416 research outputs found

    Non-Malleable Codes for Small-Depth Circuits

    Get PDF
    We construct efficient, unconditional non-malleable codes that are secure against tampering functions computed by small-depth circuits. For constant-depth circuits of polynomial size (i.e. AC0\mathsf{AC^0} tampering functions), our codes have codeword length n=k1+o(1)n = k^{1+o(1)} for a kk-bit message. This is an exponential improvement of the previous best construction due to Chattopadhyay and Li (STOC 2017), which had codeword length 2O(k)2^{O(\sqrt{k})}. Our construction remains efficient for circuit depths as large as Θ(log⁥(n)/log⁥log⁥(n))\Theta(\log(n)/\log\log(n)) (indeed, our codeword length remains n≀k1+Ï”)n\leq k^{1+\epsilon}), and extending our result beyond this would require separating P\mathsf{P} from NC1\mathsf{NC^1}. We obtain our codes via a new efficient non-malleable reduction from small-depth tampering to split-state tampering. A novel aspect of our work is the incorporation of techniques from unconditional derandomization into the framework of non-malleable reductions. In particular, a key ingredient in our analysis is a recent pseudorandom switching lemma of Trevisan and Xue (CCC 2013), a derandomization of the influential switching lemma from circuit complexity; the randomness-efficiency of this switching lemma translates into the rate-efficiency of our codes via our non-malleable reduction.Comment: 26 pages, 4 figure

    Fast and Deterministic Constant Factor Approximation Algorithms for LCS Imply New Circuit Lower Bounds

    Get PDF
    The Longest Common Subsequence (LCS) is one of the most basic similarity measures and it captures important applications in bioinformatics and text analysis. Following the SETH-based nearly-quadratic time lower bounds for LCS from recent years, it is a major open problem to understand the complexity of approximate LCS. In the last ITCS [AB17] drew an interesting connection between this problem and the area of circuit complexity: they proved that approximation algorithms for LCS in deterministic truly-subquadratic time imply new circuit lower bounds (E^NP does not have non-uniform linear-size Valiant Series Parallel circuits). In this work, we strengthen this connection between approximate LCS and circuit complexity by applying the Distributed PCP framework of [ARW17]. We obtain a reduction that holds against much larger approximation factors (super-constant versus 1+o(1)), yields a lower bound for a larger class of circuits (linear-size NC^1), and is also easier to analyze

    Optimal Single-Choice Prophet Inequalities from Samples

    Get PDF
    We study the single-choice Prophet Inequality problem when the gambler is given access to samples. We show that the optimal competitive ratio of 1/21/2 can be achieved with a single sample from each distribution. When the distributions are identical, we show that for any constant Δ>0\varepsilon > 0, O(n)O(n) samples from the distribution suffice to achieve the optimal competitive ratio (≈0.745\approx 0.745) within (1+Δ)(1+\varepsilon), resolving an open problem of Correa, D\"utting, Fischer, and Schewior.Comment: Appears in Innovations in Theoretical Computer Science (ITCS) 202

    Near-Quadratic Lower Bounds for Two-Pass Graph Streaming Algorithms

    Full text link
    We prove that any two-pass graph streaming algorithm for the ss-tt reachability problem in nn-vertex directed graphs requires near-quadratic space of n2−o(1)n^{2-o(1)} bits. As a corollary, we also obtain near-quadratic space lower bounds for several other fundamental problems including maximum bipartite matching and (approximate) shortest path in undirected graphs. Our results collectively imply that a wide range of graph problems admit essentially no non-trivial streaming algorithm even when two passes over the input is allowed. Prior to our work, such impossibility results were only known for single-pass streaming algorithms, and the best two-pass lower bounds only ruled out o(n7/6)o(n^{7/6}) space algorithms, leaving open a large gap between (trivial) upper bounds and lower bounds

    Fast Reed-Solomon Interactive Oracle Proofs of Proximity

    Get PDF
    The family of Reed-Solomon (RS) codes plays a prominent role in the construction of quasilinear probabilistically checkable proofs (PCPs) and interactive oracle proofs (IOPs) with perfect zero knowledge and polylogarithmic verifiers. The large concrete computational complexity required to prove membership in RS codes is one of the biggest obstacles to deploying such PCP/IOP systems in practice. To advance on this problem we present a new interactive oracle proof of proximity (IOPP) for RS codes; we call it the Fast RS IOPP (FRI) because (i) it resembles the ubiquitous Fast Fourier Transform (FFT) and (ii) the arithmetic complexity of its prover is strictly linear and that of the verifier is strictly logarithmic (in comparison, FFT arithmetic complexity is quasi-linear but not strictly linear). Prior RS IOPPs and PCPs of proximity (PCPPs) required super-linear proving time even for polynomially large query complexity. For codes of block-length N, the arithmetic complexity of the (interactive) FRI prover is less than 6 * N, while the (interactive) FRI verifier has arithmetic complexity <= 21 * log N, query complexity 2 * log N and constant soundness - words that are delta-far from the code are rejected with probability min{delta * (1-o(1)),delta_0} where delta_0 is a positive constant that depends mainly on the code rate. The particular combination of query complexity and soundness obtained by FRI is better than that of the quasilinear PCPP of [Ben-Sasson and Sudan, SICOMP 2008], even with the tighter soundness analysis of [Ben-Sasson et al., STOC 2013; ECCC 2016]; consequently, FRI is likely to facilitate better concretely efficient zero knowledge proof and argument systems. Previous concretely efficient PCPPs and IOPPs suffered a constant multiplicative factor loss in soundness with each round of "proof composition" and thus used at most O(log log N) rounds. We show that when delta is smaller than the unique decoding radius of the code, FRI suffers only a negligible additive loss in soundness. This observation allows us to increase the number of "proof composition" rounds to Theta(log N) and thereby reduce prover and verifier running time for fixed soundness

    Complexity Theory

    Get PDF
    Computational Complexity Theory is the mathematical study of the intrinsic power and limitations of computational resources like time, space, or randomness. The current workshop focused on recent developments in various sub-areas including arithmetic complexity, Boolean complexity, communication complexity, cryptography, probabilistic proof systems, pseudorandomness, and quantum computation. Many of the developments are related to diverse mathematical ïŹelds such as algebraic geometry, combinatorial number theory, probability theory, representation theory, and the theory of error-correcting codes

    Parameterized (Modular) Counting and Cayley Graph Expanders

    Get PDF
    We study the problem #EdgeSub(?) of counting k-edge subgraphs satisfying a given graph property ? in a large host graph G. Building upon the breakthrough result of Curticapean, Dell and Marx (STOC 17), we express the number of such subgraphs as a finite linear combination of graph homomorphism counts and derive the complexity of computing this number by studying its coefficients. Our approach relies on novel constructions of low-degree Cayley graph expanders of p-groups, which might be of independent interest. The properties of those expanders allow us to analyse the coefficients in the aforementioned linear combinations over the field ?_p which gives us significantly more control over the cancellation behaviour of the coefficients. Our main result is an exhaustive and fine-grained complexity classification of #EdgeSub(?) for minor-closed properties ?, closing the missing gap in previous work by Roth, Schmitt and Wellnitz (ICALP 21). Additionally, we observe that our methods also apply to modular counting. Among others, we obtain novel intractability results for the problems of counting k-forests and matroid bases modulo a prime p. Furthermore, from an algorithmic point of view, we construct algorithms for the problems of counting k-paths and k-cycles modulo 2 that outperform the best known algorithms for their non-modular counterparts. In the course of our investigations we also provide an exhaustive parameterized complexity classification for the problem of counting graph homomorphisms modulo a prime p
    • 

    corecore