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Abstract
The family of Reed-Solomon (RS) codes plays a prominent role in the construction of quasilinear
probabilistically checkable proofs (PCPs) and interactive oracle proofs (IOPs) with perfect zero
knowledge and polylogarithmic verifiers. The large concrete computational complexity required
to prove membership in RS codes is one of the biggest obstacles to deploying such PCP/IOP
systems in practice.

To advance on this problem we present a new interactive oracle proof of proximity (IOPP) for
RS codes; we call it the Fast RS IOPP (FRI) because (i) it resembles the ubiquitous Fast Fourier
Transform (FFT) and (ii) the arithmetic complexity of its prover is strictly linear and that of the
verifier is strictly logarithmic (in comparison, FFT arithmetic complexity is quasi-linear but not
strictly linear). Prior RS IOPPs and PCPs of proximity (PCPPs) required super-linear proving
time even for polynomially large query complexity.

For codes of block-length N , the arithmetic complexity of the (interactive) FRI prover is less
than 6 · N , while the (interactive) FRI verifier has arithmetic complexity ≤ 21 · logN , query
complexity 2 · logN and constant soundness – words that are δ-far from the code are rejected
with probability min {δ · (1− o(1)), δ0} where δ0 is a positive constant that depends mainly on
the code rate. The particular combination of query complexity and soundness obtained by FRI is
better than that of the quasilinear PCPP of [Ben-Sasson and Sudan, SICOMP 2008], even with
the tighter soundness analysis of [Ben-Sasson et al., STOC 2013; ECCC 2016]; consequently, FRI
is likely to facilitate better concretely efficient zero knowledge proof and argument systems.

Previous concretely efficient PCPPs and IOPPs suffered a constant multiplicative factor loss
in soundness with each round of “proof composition” and thus used at most O(log logN) rounds.
We show that when δ is smaller than the unique decoding radius of the code, FRI suffers only a
negligible additive loss in soundness. This observation allows us to increase the number of “proof
composition” rounds to Θ(logN) and thereby reduce prover and verifier running time for fixed
soundness.
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1 Introduction

The family of Reed-Solomon (RS) codes is a fundamental object of study in algebraic coding
theory and theoretical computer science [56]. For an evaluation set S of N elements in a
finite field F and a rate parameter ρ ∈ (0, 1], the code RS[F, S, ρ] is the space of functions
f : S → F that are evaluations of polynomials of degree d < ρN [56]. The RS proximity
problem assumes a verifier has oracle access to f : S → F, and asks that verifier to distinguish,
with “large” confidence and “small” query complexity, between the case that f is a codeword
of RS[F, S, ρ] and the case that f is δ-far in relative Hamming distance from all codewords.
This problem has been addressed in several different computational models (surveyed next
and summarized in Table 1), and is also the focus of this paper.

RS proximity testing: When no additional data is provided to the verifier, the RS
proximity problem is commonly called a testing problem, and has been first defined and
addressed by Rubinfeld and Sudan in [58] (cf. [32]). In this case, one can see that d + 1
queries are necessary and sufficient to solve the problem: codewords are accepted by their
tester with probability 1 whereas functions that are δ-far from the code are rejected with
probability ≥ δ. Since no additional information is provided to the verifier in this model, we
may say that a prover attempting to convince the verifier that f ∈ RS[F, S, ρ] spends zero
computational effort, zero rounds of interaction and produces a proof of length zero.

RS proximity verification – PCPP model: Probabilistically checkable proofs of proximity
(PCPP) [21, 30] relax the testing problem to a setting in which the verifier is given oracle
access also to an auxiliary proof, called a PCPP and denoted π. This PCPP is produced by
the prover, which is given f ∈ RS[F, S, ρ] as input. The time required to produce π is the
prover complexity and |π| is called the proof length1; similarly, verifier complexity is the total
time required to generate queries and check query-answers. The techniques used to prove
the celebrated PCP Theorem [2, 3] also show that the proximity problem can be solved with
constant query complexity and proof length and prover complexity NO(1), or with proof
length N1+ε and query complexity (logN)O(1/ε) [5]. The current state of the art in the
PCPP model gives proofs of length Õ(N) 4= N · logO(1) N with constant query complexity
[23, 28] and prover complexity Õ(N) [16]; verifier complexity is poly logN [20, 50].

RS proximity verification – IOPP model: Interactive oracle proofs of proximity (IOPP),
formally introduced in [13] and, independently, in [57] (under the name “probabilistically
checkable interactive proofs of proximity”), generalize IPs, PCPs and interactive PCPs
(IPCP) [42]. As in an IP and IPCP, several rounds of interaction are used in which the prover
sends messages π1, π2, . . . , πr in response to successive verifier messages. As in a PCP and

1 Typically π is a sequence of elements in F. Therefore, proof length is measured over the alphabet F.

http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.14
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Table 1 Comparison of RS proximity protocols. For concreteness, all results are stated for binary
additive RS codes with rate ρ = 1/8 evaluated over a sufficiently large set S, |S| = N satisfying
N/|F| < 0.001 with proximity parameter δ < δ0 (cf. Theorem 2) and soundness at least 0.99δ; i.e.,
the rejection probability of δ-far words is at least 0.99δ for δ < δ0 (in particular, smaller δ leads to
smaller soundness). Exponents for the 4th row taken from [16]; the various exponents c in the 5th
and 6th row have not been estimated in prior works but are greater than the respective exponents
in the 4th row.

prover
comp.

proof
length

verifier
comp.

query
comp.

round
comp.

1. Testing [58] 0 0 Õ(ρN) ρN 0
2. PCP [2, 3] NO(1) NO(1) NO(1) O

(
1
δ

)
1

3. PCP [6, 5] N1+ε N1+ε 1
δ

logO(1/ε) N 1
δ

logO(1/ε) N 1
4. PCPP [23, 21, 16] ≥ N log1.5 N ≥ N log1.5 N ≥ 1

δ
log5.8 N 1

δ
log5.8 N 1

5. PCPP [28, 50] N logcN N logcN 1
δ

logcN O
(

1
δ

)
1

6. IOPP [12, 9] N logcN > 4 ·N 1
δ

logcN O
(

1
δ

)
log logN

7. This work < 6 ·N < N
3 ≤ 21 · logN 2 logN logN

2

IPCP, the verifier is not required to read prover messages in entirety but rather may query
them at random locations (in an IPCP, verifier must read the full messages π2, . . . but may
query π1 randomly); the query complexity is the total number of entries read from f and
π1, π2, . . . , πr. The prover is provided with f ∈ RS[F, S, ρ] as input and prover complexity is
the total time required to produce all (prover) messages2, while proof length is generalized
from the PCPP setting to the IOPP setting and defined as |π1|+ . . .+ |πr|. IOPPs can be
used to “replace” PCPP proof composition with more rounds of interaction, and thereby
reduce proof length and prover complexity without compromising soundness (see Section 1.3).
In particular, the IOPP version of the aforementioned PCPP constructions reduces proof
length to O(N) with no change to soundness and/or query complexity [8, 13]. In spite of
the shorter proof length, prover complexity in prior works was Θ(Npoly logN) due to a
limitation on the number of proof-composition rounds, explained in Section 2.1.

1.1 Main results
We present a new IOPP for RS codes, called the Fast RS IOPP (FRI) because of its
resemblance to the Fast Fourier Transform (FFT) [26]; its analysis relies on the quasi-linear
RS-PCPP [23] (see Section 2.1). FRI is the first RS-IOPP to have (i) strictly linear arithmetic
complexity for the prover with (ii) strictly logarithmic arithmetic complexity for the verifier
and (iii) constant soundness. We start by recalling IOPP systems as described in [12, Section
3.2], after informally summarizing the main complexity parameters of IOPs (introduced and
discussed thoroughly in [19]).

1.1.1 IOP
An Interactive Oracle Proof (IOP) system S is defined by a pair of interactive randomized
algorithms S = (P,V), where P denotes the prover and V the verifier. On input x of length
N , the number of rounds of interaction is denoted by r(N) and called the round complexity
of the system. During a single round the prover sends a message to which the verifier is

2 Notice that prover complexity does not include the time needed to produce f .

ICALP 2018
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given oracle access, and the verifier responds with a message to the prover. The proof length,
denoted `(N), is the sum of lengths of all messages sent by the prover. The query complexity
of the protocol, denoted q(N), is the number of entries read by V from the various prover
messages; since the verifier has oracle access to those messages, typically q(N) � `(N).
(For the FRI system q(N) = O(log `(N))). We denote by 〈P↔ V〉(x) the output of V after
interacting with P on input x; this output is either accept or reject. An IOP is said to be
transparent (or have public randomness) if all messages sent from the verifier are public
random coins and all queries are determined by public coins, which are broadcast to the
prover (such protocols are also known as Arthur-Merlin protocols [4]).

1.1.2 IOPP
As its name suggests, an IOP of proximity (IOPP) is the natural generalization of a PCP
of Proximity (PCPP) to the IOP model. An IOPP for a family of codes3 C is a pair (P,V)
of randomized algorithms, called prover and verifier, respectively. Both parties receive
as common input a specification of a code C ∈ C which we view as a set of functions
C = {f : S → Σ} for a finite set S and alphabet Σ. We also assume that the verifier has
oracle access to a function f (0) : S → Σ and that the prover receives the same function as
explicit input. The number of rounds of interaction, or round complexity, is denoted by r,
query complexity is denoted by q.

I Definition 1 (Interactive Oracle Proof of Proximity (IOPP) [12]). An r-round Interactive
Oracle Proof of Proximity (IOPP) S = (P,V) is a (r + 1)-round IOP. We say S is an (r-round)
IOPP for the error correcting code C = {f : S → Σ} with soundness s− : (0, 1]→ [0, 1] with
respect to distance measure ∆, if the following conditions hold:

First message format: the first prover message, denoted f (0), is a purported codeword
of C, i.e., f (0) : S → Σ
Completeness: Pr

[
〈P↔ V〉 = accept | ∆

(
f (0), C

)
= 0
]

= 1; this means that for every
f (0) ∈ C the protocol terminates in acceptance.
Soundness: For any P∗, Pr

[
〈P∗ ↔ V〉 = reject | ∆

(
f (0), C

)
= δ
]
≥ s−(δ)

The sum of lengths of all prover messages, except for f (0), is the IOPP proof length; the time
required to generate all messages except for f (0) is the prover complexity. The IOPP query
complexity is the total number of queries to all messages, including f (0) and the decision
complexity is the computational complexity (see following remark) required by the verifier to
reach its verdict, once the queries and query answers are provided as inputs.

I Remark (Computational model for decision complexity). The computational model in which
decision complexity is computed is left undefined. A natural default is to use boolean circuit
complexity. However, later we study families of linear codes in which each IOPP query
is answered by a field element. The natural computational model in this case is that of
arithmetic complexity, i.e., for a linear code C over a finite field F, it is the number of
arithmetic operations over F made by the verifier to reach its decision.

1.1.3 Main Theorem
The finite field of size q is denoted here by Fq; when q is clear from context we omit it. A
field is called binary if q = 2m,m ∈ N. A subset S of a binary field is an additive coset
if it is a coset of a subgroup of the additive group F+, i.e., if S is an additive shift of an

3 The definition of an IOPP can be generalized to arbitrary languages; we study an IOPP for a specific
family of codes so prefer to limit the scope of our definition accordingly.
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F2-linear space contained in Fq. The binary additive RS code family is the collection of codes
RS[F, S, ρ] where F is a binary field and S an additive coset. This family of codes is one
for which quasilinear PCPP were defined in [23], and our main theorem is stated for it (see
Table 1).

I Theorem 2 (Main – FRI properties). The binary additive RS code family of rate ρ =
2−R,R ≥ 2,R ∈ N has an IOPP (FRI) with the following properties, where N = |S|
denotes block-length (which equals the prover-side input length for a fixed RS[F, S, ρ] code)
and ρN > 16:

Prover Complexity is less than 6N arithmetic operations in F; proof length is less than
N/3 field elements and round complexity is at most logN

2 ;
Verifier complexity Query complexity is 2 logN ; the verifier decision is computed using
at most 21 logN arithmetic operations over F;
Soundness: There exists δ0 ≥ 1

4 (1− 3ρ)− 1√
N

such that every f that is δ-far in relative
Hamming distance from the code, is rejected with probability at least min {δ, δ0} − 3N

|F| ;
Parallelization: Each prover-message can be computed in O(1) time on a Parallel
Random Access Machine (PRAM) with common read and exclusive write (CREW),
assuming a single F arithmetic operation takes unit time.

I Remark (Space complexity). Given the ith prover message as input, each symbol of the
(i+ 1)th prover message can be computed with space complexity O(log |F|), i.e., the space
required to hold a constant number of field elements.

This follows immediately from the fact that each prover message is computed in O(1)
arithmetic operations on a parallel machine.

Generalizing Theorem 2 to arbitrary rate ρ ∈ (0, 1] can be done as described in [23,
Proposition 6.13] (cf. remark 6.2 there); this leads to slightly larger constants in the prover
and verifier complexity. For practical applications like ZK-IOPs [14, 12], rates of the form
stated in the theorem above suffice.

I Remark (FRI for “smooth codes”). We call a multiplicative group H ⊂ Fq smooth if its
order (|H|) is 2k for k ∈ N. The family of smooth RS codes of rate ρ is the set of RS[Fq, H, ρ]
codes in which H is a smooth multiplicative group. Theorem 2 holds also with respect to the
family of smooth RS codes, with somewhat smaller constants than 6 and 21 for the prover
and verifier arithmetic complexity (see full version of this paper [10]); see Section 2.1 for a
high-level overview of the smooth case and full version of this paper [10] for more details
on modifying the protocol to this case. The protocol can be further generalized to groups
of order ck for constant c (perhaps with different arithmetic complexity constants), details
omitted.

The soundness bound of Theorem 2 is nearly tight for δ ≤ δ0. We conjecture that a
similar bound holds for all δ. See full version of this paper [10] for a more detailed version of
the conjecture that implies it, and a discussion of Equation (1)

I Conjecture 3. The soundness limit δ0 of Theorem 2 approaches 1− ρ. Specifically, for
all δ ≤ 1− ρ, the rejection probability of any f that is δ-far from the RS-code of rate ρ and
block-length N over F, is at least

δ − 2 logN√
|F|

. (1)
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1.2 Applications to transparent zero knowledge implementations

Prover-efficient IOPPs of the kind presented here are crucially needed to facilitate practical
ZK argument systems that are (i) transparent (public randomness), (ii) universal – apply
to any computation – and (iii) (doubly) scalable – have quasi-linear proving time and poly-
logarithmic verification time, simultaneously. In a follow-up paper we use the FRI protocol
(among other things) to realize in code the first ZK system (called a ZK-STARK there) that
achieves the three properties listed above [11]. The concrete efficiency of that protocol,
which relies to a large degree on the efficiency of the FRI protocol presented here, allows
one to construct ZK arguments of knowledge (ZK-ARKs) for computational statements,
where verifying the computational integrity of the statement using the ZK-STARK verifier is
stricly faster than naïve verification via re-exectution, and the communication compelxity
is strictly smaller than the size of the non-deterministic witness supporting the claim. The
ZK-STARK prover is ≈ 50× faster than the previous state-of-the-art transparent system,
code-named SCI [7] (that system does not have ZK), and ≈ 10× faster than state-of-the-art
ZK-SNARKs [17] (which are not transparent); see [11, Figure 5] for details.

In the remainder of this section we explain, briefly, how our system could be incorporated
in a larger practical ZK system (like the ZK-STARK mentioned earlier). In Section 1.3
we discuss the range of block-lengths that are relevant in applications, and the resulting
communication complexity arising from their use.

The seminal works of Babai et al. [6, 5] showed that verifying the correctness of an
arbitrary nondeterministic computation running for T (N) steps can be achieved by a verifier
running in time poly(N, log T (N)) in the PCP model. Kilian’s construction transforms
such PCPs into a 4-round ZK argument in which the total communication complexity and
verifier running time are bounded by poly log T (N) [43] (cf. [44, 40, 41]), assuming a family of
collision-resistant hash functions. Micali further compressed this system into a non-interactive
computationally sound (CS) proof system, assuming both prover and verifier share access to
the same random function [48]; this is typically realized in practice using a hash function like
SHA2 and relying on the Fiat-Shamir heuristic [31]. No implementation of these marvelous
techniques has appeared during the quarter century that has passed since they were first
published. This is explained, in part, by concerns about the efficiency of these constructions
for concrete programs and run-times. Among the numerous components involved in building
these systems, a significant computational bottleneck is that of computing solutions to the
Reed-Muller (RM) proximity problem, also known as “low degree testing” of multivariate
polynomials.

Quasilinear PCPs based on RS codes have prover complexity that is asymptotically
more efficient than RM codes which lead to PCPs with super-quasi-linear length, and a
number of works have explored the concrete efficiency of these RS-based protocols [16, 8].
Recently, Ben-Sasson et al. suggested an IOP with perfect zero knowledge (PZK) for NP
[14], later extended to NEXP [12], in which prover complexity is quasilinear and verifier
complexity is poly(N, log T (N)); this PZK-IOP can be compiled, using Kilian’s technique,
into an interactive ZK argument with succinct4 communication complexity, or, using Micali’s
technique (cf. [61]), into a non-interactive random oracle proof (NIROP) as defined in
[19]. In light of this, the practicality of Kilian- and Micali-type ZK argument systems with
polylogarithmic verifiers should be reconsidered.

To add motivation, a number of interesting practical succinct argument systems (with and
without zero-knowledge) have been reported recently (see [62] for an excellent updated survey

4 Here, as in past works, “succinct” is synonymous to “polylogarithmic”.



E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev 14:7

of the subject and [7] for a comparison of PCP/IOP-based solutions to other approaches). A
particular system based on the quadratic span programs (QSP) of Gennaro et al. [33] (cf.
[17]) has been used by Ben-Sasson et al. to build a decentralized anonymous payment (DAP)
system called “Zerocash” [15], later deployed as a practical commercial crypto-currency
called “Zcash” [52, 38]. However, the QSP based ZK system used in Zerocash/Zcash, called
a “preprocessing SNARK” [24], requires a setup phase that involves private randomness;
additionally, it relies on rather strong cryptographic “knowledge of exponent” assumptions,
and quantum computers can create pseudo-proofs of falsities in polynomial time for such
systems [60] (cf. [54]). In contrast, the aforementioned succinct interactive and non-interactive
(NIROP) systems based on quasilinear PZK-IOPs require only public randomness for their
setup, and the only cryptographic assumption required to realize them5 is the existence
of a family of collision resistant hash functions [43], in particular, they are not known to
be breakable by quantum computers in polynomial time. Therefore, there is great interest
in understanding whether succinct (interactive and non-interactive) ZK argument systems
which require only public randomness (and resistant to known polynomial time quantum
algorithms) can be practically built and used, say, by Zcash. Ben-Sasson et al. [7] describe
such an implemented system, called “succinct computational integrity (SCI)” which is not
ZK and has comparatively large communication complexity6. As mentioned above, the
RS proximity solution described in Theorem 2 is already used within an implemented ZK
system [11].

1.3 Concrete degree, communication, and round complexity
In this section we briefly discuss the “size” of RS codes that would be needed for various
practical applications and the effect of logarithmic round complexity on security. Due to
space limitations, and because the focus of this paper is theoretical (within the information
theoretic IOP model), we omit implementation details and point the interested reader to full
version of this paper [10]; cf. [7, 14].

The message length of RS codes of degree d = ρ · N − 1 is precisely d, so we start
by recounting the range of degrees (message sizes) that seem practically relevant. Later
we calculate the communication complexity arising from using the FRI protocol to argue
proximity to codes of practically relevant block-lengths, and end by discussing the practical
implications of an IOPP with log d rounds. Throughout this section ρ = 1/8 (N = 8 · d)
because this setting is used in prior [7] and future [11] works.

1.3.1 RS block-length of systems realized in code
The recently realized IOP-based argument system called SCI (“Scalable Computational
Integrity”) reduces computational statements, like “the output of program P on input x
equals y after T steps” to a pair of RS-proximity testing problems. SCI uses an IOP version
of the quasilinear PCP of [23], which could be replaced with FRI. Programs bench-marked by
SCI were executed on a simple MIPS-like virtual machine called TinyRAM [18]. Generally
speaking, RS degree increases in size with the number of TinyRAM machine cycles T .

5 To reach a (non-interactive) computationally sound (CS) proof [49], the “random oracle” is assumed,
and realized in practice by relying on the Fiat-Shamir heuristic. In particular, this approach as well is
not known to be breakable by quantum computers in polynomial time.

6 Communication complexity in SCI is on the order of tens of megabytes long, compared with QSP based
zk-SNARKs that are shorter than 300 Bytes.
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B. CC in KB as function of degree

Figure 1 A. Degree of RS code arising from the exhaustive subset sum program [7, Appendix
C], as a function of the number of TinyRAM machine cycles. B. Communication complexity (CC)
as a function of degree, using λ = 160 bits, field size 264, soundness error ε = 2−80, and maximal
proximity parameter δ = 1− ρ. The higher (red) graph corresponds to proven soundness (see full
version of this paper [10]) and the lower (blue) corresponds to conjectured soundness (Conjecture 3).
Both plots use code rate ρ = 1/8.

Figure 1.A plots the degree d as a function of T for a specific simple program, showing that
d ≈ T · 221.

For crypto-currency applications requiring zero knowledge, block-length will be dominated
by the type of cryptographic primitives required, and the number of times they are invoked
within a computational statement. For instance, ZK contingent payments [47] require a
single hash, and Zerocash’s Pour circuit [15] uses 64 hash invocations, leading in that
work to RS codewords (over a prime field) with degree (=number of gates) approximately
222. Our new work in progress shows that a single hash invocation requires RS block-
length between 212 = 4096 (for a Davies–Meyer hash based on AES128) to 219 (for SHA2),
meaning that degrees in the range d ∈ [212, 226] are relevant for existing crypto-currency
(ZK) applications [11].

1.3.2 Estimated communication complexity and argument length
The practical realization of interactive proof systems (see Section 1.2) into interactive
argument systems [43] and CS proofs [49] can be extended to the IOPP model, in which
multiple rounds of interaction are used [19]. Using Kilian’s scheme [43], during the ith round
the prover sends the root root(i) of a Merkle hash tree Tree(i) whose leaves are labeled by
entries of f (i), and the verifier replies with randomness. Using Micali’s scheme [49], the
(non-interactive) prover queries the random oracle with root(i) to “simulate” the verifier’s
ith message. When verifier queries to f (i) are answered by the prover, each answer is
accompanied by an authentication path (AP) that shows the query answer is consistent
with root(i). Let CCδ,ε(N) denote the prover-side communication complexity (in bits) of an
argument/CS proof realized by applying the Kilian/Micali scheme to FRI, where δ is the
proximity parameter and ε is the error bound, i.e., words that are δ-far from the RS code
are rejected with probability < ε. Then

CCδ,ε(N) = qδ,ε · log |F|+ APδ,ε · λ (2)

where qδ,ε denotes total query complexity in the IOP model to reach soundness ≥ 1− ε for
proximity parameter δ, APδ,ε is the number of nodes in the sub-forest of the Merkle trees
Tree(0), . . . ,Tree(r) induced by all authentication paths, and λ is the number of output bits of
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the hash function used to construct the Merkle trees. In our preliminary results [11] we use
λ = 160, ε = 2−80, |F| = 264 and ρ = 1/8. Figure 1.B plots the communication complexity
for this setting under the proven soundness of Theorem 2 and the (better) soundness of
Conjecture 3. In both cases we use maximally large distance δ = 1 − ρ = 7/8 to show
the concrete difference in communication complexity between the proven and conjectured
soundness. This plot also motivates the quest for improving the soundness analysis of
Theorem 2.

1.3.3 Round complexity considerations
Assuming that a crypto-currency block-chain serves as a time-stamping service for public
messages and a public beacon of randomness, one may use block-chains to simulate verifier
messages. Several block-chains (including Zcash) generate blocks every 2.5 minutes, which
means that a FRI proof for d = 2k will take roughly k · 5

4 minutes to complete, or less than 1
hour7 for d < 240.

For fixed d, the round complexity stated in Theorem 2 is 1
2 log d, but the more refined

version (see [10]) gives a trade-off between query (q) and round (r) complexity, of the
form r = log d/ log q, allowing further reduction in round complexity in exchange for larger
communication complexity.

Finally, the Random Oracle model used by Micali to “compress” interactive argument
systems (like Kilian’s) into CS proofs applies equally to multi-round IOPs like FRI, with
negligible impact on argument length; see [19, Remark 1.6] for a detailed discussion. Prac-
tically speaking, those who treat hash functions like SHA2 as realizations of the RO model
(a position taken by Bitcoin and other crypto-currency miners), might feel comfortable
compiling IOP protocols like FRI into succinct non-interactive arguments, as described in
[19].

1.4 Related works
High-rate LTCs Locally testable codes (LTCs) are error correcting codes for which – by
definition – prover complexity and proof length equal 0 (as stated for the case of RS codes
by Rubinfeld and Sudan [58]); in other words, when focusing solely on prover complexity,
LTCs offer an optimal solution (zero complexity). Nevertheless, as discussed in Section 1.2,
the specific question of small prover complexity for RS codes is highly relevant because of
the its applications to practical ZK-IOPs.

Classical “direct” constructions of LTCs, such as the Hadamard code studied by Blum,
Luby and Rubinfeld [25] and the logN -variate RM codes used in early PCP constructions
[1, 5] have sub-constant rate, thus lead to long proofs and large PCP prover complexity.

More recently, there has been remarkable progress on constructing locally testable codes
(LTCs) with small query complexity and large soundness. Kopparty et al. obtained such codes
with rate approaching 1 [45] and Gopi et al. presented LTCs that reach the Gilbert Varshamov
bound [36]. These LTCs have super-polylogarithmic query complexity. Additionally, in
contrast to RS codes, we are not aware of PCP constructions with similar parameters nor do
we know how to convert these LTCs into PCPs.

PCPs and IOPs: A number of recent works have considered PCP constructions with
small proof length and query complexity. In addition to the aforementioned works on quasi-
linear PCPs, Moshkovitz and Raz constructed PCPs with optimally small query complexity

7 Compare this with Bitcoin’s “best practice” of waiting 1 hour for confirmations, or 3 days required to
clear standard checks.
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(measured in bits) and proofs of length N1+o(1) [51], where N denotes the length of the
NP statement (like a 3CNF) for which the PCP is constructed, achieving better soundness
than Hr astad’s result [37]. A different line of works attempts to optimize the bit-length
of PCP proofs; the state of the art, due to Ben-Sasson et al., achieves PCPs of bit-length
O(N) and query complexity N ε [22]. In the IOP model, which generalizes PCPs by allowing
more rounds of interaction, Ben-Sasson et al. presented a 2-round IOP with bit-length
O(N), constant query complexity (measured in bits) and constant soundness [13]. (Prover
arithmetic complexity in all of these systems is super-linear.)

Soundness amplification: A number of results in the PCP literature have suggested
techniques for improving soundness of general PCP constructions, including the parallel
repetition theorem of Raz [55], the gap amplification technique of Dinur [28] and direct-
product testing, introduced by Goldreich and Safra [34] (cf. [29, 39]). These techniques lead
to excellent soundness bounds with small query complexity. The concrete prover complexity
of PCPs and PCPPs associated with these methods has not been studied in prior works but
prover complexity is at least super-linear, and often polynomially large.

Doubly-efficient “proofs for muggles”: A recent line of works, initiated by Goldwasser,
Kalai and Rothblum [35], revisits the IP model which is equivalent to PSPACE [46, 59],
focusing on doubly efficient systems in which the prover runs in polynomial time (as opposed
to polynomial space, as in the aforementioned results) and verifier runs in nearly linear time.
The state of the art along this line is due to Reingold et al. [57], they construct doubly-
efficient IP protocols with a constant number of rounds for a family of languages in P. Prover
complexity in this line of works is at least super-linear, and typically polynomially large and
verifier complexity is super-polylogarithmic, and often super-linear as well (cf. [27, 57]).

2 Overview of the FRI IOPP and its soundness

In this section we consider the task of building an IOPP for a “smooth” RS code (defined
below). We start in Section 2.1 by considering the completeness case, where we describe the
interaction between the verifier and an honest prover attempting to prove membership in
the RS code of a valid codeword f (0). The IOPP protocol is explained in similarity to the
Inverse Fast Fourier Transform (IFFT) [26]. Then, in Section 2.2, we consider the soundness
case, where we assume f (0) is far in relative Hamming distance from the code and need to
prove lower bounds on the verifier’s rejection probability. Soundness analysis is the most
challenging aspect of our work (as it is for all prior PCPP/IOPP works). Our analysis uses
the soundness analysis of the quasilinear RS-PCPP [23] for the case of “large” Hamming
distance (beyond the unique decoding radius of the code), and presents a novel, tighter,
analysis for “small” Hamming distance (below that radius).

2.1 FRI overview and similarity to the Fast Fourier Transform (FFT)
We start by describing the protocol in similarity to the IFFT algorithm; that algorithm
is also related to the quasi-linear PCPP for RS codes of [23], and towards the end of this
section we explain the connection between FRI and that quasi-linear PCPP.

Let ω(0) generate a smooth multiplicative group of order N = 2n (see Remark 1.1.3),
denoted L(0), that is contained in a field F; in signal processing applications ω(0) is a complex
root of unity of order 2n and F is the field of complex numbers (we shall use a different
setting). Assume the prover claims that f (0) : L(0) → F is a member of RS[F, L(0), ρ], i.e., f (0)

is the evaluation of an unknown polynomial P (0)(X) ∈ F[X], deg(P ) < ρ2n; for simplicity we
assume ρ = 2−R and R is a positive integer. The task of the verifier is to distinguish between
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low-degreeness (f (0) ≡ P (0) for some low degree P (0)) and cases where f (0) is far from all
polynomials of degree < ρ2n. Recalling the IFFT, if f (0) ≡ P (0) there exist polynomials
P

(1)
0 , P

(1)
1 ∈ F[Y ] such that max

{
deg

(
P

(1)
0

)
,deg

(
P

(1)
1

)}
< 1

2ρ2n and

∀x ∈ L(0) f (0)(x) = P (0)(x) = P
(1)
0 (x2) + x · P (1)

1 (x2),

or, letting Q(1)(X,Y ) 4= P
(1)
0 (Y ) +X · P (1)

1 (Y ) and defining q(0)(X) 4= X2, we have

P (0)(X) ≡ Q(1)(X,Y ) mod Y − q(0)(X) (3)

where degX
(
Q(1)) < 2 and degY

(
Q(1)) < 1

2ρ2
n. The map x 7→ q(0)(x) is 2-to-1 on L(0)

because q(0)(x) = q(0)(−x), and the output of this map is the multiplicative group generated
by ω(1) =

(
ω(0))2, this group has order 2n−1, denote it by L(1). Moreover, for every x(0) ∈ F

and y ∈ L(1), the value of Q(1) (x(0), y
)
can be computed by querying two entries of f (0)

because degX
(
Q(1)) < 2 (the two entries are the two roots of the polynomial y − q(0)(X)).

Our verifier thus samples x(0) ∈ F uniformly at random and requests the prover to send
as its first oracle a function f (1) : L(1) → F that is supposedly the evaluation of Q(1) (x(0), Y

)
on L(1). Assuming f (0) ∈ RS[F, L(0), ρ], the discussion above shows that f (1) ∈ RS[F, L(1), ρ].
Notice that there exists a 3-query test for the consistency of f (0) and f (1), we call it the
round consistency test:
1. sample a pair of distinct elements s0, s1 ∈ L(0) such that s2

0 = s2
1 = y; in other words,

sample a uniform y ∈ L(1) and let s0, s1 be the two roots of the polynomial y −X2;
2. query f (0)(s0), f (0)(s1) and f (1)(y), denote the query answers by α0, α1 and β, respect-

ively;
3. interpolate the “line” through (s0, α0) and (s1, α1), i.e., find the polynomial p(X) of degree

at most 1 that satisfies p(s0) = α0 and p(s1) = α1; notice p is unique and well-defined
because s0 6= s1;

4. accept if and only if p
(
x(0)) = β and otherwise reject;

Tallying the costs of the first round, the verifier sends a single field element (x(0)) and
the prover responds with a message (oracle) f (1) : L(1) → F evaluated on a domain that is
half the size of L(0); testing the consistency of f (0) and f (1) requires three field elements
per test (repeating the test boosts soundness). We thus reduced a single proximity problem
of size 2n and rate ρ to a single analogous problem of size 2n−1 and same rate. Repeating
the process for r = n − R rounds leads to a function f (r) that is supposedly of constant
degree and evaluated over a domain of constant size 2R, so at this point the prover sends the
single constant that describes the function, and the verifier uses it as f (r) in the last round
consistency test, the one that tests consistency of f (r−1) and f (r).

Applying inductive analysis to all r rounds, if f (0) ∈ RS[F, L(0), ρ] (and the prover is
honest) then all r round consistency tests pass with probability 1 and f (r) is indeed a constant
function. In other words, the protocol we described has perfect completeness.
I Remark (FRI as a “biased” version of quasi-linear RS-PCPP). The quasi-linear PCPP of
[23] is quite similar to FRI, including the degree-reduction (from P (0) to P (1)) obtained
by requesting the prover to evaluate a bivariate polynomial Q(X,Y ) on a collection of
axis-parallel lines. There are two main differences between FRI and that PCPP:
1. the quasilinear PCPP is non-interactive, and thus the prover evaluates Q(1)(X,Y ) on a

large subset of F× F, whereas the FRI protocol uses interaction to reduce proving time,
by requesting the prover to apply recursion only to the axis-parallel lines selected by the
verifier.
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2. the polynomial q(0)(X) used in [23] has degree ≈
√

deg
(
P (0)

)
and thus Q(1)(X,Y ) has

degree ≈
√

deg
(
P (0)

)
in each of its variables. In contrast, the polynomial q(0) used by

FRI has constant degree, and so the degrees of Q(1) are very biased (constant degree in X
vs. deg

(
P (0)) /2 in Y ). This leads to larger recursion depth for FRI but also avoids the

necessity to apply recursive low-degree testing to each of the axes (the X-axis) because
of its constant degree.

2.1.1 Differences between informal and actual protocol
The differences between the informal and formal protocols are mostly technical; we list them
now. The field F is finite and binary, i.e., of characteristic 2; nevertheless the construction and
analysis can be immediately applied to RS codes evaluated over smooth multiplicative groups
(of order 2n), as explained informally above (cf. Remark 1.1.3). In binary fields, the natural
evaluation domains (like L(0), L(1) above) are cosets of additive groups (not multiplicative
ones), i.e, L(i) is an affine shift of a linear space over F2. The map q(0)(X) = X2 is not
2-to-1 on L(0) (in binary fields it is a 1-to-1 map, a Frobenius automorphism of F over F2)
so we use a different polynomial q(0)(X) that is many-to-one on L(0) and such that the set
L(1) =

{
y = q(0)(x) | x ∈ L(0)} is a coset of an additive group, like L(0), but of smaller size

(|L(1)| � |L(0)|); the polynomial q(0) is known as an affine subspace polynomial, belonging to
the class of linearized polynomials. We use q(0) of degree 4 instead of 2 because this reduces
the number of rounds from n to n/2 with no increase in total query complexity; notice that
a similar reduction could be applied in the multiplicative setting by using q(0) = X4 (but
we preferred simplicity to efficiency in the informal exposition above). Finally, the actual
protocol performs all queries only after the prover has sent all of f (1), . . . , f (r). Thus, we
construct a protocol with two phases. The first phase, called the COMMIT phase, involves r
rounds. At the beginning of the ith round the prover has sent oracles f (0), . . . , f (i−1), and
during this (ith) round the verifier samples and sends x(i) and the prover responds by sending
the next oracle f (i). During the second phase, called the QUERY phase, the verifier applies
the round consistency test to all r rounds. To save query complexity and boost soundness,
the query made to L(i) is used to test both consistency of f (i−1) vs. f (i) and consistency of
f (i) vs. f (i+1).

2.2 Soundness analysis – overview
Proof composition is a technique introduced by Arora and Safra [3] in the context of PCPs,
adapted to PCPPs in [21, 30] and optimized for the special case of the RS code in [23].
Informally, it reduces proximity testing problems over a large domain to similar proximity
testing problems over significantly smaller domains. The process reducing f (0) to f (1) above
is a special case of proof composition, and each invocation of it incurs two costs on behalf of
the verifier. The first is the query complexity needed to check consistency of f (0) and f (1)

(the “round consistency test”) and the second is the reduction in distance, which affects the
soundness of the protocol. Assuming f (0) is δ(0)-far from all codewords in relative Hamming
distance, for proof composition to work one should prove that with high probability f (1)

is δ(1)-far from all codewords where δ(1) depends on δ(0); larger values of δ(1) imply higher
(better) soundness and smaller communication complexity. A benefit of the FRI protocol
is that with high probability δ(1) ≥ (1 − o(1))δ(0), i.e., the reduction in distance in our
protocol is negligible. In contrast, prior RS proximity PCPP and IOPP solutions follow the
construction and analysis of [23] which in turn is based on the bivariate testing Theorem of
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Polischuk and Spielman [53] and incur a constant multiplicative loss in distance per round of
proof composition (δ(1) ≤ δ(0)/2). This loss limited the number of proof composition rounds
to ≤ logN and thus required replacing q(0)(X) = X2 with a higher degree polynomial, like
q(0)(X) = X2n/2 . The higher degree of q(0) results in Q(1)(X,Y ) having balanced X- and
Y -degrees, namely

degX
(
Q(1)

)
≈ degY

(
Q(1)

)
≈ 2n/2.

Moving to q(0)(X) of constant degree as in FRI gives a biased RS-IOPP (because
degX(Q(1))� degY (Q(1))). The main benefit of this bias is that one side of the recursive
process (that of X) terminates immediately and consequently removes the constant mul-
tiplicative soundness loss incurred in prior works, replacing it with a negligible additive
loss. More to the point, we show that for δ(0) less than the unique decoding radius of the
code (δ(0) < (1− ρ)/2), with high probability (namely, 1− O(1)

|F| ) the sum of (i) the round
consistency error and (ii) the “new” distance δ(1) is at least as large as the “old” distance δ(0).
This statement is relatively straightforward to prove in case the prover is honest, i.e., when
f (1)(y) = Q(1) (x(0), y

)
for all y ∈ L(1) (in this case there is no round consistency error). The

challenging part of the proof is to show this also holds for non-honest provers and arbitrary
f (1); see full version of this paper [10] for more details.
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