10 research outputs found

    User-oriented recommender systems in retail

    Get PDF
    User satisfaction is considered a key objective for all service provider platforms, regardless of the nature of the service, encompassing domains such as media, entertainment, retail, and information. While the goal of satisfying users is the same across different domains and services, considering domain-specific characteristics is of paramount importance to ensure users have a positive experience with a given system. User interaction data with a system is one of the main sources of data that facilitates achieving this goal. In this thesis, we investigate how to learn from domain-specific user interactions. We focus on recommendation as our main task, and retail as our main domain. We further explore the finance domain and the demand forecasting task as additional directions to understand whether our methodology and findings generalize to other tasks and domains. The research in this thesis is organized around the following dimensions: 1) Characteristics of multi-channel retail: we consider a retail setting where interaction data comes from both digital (i.e., online) and in-store (i.e., offline) shopping; 2) From user behavior to recommendation: we conduct extensive descriptive studies on user interaction log datasets that inform the design of recommender systems in two domains, retail and finance. Our key contributions in characterizing multi-channel retail are two-fold. First, we propose a neural model that makes use of sales in multiple shopping channels in order to improve the performance of demand forecasting in a target channel. Second, we provide the first study of user behavior in a multi-channel retail setting, which results in insights about the channel-specific properties of user behavior, and their effects on the performance of recommender systems. We make three main contributions in designing user-oriented recommender systems. First, we provide a large-scale user behavior study in the finance domain, targeted at understanding financial information seeking behavior in user interactions with company filings. We then propose domain-specific user-oriented filing recommender systems that are informed by the findings of the user behavior analysis. Second, we analyze repurchasing behavior in retail, specifically in the grocery shopping domain. We then propose a repeat consumption-aware neural recommender for this domain. Third, we focus on scalable recommendation in retail and propose an efficient recommender system that explicitly models users' personal preferences that are reflected in their purchasing history

    User-oriented recommender systems in retail

    Get PDF
    User satisfaction is considered a key objective for all service provider platforms, regardless of the nature of the service, encompassing domains such as media, entertainment, retail, and information. While the goal of satisfying users is the same across different domains and services, considering domain-specific characteristics is of paramount importance to ensure users have a positive experience with a given system. User interaction data with a system is one of the main sources of data that facilitates achieving this goal. In this thesis, we investigate how to learn from domain-specific user interactions. We focus on recommendation as our main task, and retail as our main domain. We further explore the finance domain and the demand forecasting task as additional directions to understand whether our methodology and findings generalize to other tasks and domains. The research in this thesis is organized around the following dimensions: 1) Characteristics of multi-channel retail: we consider a retail setting where interaction data comes from both digital (i.e., online) and in-store (i.e., offline) shopping; 2) From user behavior to recommendation: we conduct extensive descriptive studies on user interaction log datasets that inform the design of recommender systems in two domains, retail and finance. Our key contributions in characterizing multi-channel retail are two-fold. First, we propose a neural model that makes use of sales in multiple shopping channels in order to improve the performance of demand forecasting in a target channel. Second, we provide the first study of user behavior in a multi-channel retail setting, which results in insights about the channel-specific properties of user behavior, and their effects on the performance of recommender systems. We make three main contributions in designing user-oriented recommender systems. First, we provide a large-scale user behavior study in the finance domain, targeted at understanding financial information seeking behavior in user interactions with company filings. We then propose domain-specific user-oriented filing recommender systems that are informed by the findings of the user behavior analysis. Second, we analyze repurchasing behavior in retail, specifically in the grocery shopping domain. We then propose a repeat consumption-aware neural recommender for this domain. Third, we focus on scalable recommendation in retail and propose an efficient recommender system that explicitly models users' personal preferences that are reflected in their purchasing history

    Incorporating health factors into food recommendation : experiments on real-world data from a weight-loss app

    Full text link
    Les systèmes de recommandation typiques tentent d'imiter les comportements passés des utilisateurs pour faire des recommandations futures. Par exemple, dans le domaine des recommandations alimentaires, ces algorithmes de recommandation apprennent généralement d'abord l'historique de consommation de l'utilisateur, puis recommandent les aliments que l'utilisateur préfère. Bien qu'il existe de nombreux systèmes de recommandation d'aliments proposés dans la littérature, la plupart d'entre eux sont généralement des applications directes des algorithmes de recommandation génériques sur des ensembles de données alimentaires. Nous pensons que pour le problème de la recommandation alimentaire, les connaissances spécifiques au domaine joueraient un rôle vital dans la réussite d'un recommandeur alimentaire. Cependant, la plupart des modèles existants n'intègrent pas ces connaissances. Pour résoudre ce problème, dans cet article, nous intégrons des facteurs liés à la santé (tels que l'IMC des utilisateurs, les changements de poids sous-jacents, les calories des aliments candidats et les variétés d'aliments) dans des modèles de recommandations alimentaires séquentielles pour les utilisateurs qui souhaitent mieux gérer leur alimentation et poids. Les changements de poids sous-jacents des utilisateurs sont également traités comme leurs objectifs ou leurs intentions (perdre, maintenir ou prendre du poids). Le modèle proposé devrait adapter en douceur le flux d'articles recommandé vers l'objectif des utilisateurs en tenant compte des préférences de consommation et des facteurs de santé antérieurs de l'utilisateur. Pour étudier les meilleures stratégies pour incorporer des facteurs de santé spécifiques à un domaine dans les recommandations alimentaires, dans cette étude, nous proposons deux approches de modélisation: la recommandation du prochain article et la recommandation du prochain panier. Ces deux méthodes prennent la séquence passée d'aliments (noms d'aliments et calories) consommés par un utilisateur comme entrée et produisent une liste classée d'aliments pour le prochain aliment (Next-item) ou le lendemain (Next-basket). En outre, les recommandations de base sont améliorées sur la base des approches de pointe de chaque approche de modélisation, qui sont respectivement GRU4Rec~\cite{GRU4Rec} et LSTM hiérarchique. Pour étudier l'impact des facteurs de santé et ajuster le modèle vers un objectif, nous construisons des sous-modèles spécifiques pour chaque groupe d'utilisateurs en fonction de l'IMC et de l'intention. À savoir, les utilisateurs sont regroupés en obèses, en surpoids, normaux, sous-pondérés selon l'IMC. Leurs données (par semaines) sont segmentées en semaines de perte/gain/maintien de poids en fonction du changement de poids au cours de la semaine. Cette dernière segmentation vise à saisir les habitudes de consommation alimentaire liées au poids, qui est traité comme l'intention sous-jacente de l'utilisateur. Un modèle général formé sur l'ensemble des données historiques mixtes devrait capturer les habitudes générales de consommation alimentaire de tous les utilisateurs, tandis qu'un sous-modèle formé sur l'ensemble spécifique de données pour l'IMC et l'intention capture celles des groupes ou semaines correspondants. Pour un utilisateur au sein d'un groupe d'IMC et avec l'intention de changer de poids, nous appliquons le sous-modèle spécifique, combiné avec le modèle général, pour la recommandation alimentaire. Nos modèles sont formés sur une grande quantité de données de comportement alimentaire d'utilisateurs réels à partir d'une application de gestion du poids, où nous pouvons observer la consommation alimentaire quotidienne et le poids corporel de plusieurs utilisateurs. Lorsque nous combinons le modèle complet général avec les modèles spécifiques à l'IMC et spécifiques à l'intention avec un coefficient approprié, nous observons des améliorations significatives par rapport aux performances du modèle général basé à la fois sur la recommandation de l'article suivant et sur la recommandation du panier suivant. De plus, les sous-modèles spécifiques à l'IMC et spécifiques à l'intention se sont avérés utiles, ce qui donne de meilleurs résultats que le modèle complet général, tandis que les sous-modèles spécifiques à l'IMC ont plus d'impact que le modèle spécifique à l'intention. En pratique, pour un utilisateur qui a l'intention de perdre du poids, le système peut appliquer le modèle de résultat Perte de poids (avec l'IMC correspondant) à l'utilisateur. Cela tend à ajuster en douceur le modèle général de recommandation vers cet objectif. En outre, le niveau d'ajustement pourrait être contrôlé par le coefficient de combinaison de modèles. En d'autres termes, avec un coefficient plus élevé, le sous-modèle spécifique aura un impact plus important sur la prédiction du classement final des aliments, ce qui implique que le système donnera la priorité à la réalisation de l'objectif de l'utilisateur plutôt qu'à l'imitation de ses habitudes alimentaires précédentes. Cette stratégie est plus efficace que de toujours recommander certains types d'aliments hypocaloriques, qui ne sont pas appréciés par l'utilisateur. L'intention est alignée sur le résultat de poids réel au lieu de l'intention indiquée par l'utilisateur. Ce dernier s'avère beaucoup moins performant dans nos expérimentations.Typical recommender systems try to mimic the past behaviors of users to make future recommendations. For example, in the food recommendation domain, those recommenders typically first learn the user’s previous consumption history and then recommend the foods the user prefers. Although there are lots of food recommender systems proposed in the literature, most of them are usually some direct applications of generic recommendation algorithms on food datasets. We argue that for the food recommendation problem, domain-specific knowledge would play a vital role in a successful food recommender. However, most existing models fail to incorporate such knowledge. To address this issue, in this paper, we incorporate health-related factors (such as users’ BMI, underlying weight changes, calories of the candidate food items, and food varieties) in sequential food recommendation models for users who want to better manage their body weight. The users' underlying weight changes are also as treated as their goals or intents (either losing, maintaining, or gaining weight). The proposed model is expected to smoothly adapt the recommended item stream toward the users’ goal by considering the user’s previous consumption preferences and health factors. To investigate the best strategies to incorporate domain-specific health factors into food recommenders, in this study, we propose two modeling approaches: Next-item Recommendation and Next-basket Recommendation. These two methods take the past sequence of foods (food names and calories) consumed by a user as the input and produce a ranked list of foods for the next one (Next-item) or the next day (Next-basket). Besides, the basic recommendations are improved based on the state-of-the-art approaches of each modeling approach, which are GRU4Rec~\cite{GRU4Rec} and hierarchical LSTM, respectively. To investigate the impact of health factors and tune the model toward a goal, we build specific sub-models for each group of users according to BMI and intent. Namely, users are grouped into Obese, Overweighted, Normal, Underweighted according to BMI. Their data (by weeks) are segmented into weight losing/gaining/maintaining weeks according to the weight change during the week. This latter segmentation aims to capture food consumption patterns related to weight outcome, which is treated as the user's underlying intent. A general model trained on the whole mixed historical data is expected to capture the general food consumption patterns of all the users, while a sub-model trained on the specific set of data for BMI and intent captures those of the corresponding groups or weeks. For a user within a BMI group and with the intent of weight change, we apply the specific sub-model, combined with the general model, for food recommendation. Our models are trained on a large amount of eating behavior data of real users from a weight management app, where we can observe the daily food consumption and the body weight of many users. When we combine the general full-model with the BMI-specific and intent-specific models with appropriate coefficient, we observe significant improvements compared with the performance of the general model based on both Next-item Recommendation and Next-basket Recommendation. Furthermore, both BMI-specific and intent-specific sub-models have been proved useful, which achieves better results than the general full-model, while BMI-specific sub-models are more impactful than the intent-specific model. In practice, for a user who intends to lose weight, the system can apply the Losing-weight outcome model (with the corresponding BMI) to the user. This tends to smoothly adjust the general recommendation model toward this goal. Besides, the adjustment level could be controlled by the coefficient of model combination. In other words, with a larger coefficient, the specific sub-model will have a greater impact on predicting the final food ranking list, implying that the system will prioritize achieving the user's goal over mimicking their previous eating habits. This strategy is more effective than always recommending some types of low-calorie foods, which are not liked by the user. The intent is aligned with the actual weight outcome instead of the indicated intention by the user. This latter turns out to be much less successful in our experiments

    Neural Networks for Personalized Recommender Systems

    Full text link
    The recommender system is an essential tool for companies and users. A successful recommender system not only can help companies promote their products and services, but also benefit users by filtering out unwanted information. Thus, recommender systems are growing to be indispensable in a wide range of industries. Moreover, due to the fact that neural networks have been proved to be efficient and scalable, they are widely studied and applied to various fields. This thesis aims at developing methods for recommender systems by adapting neural networks. By exploring to adapt neural networks to recommender systems, this thesis investigates challenges that recommender systems are facing, and presents approaches to these challenges. Specifically, these challenges include: (1) data sparsity, (2) the complex relationships between users and items, (3) dynamic user preferences. To address the data sparsity, this thesis proposes to learn both collaborative features and content representations to generate recommendations in case of sparse data. Moreover, it proposes an architecture for the training process to further improve the quality of recommendations. To dynamically learn users' preferences, the thesis proposes to learn temporal features to capture dynamic changes of users' preferences. In this way, both the users' general preferences and the latest interactions are considered. To learn the complex relationships, this thesis also proposes a geometric method to measure nonlinear metric to learn the complex relationship among users and items. Moreover, the relationships between items are also considered to avoid potential problems

    A hybrid approach for item collection recommendations : an application to automatic playlist continuation

    Get PDF
    Current recommender systems aim mainly to generate accurate item recommendations, without properly evaluating the multiple dimensions of the recommendation problem. However, in many domains, like in music, where items are rarely consumed in isolation, users would rather need a set of items, designed to work well together, while having some cognitive properties as a whole, related to their perception of quality and satisfaction. In this thesis, a hybrid case-based recommendation approach for item collections is proposed. In particular, an application to automatic playlist continuation, addressing similar cognitive concepts, rather than similar users, is presented. Playlists, that are sets of music items designed to be consumed as a sequence, with a specific purpose and within a specific context, are treated as cases. The proposed recommender system is based on a meta-level hybridization. First, Latent Dirichlet Allocation is applied to the set of past playlists, described as distributions over music styles, to identify their underlying concepts. Then, for a started playlist, its semantic characteristics, like its latent concept and the styles of the included items, are inferred, and Case-Based Reasoning is applied to the set of past playlists addressing the same concept, to construct and recommend a relevant playlist continuation. A graph-based item model is used to overcome the semantic gap between songs’ signal-based descriptions and users’ high-level preferences, efficiently capture the playlists’ structures and the similarity of the music items in those. As the proposed method bases its reasoning on previous playlists, it does not require the construction of complex user profiles to generate accurate recommendations. Furthermore, apart from relevance, support to parameters beyond accuracy, like increased coherence or support to diverse items is provided to deliver a more complete user experience. Experiments on real music datasets have revealed improved results, compared to other state of the art techniques, while achieving a “good trade-off” between recommendations’ relevance, diversity and coherence. Finally, although actually focusing on playlist continuations, the designed approach could be easily adapted to serve other recommendation domains with similar characteristics.Los sistemas de recomendación actuales tienen como objetivo principal generar recomendaciones precisas de artículos, sin evaluar propiamente las múltiples dimensiones del problema de recomendación. Sin embargo, en dominios como la música, donde los artículos rara vez se consumen en forma aislada, los usuarios más bien necesitarían recibir recomendaciones de conjuntos de elementos, diseñados para que se complementaran bien juntos, mientras se cubran algunas propiedades cognitivas, relacionadas con su percepción de calidad y satisfacción. En esta tesis, se propone un sistema híbrido de recomendación meta-nivel, que genera recomendaciones de colecciones de artículos. En particular, el sistema se centra en la generación automática de continuaciones de listas de música, tratando conceptos cognitivos similares, en lugar de usuarios similares. Las listas de reproducción son conjuntos de elementos musicales diseñados para ser consumidos en secuencia, con un propósito específico y dentro de un contexto específico. El sistema propuesto primero aplica el método de Latent Dirichlet Allocation a las listas de reproducción, que se describen como distribuciones sobre estilos musicales, para identificar sus conceptos. Cuando se ha iniciado una nueva lista, se deducen sus características semánticas, como su concepto y los estilos de los elementos incluidos en ella. A continuación, el sistema aplica razonamiento basado en casos, utilizando las listas del mismo concepto, para construir y recomendar una continuación relevante. Se utiliza un grafo que modeliza las relaciones de los elementos, para superar el ?salto semántico? existente entre las descripciones de las canciones, normalmente basadas en características sonoras, y las preferencias de los usuarios, expresadas en características de alto nivel. También se utiliza para calcular la similitud de los elementos musicales y para capturar la estructura de las listas de dichos elementos. Como el método propuesto basa su razonamiento en las listas de reproducción y no en usuarios que las construyeron, no se requiere la construcción de perfiles de usuarios complejos para poder generar recomendaciones precisas. Aparte de la relevancia de las recomendaciones, el sistema tiene en cuenta parámetros más allá de la precisión, como mayor coherencia o soporte a la diversidad de los elementos para enriquecer la experiencia del usuario. Los experimentos realizados en bases de datos reales, han revelado mejores resultados, en comparación con las técnicas utilizadas normalmente. Al mismo tiempo, el algoritmo propuesto logra un "buen equilibrio" entre la relevancia, la diversidad y la coherencia de las recomendaciones generadas. Finalmente, aunque la metodología presentada se centra en la recomendación de continuaciones de listas de reproducción musical, el sistema se puede adaptar fácilmente a otros dominios con características similares.Postprint (published version

    Timeout Reached, Session Ends?

    Get PDF
    Die Identifikation von Sessions zum Verständnis des Benutzerverhaltens ist ein Forschungsgebiet des Web Usage Mining. Definitionen und Konzepte werden seit über 20 Jahren diskutiert. Die Forschung zeigt, dass Session-Identifizierung kein willkürlicher Prozess sein sollte. Es gibt eine fragwürdige Tendenz zu vereinfachten mechanischen Sessions anstelle logischer Segmentierungen. Ziel der Dissertation ist es zu beweisen, wie unterschiedliche Session-Ansätze zu abweichenden Ergebnissen und Interpretationen führen. Die übergreifende Forschungsfrage lautet: Werden sich verschiedene Ansätze zur Session-Identifizierung auf Analyseergebnisse und Machine-Learning-Probleme auswirken? Ein methodischer Rahmen für die Durchführung, den Vergleich und die Evaluation von Sessions wird gegeben. Die Dissertation implementiert 135 Session-Ansätze in einem Jahr (2018) Daten einer deutschen Preisvergleichs-E-Commerce-Plattform. Die Umsetzung umfasst mechanische Konzepte, logische Konstrukte und die Kombination mehrerer Mechaniken. Es wird gezeigt, wie logische Sessions durch Embedding-Algorithmen aus Benutzersequenzen konstruiert werden: mit einem neuartigen Ansatz zur Identifizierung logischer Sessions, bei dem die thematische Nähe von Interaktionen anstelle von Suchanfragen allein verwendet wird. Alle Ansätze werden verglichen und quantitativ beschrieben sowie in drei Machine-Learning-Problemen (wie Recommendation) angewendet. Der Hauptbeitrag dieser Dissertation besteht darin, einen umfassenden Vergleich von Session-Identifikationsalgorithmen bereitzustellen. Die Arbeit bietet eine Methodik zum Implementieren, Analysieren und Evaluieren einer Auswahl von Mechaniken, die es ermöglichen, das Benutzerverhalten und die Auswirkungen von Session-Modellierung besser zu verstehen. Die Ergebnisse zeigen, dass unterschiedlich strukturierte Eingabedaten die Ergebnisse von Algorithmen oder Analysen drastisch verändern können.The identification of sessions as a means of understanding user behaviour is a common research area of web usage mining. Different definitions and concepts have been discussed for over 20 years: Research shows that session identification is not an arbitrary task. There is a tendency towards simplistic mechanical sessions instead of more complex logical segmentations, which is questionable. This dissertation aims to prove how the nature of differing session-identification approaches leads to diverging results and interpretations. The overarching research question asks: will different session-identification approaches impact analysis and machine learning tasks? A comprehensive methodological framework for implementing, comparing and evaluating sessions is given. The dissertation provides implementation guidelines for 135 session-identification approaches utilizing a complete year (2018) of traffic data from a German price-comparison e-commerce platform. The implementation includes mechanical concepts, logical constructs and the combination of multiple methods. It shows how logical sessions were constructed from user sequences by employing embedding algorithms on interaction logs; taking a novel approach to logical session identification by utilizing topical proximity of interactions instead of search queries alone. All approaches are compared and quantitatively described. The application in three machine-learning tasks (such as recommendation) is intended to show that using different sessions as input data has a marked impact on the outcome. The main contribution of this dissertation is to provide a comprehensive comparison of session-identification algorithms. The research provides a methodology to implement, analyse and compare a wide variety of mechanics, allowing to better understand user behaviour and the effects of session modelling. The main results show that differently structured input data may drastically change the results of algorithms or analysis
    corecore