0 0 0 0 0 24 24
minilight 44 6 116433 210146 272 249 48 166
nbody 1 1 1 2 0 0 0 0
spectralnorm2 12 6 8249 10152 1 1 3 5
test_decompress 16 4 22177 24218 5157 3693 2239 3851

Table 1. GC statistics for parallel benchmarks with 24 domains.
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Fig. 12. Max GC pause times of parallel benchmarks.

This issue can be fixed by having the domains request large pages for allocations from a contiguous
minor heap space such that the minor collection is only performed when all of the minor heap is
full. We also observe that ConcMinor allocate more in the major heap. This is due to the fact that
any work that is shared between the domains need to be promoted to the major heap, whereas
ParMinor can share without promotion.
Figure 12 shows the maximum GC pause times for the parallel benchmarks with increasing

number of domains. We observe that the pause times of both the collectors are tolerant to increase in
the number of domains. The maximum pause times remains the same or increases only marginally
with increasing domain count. The worst case pause times for ParMinor is on test_decompress (170
ms at 12 domains) and ConcMinor is on binarytrees5 (76 ms at 20 domains). For comparison, the
maximum pause time for the sequential versions of the benchmarks on Stock OCaml are 43 ms for
test_decompress and 94 ms for binarytrees5. Hence, the observed maximum latency numbers are
within acceptable bounds.

The maximum pause times were observed when a domain finishes a minor cycle and then runs
a slice of the major heap work where it broadcasts a request for a stop-the-world barrier. An
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immediate improvement would be to separate out minor collection from the major slice work, as
is the case in Stock, so that they are performed in two separate pauses. Hence, there is room for
further improvements in pause times.

7 DISCUSSION
As we noted at the beginning of this paper, bringing parallelism to OCaml required us to find a
point in the GC design space where sequential single core performance can be preserved but still
introduce scalable parallelism as an option to OCaml developers. In this section, we will discuss
the difficult design decisions that relate to this task of retrofitting parallelism onto an existing
venerable functional language with a large existing codebase.

The core OCaml language had to be constrained in surprisingly few places where it exposed too
much of the single-core internals. The Obj module from the standard library is the biggest culprit;
even though it is advertised as “not for the casual user”, it is often used in the result of extracted
code (e.g. from Coq) and the compiler itself. We primarily only had to remove two operations which
update the header field of an object – Obj.set_tag and Obj.truncate. These operations conflict
with concurrent GC threads non-atomically marking the object. Alternative primitives are provided
that expose higher level functionality for some of the common use cases found.

Most of the changes elsewhere happened towards the parts of the language involving interfacing
with the outside world. Signal handling, parts of the FFI, and marshalling required some modifica-
tions to make their semantics more robust in the face of parallelism, primarily by removing race
conditions or shared state. In most cases, we simply had to tighten up the definition of allowable
behaviour: for example, named callbacks to OCaml from C can no longer be mutated once registered
using the raw pointer returned. We found no cases of this causing a problem in real world code.

The more advanced language features that had to be adapted for Multicore OCaml (ephemerons,
lazy values and finalisers) are designed to minimise single-core performance impact. For example,
lazy values introduce just two CAS operations into the value-forcing path, but none if already forced.
Given that lazy values are introduced to memoize expensive computations the cost of the (almost
always uncontended) CAS gets amortized. Multicore OCaml does not support compactions. We
observed in our experiments that the size-segmented multicore allocator is more tolerant to frag-
mentation and performs as well as the best-fit collector added in OCaml 4.10.0 on menhir.ocamly.
The result of this careful design is that OCaml users should be able to move gradually over to adopt-
ing multicore parallelism, without finding regressions (either semantically or performance-wise) in
their existing large codebases.

When assessing the performance impact of our designs, we had to construct a micro- and macro-
benchmark suite that is assembled from the wider OCaml community (primarily by extracting
representative samples from the opam package manager). We immediately observed the difficulty of
even small backwards compatibility changes between stock and multicore OCaml being difficult to
adapt to in our own evaluations.

One primary culprit was the C API changes required by our original concurrent minor collector,
which motivated us to build alternative designs to firmly determine the cost of adding read barriers.
As we showed in our evaluation (§6), we found that our stop-the-world parallel minor collector
that did not require changes to the OCaml FFI maintained extremely low pause times and good
throughput. This happy result means that the multicore OCaml retrofit can be integrated into the
mainstream OCaml distribution with very few user-observable compatibility concerns.

Multicore OCaml has also chosen to separate parallelism at the runtime level from concurrency at
the language level. There is active research ongoing into various ways to integrate concurrency into
OCaml via algebraic effects [Chandrasekaran et al. 2018; Dolan et al. 2018a]. From the perspective
of the runtime, we have exposed just enough functionality via lightweight fibers to allow this
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research into strongly typed concurrent OCaml extensions to continue, but also not block the
broader OCaml community from directly using the parallelism by spinning up domains using
relatively low-level interfaces.

8 RELATEDWORK
There are several notable works in the recent past that extend languages in the ML family with
support for parallel programming. Manticore [Auhagen et al. 2011; Fluet et al. 2010] is a high-
level parallel programming language with support for CML [Reppy 1993]-style coarse-grained
parallelism as well as fine-grained parallelism in the form of parallel tuple expressions and parallel
array comprehensions. The core language is a subset of Standard ML without mutable reference
cells and arrays. MaPLe [Guatto et al. 2018; Raghunathan et al. 2016; Westrick et al. 2019] is a parallel
extension of theMLton StandardML compiler with support for nested parallelism. The programming
model, as well as the garbage collector in MaPLe, takes advantage of disentaglement property which
mandates that a thread cannot witness the memory allocations of another concurrent thread. Unlike
these approaches, Multicore OCaml places no restriction on the programming model and aims to
be fully compatible with the stock OCaml programming language. Multicore OCaml also places no
restrictions on the object graph that can be constructed and shared between multiple domains.
SML# features a concurrent, non-moving collector [Ueno and Ohori 2016] that is a similar

approach to Multicore OCaml, but a single heap instead of a generational one. Multicore OCaml
retains a generational approach in order to reduce the pressure on the major heap, at the cost of
more complexity in the interaction between generations. SML# allocator uses BiBoP [Steele Jr
1977] technique to distinguish used and free blocks in the free list to avoid adding a header to
each object. Since OCaml objects already include a header, we reuse it in the free list and avoid
having to use an auxiliary data structure. [Ueno and Ohori 2016] collector only supports a single
GC thread. The paper also does not mention whether advanced data structures such as ephemerons,
weak references and finalisers are supported. We observed that with multiple GC threads, careful
attention has to be paid to the design of advanced data structures.
GHC has recently integrated an incremental, non-moving collector also inspired by the design

in SML# [Gamari and Dietz 2020]. GHC also maintains a nursery heap to allocate into rather than
directly going into the major heap. Similar to SML#, only one GC thread is currently supported
with ongoing work to support multiple threads.

We retain the option to use the concurrent minor collector in a future revision of Multicore
OCaml if it turns out to be necessary for many-core scalability. Although our stop-the-world minor
collector scaled up admirably to at least 24 cores, synchronisation costs will inevitably increase as
the number of cores do. Adding a read barrier (as used by the concurrent minor collector) opens up
the GC design space considerably; for example to add a pauseless algorithm [Click et al. 2005] such
as the ones used in modern Java GCs like Azul, ZGC [Tene et al. 2011] or Shenandoah [Flood et al.
2016]. Our results for the concurrent minor collector show that the read barrier has less overhead
in OCaml code than initially expected, and would be a reasonable solution in many-core machines.
Several previous works [Anderson 2010; Auhagen et al. 2011; Doligez and Leroy 1993; Domani

et al. 2002; Marlow and Peyton Jones 2011; Sivaramakrishnan et al. 2014] have explored concurrent
minor collection with thread-private minor heap arenas. The [Marlow and Peyton Jones 2011]
collector for GHC allows major to minor pointers and on-demand promotion, similarly to us. Our
innovation here is the use of virtual memory mapping techniques in our concurrent minor collector
(§4.3.2) to optimise the read barrier required to trap reads to a foreign minor heap arena.

Manticore [Auhagen et al. 2011] and MultiMLton [Sivaramakrishnan et al. 2014] use Appel-style
semi-generational collection for the threads-local heaps. The local heap supports both minor and
major collections. There is a dedicated shared heap in order to share objects between multiple

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 113. Publication date: August 2020.



Retrofitting Parallelism onto OCaml 113:27

threads. Similar to us Manticore permits pointers from the shared heap to the local heaps, and on-
demand promotion. MultiMLton on the other hand does not permit pointers from the shared heap
to the local heap, but takes advantage of ample user-level concurrency to preempts the execution of
user-level threads that are about to introduce a shared to local heap pointer. In Manticore, the global
heap is collector with a stop-the-world parallel collector, while MultiMLton uses a stop-the-world
serial collector. In order to retain the low pause times of OCaml, Multicore OCaml uses concurrent
mark-and-sweep collector for the major (shared) heap.
The Go programming language uses a concurrent, tri-colour, non-moving, mark-and-sweep,

generational garbage collector and is designed for low GC pausetimes. Of particular interest is the
interaction between goroutines and the GC. Before Multicore OCaml switches to an unmarked
fiber, all the objects on the fiber stack are marked. This is necessary since Multicore OCaml uses a
deletion barrier. Go opts for a different design where the goroutines are not marked before switching
control to them. In turn, Go’s write barrier is a combination of deletion and insertion barrier; until
the current goroutine is shaded black, the write barrier marks both the object overwritten and
the referrent [GoWriteBarrier 2015]. This design will be more responsive in concurrency heavy
programs, at the cost of making write barriers more expensive even for code that does not use
lightweight concurrency.

Our overall problem of retrofitting parallelism onto an existing sequential language has previously
been explored by the Racket programming language as well. They added parallelism to a sequential
runtime via two separate methods; firstly via a futures library that classifies operations that
are parallel-safe as separate from ones that required more synchronisation [Swaine et al. 2010],
and secondly via a places library that provides message-passing parallelism [Tew et al. 2011].
This approach is significantly less invasive to the Racket runtime than Multicore OCaml is to
current mainline OCaml, but the parallel performance is reported as best suited to numerical tasks.
Multicore OCaml aims to provide good parallel performance for algorithms involving large shared
data structures, (such as those found in symbolic processing domains such as proof assistants),
and also to integrate with existing debugging and tracing tools. Thus, we judged the significant
engineering effort required to build the Multicore OCaml garbage collector as appropriate.

9 CONCLUSIONS
We present a novel, mostly-concurrent garbage collector that has been designed with the explicit
goal of retrofitting parallelism onto OCaml while preserving performance and feature backwards
compatibility. The extensive experimental evaluation validates that the new collector not only
preserves backwards compatibility but also scale admirably on multiple cores.

All of the artefacts emerging from this research will be made available as open-source software
and patches to the upstream OCaml distribution. The development repositories are available at
https://github.com/ocaml-bench/sandmark for the benchmarking suite used in this paper, https:
//github.com/ocaml-multicore/ocaml-multicore for the compiler forks, and https://github.com/
ocaml-multicore/multicore-ocaml-verify for the SPIN models.
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