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Abstract
The Longest Common Subsequence (LCS) is one of the most basic similarity measures and
it captures important applications in bioinformatics and text analysis. Following the SETH-
based nearly-quadratic time lower bounds for LCS from recent years [4, 22, 5, 3], it is a major
open problem to understand the complexity of approximate LCS. In the last ITCS [2] drew an
interesting connection between this problem and the area of circuit complexity: they proved that
approximation algorithms for LCS in deterministic truly-subquadratic time imply new circuit
lower bounds (ENP does not have non-uniform linear-size Valiant Series Parallel circuits).

In this work, we strengthen this connection between approximate LCS and circuit complexity
by applying the Distributed PCP framework of [6]. We obtain a reduction that holds against
much larger approximation factors (super-constant, as opposed to 1 + o(1) in [2]), yields a lower
bound for a larger class of circuits (linear-size NC1), and is also easier to analyze.
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1 Introduction

The Longest Common Substring (LCS) is a fundamental similarity measure between two
strings with many important applications to data comparison. It is an elegant abstraction
of the core task in sequence alignment tasks in bioinformatics. Given two strings of length
N , there is a classical dynamic programming algorithm that computes the LCS in time
O(N2). The quadratic time requirement is prohibitive for very long strings (e.g. genomic
sequences), and obtaining a substantially faster algorithm is a longstanding and central
open question. In practice, biologists use heuristics such as BLAST to solve it in near-linear
time but without any guarantees on the optimality of the solution [8]. Interesting results
from recent years [10, 4, 22, 5] showed that under certain complexity assumptions such as
“SETH”1, there are no truly subquadratic algorithms for this problem.

∗ Research supported by a Rabin Postdoctoral Fellowship.
1 The Strong Exponential Time Hypothesis (SETH) [35] postulates that we cannot solve k-SAT in

O((2 − ε)n) time, for some ε > 0 independent of and for all constant k.
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35:2 Deterministic Approx. Algorithms for LCS Imply Circuit Lower Bounds

For many applications, we would be happy to settle for an approximate solution if it
could be found in truly subquadratic (ideally near-linear) time. In contrast to the exact
variant, the complexity of approximating the LCS is poorly understood. On the algorithmic
side, for strings over alphabet Σ there is a trivial 1/|Σ|-approximation algorithm (using only
the symbol that appears the most in both strings). On the complexity sides, the known
reductions from SETH tell us very little about hardness of approximation. There are two
main obstacles to obtaining SETH-based hardness of approximation:
The PCP blowup. The PCP Theorem, which is a crucial step in most NP-hardness of

approximation results, can be seen as reducing the satisfiability of a CNF ϕ to approximate
satisfiability of a new CNF ϕ′. If ϕ has n variables, the most efficient PCP constructions
construct ϕ′ with n′ = n · polylog(n) variables [28]. Obtaining a linear dependence is a
major open problem (e.g. [17, 29, 41, 40, 24]).
In contrast, the known reductions from SETH to LCS begin with a CNF over n variables,
and transform it to a hard instance of LCS of string length N ≈ 2n/2. Now solving LCS
faster than N2 ≈ 2n time implies new algorithms for SAT. Even if we had a fantastic
PCP of blowup n′ = 10n, if we begin the reduction with the hard-to-approximate CNF
ϕ′, we would get strings of length N ′ ≈ 2n′/2 ≈ 25n.
The PCP blowup obstacle is common to almost all known reductions from SETH. For
several other problems, this obstacle was addressed by the distributed PCP2 framework
in [6]. However, this technique does not yet suffice for hardness of approximation of LCS,
in part due to the “contribution of unsatisfying assignments” obstacle described next.

Contribution of unsatisfying assignments. The second obstacle is more specific to LCS
(and a few other string similarity measures like Edit Distance and Dynamic Time Warping
Distance). The reduction from SETH proceeds by concatenating approximately N ≈ 2n/2

gadgets, one for each partial assignment to half of the variables. On a yes instance,
matching the two gadgets that correspond to the satisfying assignment gives a higher
contribution to the LCS than matching any two non-satisfying partial assignments. How
much more can the satisfying pair contribute to the LCS compared to a non-satisfying
pair? The largest gap we can hope to construct is a |Σ|-factor, because of the trivial
1/|Σ|-approximation algorithm. If we want to keep the alphabet size small (|Σ| = No(1)),
this is still negligible compared to the contribution from approximately N (disjoint) pairs
of non-satisfying partial assignments.
In short, an inherent limitation of all known reduction techniques is that the multiplicative
approximation of the LCS in the resulting instances can be obtained from an additive
approximation of the fraction of satisfying assignments. The latter can be computed
easily by sampling a small number of uniformly random assignments.
In the last ITCS, [2] drew an interesting connection between this problem and classical
questions on circuit lower bounds. The authors observed that designing a determin-
istic algorithm that can approximate the number of satisfying assignment to formulas
(that are slightly more complex than CNFs) is a challenging task with connections to
pseudorandomness, and so this barrier can be circumvented, in a certain sense, if we
restrict the attention to deterministic approximation algorithms. In particular, they show
that if LCS admits a deterministic truly-subquadratic approximation algorithm, then
certain long sought-after circuit lower bounds would be implied. However, to obtain such
consequences, one would need to design a very good (1 + o(1)) approximation algorithms
for LCS.

2 The term distributed PCP was first used by Drucker [30], but in a completely different context.
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Given the above two, it is natural to ask whether we can combine the techniques of [2]
and [6] to obtain stronger inapproximability for LCS in deterministic truly subquadratic time.
In this paper we show that this is indeed the case, and in a strong sense: using the distributed
PCP framework from [6], we can replace the not-even-1.001 hardness of approximation factor
from [2] with superconstant factors.

Additionally, using distributed PCPs also allows us to obtain stronger circuit lower bounds
than [2]. The circuit complexity consequence of deterministic and fast approximate LCS
algorithms established by [2] was that ENP does not have non-uniform linear-size Valiant
Series Parallel (VSP) circuits. In the 1970’s Valiant defined the VSP property and argued
that it is common in algorithmic circuits. This consequence is still out of reach of current
techniques and is typically reported as a circuit lower bound from refuting SETH [37]. Here,
we show that the VSP restriction can be replaced by the more natural restriction that the
circuits have logarithmic depth (NC1). Intuitively, the latter are more expressive. Proving
the following statement would be a major breakthrough in complexity theory.

I Consequence 1.1. The class ENP does not have non-uniform circuits of size O(n) and
depth O(logn), nor VSP circuits of size O(n).

We are now ready to present our main theorem:

I Theorem 1.2 (Main Theorem). If there is an algorithm that, given two length-N strings
x, y over alphabet Σ, where |Σ| = No(1), approximates the LCS of x and y to within any
constant factor in deterministic, O(N2−ε) time, then Consequence 1.1 follows.

1.1 A succinct discussion of techniques
A sequence of previous works [34, 53, 50, 18, 2] reduces the task of proving Consequence 1.1
to designing deterministic algorithms for the following problem: given an OR with fan-in 2o(n)

over k-CNFs, for k = O(n0.1), approximate the fraction of satisfying assignments (Lemma 2.4)
in DTIME(2n/nω(1)). The outer OR is easy to implement, and so we focus on any given
CNF.

For CNFs with constant clause width, a common first step is to use the Sparsification
Lemma of [36] which reduces the number of clauses to m = O(n). However, the O-notation in
this lemma hides a blowup which is doubly exponential in the width, so in our case (k ≈ n0.1)
we are better off sticking with the trivial bound on the number of clauses: m /

(
n
n0.1

)
≈ 2n0.1 .

As we mentioned earlier, the reduction constructs a gadget for each possible assignment to
the first (resp. last) half of the variables. We want the LCS of the two gadgets to implement
a verifier that receives the two assignments and verifies that they indeed satisfy the CNF. A
key observation in [6] is that this task reduces to solving a Set Disjointness problem over
the universe of clauses [m]: Given partial assignment α ∈ {0, 1}n/2 to the first half of the
variables, Alice locally constructs the set Sα ⊆ [m] of clauses that are not satisfied by α
(but she still hopes those clauses are satisfied by the assignment to the remaining variables).
Similarly, Bob locally constructs a set Tβ ⊆ [m] of clauses that he cannot guarantee are
satisfied by his partial assignment, β. Now the joint assignment (α, β) satisfies the CNF if
and only if Sα, Tβ are disjoint.

Observe that two sets are disjoint iff their representation as binary vectors (in {0, 1}m)
are orthogonal (over the reals). Indeed, so far our reduction looks like the classical reduction
to the Orthogonal Vectors problem [52]: given two sets A,B ∈ {0, 1}m, is there a pair
a ∈ A, b ∈ B that is orthogonal?

Set Disjointness is a rather difficult problem in Communication Complexity: the ran-
domized and even non-deterministic complexities of Set Disjointness are linear. Fortunatley,

ITCS 2018
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there is an Õ(
√
m) MA-communication protocol due to [1]. In [6] m was linear, so we could

enumerate over all protocols in subexponential time. Here, since m ≈ 2n0.1 , the quadratic
saving of the MA-protocol does not help. Instead, we use an IP-protocol for Set Disjointness
(also due to [1]) which uses only Õ(logm) ≈ n0.1 communication.

We abstract the first part of the reduction (up to and including the IP-protocol) via a new
problem a-la Orthogonal Vectors, that we call Tropical Tensors. Given two lists of
tensors A,B ∈ {0, 1}[d1]×[d2]×···×[dt], we want to find a pair a ∈ A, b ∈ B that maximizes a
similarity measure s(a, b) which is defined via a chain of alternating + and max operations,
where at the base we take the product of ai and bi; we call this the Tropical Similarity 3 of a
and b.

Similar to Orthogonal Vectors, our new problem allows us to abstract out the
PCP-like construction on one hand, and the LCS-specific gadgets on the other hand. While
its definition is somewhat more involved than the original Orthogonal Vectors, the
extra expressive power allows us to prove a stronger hardness of approximation result:
Consequence 1.1 is implied by any truly subquadratic deterministic algorithm that can
distinguish between the case where almost all pairs have almost maximum Tropical Similarity,
and the case where the Tropical Similarity of every pair is tiny (see Theorem 3.2 for details).
We hope that the Tropical Tensors problem will find further applications; see Remark 3.4
for some suggestions.

Once we establish the hardness of Tropical Tensors, we reduce it (Section 4) to LCS
using gadgets that implement + and max operations. Our reduction to LCS is particularly
simple because the gap we obtain from Tropical Tensors is so large, that we do not need
to pad our gadgets to enforce well-behaved solutions.

1.2 Related work
Algorithms for LCS and related problems

Even though many ideas and heuristics for LCS were designed [25, 19, 27, 26] (see also
[43, 20] for surveys), none has proven sufficient to compute a better than |Σ| approximation
in strongly subquadratic time.

Many ingenious approximation algorithms were discovered for the related Edit Distance
problem. A linear time

√
n-approximation follows from the exact algorithm that computes the

Edit Distance in time O(n+ d2) where d = ED(S, T ) [39]. Subsequently, this approximation
factor has been improved to n3/7 by Bar-Yossef et al. [12], then to n1/3+o(1) by Batu et al.
[13]. Building on the breakthrough embedding of Edit Distance by Ostrovsky and Rabani
[44], Andoni and Onak obtained the first near-linear time algorithm with a subpolynomial
approximation factor of 2Õ(

√
logn). Most recently, Andoni, Krauthgamer, and Onak [9]

significantly improved the approximation to polylogarithmic obtaining an algorithm that
runs in time n1+ε and gives (logn)O(1/ε) approximation for every fixed ε > 0. There are many
works on approximate Edit Distance in various computational models, see e.g. [43, 9, 23]
and the references therein. It remains a huge open question whether Edit Distance can be
approximated to within a constant factor in near-linear time.

A general tool for speeding up dynamic programming algorithms through a controlled
relaxation of the optimality constraint is highly desirable. Encouraging positive results
along these lines were recently obtained by Saha [47, 48, 49] for problems related to parsing

3 The name is inspired by Tropical Algebras, which support + and min operations.
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context-free languages. However, we are still far from understanding, more generally, when
and how such algorithms are possible.

Fine-grained complexity of LCS

Many hardness results have been recently shown for LCS. Shortly after the N2−o(1) SETH-
based lower bound of Backurs and Indyk [10] for the related problem of Edit Distance, it
was proven that LCS has a similar lower bound [4, 22]. Bringmann and Kunnemann [22]
proved that the SETH lower bound holds even when the strings are binary, and [4] prove
that LCS on k strings has an Nk−o(1) lower bound. Very recently, [3] prove that the time
complexity of computing the LCS between strings of length N that are compressed down
to size n (using any of the standard grammar compressions such as Lempel-Ziv) is lower
bounded by (Nn)1−o(1) under SETH, and a matching upper bound is known [31].

[5] proved quadratic lower bounds for LCS under safer versions of SETH where CNF is
replaced with NC circuits, and connected LCS to circuit lower bounds for the first time. [5]
also showed that even mildly subquadratic algorithms for LCS, e.g. O(N2/ log50 N) would
imply breakthrough circuit lower bounds similar to Consequence 1.1. This connection to
circuit lower bounds was exploited in the work of [2] who showed that such consequences can
follow even from approximation algorithms.

The only SETH-based hardness of approximation results for LCS are for variants of the
classical problem. For instance, approximate “closest pair" under the LCS similarity requires
nearly quadratic time even for 2(logN)1−o(1) approximation factors, under SETH [6].

Distributed PCP

As mentioned above, when viewing the PCP Theorem as a reduction from CNF to hard-to-
approximate CNF, all known constructions suffer from blowup in the number of variables,
which is prohibitive for fine-grained reductions. Another (in fact, the original) way to view
the PCP Theorem is as a probabilistically checkable proof: given an assignment x ∈ {0, 1}n,
we want to write a proof π(x) asserting that x satisfies a known CNF ϕ. Probabilistically
checkable means that the verifier should be able to query π(x) at a small number of random
locations to be convinced that ϕ has a satisfying assignment. Recall that most reductions
from SETH to quadratic time problems construct a gadget for each partial assignment to
ϕ. A key observation in [6] is that if we could construct a “partial PCP” for each partial
assignment, the total number of gadgets remains approximately 2n/2, even if each gadget is
now a little bit larger.

Thus, in the Distributed PCP challenge, we have two parties (Alice and Bob) who hold
partial assignments α, β ∈ {0, 1}n/2 to disjoint subsets of the variables, and want to prove to a
verifier that their joint assignment satisfies the public CNF ϕ. A second key observation in [6]
is that this challenge is equivalent to computing Set Disjointness over subsets of the clauses
of ϕ. [6] solved this Set Disjointness problem using (a variant of) the MA-communication
protocol of [1]. Here, we need the more efficient IP-communication protocol.

Other PCPs in non-standard models

Different models of “non-traditional” PCPs, such as interactive PCPs [38] and interactive
oracle proofs (IOP) [16, 46] have been considered and found “positive” applications in
cryptography (e.g. [32, 33, 16]). In particular, [15] obtain a linear-size IOP. It is an open
question whether these interactive variants can imply interesting hardness of approximation
results [15].

ITCS 2018
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SETH and communication complexity

The connection between the SETH and communication complexity goes back at least to [45]
who proved that a computationally efficient sublinear protocol for the 3-party Number-on-
Forehead Set Disjointness problem would refute SETH.

2 Preliminaries

2.1 Derandomization and Circuit Lower Bounds
This result will utilize the connection between derandomization and circuit lower bounds
which originates in the works of Impagliazzo, Kabanets, and Wigderson [34] and has been
optimized significantly by the work of Williams [53], Santhanam and Williams [50], and more
recently by Ben-Sasson and Viola [18]. These connections rely on “Succinct PCP" theorems
[42, 18], and the recent optimized construction of Ben-Sasson and Viola [18] is essential for
our results. Our starting point is the following theorem.

I Theorem 2.1 (Theorem 1.4 in [18]). Let Fn be a set of function from {0, 1}n to {0, 1} that
are efficiently closed under projections (see [18] or Definition 10 in [2]).

If the acceptance probability of a function of the form
AND of fan-in nO(1) of
OR’s of fan-in 3 of
functions from Fn+O(logn)

can be distinguished from being = 1 or ≤ 1/n10 in DTIME(2n/nω(1)), then there is a function
f in ENP on n variables such that f 6∈ Fn.

We apply this theorem where the class Fn is the class of circuits on n variables of size cn,
for an arbitrarily large constant c > 0, and depth upper bounded by c logn. By applying
the deMorgan rule, and then noticing that linear-size log-depth circuits are closed under
negations and OR’s, we can restate the above theorem as follows (see [2] for a more detailed
argument).

I Lemma 2.2. To prove that ENP does not have non-uniform circuits of size cn and depth
c logn on n input variables, it is enough to show a deterministic algorithm for the following
problem that runs in 2n/nω(1) time. Given a circuit over n input variables of the form:

OR of fan-in nO(1) of
circuits of size 3cn and depth c logn+ 2,

distinguish between the case where no assignments satisfy it, versus the case in which at least
a ≥ 1− 1/n10 fraction of the assignments satisfy it.

2.2 Valiant’s depth reduction
We will use the classical depth-reduction theorem of Valiant [51] to convert linear-size NC1

circuits into an OR of CNF’s, on which we will apply our distributed PCP techniques. The
elegant proof is often given in courses, see e.g. [14].

I Theorem 2.3 (Depth reduction [51]). For all ε > 0 and c ≥ 1, we can convert any circuit
on n variables of size cn and depth c logn, into an equivalent formula which is OR of
2f(c,ε)·(n/ log logn) k-CNF’s on the same n variables, where k = O(nε). The reduction runs in
2O(n/ log logn) time.
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We remark that if the circuit is assumed to have the additional “series parallel" property
[51], then we can get a stronger depth reduction result where the clause size in the CNF’s is
constant. This was crucial to the results of [2], but our techniques here allow us to handle
much larger CNF’s.

Combining Valiant’s depth reduction with Lemma 2.2 we conclude that to prove our
complexity consequence, it is enough to distinguish unsatisfiable from > 99% satisfiable on
circuits of the form: OR of CNF’s with clause size nε.

I Lemma 2.4. To prove Consequence 1.1, it is enough to show a deterministic algorithm
for the following problem that runs in 2n/nω(1) time. Given a circuit over n input variables
of the form:

OR of fan-in 2O(n/ log logn) of
k-CNF’s where k = O(n0.1),

distinguish between the case where no assignments satisfy it, versus the case in which at least
a ≥ 1− 1/n10 fraction of the assignments satisfy it.

2.3 Communication complexity
We use the following IP-communication protocol due to Aaronson and Wigderson [1].

I Theorem 2.5 (Essentially [1, Section 7]). There exists a computationally efficient 4 IP-
protocol for Set Disjointness over domain [m] in which:
1. Merlin and Alice exchange O(logm log logm) bits;
2. Bob learns the outcome of O(logm log logm) coins tossed by Alice during the protocol;
3. Bob sends Alice O(logm) bits.
4. Alice returns Accept or Reject.
If the sets are disjoint, Alice always accepts; otherwise, Alice rejects with probability at least
1/2.

3 A surrogate problem: Tropical Tensors

In this section we introduce a new problem a-la Orthogonal Vectors, and show that approx-
imating it with a truly subquadratic determinstic algorithm would be enough to prove the
breakthrough Consequence 1.1.

I Definition 3.1 (Tropical Tensors). Our similarity measure s is defined with respect
to parameters t and `1, . . . , `t. For two tensors u, v ∈ {0, 1}d1×···×dt , we define their Tropical
Similarity score with an alternating sequence of E (expecation) and max operators:

s(u, v) , Ei1∈d1

[
max
i2∈d2

{
Ei3∈d3

[
· · ·max

it∈dt

{ui · vi} · · ·
]}]

.

Given two sets of tensors A,B ∈ {0, 1}d1×···×dt , the Tropical Tensors problem asks to
find a pair a ∈ A, b ∈ B that maximizes the Tropical Similarity s(a, b).

I Theorem 3.2. Let d1, . . . , dt be such that d1d2 · · · dt = No(1). To prove Consequence 1.1
it is enough to design a deterministic O(N2−ε)-time algorithm that, given two sets of tensors
A,B ∈ {0, 1}d1×···×dt , distinguishes between the following:

4 Although [1] do not explicitly consider computational efficiency, it is not hard to make their protocol
computationally efficient.

ITCS 2018
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Completeness: A (1− 1/log10 N)-fraction of the pairs a, b have a perfect Tropical Similarity
score, s(a, b) = 1.

Soundness: Every pair has low Tropical Similarity score, s(a, b) = o(1).

I Remark 3.3. Our hardness of approximation for Tropical Tensors continues to hold
even in the special case where we only take max’s with respect to coordinates of A-tensors.
In other words, we could redefine

s′(a, b) , Ei1∈d1

[
max
j2∈d2

{
Ei3∈d3

[
· · ·max

jt∈dt

{ai,j · bi} · · ·
]}]

.

(Note that now b is of smaller dimension.)

I Remark 3.4. Another interesting approximation variant of Tropical Tensors is the
challenge of distinguishing between the sets A,B containing at least one pair with perfect
Tropical Similarity (s(a, b) = 1) versus every pair having subconstant Tropical Similarity
(s(a, b) = o(1)). Following the same proof outline, one could prove an analog of Theorem 3.2,
whereby no O(N2−ε)-time algorithms (deterministic or randomized) solve the above problem,
assuming SETH for circuits of linear size and logarithmic depth.

Thus we can obtain variants of hardness of approximation results from [6] for LCS
Closest Pair, Approximate Regular Expression Matching, and Diameter in
Product Metric, based on the latter assumption, which is safer than the standard SETH
(i.e. SETH of k-CNF for every constant k).

Proof. Lemma 2.4 tells us that in order to prove Consequence 1.1, it is enough solve the
derandomization problem on circuits of the form: an OR over 2O(n/log logn) CNFs, with
clause width O(n0.1). In particular, each CNF has at most m , 2Õ(n0.1) clauses. The focus
of this proof will be on reducing a single such CNF to Tropical Tensors. To reduce
the OR over 2O(n/log logn) CNFs to Tropical Tensors, we simply take the max over the
Tropical Similarity scores constructed for each CNF.

We do the following for each CNF in the OR. The set A will contain a tensor aα for each
half-assignment α ∈ {0, 1}n/2 to the CNF. Given half assignment α, let Sα ⊂ [m] be the set
of clauses that it does not satisfy, i.e. all the literals determined by α are false. Define B, β,
and Tβ analogously. Observe that the CNF is satisfied by a pair (α, β) iff the sets Sα, Tβ are
disjoint.

Recall the IP-communication protocol for Set Disjointness (Theorem 2.5). To ob-
tain subconstant soundness, amplify the soundness of the protocol by repeating a small
superconstant number (e.g. log logm) of times.

We construct the tensors aα and bβ recursively, using the IP protocol. Each dimension
of the tensors corresponds to a message from one of the parties or a coin toss. Each entry
corresponds to an entire transcript. Notice that since the total communication complexity is
Õ(logm) = Õ(nε), the total number of possible transcripts is at most d1d2 · · · dt = 2Õ(nε) =
No(1).

At the end of the protocol, Bob sends a message. Let [dt] enumerate over all of Bob’s
potential messages. For each i−t ∈ d1 × d2 × · · · × dt−1, we set aαi , 1 iff Alice accepts on
message it from Bob at the end of the protocol (otherwise, aαi , 0). Similarly, we set bβi , 1
iff it is the message that Bob sends. Hence the contribution to the Tropical Similarity is one
iff Alice accepts Bob’s message at the end of the protocol.

For the rest of the coordinates we take E over random coin tosses, and max over Merlin’s
potential messages. Hence the Tropical Similarity s(aα, bβ) is exactly equal to the probability
that Alice accepts at the end of the IP protocol given for input sets Sα, Tβ .
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Hence there is a one-to-one correspondence between satisfying assignments and pairs
with perfect Tropical Similarity score; similarly there is a one-to-one correspondence between
unsatisfying assignments and pairs with subconstant Tropical Similarity score.

Finally, we add another outside max to account for the large OR over 2O(n/ log logn)

CNFs. J

4 LCS

In this section we provide a gap-preserving reduction from Tropical Tensors to Longest
Common Subsequence. Together with Theorem 3.2 this completes our proof of Theorem 1.2.

Proof of Theorem 1.2. We begin with the hard instance of Tropical Tensors from
Theorem 3.2. We encode each of the tensors as a string-gadget over alphabet Σ, and then
concatenate all the gadgets (in arbitrary order). Unlike previous fine-grained reductions
for LCS and related problems (e.g. [7, 10, 4, 22, 5, 11, 2, 21]), we do not need any padding
between gadgets, since the gap we obtained for Tropical Tensors is so large.

Bit gadgets
We construct the gadget for each tensor recursively. At the base of our recursion, we use
the following encoding for each bit. For each coordinate i ∈ [d1] × · · · × [dt], we reserve a
special symbol i ∈ Σ. We will also have two special symbols ⊥A,⊥B∈ Σ. Thus in total
|Σ| = d1d2 · · · dt + 2 = No(1). Finally, we are ready to define the bit-gadgets:

xi(a) ,
{
i ai = 1
⊥A ai = 0

,

and

yi(bβ) ,
{
i bi = 1
⊥B bi = 0

.

Observe that now LCS (xi(a), yi(b)) = ai · bi.

Tensor gadgets
We now recursively combine gadgets to implement the max and E operators. In order to
implement max operators, we concatenate the corresponding x-gadgets, and concatenate the
respective y-gadgets in reverse order. For example, for any fixed choice of i−t = (i1, . . . , it−1),
we combine bit-gadgets across the last dimension as follows:

xi−t(a) , xi−t,1(a) ◦ xi−t,2(a) ◦ · · · ◦ xi−t,dt(a)
yi−t(b) , yi−t,dt(b) ◦ · · · ◦ yi−t,2(b) ◦ yi−t,1(b).

Notice that we now have that LCS
(
xi−t

(a), yi−t
(b)
)

= maxit∈[dt] LCS
(
xi−t,it(a), yi−t,it(b)

)
.

We implement summations (E), we concatenate both the x and the y gadgets in the same
order. For example, for the first dimension, we define:

x(a) , x1(a) ◦ x2(a) ◦ · · · ◦ xd1(a)
y(b) , y1(b) ◦ y2(b) ◦ · · · ◦ yd1(b).
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Notice that we now have that LCS (x(a), b(a)) = d1 · Ei1∈[d1] [LCS (xi1(a), yi1(b))].
Therefore, by induction, we have that

1
D
LCS (x(a), y(b)) = Ei1∈d1

[
max
i2∈d2

{
Ei3∈d3

[
· · ·max

it∈dt

{LCS (xi(a), yi(b))} · · ·
]}]

= Ei1∈d1

[
max
i2∈d2

{
Ei3∈d3

[
· · ·max

it∈dt

{ai · bi} · · ·
]}]

= s(a, b),

where D , d1d3d5 · · · dt−1 is the normalization factor.

The final strings

Finally, we construct the strings x, y by concatenating the 2n/2 tensor gadgets. We call a
pair of tensors a, b “good" if s(a, b) = 1 and “bad" if s(a, b) = o(1).

Completeness

Assume that there are at least (1 − 1/log10n) · n2 good pairs of tensors. We consider a set
of 2n− 1 alignments between x and y: For each shift k ∈ [2n− 1] define the alignment Ak
that matches the tensor gadget of tensor ai ∈ A to the tensor gadget of bj ∈ B optimally
where j = i + k − n, and if j /∈ [n] then we do not match the gadget of ai at all. Since
the alignments of gadgets to each other are made optimally, their contribution is exactly
LCS(x(ai), y(bj)) = D · s(ai, bj). Observe that for all i, j ∈ [n] there is exactly one k such
that the gadgets of ai and bj are matched in Ak, and so the total LCS score of all of these
2n− 1 alignments is at least

(1− 1/log10 n) · n2 ·D · 1.

Therefore at least one of these alignments has score more than D · n/2.

Soundness

Assume that all pairs of tensors are bad. In this case, any alignment between two tensor
gadgets has score at most LCS(x(ai), y(bj)) = o(1) ·D. We can upper bound the score of any
alignment between x and y by upper bounding the number of tensor gadgets participating in
the alignment. We say that a pair is participating in the alignment if any of their letters are
matched to each other. Due to the non-crossing nature of alignments, we can model all pairs
participating in an alignment as the edges in a bipartite planar graph, and it follows that
there can be at most 2n such edges. Therefore, the score of any alignment is upper bounded
by o(1) ·D · 2n. J
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