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Datum der Disputation: 11. August 2022



Timeout Reached, Session Ends?

A Methodological Framework for Evaluating the Impact of Different

Session-Identification Approaches

D i s s e r t a t i o n

submitted for the Degree of

Doctor of Philosophy (Dr. phil)

Humboldt-Universität zu Berlin

Faculty of Arts and Humanities

Berlin School of Library and Information Science

by

Florian Dietz

(543203)

The President (ag.) of the Humboldt-Universität zu Berlin:

Prof. Dr. Peter Frensch

The Dean of the Faculty of Arts and Humanities:

Prof. Dr. Thomas Sandkühler

Examiners:

1. Prof. Vivien Petras, PhD

2. Prof. Dr. Robert Jäschke
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Zusammenfassung

Die Identifizierung von Sessions zum Verständnis des Benutzerverhaltens ist ein gängiges

Forschungsgebiet des Web Usage Mining. Der Begriff wird verwendet, um die Interak-

tionen eines Benutzers innerhalb eines Kontexts zu beschreiben, beispielsweise die In-

teraktionen in einem bestimmten Zeitraum oder die Interaktionen, die auf die Erfüllung

eines Bedürfnisses gerichtet sind. Unterschiedliche Definitionen und Konzepte werden seit

über 20 Jahren diskutiert. Die Forschung hat gezeigt, dass die Session-Identifizierung kein

willkürlicher Prozess ist und sorgfältig behandelt werden sollte. Trotz dieser Erkenntnisse

ist das eher naive Session-Modell des 30-minütigen Inaktivitäts-Timeouts der Industrie-

standard. Diese Tendenz zu vereinfachten mechanischen Sessions anstelle komplexerer lo-

gischer Segmentierungen ist fragwürdig.

Ziel dieser Dissertation ist es zu beweisen, wie die Natur unterschiedlicher Session-

Ansätze zu abweichenden Ergebnissen und Interpretationen führt. Die übergreifende For-

schungsfrage lautet: Werden sich verschiedene Ansätze zur Session-Identifikation auf die

Analyse und maschinelles Lernen auswirken? Dies wird durch die Untersuchung von drei

Forschungsfragen beantwortet: RQ1) Wie können Sessions modelliert werden, um ein

oder mehrere Informationsbedürfnisse darzustellen? RQ2) Gibt es Unterschiede in den

Ergebnissen verschiedener Session-Identifikationsalgorithmen? Können diese Ergebnisse

auf spezifische Identifikations- und Vergleichsmechanismen zurückgeführt werden? RQ3)

Wird sich die Qualität von Algorithmen aus dem Bereich des maschinellen Lernens in

Abhängigkeit von den Eingabedaten ändern? Forschungsfrage 1 wird beantworten, was

benötigt wird, um ein erweitertes Session-Modell zu entwickeln, das in der Lage ist, die

Informationsbedürfnisse eines Benutzers abzubilden. Es zeigt die notwendigen Methoden,

um Sessions zu identifizieren und die Faktoren, die notwendig sind, um themenbezogenes

Verhalten zu modellieren. Forschungsfrage 2 wird die Ergebnisse verschiedener Session-

Identifikationsansätze näher erläutern und die Konzepte und ihre Ergebnisse umfassend

modellieren und erklären. Forschungsfrage 3 wird die Ergebnisse der zuvor modellierten

Ansätze in mehrere Anwendungen des maschinellen Lernens einspeisen und die Ergebnisse

der Modelle basierend auf den unterschiedlichen Eingabedaten vergleichen.

Ein umfassender methodischer Rahmen für die Durchführung, den Vergleich und die

Evaluation von Sessions wird gegeben. Die Dissertation liefert Implementierungsleitlinien

für 135 Session-Identifikationsansätze am Beispiel eines kompletten Jahres (2018) von Da-

ten der Benutzer einer deutschen Preisvergleichs-E-Commerce-Plattform. Der Datensatz

umfasst 1.268.619.378 Interaktionen von 78.361.923 Benutzern. Die Umsetzung umfasst
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mechanische Konzepte, eine Vielzahl logischer Konstrukte und die Kombination mehrerer

Mechaniken. Es zeigt, wie logische Sessions aus Benutzersequenzen konstruiert werden,

indem Embedding-Algorithmen (word2vec) in Interaktionsprotokollen verwendet werden.

Hierbei wird ein neuartiger Ansatz zur Identifizierung logischer Sessions verfolgt, indem

die thematische Nähe von Interaktionen anstelle von Suchanfragen allein verwendet wurde.

Anhand von 17 ausgewählten Kennzahlen werden alle Ansätze verglichen und quantita-

tiv beschrieben, wobei Vor- und Nachteile sowie Besonderheiten hervorgehoben werden.

Eine Auswahl von 26 Ansätzen wird als Eingabedaten für drei Aufgaben des maschinel-

len Lernens verwendet (Word-Embeddings, Item-Recommendation, exploratives Benutzer-

Clustering). Diese Anwendungen sollen zeigen, dass die Verwendung unterschiedlicher Ses-

sions als Eingabedaten einen deutlichen Einfluss auf das Ergebnis hat.

Der Hauptbeitrag dieser Dissertation besteht darin, einen umfassenden Vergleich von

Session-Identifikationsalgorithmen bereitzustellen. Diese Forschungsarbeit bietet eine Me-

thodik zum Implementieren, Analysieren und Vergleichen einer Vielzahl von Mechanis-

men, die es ermöglichen, das Benutzerverhalten aus vielfältigen Perspektiven zu verste-

hen, und es Systembesitzern und Forschern ermöglicht, die Auswirkungen ihrer Session-

Modellierung besser nachzuvollziehen. Eine Methode wird vorgestellt, um logisch verbun-

dene Sessions zu identifizieren, die die Informationsbedürfnisse von Benutzern auf der

Grundlage von Sequenzeinbettungen darstellen. Hierbei wird thematische Nähe verwen-

det, um die Interaktionsähnlichkeit abzuschätzen. Das Konzept erlaubt unterschiedliche

Ebenen der Komplexität, indem es verschiedene Vergleichsmechanismen und -kontexte

einführt. Die Hauptergebnisse zeigen, dass unterschiedlich strukturierte Eingabedaten die

Ergebnisse von Algorithmen oder Analysen drastisch verändern können, was beweist, dass

die Session-Identifikation mit Sorgfalt erfolgen und als integraler Bestandteil des Prepro-

cessings etabliert werden sollte. Es ist anzuraten, mehrere Session-Modelle zu verwenden,

um das Benutzerverhalten zu verstehen: Die Unterschiede in den Ergebnissen verschiede-

ner Session-Konzepte sind bemerkenswert und sollten nicht ignoriert werden.



Abstract

The identification of sessions as a means of understanding user behaviour over time is a

common research area of web usage mining. The term is used to describe the interactions

of a user within a certain scope, for example, the interactions in a certain time period or

the interactions directed towards the completion of a specific need. Different definitions

and concepts have been discussed for over 20 years. Research has shown that session

identification is not an arbitrary task and should be handled with care. Despite such

findings, the rather naive session model in the form of a 30-minute inactivity timeout is

the industry standard. This tendency towards simplistic mechanical sessions instead of

more complex logical segmentations is questionable.

This dissertation aims to prove how the nature of differing session-identification ap-

proaches leads to diverging results and interpretations. The overarching research question

asks: will different session-identification approaches impact analysis and machine learning

tasks? This is answered by investigating three research questions: RQ1) How can sessions

be modelled to represent one or more information needs? RQ2) Are there differences in

the results of different session-identification algorithms? Can these results be attributed to

specific identification and comparison mechanics? RQ3) Will the performance of machine

learning algorithms change depending on the input data? Research question 1 will answer

what it takes to develop an enhanced session model that is able to represent the informa-

tion needs of a user. It will show the necessary methods to identify sessions and the factors

that are involved to model topically-related behaviour. Research question 2 will elaborate

on the results of different session-identification approaches, modelling and explaining the

concepts and their outcomes. Research question 3 will feed the outcomes of the previously

modelled approaches into multiple machine learning applications, comparing the outputs

of the models based on the differing input data.

A comprehensive methodological framework for implementing, comparing and evaluat-

ing sessions is given. The dissertation provides implementation guidelines for 135 session-

identification approaches utilizing the example of a complete year (2018) of user traffic data

from a German price-comparison e-commerce platform. The dataset includes 1,268,619,378

interactions from 78,361,923 users. The implementation includes mechanical concepts, a

variety of logical constructs and the combination of multiple mechanics. It shows how

logical sessions were constructed from user sequences by employing embedding algorithms

(word2vec) on interaction logs; taking a novel approach to logical session identification by

utilizing topical proximity of interactions instead of search queries alone. Using 17 selected
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measures, all approaches are compared and quantitatively described, highlighting advan-

tages, disadvantages, and peculiarities. A subset of 26 approaches is used as input data for

three machine-learning tasks (word embeddings, item recommendation, exploratory user

clustering). The application in these tasks is intended to show that using different sessions

as input data has a marked impact on the outcome.

The main contribution of this dissertation is to provide a comprehensive comparison

of session-identification algorithms. This research provides a methodology to implement,

analyse and compare a wide variety of mechanics, making it possible to understand user be-

haviour from manifold perspectives and allowing system owners and researchers to better

understand the effects of their session modelling. It introduces a method to identify logi-

cally connected sessions that represent the information needs of users based on sequence

embeddings, utilizing topical proximity to estimate interaction similarity. The concept

allows different levels of complexity by introducing various comparison mechanics and

contexts. The main results show that differently structured input data may drastically

change the results of algorithms or analysis, thereby proving the point that session identi-

fication should be done with care and established as an integral part of the preprocessing.

It may be well advised to use multiple session models to understand user behaviour: the

divergences in the results of different session concepts are quite notable and should not to

be ignored.
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Besonderer Dank gilt an dieser Stelle meiner Doktormutter Vivien Petras. Vielen Dank

für Deine kompromisslose Förderung und Dein unerschütterliches Vertrauen, ganz egal,

welche neuen Widrigkeiten ich berichten musste. Die dichte, vertrauensvolle und immer

motivierende Betreuung hat nicht nur zur Qualität der Arbeit, sondern auch enorm zu

meiner persönlichen Entwicklung beigetragen. Hervorheben möchte ich die konstruktiven
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Chapter 1

Introduction

E-commerce is all about understanding user needs. System owners strive to understand

what their users are doing, how often they visit the system and to what extent individual

users or user groups contribute to the system’s success. Measuring user activity is a key

component. Only by having information about the traffic on the system is it possible to

understand and even measure its performance.

User activity in the form of logged interactions, that is, browsing or querying a system,

is segmented into an artificial construct called a session. The term, assumed to be first

coined in 1995 by Catledge and Pitkow [43], is used to describe the interactions of a

user within a certain scope, for example, the interactions in a certain time period or

the interactions directed towards the completion of a specific need. The aims of session

detection or session identification is to find the most suitable boundary for dividing a

user’s interactions into such grouped segments.

Where interactions like queries or a click on a page are the fundamental units of user

behaviour, sessions are the glue that connects these units together. This picture can be

drawn even more figuratively: interactions are the footprints of users while sessions can

be seen as the path a user takes through a system. A system owner can use sessions to

understand where the user is heading to or what path s/he1 is taking on a system. The

question is what a session actually is. Their nature is abstract: there is no clear general

definition, the boundaries of sessions are unclear and there is no common standard capable

of representing user behaviour.

Instead, there are many different variants and terminologies of sessions. The most com-

mon session-identification approach is using an inactivity timeout, with the well-known

and irritating 30 minutes being the common industry standard. Here, a session connects

all of the user’s interactions within 30 minutes of each other: after a break of 30 minutes or

more, a new session will start, in the assumption that the inactivity break implies that the

user has started work on a new topic. As described in [62], this 30-minute inactivity rule

is being used very generously in many applications and systems without much considera-

tion. Along the inactivity timeout, other variants may use a maximum-time-per-session or

1The pronoun ‘they’ is used interchangeably throughout along with ‘s/he’ to indicate users regardless of

gender or the gender the user identifies with.
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try to reproduce the user path on the system by connecting interactions via Uniform Re-

source Locators (URL) and Hypertext Transfer Protocol (HTTP) referers. Other session

types work differently: instead of using a mechanical rule such as the time between inter-

actions, the so-called logical sessions or task-based sessions employ completely different

identification-comparison methods, stepping away from purely mechanical boundaries.

The idea behind these logical sessions as described by Jones and Klinkner [120], Gayo-

Avello [80] and Hagen et al. [88, 89] is that time is just not enough to differentiate between

user activities. Instead, topical similarity is analysed to connect interactions, not only

between consecutive interactions but also by assuming that a user may work on a topic in

a start-stop-start manner, stopping to work on a different topic only to start again after

some time. This enables completely different session constructs. Users may search for one

thing, browsing for something else in another tab, and then continue their previous search

– these sessions account for multitasking behaviour and view each interaction in the light

of previous interactions [120, 131, 133].

In the majority of examples in the literature, topical similarity is completely dependent

on the existence of queries. The authors try to identify search sessions by connecting related

queries and their associated clicks to any search results. Many different proposals on how

to identify query similarity have been made, either utilizing lexical or semantic distance

measures. Examples from the literature use distance metrics (Levenshtein, Jaccard or

Cosine) between words [88, 89, 120, 144, 215, 231], characters or n-grams [80, 120, 209,

254], some even employ external knowledge databases to expand queries with semantically

related terms [88, 89, 106] while others compare the overlap in search results of queries [88,

89]. Newer works employ more sophisticated methods on top of these, such as clustering

on the calculated pair-wise distance [154, 297, 298] or calculating distances between the

vector representations of query strings [181, 229, 262]. Relying solely on queries may be

a problem though. Not every information system relies on users querying its contents.

Navigational elements and simple browsing could be the main ways of accessing a system.

Having no or few queries in the data, logical sessions cannot be constructed as suggested.

A different session modelling is needed.

Many of these examples still use a temporal mechanical boundary to identify the

sessions they are then using to extract tasks and logical sessions. Still, they present valuable

input to verify that there is indeed a difference between the mechanical segmentation of

consecutive interactions and the topical connection of all related interactions. Nevertheless,

the mechanical sessions seem to be omnipresent despite the many examples. As Hagen et

al. describe, this is a problem: for many use cases, it would be much more reasonable to

apply logical boundaries to user activity than mechanical rules [89].

This is logical. A mechanical rule such as the inactivity timeout may group user be-

haviour differently than connecting, for example, queries based on the same topic. One is a

strict rule that simply groups interactions under the assumption that a timeout will work

globally for all users, whereas the other actually follows through with the assumption that

related interactions should belong to the same session. This divergence is likely to lead
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to different results. Still, the majority of research simply uses inactivity timeouts without

even considering the implications of that decision [62].

Sessions are used for everything. They are usually the most atomic unit by which user

behaviour is looked at. Be it basic web analytics, recommendation scenarios or search

improvement tasks, the aggregation level for the input data is usually a session. Having

the 30-minute industry standard here is kind of a mixed blessing. On the one hand, having

every system use the same session boundary ensures comparability between these systems.

But this also implicates that all systems and all users of these systems behave in the same

way. This is intuitively wrong: someone browsing a news articles page will behave rather

differently from someone checking emails or planning a vacation. Many examples prove

these variances in behaviour by using different parameters for different applications [225].

This is also true within the same system. Not all users will behave in the same way.

Even though using the same rule for everyone would again ensure comparability across

the system traffic, doing so may pollute information about individual user behaviours. For

example, it can easily be assumed that users shopping for a new television will browse

or search differently compared to users trying to find replacement parts for their washing

machine. With a global mechanical rule and therefore a globally defined mechanical session,

this difference would probably not be reflected, whereas a logical mechanic may be able

to represent it.

1.1 Motivation: The One To Rule Them All?

The differences between the mechanics of different session-identification methods are as-

sumed to be quite drastic. It has been shown in multiple publications that even different

timeouts influence the depicted behaviours or are not that reliable [51, 83, 184, 192]. Other

publications show that different timeouts do not change session-level metrics significantly

[33, 146]. Any differences might be amplified by completely different session mechanics.

Many applications are assumed to benefit from another session mechanic.

Nevertheless, apparently the majority of researchers still use the 30-minute inactivity

rule or some other form of inactivity timeout [23, 62]. Simply using the same inactivity rule

time and again without due consideration is too simplistic. There is no general consensus

that the 30-minute inactivity rule or even any temporal constraint might deliver good

results. It is a simplistic estimation that is used without acknowledging the possible side

effects. The reliability of web usage mining, and the quality of any findings achieved

through it, is heavily dependent on proper preprocessing and preparation of the data used

as input. Many works consider data preprocessing as either essential or the very first step

in any project involving interaction logs [10, 51, 66, 75, 98, 238]. This is especially true

for the identification of sessions. Careless session modelling may lead to invalid patterns,

faulty preprocessing or ambiguous results and therefore wrong conclusions, depending on

the system and application. The results of any analysis or further processing, as in data

mining or machine learning applications, is dependent on how the data is preprocessed. If

it is incomplete, erroneous or noisy, there may be false interpretations. This dissertation is
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motivated by this apparent lack of forethought. Session identification should be regarded

as an integral part of the preprocessing of any dataset before applying it as input data to

any application.

Different sessions are assumed to lead to varying interpretations of user behaviour. De-

pending on what method is used to identify sessions, different segments of interactions will

form, potentially resulting in completely different assumptions regarding that behaviour

[51, 83, 188]. This research will show that it is indeed not unproblematic to simply use an

inactivity timeout, proving the points made in [62]. The session-identification method has

a strong effect on the outcome of not only the sessions identified in the dataset, but also

on the results of algorithms utilizing these sessions as input data.

The motivation comes from the observation that while the 30-minute inactivity timeout

is the most prevalent session approach in use today, apparently logical mechanics may offer

a marked improvement compared to that rule. Using the same rule for all algorithms and

systems dangerously simplifies the problem. The 30-minute inactivity timeout might be

perfectly fine for most applications – but arbitrarily and unquestioningly applying it as the

basis for any and all algorithms may lead to incorrect conclusions, no matter the quality

of the algorithm2. Just because it has been standard for more than 25 years, it should not

be assumed to be correct.

This dissertation aims to prove how the nature of differing session-identification ap-

proaches will lead to different results and interpretations. By providing a methodological

guide to compare different session models and offering a comprehensive explanation for

the implementation of variants of each described session-identification method, this disser-

tation gives an estimation of the impact of these different approaches, thereby answering

the big question of whether or not the session-identification approach makes a difference

in log file analysis and the application of log files in machine learning tasks.

1.2 Research Questions

There is an assumption that user behaviour as represented in sessions looks very different

depending on how it is modelled. This dissertation will investigate whether the modelling

and analysis of different session approaches changes the understanding of user behaviour

and assumed user information needs when interacting with an e-commerce platform. It will

research how different session-identification algorithms change the structure of identified

sessions and therefore change the output from any downstream algorithm using these

sessions as input data. The required steps and methodology for establishing a concept

of session models and comparing their results are demonstrated, including traditional

timeout sessions along with sessions built with the intention of representing an information

need. An objective evaluation of these algorithms is presented. As outlined in Section 1.1,

the overarching research question aims to answer whether different session-identification

approaches impact log file analysis and machine learning tasks. This can be drilled down

to multiple research questions:

2Parts of this were already published in [62].
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RQ1 How can sessions be modelled to represent one or more information needs?

RQ2 Are there differences in the results of different session-identification algorithms? Can

these results be attributed to specific identification and comparison mechanics?

RQ3 Will the performance of machine learning algorithms change depending on the input

data?

Research question 1 will answer what it takes to develop an enhanced session model that is

able to represent the information needs of a user. It will show the methods and algorithms

that are necessary in order to stitch sessions together and the factors that are involved to

model topically-related user behaviour. Research question 2 will elaborate on the results of

different session-identification approaches, comprehensively modelling and explaining the

concepts and their outcomes. Research question 3 will feed the outcomes of the previously

modelled approaches into multiple machine learning applications, comparing the outputs

of the models based on the differing input data.

1.3 Case Study

A case study is conducted in order to answer the research questions and prove the feasibility

of the methods. Using the log data of a German price comparison platform with several

million logged events per day, the research questions are approached and tested with the

data of a real-life production system. The website is structured in a similar way to a classic

shopping website. The homepage is the root of a large tree with multiple broader categories

like electronics or fashion. These root categories become more specific as they branch out to

present the product categories, containing various product pages with information about

the products the shop offers and which are used for comparing prices. Inside a product

category, product pages are listed according to popularity. On a product page, users can

find detailed product information, product images and a list of prices. They can perform

various actions like putting the product on the wish list, setting a price alert for the

product or clicking through to a particular shop’s page. As the website has a full range of

products, user affinities related to categories could be another relevant factor for the data

model.

1.4 Research Design

This dissertation provides a comprehensive comparison of 135 session-identification ap-

proaches. It is designed as a full-scope evaluation framework, explaining preprocessing

from preparing the raw dataset, to modelling various session approaches, as well as an

experimental evaluation in the form of an exhaustive analysis of all session approaches,

and their application in three different machine learning use cases.

The first step is to actually create a usable dataset. Using a simplified user concept, a

dataset of user interactions is extracted from the log files of the price comparison platform
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and enriched with further needed identifiers. Additionally, the dataset is filtered to remove

any users that only have one interaction with the system. Further preprocessing steps such

as normalizing string values and creating additional features by utilizing the existing fields

were also done. Finally, the result is a raw dataset with 1,268,619,378 interactions from

78,361,923 users.

The resulting dataset is then used to model a variety of 135 session approaches. In a

comprehensive methodological overview, detailed steps for implementing sessions of eight

different archetypes are shown. A complete step-by-step process is developed in how to

model logical sessions without having to rely on search queries as most examples from the

literature do.

Additionally, two ways of evaluating the resulting sessions are described. The evalua-

tion is intended to prove a) differences in the resulting sessions and b) differences in the

output of applications fed with these sessions as input data. Multiple measures are given

that are normally used to evaluate system performance. The design of the evaluation is in-

tended to highlight differences in the results identified by the different session-identification

approaches. The actual quality and correctness of the identified sessions is acknowledged

in parts but not as the main focus, as it is not the main topic of this dissertation.

The first part of the evaluation is a thorough analysis of the complete sessionized

dataset, comparing all session approaches across 17 selected measures. These measures,

such as the number of sessions, the number of interactions per session or the number

of sessions with only one interaction (i.e. the bounce rate), could be used to evaluate

system performance. The goal here is to show that varying session-identification methods

will lead to different observations, potentially leading to misinterpretations of a system’s

performance.

The second part of the evaluation uses a sample and a selection of 26 session approaches

as input data for three machine learning applications. This part of the evaluation highlights

the observations made in part one. The application in the three machine learning use

cases – analysing category tree similarity based on word embeddings, a recommendation

scenario as well as an exploratory clustering – is intended to show that using different

sessions as input data has a marked impact on the outcome of machine learning tasks.

By comparing the results per session approach, the differences are once again highlighted.

Additionally, the results seen here can be viewed as an initial glance at the potential

qualitative differences between the identified sessions.

1.5 Organization of the Dissertation

The dissertation is organized as follows. Chapter 2 provides a comprehensive overview

of the current state of session identification. The literature review introduces all relevant

concepts: mechanical sessions using time or structural mechanics as well as logical sessions

using lexical or semantic similarity. A quick detour around why the mechanical inactivity

timeout is omnipresent is given. Additionally, the dissertation provides an overview of the
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common evaluation procedures in session identification as well as presenting in brief the

manifold applications using sessions as input data.

Chapter 3 introduces the price comparison platform providing the log files used in this

dissertation. The system structure is explained, giving information about the website and

how the business model is implemented. Additionally, a simplified overview of the tracking

architecture is given and potential issues are discussed.

In Chapter 4, the complete methodological framework is outlined. First, a concise

terminology for sessions is proposed, unifying the various assumptions made in the litera-

ture. The dataset is modelled from the log files using the newly introduced concepts and

different preprocessing steps. Afterwards, the necessary steps to implement the session-

identification approaches tested in this research are given in detail. The last part explains

the proposed evaluation framework.

The first part of the evaluation is presented in Chapter 5. Here, a descriptive analysis

explains the specifics of the dataset. After that, all 135 session approaches are thoroughly

analysed. The differences are highlighted and some interpretative observations are given.

The results are then summarized and discussed.

Chapter 6 employs the identified sessions as input data in three different machine-

learning use cases, again highlighting the observed differences in the outcome and dis-

cussing the results. Implemented are sequence embeddings, a recommendation scenario

and a clustering task.

Finally, Chapter 7 summarizes the most important findings again along with the main

contributions provided by this dissertation. Additionally, potential limitations are dis-

cussed. Some suggestions for future work are presented. Finally, the dissertation is con-

cluded with a few closing words.
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Chapter 2

Modelling Interactions with

Information Systems from

Interaction Logs

This chapter outlines the theoretical foundation for the dissertation. First, a short overview

of working with interaction logs in general and modelling sessions specifically is given. The

reasons for the identification of sessions are presented in Section 2.1. Afterwards, relevant

definitions and their limitations are introduced in Section 2.2. Using the definitions, Section

2.3 concentrates on the various approaches used to identify sessions in interaction logs.

A distinction is made between mechanical and logical sessions. Methods are distinguished

by type, according to the nature of the factors used, and not necessarily by algorithm.

Various approaches along with the respective conceptual models are presented. In Section

2.4, the commonly applied evaluation methods are explained. Section 2.5 presents a short

overview of the application of sessions in actual use cases.

2.1 Using Sessions to Understand User Behaviour

Web usage mining has been around for quite some time now. Since the late 1990s and early

2000s, researchers have contributed dozens of studies about handling interaction logs and

how to utilize them in their respective fields of research. These early studies focus on

user behaviour and the interpretation of how users interact with search systems [18, 43,

111, 112, 240, 244, 246, 280]. Initial findings provide insights into the average number of

queries and reformulations, the average number of query terms, the number of result-page

visits and type of query [31]. Web usage mining allows researchers to better understand

user behaviour and the relationship between the user and the system. A precondition

is the segmentation of interaction logs into measurable units. Often referred to as the

identification of sessions, the aim of this process is to find meaningful representations of

a user’s history. The term session is used arbitrarily; when speaking of the identification

of sessions, the extraction of segments defined in any way is meant. There are many

different approaches to sessionizing logs, which are more closely defined in Section 2.2.
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However, initially, it is important to understand the reasons behind the need to group the

interactions of users into different segments; for example, to understand user needs and

user behaviour, evaluate system performance or simply support users and systems.

The evaluation of information systems is no longer a simple model of topics, system

and document collection. In fact, user behaviour has to be analysed as a whole in order to

understand the user’s interaction with the system. From formulating a set of queries for a

specific topic to judging the relevance of documents to query refinement: the whole process

needs to be captured and transformed into metrics for evaluating how the system deals with

problematic encounters experienced by the user or vice versa. A system or any application

needs a reasonable measurable unit to represent user behaviour. Only then will the system

be able to support users who get stuck, learn query reformulation patterns or understand

user behaviour at all [89]. The last point is particularly important. Were a system to have

no representation of user behaviour in the form of sessions, it simply would not be able

to keep a measurable track of the user’s activities, leading to a concentration on single

interactions. Originally, this was more or less the case in traditional Information Retrieval

(IR). The Cranfield Paradigm compares the retrieval performance of different systems on a

set of documents with a set of topics (queries) [169]. Cranfield-style evaluations are useful

in the development and initial tuning of retrieval algorithms, but the data preparation

and collection is expensive, the coverage is limited and there is an inherent bias detected

among participating users, judges and collections [78, 169].

The limitations and concentration on the system’s retrieval performance is problematic

since it loses sight of the user. For example, users may issue the same query and mean

different things with it. A system confronted only with the individual topic would not

be able to detect any difference and rank the documents the same way, as there are no

contextual features used for measuring relevance. Furthermore, (real) users might need

multiple queries to fulfil an information need. When evaluating only individual queries to

retrieve documents, this might lead to a poor representation of the user’s satisfaction in

terms of retrieved relevant documents. The same is true for users at different stages of

fulfilling their information needs; when issuing the same query in the early and late stages

during the process of finding information, a user may expect the results to reflect the

difference in the knowledge they have gained [147]. With the prevalence of the Internet in

all areas of life and daily information seeking, these problems become even more immanent

[270]. Modelling sessions to overcome these limitations to gaining better understanding of

user behaviour over an extended period of time and throughout the whole interaction with

a system, is the logical evolution from the traditional Cranfield Paradigm for evaluation.

When considering the specifics of user behaviour, session identification becomes even

more important. In order to deal with specific behavioural patterns, systems need to

be able to recognize them. This is not possible when focusing on single interactions. A

representation of interactions within their respective context is needed to be able to identify

and, possibly, react to a user’s specific behaviour. Behavioural patterns like multitasking

and interleaving interactions as well as more complex search tasks require specific session

modelling.
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Searching for information and interacting with an information system is often a multi-

tasking process [243]. The fact that multiple tasks are worked on in the same visit to the

information system makes it particularly hard to find proper session boundaries. Spink

et al. [245] argue that search technologies are usually designed to accommodate users

searching sequentially. The authors analysed sessions with two queries and sessions with

three or more queries to find out to what degree these queries contain multiple topics.

They found that 81% of the two-query sessions and 91.3% of the three-or-more-query ses-

sions show multitasking patterns. The sessions contain many different topics, frequently

changing depending on the number of queries.

Mehrotra et al. [177] report that multitasking behaviour is fairly common and should

be acknowledged in personalization systems. The authors emphasize that there are strong

differences in behaviour depending on the user disposition towards multitasking, topic

or even interest. According to Donato et al. [67], 10% of search sessions contain queries

belonging to longer-lasting information needs, making up 25% of the overall query volume.

This requires a user-centric segmentation of the interaction logs. Other studies second these

results [7, 70, 141, 142, 147, 163, 164, 165, 181]. The need for user-centric sessions is even

stronger when considering interleaving tasks [120, 133, 243, 245]. Interleaving tasks, where

the user works on a task, stops and works on another task, then starts again with the

initial one, require a sophisticated representation in order to support the user.

Another specific behavioural pattern relates to longer-lasting information needs. Users

working on fulfilling a need may come back multiple times [266]. This type of behaviour is

reflected in the field of ‘complex search’ [13, 19, 218, 275]. ‘Complex search’ assumes that

the user has different subtasks when working on an overarching task, because a complex

search task is too hard to accomplish with a single query [226]. A frequently used example

of a complex search task is the planning of a vacation. The user might have to look for

flights, book a hotel and look for activities in the target location, which all represent

potentially dissociated subtasks. It gets even more complicated when considering that

different stages of information-need fulfilment might also have an impact on how a user

behaves [13, 19, 46, 214, 222, 227, 265, 275, 279, 301].

Somewhat similar are regularly recurring information needs and longer-lasting depen-

dencies between the interactions of a user. Not only recent queries but also long-term

behaviour and interests are important for understanding information needs [67, 159, 222,

225]. This could be a user who bought a laptop fairly recently. S/he will probably not

be interested in recommendations regarding another new laptop, but may be receptive to

information about accessories. Another example is a user who visits a system regularly for

the same information, be it for the weather forecast, news or football results.

Without any segmentation of the user’s interactions, all of these different behavioural

patterns will hardly be unidentifiable. A system that does not understand the behaviours

and interests of users cannot cater for their needs. This clearly indicates the need for an

adapted segmentation that enables the system to better support and understand the user.

Evaluating system performance would be more realistic. Any measurement of performance

will be more closely adjusted to the estimation of user satisfaction and therefore better than
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not considering the user at all. Different segmentation concepts enable system owners to

gain measurements of how the system performs; both in terms of behaviour and satisfying

a user’s need.

If the system is able to reflect the user by segmenting the logs in a reasonable way,

the information hidden in this representation can be used to a) support the user and b)

estimate how satisfied the user is. This is done by utilizing implicit feedback extracted

from the segmented interaction logs instead of explicit feedback collected directly from

the user. By modelling sessions in a way that caters to the application or the system in

general, implicit feedback can greatly improve system performance and user experience

by supporting the user in their identified task. Systems may be able to better understand

the needs and problems of a user by utilizing features such as clicks or dwell time. This

assumption is supported by multiple studies [3, 78, 118, 129, 149, 301]. Implicit features

differ from user to user and from task to task [127]. This is reasonable considering that

studies have shown different types of shopping behaviour [1, 214, 224, 241, 275]. Inter-

action patterns are not uniform and therefore any boundary used for sessions has to be

understood and considered [289]. Every interaction might have a different context and

differing implications. Differing search behaviour patterns are another indicator of why

meaningful sessions are needed.

The advantages of segmenting user interaction logs into sessions are manifold. Only

with the right session-detection strategies is it possible to identify and use all of the above-

mentioned elements. Therefore, the modelling of a user representation is of fundamental

importance. Why sessions are needed is obvious. The type of sessions and how these are

actually modelled is less clear. The following section will take a closer look at the different

units of measurement.

2.2 Defining Sessions

The identification of sessions is an ambiguous problem. There are multiple possible def-

initions of how to segment a user’s history, depending on the targeted application [116].

Because there are many different systems, applications and theories, there are various

definitions of sessions. The lack of standards and the resulting need for interpretation

is an imminent problem identified by this research and other research [120]. The need

for interpretation leads to a bouquet of overlapping definitions. The result is a research

environment with no clear terminology, incomparable results and no general consensus.

Initially, the term session was used as a surrogate for all events of users interacting with

an information system during a single visit [43]. The lack of reliable user identifiers might

be the reason for this type of segmentation, whereby events in close temporal proximity

are assumed to be connected and are thus grouped together as if they were from the same

user. This understanding of sessions as an individual visit from an individual user was

prevalent in the early days; all consecutive queries (or interactions) without a significant

time gap were considered a (mechanical) search session [88].
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Fundamentally, there are two loose concepts for session identification: 1) mechanical

sessions, which are segmented by a purely mechanical boundary and 2) logical sessions,

also referred to as tasks, missions or episodes, which aim for a segmentation based on the

underlying information need or task. Mechanical sessions are easily detectable but limited

to basic statistical analysis [88], whereas logical sessions are assumed to allow a much more

detailed and sophisticated representation of a user.

The early methods all aimed for the detection of mechanically divided sessions even

without explicitly saying so. Hence, most of the early works rely on purely time-based

constraints: a) two consecutive queries belong to the same segment whenever the time

elapsed is smaller than a defined threshold or b) a query belongs to a session if the time

elapsed between it and the initial starting event is within a defined time period. Many

different time gaps have been experimented with: five minutes [68], 10–15 minutes [95], 30

minutes [68, 215], 60 minutes [33] or even 120 minutes [33].

From this point of view, the term session describes just a mechanically divided inter-

action log. There is no real assumption of user behaviour and no real definition yet, the

term session solely refers to the collected requests by a user during one individual visit

[238]. The first actual definition of the term comes from Silverstein et al. [232], where they

define ‘a session as a series of queries by a single user made within a small range of time.

A session is meant to capture a single user’s attempt to fill a single information need’ [232,

p. 7]. Here, sessions are supposed to capture a single information need, which somewhat

contrasts with a mechanical boundary. Similarly, Jansen et al. [113] define a session as

‘a series of interactions by the user toward addressing a single information need’ [113, p.

862]. Other studies take up this definition again by defining a session as a sequence of

queries within a specific time frame [28, 123].

He and Göker [95] assume that a growing temporal gap is an indicator of topic change.

They want sessions to group all events related a) to an evolving information need and

b) through proximity in time. Therefore, session start and end would indicate topical

change. This is further built upon in He et al. [96] by bringing in the concept of session

shift and session continuation, where two successive queries might indicate a new session

depending on how they relate to each other. Technically, this is already a shift from

mechanically divided segments to a logical construct, although with some weaknesses.

Temporal proximity is the first boundary, followed by a logical boundary in deciding if

a new query denotes a shift or a continuation. A similar construct is proposed by Yu

et al. [290] and Radlinski and Joachims [215], who connect queries according to their

reformulations.

Stricter concepts were tested as well [52, 128, 153]. Here, a (query) session consists

only of a query and its subsequent behaviour. This is a limited construct. There is no

logical connection between consecutive queries. Also, there is no possibility to associate

any subsequent behaviour with a certain query.

Other concepts presented over time take up on the concepts of multitasking and com-

plex search. These naturally evolved from the concept of a mechanical session and represent

the notion of a logical session. The sessions they describe continue the idea of having a
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segmentation aiming for one or more information needs. A recent representative definition

comes from Gomes et al. [83], who state that ‘a session is a sequence of activities followed

by one individual to satisfy an information need, regardless of the elapsed time, number of

interactions with the system, or the existence of interruptions on these interactions’ [83,

p. 185]. The session is defined as the atomical information unit centred on an information

need regardless of other factors. In addition, it accounts for interleaving and multitasking

by connecting all events related to one information need through time and space.

The term session is obviously very misleading, as it mixes up different levels of various

concepts. Frequently, the research does not state which definition is being followed. What is

worse is that mechanically detected sessions are often utilized even though a logical session

would be much more reasonable [88]. This has resulted in new terms and definitions being

introduced to the research. Jones and Klinkner [120] introduce search goals, which are

defined as the atomic information need resulting in one or more queries. This definition is

identical to other session definitions. The authors also present search missions, connecting

multiple related information needs in an overarching concept combining multiple search

goals. A search session in their view is all user activity within a certain time window.

They argue with historical ambiguity: a session was ‘simultaneously (1) a set of queries to

satisfy a single information need (2) a series of successive queries, and (3) a short period

of contiguous time spent querying and examining results’ [120, p. 700].

More recently, the term task was coined for this type of concept. Maguitman [166]

defines tasks as ‘a piece of work required to achieve an objective’ [166, p. 2]. This loose

definition resembles that of Gomes et al. [83]: a task is the process of working on an

information need regardless of other constraints. Therefore, the tasks in this definition

are basically logical sessions. Similarly, Aswadallah et al. [12] present topically-coherent

sessions, which combine a set of related information needs in an overarching task. Search

tasks and complex search tasks are also defined. Where search tasks represent the atomical

information need resulting in one or more queries, complex search tasks represent the

overarching concept combining these atomical units. These definitions are similar to those

presented by Jones and Klinkner [120]. An interesting additional distinction is made by

MacKay and Watters [162]. The authors differentiate between transient and persistent

tasks; transient tasks may span multiple sessions, but have a definable time period in

which they are worked upon, whereas persistent tasks have an indefinite temporal scope,

as the underlying behaviour is repeated again and again.

Viewing the identification of logical sessions with these definitions in mind, there is

clearly a certain hierarchy. There are different levels of aggregation: from single events to

queries to sessions to tasks to missions. The choice of the right level of information is a focal

point. Liao et al. [145] state, while a lot of research is being done at the session or query

levels, research at the task level is lacking even though the latter helps in determining

user satisfaction and other use cases. The authors describe a three-level hierarchy in their

work:
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1. query trails, where every query is followed by a sequence of browsing, representing

an atomical query session

2. session trails, representing consecutive logs detected by a temporal cut; often contain

multiple information needs regardless of time constraint

3. task trails, which represent potential interleaved logs related to the same task, con-

strained by the session trail

After comparing the three levels by applying different use cases, they report that tasks

are much more precise when determining, for example, user satisfaction. Concentrating

on task trails improves an application’s performance from a user’s point of view. Their

definitions reflect the inherent hierarchy of information-seeking episodes; user interactions

have an immediate goal as well as an overarching task, resulting in a complex relationship

of dependencies among them [19].

Detecting or identifying sessions is a data-driven subject, which needs to be adjusted

accordingly [177]. Often, research simply uses mechanical sessions as the unit of measure-

ment, although tasks and logical sessions are becoming more important over time [181].

Their importance and value is increasingly recognized for various use cases [69], although

many studies still rely almost exclusively on mechanical boundaries. Some systems may

handle data without any partitioning at all, although a reasonable choice of segmenta-

tion might boost their performance [254]. The theoretical foundation is often simply not

reflected in the session definitions.

Before the different session concepts are defined more precisely in Section 4.1, for now,

a working definition is needed. In general, this dissertation follows the definition from [83].

In the following sections, sessions are regarded as a simple grouping of interactions in

relation to a specific information need. The boundaries and structure are defined by the

respective subtype of session.

2.3 Modelling Sessions and Task Hierarchies

The following section provides a comprehensive overview of session-identification approaches.

For simplicity, the different concepts are roughly classified into the aforementioned me-

chanical sessions and logical sessions. Logical sessions are also referred to as tasks. First, all

approaches utilizing mechanical boundaries are introduced. Afterwards, the vaguer notions

of logical sessions and tasks using more complex approaches are presented.

Before taking a deep dive, some surveys of the relevant literature should be mentioned.

Gayo-Avello [80] provides a comprehensive introduction into this field of research. The

survey presents an overview of definitions, their development over time and several session-

detection methods. The author distinguishes between temporal clues, lexical clues, machine

learning-based methods and heuristic-based methods. Fatima et al. [75] provide a thorough

and more recent overview as well, discussing the state of research on web usage mining

and session identification. The authors analyse results from 42 papers, which are classified
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into the categories time-oriented, structure-oriented, link-based and hybrid approaches.

After discussing the results, the state of research is declared to be rather immature. All

variants have limitations and advantages as well, but overall the limitations are too strong

and may deeply affect all later stages of data processing or analysis if not handled with

care. The same argument is also the hypothesis of this dissertation.

Many factors may be considered to model sessions. Ye and Wilson [289] investigate such

factors using a qualitative approach. They present a user-defined taxonomy of six factors

based on 847 real web sessions. The authors discuss multiple problems regarding factors

that start or end a session, may divide sessions or connect seemingly separate sessions.

They interviewed the users, who were supposed to segment their own logs with no given

definition of the term session according to their own understanding. After reviewing, they

come up with the following elements:

• topic change (main intention change, hierarchical changes)

• task change (specific tasks related to the topic)

• different phases (sequentially dependent phases, i.e. looking for something and or-

dering are two different phases)

• different people (communities change behaviour)

• time gap (traditional measure)

• multitasking (diverse activity)

Each of these factors might affect the logical segmentation of a log according to actual user

behaviour. They must be considered in combination to get an accurate session represen-

tation in practice; there are no specific trigger events. The resulting taxonomy of factors

summarizes the foundation for how to model user behaviour, not only for queries and

search engines but for all kinds of information systems. There are inherent factors that

are not controllable with only log data at hand, but many are interpretable or measurable

by simply looking at the data. For example, the interaction log does not reveal anything

about communities; there is no visible evidence of users changing behaviour in different

communities – that is, either in different contexts or when with other people. Another ex-

ample would be unexpected events. If a user stops mid-task because s/he needs to attend

to other errands, the data would indicate only so much. By modelling sessions, researchers

aim to get a close-as-possible estimation of the user’s behaviour. There are different ways

to approach a reasonable segmentation by taking different features into account. These

are outlined in the following sections.

2.3.1 Time-Based Approaches

An inactivity timeout is the classic, traditional way of identifying sessions. It was not

only the first way to segment interaction logs, but it is also the most easy and efficient.
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Time constraint Publication

5 minutes [107, 232, 258]

10 minutes [82, 247]

15 minutes [5, 41, 61, 82, 95, 96, 292, 296]

20 minutes [30, 63, 95, 148, 189, 236]

25.5 minutes [43]

30 minutes [10, 12, 20, 23, 28, 35, 36, 37, 47, 48, 54, 65, 104, 120, 123, 137, 140, 143, 149, 156, 160, 173, 178, 190, 194,

198, 201, 202, 210, 217, 218, 237, 247, 248, 261, 263, 274, 286, 295]

60 minutes [91, 234, 267]

24 hours [269]

Table 2.1: Use of inactivity timeouts in the reviewed literature. Note: Some of these studies deal exclusively with

session identification, others deal with the application of interaction data.

Up to this day, the well-known 30-minute inactivity timeout is the industry standard in

many applications [23, 62], including, for example, widespread web analytics software such

as Google Analytics1. The assumption behind temporal constraints is that proximity in

time is likely when dealing with any kind of information-seeking process. Another reason

to opt for an inactivity time limit might be the easy implementation compared to other

approaches [89]. This is especially true for any kind of web application aiming to support

users in real time. Table 2.1 shows an extract of the distribution of used inactivity timeouts

in the literature observed while working on this dissertation.

The 30-minute inactivity timeout is very much prevalent. It is the classical time con-

straint, probably evolved from the value proposed by Catledge and Pitkow [43]. This study

is among the first to introduce a temporal constraint. During their analysis on client-side

tracked behaviour logs, the authors report an average time of 9.3 minutes between interac-

tions. Adding 1.5 standard deviations, they ended up with a temporal inactivity constraint

of 25.5 minutes, which introduced a wave of studies. These 25.5 minutes have likely evolved

into the aforementioned 30-minute inactivity timeout, which is still used to this day.

Other research took up on that timeout. With the log data preprocessor (LODAP),

Castellano et al. [42] present software for automatically extracting sessions from log files.

Their tool preprocesses log files and divides requests by using a time-based constraint

approach for identifying user sessions: 30 minutes as a maximum time gap and two seconds

as a minimum time gap between interactions. Boldi et al. [28] introduce a graph concept

for modelling behavioural patterns and query dependencies of users based on sessions

built with a 30-minute inactivity timeout, although the actual concept of query chains

transcends the session definition by involving all related queries by all users.

Some studies directly question the global 30-minute timeout. Halfaker et al. [91] define

sessions as a short period of contiguous time involving user activity of any kind. They

argue that global inactivity thresholds may be appropriate, considering this definition.

To prove this, they plot a histogram over logarithmically scaled time gaps between user

interactions to find valleys of inactivity. Afterwards, a two-component Gaussian Mixture

model is applied to the dataset using expectation maximization. The approach is tested on

1https://support.google.com/analytics/answer/2731565, retrieved 8 June 2020.
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seven different systems with multiple interaction mechanisms, resulting in 12 datasets. The

results indicate that setting a global inactivity timeout of 60 minutes should be appropriate

for most logs, as there seems to be a natural valley of inactivity between one minute and

one day, centred on 60 minutes. Later, similar experiments are reproduced by Mehrotra

et al. [178] on datasets of digital voice assistants. They find that common identification

methods from prior works dealing with search engines are not applicable. Confirming the

results from Halfaker et al. [91], they find that their experiments support the idea of a

30-minute timeout for search engines and an optimal timeout of two minutes for the voice

assistant data.

Other timeouts have been proposed as well. Silverstein et al. [232] intended to capture

all involvement by a user focusing on one single information need. Although acknowledging

that this might not be representative for real usage in general, they employed an inactivity

timeout of five minutes. After analysing a dataset from the AltaVista search engine with

roughly a billion rows, one of their observations was that 63% of all observed sessions

consist of only one request, but with an average of 2.02 queries per session. Bearing in

mind the five-minute inactivity protocol, this might explain the number of short sessions

– the five-minute timeout leading to shorter sessions in general.

He and Göker [95] experimented with two data sets from Excite and Reuters to find

a session timeout interval that fits most applications. They tested with different limits

from one minute to 200 minutes to look at the changes in distribution of different activ-

ities per session definition. They aimed to get sessions with a relatively small number of

interactions, as previous (qualitative) studies regarding query behaviour reported smaller

numbers of interactions. Despite acknowledging possible error sources, such as not con-

sidering semantic relations between different segments, their results indicated an optimal

session interval timeout to be somewhere between 10 and 15 minutes. The same timeout

period is reported by Göker and He [82] again, whose aim was to group activities belonging

to a user acting in a specific role, that is, wanting to fulfil a specific information need. With

the goal to prove whether time is a reliable enough marker for detecting session bound-

aries, they tried different time intervals as inactivity timeouts between interactions and

looked at the distributions of interactions per defined session to see if there is a pattern.

Other works question the use of a fixed timeout at all. Wolfram et al. [281, 282]

analysed three interaction logs – from an academic website, a general search engine log

and data from a consumer health-information website – to dive deeper into user behaviour

clustering. They used the so-called 80/20 rule, whereby they used the time associated with

the 80th percentile of inter-query intervals as an inactivity cut for the data. This method

results in optimal timeouts as 11.8 minutes for the academic website, 17.9 minutes for the

search engine and 3.8 minutes for the public health website. Kapusta et al. [125] tested

different thresholds on a bank portal, differentiating between content and navigational

pages to determine a reasonable time spent on site for the respective type of page. They

used this to model session timeout values. Their results indicate that it might be enough

to just use the average time spent on site as a threshold. Similar insights are reported by

Cooley et al. [55] and Spiliopoulou and Faulstich [239].
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Similarly, Yuankang and Zhiqiu [291] use a dynamically calculated threshold. In the

first step, they create a website topology in which they define frame and subframe pages.

Afterwards, the threshold per web page is calculated via access time depending on the

content of the page. He and Wang [97] present a dynamically calculated approach as well.

The authors calculate a degree of importance for every web page in combination with

the average time spent on the individual web page, combining these values into a relative

threshold. When calculating sessions, the timeout values are altered depending on the web

page. A similar approach is proposed by Dinuca and Ciobanu [64]. The authors solely rely

on the average visit duration on specific pages in the data.

Mehrzadi and Feitelson [182] argue that a global threshold would create artefacts

in the data and therefore taint any research relying on it. They propose an algorithm

that calculates a personal timeout threshold on a user basis. The method puts the inter-

query times between the queries of a user in logarithmically-sized bins. Each bin gets

a score based on the two maximums on either side, resulting in a highest-scoring bin

that represents the threshold. Compared with human annotated sessions, their boundary

delivers relatively consistent results but often sets lower thresholds.

Peng and Zhao [207] argue that mechanical thresholds do not account for different user

behaviours. When not considering different behaviour patterns, sessions may be falsely

connected or cut. To evade these errors, the authors propose a dynamically calculated

algorithm with a two-step average threshold. In the first iteration, the average threshold

is calculated. In the second processing step, any errors are removed by checking identified

sessions again.

Another direction of time-based approaches uses a fixed time interval instead of an

inactivity timeout: a starting event is defined to which all following events in a fixed

period of time are connected. This method is even more restricted than the inactivity

timeout and therefore relatively rarely used. Nottorf [196] uses such a manually defined

time interval as the session boundary. A session is a sequence of interactions that do

not exceed the period of 60 minutes. With this data, a Bayesian mixture for modelling

consumer clickstreams is applied. A similar segmentation approach is done by Boughareb

and Farah [29], where sessions are limited to one hour to model information needs.

As Gomes et al. state, ‘one of the difficulties in using a global temporal threshold is

that true session intervals usually have a smooth distribution, and it is almost guaranteed

that longer sessions will be handled incorrectly’ [83, p. 186]. Actually, this works in both

directions, as shorter segments might also easily be bundled together. This is an inher-

ent problem of time-based approaches, as they only connect events in a period without

acknowledging the content. The more advanced methods, looking at distributions, work

for connecting close and potentially related events but they also can only do so much in

reflecting plain behaviour, not the need behind it. Opinions on temporal approaches differ.

Multiple studies report that choice of timeout is arbitrary and does not have significant

impact on distributions [33, 146], others report contrary results. Many works recognize the

need for other clues though. Another direction is reflected in content-based approaches,

where the content and structure of the page is utilized.
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2.3.2 Content-Based Approaches

Theoretically, identification methods should consider every information source the user has

accessed at the time of interaction. This includes the content of a viewed page; information

about the contents displayed, and most likely consumed by the user, supports determining

the type of user or predicting the outcome of a sequence of interactions [1, 168]. Content-

based approaches aim to identify sessions by either using the contents of a visited page or

by closely reconstructing the user’s path. In fact, the former can be used to construct logical

sessions, as the contents of a visited page may be a good indicator of task boundaries. The

latter tries to capture all interactions of the user during one visit.

One of the earliest (and simplest) methods for content-based session identification is

the maximal forward reference proposed by Chen et al. [45] in 1998. According to them, a

session represents the sequence of all events from a starting event until a backward refer-

ence is made. A backward reference refers to an already-visited page. This method, while

rather simplistic and limited, may nonetheless be able to capture atomical information

needs, depending on the system.

In 2003, Spiliopoulou et al. [238] carried out fundamental research on an evaluation

framework able to compare different approaches to session modelling. They presented

strategies for comparing different approaches of reconstructing activity of users from log

files. Three approaches were tested: inactivity timeout, fixed length and a referral-based

method. The latter only connects events to sessions if the target event is connectable via an

HTTP referer to the previous URL – if they match, a path can be created to reproduce the

clickstream of the user. Padala et al. [200] combine a referral-based method with the usual

30-minute inactivity timeout to identify sessions. Similar concepts are used by Pratap et

al. [211] and Bayir et al. [17]. Likewise, Jiang et al. [117] propose a combined concept as

well. They employ inter-activity time of users along with a Gaussian distribution to model

a dynamic threshold as well as combine these with a referer-based strategy.

The same approach is used again by Chitraa and Thanamani [51], where the authors

state that sessions ‘can be defined as a set of pages visited by the same user within the

duration of one particular visit to a website’ [51, p. 24]. For the identification, navigational

patterns are used. Interestingly, they state that any temporal constraint is not reliable;

the user may get involved in other activities, or technical factors like loading time are

neglected. Movement through the system is also considered – every subsequent request

has to be connected to the prior one by a referring URL. If there is no connection, a new

session is created. In their proposed algorithm, the authors try to identify relevant requests

by assigning weights in relation to the time spent browsing on a page. This may help to

reduce the amount of processed traffic and to identify the user’s needs more easily.

Meiss et al. [184] analyse the interaction logs from 1,000 undergraduate students over

the course of two months. They show that time-based segmentation approaches are not

precise enough. They initially apply different inactivity timeouts and examine their effect

on different measures. The results show that there are strong dependencies from all mea-

sures (like mean number of sessions per user, session duration or number of requests) to
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the chosen timeout, indicating that it is completely arbitrary. There are no regularities in

inter-activity times. The approach they present therefore moves away from this assump-

tion and utilizes referer trees instead – using referring URL and target URL in a request,

they are able to precisely model the clickstream of a user.

These approaches all understand the term session as a single visit to a website or

the single interaction with an information system. Considering this, methods based on

the behaviour path of a user through a website are relatively close to the mechanical

definition of a session, as they represent a completed visit. However, these approaches are

not necessarily constructing mechanical sessions, as the identification based on browsing

behaviour lacks the mechanical totality of the time-based approaches. Technically, these

types of session cannot be regarded as either mechanical or logical, as they are simply

replicating user behaviour on the system during one visit. Still, the modelling of those

visits does not necessarily make for an accurate representation of the process of working

on an information need, as it disregards any specifics of user behaviour. Other approaches

utilize the actual content of a page instead, in order to get an estimation of the behavioural

process.

Chitra and Kalpana [50] propose a graph-based approach. Each visited web page rep-

resents a node with calculated weights while the connections simulate the navigational

paths. The weights represent the degree of importance per web page. A very similar ap-

proach is used by Heydari et al. [100]. The authors combine a graph representation of web

pages with a statistical analysis of browsing time. The website topology is represented as

weighted vertices, where the weight of each node is calculated via browsing time. This

approach is similar to the one proposed by Menasalvas et al. [185], who present the con-

cept of subsessions. These are smaller segments of a session based on the most frequent

path taken on the website. The authors introduce a frequent-behaviour path tree, which

basically calculates the frequent path based on historical data and utilizes thresholds to

form sessions into smaller segments. Their algorithm does not use temporal features, only

the navigational properties in the dataset.

2.3.3 Lexical Similarity

Other forms of content-based approaches use lexical similarity. These types of approach

represent a direct move from purely mechanical sessions towards logical sessions. Moving

away from representing individual visits to information systems using URL-/referer struc-

tures and mechanical boundaries as time constraints, lexical clues look at the similarity of

queries to estimate whether they belong to the same information need. Considering this,

lexical similarity aims for logical sessions.

The general idea behind lexical similarity is that queries which do not share a term

with an earlier query are likely to indicate a new session. Basically, all approaches compare

either successive queries according to some lexical measures or all query pairs submitted by

a user. Comparing successive queries leads to atomical information units that likely tackle

the same information need through basic reformulation techniques. Comparing all query

20



pairs respectively enables the construction of overarching information needs. Many of these

approaches combine the similarity between queries with an inactivity timeout, following

the initial assumption that overall accuracy is increased by using temporal proximity.

One of the earliest and most influential works applying lexical patterns is provided by

He et al. [96] in 2002. The authors identify different search patterns by comparing query

terms, resulting in a classification with eight different patterns: browsing, generalization,

specialization, reformulation, repetition, new (topic), relevance feedback and an ‘other’

category. They compare adjacent queries to find the correct classification for the respective

search pattern. Basically, their classifier directly compares the terms between the adjacent

queries to assign a category. Considering session boundaries, only ‘new’ would indicate the

beginning of a new session. By their definition, a session is a sequence of activities related

to each other through an evolving information need as well as through being close together

in time. They performed extensive analysis with different time intervals combined with the

aforementioned representations of search patterns. Using the Dempster-Shafer method2,

they identify sessions with significantly better results than using time intervals or the

search patterns alone. Their algorithm classifies two consecutive interactions to either

session shifts or session continuation, depending on if they belong to the same context.

Identical categories were already proposed by Lau and Horvitz [133]. The authors man-

ually partition queries from an Excite search log into classes denoting the current search

action. They assigned general goals to each query with tags like current events, weather,

products and services or adult content. Afterwards, Bayesian Network (BN) models were

applied to capture search dynamics and to make predictions about search progress. They

report interesting insights, especially about the relationship of growing inter-query inter-

vals and the likelihood of issuing queries for a new topic. They also report interleaving

search tasks, although only in small numbers. A similar study was conducted by Spink et

al. [242], who also manually annotated an Excite search log to find reformulation patterns.

Jansen et al. [113] also use these reformulation classifications. They embed the concept

of sessions into a broader context, which they call search episodes. They define these

episodes ‘as a temporal series of interactions among a searcher, a Web system, and the

content provided by that system within a specific period’ [113, p. 862], which is basically

a very generic session definition. They assume that success or failure on session level is

the critical determinant in the user’s perception of the system’s performance. Another

assumption is that varying search patterns may announce the start of a new session.

Also based on search patterns is the work of Jansen et al. [114]. The authors classify

query reformulation patterns to identify new session boundaries using the same categories

again. Their sessions always begin with an initial query – which is the first query by a user

on a day. The queries that follow that do not share any terms with the previous query are

also considered as the start of a new session. They conduct experiments with the algorithm

from He et al. [96] and compare the outcome to multiple baselines, including a 30-minute

2The theory of belief functions, a mathematical theorem on probabilities and reasoning with uncertainty.
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inactivity timeout. Their findings indicate that users utilize system feedback and retrieved

terms to refine their query according to their information need.

Detecting and classifying reformulation patterns to detect sessions is a relatively easy

but also simplistic method. He et al. [96] state that by keeping the search context in mind

by using reformulation patterns as the identifier, it is possible to get a grip on the larger

context for the respective information need. They utilize reformulation patterns as a means

of bridging the limits of the sole use of a temporal constraint by mitigating the totality of

the time gap. By identifying the context, sessions can be connected even if they appear

in different times. Other approaches move away from simply comparing terms to directly

comparing the characters of the queries via different heuristics. This is very similar to the

aforementioned variants, but can be considered more precise depending on the heuristic

used. Patterns are not considered; these approaches simply calculate a score and decide

session boundaries by applying a threshold to this score.

Shi and Yang [231] present a sliding window time segmentation which is supported by

lexical similarity in the form of Levenshtein distance. They define a user session as the

‘history of all query records that belong to the same user’ [231, p. 943] in a query log.

Trying to get all related queries into one session for mining related queries via association

rules, a dynamic sliding window with three different time constraints is proposed: the

maximum length between successive queries, the maximum interval length of a user being

inactive and the maximum length of the session overall. The thresholds were arbitrarily

set to be five minutes, 60 minutes and 24 hours. Afterwards, the Levenshtein distance is

calculated between adjacent queries to decide if they belong to the same session.

According to Radlinski and Joachims [215], they were the first to no longer treat every

query in a session individually, but to look at them sequentially. Sequences of reformulated

related queries are called ‘query chains’. They present an algorithm based on Support

Vector Machine (SVM) classifiers to identify query chains and use these to learn preference

judgements to be able to evaluate search engines with respect to reformulations. The SVM

works on multiple features such as the cosine distance between query terms or the cosine

distance between retrieved documents. Results show that the adaptation of query chains

as a form of contextual segmentation leads to better ranking functions compared to static

ones or those not considering reformulations at all.

Zhou et al. [297] analyse 47,387 queries in 18,102 sessions from 2,910 users from the

Chinese website Taobao.com3 to examine characteristics of multitasking product search

sessions compared to monotasking sessions. To identify initial sessions, they use an in-

activity timeout of 45 minutes. To identify tasks as the logical construct, a hierarchical

clustering algorithm was applied to the pairwise Jaccard similarity between query terms

with a threshold of 0.35. They defined a session as a multitasking session when the ses-

sion contains queries that are matched to two or more of the product categories. They

discovered that users dealt with multiple tasks in 35.7% of all examined sessions. These

multitasking sessions tend to last longer than monotasking sessions, also the number of

3https://world.taobao.com/, retrieved 5 January 2022.
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queries seems to be slightly higher. Furthermore, about 80% of the tasks in these multi-

tasking sessions are unrelated while 20% are of a hierarchical or sibling like nature. While

their initial session identification works by applying a temporal inactivity timeout, the use

of a Jaccard coefficient creates logically related segments.

The same methodology is repeated by Zhou et al. [298] in 2016. They initially define

a session as a set of queries within a certain time period meant to fulfil a single informa-

tion need. Sessions are constructed with a 45-minute inactivity timeout. For the logical

segments, a pairwise Jaccard index is calculated between all queries by a user and stored

in a similarity matrix. Then, sequential comparison between queries decides if they belong

to the same task when the similarity score is above a certain threshold. Afterwards, two

hierarchical clustering algorithms are applied to the tasks based on average and maximum

Jaccard values between the tasks. The authors report that 38.6% of all search sessions are

multi-tasking sessions, which is much higher than the numbers reported by Spink et al.

[243] (11.4%). They also report statistics comparing monotasking and multitasking ses-

sions: apparently, the number of queries and their respective length per task (1.43 to 1.47

and 7.3 to 7.6) stays the same and users spent more time overall and less time per task in

multitasking sessions. They acknowledge that their study only pays regard to query terms,

which is a strong limitation especially in product searches.

In addition to an extensive literature review, Gayo-Avello [80] also tried to answer

two research questions: how to best evaluate session-detection methods and what are the

most appropriate identification methods. The author proposes a new method for session

detection based on geometric interpretation of the time interval and the similarity between

queries. Following the common assumptions that longer time intervals between queries

indicate a lesser probability and that greater (lexical) similarity indicates a substantial

probability of belonging to the same session, the author combines time-based and lexical

distance. The actual algorithm normalizes temporal distance and lexical distance in the

range [0, 1]. Temporal distance is calculated by comparing the timestamps of two queries

and dividing the result by a predefined threshold for maximum session length – in this case,

24 hours. Lexical distance is calculated by comparing n-grams of queries and sessions. Each

time a new query comes up, its n-gram representation will be compared to the n-grams

of all previous queries in this session. This way, the method proposed gets two values in

the range [0, 1] for every pair of adjacent queries, which enables the algorithm to depict

the relation in a 2D-vector space. Centred on point [1, 1] in this space, the author choses

a unit circle enclosing both axes to define the space which indicates the same session.

Liao et al. [144] introduce ‘task trails’ as a new concept, where the term task equals

an atomic user information need. The authors remark that despite having seen a lot of

comparable research, analysis at the session or query levels may lose information compared

to the task level, as the search behaviour intertwines. Analysing a Bing interaction log with

half a billion sessions, they report that 30% of their mechanically divided sessions contain

multiple tasks and around 5% contain interleaved tasks. In their study, they compare the

impact of session trails, query trails and task trails among multiple use cases: determining

user satisfaction, predicting user interests and query suggestions.
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Sessions were segmented via the common inactivity timeout of 30 minutes. To identify

task trails, they first calculated the similarity between all query pairs within a mechanical

session by utilizing temporal and lexical features: temporal difference between queries,

Levenshtein distance before and after removing stop words, average rate of common terms,

rate of common characters, length of longest common substring and more. The features

were weighted with a linear SVM. Afterwards, a clustering algorithm, which they call

QTC (for Query Task Clustering), groups within-session queries into tasks, by modelling

an undirected graph structure and extracting all connected components as tasks, while

pruning weak edges where the similarity score falls below a threshold. The results of their

experiments are highly interesting:

1 determining user satisfaction based on query- or session-level parameters is not as

precise as basing it on task-level values

2 tasks are able to preserve topic similarity between query pairs

3 query-suggestion based on tasks delivers complementary results to other models

Although limiting themselves to within-session tasks, these findings imply potential for

more exploration. Systems can benefit from the additional sensitivity that task trails add

when trying to estimate user satisfaction.

Piwowarski et al. [209] aim to identify patterns of varying search behaviours. They

use the definition of query chains introduced by Radlinski and Joachims [215] to group

queries belonging to the same information need. To achieve this, a tree-based layered

BN is used to analyse the constructed query chains. Experiments were conducted on a

proprietary interaction log from a commercial search engine, containing 57 days of data.

The authors’ first step was to identify mechanical sessions using the common inactivity

timeout of 30 minutes, resulting in 65 million sessions. Based on this, they built query

chains in three steps: concatenating all atomic sessions into one sequence, segmenting this

with a global time threshold based on average inter-event time and further segmenting

this by calculating a threshold based on the lexical similarity of adjacent queries inside

the smaller segments. Lexical similarity is calculated based on the character n-grams of

the query-pair strings:

• cosine distance between the two vectors of character n-gram frequencies

• degree of inclusion between reference query and successor

• degree of inclusion between successor and reference query

The degree of inclusion represents the probability that a query’s character n-grams appear

in the respective counterpart. Analysing the new query chains, they report 1.2 queries per

chain with a standard deviation of 0.6, ending up with 19,196,791 query chains in total.

These chains are only able to connect adjacent tasks related to the same information

need, as there is no interleaving involved. Afterwards, the authors use their layered BN
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to develop a hierarchy of interactions of the user, similar to using implicit feedback. The

network basically keeps track of the states of discrete latent variables as a summary,

that is, it associates every (implicit) variable below a certain level to this level. Using

a classifier, they used the generated latent variables to assess relevance for documents

to successfully validate their model. Basically, their results indicate that predicting user

satisfaction should not happen at event level. The whole search process reflects satisfaction

much more accurately than focusing on single queries.

Depending on the definition, lexical similarity might be a good and easily implemented

tool to divide logs into logically related segments. Especially when considering reformu-

lations, complementary information like the Levenshtein distance or Jaccard indices are

powerful tools. When trying to determine the task or actual information need behind user

activity, simple lexical similarity should not be the only criteria [166]. Lexical similarity

basically only compares the strings or characters of a query. Relying solely on superfi-

cial text features might lead to mismatches. Some queries can be considered difficult, as

they are linguistically ambiguous and might not share any terms or lexical features [191].

Cross-session tasks or complex search tasks often suffer from this problem, as they typically

correspond to an overarching information need which might not be reflected in the queries

[131]. To elude the limitations of purely textual features, some works proposed aiming for

the comparison of query meanings instead of text similarity. Semantic similarity is slightly

more complex, but allows a much more precise connection of related interactions.

2.3.4 Semantic Similarity

The aim of Semantic similarity is not to achieve a direct comparison between queries

but to attain a contextual comparison. A classic example of semantic similarity comes

from Huang et al. [108], who apply language modelling to the task of session detection.

They treat a session as a sequence, using language modelling to estimate the probability

of an event following a sequence. Instead of word and term sequences, user interactions

are employed. They argue that, similar to natural language, when the entropy changes

(up to a certain threshold) in a sequence, a boundary can be set as the events are likely

to be associated with a new topic. They utilize the calculated uncertainty of an event

occurring. For the calculation of the entropy, n-gram language modelling is used. This

method estimates the probability of an event by considering n preceding events. They test

multiple n-gram models with varying performance. The results are promising, although

very sensitive to hyperparameters and the number of n. The same approach is extended

and successfully applied to database logs by Yao et al. [288]. Following up on the general

idea of this method, Chierichetti et al. [49] debate whether web users actually follow a

Markovian model in reality. The Markovian model assumes that a user’s visit on a web

page is only influenced by the previous page, any pages beforehand are not considered.

The authors suggest that variable-length Markov chains are preferable to traditional or

higher-order chains
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Other approaches do not utilize the recent history of the user, but instead enrich the

reference query with external information. In most cases, these approaches still rely on

lexical similarity. The difference is the conceptual level brought by utilizing external in-

formation to achieve a broader context for any query. Daoud et al. [58, 59] build query

and user profiles based on the Open Directory Project (ODP) ontology4. Sessions are then

detected by measuring shifts in the concept extracted from vectors in the ontology. A con-

ceptual correlation degree is calculated using the Kendall correlation measure between the

user profile up to a reference query and the new reference query, resulting in conceptually

related segments.

Li et al. [139] present a generative model utilizing topic membership and topic tran-

sition probabilities to segment interaction logs in search tasks and search missions. They

propose a generalized hidden semi-Markov model that estimates the membership of queries

topic with variational inference based on content and search behaviour. Using transition

probabilities, effectively it is able to determine search task hierarchies based on the so-

called search factors latent in the behavioural features.

Another variant is shown by Hua et al. [106]. Following the findings of Liao et al. [144],

their aim is to identify tasks to segment interaction logs using a combination of features.

They employ lexical features like Jaccard distance, temporal distance between queries and

conceptual features by obtaining concept clusters using the Probase knowledge database5

to calculate the similarity between query pairs. Afterwards, tasks are identified by im-

plementing a graph-based algorithm which they call SCM (Sequential Cut and Merge).

The algorithm takes predefined sessions as an input, builds query chains and calculates

the similarity between consecutive queries connected by an edge. If the similarity is above

a certain threshold, the connected queries are merged into a subtask (in a bag-of-words

representation). The subtasks are then modelled in another graph structure, and the sim-

ilarity between them is calculated and again merged if the similarity is above a certain

threshold.

Hienert and Kern [103] use information from a thesaurus and a digital library itself

to model logical sessions. By mining interactions, they use queries and viewed documents

to extract keywords from a thesaurus, then query a lookup table from the digital library

to get related categories for these keywords. By weighting the categories, they are able to

retain the most important one, representing a topic for each interaction. They segment ses-

sions topically by comparing subject areas and checking for Levenshtein distance between

adjacent queries. Evaluation was carried out manually by assessing logs from a specialized

digital library for social sciences with 100 sessions, although it is not clear how these were

initially segmented.

Zhang et al. [293] present a method for intent representations, employing a recurrent

architecture that learns query embeddings. These embeddings use implicit feedback in

the form of shared clicks on retrieved documents, therefore circumventing classical bag-

of-words problems like identifying lexically distant but semantically related terms. Using

4No longer accessible. Archived version available on https://dmoz-odp.org/, retrieved 8 December 2021.
5https://www.microsoft.com/en-us/research/project/probase/, retrieved 9 November 2021.
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these embeddings, it would be easily possible to group longer user tasks, although in their

study only the quality of representations was evaluated. For analysing search sessions, they

used the common 30-minute inactivity timeout. Somewhat similar to this is the proposal

by Singh et al. [233], where clickstream representations were used to construct unified

product embeddings, for example, in recommendations about similar products. However,

it is not clear how the input sessions were constructed. Also using embeddings, Völske et

al. [262] utilized the so-called Word Mover’s Distance (WMD) described by Kusner et al.

[132]. The WMD is basically the distance between the embeddings of two strings in the

vector space.

Wang and Lu [269] propose a complex search task model (CSTM), a model for grouping

queries into tasks and subtasks. The algorithm effectively extracts labels for different

subtasks to form the hierarchy of a complex search task. CSTM utilizes query features (i.e.

query relationships based on sessions with a 24-hour inactivity split) and external resources

aimed at the joint appearance of queries: taking data from search engine result pages

(SERPs) and from community question answering systems. A task-coherence measure is

calculated to form clusters, afterwards a Latent Dirichlet Allocation (LDA) model extracts

subtask goals. Their results indicate good performance, although the authors note multiple

problems. For one, subtasks could belong to different complex tasks. On the other hand,

some subtasks have to be performed sequentially, causing problems in recommending tasks.

They also acknowledge multilevel hierarchies of tasks instead of the simplified two-level

architecture.

Contrary to earlier methods, Ustinovskiy et al. [254] deal not only with queries but

also with browsing behaviour to identify logical sessions. Their algorithm uses 29 features

to decide whether two pages visited by a user belong to the same session. These include

URL features (i.e. cosine distance from tri-grams, length of the longest common substring),

textual features (using the cosine distance between terms extracted from the pages) and

temporal distances (time interval, pages visited in-between) on all pairs of pages where

one of the pages precedes the other. Afterwards, they model the segmentation task of the

classifier output as an optimization problem. They aim for the maximum joint probability

of the partition, proposing several algorithms to tackle the calculation problem.

Aswadallah et al. [12] work on building complex search tasks based on sessions as well.

In their study, they define sessions with the 30-minute inactivity timeout and construct

multiple definitions from this. A topically-coherent session consists of only one or at least

related information needs within the same overarching session. A search task refers to an

atomical information need that again may result in multiple queries. ‘A complex search

task is a multi-aspect or a multi-step information need consisting of a set of related tasks’

[12, p. 831]. Their algorithm is basically an association graph that uses entity represen-

tations of queries to extract and connect multiple tasks based on dependency rules. This

results in high precision in terms of tasks but has its drawbacks on recall. Also, their pre-

processing limits the outcome. Similar studies have been presented by Verma and Yilmaz

[259, 260].
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Jones and Klinkner [120] take a deep dive into the hierarchical relationships between

queries belonging to the same information need. Their work is among the most influential in

this field of research, as they are among the first to acknowledge the probability of multiple

tasks related to a single information need. They analyse the effect of typical timeouts used

for segmenting logs into sessions, perform a hierarchical analysis of search tasks to identify

short- and longer-term goals as well as compare previously published approaches that have

been used to identify search tasks. As a starting point, they distinguish between search

sessions, search goals and search missions. Sessions here are just a basic physical unit – the

number of interactions by a user within a fixed time window. There is no information need

involved as in other definitions, as the needs are defined via goals and missions. Search

goals is the atomic component, representing a single information need reflected in one or

more queries. The missions are the overarching concept, connecting related information

needs together from one or more goals.

For their experiments, they used 312 user sessions from Yahoo over the course of three

days. The data was extensively manually annotated to reflect search goals and search

missions for every query. After annotation, they had 312 user sessions with 1,820 missions,

2,922 goals and 8,226 queries. Descriptive statistics revealed, for example, that 63% of the

annotated search goals were tackled within one minute, but 15% spanned time periods

longer than 30 minutes. It is also reported that 16% of goals and 17% of missions are

revisited or interleaved with other goals and missions. They also tested different timeout

values in their data – from assuming every interaction can be considered separately to

calculated thresholds (five and 13 minutes) to longer periods ranging from 30 to 120

minutes. The results indicate that the choice of timeout can be arbitrary, as different

timeouts give similar accuracy regarding the goals and missions. The interleaving nature

of queries within the evolving process of pursuing an information need must be considered,

otherwise tasks will be disconnected from one another. They contribute the automatic

mapping of queries to search goals and missions. Assuming goals and missions are pursued

interleavingly, every single query has to be compared with one another. This results in

305,946 queries. They formulated this as a classification problem, for which they used a

logistical regression with 10-fold cross-validation on the dataset. They used features from

four different areas:

• temporal (inter-query time, adjacency)

• lexical (Jaccard distance between sets of words, Levenshtein edit distance)

• co-occurrence (using a bigger sample of query pairs to identify the likelihood of them

occurring together)

• semantic (distance between documents retrieved from both queries of a pair)

The authors found they received the best results when features from all areas were included

compared to testing with different sets of combinations, reaching an accuracy of 89% in

all four tasks (mission / goal boundary, same mission / goal). Used alone, the lexical
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measures performed best. They also found it easier to detect boundaries between queries

than matching pairs to the same goal or mission. The results indicate that their hierarchical

model may help to identify whether a user is on a simple or more complex task. With the

inclusion of boundaries, it was possible to evaluate the complexity of a task.

Lucchese et al. [154] deem the well-known time-based limits for sessions unsuitable

when trying to identify tasks because they a) break potential longer information needs

and b) mix multiple and interleaving needs. The authors focus on identifying task-based

sessions by estimating the similarity of query pairs, following the general idea of Jones and

Klinkner [120]. For their theoretical model, they differentiate between mechanical sessions

with an inactivity timeout of 26 minutes (after measuring the distribution of time gaps

between all queries in the log) and task-based logical sessions, for which they acknowledge

the existence of different interleaving needs. This means that queries belonging to the same

need are not necessarily consecutive. The experiments are based on a 2006 AOL search

engine query log, consisting of roughly 20 million queries by 657,000 users over the course

of three months.

As a first step, the authors created a ground-truth dataset by manually annotating a

sample of 2,004 queries, ending up with a total of 1,424 queries in 307 sessions after pro-

cessing. In these mechanical sessions, there were 554 task-based sessions with 2.56 queries

on average per task. Furthermore, 50% of the time-gap sessions contained only a single

task, with an average of 1.8 tasks per session. But, interestingly, 74% of web queries were

embedded in multiple tasks. Afterwards, they experimented with four different cluster-

ing algorithms and compared the results to the ground-truth (using k-means clustering,

HDBSCAN and graph-based variants).

Feature-wise, lexical features like Jaccard indices on trigrams and Levenshtein distance

are used as well as semantic-based features using external knowledge sources (Wikipedia

and Wiktionary). The algorithm computes distances between query pairs that are then

used for clustering. As it stands, utilizing external sources like Wikipedia to understand

semantic relationships between queries seems to be very beneficial in terms of constructing

task-based sessions. The same algorithm is used by Feild and Allan [76] to decide if two

queries belong to the same task. In this study, the authors aim for query recommendations

based on task relatedness to improve user support.

Hagen et al. [89] propose a cascading method to connect consecutive queries with the

same information need. They also try to quantify the relationship between runtime im-

provements and accuracy measures. Their general assumption is that there are different

categories that grow in complexity when considering session boundaries, so these different

categories should be checked sequentially. Checking first for lexical and afterwards for se-

mantic conceptual similarity follows that premise. The authors perform the following steps

cascadingly: 1. query comparison with lexical similarity, 2. geometric approach from [80],

3. Explicit Semantic Analysis (ESA) using tf/idf and Wikipedia articles and 4. comparing

shared search results. The same approach is then revisited in 2013 [88]. They construct

search missions using an improved version of the cascading approach. Their strategy con-

sists of five steps: time-based with a 90-minute timeout, simple patterns (keywords), lexical
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similarity and time, using Wikipedia as an external index with ESA (based on research

by Gabrilovich and Markovitch [79]) and using Linked Open Data (LOD) as an external

index, comparing the first 10 search results. The actual improvements can be found in

extending the geometric method and using LOD as another level of semantic similarity.

Built on the approaches presented by Gayo-Avello [80] and Hagen et al. [88, 89], Gomes

et al. [83] use the same method, but add an additional layer if a reliable decision cannot

be made. Their algorithm consists of three steps: using a per-user threshold for temporal

limits, Jaccard similarity coefficient and character 3- and 4-grams, they merge queries if

the results are above certain thresholds depending on the type of feature. If the decision

cannot be reliably made, they adopt the cascading approach from Hagen et al. [88, 89],

and use pretrained FastText embeddings6 to measure semantic similarity between queries

and sessions in several cascading steps. The last step, if a decision is still unreliable, clicked

URLs are considered using lexical distance between them. Experiments were made on the

same annotated dataset used by Gayo-Avello [80]. For evaluation, they again followed

Gayo-Avello using precision and recall in addition to an F1-score. The results indicate

improvements over the compared baselines.

Kotov et al. [131] combine multiple sessions with regard to the underlying information

with the aim of representing cross-session tasks. Their reasoning is that information needs

may span multiple sessions, which makes it harder for search systems to support the

user. The article focuses on two specific problems. In the first task, the goal is to identify

all queries from previous search sessions belonging to the same task – here, this task is

referred to what they call an early-dominant task. Early-dominant means in this case that

the queries belong to the ‘first task that spans at least k distinct queries’ [131, p. 8] during

the first two days of a user log with the same task label in the query stream of a user.

The query stream is the sequence of all the user’s queries. The second problem is focused

on task continuation. Given an early-dominant task label and the last query belonging to

this task, the goal is to predict if the user returns to this task with future queries.

The experiments were conducted on an anonymized query log generated by a browser

plugin over the course of one week. Sessions are identified as sequences of queries using a

30-minute inactivity timeout. Only users with at least five search sessions and at least 10

queries overall are analysed. Secondly, all queries were expanded using techniques presented

by Radlinski et al. [216]. Also, pairs of queries are compared with the help of cluster

techniques to ascertain the strength of association between them. The result of this step is

a bag-of-words representation of each query using the similarity score between the query

pairs. In the third step of the process, the query pairs are compared with two similarity

measures and, if the similarity score is above a certain threshold, both are assigned to

the same label. In the end, two datasets are used for further processing. To tackle the

aforementioned tasks, the authors formulate each one as a binary classification problem.

By using different features calculated for each query and query pair, the authors were able

to successfully prove the ability to effectively model cross-session information needs.

6Based on the results from Bojanowski et al. [27], available on https://github.com/facebookresearch/

fastText, retrieved 9 December 2021.
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Similarly, Agichtein et al. [4] predicted search task continuation. The authors analysed

a query log from Bing with 1,191 users and 28,474 queries over the course of one week

to characterize intents, motivations and topics of long-running tasks and present multiple

techniques for predicting if a searcher will continue working on a task within a certain

time frame. Sessions were defined with the common 30-minute inactivity timeout. Fol-

lowing Kotov et al. [131] with the idea of early-dominant tasks, they manually annotated

the log with specific labels describing the type and nature of the task, i.e. fact-finding,

time sensitivity, complexity and the likelihood of the task being continued at a later time.

Afterwards, they added topics to the tasks by employing a classifier utilizing external

sources and analysed their task-continuation likelihood as well. With the gained knowl-

edge in mind, they presented a classifier based on a gradient-boosted decision tree using

multiple features founded on session history, search topic, user engagement and user profile

history. By testing against different baselines and using feature ablation, they were able

to outperform the baselines in prediction quality as well as to identify the most important

features for predicting task continuation (user history, task engagement).

Another take on semantically related task identification is provided by Sen et al. [229],

who use temporal-lexical similarity to construct semantic similarity. They utilize context

features to embed query terms in a vector space in order to be able to identify tasks that

span across multiple sessions. Their goal is to group queries by logically connected tasks

instead of mechanically constructed sessions, whereby tasks are defined as ‘a multi-aspect

or a multi-step information need consisting of a set of related subtasks’ [229, p. 283],

following the definition of Aswadallah et al. [12] where sessions are a set of queries within

a certain time period. To achieve the segmentation into cross-session tasks, they propose a

method that utilizes an embedding technique driven by semantics as well as a completely

unsupervised clustering algorithm. Basically, the authors use the confines of mechanical

sessions created with a 26-minute inactivity timeout to create their word embeddings.

The boundaries of a session represent the temporal context, while as a next step, in-

session task clustering (performed with features such as lexical similarity between query

terms and similarity between the top 1,000 retrieved results) provides further restrictions

on the embedding context. The clustering algorithm to segment the query vectors is then

carried out with one of the approaches presented by Lucchese et al. [154, 155], but globally

over the complete set of queries. Experiments were conducted on the AOL query log

with 1,424 queries, annotated manually with cross-session tasks. Compared to several

unsupervised baselines using their own implementation but different embeddings and the

original algorithm from Lucchese et al. [155], their tempo-lexical context significantly

improves the resulting cluster quality.

Contrary to binary same-task classifications across sessions such as those by Kotov

et al. [131] and Agichtein et al. [4], more recent studies have tried to extract tasks and,

more importantly, hierarchical relationships between tasks. As Mehrotra and Yilmaz [180]

described, while the binary same-task classifications are ‘good at linking a new query to

an on-going task, often these query links form long chains which result in a task cluster

containing queries from many potentially different tasks’ [180, p. 286].
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Du et al. [69] also observe that binary same-task classification on query pairs works

well for assigning queries to existing tasks, although it tends to construct never-ending

tasks. To capture the evolving nature of user intents and query topics, the authors pro-

pose a long short-term memory (LSTM) neural network with an attention mechanism for

session identification. The algorithm is able to segment sessions by learning which context

is relevant for which query through word and character embeddings. While input comes in

the form of query sequences, the output of the model produces smaller chunks of adjacent

queries that belong to the same task. The authors consider these as the atomic information

need of a user, which corresponds to a common definition of sessions. Afterwards, these

session segments are clustered using one of the approaches presented by Lucchese et al.

[154, 155]. The results of the two datasets were evaluated with promising results compared

to typical session baselines. The authors argue that errors made while identifying sessions

in the first step are magnified by the clustering process in the second step; therefore, these

effects will also be projected into any downstream application, a statement which is also

proven later in this dissertation. Also using a sequential model and comparing Du et al. as

a baseline, Lugo et al. [157] report similarly promising results using a bidirectional recur-

rent neural network (RNN) to eventually detect search task boundaries. Their algorithm

works by comparing the vector embedding representations of adjacent query pairs, even

without additional query context. The same authors also present a recurrent deep clus-

tering algorithm [158] reusing their previous segmentation technique, providing advanced

and performant methodology to extract search tasks.

Wang et al. [266] aim to model semantic relationships in cross-session tasks. The need

to identify the boundaries of original mechanical sessions is mitigated by that. To identify

long-term search tasks, a semi-supervised clustering model based on latent structural SVM

is applied. The major difference in their approach is modelling the task identification

as a structural learning problem determining the dependency among queries instead of

pair-wise binary classification as shown in [131]. They define sessions with the common

inactivity timeout threshold of 30 minutes and search tasks as the overarching concept

that may span multiple sessions. Interestingly, they note that their clustering algorithm

does not optimize for a higher in-cluster similarity – this means, queries belonging to the

same task do not necessarily have to be lexically similar, instead, the algorithm optimizes

for what they call the best link, finding the strongest link between a reference query and

the queries in a cluster. At least one query in the cluster has to have a strong relationship

with the reference query. They model this assumption as a latent structural SVM, calling

it bestlink SVM. They also present ‘weak’ supervision signals: a set of annotation rules

are used to capture same-task queries, which proves to work well as a substitute compared

to manual annotating, as the SVM relies on a fully annotated log. Results indicate, for

example, that more than 57.2% of queries span across different sessions while 31.1% are

interleaving.

Following a similar idea, Mehrotra and Yilmaz [181] introduce ‘task embeddings’,

partly based on earlier studies [175, 176, 179, 180]. Their motivation is that mechanical ses-

sions tend to contain multiple tasks, and that, therefore, using a task-based segmentation

32



is more reasonable for any IR task than a simple mechanical representation. In the context

of a reference search, for example, mechanical segmentation would pollute the data with

non-related information. They borrow the approach proposed by Wang et al. [266], using

latent structural SVMs. After extracting the tasks, the word embeddings are generated for

all queries in a user query sequence, but only considering surrounding queries related to

the same task. Experimenting on a proprietary dataset from a commercial search engine

consisting of 24 million rows in eight million predefined search sessions, they build task

embeddings with a context window size of two, resulting in four words as context per

query term. They compared global embeddings (based on the documents returned by the

queries), session embeddings (trained on the predefined search sessions), random (trained

on randomly shuffled queries as context) as well as their own task-based embeddings. Re-

sults confirm their hypothesis – using sessions as context does indeed pollute the context

of a query.

In search of the best way to understand, represent and utilize user intent from user

interaction logs, Mehrotra [173] proposes a non-parametric Bayesian approach with multi-

ple additions. In the dissertation, the author extracts search tasks – defined as the atomic

information need resulting in one or more queries, following the definition of Jones and

Klinkner [120] – using a latent structural SVM. Afterwards, Mehrotra presents further

approaches for extracting subtasks and extracting hierarchies of search tasks and their re-

spective subtasks. Throughout the experiments, sessions were identified with the 30-minute

inactivity timeout.

Li et al. [138] view search tasks ‘as a sequence of semantically related queries linked by

influence’ [138, p. 732]. They assume that queries which are not fulfilling an information

need will trigger a new semantically related query. Task identification and labelling is then

based on a probabilistic model using LDA modelling and Hawkes processes. Basically, the

Hawkes processes are based on the aforementioned assumption that sequences of queries

have some influence among each other depending on the information need. The LDA model

in this case exploits the (temporal) co-occurrence among the user query base for latent

information.

Considering the comparisons with natural language and how events in sequences af-

fect each other on a conceptual level, using semantic similarity seems to be a good tool

for estimating boundaries. By utilizing contextual information to enrich query represen-

tations, it is possible to detect broader topics which makes it fairly easy to detect logical

sessions. However, a problem might be hidden in the hierarchical structure of queries, tasks

and overarching information needs. Murray et al. [193] state that relying on semantics is

dangerously circular as it might ‘conceal persistence and recurrence of users’ long-term

information needs’ [193, p. 2]. This is true for binary classification as well as for any clus-

tering algorithm. Relying on semantics alone might not be enough, however, since it tends

to generate never-ending sessions by aggregating new and seemingly related events to old

sessions because of semantics, even though they might tend to a new topic.
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2.4 Evaluating Session-Identification Approaches

Evaluation is supposed to be an integral part of any research project. Only by standardized

methods it is possible to determine the quality of different approaches. The next section

will present some commonly used datasets and methods in the area of session identification,

as well as discuss why evaluation for session identification is a problem in itself. First, some

widely used datasets are introduced. Following this, a short overview of common measures

and methods to estimate the quality of the approaches is introduced. As the area is quite

limited, the section focuses only on the most important works.

2.4.1 Datasets

The most common method to evaluate the accuracy and correctness of detected sessions is

the comparison with manually labelled gold-standard datasets [88]. First, a gold-standard

dataset is created – either by taking an existing one or manually annotating the one that

is already being worked with. After that, the output of the algorithm is compared to this

manually created gold standard in terms of the commonly used measures for evaluating

IR systems. A few of the more commonly used datasets regarded as a gold standard are

presented immediately below.

The first part of this section presents the most commonly used datasets for session

identification. Often, studies in this field of research use proprietary datasets from com-

mercial search engines, e-commerce web sites or from the logs of university websites [238].

In these cases, it is often not clear how the datasets are structured and what their proper-

ties are. While some studies try to give an exploratory overview of the data, in many cases

this is not enough. It can be particularly challenging to reproduce results from these arti-

cles. When considering the implementation of use cases while using a proprietary dataset,

there are gaps that make it difficult to understand the actual operating principle of the

algorithm. This is particularly impactful when no information about the session identifi-

cation is given at all. As an example, Mei et al. [183] tested their sequential framework

on two proprietary datasets collected from search engine logs. One is segmented into all

interactions from a user during the course of a day, containing 1.2 million queries and

related clicks. The other contains 17,355 queries annotated by human judges with task

labels, segmented into arbitrary search sessions. A more precise definition of these sessions

is not given. They evaluated their set of tasks using a simple baseline with accuracy, recall

and precision. The outcome is not really comparable though, as the structure of the data

is not easily comprehensible. Missing information about datasets and sessions is a common

problem [6, 11, 15, 22, 26, 101, 105, 130, 134, 136, 150, 152, 174, 221, 235, 251, 253, 264,

285], making it a real challenge to compare the algorithms or put them into context.

Interestingly, studies that focus solely on the identification of session concepts or session

analysis often use subsets of the same publicly released datasets. These interaction logs

usually originally stem from around the 2000s, first presented in the early studies using

interaction logs and reused again in the following years. The datasets are almost exclusively

focused on queries from search engines. One of the early providers was the Excite search
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engine7, providing several studies with query interaction data from around 1997 to 2001

[111, 112, 240, 246]. Others used data from the AltaVista search engine8 [115, 232, 245]

or the Dogpile meta search engine9 [113, 114]. The problem with these datasets is that

they are comparatively small and focused on one day, or are, as of now, outdated. The

size of the dataset, often limited to one day, is a problem when considering the variety of

session definitions. Working on the assumption that sessions may span several days, these

datasets are insufficient. Likewise, as these early studies mostly focus on the rather narrow

end of session definitions, they might suffice.

Jones and Klinkner [120] tested their algorithm for hierarchical task identification on

one week of logs from the Yahoo!10 search engine, as one of the authors was employed

at Yahoo! during the time of research. Their actual dataset is relatively small though,

consisting of a sample of sessions from 312 users over the course of three days. Other

studies also worked with data from Yahoo! [67, 121, 210], although these were mostly

proprietary as well.

In 2007, one of the most famous (and most used) datasets was released. The AOL

dataset was publicly released by the AOL11 search engine for academic research purposes.

It contains over 30 million queries from 650,000 users taken from a three-month sample.

The dataset had some serious flaws, though. As it was not properly anonymized, multiple

users could be identified through personal information in the query strings 12. This led to

much criticism and discussions about the ethical component when working with this kind

of data. Still, the dataset or at least samples from it, have been used time and again over

the years [80, 90, 155, 262]. Gayo-Avello [80] created a gold standard for this dataset.

Hagen et al. [88, 89] used this gold standard created by Gayo-Avello. They explain

that the evaluation of sessions or missions is usually done by evaluating the results of an

algorithm against manually annotated logs. The authors also rightfully point out that there

are only two publicly available datasets with a gold standard: the one from Gayo-Avello

from 2009 and another one created by Lucchese et al. [154] in 2011. The latter is also

a sample from the AOL log, consisting of 1,424 queries from 13 users, with mechanical

sessions detected with a 26-minute inactivity timeout. Both gold-standard datasets are

still used today, for example by Völske et al. [262] in 2019.

Völske et al. [262] test three datasets of task-based queries, defined with different

characteristics: 1) a session-based dataset originating from the AOL log, 2) a dataset based

on TREC queries and 3) a dataset based on WikiHow13 queries. For 1, they utilized the

already-published datasets described by Lucchese et al. [154] and Hagen et al. [88]. They

took the queries already divided into search sessions / search missions and annotated them

manually with task information. Identical queries were merged. Afterwards, all queries

7http://www.excite.com/, retrieved 5 January 2021.
8No longer accessible.
9https://www.dogpile.com/, retrieved 5 January 2021.
10https://de.yahoo.com/, retrieved 15 November 2021.
11https://www.aol.de, retrieved 15 November 2021.
12https://en.wikipedia.org/wiki/AOL_search_data_leak, retrieved 15 November 2021.
13https://www.wikihow.com/, retrieved 15 November 2021.
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were issued to Google and Bing search engines to crawl search suggests, adding these as

new queries to the same task. The resulting dataset consists of 41,780 queries aligned to

1,423 tasks. The dataset in 2 is scraped from the TREC session tracks 2012–2014, from

the TREC task tracks 2015 and 2016 and Webis-TRC-12. Again, every query was issued

to the search engines to collect new queries via the search suggests, resulting in 47,514

queries in 276 tasks. For 3, WikiHow was crawled following the method explained by Yang

and Nyberg [287]. After collecting the search suggests, the resulting dataset consisted of

119,292 queries in 7,202 tasks.

A newer dataset comes from the Russian search engine Yandex14. This publicly avail-

able dataset15 comprises 30 days of search activity, released as part of the Web Search

Click Data workshop (WSCD 2014)16 in 2014. It contains over 20 million queries from

around five million users. It is used, for example, by Halder et al. [90].

With the shift to Interactive Information Retrieval (IIR) instead of traditional evalu-

ation, new datasets were published as part of the TREC17 conferences. Important are the

TREC Session tracks [39] and the TREC Task tracks [124]. The Session Track ran from

2010 to 2014, focusing on the creation of test collections that allow the evaluation of actual

user behaviour during a search. The goal is to make the evaluation of IR systems possible

over sessions instead of the classic ad-hoc retrieval, where queries are treated individually.

The datasets were created by showing users a description of a topic, a search engine and a

list of 10 ranked results with the possibility for further pagination. In total, four datasets

were created. The Task Track is similar, but its aims are to evaluate how well systems may

understand the underlying tasks of a user’s query or behaviour. These datasets consist of

different tasks with a related query and possible candidate queries.

There are also newer developments of reusable datasets, although these are not widely

used as of now. They also mostly focus on specific use cases rather than session detection,

but may be used for that as well. Chen et al. [44], for example, present a new e-commerce

dataset18 containing a large number of search sessions. They preprocess in multiple steps

including a 30-minute inactivity timeout and the removal of sessions with only one or

more than 10 queries. Brost et al. [32] publish a music streaming session dataset for public

use in research areas like music recommendation. The dataset contains logs with a session

identifier, timestamp, contextual information, track information and interaction types.

The predefined listening sessions are segmented by a 60-second inactivity timeout. Mayr

and Kacem [171] publish a dataset with retrieval sessions over the course of one year.

14https://yandex.com/, retrieved 15 November 2021.
15https://www.kaggle.com/c/yandex-personalized-web-search-challenge/overview, retrieved 15

November 2021.
16http://www.wsdm-conference.org/2014/accepted-workshops/, retrieved 15 November 2021.
17https://trec.nist.gov/, retrieved 15 November 2021.
18http://www.thuir.cn/tiangong-st/, retrieved 15 November 2021.
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The authors identified sessions with a 20-minute inactivity timeout, resulting in 484,449

retrieval sessions. The dataset is based on a academic search engine called Sowiport19.

All these datasets are somewhat different from each other. As Hagen et al. [88] point

out, even the reusable gold standards have several drawbacks. Regarding the one from

Gayo-Avello [80], they criticize several preprocessing decisions (i.e. the removal of time-

stamps or the sampling quality of the subset) and, more importantly, the notion of the

session. The aim of Gayo-Avello was for sessions that connect consecutive queries related

to the same information need – there are no real hierarchies. More or less the same is

stated about the gold standard of Lucchese et al. [154], where mechanical sessions were

used to collate a dataset from a small number of users.

As a consequence of the many assumptions, there are numerous different definitions

leading to completely different gold standards. These different definitions also have an

impact on the actual methods for evaluation. The so-called gold standards are not neces-

sarily gold standards, but are more like a variety of different facets of gold standards. The

different definitions lead to different standards.

2.4.2 Methods

Evaluating sessions is challenging, not least because the evaluation is completely dependent

on what the assumptions for the resulting sessions are. Still, gold standards are applied

in many works; sometimes with more, sometimes with less deviations [120, 131, 180, 254].

A short but informative overview of the development is presented by Gayo-Avello in 2009

[80]. According to this author, the procedure was first suggested by He and Göker [95]

in 2000 (although they did not apply a gold standard themselves). Gold standards are

regarded as valid, although they have problematic implications.

Consequently, He et al. [96] introduced multiple measures for the comparison of session-

detection algorithms to a manually labelled gold-standard dataset. They utilize Precision,

Recall and the F-measure, adopting the well-known measures to their own algorithm.

For the adaptation, they use their newly introduced concepts of session shift and session

continuation, referring to a possible session change between consecutive interactions. Using

their algorithm, they predict whether the time gap between activities contains either a shift

or a continuation, which is reflected in their evaluation measures. The actual measures are

calculated as follows:

• Precision

P =
Nshift&correct

Nshift +Ncont

• Recall

R =
Nshift&correct

Ntrue shift
19https://www.hbk-bs.de/einrichtungen/bibliothek/recherche/fachdatenbanken-alphabetisch/

sowiport-csa-sozialwissenschaftliche-datenbanken/index.php, retrieved 1 December 2021.

Sowiport itself is no longer accessible.
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• F-measure

Fβ =
(1 + β2)PR

β2P +R

Nshift represents the number of detected session shifts, Ncont a detected continuation,

Nshift&correct the number of correctly identified session shifts and Ntrue shift the number

of shifts identified by human judges. β is a control parameter to weigh up the importance

of either Precision or Recall.

Precision and Recall are the basic and most frequently used measures for evaluation in

IR [170]. In IR, Precision relates to the number of retrieved documents that are relevant

in relation to all retrieved documents while Recall represents the number of retrieved

relevant documents from all relevant documents. Transferred to the context of session

identification, the formulas are adapted to the scenario. Precision is the number of time

gaps between consecutive activities that contain correctly identified shifts by both judges

and the algorithm in relation to the sum of all identified session shifts. Recall is the amount

of correctly identified shifts by both judges and the algorithm in relation to the sum of all

session shifts agreed upon by the human judges.

The F-measure considers Precision as well as Recall, weighted by β. He et al. [96] set

β to 1.5 to put more weight on the recall. According to them, high recall equals a low

number of falsely connected sessions, which is an outcome preferable to wrongly connecting

unrelated sessions. This type of error is called a type A error – falsely splitting activities

into different sessions although they belong to the same topic. The other variant is a type

B error: missing the split of unrelated activities.

Gayo-Avello [80] picks up on these measures. The author evaluates the effectiveness of

the tested session-identification method by using these formulas and adopting additional

measures from Makhoul et al. [167]. According to Gayo-Avello [80], Makhoul et al. [167]

point out that the F-measure is unbalanced as it ignores certain errors. As a result, the error

rate (ERR) and slot error rate (SER) were introduced. These additional measures originate

from the problem of Chinese word segmentation. Both are error measures adjusted to the

context of segmentation quality by Gayo-Avello. The ERR measures the ratio of deletion

(type B) and insertion errors (type A) compared to the number of actual correct shifts in

sessions. SER is an adapted version of ERR, and more balanced regarding the relation of

the different error types. The final formulas proposed by Gayo-Avello are set out below:

• Precision

P =
Nshift&correct

Nshift

• Recall

R =
Nshift&correct

Ntrue shift

• F-measure

F = 2
Nshift&correct

Ntrue shift +Nshift
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• ERR

ERR =
Ntrue shift +Nshift − 2Nshift&correct

Ntrue shift +Nshift −Nshift&correct

• SER

SER =
Ntrue shift +Nshift − 2Nshift&correct

Ntrue shift

The variables used are the same as originally introduced by He et al. [96]. Note that the

equation for Precision is a corrected version20 of the original proposition [96]. ERR and

SER are adapted to represent the possible errors in session identification (i.e. type A and

type B errors). Both ERR and SER are rarely used in other works.

Lucchese et al. [154] also compare their automatically extracted tasks to a manually

labelled ground-truth. For this to work, they differentiate between predicted classes (the

task-based logical sessions identified by the tested algorithms) and actual classes (those

detected by human judges). For evaluation, they calculate the F-measure separately for

every detected task and average the value over all tasks (by weighing the value according

to the size of the task) to evaluate the algorithm. They also propose using the Rand index

and the Jaccard index to calculate similarity between interaction pairs that have different

tasks or classes with regards to the manually labelled ground-truth. The following formulas

are used:

• F-measure

Fi,j =
2× pi,j × ri,j
pi,j + ri,j

• Rand index

R =
f00 + f11

f00 + f01 + f10 + f11

• Jaccard index

J =
+ff11

f01 + f10 + f11

Precision pi,j is calculated as ‘the fraction of a task that consists of objects of a specified

class’ [154, p. 284], while recall ri,j represents the share of objects of a specified class that

a task contains. f00 is the number of interaction pairs having a different class and task,

f01 the number of pairs having a different class but the same task, f10 the number of pairs

with the same class but a different task and f11 the number of pairs with the same class

and the same task. Lucchese et al. [154] employ these measures to their own algorithms

as well as several baselines like mechanical sessions in different temporal variations.

Hua et al. [106] developed an algorithm to extract conceptually related, interleaved

tasks from session data. For evaluation, they looked at the effectiveness of various classifiers

on subtask creation, and the accuracy of extracted tasks by comparing baselines with their

algorithm. For the first evaluation task, error rate is used as a measure, because it can be

denoted as the misclassification rate of edges between graph structures. To measure the

20Apparently, there was a misprint in the work of He et al. [96], later corrected by Ozmutlu and Çavdur

[199].
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accuracy of algorithms in the second evaluation task, the F-measure and Jaccard index

are used. As they base their evaluation on a manually labelled dataset, the F-measure can

easily be calculated by comparing the manually and automatically set tasks at the query

level. The Jaccard index compares these as well, but at the query-pair level. All measures

are then aggregated at the session level.

Agichtein et al. [4] also use Precision, Recall and the F-measure. The authors compare

their binary classifier to the algorithm presented in [131] and human judges (given the

first two days of the dataset) by evaluating the positive class of task continuations and

the area under the curve using one week of data. They only allowed their algorithm to use

two weeks of user history prior to the analysed week of data in the query log, although

they tested it with different combinations of history and features.

Other works have tried approaching evaluation in other ways than a gold-standard

dataset. Instead of manually labelling the sessions, He and Göker [95] analysed the number

of events per session in relation to the inactivity timeout they used, aiming for sessions

with a small number of activities – an assumption based on former research. Similarly,

Jansen et al. [113] measured the effects of their session definitions on session length, which

they related to the number of requests and session duration, and again referred to the

time spent. However, these methods are outliers compared to the comparisons using a

gold standard.

In another example, Mehrzadi and Feitelson [182] evaluated their method on the AOL

dataset in two ways: looking at the results in isolation and comparing it to human judge-

ment. In the first step, they plotted the number of sessions per session length in minutes,

resulting in a much smoother graph, without obvious artificial breaks, in comparison to

the hard, global timeouts. In a second step, which compared human-annotated sessions,

they came to relatively consistent results, although their algorithm often set the boundary

lower than the human judges. They also argued that evaluating a time-based boundary

with time-based methods might result in a circular argument, which is why they also used

n-grams between adjacent queries using heat maps. This approach reported mixed results;

sometimes, a topical switch was cut, sometimes not. The authors argued, however, that

detecting topical shifts might add useful information.

Another slightly different angle is given by Liao et al. [144]. Instead of comparing the

results of their task extraction to manually annotated sessions, they chose to manually

label the relationship of query pairs. This way, they were able to learn the importance

of different query features (temporal and lexical) using an SVM. By having the manually

labelled ground-truth of similarity between query pairs, they were able to plot the weight of

query features, thereby enabling the estimation of the performance of their classification

model. Satisfied with the performance of their classifier, they omitted to evaluate the

performance of the clustering algorithm responsible for the actual grouping of query pairs

into tasks, however, since that was not the focus of their paper. Instead, they applied

their trails (query, sessions and tasks) to different use cases to see how they would fare in

comparison. For this, they utilized several models to estimate user satisfaction and predict

user interests and query suggestions.
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The evaluation of session-identification methods is as challenging as finding a valid way

to identify them in the first place. The process of evaluation is directly dependent on the

underlying assumptions of what a session is, be it one constructed mechanically or logically.

A descriptive example would be the discrepancy between sessions considered as all actions

related to an individual information need (for simplicity: without interruption) compared

to complex search tasks consisting of multiple such information needs. Given these two

assumptions, a human judge would likely annotate different segments, which in turn would

lead to comparison results that are actually rather unusable. This is what makes finding a

standard way to evaluate session detection so challenging. Even the choice of baselines is

also actually dependent on the basic assumption. Comparisons are unnecessary since the

initial assumption is likely to be different.

Mehrzadi and Feitelson [182] already pointed to this issue in 2012. They stated that it

is not yet clear if human judgement is a good way for creating a ground-truth. Different

human judges might behave differently. There are countermeasures to this, but they are

not applied regularly. This problem of data quality is not easily solvable, since the actual

definition of a session has still not been fixed. Rac [214] described this problem from

another perspective: human judges are not alone in having problems in objectively deciding

on session boundaries; the user’s intent in a session – that is, the nature of intent being

pursued – might lead to completely different boundaries.

These types of data quality issues can also be found directly in the datasets. Consid-

ering the state of research, there is a lack of adequate data [182]. The available datasets

differ from one another in impactful ways or lack other important features. Mehrzadi and

Feitelson [182] criticize how timestamps often only denote the beginning of an interaction

(a common problem in interaction logs) and may therefore disrupt the accuracy of the

resulting picture. Another point here is that clicks following a query are often considered

just an attribute of that query – there may be no individual log entry for every interaction.

The lack of standards in evaluation techniques is a persistent problem. Already in

2003, Spiliopoulou et al. report that ‘although data preparation is essential for knowledge

discovery, studies on the evaluation of data preparation methods are comparatively scarce’

[238, p. 5]. Fatima et al. [75] reaffirm this in 2016 by reporting that the state of research

in session identification (and, consequentially the evaluation of these methods) is still

immature despite immense efforts.

In many cases, studies work with some data, often randomly sampled or arbitrarily

preprocessed, use it for training or analysis and seem to be happy when the results indicate

a well-working algorithm. There is a lack of critical review of these processes, especially

considering their importance. This dissertation provides a comprehensive comparison of

different session-identification approaches along with an objective way of showing differ-

ences.
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2.5 Using Session Data in Machine Learning

This section provides only a brief overview of potential use cases for applying the concept

of sessions in a production environment since this is not the main focus of the dissertation.

The section is intended to give an idea of what is possible using different segmentation and

how these use cases may benefit from different techniques. The section is also intended

to reiterate the fact that many of these use cases apply session-identification approaches

without sufficient forethought, as indicated in [62].

Overall, there is a great variety of possible applications following different directions

of research and commercial areas. Roughly following the topic classification of Jiang et

al. [116], three general areas are covered: recommendation and personalization, query

support and user analysis. These areas either try to help users get what they want or

improve a system’s performance, be it commercially or with regards to usability and user

experience. Recommendation and personalization are classic fields of application. Query

support is about helping the user in their search by supporting them with suggestions or

utilizing the user’s historical interactions to improve the system’s retrieval performance.

Common examples are query suggestion, term substitution, query classification, document

understanding or re-ranking of search results. User analysis tries to understand all aspects

of a user. This may be understanding the information needs of individual users or whole

user groups, clustering users or predicting their (navigational) behaviour.

2.5.1 Recommendation and Personalization

Recommendation is probably one of the most important applications of web usage mining

in general, and of the implementation of user-behaviour data in particular. According to

Quadrana et al. [212], recommender systems belong to the most successful applications

utilizing user data to enhance systems in practice. There are several reasons for this: one

reason is commercial, in that recommendations help users navigate to find popular items,

which often goes hand in hand with with a personalization system that only recommends

items the user is personally interested in [212].

The success of these systems is explained by the sheer amount of information users

have to deal with today. As Batmaz et al. say, ‘people confront a colossal amount of data

sources which confuses them to find useful and appropriate content and results in the in-

formation overload problem’ [16, p. 1]. The information overload may have many negative

implications on user behaviour from a system point of view, which is why recommendation

systems function as a way of filtering all of the available information. Users get recom-

mendations for interesting items, which leads to a better user experience because they can

directly jump to engaging content.

In theory, the content or items that are recommended could be anything. The range

of applications is fairly wide. Items could be news articles, music, books or even travel

tips. Depending on the system, any content can be recommended. In e-commerce systems

such as the case study experimented with in this research, recommended items would be

categories or products.
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In general, there are three different ways to incorporate recommendation algorithms

into a system. These are based on the way the algorithm makes recommendations, or

more specifically, what kind of data the algorithm uses. Typically, the systems are split

into multiple types [2, 16]: content-based, collaborative filtering and hybrid methods.

Content-based recommendations are the most direct approach to recommendation.

The algorithm collects information about items and users and creates profiles that may

be of interest to the reference user at hand. The goal is to recommend items that are

similar to items the user has interacted with in the past. In general, interactions signalling

a positive outcome are meant here, for example, buying products in the same category,

watching multiple movies of the same genre or rating books from a certain author.

These examples make it obvious that the input for any algorithm is heavily dependent

on the nature of the user’s interactions. For example, in a recommendation for a movie, it

does not necessarily have to be the same genre – the input could also consider runtime,

actors, directors or even language or country of production. The list of possible attributes is

almost inexhaustible and affects the quality of the input data and therefore the algorithm:

whether a system uses unstructured or structured data, numeric or categorical variables

is important [206].

Learning these attributes from the interaction histories on a per-user basis has several

downsides. Content-based recommender systems are able to learn some kind of user profile

and are effective at making new recommendations on the basis of this, but they usually

cannot make new personalized user predictions [16]. They have difficulties in modelling

specific user interests when there is not enough information to distinguish said interests

[206]. A solution to circumvent this problem could be collaborative filtering. In classic

collaborative filtering systems, users are recommended items that are preferred by other

users [71]. The underlying assumption is that users who liked the same items at some point

in time will probably enjoy similar items in the future [228]. Hybrid approaches combine

the internal concepts of both systems to avoid their respective limitations [16].

Recent advances have focused on the implementation of deep learning algorithms on

recommendation tasks. The introduction of algorithms that benefit from big data and

the rise of new hardware such as more advanced graphical processing units lead to new

possibilities not only regarding algorithms but also regarding the input data. Traditionally,

academic research is often based on the typical user-item-matrix problem, considering only

one type of interaction feedback per pair [212]. New types of input are now considered

that were not used before.

Quadrana et al. [212] introduce sequence-aware recommender systems, that deal with

sequences instead of matrixes. Sequences mean, for example, the interaction history of a

user (usually in the form of a multidimensional vector instead of a matrix). They emphasize

that sequential data is far more common in practice compared to the theoretical problems

that are worked on in academic research. With this statement in mind, the authors try

to categorize sequence-aware recommendation systems into the following classes: Last-N

interaction recommendation, and session-aware and session-based recommendations.
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Last-N interaction-based recommendation systems would use a specified number of

interactions for future recommendations. They state that such limits may be necessary in

a situation where certain past interactions are not relevant for future interactions [212].

Session-aware recommendation uses information about past sessions and also the current

session of the user to make recommendations. A session-based recommendation would only

use the current session as input to make predictions and recommendations for the user.

These three recommendation types are exemplary for this dissertation, since they deal

with exactly the kind of data that is researched here. Session-based recommendations

assume that only the current session is known. As Wu et al. [283] put it, most systems

assume that the user’s history is known, although that is often not the case in real pro-

duction environments. But recommendations will most likely be improved when the user’s

actual state up to the current moment is known [235], which is done in the session-aware

recommendations.

Session-aware and last-n recommendations are equally interesting because they work

with different underlying assumptions that have a direct influence on the topic of this

research. Having differently formed segments would be more likely to have an impact on

the outcome of the algorithm, which is the main hypothesis of both session-aware and

last-N recommendation systems. This is especially true where sequential data is the input

and there is a dependency between the values of a vector.

There are many different examples of algorithms that use sequential session data to

feed their recommendation algorithms. The following overview makes no claim for com-

pleteness, since this is not the main topic of this research. Rather, the overview is intended

to provide a glimpse into the state of research on (sequential) recommendation systems

and how these systems work among the differing session concepts.

Rethinking the impact of different session-segmentation concepts is especially impor-

tant since there seems to have been little forethought invested in the input used for al-

gorithms [62]. Zhao et al. [294] have noted the lack of research into how modelling as-

sumptions affect the quality or accuracy of a recommendation system. Their study looks

at multiple modelling assumptions on user-interaction data and the effect these have on

user recommendations. Although the modelling is different from the actual segmentation,

the implication is still true: not enough research is being put into the input data. Epure

et al. [73] present a good example of this. They use Markov processes to recommend news

articles based on different levels of user behaviour. Short-, medium- and long-term reading

interests are considered. In their definition, short-term only considers popular articles on

a per-article level (i.e. staying in the same category), while medium- and long-term are

depending on the user interaction history. They find that different combinations of these

interest levels lead to a higher response rate and performance of the recommendations.

Different parameters are considered to determine the segments used for the interest levels,

but all user sessions are simply calculated with a 60-minute inactivity timeout. A similar

goal is aimed for by Song et al. [236], who try to diversify categories in a personalized-

content recommendation system. They estimate the interest of a user at different levels

and stages of a session, using a 20-minute inactivity timeout to determine these sessions.
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Wang et al. [267] follow a slightly different approach to tackle various problems of recom-

mendation systems, such as the cold-start problem. They build graphs from user sessions

in order to construct item embeddings, comparable to the word embedding concept pro-

posed by Mikolov et al. [186]. All sessions used to compute these graphs were segmented

by a 60-minute inactivity timeout. Building the graphs on different versions of the input

would most likely lead to different results.

Despite some other approaches, the overwhelming majority of recent articles dealing

with recommendation tasks focuses on the utilization of deep learning methods. In par-

ticular, the implementation of recurrent neural networks (RNNs) seems to be the main

direction of research because they are a perfect fit for sequential data. As Patterson and

Gibson [205] explore, while RNNs belong to the family of feed-forward neural networks,

they are technically able to include temporal dependency between steps or values. Being

able to model temporal dependency in sequential data is ideally suited to this kind of

task. It is superior to comparable techniques such as Markov models because RNNs can

incorporate long-term dependencies in the input data much better.

The amount of literature using RNNs is consequently high. The first authors to apply

RNNs to this domain were probably Hidasi et al. [102] in 2016. They proposed an RNN

for session-based recommendations and tested it on two datasets with predefined session

boundaries. Despite delivering good results, the model is built solely on the basis of pre-

defined sessions. It is unclear how these sessions are constructed, which might suffice for

session-based algorithms but makes it hard to measure the impact of session boundaries in

other applications. The improvements brought by RNNs compared to other models used

in these kinds of tasks are notable, nonetheless. Shortly after, Twardowski [252] proposes

an RNN architecture that utilizes contextual item and event information from the dataset.

Information about how the user interacts with items is fed into the RNN and used to make

predictions. Sessions are defined as uninterrupted sequences of activity with a 30-minute

inactivity timeout. The contextual information improves the results compared to baselines

(logically depending on the richness of the dataset).

Ruocco et al. [225] also note the effectiveness of RNNs for session-based recommenda-

tions. They work on a problem comparable to the common cold-start problem – when only

the current session is available as input it is hard to produce valuable recommendations

at the start of a session. To overcome this, the authors present their idea of developing a

second RNN that is capable of learning a representation of recent sessions to predict the

interests and a starting point in the coming session. They call this the inter-intra RNN.

Vector representations of previous sessions are used to model the output of the first RNN

(the inter-session RNN), which they use as the initial state of the intra-session RNN. They

experiment on two different datasets. One from Reddit21, where they applied a timeout

heuristic of 60 minutes to model sessions. The other from Last.FM22, where a 30-minute

timeout was applied. Afterwards, they did some fine-tuning to make their algorithm work.

The first step was to remove consecutive repeated actions. Since RNNs need a maximum

21https://www.reddit.com/, retrieved 5 December 2021.
22https://www.last.fm/, retrieved 1 December 2021.

45

https://www.reddit.com/
https://www.last.fm/


length of sequences, they also set the maximum length of sessions to consist of 20 in-

teractions. Sessions consisting of over 20 and under 40 interactions were split into two

sessions. Longer sessions were assumed to be bot sessions, and thus were removed from

the dataset. Also, sessions with only one interaction and users with less than three sessions

were removed. Compared to the other models, their architecture considerably improves the

outcome, especially regarding the cold-start problem. Interestingly, despite using an RNN

for the reason that it perceives the notion of sequential order and takes the importance

of that into account, the authors do not put much effort into the session generation. This

is even more important since they use the session representations in their inter-session

RNN, therefore possibly changing the outcome completely. They note that ‘many other

models use the relaxed assumption that the order does not matter’ [225, p. 2], but do

not acknowledge an important parameter for this. Their work was partly reproduced in

Section 6.2 as part of the evaluation process of this dissertation.

Very similar to this idea is the algorithm presented by Quadrana et al. [213] from 2017.

They also use a hierarchical RNN where one layer is supposed to model an inter-session

representation, personalizing the intra-session RNN with cross-session information. Ses-

sions are again defined as groups of interactions within a certain time frame. Differences

are to be found in the representation of the previous sessions, where Quadrana et al.

only used the last hidden state of the single intra-session RNNs as well as using some

different parameters when transferring this information to the current intra-session RNN.

The model was tested on two datasets as well. One is from Xing23 (from the RecSys Cal-

lenge 201624), the other is a proprietary dataset from YouTube25. The logs were manually

divided into sessions with a 30-minute inactivity timeout. Preprocessing was similar to

Ruocco et al. [225], as the authors decided to delete repeated actions within a session and

low-frequency interactions. Sessions with less than three interactions were removed as well

as users with less than five sessions. Evaluation was done against several baselines with

Recall@5, Precision@5 and MRR@5 (mean reciprocal rank). The authors reported strong

improvements compared to the baselines. They argued that the length of user history

has a significant effect on the quality of recommendations. They also analysed the session

density, measuring the impact of events in a session on recommendation quality. Results

indicate that, depending on the properties of the dataset, longer sessions tend to work

better.

Again, very similar, Vassøy et al. [257] proposed a joint model based on a hierarchi-

cal RNN. They used the same approach as Ruocco et al. [225], using an RNN to create

an inter-session representation and propagate the output to the intra-session RNN. Ad-

ditionally, they added context representations for items, inter-session gap-time and the

user, as well as a model for time and loss. A different approach is presented by Ren et

al. [220]. Here, the authors argued that keeping a complete representation of long-term

behaviour in mind when predicting future user interactions might lead to improved results.

23https://www.xing.com/, retrieved 15 November 2021.
24http://2016.recsyschallenge.com/, retrieved 15 November 2021.
25https://www.youtube.com/, retrieved 15 November 2021.
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They provided a memory network model that maintains a hierarchical memory storage

for every user, updating it periodically, while basically utilizing all sequential behaviour

by a user. Similarly, Pi et al. [208] argued for the separation of long-term user interest

modelling and prediction. They presented a ‘user interest centre’ capable of storing and

updating interests on unlimited length sequences and a memory-model to use for real-time

predictions. The same is true for Kaya and Bridge [126], who provided an intent-aware

recommendation system in the domain of movies.

There are many other examples that employ recommendation algorithms on the basis

of sessionized data. As has been shown, most articles use a simple session definition, often

employing a temporal mechanical approach. Other articles test their algorithms on data

with sessions where there’s no clear information about how these sessions are defined: [6,

11, 15, 22, 26, 101, 105, 130, 134, 136, 150, 152, 174, 221, 235, 251, 253, 264, 285].

Overall, several problems can be identified here. For one, many of these algorithms rely

on the sequential structure of the data, therefore implying a dependency between the indi-

vidual values of the sequence. The majority use some form of mechanical session separated

by a temporal inactivity constraint. This is a clear restriction on the input data, which

is highly likely to have an unknown impact on the outcome. For strictly session-based

algorithms, the limitation on temporal sessions may be suitable as these types of recom-

mendation algorithms will get their input most likely on the fly while the user is browsing:

having always only the current interaction sequence of a user as the input may make the

segmentation of said input less important. Nevertheless, the segmentation still may have

an impact on the training of any algorithm. Arbitrarily dividing sessions by an arbitrarily

chosen timeout might influence the outcome in unforeseeable ways. Additionally, training

an algorithm on data where the session definition is not known is questionable.

2.5.2 Making Queries Work

Comparable to recommendations, IR as a general area has seen a lot of research into the

utilization of interaction logs. Considering the relationship between user, issued queries,

retrieval system and documents, it is reasonable to use the interaction logs of the user

to improve the queries and, ultimately, the retrieval system. The following section shows

some insights into how queries can be improved using information from sessionized data.

The possible applications for sessions in the area of query improvements are wide.

There are many easy targets for improvement using even the short-term history of a user.

The same point of criticism as mentioned before is still valid: using the same session

definition for every application is questionable and may not correctly reflect the quality

of the algorithm.

The original idea of improving queries is an intuitive continuation of IIR. Having to

hand multiple queries and potential reformulations leads to a variety of possible applica-

tions. Query expansion and substitution, query classification and the re-ranking of search

results are discussed briefly below.
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Query expansion, term substitution or query suggestions are probably the most com-

mon use cases. These all boil down to improving the user’s current search terms to hope-

fully achieve a better retrieval performance. This could be either by automatically ex-

panding the query terms via analysing implicit feedback on the search results [56, 57],

using [107] or generating new [121] terms from similar older queries, re-ranking results by

utilizing implicit feedback [3, 118, 119] or clustering queries by result co-occurrences for

new query suggestions. The use cases here are implemented using different strategies, as

depicted in the following examples.

Xiang et al. [286] presented a context-aware ranking system, for which they devised

multiple principles describing the relationships between adjacent queries in a session. Ses-

sions are segmented by a 30-minute inactivity timeout. Applied to ranking models, the

results seemed promising. Shen et al. [230] propose a theoretic framework for utilizing

implicit feedback to user and context models. To achieve this, they utilized the immediate

search context, meaning the preceding queries and any clicked documents. They compared

representations of the queries – consisting of title and snippets for the first 50 search re-

sults – using cosine similarity to circumvent vocabulary mismatch in favour of using query

text alone. Their algorithm is dynamic, updating relevance ranking of unseen documents

based on the collected implicit feedback of the user. They trained a client-side agent that

creates a user model and acts as a support, updating its own statistics about the user

model and the queries, and which re-ranks documents accordingly.

Huang et al. [107] use a five-minute timeout in their study. Based on a study of

2,369,282 query transactions from several popular search engines from Taiwan, the authors

introduced a new recommendation algorithm based on the search context from similar user

sessions instead of using the documents from the query results.

Filali et al. [77] focused on generating query reformulations using the search context of

a user to get better search results for ambiguous queries. They modelled a query history-

reformulation algorithm that updated the reformulation scores of a set of candidate refor-

mulations to enable removal of less relevant queries from the list. The algorithm compared

the similarity of rewrite candidates to the current query with the (average) similarity of

said candidates to all related queries in the search history, adding weight based on the

similarity of the old queries to the current one. It used the search context as implicit

feedback for adding new candidates. Their model was based on an arbitrarily long search

history – it can be as long or as short as needed, there are no restrictions. In their evalua-

tion, they analysed one month of search logs from Yahoo with two million automatically

labelled examples, alongside a sample of 600 history-reformulations assessed by experts.

The search history was summarized with a most relevant bag-of-words-model. They found

giving weight to the search history beneficial: In their experiments, they found that the

relation of candidate queries to history was as important as the similarity to the current

reference query.

Cao et al. [37] presented a context-aware query suggestion algorithm. First, their algo-

rithm mined so-called query concepts to avoid sparsity of context-data. Therefore, a click-

through bipartite graph was developed, where query nodes represented unique queries,
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URL nodes represented unique URLs and edges between them were created if URL u was

clicked after the a query q. Weight was given by the number of clicks over the complete

log. Afterwards, they ran a self-developed clustering algorithm to find similar queries and

put them into a query concept. Then, sessions were segmented from their logs using the

30-minute inactivity timeout to build sequences of queries, which were then modelled into

a concept sequence suffix tree. They experimented on a proprietary commercial search

engine dataset with 1,812,563,301 queries in 840,356,624 sessions. The results indicated

that their approach performed well compared to simple baselines (for example, adjacency

in the overall log to the reference query, n-grams related to the reference query).

Many other models use either Markov processes or also RNNs. Often, these types of

algorithms are applied to create context embeddings that can then be utilized for finding

similar query terms or to improve the understanding of the search context. For example,

Dehgani et al. [60] tackled the problem of query suggestion in a session-based context by

using the user’s current session to generate new query terms. They embedded the session

context with sequence-to-sequence embedding using an RNN. Sessions were defined via 30-

minute inactivity timeouts. Similarly, Mehrotra and Yilmaz [181] used task embeddings to

learn query representations that were then used to generate better query suggestions. They

used predefined sessions without clearly stating how these were defined. Kannadasan and

Aslanyan [123] worked on personalized query auto-completion using within-session embed-

dings from queries. Tested on an eBay26 dataset using the common 30-minute inactivity

timeout, the authors embedded multiple features to model the user context, revealing sig-

nificant improvements. Völske et al. [262] introduced a new abstraction of task detection

to enhance query suggestions. In their study, they mapped reference queries to already

identified logical sessions with task notations, defined across all user queries related to a

task. To support individual users, all data that related to a task were leveraged. They

tried several approaches for the mapping, including calculating the WMD based on word

embeddings.

Halder et al. [90] proposed a sequence-to-sequence-based neural architecture to identify

the information needs of users. Their model is based on the query history of the user

within one search session as well as on representations of the results the user explored.

Their reasoning was that a search session is like the conversation between two agents: the

user with their information need reflected in the queries and the search engine with its

respective result sets. Having received an answer, the user might want to edit the query,

thereby creating what they call ‘query edits’. These edits are defined by the removal or

adjustment of query terms. The authors estimated the probability of the retention of each

query term based on the user’s past interactions during the current session, essentially by

selecting the important terms in the current query. By being able to predict which words

might be dropped, they declared that the remaining words were more aligned with the

information need of the user. For their experiments, real-world data sets from AOL and

Yandex were used. Although exploring vastly heterogeneous data regarding demography

26https://www.ebay.com/, retrieved 5 January 2022.
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and temporal characteristics, their experiments relied solely on the given session definition

of the datasets, thereby limiting their predictions to single, self-contained visits. Their

preprocessing also added to that problem, as they kept only a specific subset of sessions.

To test their proposed methods, Halder et. al. compared multiple baseline models with

their own approach on two tasks: 1) predicting how a user would edit a query and 2)

selection of the next query out of a given list of possibilities. Their approach outperformed

the tested baselines.

The variability of algorithms is as wide as the area of recommendation. The same is

true for the applicability of many results in this area, whereby, frequently, the authors

implement their approaches in different systems. The outcome of these algorithms ap-

pears to be versatile and useful for different use cases. The flexibility of the algorithms is

impressive; it is therefore puzzling to see that the majority of algorithms are tested with

mechanically identified sessions with arbitrarily chosen inactivity timeouts. When devel-

oping an algorithm that utilizes context information in any way, the said context should

receive the same degree of thought as the algorithm itself.

2.5.3 Understanding Users and their Needs

The same dissonance can be observed in the area of user analysis. Generally, the research

literature aims to better understand the user’s satisfaction and behaviour. In the context

of Information Retrieval, this is mainly defined as search satisfaction, which generally

means the fulfilment of a user’s information need [78]. Studies include those that try to

understand the level of satisfaction among users [78, 93, 94], aim to predict the actual

interest or information need of the user [273] or analyse and understand user behaviour

to improve the website [277]. Other studies analyse interaction logs to more accurately

describe user behaviour [255] or cluster different user groups or even sessions [9, 248, 292].

Users’ experience on different devices is the subject of research as well [92, 284]. Another

important direction is the prediction of the next interaction in a sequence of interactions

[23, 204, 234, 292].

The latter is of particular importance to many modern systems. Being able to predict

the next interaction helps systems to improve their support of the user. This could be

reflected in actively guiding the user to the content they are looking for or in knowing

when to display certain advertisements. For example, if a system could predict that a

user was considering buying a product in a session with a certain probability, it could

compliment that behaviour by simplifying the process to perform a purchase.

Many studies have attempted to describe user behaviour. Following research into online

shopping behaviour [24, 110], Moe et al. [187] described two basic types of search after

analysing clickstreams: exploratory search and goal-directed search. While the latter refers

to focused behaviour with a planned purchase in mind or in order to collect information

to make a potential purchase, the former might be less specific and directed. The authors

described this as ‘stimulus-driven’ instead of ‘goal-driven’, whereby any stimulus might

lead to impulsive purchases. The authors combined these underlying behavioural types
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with the likelihood of making a purchase, resulting in four categories of shopping strategies:

directed buying, search/deliberation, hedonic browsing and knowledge building [187, p. 30].

To enable classification of sessions into these categories, they devised a set of session-level

metrics and performed a k-means cluster analysis of the data, coming up with four to five

clusters. Unfortunately, it is not clear how they defined their sessions, which makes the

results unreliable.

White and Drucker [275] provided analysis of user-behaviour variability based on log

files, for which they extracted ‘search trails’. These are segments starting with a (di-

rected) query and ending with a defined point of termination, for which they used some

basic assumptions: for example, returning to the search engine homepage, checking email,

visiting a bookmark and a 30-minute inactivity timeout. The experiments were performed

by tracking the interactions of 2,000 users over a period of time, resulting in insights into

different behaviours such as particularly consistent or particularly variable interaction be-

haviour. The same definitions were reused later by White and Morris [278] and White et

al. [272, 276] to research the behaviour of search engine users and predict interest models.

Bandari et al. [14] proposed a method for categorizing user sessions. They considered

every session as a document and every interaction as a term within this document. Their

approach included finding the term frequency–inverse document frequency (tf-idf) weights

for every interaction in a session, normalizing the resulting vector, reducing dimensions via

principal component analysis (PCA) and clustering the result vectors with a k-medoids

algorithm. Afterwards, the resulting clusters were classified to be able to interpret the

outcome regarding specific activities on the platform. Sessions were segmented by a timeout

calculated via the inter-activity time distribution of user events.

A common, more modern means of achieving reliable user representation or, more

specifically, a session representation, is by again using embeddings. Context embeddings

are, just like in the fields of recommendations and supporting query performance, the

preliminary method used to determine user behaviour. The predominant methods used to

create sequence-to-sequence embeddings seem again to be RNNs and LSTMs.

A recent example is presented by Bigon et al. [23], who employed an LSTM architecture

with additional steps to predict whether a user is likely to make a purchase within a

session. They also compare the output of the language models with Markov chains. The

input data comes from a European e-commerce website, segmented into sessions with

a 30-minute inactivity timeout. The research of Gu et al. [86] looks at hierarchical user

profiling to identify interests in different granularities. As categories and products are often

organized in a tree structure, a system should be able to provide different granularity of

recommendations based on user behaviour. Therefore, they present a Pyramid RNN with

a Behaviour-LSTM. Every experiment was based on predefined sessions, the boundaries

of which are unclear.

Other articles utilize Markov processes instead of language models and RNNs. Patil

and Patil [204] tested multiple Markov models to predict browsing behaviour. Sessions

were segmented by the common 30-minute inactivity timeout. Based on the work of Jones

and Klinkner [120], Hassan et al. [93] used the same hierarchy of search tasks and search
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goals, and the procedure of automatically segmenting interaction logs into this hierarchy,

to predict the goal-level success of search tasks. Using a Markov model, they were able

to evaluate individual user’s search task success instead of having to analyse a generic

user and generic relevance measures at query-level. Cherniak and Bridgewater [48] mod-

elled variable-length Markov chains, augmented with the inclusion of browsing intents,

to predict buying behaviour. For their experiments, they assumed that users pursue ex-

actly one certain goal per session. Every session is constructed with the usual 30-minute

inactivity timeout, using data from seven days of user logs from eBay27. They compared

two approaches: each buyer session representing a single intent, and each individual buyer

session as a model event to predict the next interaction in a user’s path, raising accuracy

by 300% when using the first approach. They inferred with these results that it was better

to consider modelling sessions as a whole than to look at individual actions.

This literature review has indicated the wide variety of methods in use. Sessions are

used as input data for all kinds of applications, whether to support user behaviour or

to try to understand it. Much of the research focuses on the algorithms though, not so

much on the input data. Many examples simply use the 30-minute inactivity timeout or

a variant without considering potentially different results with a different sessionization.

What follows in this dissertation provides a comprehensive overview of the different

session-identification approaches, comparing them using three different use cases, to prove

that the input data has a significant impact on algorithmic performance.

27https://www.ebay.com/, retrieved 5 January 2022.
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Chapter 3

Case Study: E-Commerce

Platform

3.1 System Overview

This dissertation addresses the research questions with a case study. Using the example

of an information system on the Internet, the proposed methods are tested and all results

evaluated. The case study is based on data extracted from log files on www.idealo.de (re-

trieved 10 December 2021). This German price-comparison e-commerce platform, main-

tained by idealo Internet GmbH (company with limited liability), was founded in 2000

with the self-proclaimed mission to support users in finding the best price when buying

online products. Since then, the company has grown, employing over 1,100 employees and

with an Internet presence in multiple countries. The German website is among the most

popular e-commerce portals in Germany, attracting around 1.9 million visits per day. The

overall strategy is to be the starting place for online shoppers – users should always start

at idealo and check for prices during their journey. The company claims to be a neutral

and transparent provider of information about the market situation of any product; as

they do not allow shops to buy higher positions in their price lists, only the actual price

comparison of products is relevant to shoppers before placing their order at the shop with

the best offer1.

The website is a pure price comparison platform. The company does not run their own

warehouses or sell products as as an online shop would. As a price comparison platform,

they only list offers from online shops. Users can visit the system to find the best price for

any given product and use idealo as a stepping stone to the shop with the best offer. From a

content point of view, the website is basically a universal catalogue. The database contains

entries for probably every type of category and product purchasable on the Internet. These

entries are maintained by subject-specific content management teams in order to offer not

only the best prices but also comprehensive information about the product itself. The

inventory and the related content are, therefore, one of the most important aspects of

1Information is taken from https://www.idealo.de/unternehmen/ueber-uns/, retrieved 1 November

2021.
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the business. Only if the website provides an adequate and up-to-date overview of the

market will it be able to assist in any potential purchase a user might want to make. The

investment in keeping up with new trends and offering not only pricing information but

also product information, provides many possibilities for interaction during any shopping

journey.

The company strives to inform their users about all aspects of a product or products

before they buy anything. As one of the most popular e-commerce websites in Germany,

the platform receives huge amounts of traffic. This has led to an addition to the business

model, away from a pure price comparison platform. Originally, the idealo business model

consisted only of shops listing their offers, meaning that every time a user clicked on an

offer the shop payed a small commission to idealo. However, since 2015, idealo has added

the new Direktkauf (direct purchase) feature. This new model is comparable to an online

marketplace where users can make orders via idealo as the facilitator. This means that

idealo then takes over and runs the complete transaction with the shop. The main benefit

for the user is that only one contact – with idealo – is needed, not multiple accounts with

multiple shops. Since its introduction, the Direktkauf has seen steady growth and is now

another important business case in combination with the classic transfer-to-shop model.

Aside from the core concept of the price comparison, idealo has some other notable

features. The most prominent one is the idealo account. It allows the registered user to

set up a wish list and to save all their information for orders in one place. All related

information is also synchronized between different devices – mobile phones, for example.

The wish list provides an overview of all saved products along with a price history and

the current price. There is also the possibility to adjust another of idealo’s features – the

price alert. The price alert is one of the oldest services provided by the portal. This feature

allows the registered user to be notified via email if a product reaches a specified price.

It adds another layer to the self-declared goal of offering the user assistance in any phase

of the buying decision. Aside from the website, idealo also maintains applications for iOS

and Android. In appearance and usability, those are very close to the web presence.

3.2 Website Structure

The following section describes how the website is structured, explaining every significant

page type and its function. As the portal is constantly in development, the pages are living

objects, which get updated from time to time as required by the business. This might lead

to differences in description and the actual appearance online. This also applies to the

different pages themselves – the portal might create new page types or delete others. The

following description therefore applies only to the dataset used in this dissertation, which

contains the complete year 2018.

In theory, the current state of idealo resembles the basic concept of a department store.

Where one would normally have thematically related groceries in a structured physical

environment, idealo provides a similar set-up online. There is no physical representation
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Figure 3.1: idealo Category Tree: Root = Root Category, Sub = Subcategory, PC = Product Category.

as such, but the website structure can be visualized as a large tree with multiple branches.

Figure 3.1 depicts this structure.

The index page is the homepage. All other pages are connected to this page. The

homepage allows access to all other pages as well as to organizational and administrative

pages like the imprint, job offers or the sitemap. Below the homepage are the different levels

of the tree. The first level consists of the root categories, marked as ‘Root’ in the figure.

There are multiple root categories with different topical and technical specifics. Below the

root level are usually the subcategories, marked as ‘Sub’. These represent another level

of detail and divide the root categories into more precise topical areas. The lowest level

consists of the product categories, which contain actual product pages, marked as PC. The

different levels and eventual special cases will be described in the following paragraphs.

The homepage is the anchor page for all other levels. As visible in Figure 3.2, the

prominent idealo header dominates the site. Below the logo are quick links to the other

idealo domains: flight booking and travel accommodation. It provides the user with multi-

ple possibilities for navigating through the portal. On the left is a drop-down menu opening

to navigation of the different root categories linked to the homepage. Every root category

has its own row with quick links to the most popular categories. This enables the user to

easily browse along the category tree – either by starting on one of the root categories or

by directly diving deeper. In the middle is the search bar. To the right of the header are

links to the wish list and the user account page.

Below the navigation and the header is a seasonal teaser, advertising specific categories

that are relevant at the time. In Figure 3.2, there is a banner for Christmas. Most of the

time, these teaser banners provide a possibility to navigate quickly to popular seasonal

categories. The rest of the start page consists of different objects supposed to help the

user in browsing the page and be able to quickly reach the desired pages. In Figure 3.2,

there is an object for the most popular products. When revisiting idealo on the same
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Figure 3.2: Example of idealo’s homepage.

device or browser while not deleting saved cookies, these objects are supplemented with

personalized recommendations related to the last visited products and categories.

From the homepage and according to what is shown in Figure 3.1, the category tree

unfolds into different sublevels with the root categories being the first level. As the name

implies, these root categories are the foundation of the tree, representing general topics

of content. There are multiple root categories (13 different ones in the analysed dataset).

They fulfil the function of a hub, containing several subcategories related to the respective

content topic. Subcategories are the next conceptual level in the category tree. Usually,

multiple subcategories are connected to one root category. Like root categories, subcat-

egories can also contain subcategories as shown for Root 5 in Figure 3.1; there is no

hard restriction on the amount of levels in the tree. The lowest level are always product

categories though.

A special case is depicted in the fourth branch of root categories in Figure 3.1. This

branch represents the so-called open catalogue. If an offer is too ambiguous or unique to

assign it to a product or a category, it will be mapped to this root category. There are

no subcategories, product categories or products in here, only unassigned offers. This root

category is only accessible via search – there is no way of browsing to it.

Figure 3.3 shows the root category Elektroartikel (electronics) with the related subcat-

egories. Below the idealo header at the top of the page is a navigational link chain, showing

the level of depth according to the category tree. This offers another way of browsing the

site, displayed on every other page as well (subcategories, product categories or products).

On a root category page are several related subcategories like Computer (computing) or
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Figure 3.3: Example of root category Elektroartikel (electronics).

Telekommunikation (telecommunications) as well as the occasional product category like

Kopfhörer (headphones). From a design perspective, there is no real difference between

the product tiles (images) or subcategories: for the first, top manufacturers are displayed

below the category name, for the latter, the underlying categories are displayed. This can

also be seen in Figure 3.1 in the example of the root 3. The root category here has different

subcategories attached to it as well as a product category.

There are also different levels of subcategories. One of the iconic examples for this

is the subcategory Hifi & Audio (home audio & HiFi), which itself is as big as a root

category. Containing more subcategories like Musikinstrumente (musical instruments),

this subcategory level is fairly widespread with a lot of additional downward levels. As

can be seen in this example, subcategories are basically like root categories. There are no

products, only additional subcategories or product categories at the lowest level of the

category tree.

The structure of the idealo category tree is the result of a qualitative survey, research

with focus groups and card sorting tests and also the work of the content department.

The different category levels are supposed to feel as intuitive as possible. To achieve this,

some categories are functionally connected to their original root but also displayed in a

different branch to reach a broader audience. An example would be the product category

Babyschalen & Kindersitze (car seats), which is originally connected to Baby & Kind

(baby & child) but is also displayed in Auto & Motorrad (car & motorcycle). This is also

the reason for some of the product categories at the root level.
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Figure 3.4: Example of product category Fernseher (TVs).

In theory, product categories are the lowest level of the category tree. This type of category

is basically comparable to the display window of a physical shop or the grocery shelves

and cold cabinets in supermarkets. Figure 3.4 shows the general structure of the product

category Fernseher (TVs).

Below the header, navigation and sorting drop-down menu are two objects – the prod-

uct display and the filters. Being the lowest level, product categories contain products,

shown as the tiles. The product tiles contain the same information regardless of category.

There is the heart symbol for adding an item to the wish list, an image of the prod-

uct, some product details always beginning with the product type, a rating if present,

the number of offers and the price range. The product types are another level below the

product categories – essentially splitting the products into thematically related groups.

For the example category Fernseher (TVs), product types include 4K-Fernseher (4K TV)

and Full-HD-Fernseher (full-HD TV) among others. They do not have to be mutually

exclusive, but may be.

On the left-hand side are filters. These are generated from the product information

maintained by the content management teams. The content experts are responsible for

choosing important filters that are relevant to users searching for certain products. They

have to be meaningful from a content perspective as well as specific enough for the prod-

ucts and categories to be indexed by search engines. This is especially important for the

product types so that users looking for 4K-Fernseher (4K TV) on any search engine can

find their way to the prefiltered Fernseher (TVs) site on idealo. Aside from search engine

optimization (SEO), filters are a way to browse categories. By utilizing the product in-
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formation, they essentially divide products into groups with different properties. A user

can drill down the assigned products in a category to a set with attributes fitting to their

needs.

Below the filters and the products on the category page, there is usually an advisory

text or a buyer’s guide. The intention of these texts is to introduce the content of the

category, helping the user to find the right item. Depending on the category, they vary in

length and depth. They may explain technical details, unclear differences between filters

or recommend specific brands or products. Often, there is also a glossary at the end,

explaining the most important category-specific attributes in short paragraphs for quick

access. These texts do not only appear on category pages, but may also be displayed

on pages filtered with any filter such as product types2, manufacturer3, or collection4.

Whether a page receives a text is based on the popularity of the respective items or

keywords. A keyword refers to a term with a high search volume on search engines. This

naturally implies that the texts are not only written to guide the user but also for SEO

purposes, as editorial content has a positive effect on the ranking of the search engine’s

results page.

The product categories contain the product pages, organized by product types in what

resembles even more detailed, smaller categories. The product pages are the heart of the

platform as they represent the core business of idealo. They are the most visited pages

and the strongest ranking ones on search engines. Figure 3.5 on the next page shows a

generic product page for an electric guitar. The figure shows the most common type of

product page with no variants and no parent product. These ‘non-varied’ products have

no direct relation to any other product. ‘Main’ products on the other hand are parent

products containing various other elements – the ‘variant’ products, which are basically

the same product in different styles or with slightly different attributes. They can differ

from each other in colour, size, or any other descriptive attribute.

There are several objects on the page below the header and the navigation. Starting on

the left is a big image linking to an image gallery, if present. Prominent is also the heart

icon for adding the product to the wish list. On the right-hand side is the model name,

put together by manufacturer and product title. Below the model name is a summary,

containing the number of offers on the page and the price range, the number of user

testimonials and the test review ratings. These objects are only displayed when present

for the product. Below this, are the most important attributes and a call to action button

for the complete overview of all product details.

On the right-hand side is the price development graph with the option to set up a

price alert via the alarm clock icon. This interactive diagram shows the development of

the lowest prices over three selectable time periods: three months, six months and one

2https://www.idealo.de/preisvergleich/ProductCategory/4012F1921183.html, retrieved 15 Novem-

ber 2021
3https://www.idealo.de/preisvergleich/ProductCategory/3933F1451777.html, retrieved 15 Novem-

ber 2021
4https://www.idealo.de/preisvergleich/ProductCategory/5666F1499900.html, retrieved 15 Novem-

ber 2021.
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Figure 3.5: Example of a product page for product Epiphone Thunderbird.

year. This makes it easy for users to see whether the product has a stable price history or,

rather, a dynamic one, allowing them to estimate the optimum time to make a purchase.

The price alert icon activates a pop up where users can input their preferred price to be

notified via email when it is reached.

Below the objects on the upper left-hand side are elements to help users find other

items of interest. These blocks encourage serendipitous findings as they show items similar,

relevant or related to the product page and the browsing history of the user. The first

object shows exactly this: the last seen products of the user. This is followed by the top

10 products for the primary type of that product by popularity. There is also an element

showing the most popular products for the subcategory. The last standard object shows

comparative prices from the international idealo sites. Depending on the type of product,

there might be a block presenting the other variants.

To the left of these recommendation elements is one of the core elements of the product

page: the price comparison list with all offers assigned to the respective product. At the top

of the list are again some filter sliders for easier access to relevant offers: including the cost

of delivery, ready for dispatch only, or the price without return charges. Below is the list of

shop offers, which is actually at the heart of the page and the portal itself. Every offer has

a separate rectangular tile. From left to right are the following elements in this tile: the

title as given by the shop, the price with the additional information whether delivery costs

are included, the payment options including a highlighted icon for the lowest total price,

delivery speed and options, the shop logo with a rating which is also a link to the idealo

shop page and lastly a call to action button. There are two types of these buttons. The
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Figure 3.6: Example of a search result page with query ‘star wars’.

green one is a link directly to the shop page. The blue one leads to the checkout funnel

for the idealo Direktkauf – the user buys the item via idealo from the shop.

The category pages and the product pages represent the bulk of the content on the

platform. They can be accessed via browsing starting from the homepage down the cat-

egory tree, but also via the internal search. The search bar is prominently included in

the middle of the header and is therefore easily accessible on any page. Technically, it

is based on Apache Lucene5 with some additional self-developed features. When issuing

a search, the user can either directly hit enter for a free search or click on one of the

suggested items. Additional features include a spellchecker, which automatically corrects

minor spelling mistakes and a system that redirects unambiguous queries to fitting cat-

egories. For example, if a user issues the query fernseher (tvs), they are automatically

redirected to the category Fernseher (TVs).

By using the search without the suggests, users can retrieve the third branch of content

pages next to category and product pages. Every time a query is issued, a new dynamic

result page is generated, containing a variety of products, offers and clustered offers from

a range of relevant categories. Figure 3.6 shows a result list for the query ‘star wars’. This

example shows the mixture of results well. There are products from multiple categories

displayed on one page with the look of a product category page.

Further down the list may not only be products, but also unassigned offers relevant

to the search terms. In this case, ‘unassigned’ means that they are not connected to any

product, but may be already assigned to a category. These offers are only accessible via

5https://lucene.apache.org/, retrieved 15 November 2021.
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the search. In the result list, they are usually ranked below products for performance

reasons. Clicking on these offers will lead directly to the shop. If multiple offers can be

clustered together via article number or name, they are displayed as a ‘cluster’ page. These

cluster pages have a similar appearance to product pages, but are dynamically created to

produce a better overview of the results. Every tile in the result list counts as one result.

For the ‘star wars’ query in Figure 3.6, there are 237,380 results, consisting of products,

clusters and offers. Clusters and offers are not visible in the figure, but they have the same

appearance as the product tiles.

When on the search result page, there are multiple ways to navigate further. By using

the filters on the left-hand side, it is possible to drill down to specific categories or man-

ufacturers or even price ranges. Down below, it is possible to navigate through the result

list by clicking onto the next page. Aside from this, users can also issue a new query to

the system.

Another form of search result page comes in the form of the so-called list pages. These

are a special form of search result page, since they are dynamically created by the system

to add additional reachable content for search engines. List pages are created by collect-

ing important keywords and links from the manufacturers, product types, products and

product categories to generate additional content. They are usually linked in a grey box

at the bottom of product pages. As these are also indexed, they are therefore available to

incoming traffic from search engines.

Aside from the actual content pages, there are also informational pages that can be

visited by users. These include administrative pages, such as the privacy policy and infor-

mational pages about shops or manufacturers. On pages like the shop or the manufacturer

overview, users can either search or browse shops or visit the manufacturers’ info pages

for further information about them. These pages may include contact information, short

descriptions and reviews. These pages are vastly underrepresented in the dataset in com-

parison to the content pages and this is because they are not visited as often. It makes

sense, therefore, that these pages are not indexed on search engines, since they are not

directly related to the actual purpose of the website.

3.3 The Tracking Concept and Business Model

When a user visits idealo, nearly every page visited gets tracked via a self-developed Java

tracker6. The backend server-side tracking results in JavaScript Object Notation (JSON)

files sent through collecting servers into a data warehouse environment. As of 2018, Splunk7

was used as a data warehouse. All JSON files are collected and indexed by timestamp for

further processing. As this is backend tracking, only actual requests to the server are

tracked. This means, only actual page views are tracked – every time a user clicks on

a link or opens up a new page via search or any other possibility, the server receives a

hit and the tracker records a new JSON file for the opened page. Not every interaction

6As of 2018, a self-developed tracker has been in use.
7https://www.splunk.com, retrieved 15 November 2021.
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directly with a page is recorded, since in most cases there is no backend server involved.

The following actions are among those that are explicitly excluded from the tracking as

of the state of the analysed dataset:

• Clicking on an image or browsing through the gallery

• Any form of lists’ sorting or filtering on the product page

• Interacting with the price development graph

• Receiving search suggestions

• Any scrolling on any page

Summarized, only actual page changes or page reloads are registered. Basically, the tracker

differentiates between two types of content: internal page changes and lead-outs to external

pages. The first type, known as page impressions, effectively relate to the viewing of a page.

When a user enters any page on the website, a page impression is generated. This type

of trace contains details about what users have seen on this page, where they come from

and where they are right now. As the name implies, the trace is an impression of what the

user has seen on the respective page. Lead-outs describe every click that leads the user

from idealo to any other external page – the classic example would be the click on a shop

offer. When a user initiates a Direktkauf (direct purchase) by clicking on the blue button

on the product page, the trace that is generated is also tracked as a lead-out, although

technically the user is not leaving the idealo environment.

This type of backend tracking only logs the navigational behaviour of a user along

with the content on the pages visited. To complement the behaviour on the page, the logs

generated by the tracker are enriched with so-called user actions. These are separately

produced traces by production services to (partially) track the interactions with certain

services. The most prominent example are the price alerts; when a user interacts with the

price alert feature, a trace is generated.

Whenever a user visits the page for the first time or via an incognito mode of the

browser, a new cookie is set. This cookie is not a user identifier, because it is set for every

browser or device separately. It is not possible to connect multiple cookie values through

different devices or browsers without additional information. A connection can only be

achieved after a user has signed up for an idealo account and browses the site while logged

in, and the same procedure must be followed on every one of the user’s devices to install

the cookies. While logged in, a hashed code representing the email address is added to the

traces. Aside from this, every trace has a timestamp in milliseconds. The basic information

a trace always contains are the following (technical) fields; they are necessary to create a

data model according to the business model:

• user based (cookie value and HTTP user agent)

• system based (timestamp of the trace and media / domain information)
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• content based (URL, HTTP referer and UTM parameters8)

Cookie and trace time are used as the unique identifiers for every trace. With these two

fields, simple session models are already possible, for example, with time constraints only.

The other fields are either used for enrichment or are necessary to create more fields in

additional steps. The HTTP referer, for instance, is necessary to identify the origin of

a trace, while the URL is used for identifying the landing page, representing the first

trace after the the user has visited the first page. The Urchin Tracking Module (UTM)

parameters are important for marketing purposes to provide insight into where the user

has navigated from. Often, UTM parameters like UTM medium, UTM campaign and

UTM source are added to the URL; for example, a user arriving at the website from an

email link may require these parameters to make clear that they have visited the website

through this marketing channel. Together, the domain information and the user agent

make it possible to determine the device and browser used to browse idealo.

Every trace generated by the tracker is stored in a data store. The files contain all

user information in structured but unconnected traces. No information is attached that

relates to which session the trace belongs. The files contain information purely relating

to the user’s activity, there is no actual preprocessing performed by the tracker. The

foundation of the data model uses traces following these conditions, consisting of page

impressions, lead-outs and user actions. The idea is to replicate only what the user has

seen and intentionally done. Bots are excluded via a blacklist (using IP addresses and

HTTP user agents). Further fields are built on this basis afterwards, mostly relating to

attribution and content. These fields are specified by the second set of business rules,

mostly referring to the marketing channels that are used for the correct distribution of the

financial shares. As these attributional business rules go beyond the level needed as part

of the evaluation of user behaviour which is the focus of this dissertation, they will not

be considered. In this study’s comparison of various modelling approaches, therefore, only

the foundational business rules for the proper selection of user traces will be applicable.

Furthermore, the data model used by the company for evaluating marketing campaigns

will not be considered either, but, instead, everything in the following chapters will be

modelled from scratch.

All in all, the data model is created specifically in order to be able to evaluate the

business cases. Regarding the content of the web portal, the set of actual business cases

is clear and simple. Basically, every conversion a user makes is considered a business

case. The most important ones are logically the lead-out and Direktkauf models as these

directly generate income for the company. Every time a user clicks out to a shop or orders

something via Direktkauf, idealo receives a share via different compensation models. The

user must initiate the checkout funnel to be able to place an order. For this, idealo does

not receive any money, but as it still is a sort of conversion potentially leading to an actual

8Urchin Tracking Modules (UTM), a tag system for tracking specific marketing campaigns via additional

parameters in URLs, compare https://support.google.com/analytics/answer/1033863, retrieved

15 November 2021.
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order, this is another business case. Optimizing the entry to the checkout funnel may lead

to a higher conversion regarding orders afterwards.

Aside from tempting users to visit the listed shops or to place an order, the ability

to contact users is another important business case. The more users are reachable via

customer relationship management (CRM), the more traffic is likely to be routed directly

to the website without additional steps like using a search engine. The traffic will again

result in lead-outs and orders, fulfilling the original business cases. Considering the direct

nature of this traffic, it is much more valuable than users coming from other channels. The

assumption is that having a direct contact to the website makes users more likely to visit

the website more often on their own behalf.

There are different ways to get a user to be available for CRM campaigns. The most

obvious point of contact is the price alert, as it is prominently placed on the product page.

It has the largest reach not only because of the usability and popularity of the feature

itself, but also due to its positioning. By requesting a price alert, the user sets up an

idealo account and agrees to being contacted via the newsletter. The newsletter consists

of different campaigns maintained by the CRM team. With the opt-in given by the user,

they can then send personalized emails.

The idealo account itself does not necessarily grant the ability to contact a user via

email, but is a business case nonetheless. It allows for better personalization and under-

standing of the user, because the user gets another layer of identification by registering

with an email address. The additional possibilities to interact with the website, for exam-

ple, the wish list and price alert features, will make a registered user more likely to enter

into the pool of contactable users.

Using the accounts, idealo can then legally establish a more reliable user definition

compared to using cookie values for identification. This helps in tracking the behaviour

of users over longer time periods. Being able to improve tracking of account users is an

advantage in evaluating the moneymaking business cases, therefore the idealo accounts

are a business case in their own right. The account potentially enables the evaluation of

user activity across different devices, which makes the ability to contact users another

important business case.

3.4 Overview of Tracked Content

The following section will give an overview of the various tracked contents and introduce

the terminology used in the remainder of this dissertation. As not all tracked information

is important for the conducted experiments, only essential fields are explained. Fields in

the log files are equal to the columns in the dataset that is created from the log files. See

Table A1 for a complete set of columns in the dataset. From now on, column names will

be written in bold lower-case type and specific values in these columns will be written in

italic font. Any technical terms describing measures or specific variables will be written

bold as well.
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To understand what leads to certain user behaviour in relation to the business cases, the

tracked files contain information about the content the user has seen or interacted with in

addition to fields relevant for constructing a session. Every page has its own set of content

reflected in the data. The content of every trace can therefore be divided into session

attributes and content attributes, alongside technical information used for constructing

sessions and valid traces. The technical information in the log files is relatively simple

and straightforward. Every trace in the data has the following fields: cookie value, the

tracetime of the trace, the http user agent, page type and page template, url and

http referer.

The cookie value is set by the browser and is used as an identifier for browsers

and devices. Page type and page template define the contents and type of a page.

Page type can have the following values: pageimpression for page impressions, leadout for

lead-outs or useraction for user actions, representing the type of interaction a user performs

with the page. Associated with this is the page template. While url and http referer

refer to specific sites, the page template describes the general type of a page. Every

site-type on idealo has its own name in the page template and a set of related content

attributes, which are connected to the respective template.

Following the category tree, the homepage www.idealo.de has the page template

MainProductCategory, as it is the index for all attached root and subcategories. Content-

wise, there is nothing tracked specifically related to this template. It is not clear what

the user has seen – the data does not show what kind of teaser is online, what kind of

recommendations the user gets nor how the user proceeds to interact. The last point is

of particular importance. Despite having url and http referer available in every trace,

it is not clear how exactly the user went from one page to another. For example, coming

from the homepage to a root category is possible by either clicking on the link in the

category navigation or by clicking on ‘suggest’ in the search bar when typing the name of

the category. The difference is not clear in the data.

Every level beneath the homepage without associated products is tracked as the

page template SubProductCategory. This means that there is no differentiation in the

data between the root and subcategories shown in the category tree in Figure 3.1. To

differentiate this, the associated category id can be used. Every category – be it a root,

a sub- or a product category – has an associated category id. Like the homepage, the

page template does not contain any tracked information about shown content. Only the

lowest level of categories, the product categories, contain content information.

The associated page template ProductCategory as well as the FreeProductCategory

for categories that promote shop offers only, do contain details about what the user has

seen. The main focus here is to know the number of items the user can see. During the

time of the page impression on these pages, the number of products, offers and clusters

on this page is tracked. This is supplemented by information about the overall number of

these items in the category, which is a number also displayed to the user at the top of the

page.
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The search result page template is called MainSearchProductCategory. Alongside

the query field, which is extracted from the url the same way as the sorting parameters,

the same content is tracked as in the ProductCategory. In the url, the query terms are

attached with a q parameter. The search engine is set to redirect unambiguous queries

that match a product category directly to the respective product category. This redirect

results in a pageimpression for the search representing the interaction and the actual

pageimpression for the product category the user lands on. In these cases, the url is

supplemented with an additional qd parameter.

Further down the category tree are the product pages with the page template Of-

fersOfProduct. Being the most important page, naturally a lot of content is tracked here.

Most of the tracked fields are related to the prominent list of shop offers, as this is the

core of the business. For the first 10 offers, the logs contain information about whether the

offer is available for a Direktkauf, the speed of delivery when ordered (the distinction is

made between low, medium and high), the possible payment options, information about

whether the offer has the lowest price in the list, what price it was previously and which

shop it is from. The data only provides information about the first 10 offers as these are

assumed to be visible in a page impression where the user does not scroll down. Besides

information about offers, several fields relate the product to the product page, these are:

manufacturer, manufacturer id, product name and the product id as well as the

product type.

The other pages are somewhat smaller in scope in terms of tracking. The list pages

with page template List are comparable to the search result pages. Same as there,

all information regarding the pagination, the quantity of items shown and items overall,

are tracked in the same fields. The keyword used for creating the page can be found as

a parameter in the url. The cluster pages with page template Cluster resemble the

product page in terms of tracked content.

The other, less important pages mostly do not track additional useful content. The

remaining page templates do not hold specific information, but may have parameters

hidden in the url. These parameters are, when deemed useful, extracted later. An example

would be the page templates Shop, Manufacturer, SearchManufacturer and SearchShop.

The first two are for the informational pages about shops and manufacturers and include

their respective identifiers (ids) – shop id and manufacturer id – as parameters in the

url. The search result pages for manufacturer and shops have the query as a parameter in

the url9. In general, the url may hold additional information which will be added to the

dataset if possible and viable. This summarizes the tracked content for the pageimpressions

on the most important page templates. Leadouts, on the other hand, always have the

page template GoToShop.

9Both pages ceased to exist in 2021.
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3.5 Issues when Working with Data

Despite having a relatively consistent data model, there are a lot of issues with the tracking

and the data. These issues should always be kept in mind as they relate to many aspects

and can massively impact the interpretation of results. Some of these problems relate to

the design of the tracking set-up itself, others are caused by the natural development of

the portal and technology in general.

Beginning with the tracking system, one of the most important issues is the utter

lack of tracking in the areas accessible via login. Once a user enters the pages behind the

login, any session model using a path with a matching url and http referer loses its

foundation. This leads to an inconsistency, as a new session begins as soon as the user

enters a tracked page again. It might then be the case that significant behavioural markers

on the page get lost. The problem of breaking sessions is not caused by untracked areas

alone. Technological improvements to browsers, such as plugins that prevent advertising,

scripts and therefore tracking, or even the users that enable the ‘no-cookie’ setting in their

browsers, all of these lead to the creation of a new cookie for every new trace. The same

is applicable to users who opt out of being tracked – which is a preference introduced in

May 2018 under the General Data Protection Regulation (GDPR). The new cookie per

trace leads to the generation of a new session per trace as they cannot be connected any

longer. Users who behave in this way are essentially useless to the behavioural analytics

as their behaviour is impossible to understand in any way. The logs generated by these

users are simply not connectable.

Using the cookie as the identifier (id) for session generation is the foundation for a lot

of potential problems. Changing or neglecting a cookie using technological means is easy.

Furthermore, the cookie defines a device or a browser, not a user. This means, there is

no failsafe way to identify an individual user. There is no traditional user entity, instead

the cookie is the most reliable identifier despite all the associated problems. The missing

user entity leads to even more interpretation problems when thinking about using different

devices for browsing or shared devices by different users. Multiple users using one device

cannot be differentiated and multiple devices used by one user cannot be easily connected.

A way to circumvent this in cases where the user has an idealo account is the email

hash. If a cookie visits idealo while being logged in, the tracker logs a hashed version of

the email address used for registration. By associating this hash with different cookies, a

single user id can be generated. The problem here is that being logged in is not required.

When not logged in, the hash is not tracked. A new cookie cannot not be associated then

because the hash is not tracked. Another problem with this approach arises again when

multiple users interact on the same device. When these users have different accounts,

different hashes get associated with one cookie, leading again to inconsistencies.

Another important point to consider is the user’s consent to tracking. If a user opts out

of being tracked, all associated traces will not be tracked at all, except legitimate interest

data that will be tracked but won’t be used for analysis peruses. This leads to these users

being completely absent from the data.
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When looking at the data, the problem of missing user identification is the focal point

of issues with the data and modelling a concept of sessions or journeys. Not having a

user id means that the cookie value is the most reliable identifier in the data, alongside

the hash. For the analysis of different modelling approaches, this must be kept in mind.

To be able to model a consistent model in the next chapters, only returning cookies are

used. Other inconsistencies occur over time. There are a variety of issues:

• Bugs in the tracking

• New features or products

• Design changes

• Incorrect modelling and logical inconsistencies

All of these issues may have a huge impact on the data quality. Bugs affecting the tracking

may result in missing fields, incorrectly filled out content or, worse, completely missing

traces. Missing content can lead to incorrect interpretations and inaccurate assumptions.

When the interactions of a user with a specific field are analysed over time and at some

point the content is missing, the analysis is more than likely going to be spoiled. For

accurate analysis, these cases have to be excluded from further research. The same is true

for completely missing traces. Here, it is even worse, as the user behaviour cannot be

analysed at all, even at a higher level.

Changes to features, adding new products as in new pages, or even design changes, can

result in inconsistencies as well. These cases are often not as dramatic as bugs because the

change in the data is planned. Often, it is a case of information being added rather than

missing content traces. Depending on the case, this can be easily modelled into the data,

adding more value. New features need to be implemented in a reasonable way, however,

as it does not make sense to compare datasets regarding a certain behaviour when any

feature related to this behaviour differs.

As these pitfalls are commonplace, the modelling logic needs to be carefully developed

and checked to avoid inconsistent logics. An example in the data used here is the HTTP

status for the different interactions – a valid page impression always has the (HTTP)

status 200 while a lead-out always has the status 301. The different properties of the

file contents should always be kept in mind.

Another issue in the available data is the state of app tracking. As user interaction

with the mobile app differs vastly to their interaction with a website, the tracking is also

very different, not only from a technical perspective but also content-wise. As of now, the

quality of the tracking on the app does not meet the standard of the web-based tracking.

Therefore, and to avoid further data inconsistencies, this dissertation does not include

data tracked directly in the app.
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Chapter 4

Research Design

This chapter describes the steps involved in modelling mechanical and logical sessions in

log files, how they are compared and evaluated, and then discusses their impact on different

applications. The first section of the dissertation provides an overview of the definitions

and concepts used and experimented with. The next section explains the architecture

used for working with the data. Afterwards, all steps to produce a working dataset are

described, along with and a brief description of the dataset. The following parts explain the

identification of different types of sessions. All approaches are explained and adapted to

work with the dataset at hand. The final part will outline the methods used for evaluating

the various approaches that were implemented.

4.1 Concepts and Definitions

To better understand the experiments conducted in this dissertation, a few terms and

concepts need to be clearly defined. As already mentioned in Section 2.2, there is no clear

terminology or group of definitions. This section, therefore, discusses the most frequently

used vocabulary and tries to consolidate the terms for different concepts more precisely.

The first concept to be discussed is the term user. To group interactions into meaningful

segments, some kind of identifier (id) is required. Interactions are then assigned to such an

identifier, usually representing a user, a device or a browser. In the early stages of research

on session detection, identifiers could be easily found: for instance, in the library catalogue,

users usually logged in and out when using it, thereby generating a unique user-id along

with a unique, temporary visit-id [120]. This allowed systems to identify users over time

and across multiple visits. Under these circumstances, such an id represents an individual

user and may be assumed to represent the human being behind the id.

Often though, this is not the case. When an actual user identifier is not available,

there are a limited number of other options. Earlier works dealt with finding the best

approach to grouping events to a single user without assigning any specific id [95, 232],

often resulting in relying on IP addresses1 for grouping.

1https://en.wikipedia.org/wiki/IP_address, retrieved 1 December 2021.
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Newer and more sophisticated methods for identifying users are called fingerprinting,

representing another research direction [87]. The term refers to the identification of unique

users without any reliance on the existence of an identifier. Fingerprinting as a term covers

a variety of different approaches. To identify a user without a reliable identifier, these ap-

proaches utilize transmission control protocol (TCP)/IP addresses [21], different hardware

or operating system (OS) features [8, 38] or even more abstract features like font settings

or screen resolution specifics [25] to infer highly specific feature sets that allow the iden-

tification of a unique user. Nikiforakis et al. [195] loosely classify fingerprinting methods

according to the features they use, resulting in categories like browser customizations,

browser family and version, OS or hardware and network.

The other option is to use an identifier set by the browser – the HTTP cookie2. A set

cookie is unique to every browser (so long as it is not deleted nor renewed), but only in

theory is it unique to every user – users could share devices and browsers [232]. Therefore,

using a cookie, referred to as cookie value in the dataset, brings with it some limitations.

It may lead to inaccuracies regarding the mapping of interactions to unique users. Also,

some browsers support a functionality that enables the removal of cookies after every click

(or browser opening). Such a functionality can result in many cookie values with only

a single interaction. Since fingerprinting brings a number of new implications regarding

security and privacy concerns3, this research focuses on the use of a browser id by using

the cookie value set by idealo4.

This means, the term user is actually misleading when talking about individual enti-

ties performing interactions. In practice, these are not individual human users but only

devices, or more precisely browsers that may be used by multiple persons. For the sake of

clarity, this dissertation will nonetheless refer to cookie values as users by applying the

concept of a user id. Clearly, there are limitations and potential errors, but the assump-

tion of a cookie value (or multiple cookie values depending on the applied user id)

equalling a user by connecting multiple cookies when they share an email address is valid

enough for the context of session definitions. As long as a cookie and therefore a user id

performs multiple interactions, the assumption of one user may hold in the context of this

dissertation’s hypothesis. Details about the implementation of the user id are provided

in Section 4.3. For now, the definition is as follows:

Definition 1 (User). A user is an entity performing interactions with a given system.

This analysis restricts itself to user ids that perform at least two interactions. Other

user ids are filtered out using multiple conditions during preprocessing as explained in

Section 4.3. This restriction is put in place because it is not possible to detect different

session concepts with only one interaction.

2https://en.wikipedia.org/wiki/HTTP_cookie, retrieved 15 November 2021.
3Fingerprinting largely ignores any consent (given or declined) to tracking, making it a somewhat

questionable practice. Compare https://www.nytimes.com/2019/07/03/technology/personaltech/

fingerprinting-track-devices-what-to-do.html, retrieved 15 November 2021.
4The cookie value set here is not affected by a server timeout and can be understood as an identifier

that is permanent until the user deletes it.
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Summarized, the term ‘user’ equals individual user ids in the data so long as they

perform at least two interactions despite not necessarily representing an individual human

user. Having now established an abstract concept of a user who performs interactions

with a given system, the logical next step is to define what an interaction and the related

concepts are.

Definition 2 (Interaction). An interaction describes any tracked form of action a user

performs on or with a given system.

The tracked form of action is also called an event. Event and interaction are therefore

interchangeable. In the use case at hand, an interaction is either a page impression, a lead-

out or a user action. As explained earlier, user actions are the actions a user can perform

on a specific page, for example, adding a product to the wish list. Page impressions are

basically every click on a page on the website – the concept indicates that the user gets

an actual impression of the page, viewing its contents. Lead-outs are the clicks on any

link directing the user away from the page. These types are referred to as pageimpression,

leadout and useraction in the data.

Interactions may belong to multiple overarching concepts that could consist of one or

multiple tracked events. The most straightforward and fundamental concept is a visit.

Definition 3 (Visit). A visit is an unspecified number of subsequent (connected) inter-

actions made by an individual user with a given system with exactly one entry point and

one known last interaction before a new entry point without considering other possible

boundaries.

An entry point or lead-in can be any external source leading to the website: a search

engine, a bookmark or even a shared link. The known last interaction defines the end of

the said visit; a new entry point indicates the start of a new visit. The lack of possible

boundaries means that a visit is not separated by any form of timeout; in theory, it could

last days. Naturally, closing a page would also end a visit although this is not tracked by

the system and therefore purely hypothetical.

The definition becomes fuzzy when multiple entries are considered at the same time.

Theoretically, a user could enter a website on many tabs using differing entry points.

Since they have differing entry points, these are considered different visits although they

could theoretically end on the same page or content. Considering this, a visit is inherently

detached from an information need in this dissertation; a visit may pursue one or many

information needs, but the term first and foremost represents the (mechanical) interaction

with a system.

In the literature, the concept of a visit is equal to the concept of path-based mechanical

sessions as was referenced in Section 2.3.2. Often, visits are assumed to be connected with

pursuing an information need. Indeed, attempts have been made to replicate the concept

of a visit by session-detection approaches regarding the pursuit of information needs. This

dissertation does not inherit these assumptions – a visit is a purely mechanical construct
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replicating the single interaction or subsequently performed group of interactions with a

system.

Information needs come into play when using session approaches, which evolve around

the concept of a visit. Following the definition of Manning et al. [170], an information need

refers to a topic a user wants to know more about. This definition is focused on the use of

search engines by using queries to fulfil an information need. Considering the e-commerce

data used in this dissertation, the desire for knowledge about a topic may be too narrow.

Therefore, an adapted version of the definition is used:

Definition 4 (Information Need). An information need represents a topic that a user

wants to interact with, in the way a given system is enabled to allow.

With this definition, all kinds of interactions with the system by the user are covered.

The information need here is also limited by the given system, for example, usually, a user

would not be able to check for the weather on a price comparison site. For the use case

at hand, any information need is more or less associated with a category (e.g. interacting

with the category page for Smartphones).

When dealing with the fulfilment of an information need (i.e. interacting with a cat-

egory id or issuing a query), the predominant term used is ‘session’. As presented in

Section 2.2, the range of definitions for the term ‘session’ is broad, but they usually re-

volve around the same foundation: having one or more interactions that are related to

fulfilling an information need. The differences originate from the conditions that define

the boundaries of such a session. Usually, this is a temporal inactivity condition trying

to emulate the start and end of a series of information need-related interactions. In this

dissertation, the term session is defined as an overarching and general concept.

Definition 5 (Session). A session is a series of interactions made by an individual user

with a given system in order to fulfil one or multiple related information needs.

Initially, there is no boundary involved here. The term session only describes (tracked)

interactions with a system in an attempt to fulfil an information need – regardless of

other boundaries. This could involve several visits, a single visit or even multiple parts of

multiple visits; sessions are the abstract counterpart to the precisely defined visits.

Possible boundaries are introduced in more specific concepts. These deserve their own

definitions since the type of boundary may have a strong impact on how the respective

session concept deals with the representation of the fulfilment of information needs. These

definitions are based in part on the concepts explained in Section 2.3. The main distinction

in this dissertation is made between mechanical sessions and logical sessions.

Definition 6 (Mechanical Session). A mechanical session is a series of subsequent inter-

actions made by an individual user with a given system delimited by a mechanical boundary

assumed to fulfil an information need.

A mechanical boundary could be a temporal inactivity timeout or a maximum number of

interactions or even a maximum duration starting from the first event. Mechanical means
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that there is a hard boundary with no (inherent) topical connection between subsequent

events. The difference between this and the overarching term is that a mechanical session is

assumed by definition to focus on fulfilling one information need. This is true for temporal

sessions (i.e. mechanical sessions with a temporal boundary) as well as for lexical sessions

(i.e. mechanical sessions delimited by lexical similarity) – both variants only work with

that base assumption, although lexical sessions may gradually focus on broad and narrow

information needs, depending on the implementation.

A special case is seen in the structural-based or path-based methods using the rela-

tionship between url and http referer to reproduce the path an individual user takes on

the website; this type of mechanical session equals the concept of a visit from definition 3

since visits are not assumed to fulfil an information need, but rather only replicate user

behaviour.

Next to mechanical sessions are logical sessions. Here, no obvious hard boundary indi-

cates the end of a session. Also, even more so than in typical variants of the mechanical

session, a logical session may span multiple visits and is not limited to subsequent inter-

actions.

Definition 7 (Logical Session). A logical session is a series of interactions made by an

individual user with a given system in order to fulfil an information need delimited by

topical constraints.

The topical constraint is the main difference to a mechanical session, although boundaries

become blurred when comparing this type of session with lexical sessions. Where lexical

sessions as part of mechanical sessions in most cases have an explicit ending due to their

nature, logical sessions may continue until an information need is fulfilled. This gets even

more abstract considering the following examples. In a visit with three interactions, there

could be three logical sessions that may or may not be continued in the next or another

visit. As a general example, these three logical interactions could be checking the weather,

reading emails and looking at news on a mail-provider website. Logical sessions are also

often referred to as tasks, which is a more figurative way of describing the concept: a

user has a task to fulfil a specific information need, which may consist of one or multiple

related interactions that are not necessarily subsequent. The term task is not applicable to

mechanical sessions as the information need is usually not visible there (except for lexical

sessions, which are more of a mixed form).

Logical and mechanical sessions are focused on fulfilling a concrete information need.

Broader information needs like planning a vacation may fit into the concept of logical

sessions, but the literature sees these as a separate research problem named complex search

tasks. Complex search tasks describe a broader problem requiring multiple smaller subsets

of information needs that are not necessarily directly related. The example of planning

a vacation is actually a very reasonable one. Booking a flight and a hotel and planning

individual day trips to different places of interest are technically different information

needs and may also contain different search terms and definitely different contents.
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A separate definition is therefore appropriate. Since the label complex search task is

heavily focused on the use of a search engine, this dissertation refrains from using the term

complex search task and instead introduces the term journey. This term is more fitting in

the context of the analysed data, because fulfilling the information needs here does not

necessarily involve searching – as in querying – a search engine.

Definition 8 (Journey). A journey is a set of related logical sessions made by an individual

user in order to fulfil multiple related information needs that belong to a more complex

information need.

Considering the context of the case study at hand, a journey may involve every information

need revolving around a bigger purchase. This could be, for example, the construction of

a computer – buying separate parts like motherboard, CPU (central processing unit)

and GPU (graphics processing unit) may be somewhat similar, but ultimately, they are

different (but related) information needs.

The focus on logical sessions is ultimately necessary since the basic assumption is dif-

ferent and more advanced compared to mechanical sessions. In theory, mechanical sessions

could be strung together to form a journey, but the link between them would not be as

clear and comprehensible as in logical sessions. Mechanical sessions are not technically

restricted to the same information need, although the basic assumption assumes that they

are: they are assumed to be self-contained constructs. Therefore, they are practically ex-

cluded from journeys. Logical sessions, in contrast, could range across multiple visits to link

interactions on the same information need over time, and to connect different interactions

using that same information need.

Figure 4.1 (on the next page) shows a practical example to illustrate and clarify the

different relationships of the defined terms and their variants. The figure depicts a user

performing multiple visits, showing how the different interactions could be grouped with

regards to the various concepts.

As can be seen in the figure, the user performs multiple interactions. The smallest

circles each represent one interaction, for example page impressions (PI), queries (Q) or

lead-outs (L). Small circles in close proximity belong to the same visit, resulting in five

visits in total as can be seen on the lowest level. These five visits are divided into six me-

chanical sessions by, for example, a temporal inactivity timeout between the interactions,

indicated in the second lowest level. Mechanical sessions 2 and 3 divide visit 2 into two

separate units. The bigger circles around the smaller circles indicate logical sessions. These

may span multiple visits, which do not have to be subsequent. Both logical sessions may

deal with a different information need, although the overarching journey at the highest

level connecting them implies these different needs are related.

The key difference between a logical session and a mechanical session is therefore

mainly derived from the handling of the information need. A logical session may span

multiple visits focusing on exactly one known information need. ‘Known’ means that it is

clear that the logical session is supposed to fulfil only this one information need – there is

no multitasking regarding the information need involved here, as all interactions originate
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Figure 4.1: Schema of session concepts. Abbreviations: PI = Page Impression, Q = Query, L = Leadout. Small

circles represent a single interaction, bigger circles indicate a topical connection between the interactions.

from the same intent. A mechanical session has a different base assumption: by setting a

mechanical boundary, it is only assumed that one information need is worked on within

the limits set by this boundary, but the segmentation is not defined by this assumed

information need. This dissertation tests both mechanical and logical sessions as well as a

combination of them to estimate the impact of each of these approaches on different use

cases, following the hypothesis that logical sessions, with regard to the actual context of

a user, improve the outcome in a variety of settings.

4.2 Architecture

This section shows the infrastructure used for preprocessing and modelling. The track-

ing component is not part of this dissertation, therefore, it will not be described in any

greater detail than the description given in Section 3.3. The extract, transform, load (ETL)

pipeline presented starts after the data is logged and transformed. Bot filters are already

applied and any logs irrelevant to user behaviour such as statistic pixels or dynamically

loaded contents are removed. The different steps are reflected in Figure 4.2.

The logging system that collects all relevant logs and processes them is called Splunk5.

Here, all logs are logged in the form of individual JSON files that represent the clicks

a user makes on the website. Since the system is limited in its capacity and calculating

power, the first decision was to extract the relevant information from the logged data and

push the resulting files to the cloud.

5https://www.splunk.com, retrieved 15 November 2021
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Figure 4.2: Workflow of preprocessing architecture.

To achieve this, a Python script looped through every hour of every day of 2018 and

issued a query to the Splunk system. The results were uploaded to a dedicated S3 bucket.

S3 refers to the object-based cloud storage service, known as simple storage system6,

provided by Amazon Web Services (AWS)7. The hourly processing was required consid-

ering the quantity of data that is transferred. Splunk is not designed to handle such huge

amounts of data at once, therefore every hour was processed separately. Having the data

on AWS Simple Storage System (S3) allowed use of Amazon’s management services. Here,

a bucket structure was created for the data, containing the raw processed data as well as

versions of all processed steps.

For all further processing, in the main AWS Athena8 and a custom-designed elastic

map reduce hub were used. AWS Athena is a query engine based on Presto9, a distributed

query engine designed for big data. Athena is conceptualized for directly accessing files

on S3, allowing access to the contents of text files via Structured Query Language (SQL).

Since it supports ‘create table as select’ (CTAS) statements and inserts, Athena is a viable

and cost-effective option for less complicated processing steps depending on the use case.

For the heavy lifting, Amazon’s Elastic MapReduce (EMR)10 service was used. EMR

is a service providing several big data frameworks like Spark or Presto on dedicated server

clusters. To utilize this, a Jupyter11 hub was created that automatically allows easy access

to Jupyter notebooks with a pre-installed Spark framework when the cluster is booted

up. Further preprocessing was then done by using PySpark and Spark SQL. For accessing

the processed data, different cluster configurations were used with regards to the task at

hand.

6https://aws.amazon.com/de/s3/, retrieved 15 November 2021.
7https://aws.amazon.com/, retrieved 15 November 2021
8https://aws.amazon.com/de/athena/, retrieved 15 November 2021.
9https://prestodb.io/, retrieved 15 November 2021.
10https://aws.amazon.com/de/emr/, retrieved 15 November 2021.
11https://jupyter.org/, retrieved 15 November 2021.
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4.3 Creating the Dataset

This section explains how the aforementioned architecture is utilized to run different

queries and preprocessing methods. It follows the same structure as the previous sec-

tion and describes how the log files are extracted, loaded to a cloud storage and processed

afterwards.

Step 1: Extraction

The query used for extracting the data in step one basically collects all relevant data for

the duration of one hour along with making some minor adjustments to the content. The

query is simple: it selects all relevant data from the Splunk index12, removes possible bots

and all interactions that are not directly associated with interactions on the website.

The process is carried out by utilizing the fields botstatus and page type from the

log files, removing the bots, and with regard to the page types, only selecting the event-

types pageimpression (representing a page impression), leadout (representing the lead-out

to an external website) or useraction (representing an action by the user), since only these

represent valid interactions. The (HTTP) status is also checked to only include fully

loaded events with the value 200 (HTTP status ‘OK’) in the case of a pageimpression or

redirected events with status 301 (HTTP status ‘Moved Permanently’) in the case of a

leadout. In the end, every field is grouped by at least the cookie value and the tracetime,

which is the timestamp of an event in unix format. At this level of granularity, all events

are assumed to be unique and are treated as such.

To create a unified and anonymous user id later on, the cookie value is enriched with

an associated hashed email id from an internal database, where every registered email

address hash is mapped to all cookie values that were seen at some point in the events.

This internal table only takes into account users who agreed to opt-in. All encounters

are saved in N-to-N relationships. For the mapping, it is assumed that all cookie values

belong to the latest saved email hash. This may introduce errors for multiple users surfing

on the same device. Since the presented user concept is sufficiently abstract, using this

method should be viable. For now, every cookie value gets associated with a numeric id

for the latest seen email hash in the data. The resulting file is saved and uploaded to S3.

It is important to note that all data used in this research is tracked under the conditions

to which users consented and is operated under a strict agreement between the researcher

and idealo (as the information system analysed in the use case) on the usage of the data.

This protocol has been observed to ensure that the data analysed herein does not violate

any user-privacy regulations and, furthermore, that user wishes regards their agreement

to be tracked have been respected.

Step 2: Preprocessing

Once the dataset was available in the AWS S3 storage system, the actual preprocessing

could be conducted, depicted in step two of Figure 4.2. The easier calculations were done

12A Splunk index can be understood as a database table in which every log file represents a row in the

table.
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directly via SQL on the AWS Athena query service. First, as a necessary step to enable

Athena to correctly read the data types and the partitioning, a table was created on top

of the files. Since the easier steps are calculable without having to process all data at once,

a parallelized SQL day-per-day approach seemed to be a fair choice. For this to work, a

Python script was created to loop through the necessary parameters (e.g. date boundaries)

and run a query for every combination of parameters, saving the results back to S3.

The first action entailed a clean-up step: to achieve a consistent data model, the so-

called checkout funnel was aggregated to become one event. The checkout funnel is the

process of initiating a purchase directly on the website by clicking on the blue button on a

product page. It should be noted that the differences in the number of events in that funnel,

which are due to changes in the tracking over the time period of the dataset, would have

influenced later analysis. Since the checkout logically represents only one action (making a

purchase or not making a purchase), the reduction to one event is reasonable even though

some information may be lost in the process. By simultaneously joining the information

of a successful order to the newly created event, the interaction may represent a leadout

with additional information about the user’s success in ordering an item. These events are

saved in a separate table, which is then combined with the remaining base data. First,

the base data is selected and enriched with additional information. Basically, this step

consists of several joins with lookup tables to gather further information, as well as a lot

of case statements with regular expressions on the fields url and http referer to extract

any missing identifiers or variables directly from them.

One of the more important steps to ensure consistency of the data model is to make sure

that all important identifiers are actually present in the data when needed. Unfortunately,

this is not inherently the case. In a great number of events, the respective identifier for

products or categories are not tracked by default. Fortunately, most of these events do

contain these identifiers in the URL, which is why the field url is parsed for product ids

on many different pages. The same is done for the field category id.

Additionally, information about the category hierarchy is joined using a lookup contain-

ing the category id and the respective category type, parent category id according

to the category tree as well as the category name and potential category synonyms.

Another lookup joins product information including the main product id, the prod-

uct name, the product type and the manufacturer id to every product id. The

main product id is attached to every variant product. All products will have their own

individual product id in this field. Additional category id data is joined by utilizing

internal idealo inventory databases to get category ids for cluster ids.

Using the url and the http referer fields, query parameters are extracted. The gen-

eral query parameter is indicated by a q. Queries that are identified as specific category

names by an internal system are indicated by a qd. All terms are collected in the field

query and referer query respectively. All queries are normalized by removing all spe-

cial characters, any trailing blank spaces from both sides, and reducing the number of

all remaining characters. Both fields are capped at a string length of 100 characters for

performance reasons. Queries with less than 100 characters make up 99.9% of all queries.
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Additionally, any search terms from the page types SearchShop and SearchManufacturer

are stored in the fields shop query and manufacturer query by using regular expres-

sions on the URLs on these pages. List pages also contain a query, stored in list query.

For these queries, the http referers are also parsed for the respective referer queries.

As another step, a numeric user id was created and joined to every row in the table.

This user id was calculated via the email id, which was joined in from the internal

mapping table. If multiple cookie values are related to an email id, all related events

get the same overarching user id (which is basically just a substitute for the originally

applied email id). If there is no email id, all events related to the same cookie value

get the same user id, which for now is just the cookie value as a string. The mapping

between cookie value, email id and user id is removed afterwards so that a connection

is no longer possible.

The next step created a lookup for these user ids. The responsible query sums up all

pageimpressions, leadouts and useractions and groups them by the newly created user ids.

This is done in one query over the complete dataset since the overall amount is needed.

Afterwards, a simple rank function generates a unique integer for every row. The re-

sult is a general, numeric user id that can now be joined back. After joining the num-

ber of interactions and the general user id to the original dataset, the sum total of

interactions can then be filtered based on the overall number of interactions from every

user id.

The following steps were then performed via Spark SQL on an EMR cluster, because

work was required on the dataset as a whole at the same time. Several tasks were per-

formed. At first, the cookie value was removed from the dataset to meet GDPR com-

pliance13. Another task was to calculate the timespan between all events from the same

user id. For this, each tracetime from the event is dragged by a window function from

the event directly before the reference event. The tracetime of the last event is then

subtracted from the tracetime of the reference event. Since every timestamp is in unix

format and milliseconds, the resulting calculation is then divided by factors 1,000 and 60

to achieve the timespan in minutes.

Having performed the first important step regarding the internal structure of the

dataset with this query, the next step could carried out. Using the number of interactions

from the previously joined user id lookup, all user ids with less than two interactions

were removed. Less than two interactions mean that the respective id has exactly one

pageimpression or one leadout or one useraction associated with it. This is reflected as a

single row in the dataset – there are only these three types of interactions. There is no

way of identifying different session concepts here since there is only one interaction overall.

By removing these user ids, the number of unique user ids in the dataset is reduced by

around 34.72%. The number of interactions, equalling the number of rows in the dataset,

is reduced by only around 3.92%.

13Thereby ensuring that no email hash or cookie value can be associated with the user id.
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The final preprocessing step is actually closer to the modelling approaches that will be

presented in Section 4.4.2.1. By introducing a visit concept to the dataset, it is possible to

analyse certain user behaviour patterns. This is necessary to understand how the website

is used in a practical and descriptive manner: how often do users visit the website and

how many interactions are made in every visit? To answer these questions, a visit id is

calculated on a user id basis and added to the dataset. Details for the implementation

and potential drawbacks can be found in Section 4.4.2.1, as the visits technically equal a

session concept.

Step 3: Filtering

With the between-interaction time in the form of the field timespan now available in the

data, more steps regarding further preprocessing were possible. To enable this, another

table with summary data users was created. This table included all user ids with a

minimum of two interactions and the related amount of time spent overall on the website;

including the total number of products, categories and manufacturers viewed, the queries

and the already-known total number of total interactions. With the next query, three more

subsets of users in total were then removed by applying the following rules:

1 overall time spent on site below five minutes, zero queries and zero or one visited

manufacturer or category

2 overall time spent on site below five minutes, exactly one query and zero visited

manufacturers and categories

3 overall time spent on site below five minutes, one visited manufacturer, category or

query and maximum three interactions

The underlying idea is relatively simple: having a five-minute inactivity window as the

lowest temporal session boundary will result in all the removed subsets equalling exactly

one session. The other conditions ensure that any logical session or journey approach will

also result in exactly one segment of interactions. Visiting a maximum of one category

or manufacturer marks these interactions as related to the same information need. The

same is true for issuing exactly one query without any other interactions whatsoever – like

browsing categories or manufacturers. Besides, these interactions are very likely to belong

to the same information need. This step reduced the number of users in the already-filtered

dataset by another 31.99% and the number of interactions by 7.39%.

In part, the reason for using manufacturers instead of products relates to the structure

of idealo’s website14. Another reason is the high probability that a visit to one manufac-

turer in one category refers to the same range of products and, therefore, to the same

information need. As an example, visiting multiple products in the category Smartphones

of the manufacturer Apple would be considered the same information need. This may not

be true for every category, however, since manual classification of this area is common-

place and may result in errors. In general, though, the assumption should hold true for

14See the difference between main and variant products in Section 3.2.
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the majority of interactions – especially considering the short period of time in which the

interactions where made.

Another hard restriction was made on the media of all interactions. Since the tracking

quality of the app data is not satisfactory, the decision was made to remove all app traffic.

Traffic from the app is generally rather incomplete, lacking in consistency and is overall

fairly poor in terms of tracked content. Therefore, app traffic is not alone in being excluded;

the user ids that have performed actions on the app are also removed completely from

the dataset, including any interactions they have carried out on the web. Doing so ensures

consistency in logical session approaches. While this strategy may not be immune to errors,

the internal structure of the remaining data is still valid when it is considered that the

overall quantity of removed traffic is quite small (4% of all rows).

4.4 Modelling Sessions

This section provides an overview of the various approaches tested in this dissertation. As

a first step, some specifics of the dataset will be explained to clarify the fields in use. This

is followed by a description of how all the tested approaches were implemented, including

technical details of the calculations. In total, four general areas were tested:

• Visits (path-based structural approach)

• Temporal boundaries

• Lexical and semantic similarity

• Combined approaches

While these general areas may appear to only define the nature of the approach, they

include multiple methods and mechanics all differing in complexity. A complete overview

of all approaches can be found in Table A2. Below, each area is explained in brief, with

the underlying assumptions offered once again with respect to the state of research. For

clarity, all tested variants are divided into two groups to either represent a mechanical or

a logical session construct.

Regards the further implementation of all approaches, it is important to be aware

that marketing-related information has been excluded in all session approaches except

for the visit concept. Marketing-related information usually comes in the form of UTM

parameters derived from the url or http referer. In productive e-commerce systems, this

type of information is utilized alongside the traditional session-identification approaches,

like timeouts, to indicate the start of a new session. When a user enters the website with

a new campaign or uses a new marketing entry (i.e. directly via a link or via search

engine advertising), this constitutes the beginning of a new session. The reason for this is

simply financial: depending on the entry marketing channel, all financial value generated

during the assigned session is attributed to the respective marketing channel leading to this

session. It follows, therefore, that as the number of sessions a marketing channel generates
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is generally used to estimate its efficiency, the budgeted expenditure of the channel will

also be affected. As the many different attribution models that inform this information

are not connected to user behaviour, it will not be used here.

Before going into details of the implementation, some specifics of the data model are

explained. This is necessary to be able to implement some of the approaches, because most

of the methods presented in Section 2.3 rely on different dataset structures.

4.4.1 Preliminary Considerations on the Dataset

The dataset analysed in this dissertation contains data from the complete year 2018.

After preprocessing, it contains 1,268,619,378 interactions from 78,361,923 user ids. Every

row represents one interaction, separated into 1,034,058,301 pageimpressions, 229,260,133

leadouts and 5,300,944 useractions. A more detailed statistical exploration is given in

Section 5.1. Table A1 provides the tabular schema for the dataset.

The actual data is divided into page impressions, lead-outs and user actions. The

majority of interactions comes in the form of page impressions. Basically, each click made

while navigating the website is a pageimpression whereas every click navigating towards

a shop or an order is a leadout. This means, every click on a navigational element or a

page on the website and every query is a pageimpression. Clicks on links to shops, offers

or on advertisements are leadouts. A useraction is somewhat special; these constitute

events that relate to an interaction with user-specific elements on the site. They do not

represent page changes but actions on the visited page; i.e. putting a product on a wish

list or setting an alert. There is no change in content here, a useraction just represents

additional information on top of a pageimpression.

Every row in the dataset has a user id, a timestamp in the form of the tracetime and

the calculated timespan, indicating the time since the last interaction. Essentially, these

are the most important fields for any basic session-identification algorithm. The tracetime

(in combination with the timespan) allows a temporal boundary for any user id to be

calculated. For any approaches related to the contents of a page, the url and http referer

as well as the page template are relevant. With the url and the http referer, the path

a user takes on the website can be reconstructed, essentially replicating the concept of

a visit. An important potential source of errors is the fact that the timespan does not

necessarily equal the time an actual user has spent on the page. It rather just marks the

time that passed between two subsequent events of a user, calculated by comparing the

timestamps of said events.

The type of page visited is represented by the page template. This field is the clas-

sification of the visited page, thereby unambiguously identifying the type of interaction.

For example, the page template GoToShop is explicitly associated with a leadout. The

page templates associated with useractions actually describe the performed interac-

tion, for example activate pricealert. All remaining page templates are connected with

pageimpressions; these actually just describe the visited page like OffersOfProduct for the

product page.
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Figure 4.3: Interactions per page template.

Figure 4.3 is an overview of interactions per page template. Clearly, the majority

of interactions happen on the OffersOfProduct, which is the product page, and the most

important page from a business perspective. The GoToShop page template with roughly

18% of rows represent leadouts. Of the interactions, 15.25% are search result pages; this

means that only 15.25% of the interactions come with a query string. Around 11.57%

of interactions are made on product category pages with the page template Product-

Category and slightly less on the MainProductCategory, the homepage. Users interact far

less frequently with all other page templates – the Other bar is made up of 27 different

page templates. Among these are the SubProductCategory (0.38%). This is an important

indicator of the navigation behaviour on the website: users mainly focus on visiting prod-

uct pages, either by directly landing on the product pages, using the search or navigating

via the homepage and category pages afterwards – there is minimal browsing involved.

Every page template has its own set of identifiers (or human-readable names) that

can be used to connect the different page templates to a logical construct. These iden-

tifiers are essential, since they represent the content of the page and, in combination with

the page template, the type and level of information the user accesses. The most im-

portant identifier is probably the product id, associated with multiple page templates:

OffersOfProduct, GoToShop and practically with every useraction that involves a prod-

uct. The latter includes setting a price alert or adding a product to the wish list. They

should also appear in the data when a user writes a review about the product using the

page templates ProductRatingForm and ProductRatingFormSuccess. At the same level

of abstraction (meaning the lowest level of information) are the Cluster and List pages.

Cluster pages have a cluster id, List pages come with list id. The Leadouts from offers

on a cluster page or from search result pages have an offer id. Likewise, almost every

page template has a category id, indicating a higher-level topic association.
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4.4.2 Modelling Mechanical Sessions

4.4.2.1 Path-based – Visits

The first model (row one in Table A2) to be implemented is a special case, since it is not

effectively a traditional session-detection approach as defined in Section 4.1 and according

to the definitions set out by this dissertation. The visit as a concept is intended to replicate

the actual visit of a user to the site. There are no assumptions on information needs or

other boundaries here, it simply represents the subsequent interactions of a user id from

the point of entering the site to the point of leaving the site at some point, in one way or

another. Visits are supposed to represent a self-contained sequence of interactions with a

system; these interactions may belong to the same of different information needs.

The underlying concept resembles a graph of visited urls and the corresponding

http referers of a user id. For every interaction, the idea is to check if there is a match-

ing http referer in subsequent interactions, and if so, to connect these events. Using

this methodology, in an ideal environment, the path of a user through the website – from

lead-in to a potential leaving point – could be reconstructed. Since the dataset at hand

does not represent an ideal environment, several problems can occur.

Theoretically, interleaving visits could be recreated by comparing url and http referer.

A possible problem here is if a user visits the same page on two different visits from the

same referer – it would then not be possible to distinguish in which visit this sequence

of interactions happens. Another thing to keep an eye on regarding these path-based ap-

proaches is the quality of tracking. All events need to be tracked consistently to be able to

perform proper path analysis between them. If events related to visited pages are missing

then a visit break occurs, which potentially introduces a high number of errors. Taking the

case of the dataset currently at hand, this is not a potential trivial error, since unnecessary

events for other session approaches have also been removed15. Another important factor

is the absence of tracking in the account area, which may lead to a lot of visit breaks, as

described in Section 3.5. Still, it is necessary to implement the concept since it stands as

an actually tangible approach to represent user behaviour. A visit describes what the user

does without any assumption regarding intents or information needs. As to the quality of

tracking, the concept also begs the question of whether the replication of actual tangible

user behaviour is even possible.

The concept was implemented using a PySpark approach that iterates through every

user id object consisting of all user interactions of the respective user. The algorithm

makes a comparison row by row having already sorted all rows chronologically by trace-

time, and compares the url of the reference row with the http referer in subsequent

rows. Every time a connection cannot be made, a new visit id is assigned to the row,

creating an index of visits for every user id. This includes marketing tracking parame-

ters; their presence in the url would also indicate a new visit, as they define a precise new

starting point.

15For example, pageimpressions with status 301.
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To reiterate the point: in the approach used in this dissertation, the concept of visits

relies exclusively on an existing url/http referer relationship. In the current implemen-

tation, no complex special cases are considered that may circumvent any tracking or data-

quality issues. The one exception is the connection between identical url/http referer

stems that is activated by comparing the path while ignoring additional (internal) param-

eters. Other cases were ignored; thus, if no relationship is found, a new visit id is set. An

example of this is the account area for idealo – if a user visits an untracked account page

and comes back to the tracked pages afterwards, a new visit id would be set. While it is

acknowledged that issues such as this may suggest a break from the visit concept imposed

by this dissertation, to have created a more all-embracing methodology would have set the

scope wider than the bounds of the research questions.

4.4.2.2 Temporal – Inactivity

The first actual session-detection algorithm to be implemented follows the (in)famous

industry standard. Temporal inactivity (variants are identified with the prefix ti, rows

2–14 in A2) timeout sessions are used widely in all kinds of systems. Companies such

as Google use a 30-minute inactivity rule to identify their sessions, although campaign

information is frequently used as well to mark beginnings (and endings, respectively) of

new visits16. A change in the campaign parameter would indicate a change of the marketing

channel, which, for financial reasons, is then counted as a new session17.

The basic underlying assumption of temporal inactivity sessions is that users work on

fulfilling one information need before taking a break and then beginning work on another

information need. The goal here is to find the optimum temporal threshold to be able to

separate the events belonging to different needs. The use of the same general temporal

threshold is based on the belief that all users will potentially behave similarly on the

same information system. Since the literature is rather undecided about how arbitrary

the choice of timeout value can be [51, 83, 184, 192], a broad range of values is tested.

In addition, other timeout values were tested to gauge whether alternative arbitrarily

chosen boundaries have any impact on the number of identified sessions. Overall, sessions

were calculated with 14 different values. The following values (referring to minutes) are

used: 5, 10, 15, 20, 25.5, 30, 45, 60, 90, 120, 180, 360, 720 and 1,440. There are no

further conditions, the only boundary used is the time between subsequent interactions.

The working method illustrated in Figure 4.4 displays nine interactions grouped into two

inactivity sessions. The second session begins because the time gap between interactions 3

and 4 is greater than (or equal to) the inactivity timeout; the time gap between interactions

6 and 7 is smaller, therefore the last six interactions are grouped into one session.

The calculations were carried out using Spark SQL executed from a PySpark script

on an EMR cluster. The first part of the query simply checks if the already-calculated

16https://support.google.com/analytics/answer/2731565, retrieved 8 June 2020.
17As explained above, this dissertation has not applied this extra step as it would involve implementing

an attribution model for marketing that may be entirely dependent on the respective use case within

a productive environment.
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Figure 4.4: Example of the inactivity session method. There are nine interactions grouped into two sessions. The

time gap after the first three interactions is bigger than the inactivity timeout (as indicated by the mark), therefore

the last six interactions are grouped into the next session. The time between interactions 6 and 7 is greater but still

smaller than the inactivity timeout, therefore these interactions are grouped into one session.

timespan in each row is greater than the respective inactivity timeout value. If the value

is greater or equal to the timeout value, the value 1 is set, indicating a new session start.

Otherwise, the value 0 is set. The next part is a window function that sums the newly

calculated session start over the user id. The result is a counter that assigns every session

an increasing identifier according to its chronological order. This new identifier is assigned

to every interaction belonging to the same session.

4.4.2.3 Temporal – Fixed-Length

The next variant of mechanical approaches are sessions with a fixed duration (variants are

identified with the prefix tf, rows 15–28 in Table A2). Using a total threshold on page-

stay time is rather old-fashioned and is rarely used nowadays. The basic assumption is

that, depending on the contents of the website, a user only stays for a certain time per

session, leading to a general overall threshold [238]. This line of thought may hold true for

websites with a very limited scope or a limited set of pages with specific purposes, where

the particular online business model may be perceived to lead to potentially very short

sessions. Generally, it is similar to the idea behind temporal inactivity sessions – users will

work on the same information need for an amount of time before moving on to the next

information need – the difference being that the fixed temporal sessions assume a fixed

period of time of working on the same need instead of trying to estimate the time that

could potentially pass before the user starts working on a new information need.

For the use case at hand, the assumption is that a fixed total threshold will perform as

well as the inactivity timeouts. The specifics of the data, especially regarding the frequency

distributions of user ids coming back to the website, suggest a comparable outcome with

few differences regarding session length and session duration. Experiments were conducted

using the same values as the inactivity timeouts. Since the 14 values tested previously are

in a relatively wide range, this selection should also suffice as a total page-stay threshold.

The concept is displayed again in Figure 4.5, where the maximum length is indicated by

the frames. Here, the six interactions are grouped into three different sessions because the

respective maximum length implies the structure.
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Figure 4.5: Example of the fixed-length session method. There are six interactions grouped into three sessions. The

maximum-length frames indicate the length of each session, measured by the respective first interaction. Although

interactions 3 and 4 are closer in time than interactions 3 and 1, they have not been grouped into one session. This

is due to the maximum time expiring that begins from the point of interaction.

Again, the calculations were conducted using Spark SQL executed by a PySpark script

on an EMR cluster. The code for implementing a fixed total threshold is similar to

the implementation of the visit or path-based approach. Instead of comparing url and

http referer, the timestamps in the form of the field tracetime were compared between

different subsequent rows of a user id object.

For every fixed threshold, the timestamps between subsequent rows are compared. The

first row of a user id object is always the first reference tracetime. From then on, every

tracetime that follows is compared to this first reference tracetime. If the difference

between new tracetime and the old reference tracetime exceeds the threshold, a new

session id will be set. Additionally, the tracetime of the row will be the new reference

tracetime to which all the following tracetimes will be compared. Following this, the

first tracetime of every respective session is concatenated with the user id to construct

a unique id. This id is then assigned to every interaction of the respective session.

As an additional value, session days are calculated as another variant of the fixed-time

boundary. Session days refer to the actual date on which an interaction was performed.

Practically, this equals the already-calculated interaction day which is now combined

with the user id and assigned to every interaction on the respective day. Using the in-

teraction day as a session boundary introduces a hard boundary at midnight. Users

browsing around midnight would then have interactions from two sessions. This approach

is tested as it is most likely the simplest form of session identification. Simply, it measures

the frequency of user ids visiting the website in a commonly used time format, therefore

making it easily computable and understandable.

4.4.2.4 Temporal – Dynamic Timeout

The next session types use a variable dynamic timeout (variants are identified with the

prefix td, rows 29–37 in Table A2). Dynamic timeout thresholds are assumed to be more

plausible than the fixed-inactivity timeouts since they may take the specifics of the dataset

into account. For example, users of a newsletter website would probably spend more

time on various pages than users of a weather website or an online encyclopedia such

as Wikipedia. The assumption for these dynamic timeout sessions differs only in the sense

that the temporal inactivity sessions’ threshold may be dependent on certain conditions.
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To obtain the different dynamic thresholds, a variety of control features was used to reflect

the conditions that influence either a longer or shorter threshold.

The page template was identified as the most important factor in controlling the

timeout threshold. The various page templates are representative of the website’s busi-

ness model and should therefore a) have clear differences in browsing behaviour on them

and b) be weighted differently according to their importance regarding the business model.

Another factor relates to the various product categories in the data to reflect the assump-

tion that users spend different lengths of time browsing different categories. For example, a

user may spend more time on pages when looking for computer parts compared to looking

for a new gaming console. The difference when looking for a specific product or comparing

different items should be visible in the data.

Therefore, multiple combinations of factors were used to calculate dynamic timeout

thresholds. Per combination of factors, the average time spent on an interaction with the

respective combination up to the next chronologically following interaction was calculated

as the threshold for these factors and saved in a lookup table. The results were then joined

to the original dataset and compared to the already calculated timespan. If the timespan

exceeded the threshold value, a new session was set for the respective combination.

Since the page template and the category id information are arguably the most

decisive factors in considering time spent on the website, both factors are used separately

and in various combinations. In addition, a couple of other variants were considered: the

time of year (where the day of the interaction was represented by the month) was chosen to

potentially capture different behaviours relating to season; and the device, to be able to

differentiate between mobile and desktop usage. The list below includes all combinations

of factors to calculate average time:

• per page template

• per category id

• per root category id

• per page template and category id

• per page template and root category id

• per page template and month of interaction day

• per category id and month of interaction day

• per page template and device used for browsing (e.g. computer or mobile phone)

• per page template and category id and device used for browsing (e.g. computer

or mobile phone)

Other approaches have attempted to come up with a dynamic threshold on a user basis

[182]. Calculating a threshold per user might be reasonable when there are many interac-

tions on a user level, i.e. having a lot of interactions per user on a specific set of pages.
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A potentially workable example may lie in any streaming system – here, a lot of data per

identifiable user would be available that could be used for better measuring the per-user

thresholds. In the dataset at hand, the majority of users do not visit the system regularly.

4.4.3 Modelling Logical Sessions

This section details the steps that were taken to identify logical sessions. It explains the

necessary preprocessing actions and describes the implementation of various mechanics

to estimate topical similarity between different interactions. The methods differentiate

between lexical and semantic session identification. In this dissertation, lexical similar-

ity refers to the closeness of two or more (string) objects in terms of character overlap.

Completely matching strings would indicate a lexical similarity of value 1, for example.

Semantic similarity refers to the relatedness of two or more (string) objects regarding their

meaning or context. Two semantically similar objects would have a similar meaning, for

example, the terms smartphone and mobile phone.

4.4.3.1 Lexical and Semantic Properties in the Dataset

Most of the session-identification approaches presented in 2.3 deal with the identification

of sessions in a search environment. The main focus is on users interacting with search

engines to fulfil information needs. Logged interactions with a search engine are mostly

queries, often, but not always, supplemented by any following clicks on results. Queries are

the main component when trying to identify logical sessions (whereas a timestamp and a

user identifier would suffice for temporal mechanical sessions). This is also reflected in the

datasets, most of which originate from search engines such as AOL or Yahoo. In the case

of the data used in this dissertation, queries are not the main component. Technically, a

price comparison website could also be seen (and used) as a search engine. But practically,

this is not – at least not in the main – the case here. Where other datasets can solely rely

on queries, the dataset at hand is limited regarding this aspect of data. While queries are

part of the data, the role they play is less important than the actual content of the visited

pages. Of more direct value here are the fields that represent the content of the visited

page. This includes all fields that contain names and identifiers related to the content of

the visited page, such as the manufacturer, name or id of the product and especially the

various fields related to the visited categories. Since the case in hand is a price comparison

platform, queries are typically related to specific products or, more generally, to categories

or manufacturers. While there will be more ambiguous queries for specific (or general)

topics or areas such as, for example, ‘star wars’, nonetheless, the majority of interactions

will be on product or category pages.

Measuring (topical) similarity between interactions for the dataset at hand is complex,

since there is no real user input to compare to query logs that can easily be utilized. While

queries do exist, they only make up 15.25% of all interactions. A much larger portion of the

events consists of interactions related to the product page (41.13% pageimpressions, 18.07%

to leadouts) and to a lesser extent to category pages (11.57%). Even the homepage gets
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a relatively high portion of the interactions with 6.82%. These percentages confirm that

queries alone are unlikely to be able to detect coherent topical segments in the data. This

contrasts with the strategy common to other published research that almost exclusively

work with queries (i.e. [80, 88, 89, 120, 155]). For the dataset at hand, information relating

to the content of the pages is far more relevant. This is why the approaches in this section

identify sessions according to the semantic-similarity properties of visited pages instead of

queries.

This rule refers to any identifier in the data. Since identifiers are available in nearly

every trace after preprocessing, they can be used to compare the different interactions of a

user. The same is true for the corresponding name fields, for example the category name

Smartphones (mobile phones) belonging to the category id 19116. The names may im-

prove comparison between different levels of possible names since they have a semantic

meaning. While there is no meaning to the id 19116, the term smartphone can not only

be found not only in the category name, but also in the product name and even in

the query field.

With this information in mind, the construction of logical sessions with the data at

hand becomes theoretically comparably easier than having to solely rely on query events,

although further preprocessing is required. Using information from the category tree makes

it easier to identify hierarchical connections between different events without necessarily

having to interpret the meaning of a query. This is particularly useful for semantic con-

nections; thus, whereas comparison between different queries requires a lot more context

to identify similarity, the hierarchy of the category tree for the data at hand may already

adequately demonstrate useful associations, as seen in Figure 4.6.

The structure in Figure 4.6 illustrates the utilization of the category tree. The different

interactions such as pageimpression, leadout or useraction all come with an associated

category id defined by the product category (PC1, PC2, PC3 and PC4). Using the

respective higher level per identifier (either subcategory (SC1, SC2, SC3) or root category

(RC1, RC2)) in comparison to the hierarchy of the category tree leads to new possible

connections using the associated information gained from the tree. The different events of

the two visits are all associated with the different product categories and are, therefore,

connected to the respective branches of the overall tree. In the example, the last two

interactions of visit 1 could be connected logically to all already-connected interactions of

visit 2, as they belong to PC2, which is connected to the rest of the interactions in this visit

by originating in the same root category (RC2). The result would be two logical (lexical)

sessions identified through lexical similarity by exploiting the matching category ids as

shown in the figure.

This constellation and the hierarchy have a clear advantage compared to using queries

because all the events are already connected topically. Only the search result pages with

the associated queries and the homepage need to be connected to the category tree since

they have no tracked meaningful identifier. Any other page templates that do not have

an associated category id (for example, because of erroneous tracking) should also be

connected by either setting a placeholder id or extracting identifiers from the url.
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Figure 4.6: Example of topical connections using the category tree. The two dotted lines connecting PC1 and PC2

implies a potential connection between category ids that are not in the same tree branch, whereas the fixed lines

display a connection over direct category id relationships among categories and with regards to their root category.

Illustrated are two visits (connected via url and http referer), that are actually two topically connected sessions

because of the shared category branches. Abbreviations: Q = Query, PI = Pageimpression, LO = Leadout, PC =

Product Category, SC = Subcategory, RC = Root Category, UA = Useraction.

Alternatively, or as an additional improvement to the quality of these already existing

topical segments, different categories of the category tree could also be connected indepen-

dently of the actual tree structure in the way queries also need to be somehow connected.

This means, for example, related categories that reside in a different branch of the category

tree. In Figure 4.6, this could mean that PC1 is actually related to PC2 as indicated by the

dotted line between them – connecting all events to one big logical session. Understanding

this connection effectively represents the construction of semantic similarity, which can

then be used to construct even broader logical (semantic) sessions.

Finding the connection can be done via similar preprocessing steps to the identification

of query similarity, resulting in two further preprocessing tasks that need to be completed

before construction of actual logical sessions can begin:

1. Connecting queries to the category tree

2. Calculate similarity between categories independently from the category tree

The first task is important to avoid a non-trivial number of events with no assigned

category id. Although there are comparatively few query events, it is not unreasonable

to assume that these may be a starting point for many longer sequences of events. In

any case, connecting the queries to categories is an essential preparatory step to properly

accomplishing the second task.

Both tasks are modelled as classic information-retrieval tasks. The first approach is

based on the idea that finding the most relevant category for a given query is a very
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traditional information-retrieval task; having a set of terms and finding the most relevant

documents essentially describes the task being undertaken here. The second task picks

up on the idea that syntactically close terms are related or similar in natural language.

Adapted to the setting here, the assumption is that categories interacted with subsequently

are related or similar. For the first task, a variant of the original BM25 [223] retrieval

algorithm was implemented via PySpark and SQL to gather matching category ids to

queries from a combination of different text corpora. For the second task, word2vec [186]

as well as BM25 scoring were used to calculate the similarity between different categories.

Introducing a novel idea, word2vec was applied on different category interaction sequences,

effectively converting user traffic to vectors and utilizing them to estimate similarity.

It is important to note that this set-up deviates from using an explicitly formulated

information need (i.e. a query). In this case, the information need of the user is extracted

indirectly from information about user behaviour and navigation, implicitly assuming that

the user is aware of what s/he is doing. Using the indirect information in the form of the

category ids assumes that the browsing user already knows to which category their

information need belongs. This results in interactions that actually belong to the same

information need being assigned to different sessions because the user did not explicitly

know where their information need would be fulfilled. This is an interesting limitation that

may result in multiple session breaks for logical sessions for some users. Considering the

implemented method described in the following sections, it is assumed that this problem

is at least somewhat mitigated by using an embedding algorithm. A further assumption is

made about the systems employed to navigate to the information system in question: the

information system itself will somewhat support the user in their behaviour (e.g. by routing

even ambiguous queries in search engines to the ‘correct’ pages), thus minimizing the

impact of the problem. It is notable that this impact could be analysed by implementing

logical sessions. The following section describes the necessary steps to connect events

without a meaningful category id to the category tree, as well as how to calculate a

category-similarity vector embedding.

4.4.3.2 Connecting Queries to the Category Tree

The first step in setting up an experimental information-retrieval task to find fitting cat-

egory ids for user queries is to create a suitable text corpus that can be used to match

the said queries to associated category ids. Theoretically, the category ids could be

extracted from the results the user clicks on after the query, but since many queries are

not followed immediately by other events and the result sets are frequently very diverse,

this was not the direction the current dissertation followed.

To construct the text corpus, several sources were used. The most obvious source is

the dataset itself. Information about category names, category synonyms, manu-

facturer names, product names as well as product types were extracted and stored

with the associated category id. In this case, the latter served as the document identifier

when compared to a traditional retrieval system. Having collected this first batch of text,
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Figure 4.7: Preprocessing flow for text-data collection to match queries to the resulting document corpus.

the second step involved accessing the internal inventory databases from idealo to gather

more data. This data was then separated into two buckets: one for the products and one

for the offer data. This was necessary because although theoretically these datasets are

identical since the product data is generated by the mapped offers, the internal structure

is different. Both data sources were then used to extract further information. Figure 4.7

depicts the complete data and retrieval flow.

The number of extracted rows per product id, offer id and category id was re-

stricted to minimize the weight put on the frequently changing inventory; where a lot of

price changes occur, evidence is often found in new rows in the inventory results for the

same offer, product and end-category. For example, the category Smartphones has a much

more volatile price structure than the category Katzenfutter (cat food), resulting in a lot

more rows with the same information aside from the price.

From a content perspective, all fields containing meaningful text were extracted. This

includes the following fields: manufacturer name (only for the product objects), fields

called searchtext and description, title and a separate field for eans (European Article

Number or EAN). An example of a row from an offer object can be seen in Table 4.1. The

searchtext and title are often, though not always, very similar and represent primarily a

short description of the item, while the description field is a free-text field that describes

the item at more length. The eans are collected in order to capture EAN queries. All

these fields are then concatenated into a single text field and stored in two variants: one

with all text included for every component; the other using only distinct terms – to affect
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Field Example

item id 3333571109695003970

category id 26849

searchtext Airfryer – Die besten Rezepte Anne Peters

description Viel Genuss mit wenig Fett . Gesund frittieren, abwechslungsreich genießen – die besten Ideen

für die Heißluftfritteuse . Tolle Snacks, Gerichte und Desserts für das innovative Küchengerät

. Über 35 Rezepte von Pommes bis Popcorn, von Chicken Wings bis Backofen-Tortilla, von

herzhaft bis süß . Mit zahlreichen brillanten Fotos Viel mehr als nur heiße Luft: Der Airfryer

ist ideal für alle, die sich abwechslungsreich und gesundheitsbewusst ernähren möchten. Statt

in Öl garen die Zutaten in einem heißen Luftstrom zu krossen oder saftigen Köstlichkeiten

mit natürlichem Aroma. Und sparsamer, als für kleinere Portionen den Backofen anzuwerfen,

ist dieses geniale Küchengerät allemal. In diesem Buch finden Sie tolle Ideen für das beliebte

Multitalent. Ganz ohne oder mit nur wenig Fett gelingen Pommes, Chicken und Gemüsechips

auf Knopfdruck. Auch süße Leckereien wie Brownies, Bratäpfel oder Popcorn lassen sich in

der Heißluftfritteuse perfekt zubereiten. Entdecken Sie die neuen und extrem vielfältigen

Möglichkeiten für puren Genuss!

title Airfryer – Die besten Rezepte Anne Peters ePUB

ean 9783815554234

Table 4.1: Example of an offer item from the document corpus.

the frequency of the term associated with certain terms – for the offer data as well as for

the product data.

The preprocessing conducted while saving the text is depicted in Figure 4.7 as a number

1 inside a circle. In this stage, the number of characters was reduced to no more than 100,

redundant white spaces were stripped and all special characters were removed. Stemming,

stopword removal and a combination of both was also applied on the different corpus

variants. As for the stopwords, a generic German stopword18 list was used, complemented

by a small number of e-commerce-specific terms like preisvergleich (price comparison),

kaufen (buy it) or günstig (cheap), but these are not relevant to the task at hand. For

stemming, the Cistem stemmer [271] from the Natural Language Toolkit (NLTK) Python

library 19 was used. Another step included aggregating all text to category id level,

thereby drastically reducing the number of documents in the corpus, since now every

document represents a category id. After preprocessing, 16 different text configurations

(i.e. different combinations of preprocessing) were used, on which to to run the retrieval

model.

Now the BM25 retrieval algorithm was implemented using Pyspark and SQL to match

the queries from the dataset with the document corpus. PySpark was used instead of

existing libraries because of the quantity of data that needed to be processed. Several

different formulas were tested following the insights from Kamphuis et al. [122], thereby

also testing different calculations for the inverse document frequency. The resulting scores

per term were then used in combination with all query terms to calculate a final score per

18https://solariz.de, retrieved 10 December 2020. No longer accessible.
19https://www.nltk.org/_modules/nltk/stem/cistem.html, retrieved 10 December 2020.
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respective document id. Testing was carried out on the original BM25 formula, simple

tf/idf scoring as well as BM25L [161] on the supposition that the latter would normalize

the penalty on longer documents, using the following formulas:

• BM25 ∑︂
t∈q

log

(︃
1 +

N − dft + 0.5

dft + 0.5

)︃
· tftd

k1 ·
(︂
1− b+ b ·

(︂
Ld

Lavg

)︂)︂
+ tftd

• BM25L ∑︂
t∈q

log

(︃
N + 1

dft + 0.5

)︃
· (k1 + 1) · (ctd + δ)

k1 + ctd + δ

• TF*IDF ∑︂
t∈q

TFt · IDFt

Where dft is the number of documents d containing a term t, N is the number of all

documents (i.e. the number of category ids), tftd is the term frequency of term t in

document d, Ld is the number of tokens in document d, Lavg is the average number of

tokens in relation to the complete corpus, ctd a reformulated tftd component in BM25L and

k1, b, δ are free parameters. ctd equals tftd/(1− b+ b · (Ld/Lavg)). k1 acts as a smoothing

parameter for term-frequency weights whereas b is used as a normalizer for document

lengths. Similarly, δ is supposed to give longer documents a boost.

Since query-matching quality is technically not within the scope of this dissertation, a

complete evaluation of the retrieval algorithm and the ranking results was not performed.

Had this been the case, a full evaluation would have involved setting up the appropriate

test collection using manual relevance-assessment for a set of representative queries. Since

the list of queries contains 45,416,965 distinct queries, with 7,675,830 distinct terms and

147,295,562 terms overall, setting up a valid evaluation environment would have been a

project in and by itself. Instead, for simplicity, 20 specifically chosen test queries were

used to determine if the results of the scoring were valid enough. The queries were checked

against the first 20 retrieved documents (i.e. categories).

After testing the respective corpora and different scores, the best results were achieved

subjectively on the corpus by retaining all terms from the original data flow, with stop-

words removed and aggregated at a category id level. As for the retrieval score, BM25L

seemed to deliver the best results with a strong normalizer on document length, which

is reasonable considering the structure of the corpus. Documents representing categories

that have a volatile price structure included many more terms in much higher frequen-

cies compared to those with fewer price-changing categories. To normalize the impact of

the document length, the respective parameter of BM25L seemed to do the trick here.

Parameter b was set to 0.00001 and k1 was set to 50 after multiple experiments, in an

attempt to estimate their impact on the ranking outcome. δ was left at the standard value

0.5. Nonetheless, another addition was made after reviewing the results and to reflect the

importance of the categories according to the dataset and the website itself. A fixed pa-

rameter was added to the score weighting to account for the flow of traffic a respective
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category received. This traffic normalizer was calculated by counting the interactions per

category id in the dataset and calculating the z-score20 of the result.

The results lead to some rather interesting implications. Apparently, the document

corpus has some very specific properties. This is only logical since it basically is a concate-

nation of three different text objects. The massive differences in document length introduce

a certain error margin as well. One assumption is that such a corpus needs many more

e-commerce-specific stopwords to reduce the noise in order to deliver stable results. An-

other assumption is that the text itself is not necessarily very descriptive of the categories.

Often there are some strange connections between different categories.

Since this task is only the first of two preprocessing tasks, the results were deemed sat-

isfying enough – however, in a productive setting, these should be tuned and tested further

and, even more importantly, be carefully evaluated. Having logical sessions identified in a

productive environment, the information gained could be used to connect incoming user

queries to the existing categories even more precisely. In the task at hand, the results from

the BM25L score were identified as having adequate quality.

As the last step, the topmost similar category id per query was joined back to the

dataset. For around 3,282,939 queries, no category id could be identified, resulting in

around 0.001% events without a meaningful category id. Every event missing a cate-

gory id is replaced with the value 42 in the dataset. The results can then be used for the

second task, which is explained now.

4.4.3.3 Calculating Similarity Between Different Categories Independently

from the Category Tree

This second task is a major step towards identifying logical sessions. The first task is

(relatively speaking) merely a preprocessing step that should normally already have been

established in the data since the underlying retrieval algorithm (for user queries) ought

already to have the necessary information from the productive system. However, the second

task is much more important because this is where the topical connection between events

is defined. Multiple approaches were tested.

The first experiment is a novel approach introduced for the first time in this disserta-

tion to the author’s best knowledge, very similar to embeddings used in recommendation

applications (search-context embeddings for ad query matching [84] or product-user em-

beddings for product recommendation [85]). By introducing a similarity system of associ-

ated categories, topical connections between categories (and queries) are easily identifiable.

The presented approach utilizes the already-existing traffic to estimate category similarity

in an unsupervised way: the idea is to base the similarity association in the context of

a category id’s surrounding categories on user behaviour. By doing so, it is possible to

identify category relations that share a common space in relation to the information needs

of the user. In fact, the assumption here is similar to the base assumption of mechanical

sessions using time boundaries: users will work on information needs in small sequences of

20https://en.wikipedia.org/wiki/Standard_score, retrieved 28 November 2021.
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events and, therefore, will frequently visit related categories in a sequential manner before

moving on to other categories. An example could be buying a new smartphone and looking

for associated accessories. Utilizing the frequency of all users to identify such relationships

introduces an elegant way of identifying topical segments without having to rely on an

arbitrarily chosen amount of time with no knowledge of the information need.

A second experiment utilizes the shared-term space of all category ids in order to

compute their similarity. This is a more traditional approach, comparable to concepts in

the literature used to calculate query similarity (for example, as presented by Gabrilovich

and Markovitch [79] where the authors call a comparable approach Explicit Semantic

Analysis to augment text representations with knowledge extracted from Wikipedia). The

BM25L scoring for the document corpus from task one is used again to calculate the

most relevant document ids and, therefore, similar category ids for all terms from the

category names. Additionally, the top 10 scoring words for every category id were used

as well to retrieve similar categories for highly specific category names21. This led to

a similarity ranking of category ids based on shared terms. The same could have been

done via word2vec or doc2vec, but this step was skipped here since the results from the

BM25 algorithm were already good enough; however, in a productive system, this may be

a starting point for further tuning and optimization.

user id user sequences

105151986 26575, 100, 9152, 16455, 10192, 25622, 3309,

10192, 25357, 25375, 1840, 31231, 9792, 13172,

26671, 19116, 23278, 14232

103092731 15701, 4012, 15701, 4012, 15701

103105399 19116, 9552, 19116, 9552, 2925, 30890, 18677,

6073, 9552, 1, 9552, 25843, 25739, 3972, 14673,

8912, 32497, 25962

Table 4.2: Example of user category id sequences.

The data context consists of the

complete interaction sequences

of users. The problem with these

sequences may lie in the time

distance between each interac-

tion, which eventually could po-

tentially lead to unrelated cat-

egories. On the contrary, this

might have no great effect be-

cause all the traffic of all users is

used. Furthermore, the impact

might be lessened assuming that

users will visit different categories after a break. A temporal correction factor could solve

this problem; for now, the data is considered to be meaningful without any corrections.

An example of a sequence can be seen in Table 4.2.

In the example, category ids are aggregated per respective identifier in order of their

appearance in time. Consecutive repeated values are removed so that only one appearance

is in the data. Interactions with no category id as well as interactions with a category id

with no inherent meaning22 are excluded. As another approach, manufacturer ids or

even product ids could be used instead of category ids, potentially also in combination

21Such as for the category Diabetikerzubehör (diabetic accessories), where no frequent offer updates and

low traffic leads to no appearances of the term in the corpus.
22Meaning all category ids below 300, as these represent the system pages like the homepage, privacy

policy or the imprint, or have a placeholder category id.
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with them when the lower level identifier is missing. Since using the category id is seen

as a valid enough approach to define the topical connection between different events (and

therefore information needs), experiments with these identifiers were omitted. Still, these

could be used in order to create a far more fine-grained map of identifiers, leading to more

closely separated segments. In the e-commerce setting at hand, category ids should be

good enough.

Having already readied the necessary data, word2vec [186] using the Gensim [219]

implementation was applied on the sequences. A first experiment was conducted employing

the continuous bag of words (CBOW) learning algorithm, using vector sizes of 70, 100

and 300 and window sizes of 2, 3, 5, 10 and 1,000, in 10 iterations. The second run of

experiments was conducted with the Skip-gram learning algorithm, using vector sizes of

70 and 100 and window sizes of 2, 3, 10 and 1,000 and negative sampling of 20, in five

iterations.

Although no extensive parameter tuning was conducted, the tested parameters were

chosen based on some assumptions. Following the models described by Mikolov et al. [186],

both presented architectures were tested under the hypothesis that Skip-gram will deliver

more fitting results than CBOW. Skip-gram architectures are intended to predict sur-

rounding words given a reference word, while the CBOW architecture predicts a reference

word based on its context. With this in mind, a Skip-gram architecture is likely to be more

suitable for the task at hand. The different model parameters were decided based on the

size of the vocabulary and the findings from Levy and Goldberg [135], where the authors

argue that larger window sizes (i.e. of 5 and above) capture broader topical content in

comparison to smaller sizes, the latter being more appropriate for gathering specific infor-

mation regarding the target word. This said, other works do not observe notable changes

of similarity between different window sizes [72].

For the application at hand, it was decided that, theoretically at least, the bigger win-

dow sizes would deliver better results, hence the tested value range was chosen generously

with the window size 5 being the standard in the Gensim library. In terms of the vector size,

there seems to be evidence that dimensionality does have an impact on the embeddings

in relation to the vocabulary size; Patel and Bhattacharyya [203], for example, argue that

the performance of the embedding will be affected until a lower bound is reached defined

by the vocabulary size, after which the performance stabilizes. Generally, a dimensionality

of 300 seems to be the standard in the literature for corpora with a much bigger sized

vocabulary; because the size of the vocabulary here is only about 2,300, the three values

tested were deemed adequate. The assumption being that the difference should be minimal

due to the small-size vocabulary.

Since these embedding algorithms are unsupervised and present no real possibility for

evaluation aside from applying them on downstream applications and evaluating those,

a similar evaluation as in task one was conducted. The results from a sample of 100

randomly chosen category ids were manually examined to check their integrity. Devising

a more formalized way of doing this would have been preferable, but was beyond the

scope of this dissertation. The same is true for the other variant of achieving similar
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categories using the BM25 scoring. Here, all terms of the category name are used to get a

relevance scoring from the document corpus on category id level. The top 25 most similar

categories according to the BM25L ranking were then extracted for the 100 randomly

chosen categories and manually checked. After checking the results, the similarities derived

from the model based on the CBOW architecture with a vector length of 300, a window

size of 10, in 10 iterations and no other parameters, were deemed sufficient enough.

The final step before the similarity associations are applied in the logical session-

identification approaches is to define a proper similarity threshold. The question as to

what threshold should be set to decide whether two categories are similar enough to be-

long to the same session is a rather difficult one to answer, since it is completely dependent

on the underlying data basis and usually cannot be generalized. The similarity score be-

tween different terms of the vocabulary in Gensim is based on the cosine similarity (cosφ)

between the generated vectors. Generally, the vocabulary cardinality and the used dataset

as well as the parameters have a strong effect on the similarity results [40]. The differences

in similarity values between two category ids c1 and c2 are not easily understandable.

category name cosine similarity

Handy 0.76

Telekommunikation 0.73

Handy-Ersatzteil 0.70

Displayschutzfolie 0.70

Handytaschen 0.70

Kabelloses Ladegerät 0.66

Tablet 0.56

Sonstiges Handyzubehör 0.55

Handy-Akku 0.52

Handy-Fahrradhalterung 0.51

Table 4.3: Example of the top 10 most similar

categories of category id 19116 (Smartphones)

according to embeddings based on the com-

plete history of users.

The problem is illustrated in Table 4.3. As can

be seen there, the increments of the cosine similarity

between the different, supposedly similar categories

do not seem to follow an easily understandable pat-

tern. At least at first glance, there is no reason

why Handytaschen (mobile phone cases) would be

more similar than, for example, Handy-Akku (mo-

bile phone batteries). The cosine similarity is not

easily interpretable and, more importantly, not eas-

ily evaluated. Especially when considering that the

calculated similarity is actually defined by user traf-

fic – similarity here is subjective, as it reflects the

relationship between categories according to user behaviour. Although there seems to be

a meaningful pattern behind these increments according to Elekes et al. [72] (at least in

natural language contexts), the score does not reflect any easily detectable relationship

based on similarity.

This could be a point where tuning could be implemented to optimize the actual al-

gorithm, since there seems to be a lot of potential here. There again, training another

statistical model (i.e. logistic regression or an RNN) might be an option here to identify a

general threshold per category id. Another approach would be just to take every associ-

ation above a certain value. While this may be another valid option, it is kind of arbitrary

nonetheless since the values are dependent on the model and its parameters as well as

on the vocabulary. For the use case at hand, different variants of a threshold point are

experimented with, as shown in the following section.
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Figure 4.8: Example of the logical session-identification comparison contexts. A and B represent different sessions.

The blue circles represent the respective comparison context. The yellow circles represent the reference event that

is compared to the blue circles. The white circles are future events that will be compared afterwards.

4.4.3.4 Identifying Logical Sessions

The calculated similarity can be utilized in various ways. This dissertation employs a

variety of different mechanics that reflect the different variants of potential topical con-

nections. Following the basic premise that users may work on information needs in a stop-

and-go manner, this research differentiates between consecutive and interleaving sessions

for logical sessions. Consecutive sessions consist, as the name implies, only of consecutive

interactions. If the topical connection between events cannot be made, the respective ses-

sion ends and any new interactions interacting with the same category ids become a new

session. Interleaving sessions, on the other hand, employ the concept of the user working

on an information need, then working on a different need and returning to work on the

original one later.

Additionally, one can differentiate between simple (logical) sessions that deal specifi-

cally with one particular topic area and the more complex journeys that encase various

related information needs. This dissertation implements the differences between these two

concepts in the (simplified) form of a ‘comparison context’. Comparison context refers to

the comparison base between different interactions (either consecutive or interleaving):

direct comparison means that only the latest interaction of a session is compared to the

next reference interaction; the complete history refers to using all past interactions of a

session while comparing them to a reference interaction. This leads to the four different

comparison concepts for logical sessions that are illustrated by Figure 4.8.

The different mechanics are intuitively understandable. Using the complete session

history in consecutive comparisons as illustrated by mechanic 1 leads to self-contained
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topical units. These units represent coherent interactions belonging to the same topic

defined by the complete session content; depending on the actual comparison between the

two different components, this may lead to broad or very specific sessions. The second

concept in Figure 4.8, mechanic 2, is stricter; comparing only the last interaction of the

previous session with the following reference interaction may lead to very specific logical

sessions. The idea is one of developing information needs so that only the last interaction

defines the current sequence of interactions and task. Both context mechanics 1 and 2 are

limited to the session preceding the reference event.

The same assumptions are true for mechanics 3 and 4 except that the resulting sessions

may consist of interleaving branches instead of consecutive units, leading to even broader

sessions and, eventually, in the case of concept 3, to complex journeys consisting of many

different, somehow related information needs. Comparison context 4 is a special case:

when comparing only the last interaction, the resulting logical session may represent an

evolving journey. Comparing the general idea behind mechanics 3 and 4, 3 may result in

endlessly continuing sessions whereas 4 may result in developments that are too specific,

which neglect backtracking to specific parts of a journey. Either comparison method may

be very prone to errors due to their identifying sessions too broadly or too narrowly. Both

3 and 4 use all sessions that took place before a reference event for comparison, so that

the reference event could be connected to any of those or initiate a new session.

The comparison method between different interactions introduces the third dimension

affecting the identification of logical sessions. This dimension, which eventually defines

the nature of the resulting sessions, has an impact on the outcome as it identifies, either

broadly or narrowly, very strictly defined or topically evolving sessions. Using the results

of the previous sections, multiple comparison methods with different variants were selected

to conduct several experiments:

• Baseline: lexical-matching utilizing root category ids (variants are identified by

the prefix l, rows 38–39 in Table A2)

• BM25L shared-term space: top 10 similar categories according to relevance ranking

(variants are identified by the prefix bm25, rows 40–43 in Table A2)

• category id embeddings on user history (u2v): cosφ: top 10 most similar categories

(variants are identified by the prefix u2v10, rows 44–47 in Table A2)

• category id embeddings on user history (u2v): cosφ >0.5 (variants are identified

by the prefix u2v05, rows 48–51 in Table A2)

• category id embeddings on user history (u2v):cosφ > cut-off parameter (variants

are identified by the prefix u2vc, rows 52–55 in Table A2)

These comparison-method variants were selected to offer a broad experimental range

comparable to mechanical approaches. Essentially, the baseline approach represents lex-

ical sessions – only when the category ids or root category ids of interactioni and
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interactioni+1 are matching23, is a session identified, otherwise a new session id is set.

The second method uses the top 10 most similar categories according to the BM25L rele-

vance ranking. The reason for the top-10 selection is based on the concept of information-

retrieval relevance, whereby the higher the relevance score, the more important the topic

is to another topic. In this case, category ids that rank higher are assumed to be closer

in terms of their vocabulary and therefore are assumed to be more similar.

The same assumption holds true for the other comparison methods. Taking the top 10

most similar categories according to the calculated cosφ is more or less an arbitrary value

that again resembles the displayed results of a search engine. Using all similar categories

above a cosφ of 0.5 is an approach commonly applied in the literature [83] dealing with

any kind of word embedding; it is important to note that this value is usually applied to

data with a natural language context, so it might not be a fitting option here. The cut-off

parameter is a dynamically calculated threshold based on the distribution of the cosφ

values per category id. It was empirically defined while evaluating the results for the 100

test categories with the following formula:

p = max(cosφcategory id)/2 + 0.75 ∗ σ(cosφcategory id)

This dynamically calculated formula was deemed to identify similar categories relatively

accurately with respect to the respective nature of the category id according to an em-

pirical visual evaluation. For example, the category Smartphones (mobile phones) would

have less similar categories than the category PC-Komponenten (computer parts). This

makes sense as one is a product category with a of lot less-related categories whereas the

other is a subcategory with potentially many more similar categories.

The combinations of all comparison contexts and comparison methods are reflected in

the tested approaches as far as practicable. Every variant has been implemented reusing

the same methodology that was employed for identifying visits and fixed temporal ses-

sions. Instead of comparing url and http referer or tracetimes from different rows

of a user id, now the category ids of different rows are compared, according to their

potential similarity with the respective mechanic.

Interactions with missing or placeholder category ids (i.e. the homepage) are treated

as special cases; events like this will be connected depending on the current session be-

haviour. Generally, all interactions with a placeholder are connected to the session that is

closer in time. This might introduce errors, as it cannot be determined to which informa-

tion need the interaction refers, but was deemed to be reasonable under the circumstances.

Another exception is made for events that are more than 1,440 minutes (one day) away

from other interactions with a meaningful category id; since it cannot be determined

to which (logical) session and therefore information need they belong, such interactions

are identified as a separate session. The temporal boundary here was arbitrarily chosen;

23This is why only comparison contexts 2 and 4 were applied to the baseline: using the complete session

history to match categories makes no difference here.
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the assumption is that a full day between the reference event and another event with a

meaningful category id is a valid gap to assume a different information need.

Theoretically and under ideal circumstances, such logical sessions could be clearly

defined with a precise endpoint; for example, with a purchasing event. However, considering

the quality of the dataset and the nature of the price-comparison business, this issue is

not broached for the time being, as it is not entirely clear how users interact with the

website. Using logical sessions in the implementation as explained, therefore, potentially

could create never-ending or overly long sessions, but these could be bypassed with clearly

defined endings.

Multiple variants of session-identification approaches have been tested. Sessions iden-

tified by lexical similarity are technically mechanically divided segments but they do have

a logical component because of their basic assumption. A lexical connection between sub-

sequent events indicates a topical connection because the connection assumes that the

events are related to the same information need. According to Figure 4.1, lexical sessions

could be a fragment of a bigger logical session or a journey, but they could also simply

represent a self-contained logical session – all depending on the definition. The baseline

method represents lexical approaches whereas the other methods are semantic by their

nature.

This sums up to two baselines representing lexical sessions, four variants utilizing the

shared-term space according to BM25L ranking and 12 approaches employing the cosφ

from the user category embeddings. Overall, 18 different purely logical approaches have

been tested. All approaches can be found in Table A2, marked with an L (for logical

sessions).

4.4.4 Modelling Combined Approaches

In this section, some variants of session identification that were presented in Section 2.3

are tested on the dataset alongside an expanded variety of approaches based on the logical

session-identification methods in the previous section. As explained in the previous section,

for most of common logical session-identification approaches, due to the lack of queries, it

is hard to transfer the actual concept. Where the majority of approaches relies on queries

to separate logs, this is not a viable strategy here. Nevertheless, as far as it is possible the

following section will attempt to transfer the key points of a small subset of algorithms.

A potential approach in the literature was presented by Mehrotra et al. [178] and

Halfaker et al. [91]. The authors propose a Gaussian Mixture model to identify a general

temporal threshold for the user basis. Mehrotra et al. [178] work with data coming from

interactions with digital assistants like Siri24 or Cortana25 whereas Halfaker et al. [91] test

their method on a variety of fields. The actual algorithm is based on inter-activity times per

user, fitting a (two or more component) Gaussian Mixture Model on the scaled time spans.

A good threshold would then be where the inter-activity time is equally likely to be in either

24https://www.apple.com/uk/siri/, retrieved 28 November 2021.
25https://support.microsoft.com/en-us/topic/what-is-cortana-953e648d-5668-e017-1341-7f26f7d0f825,

retrieved 28 November 2021.
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of the two components. Generally, this method is simple to apply. However, because the

assumption of the current research is to find a general (user) threshold and the temporal

thresholds tested already showed this approach offers no particular advantage over the

predefined thresholds, this dissertation takes exploration of this method no further.

Gayo-Avello [80] offer another approach. The original variant is a combination of lexical

similarity between query strings with a degrading temporal effect. The so-called geomet-

ric method calculates the temporal distance between query qi and query qi+1 using the

formula:

Tdistance =
ti+1 − ti

time limit

Where ti represents the timestamp of a query qi and time limit is a user defined threshold,

which is set to 24 hours in the experiments. For computing lexical distance, the author

treats queries as bags of character n-grams instead of bags of individual words. The algo-

rithm compares the n-gram representations of a query qi+1 with all n-gram representations

of the current session, calculating a ratio between zero (for no shared n-grams) and one if

all n-grams from query qi+1 are already present in the session n-gram representation. The

result is geometrically interpretable; between every query qi+1 and query qi or session sqi

respectively the method calculates the values for temporal and lexical distance, resulting

in two values in the ranges [0, 1] and [1, 0], defining a point in a 2D-vector space. Orig-

inating at point [1, 1], a unit circle is then drawn on both positive semi axes; all areas

enclosed by this circle are then defined as a session continuation.

Using the same method [80] as a step in their own approach, Hagen et al. [88, 89] define

query- and search-session detection in a cascading way. Their approach applies different

steps one after another to decide on session boundaries. As a reminder, the following steps

are applied in the refined and updated version from 2013 [88]:

1 Time-limited segments (using a 90-minute inactivity timeout)

2 Simple pattern comparison

3 Lexical similarity with a variant of the geometric method from [80]

4 Semantic similarity using ESA [79]

5 Semantic similarity using LOD

6 Comparing search results for queries

All these steps are applied to a search log to identify topical segments in a cascading way,

deciding with a level of confidence upon query connection or separation before moving on

to the next step. Afterwards, the authors apply them again on the now constructed logical

sessions to find search missions. In terms of the data, Hagen et al. [88] only compare suc-

cessive queries and topical segments for performance reasons; in a live online environment

run time would be exceeded.

105



The difficulty once again is the lack of consistent query usage in the dataset at hand in

that it restricts the application of, for example, the simple pattern step, which then makes

later steps not directly applicable for the same reason. In essence, the cascading concept’s

role in this dissertation is minor because its aim predominantly is to improve performance

of the algorithm and not necessarily to enhance the quality of the outcome. The objective

of the cascade is to decide on query connection before moving on to the next step, which

undoubtedly would involve more work and time. Hence, since algorithm performance is

not within the scope of this dissertation, only a limited number of the later steps have

been implemented. All concepts up to step five were already applied in previous sections

in one way or the other.

The work of Jones and Klinkner [120] on session identification is one of the most

influential in the area. They were among the first to introduce new terminology with

terms like search session, search goal and search mission. Their approach aims to find

interleaving, hierarchical constructs made up of goals and missions. In their annotated

dataset, they employ a logistic regression model with a variety of different features as a

binary classifier. Since the dataset at hand is not annotated, training a supervised model

was not possible.

Unfortunately, most of the approaches discussed so far were not applicable, either

because they overly rely on query data or, worse, rely on annotated training data to fit

their models. As has been shown, however, the reliance on query data can be overcome

in part by transferring the model methodology from queries to the category information.

Most of the concepts presented to identify logical sessions are already inherently present in

the approaches presented in Section 4.4.3. As for the algorithms relying on annotated data

for training, these are more problematic for the reasons already discussed in Section 2.4.

Since objective annotation of the dataset without implying certain topical segmentations is

simply not possible, all of these approaches are left aside in this dissertation. Instead, this

research adopts the similarity functions from the previous section and reuses an adapted

version of the geometric method from Gayo-Avello [80]. This dissertation slightly extends

the original method that calculated lexical distance by comparing the n-grams between

successive queries and temporal distance in a normalized form as a degrading value from a

maximum temporal threshold of 24 hours. Here, the temporal-distance calculation employs

the same method, but uses different maximums: 24 hours, 14 days and 75 days. The 24

hours is used to replicate the original method. The 75 days represent the average time

between Direktkauf orders calculated from the dataset. The 14 days are an arbitrarily

chosen value. This dissertation, in approaching the lexical distance differently, reuses the

cosφ between the category ids of all interactions as a substitute for the lexical distance

(instead of computing lexical similarity between query interaction n-grams). In another

variance to the original method, the form of comparison contexts in use is also different.

The original method compares the complete session history of a query qi with a reference

query qi+n. This dissertation experiments with all combinations of the explained context

concepts.
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The actual geometric function is modelled after the interpretation of Hagen et al.

[89], simply using interaction similarity instead of consecutive query similarity. Therefore,

interaction i is similar to interaction j, if the condition of the following formula is met:√︂
(fsimilarity)2 + (ftemporal)2 ≥ 1

This formula is a direct adoption of the original geometric method: if the sum of both

distance functions is within the area enclosed by a unit circle in point [1, 1] in a geometric

space, the algorithm continues the session. Otherwise, a new session is generated. This

leads to the following approaches using a variant of the geometric method [80]:

• u2v cosine similarity between consecutive interactions (24 hours, 14 days) (variants

are identified with the prefix and suffix geom + cc/cd, rows 56–59 in Table A2)

• u2v cosine similarity between all interactions (24 hours, 14 days, 75 days) (variants

are identified with the prefix and suffix geom + ac/ad, rows 59–65 in Table A2)

Due to the popularity and widespread application of simple temporal thresholds between

interactions as a means of session separation, these are tested as well using the approaches

employed previously. The combination of logical sessions with a mechanical timeout may

be a valid strategy to amalgamate the assumed advantages of both sides: that is, achieving

the internal coherence of logical sessions without encountering the potential problem of

never-ending sessions. Finding the best temporal threshold is dependent on the nature of

the session approach. Applying a 30-minute timeout on logical sessions with interleaving

interactions or even journeys combining multiple information needs (which are effectively

represented by the embedding approaches) would not make that much sense, as the inter-

leaving behaviour would be restricted to a very short time frame. Therefore, a selection

of already-tested timeouts from the mechanical sessions in Section 4.4.2.2 are applied,

but only to approaches comparing consecutive interactions. For the approaches that con-

sider all interactions of a user, larger temporal thresholds are a more reasonable choice.

Combinations of all following dimensions are tested:

• BM25L similarity between consecutive interactions (5, 30, 1,440 minutes and 14

days) (variants are identified with the prefix and suffix bm25 + ti + cc/cd, rows

122–127 in Table A2)

• u2v cosine similarity between consecutive interactions (5, 30, 1,440 minutes and 14

days) (variants are identified with the prefix and suffix u2v + ti + cc/cd, rows 74–97

in Table A2)

• Lexical matching between all/consecutive interactions (using root category id) (24

hours, 14 days, 75 days, 180 days) (variants are identified with the prefix and suffix

lti + cd/ad, rows 66–73 in Table A2)

107



• BM25L similarity between all interactions (24 hours, 14 days, 75 days, 180 days)

(variants are identified with the prefix and suffix bm25 + ti + ac/ad, rows 128–135

in Table A2)

• u2v cosine similarity between all interactions (24 hours, 14 days, 75 days, 180 days)

(variants are identified with the prefix and suffix u2v + ti + ac/ad, rows 98–121 in

Table A2)

The implementation is identical to the logical approaches: all category ids of the user

object are compared according to the accepted mechanic, base of comparison and, in

addition, the period of time between interactions. Interactions with no category ids

or placeholder category ids are again treated as special cases. Instead of the 1,440-

minute temporal threshold used before, the time threshold used in the respective variant

is employed; e.g. instead of assigning a new session id to interactions with a placeholder

category id with a 1,440-minute temporal distance to an interaction with a meaningful

event, this distance must be 14 days or even 180 days.

This concludes the section for the combined approaches. Overall, 80 different variants

were implemented using the listed mechanics and the different comparison contexts. Now

that all the session ids for all the different approaches are in one place, they are ready

to be analysed. The evaluation strategy is presented in the following section.

4.5 Evaluation

This section describes the steps that were taken to evaluate the differences between all

session-identification approaches. All in all, 135 different variants were implemented. A

complete overview of all approaches can be found in Table A2. First, some preliminary

points regarding the evaluation of session approaches are discussed. Afterwards, the actual

evaluation is described, which consists of two separate parts. The first part is a comparative

analysis of all variants using specified measures. The second part consists of the application

of multiple variants in an actual use case that may be relevant in a productive environment.

4.5.1 General Evaluation Approach

As presented in Section 2.4, the evaluation of session-identification algorithms is usually

performed by comparing the resulting sessions with a previously annotated dataset. The

comparison is carried out using typical measures such as precision or recall to assess

correctly identified session continuations or stops respectively. This approach comes with

a few flaws that need to be discussed here.

Using a gold-standard dataset to evaluate multiple session-detection approaches has

several biases. One flaw to consider is the difference in the underlying base assumptions

for every single identification approach that is compared to the gold standard. Necessarily,

all the various approaches and mechanics have made different assumptions about user

behaviour, which will probably impact the identified sessions. Comparing all these sessions
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to the same gold-standard sessions would likely lead to misinterpretations. The same

assertion is valid for the gold standard itself – with which assumption in mind should

the data be annotated? Ultimately, this leads to comparing sessions that cannot or should

not be compared like this because the comparison method itself is biased. To be more

precise, there is no right or wrong here; a gold standard implies the correctness of the

annotated sessions, whereas the different session-identification approaches are all correct

according to their underlying assumptions. The differences between them only become

visible by measuring their impact on certain measures or use cases, that is, here, the

attempt to understand user behaviour.

Another point to consider is the type of evaluation and the hypothesis that this disser-

tation tries to prove. The evaluation conducted in this research is not supposed to evaluate

the quality of the resulting sessions with regards to their underlying assumptions, even

more so, given that the majority of the tested identification approaches uses unsupervised

mechanics defining similarity in very different and subjective ways. Basing the similarity

between interactions on user traffic alone makes it difficult to evaluate the degree of simi-

larity and the impact on resulting sessions, since there are too many unknown factors26. In

the main, therefore, this dissertation does not compare the inherent quality of the sessions,

but rather the impact of the different approaches on certain measures and use cases.

Therefore, this dissertation does not use a gold-standard. Instead, the evaluation is

conducted by comparatively analysing all resulting sessions and applying a representative

sample of all relevant approaches to a use case. The first step is to compare all session

approaches to a set of common measures deemed to be representative of user behaviour

and system usage. The current research offers qualitative and quantitative evaluation in

the form of analysis with focus on broad comparison and specific examples. The second

step consists of using a smaller subset of sessions in a cohort of business use cases. The

impact of the resulting session on a downstream application may be an indicator of the

inherent quality of the session algorithm as well, but focus remains fixed on capturing the

differences between them. The evaluation process in this research is partly inspired by the

work of Jansen et al. [113], Buzikashvili and Jansen [33], He and Göker [95] as well as

Zhao et al. [294]. All the steps that were taken are now explained in more detail.

4.5.2 Case 1: Comparative Analysis

The first step in evaluating the impact of session-modelling approaches is to thoroughly

analyse the resulting dataset. At first, all session approaches are compared with their

respective variants in the same method category. Every approach is descriptively analysed

and every variant is looked at and compared with the others. Following this, a comparison

is made between all the methods and their variants and between their different approaches

and sets of measures. These measures and the order of analysis are now explained.

26For example, marketing campaigns may strongly influence users and lead to a different sequence of visited

categories.
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The measures are chosen in the first instance primarily with the intention of high-

lighting their different approaches to representing user behaviour and the specifics of the

system. The measures are supposed to show the differences in the assumptions behind the

different approaches and their outcome. Two general areas are analysed: system perfor-

mance and user behaviour with an additional check for the underlying assumptions for

every session approach.

System performance is comparably easily measured. Several different indicators are

described that are typically used for evaluating the everyday performance of a system.

This includes the following:

• Number of sessions (total, per user)

• Conversion rate and bounce rate

• Number of events per session (total, per user)

• Number of lead-ins (total, per user)

The number of sessions is a standard key performance indicator (KPI) in e-commerce27,

often used in combination with other dimensions as well. The measure shows how an

information system performs in general and especially over time. On a per-user basis it

can give a hint as to how attached users are. They may come back often, regularly or on

a variety of topics. The number of sessions over a time period and in total are important

elements by which to compare the different approaches. They are fundamental; easy to

calculate and revealing, they may already provide insight into how the different approaches

and their variants work.

Calculating sessions over time is important in the case of this dissertation. All sessions

are attributed according to the timestamp of their first interaction. This may provide in-

teresting insights into how the differences between various session approaches are caused

by their underlying assumptions. While a 30-minute temporal inactivity session is some-

what limited in scope, a logical session with no temporal boundary at all may span a

whole year. This may result in very different distributions of sessions over time depending

on the respective approach. The hypothesis here is that all sessions with a somewhat lim-

ited scope are more uniformly distributed over the year while the rest may have a slight

tendency to accumulate in the earlier parts of year. This is because while approaches with

no time constraint can span multiple days or even months, they only get counted as one

session from their start day.

This also influences the conversion rates. Conversion rates measure the performance

of a system in terms of the fulfilment of the business goal or any other transaction. This

dissertation focuses on lead-outs as the primary business goal, since all the other men-

tioned goals of the business are either underrepresented in the data or the data lacks

quality. Therefore, the ratio between the number of sessions and the number of lead-outs

is calculated by dividing the number of sessions by the total number of lead-outs in a

27https://support.google.com/analytics/answer/1032796, retrieved 28 November 2021.
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session. In contrast to common other calculations, this research utilizes the total number

of lead-outs instead of a binary encoding (transaction happened or not) because the total

number is a more direct representation of the fulfilment of the business goal. This may

lead to conversion rates over 100%.

The bounce rate, on the other hand, is more independent. Bounced sessions are sessions

with only one interaction – this is a simplified way of seeing a situation where in this one

interaction, the user did not visit to purchase but to fulfil a certain information need in

one single interaction. Still, the bounce rate captures the number of sessions with only

one interaction, in comparison to all identified sessions, to provide a somewhat qualitative

perspective. Since the bounce rate is used to quantify the quality of a system’s contents28,

it is considered an important measure. Identifying a high number of sessions with only

one click will give a completely different impression of a system’s performance than a low

bounce rate.

The number of events per session is another indicator of a well-performing informa-

tion system (at least for some types of information systems) and is directly connected to

the bounce rate. For an online price-comparison website, the number of events does not

necessarily need to be high to be indicative of a functioning business case. The number of

events per session can be compared to other dimensions as well.

The number of lead-ins is another factor to consider. Technically, this number measures

system performance as well as user behaviour: it represents the number of times a user

enters the system from an external source. A lead-in is therefore a new entry to the infor-

mation system, basically characterizing all interactions that do not have a http referer

starting with the idealo parent domain. This measure is representative of the system us-

age in combination with user behaviour. It leaves room for interpretation and different

assumptions as to why a user may enter the system frequently: if the system does not pro-

vide easy or enjoyable navigation (depending on the number of interactions); because s/he

enjoys using it (also depending on the number of interactions); or a user may enter the

system frequently because the system’s marketing is good, with comprehensive coverage

on search engines, for example.

After all, user behaviour is more diffuse than measuring system performance. Still,

similar measures can be applied. Strong focus is on a per-user basis, but the general

direction of measures is very similar. The goal is to gain an overview of how a user behaves

when interacting with the information system and, in the best case, to create an estimation

of their satisfaction. Several measures belonging to different fields were collected:

• Sessions per user and interactions per session

• Time measures (time spent on the system, time between interactions)

• Number of distinct categories, products and queries

• Visited page sequences

28https://support.google.com/analytics/answer/1009409, retrieved 28 November 2021.
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The number of sessions and interactions per session per user are standard measures. For

mechanical sessions, the assumption is that there are more sessions per user id compared

to logical or combined approaches because the mechanical boundary is simply more re-

strictive compared to the other mechanics that have been tested. The differences here will

give insight into the nature of the approach; they represent a snapshot estimation of user

behaviour on a system.

For the time measures, several calculations were made. For one, the minimum and max-

imum timestamps were stored per session id. With these, calculation of time per session

can help estimate the difference between potentially longer lasting logical sessions and me-

chanical approaches. Also, the average inter-interaction time was calculated on a per-user

basis, helping to gain a view over whether there is a difference between the approaches

here. The hypothesis here is that mechanical sessions will have relatively short and consis-

tent inter-interaction times due to their inherent nature; the maximum inter-interaction

time is defined by their session-identification mechanism. For example, a 30-minute tem-

poral inactivity session will have a maximum inter-interaction time of 30 minutes. For

logical (and combined approaches as well), these times are assumed to be higher and more

variable, at least for the interleaving comparison contexts. The consecutive approaches

may have the shortest inter-interaction times, assuming that users will work on the same

information need in short bursts before switching to other topics.

The number of categories, products and issued queries visited per session per user

provide other strong indicators of user behaviour. A high ratio of root categories, cate-

gories, products or queries may reveal a lot about different topics per session, while a low

ratio will likely mean a specific topic or focus during this session. The hypothesis is that

mechanical sessions tend towards a higher number of different topics while logical and

combined approaches tend to be slightly more focused. This may well prove to be wrong

due to the different comparison contexts and methods that relate to the latter. The same

is true for the number of interactions.

Another element to consider is path analysis. The visited pages are saved in a sequence

structure in chronological order with an additional mark for lead-ins. By performing a

path analysis, often-repeated patterns can be identified that may be descriptive for the

respective session approaches or user cohorts. This helps in the understanding of user be-

haviour by showing the way a user approaches the information system as well as to better

understand the way the session approach connects different interactions and interaction se-

quences. The hypothesis is that there are strong differences between mechanical and logical

approaches in the overall sequences but not in the sub-patterns of said sequences. Con-

sidering this, and to estimate the underlying assumptions for every session-identification

approach, additional measures were collected. An important element to consider when

comparing the differences between mechanical, logical and combined approaches is the de-

gree to which they have fulfilled their underlying assumption. For mechanical sessions, this

means they should have a reduced quantity of potential topics. For logical and combined

approaches, the same is true; here, interleaving behaviour or, rather, very short sessions

ought to be identifiable. The following measures are calculated:
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• Number of (distinct) root category ids

• Number of distinct potential topics

• Number of breaks for ac and ad comparison contexts

Calculating the number of visited root category ids is the simplest way to estimate the

same information need. A low number is estimated for every type of session, either me-

chanical, logical or combined. Additionally, the u2vcac logical session approach is used as a

baseline for estimating the number of potential topics29 in all the other session approaches.

The u2vcac approach was chosen as the baseline as there’s no specific way to measure po-

tential topics aside from the root category ids and it stands as the most natural logical

approach. In this context, ‘natural’ means that there is no arbitrary boundary to determine

similarity but for an empirically defined formula that at least somewhat orientates towards

the cosφ. Furthermore, it acknowledges interleaving behaviour because of the comparison

context and looks at the complete session history. This helps in identifying the number

of topics in consecutive session approaches like the mechanical session-identification ap-

proaches.

The other element to explore is the extent of interleaving behaviour. For logical ses-

sions, interleaving behaviour is expected. To identify potential interleaving behaviour, the

number of session breaks are counted for all session approaches with the potential for

interleaving behaviour. In this context, the term ‘session break’ does not mean that the

session ends but that another session or an interaction belonging to another session has in-

terrupted the respective session. The actual measurement, therefore, relates to the number

of gaps between the same session id.

Overall, these 17 measures30 will provide an insightful overview of how the 135 session-

identification approaches impact system performance and interpretations of user behaviour.

They will reveal how the different approaches produce different outcomes, eventually lead-

ing to varying interpretations of certain assumptions regarding the behaviour of these

measures. The analysis below will compare all different approaches, mechanics, variants

and comparison contexts with each other by looking at totals, averages and standard

deviations.

4.5.3 Case 2: Using the Data for Implementation

The second step in evaluating the session-identification approaches is to apply them in a

practical setting. Practical setting means that all session approaches are used in a case

study that may be of relevance in an e-commerce information system. This is modelled

29The term ‘potential topic’ is used because there is no way to ensure that the u2vcac identifies consistent

and related topics, therefore this is measure is just an assumption on topic engagement.
30Overall: sessions, conversion rate, bounce rate, most frequent sequences. Calculated per user, averaged

by approach: sessions, number of interactions per session, conversion rate, bounce rate, lead-ins, root

categories, categories, products, queries, topics, time in session, inter-interaction time, interaction

days.
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as a component-level evaluation: all model parameters and input data will be kept steady

while the structure of the input data is the only component that changes. The structure

is defined by the session approach; every different approach will have an impact on the

sequence representation of the input data. The results of the different tasks will then be

compared and placed in relation to the respective session approach of the input data.

Doing so will ensure a consistent comparison base between the different session ap-

proaches. All the model parameters are kept the same for every experiment. The only

component that will change is the session approach being used, which will have an imme-

diate impact on how the respective data that is fed to the model looks. For example, all

events of a certain user id are taken as input data. The session-identification approach

structures this input data depending on the session definition and the result is fed back

to the model.

While there are many different use cases for the application of sessionized data in a

productive environment, this research focuses on three specific applications to show the

differences between the session approaches:

1 checking the integrity of category embeddings

2 inter- and intra-session-based recommendations

3 clustering of users based on their session behaviour

The first task is a reiteration of the procedure already tested in Section 4.4.3.3 in prepara-

tion for the logical sessions. The goal is to compare category similarity based on category

embeddings on the session sequences with the structure of the category tree and with each

other. Doing so will give a view on whether users visit similar categories (according to the

category tree relationship) in their sessions. Based on the assumption that users will visit

similar categories in one session, this would validate the system’s category tree. This is a

typical business case because a validated category tree benefits the navigation as well as

SEO.

Observing different category similarities per session approach would indicate behavioural

and structural differences in the sessions. To do so, the identified session sequences are

applied again in a category embedding task to generate category vectors. The resulting

vectors are then used again to get similar categories for every category id. The differ-

ence between the resulting similarities of the per-session approach are then evaluated in

the context of the category tree and in comparison with the session approaches.

For the second task, the goal is to recommend the user the right item at any given point

of a session. The algorithm is supposed to predict what type of interaction comes next in

terms of category id. Depending on what pages a user visited and what page may come

next, s/he may be more or less likely to perform a lead-out or an order, directly fulfilling

a business case. Knowledge about the next category id is equal to knowing whether a

user may work on the same information need in the next interaction or were they to be

gently guided towards another topic depending on their session and interaction history.
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The third task is another relevant business case. Clustering users is commonly per-

formed to understand the different target groups visiting the system and how they may

be targeted by marketing campaigns to fully cater to their behaviour. Often, this is sup-

plemented by adding information about how much financial value the user contributes or

is likely to contribute to the system (to predict said value in the future) or by adding

category affinities. In this dissertation, the clustering focuses on the generated sessions:

users are clustered by certain session-related features using an unsupervised algorithm.

Preparation: Sampling

To be able tackle the tasks at hand, the first job was to reduce the volume of data. This

involved sampling a suitable data subset from the original dataset. Technically, sampling

is not strictly necessary, but it is usually the case that a great quantity of data does not

necessarily improve the results of the algorithm; in the case of machine learning algorithms,

the data is considered good enough when the accuracy rate of the learning algorithm is

no longer improved by adding more data [151]. Sampling is a trade-off between accuracy

and the efficiency of the calculation: samples that are too small lead to incorrect results

or interpretations, data samples that are too large will drastically increase the calculation

time [151].

This dissertation considers data from over 78 million user ids with over 1.2 billion

interactions from a complete year (2018). Feeding the total amount of data into any

learning algorithm will be likely to result in very long computation times without making

much difference to the result of the algorithm. With this quantity of data, though, it can

be assumed that a decently sized sample will deliver sufficient results and also greatly

reduce the run time. Therefore, a generously sized sample with similar properties as the

original dataset should be valid to see differences in the outcomes of the different session

approaches.

In order to calculate the necessary size of the sample dataset, several elements are

important. Contrary to survey data, where the population size may not be known or

the number of given answers may be incomplete, the dataset used in this research has

advantages. First, the population is absolute: the number of user ids in the dataset

represents the actual total of users. Second, the data sample is big enough to ensure a high

goodness of fit. In the end, this allows for a comfortable sample size without having to

worry about the data not being representative of the dataset while using random sampling.

When calculating the sample size, therefore, it is important to consider the overall

population size, the expected margin of error and the confidence level [109]. The population

size is the total number of user ids in the dataset (the number of rows in the dataset is

not important and of no concern here). The sample should contain all sessions of a chosen

user; the sampling, therefore, is performed on the user population, detached from the

actual data. The level of precision was set at 0.01%; this percentage indicates the margin

of difference expected between the sample and the overall population [249]. Likewise, the

level of confidence was set at 99%; this percentage shows how close the sample is to the

115



characteristics of the population [249]. Both values determine how large the sample size

needs to be in order to decrease potential deviations from the dataset.

Cochran’s [53] formula – the standard formula to calculate representative sample sizes

– was employed to calculate the required sample size. The following equation was used::

Z2 ∗ p(1− p)

e2

Z represents the z-score, the statistical value corresponding to the level of confidence. p is

the target proportion in the population – related to the feature a survey would normally

research – in this case set to 0.5 to get the biggest sample size possible. e is the margin of

error, set to 0.5%. With these values, a minimum sample size of 66,564 is required. The

formula is not directly applied on the dataset but on the user population, resulting in a

recommended sample size of 66,505 (after correcting the value using the finite population

correction [109]).

The true random sampling was performed using the Presto implementation31 of Bernoulli

Sampling [81]. The probability of being included in the sample was equal across each el-

ement of the population (i.e. the user ids) [81]. The statement takes both the dataset

as input and a percentage to indicate the fraction that should be the outcome of the

sampling. The resulting dataset consists of the user ids that should be in the sample.

As Israel [109] mentions, it is common practice to add 10% to the required sample size.

Therefore, the fraction required for the Bernoulli sampling was higher, a choice that re-

sulted in 391,257 distinct user ids with a total of 6,275,248 interactions in the sampled

dataset. This ensured representability.

True random sampling on the individual user ids was deemed a valid strategy con-

sidering the goal of this case study. The sampling is supposed to pick a number of users

randomly from the overall population, where every user ids stands the same chance of

being picked. In theory, one could optimize the sampling (i.e. using stratified sampling or

more advanced techniques) to regard other important variables; for example, the number

of interactions, the number of sessions or even content measures like the number of visited

categories. Since their impact on the resulting sessions (per session approach), which is

important part here, is not entirely clear and cannot easily be assumed, proper stratified

sampling would be out of scope since it would involve many more steps. Additionally,

this dissertation does not optimize for a specific variable, so a true random sample on the

user ids is the most reasonable solution, ensuring a proper distribution of all variables.

While the resulting sample consists of the same columns as the original dataset, it only

takes a selection of a different session approaches into account32. In view of the fact that

the lower inactivity thresholds appear to create too many small sessions, they were not

evaluated any further. As a substitute for having smaller logical sessions, the combined

approaches with a 30-minute timeout seemed to do a better job, having a comparable

31Compare https://docs.aws.amazon.com/athena/latest/ug/select.html, retrieved 28 November

2021.
32Many of them performed similarly, so a selection is reasonable.
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number of sessions as the ti5 sessions. As for the other timeouts, one variant per com-

parison context was chosen. The calculated cut-off comparison method was again chosen

to ensure comparability with the purely logical approaches. In addition, examples of the

geometric sessions and the lexical combined approaches were taken into account as well.

Overall, the following variants were considered:

• Mechanical: ti30, ti180, tfd

• Logical: u2vccc, u2vccd, u2vcac, u2vcad, ladb1, lcdb1

• Combined: u2vcti30cc, u2vcti30cd, u2vcti1cc, u2vcti1cd, u2vcti1ac, u2vcti1ad, u2vcti14cc,

u2vcti14cd, u2vcti14ac, u2vcti14ad, lti1cdb1, lti1adb1, lti180adb1

• Geometric: geomu24cc, geomu24cd, geomu24ac, geomu24ad

The diversity of these examples should be sufficient to reveal the difference between the

methods and underlying mechanics. The different variants are taken with care. The me-

chanical variants are obvious: the ti30 variant is the industry standard and serves as a

baseline for these types of sessions while the ti180 sessions are chosen as a different variant

of timeouts. The tfd sessions, with all interactions of a user per day combined into one

session, are the simplest of the variants and are intended to show whether the level of

simplicity is good enough in these scenarios.

The reasoning for the logical approaches are similar. The u2vc approaches with the

dynamically calculated cut-off were tested within all comparison contexts. The simple

lexical sessions serve as a baseline. For the combined approaches, taking the mechanical

timeout and topical comparison together, a variety of timeouts were tested within all

comparison contexts. The lexical comparison method still serves as the baseline here.

Finally, taking an example from the literature, the geometric approach was employed,

once again within all comparison contexts.

All experiments were run locally on a system using Python 3.7.2 along with the Gen-

sim33, TensorFlow34 and the scikit-learn35 libraries. The system was run on a macOS

Catalina (10.15.7) with 16 Gb of RAM and a Radeon Pro 555X 4-Gb graphics card. All

experiments were run multiple times to ensure stability of the results.

Task 1: Category similarity via sequence embeddings

The intention of the first task is to show structural differences between the session ap-

proaches. Divergences across the category’s similarities mean that the session approaches

identify structurally different sessions, indicating different user behaviour and overall Di-

vergences in the structure of these sessions. Here, the business case can be described as

validating the category tree: the general assumption being that users will visit similar cat-

egories in one go. Note that this business case is based solely on the assumption that users

deal with about one topic per session (as per the commonly held definition of mechanical

33https://radimrehurek.com/gensim/, retrieved 28 November 2021.
34https://www.tensorflow.org/, retrieved 28 November 2021.
35https://scikit-learn.org/stable/, retrieved 28 November 2021.
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sessions). Similarity is first and foremost indicated by the same root category id – hav-

ing the same root category is a strong argument for an apparently high similarity (although

not necessarily true). Using the sessions, the category tree can therefore be evaluated using

the resulting similarities. A high number of categories with the same root category in the

top similarity categories would be an indicator of a well-functioning category tree.

Although this business case is somewhat abstract, in practice, system owners would

be able to use the calculated category similarity to improve the internal structure of their

system. In this dissertation, a theoretical methodology to start such a use case is given.

The use case described is not so much a real test of which sessions are likely to be the most

like the category tree, but more an observation of how the various approaches will result

in different similarities. The basic premise for this use case is that the identified sessions

deal with one topic; the use case is dependent on that assumption. This is not necessarily

true in practice, but it is the assumption for all the approaches used here. Therefore,

it is assumed that all the identified sessions deal with a limited number of categories.

Different root categories (and different similarity scores) indicate a more diverse session

structure and therefore either errors in the category tree or incorrectly identified sessions.

For now, the former is assumed to observe the results in this use case. This use case does

not attempt to replicate a practical application, rather, it describes the methodology to

do so and observes the differences in the results while doing so.

Again, the Gensim word2vec was implemented to calculate the category similarities.

The task follows the previously explained procedure, using the same steps for prepro-

cessing the data. This included removing repeated consecutive category ids as well as

filtering sequences to include only those that had more than one interaction. The mini-

mum sequence length is therefore two category ids. All session sequences were then fed

into the embedding algorithm to calculate category similarities for every one of the 2,300

category ids.

Table 4.4 conveys the selected session approaches, the number of sequences and the total

number of tokens (i.e. category ids in interactions), plus the vocabulary size (i.e. all

unique category ids) to show how changes to the inputs of the algorithm alter the various

session approaches. In the main, the cause of these differences can be attributed to the

preprocessing (whereby sessions that tend to identify as shorter are more likely to have a

lower number of sequences and tokens). The preprocessing also causes a difference in the

vocabulary size, in that once the repeated consecutive categories have been removed only

one category id remains. This may lead to more single-event sequences for the logical

approaches dealing with exactly one topic, ultimately, therefore, also potentially resulting

in a smaller vocabulary as seen in the combined approaches with a 30-minute inactivity

timeout.

To mitigate the smaller corpus size and to account for the smaller sequences, 15 train-

ing iterations were made per run with a smaller window size of five (in comparison to

the complete user history of the baseline). Otherwise, the hyperparameter settings were

identical to those used before. All runs were performed on the full sample data per session

approach; splitting the data into training- and test data or cross-validating the results
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would not be reasonable in this scenario, considering that the evaluation focuses on the

actual results and not a downstream application. Once the categories and their similar

categories had been prepared, the root category ids were added and the analysis was

performed.

Approach Sequences Tokens Distinct

categories

tfd 316,734 1,076,315 2,331

ti180 307,201 1,019,712 2,331

ti30 293,872 941,603 2,330

lcdb1 275,360 958,983 2,310

complete history 254,190 1,665,652 2,334

ladb1 253,292 1,189,393 2,322

lti180adb1 248,812 1,171,349 2,322

geomu24cd 240,470 768,569 2,324

geomu24ad 235,259 770,745 2,323

geomu24cc 230,472 783,240 2,325

geomu24ac 226,155 793,745 2,324

lti1adb1 225,168 759,979 2,311

lti1cdb1 223,410 713,872 2,308

u2vcad 203,114 691,801 2,308

u2vccd 185,642 555,248 2,300

u2vcac 180,188 726,461 2,311

u2vcti14ad 179,607 594,318 2,305

u2vcti14cd 177,111 529,982 2,299

u2vccc 175,538 570,242 2,300

u2vcti1ad 169,494 512,774 2,299

u2vcti14cc 167,742 543,720 2,300

u2vcti1cd 165,899 479,777 2,295

u2vcti14ac 163,764 618,459 2,309

u2vcti1ac 161,062 525,641 2,300

u2vcti1cc 159,142 490,092 2,296

u2vcti30cd 156,673 434,272 2,292

u2vcti30cc 152,203 442,238 2,293

Table 4.4: Sequence length and number of items for

word2vec.

The evaluation is split into two parts

and is based on analysis of the top 25 sim-

ilar categories per each of the about 2,300

category ids. In the first part of the eval-

uation, the number of categories with the

same root category in the top 25 similar

categories (per category) were counted as

a measure of its closeness to the category

tree. All measures were averaged per ses-

sion approach. While the top 25 was cho-

sen somewhat arbitrarily, it was deemed

good enough as a comparison metric. A

high number of root categories indicates a

more diverse set of visited topics in the ses-

sions per session approach, whereas a low

number indicates topical proximity. Note

that this is not necessarily true, but allows

the differences to be observed.

The second part of the evaluation

checked for structural differences in the re-

sulting similar categories. A high number of differences indicated a high structural differ-

ence in the sessions. In this part of the evaluation, the calculated similarity scores were

observed in the form of the distribution of the cosine similarity per top 25 similar categories

and per all similar categories per category id. Furthermore, as the calculated cosine sim-

ilarity is dependent on the input data, it also hints at how the input data influences the

outcome of the algorithm [40].

A step-by-step example can be described as follows. First, the embedding algorithm is

trained on the preprocessed session sequences from all session approaches separately. Next,

per session approach and per category id, the top 25 similar categories are calculated

along with their cosine similarity score as well as the associated root category ids. For

example, for the the category Smartphones (mobile phones), the top 25 similar categories,

their root category id and their cosine similarity are calculated. The resulting list of

similar categories with respective root category and their distribution of cosine similarity

is now analysed per session-identification variant. For the example Smartphones (mobile

phones), this would result in 25 different lists of similar categories per session approach,

which are now compared to each other based on the resulting similarity scores and their

structural composition. The assumption is that different session approaches will lead to

different distributions and different numbers of root categories in the top 25 depending on
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the approach family. This is then repeated for every other of the about 2,300 categories

per session approach. The results of the analysis are aggregated per session approach and

evaluated.

Task 2: Recommending what comes next

The second task amounts to a classic business case implementation: using machine learning

to guide users to certain pages and recommend relevant products or categories to them.

These recommendations are intended to get the system’s users to fulfil business goals

faster or more securely, for example, placing an order during a session or showing them

a product that makes an order more likely considering their (current) interests. A similar

scenario could be used to make a forecast model of how the system is going to perform

in the future. Since recurrent neural networks are the state of the art in this type of task

[102, 225, 250, 256], an already-tested variant from the literature was reproduced. The

methodology decided upon for the current dissertation reproduces the approach taken

by Ruocco et al. [225], which focused on improving session-based recommendations by

including information about previous sessions of a user along with several other baselines.

Using recurrent neural networks (RNN), Ruocco et al. formulated their task as a

recommendation problem: thus, for every step (i.e. interaction) in a session, they provided

a list of recommended items. In treating this recommendation problem ultimately as a

classification problem, they then output a score of zero for all unrelated items and a score

of one for the target item (i.e. the item (category id in this case study) with which

the user will interact in the next step of the sequence). Furthermore, alongside their own

approach, they tested a solely session-based RNN (based on [102]) and multiple non-

sequential baselines, such as using most popular items, most recent items and a k-nearest

Neighbors (kNN), per item, for recommendations. Both the details of implementation and

original settings have been closely followed and reproduced in this dissertation36. The two

RNNs as well as two of the baseline algorithms tested in the original article are also put

to the test in this dissertation (most popular and knn).

Implementation of additional parameters – focused on the session length and session

structure – to ensure the model worked efficiently, were considered and then adopted. As

an example, one step in the preprocessing of these parameters removed all repeated con-

secutive interactions; e.g. multiple interactions by one user with a category will only show

as one interaction in the input data. The purpose of this is to prevent the recommender

from making recommendations for the same category while the user is actually interacting

with the said category. This is reasonable considering the nature of the algorithm and the

data at hand; otherwise, the most likely prediction or recommendation for the next step

would probably always be an item repetition.

Another step is to cap the session length at a maximum of 20 steps. An input se-

quence will therefore contain a maximum of 20 interactions before the sequence is split

into multiple sequences (to avoid losing any information in longer-running sessions) up

36Compare https://github.com/olesls/master_thesis/, retrieved 28 November 2021, for the original

code.
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to a maximum of 40 interactions. While this session cap potentially interferes with the

logical sessions modelled in this dissertation (because they tend to be longer than the

usual mechanical session), nevertheless, having carefully analysed the percentiles of ses-

sion interactions per session, it was decided that a cap of 20 interactions was reasonable37.

As a last step, only users with at least three sessions were taken into account for training

and testing the models. This was a necessary step in order to have at least one additional

training session for the inter-intra-session-based RNN. While the last step can be seen as

a clear limitation when it is considered that the majority of users make only a limited

number of interactions, it seemed reasonable within this use-case scenario.

The preprocessing decisions were left as they were designed in the original work by

Ruocco et al. [225]. The other parameters were largely left as they were as well. For the

embedding layer that is used in the original work instead of one-hot-encoding the item

sequences, an embedding size of 100 was chosen for the dataset. The learning rate was kept

at 0.001. The maximum number of recent session representations for the inter-intra-session

RNN was set to 0.2. All models were run up to a maximum of 10 epochs after observing

that the loss and evaluation score did not any longer improve dramatically.

It is positive that the algorithm may have reached a turning point to deliver better

results, but since the sole purpose of this dissertation is to estimate the impact of the

input data, additional tuning was not carried out. As proposed in the original work by

Ruocco et al., the algorithm was trained on the training data and then evaluated on the

test data: a split was placed between the sessions of a user instead of splitting the whole

population. This means that all algorithms were trained on 80% of the first sessions of all

users and evaluated on the last 20% of sessions per user.

Cross-validation would usually make sense in the current scenario to avoid overfitting

and to be able to generalize the algorithm, making sure it produces stable and comparable

results on new data, but this has been left aside in this dissertation for multiple reasons.

For one, the original work does not use cross-validation, thus in order to reproduce it

as closely as possible, the same procedure has been followed. Although this procedure

(i.e. taking all sessions for training instead of the last one) has clear limitations38, it was

deemed good enough in the light of this dissertation – in this concrete use case, it is not

important to have a high-quality algorithm. The goal of this case study is simply to prove

37The 90-point percentile for all session approaches was below 20 interactions, the highest being 16 for a

logical approach. Considering that the first step was to remove repeated consecutive interactions (and

thereby additionally shorten the sequences), the majority of sessions were included nonetheless.
38Other authors criticize this as well [156], but still reproduce it or adapt it only slightly. The problem

with this task in the past is that these algorithms base their recommendations on a historic context;

it may be that things become jumbled if sessions for training are split randomly over time because

future sessions may involve interactions with new items, causing logical errors when predicting items

in older sessions. Ludewig and Jannach [156] put forward the example of news article prediction,

where recommending items in such a fast-changing environment might lead to inconsistencies. This

is unlikely to be a big problem in the use case at hand, but is another argument for reproducing the

original set-up.
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that there are differences in the output caused by the nature of the input, therefore any

effort to improve algorithm quality is not necessary, as long as stability is ensured.

The evaluation was done using recall@k and Mean Reciprocal Rank (MRR)@k using

k values at 1, 5 and 20 to predict the next item in a sequence given all previous items in

this sequence. With k the number of suggestions for the next step in this scenario, recall

is the proportion of interactions per session step having the correct category id among k

in relation to all tested sessions at this step. The order of the ranking does not matter for

the recall in this set-up. This, also referred to as Hit Rate (HR) in other works [156], was

already used by Hidasi [102] and is reproduced by Ruocco et al. [225]. MRR is the average

of all reciprocal ranks of the target item among the top k. Since the task is essentially

evaluated as a prediction task, k@1 actually is just that: the MRR at position one equals

a correct prediction of the next interaction. The latter represents a new addition by this

dissertation: knowledge about the extent to which the algorithms are able to correctly

predict the next category id per session approach input is an interesting measure in

terms of the nature of the different session approaches. The expectation is that a huge

divergence will be seen here between mechanical and logical sessions.

In the current scenario, the evaluation strategy seems reasonable. The use case is an

offline evaluation, without future access to further data to track the user’s reaction, when

given a set of recommendations. Given only the actual (historic) data at hand, it makes

sense to assume that how the user reacts in the given sessions is the gold standard for the

evaluation, especially since the algorithm’s performance is being measured by estimating

how well it is able to predict the unseen items in a session [156]. From this perspective, it

is reasonable to measure recall/HR and MRR as proposed.

It is possible to quantify the impact on algorithm quality through a comparison of the

evaluation measures of all algorithms among the different session-identification inputs. No

matter how good or bad the algorithm performance, the dedicated effect of the input data

becomes visible through comparison of the outcome measures.

Task 3: Clustering users based on session behaviour

The final task is again a typical business case. Commonly, users are attributed with certain

additional properties (i.e. behavioural engagement with the system) to predict their finan-

cial value in the future, thereby enabling the system to attribute certain costs to certain

actions. For example, if a certain number of typical contactable users generate a certain

amount of money in a certain time period, an email to this user group could be estimated

to cost a certain amount of money and generate a predicted amount of financial outcome.

A common way to identify these user groups is through clustering the user population.

Since the aim of this dissertation is to show the differences between the various session-

identification algorithms, the clustering is focused on session behaviour. The goal is to dis-

cover patterns in how users interact with the system as defined by the session approach.

The clustering is intended to function as a way to explore the data from an algorithmic

point of view, helping to identify patterns in the input data. If there are any noteworthy

patterns as imposed by the selected input features, the cluster algorithm should find them;
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otherwise, any respective data point should be not associated with a cluster. McInnes and

Healy [172] describe this as the difference between clustering and partitioning: while clus-

tering only finds naturally grouped subsets of the input data, partitioning associates every

data point with a cluster, no matter what. In view of the fact that the current research

has only sought to find out if there are clusters that would form naturally, data points

with no likely association with a cluster should be considered as noise in the respective

dataset.

In a set-up like this, without any labels or prior knowledge about potential clusters, the

choice of the clustering algorithm is essential. By not setting up any assumptions on the

data beforehand, a minimal hyperparameter selection is important; the algorithm should

be robust towards noise and give information about data points that cannot be associ-

ated with any clusters [172]. For this reason, this research employs a clustering algorithm

well-suited to exploratory data analysis: Hierarchical Density-Based Spatial Clustering of

Applications with Noise (HDBSCAN)39, which is based on the works of Campello et al.

[34] and McInnes and Healy [172]. Their algorithm is an improved hierarchical version of

the well-known Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

established by Ester et al.[74], allowing for clusters of differing densities calculated on

varying epsilon values (the distance value used to determine clustered data points). HDB-

SCAN is ideal for the current task since, technically, it does not require any parameters

beforehand, allows clusters of varying density and identifies noise in the data.

The input data for the clustering algorithm is defined by the session approach. Every

feature is aggregated on a user id level. This leads to every input dataset being the

same size but with differing contents depending on how the session-identification approach

structures the data. Considering that the selection of input features ultimately has a

strong impact on the meaning of the identified clusters [99], the features were chosen

rather strictly. As Hennig [99] states, the selection of features is directly dependent on

the context and the clustering aims; therefore, a limited number of strictly session-related

features were chosen to achieve the greatest impact on the features of the resulting clusters.

As the number of sessions per user and the average number of interactions are the most

descriptive measures when comparing the session algorithms, only these were taken into

account. Looking at the broader picture, any average content measure is likely to dilute

clusters when it is considered that the majority of users are assumed to behave rather

similarly no matter the session context.

All features in the list were normalized using the MinMaxScaler implementation in

scikit-learn 40 to ensure that they were the same scale. Since the effect of normalization

seemed to have a great impact on the resulting clusters (as predicted [99]), the scaling

was not changed for any session algorithm. Likewise, no principal component analysis was

conducted, since this would again have an impact on the selected features, potentially

leading to different clusters [99].

39https://github.com/scikit-learn-contrib/hdbscan, retrieved 28 November 2021.
40https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.

html, retrieved 28 November 2021.
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Parameter-wise, HDBSCAN does not require many parameters to be set beforehand.

One of the more important ones is the minimum cluster size, deciding on how many

data samples should be included in order to form a cluster. Equally as meaningful is the

minimum number of samples required in a neighbourhood for a datapoint to be considered

the core point of a cluster. Both parameters have a great effect on each other and the

resulting clusters. Since the default values41 seemed to deliver very poor results in terms

of identified clusters, both parameters were minimally tuned to better fit the dataset.

The dataset contains 391,257 rows. The minimum cluster size, therefore, was somewhat

arbitrarily set at 10,000. A cluster should only be formed if it contains 10,000 user ids.

Likewise, the minimum number of samples in a neighbourhood was set to 1,000 samples.

Having the default values led to very high numbers of clusters with a lot of samples

regarded as noise; setting the parameters to slightly higher values seemed to have a positive

effect on some example runs in terms of resulting clusters and number of noisy samples. It

is important to note though that changing these parameters also has a noticeable effect on

the silhouette score of the different session approaches; apparently, changing them leads

to different scores. This is already an indicator of different patterns in the data that would

need treating differently to find proper user-behaviour clusters were clustering actually

performed.

The evaluation of any resulting clusters identified by the algorithm is somewhat prob-

lematic. Again, no cross-validation or train- and test split is needed, since this use case

does not optimize for algorithm performance. No quality indicator for training purposes

exists at present. As Hennig [99] discusses, there are many caveats and a variety of factors

to consider not only when choosing the clustering algorithm, but also when preparing the

input data and measuring the outcome of the algorithm. This dissertation does not try

to come up with the best possible way to evaluate a cluster analysis on user id data.

Rather, as stated, its aim is simply to show the differences in outcome of the various ses-

sion approaches. This is an important consideration; for a cluster analysis, a great number

of elements have an impact on the resulting clusters. From the choice of algorithm and

respective parameters over the chosen preprocessing in terms of normalization and trans-

formation up to the feature selection: every choice may result in different clusters. This

also means that the evaluation measures are not independent from these choices: depend-

ing on the desired outcome, the evaluation measure may be less or more prone to bias

influenced by previously made assumptions. Ultimately, the aim of this dissertation is not

to validate the discovered clusters. Therefore, any measure taking cluster structure into

account will do.

The results, therefore, are evaluated pragmatically and are not intended to determine

cluster quality. As the most basic comparison measure, the silhouettes score42 was calcu-

lated for all session approaches and their resulting clusters. The silhouette score is one way

41Refer to the API documentation for further information: https://hdbscan.readthedocs.io/en/latest/

api.html, retrieved 28 November 2021.
42https://scikit-learn.org/stable/modules/clustering.html#silhouette-coefficient, retrieved

28 November 2021.
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of measuring the average distance between a datapoint, all datapoints in the same asso-

ciated cluster and all datapoints in the next nearest cluster. The results are in the range

[-1, 1], indicating incorrect clustering or highly dense clusters. Technically, this indicates

cluster quality, but this dissertation simply uses the measure as a way of showing different

results for differing input data on a stable set of parameters. In addition, the number of

resulting clusters is discussed as far as reasonable.

This concludes the chapter about the research design in this dissertation. First, mul-

tiple concepts and definitions were presented. This was followed by sections outlining

the steps that were necessary to create a valid dataset, implement and develop multiple

session-identification approaches and then how to evaluate these using analysis and ma-

chine learning tasks. Chapter 5 now evaluates all the approaches discussed in this chapter.
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Chapter 5

Analysing Session Concepts

This chapter discusses and thoroughly analyses the outcome of the approaches explained

in Chapter 4. The first section takes a closer look at the dataset in general and its in-

herent data model, performing an exploratory analysis. Afterwards, the different session-

identification algorithms are analysed, visualized and compared. The last section discusses

the results of this analysis.

5.1 Descriptive Analysis

This section takes a deeper dive into the dataset. With the knowledge reported in Chapter

4, the following analysis will look at the data model and explore what special properties

could affect the session identification. An exploratory overview of the different aspects

is given. The dataset contains interaction data for the complete year of 2018. One row

corresponds to one interaction, with a total of 1,268,619,378 interactions from 78,361,923

user ids on the German web platform idealo, but the app is excluded.

The first step to understand the data is to explore the basic statistics. To get an

overview of the traffic distribution over time and especially per user id, Figure 5.1 shows

the distribution of interactions and user ids over the complete year. The distribution of all

interactions shows a noticeable seasonality towards the end of the year. This is predictable

behaviour, because the e-commerce seasonality cycle usually begins in November for the

start of Christmas shopping. November has the most interactions as Black Friday is a

massive traffic driver, followed by December with another spike for Christmas shopping.

Apart from these two months, the interactions are more or less equally distributed over

the year. The distribution of distinct user ids follows a similar trend. The similar pattern

indicates a comparable behaviour among the user ids: they come back regularly or there

is a consistent share of new user ids per day. In any case, there is no outlier here.

The traffic over the course of a day and over the course of a month is equally smoothly

distributed. In Figure 5.2 and Figure 5.3, the hourly distribution of interactions per week-

day and per day of month are shown. Both are calculated over the complete dataset,

aggregating the interactions by hour and by weekday or day of month respectively. Figure
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Figure 5.1: Distribution of interactions (left) and user ids (right) over time.

5.2 illustrates the interactions in a heat map; the darker the shade, the more interactions

were made.

Figure 5.2: Heat map for weekdays and hours based on interactions.

The distribution per weekday has a slight tendency towards weekday evenings, normally

in the later evening. This would make sense, as users are more likely to use the system

in their leisure time, so that in general the majority of interactions happen after normal

office hours or later in the evenings. Saturdays and Sundays tend to be the busiest days in

terms of interactions as most users have more time to browse and shop than on other days.

Mondays are strong as well – at first this seems counter-intuitive, but can be explained

by specific shopping events such as Cyber Monday or Amazon’s Prime Day. Another

explanation for relatively busy morning hours especially on Monday could be free time on

the way to work, although that should not only affect Mondays.

Over the course of a month, there seems to be a tendency towards the earlier days of

the month. There is indeed an outlier here: the 23rd day of a month is heavily influenced by

the Black Friday shopping event on the 23rd of November. Aside from that, the users seem

to come more often in the first few days of the month which is most likely related to the

receipt of their salary. There also seems to be a tendency to shop more often in the early

evening hours and in the mornings, which confirms the impression from the distribution

on the different weekdays. One assumption could be that these shopping sessions begin on

the commute to work and on arriving at the office or begin on the commute home in the

evenings after the working day.
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Figure 5.3: Heat map for months and hours based on interactions.

Following the distribution of interactions and user ids over the year, it is assumed that

the majority of the user ids perform only a small number of interactions on the system.

This is actually underlined by the data. The distribution of interactions per user id

is highly skewed, although already levelled out by removing the user ids with only one

interaction. The majority of users do indeed have a low number of overall interactions over

the year. Looking at the overall number of interactions per user ids as a dimension, it has

a cardinality of over 5,000. When counting the number of distinct user ids per number

of interactions, there is clear picture: 90.76% of all users perform less than or equal to

30 interactions per year. The remainder of the 5,000 interactions accounts for roughly

10% of the total number of user ids, the highest of those having over 20,000 interactions

over the course of the year. These can be considered as artefacts despite that they do not

seem to be traditional bots or crawlers, as their behaviour is not really consistent (i.e. no

programmatic access, no consistent inter-activity time).

In Figure 5.4, a histogram with the distribution of the number of distinct user ids

per the overall number of interactions (per user) is shown in buckets of 10 up to a

maximum of 100 interactions overall. All interactions above a total of 100 interactions are

grouped into one bucket. As can be seen, the distribution here is fairly skewed as well.

The majority of users performed less than 10 interactions with the information system,

with a smaller subset making between 10 and 30 interactions. In terms of user behaviour,

this could indicate that most user ids use the website either in one comparably longer

visit or in several visits with a small number of interactions respectively.

In Figure 5.5, the distribution of the first 30 interactions is shown. Here the curve looks

a lot more level but is still skewed towards the lower number of interactions; the highest
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Figure 5.4: Details of interaction buckets: 10–100 and over 100 interactions.

Figure 5.5: Details of overall number of interactions: 2–30.

number of user ids only makes two or three interactions with the system over the course

of the year. The impact of different session modelling approaches on this broad scope of

users will be interesting. It can be assumed that the system-performance related measures

in particular will be greatly impacted by the different approaches: with the majority of

the user base making up only a small number of interactions overall, it may be crucial to

the system to see how many sessions they end up with.

On the other hand, the actual big bulk of interactions are not performed by the

user ids with less than or equal to 10 interactions overall. The data shows that 90%

of user ids with less than or equal to 30 interactions only account for roughly 45% of

all interactions; 50% of interactions are made by user ids with up to or equal to 1,000

interactions; and 5% are made by user ids with more than 1,000 interactions. This is an

interesting finding. While most user ids presumably only visits once or twice, the most

interactions are made up from user ids that are likely to come back more regularly (or

make more interactions in a single long visit).

Therefore, the most interesting cohort may be the user ids in-between these buckets:

with more than 30 interactions and up to 1,000 interactions, this cohort provides a decent

chunk of interactions with the potential of multiple different information needs and a more

regular engagement with the system. In Figure 5.6, the difference between the buckets is
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Total ≤ 10 >10,≤ 30 >30,≤ 100 >100,≤ 500 >500

share of user ids 100% 69.05% 21.7% 7.18% 1.9% 0.18%

share of interactions 100% 21.58% 22.91% 22.7% 21.95% 10.8%

share of lead-ins 39.8% 51.7% 39.95% 38.52% 35.58% 26.9%

AM SD AM SD AM SD AM SD AM SD AM SD

interactions 16 64 5 2 17 5 51 18 189 90 982 908

lead-ins 6.44 18.4 2.62 1.5 6.82 4.17 19.74 11.89 67.23 43.1 264.1 209.6

interaction days 3.41 7.27 1.64 0.97 3.6 2.72 10.2 6.7 31.4 18.8 97.96 50.6

visits 6.45 18.85 2.62 1.5 6.8 4.09 19.6 11.4 66.9 41.5 277.3 219.7

root categories 2.13 1.38 1.67 0.76 2.55 1.25 4.1 2.1 6.2 2.1 8.8 2.1

categories 3.64 5.57 2.12 1.1 4.1 2.46 9.6 5.5 24.8 13.9 68.7 40.8

queries 1.95 10 0.84 1.1 1.79 1 5.35 4.83 20.55 18.24 114.4 182.9

products 4.03 10.82 1.65 1.33 4.68 2.82 12.4 6.77 38.22 21.87 149.45 136.25

days between interactions 4.9 12.3 5.5 14.3 4 5.8 2.9 2.6 1.3 0.85 0.4 0.18

minutes between interactions 205 250 196 271 215 208 257 163.5 240.1 114.8 163 72.5

Table 5.1: Summary statistics for user cohorts (based on overall number of interactions). The first three measures

are calculated as a share of all interactions. The rest is an average of the distinct count of the respective measure

per user id. Abbreviations: AM = Arithmetic Mean, SD = Standard Deviation.

shown again in terms of performed interactions and the number of user ids. The number

of interactions per cohort is calculated as the ratio to the total of interactions in the

dataset. The same is done for the user ids. The actual bucket boundaries are based on

the number of interactions and how the respective buckets contribute to the overall number

of events in the dataset.

Figure 5.6: Difference in share of interactions and user ids per

interaction bucket.

The buckets have a very different share

of user ids, but the interactions made

by these users are comparable overall.

All the buckets except for the last one

perform slightly more than 20% of all

interactions, but the number of users

is quite different. This is an indicator

of variations in user behaviour. Hav-

ing less user ids in the bucket but

more or a comparable number of in-

teractions clearly indicates that with

a higher number of total interactions,

these user ids are likely to come back

more often or spend more time on the

system; in any case, the user ids in

the higher interaction buckets make

more interactions compared to those

in the lower buckets.

Summary statistics for the buckets are depicted in Table 5.1. This table shows multiple

statistics on an averaged per user id basis, partitioned into several interaction buckets.

The buckets are chosen according to the previously displayed cohorts: less or equal to

10 interactions; between 10 and less or equal to 30 interactions; between 30 and less or

equal to 100 interactions; between 100 and less or equal to 500 interactions; and above

500 interactions. A total across all user ids is also shown for comparability.
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The first three rows display the ratio of measurement per interaction bucket. They show

the number of (unique) user ids per bucket per all (unique) user ids in the dataset, the

number of interactions per bucket in relation to all interactions in the dataset and the

share of lead-ins per interaction bucket compared to all interactions in that interaction

bucket. That means, as an example, that 39.8% of all 1,268,619,378 interactions are a

lead-in, as shown in the column for the totals. The following rows contain different calcu-

lated measures on a per user id basis and are averaged per interaction bucket. All these

measures count the distinct value per user id except for the last two rows which simply

average the inter-interaction time per user id.

At its most general level, the table provides information about the number of interac-

tions as well as the arithmetic mean of interaction days and visits. The interaction days

give an indication of the number of days a user enters the system. This enables an ap-

proximate estimation of how often or regularly the user visits the system. The number

of visits looks at a similar theme but now at a more granular and independent level, as

multiple visits may occur on the same day. A key to understanding the browsing behaviour

that is connected to the relevant cohort most likely lies in the number of lead-ins. This

measure allows an interpretation of how often the user returns to the site and how many

interactions are performed during a single visit. The number of lead-ins is displayed per

number of interaction cohort. The table also gives information about a lead-in per user id

ratio, showing how many of those may differ between the different users of a bucket.

The time between interactions is displayed as well, once in an abstracted way as the

number of days between interactions and once in a cleaned abstraction in minutes. The

time in days simply averages all the time spans between events, no matter how large they

are. The time in minutes is cleaned: here, all time spans longer than 1,440 minutes are fixed

to the same value. This has been done to give a more realistic although simplified picture

of how the inter-interaction times look over the course of a day. Again, the inter-interaction

times show the difference in system usage between the users of the different interaction

buckets. This gives an even more granular take on how often and how regularly users

interact with the system. The different times are also an explicit indicator of the potential

for the later analysed mechanical session approaches: the longer the inter-interaction time,

the more mechanical sessions depending on the chosen threshold. The interaction times

can be viewed as closely connected to users’ engagement with the system as well as user

behaviour.

The other measures relate to the actual content of the pages visited and give an

approximation of how users interact with the system overall: root categories, categories,

queries and products. All of these topics relate in one way or another to the variability of

topics a user id engages with on the system. A high amount indicates a variety of topics

while a small amount may hint at low engagement with the system, i.e. a low number of

overall interactions.

Overall, the numbers are intuitively understandable and do seem to follow the hypothe-

ses previously discussed in relation to the buckets. First of all, it is important to note the

distribution again: The number of interactions is evenly distributed between the different
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buckets below a total of 500 interactions. The interesting part is how these interactions are

structured. Considering that the bucket with less than or equal to 10 interactions is made

up of the majority of user ids, the hypothesis is that the lower the number of overall

interactions, the higher the number of lead-ins are as well.

This at least in part is true. For the first bucket with less or equal to 10 interactions,

the number of lead-ins is very high: 50% of all the interactions within this bucket are an

entry to the system. Basically, this can be interpreted as follows: the majority of users

are likely to bounce; they enter the site via a search engine or advertising, click maybe

one more page and then leave until the next entry. Comparatively, for user ids with only

two interactions, the share of lead-ins is even higher at roughly 84%. This eases down a

bit with the three buckets between 10 and 500 interactions. Here, a consistent ratio of

roughly 35% to 40% of lead-ins seems to be the case – slightly lower, but consistently so,

at a comparable value. This is an indicator that the behaviour stays at least somewhat

similar in these buckets. The last bucket has a lower share, which makes sense considering

that they have over 500 interactions over the course of a whole year. The total number of

lead-ins calculated across all user ids regardless of the number of interactions is similar

to the middle buckets with 39.8%. This is another indicator that a share of around 35–40%

lead-ins might be the standard behaviour.

This can also be understood by looking at the calculated averages per user ids. The

number of interactions can be seen as related to the number of lead-ins. For the lowest

bucket, there is an arithmetic mean of five interactions with a standard deviation of two

and a ratio of lead-ins of 2.62 with a standard deviation of 1.5. This underlines the previous

point: the majority of these users enter the system on one or more occasion and performs

a very small number of interactions. Looking at the same numbers for the higher buckets,

a similar connection can be observed. The average numbers are higher and the relation

between average interactions and lead-ins is slightly higher. The ratio between the buckets

matches that of the overall ratio of lead-ins.

The interaction days and visits follow a similar trend underlining the general assump-

tion, although with a noticeable difference between the buckets. The bucket with less than

or equal to 10 overall interactions has a surprisingly low number of interaction days and

visits. On average, users have 1.64 interaction days, meaning that a decent number of these

users visits the system only on one or two days. The visits are equal to the lead-ins which

makes sense considering that they measure a similar thing. The next bucket has slightly

higher numbers: with an average of 3.6 interaction days, they come to the system on more

days but apparently with similarly structured sequences. The trend continues: the higher

buckets have more interaction days, meaning that users return more often. Apparently, the

behaviour of users remains similar, otherwise the ratio between the days and the number

of interactions would change more drastically. This is the same situation for the lead-ins.

This does not really change for the content measures. The number of root categories

and categories is a direct indicator of user’s engagement (or not) with the system. The

correlation between the number of interactions and the distinct number of visited root

categories or product categories is obvious. The more interactions a user has made, the
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more likely it is that s/he looks at a more diverse range of categories. This is also connected

to the range or number of products, although the increase seems to be slightly steeper.

The number of distinct queries follows the same trend.

Roughly 55% of interactions contain a product id, no matter the number of total

interactions. A difference can be seen for the number of distinct product ids though; it

seems to be the case that the more interactions a user has, the more often s/he visits the

same product again and again. This seems reasonable, as returning users might use the

system for watching a product or working continuously on the same information need,

while users with a small number of interactions, who use the system only sparsely, will

check for a product only once. The ratio of interactions with distinct products per overall

interaction ranges from 32% for the first bucket to 15% for the last bucket.

Another take on these ratios comes in the form of actual content. Regarding the previ-

ously made assumptions towards logical concepts, it is important to look at the distribution

of user behaviour in terms of visited pages, query topics, categories and even products.

The actual content of the visited pages is important, especially when put into context with

the buckets for the number of overall interactions of a user. If the majority of users with a

low number of interactions are only looking for a small number of categories, logical con-

cepts will not be effective. The distribution of traffic on the page templates was already

shown in total in Figure 4.3, but is now looked at again for the different interaction buck-

ets. The distribution between the interaction buckets stays relatively uniform. There is no

significant shift between the page templates, which is an indicator that user behaviour

remains similar no matter how engaged the user is.

Figure 5.7: Details of interactions per page template per interaction bucket.

The most interesting obser-

vation here is that the lower

interaction buckets seem to

visit the homepage (Main-

ProductCategory) less often

compared to the more en-

gaged users. Users with more

interactions also seem to visit

the product page (OffersOf-

Product) less often compared

to the other buckets. The

first observation makes sense:

coming from a search engine

to look for a specific product

will most likely not result in

an interaction on the home-

page. In contrast, heavy users

may visit the system directly,

coming first to the homepage

to start their interaction se-
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Figure 5.8: Word cloud including the top 150 most searched queries.

quence from there. The second observation is also reasonable; the more interactions a user

makes, the more diverse the set of pages s/he visits will be.

Looking at the queries, categories or products with the most interactions by user ids,

it is possible to estimate the main topics users come with to work on the system. This is also

important to get a feeling for the potential of topical connections between these identifiers.

The majority of interactions happen in the root category Elektroartikel (electronics) (with

close to 40% overall). Another 18% of overall interactions happens in Haus Garten (home

garden). The remaining interactions are distributed more or less evenly among the others,

with a small number of artefacts with a very low number of interactions. On a per-bucket

level, there seems no be no real difference between the buckets.

The distribution of products and product categories follows Zipf’s law with a more or

less smooth curve. The most visited category ids are Smartphones and Fernseher (TVs),

followed by a long tail of all other categories. The distribution is similar for all interaction

buckets. Except for the behaviour of some artefacts in the lower-interaction buckets, there

is little difference: these have a tendency towards category id 100 (indicating the search

result page) and usually relating to one of the electronic categories. This makes sense as

entry is usually via a search engine where these categories are promoted the most.

The focus on Smartphones is also visible in the queries, visualized in the form of a word

cloud in Figure 5.8 for a snapshot view of the top 150 queries. Most of these belong to

electronic products with different versions of the iPhone taking the lead. Other electronic

products like graphics cards (GTX 1080) or video consoles (PlayStation 4) are also among

the top queries. This is similar to the visited product ids as well. The distribution follows

Zipf’s law. Again, there is no noticeable difference between the interaction buckets.

Returning to Table 5.1 discussion now turns to the measures relating to the inter-

interaction time. Here, an interesting observation can be made. For the first measure

(average number of days between interactions), the calculated values are intuitively un-

derstandable: the more interactions a user id has over the course of one year, the shorter

the time will be between these interactions in terms of days. A user id with more than 100

interactions is likely to return to the system regularly while user ids with less interactions
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may leave a longer period of time between individual visits. This indicator could point to

another assumption: that users in the higher-interaction buckets return regularly whereas

users with less interactions may leave a varying number of days in-between their interac-

tion sequences. This is underlined even more by the comparably low-standard deviations

in the higher buckets.

The same insight is suggested by the second measure in the form of the cleaned time

between interactions in minutes. There are no huge differences between the interaction

buckets. It can be assumed that the user ids may spend a similar amount of time on the

system with a tendency towards a normal distribution among the buckets: comparably,

as the first cohort may bounce more often it may have a slightly lower inter-interaction

time, whereas the last bucket knows the system very well and, therefore, also spends less

time between interactions. The in-between cohorts have slightly higher time spans, but

not significantly so on average. Here, the standard deviation is also not extraordinary.

This summarizes the descriptive overview of the dataset. There was no clear differ-

ence between the interaction buckets from various perspectives. Mostly, the users seem to

perform comparable behaviour that only increases in frequency and partly in substance,

especially with the more engaged users. Overall, there are some assumptions that can be

inferred from this descriptive analysis:

• the frequency of interactions is higher the more engaged a user is, but the behaviour

patterns are not that different (excluding queries)

• the number of visited categories is a good indicator of trust in the system, as the

numbers increase the more users interact with it

Now, some examples will be presented and explained. These user ids are chosen from the

cohort because they performed an interesting series of interactions that may be represen-

tative of system usage. Here, the goal is to get a feel for typical user behaviour, detect

differences or peculiarities in system usage and gain an understanding of how different

shopping journeys may look. The figures use simplified abbreviations to show what the

users are doing. The door symbol indicates a lead-in: the user enters the system. The circles

indicate interactions. Arrows between the circles indicate a url/http referer connection.

Identical colours indicate the same category id. The abbreviations in the circles describe

the type of interaction and the page the user is on the time: PI equals pageimpression, LO

equals leadout. The letters after the comma indicate the page type: L is the list page, S is

the search result page (after a search), H is the homepage, P is the product page, PC is

the category page and C is the cluster page.

The first batch represents a sample from the bucket with less or equal to 10 overall

interactions with the system. In Figure 5.9, multiple user ids with a very limited number

of overall interactions are shown. As can be seen here, these users tend to come to the

system via search engines and often stay for only one interaction. As the the statistics in

Table 5.1 show, this behaviour is representative of a low number of overall interactions.

Interestingly enough, these users seem to often visit the same category area. This contrasts
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Figure 5.9: Clickstreams for four user ids. Abbreviations: PI = Pageimpression; LO = Leadout; L = List page; S =

Search result page; H = Homepage; P = Product page. PC = Product category page; C = Cluster page. The door

symbolises a lead-in with the associated source. SEO = search engine optimization; SEM = search engine marketing.

with the two other examples, with a slightly higher numbers of interactions, pictured in

Figure 5.10.

In these two examples users appear to interact quite differently with the system. They

make longer sequences of related interactions in the same category range, but there are

also the same short sequences as seen in the lower interaction bucket. This kind of mixed

behaviour is a recurring observation. Figure 5.11 offers an example of interesting search

behaviour where the user seems to heavily use the search, reload the page, and then return

to the search result page to look for more and different results.

Another, similar example is shown in Figure 5.12. Here the user also performs a mixture

of different sequence types, but also seems to be more engaged with the system, using

different features like sorting or paginating through search result lists. This is an indicator

for the higher interaction buckets.

Displaying examples with even more interactions is cumbersome, but suffice to say

that the behaviour in general is similar. As was explained in relation to Table 5.1, the

more interactions a user performs, the longer the interaction sequences tend to be. More

often than not, the tendency is for users to go back-and-forth to different product pages

in a product category, and this is a behaviour frequently accompanied by searches or

interactions on the system like sorting or paginating through result pages. Comparably,
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Figure 5.10: Clickstreams for two user ids. Abbreviations: PI = Pageimpression; LO = Leadout; L = List page; S =

Search result page; H = Homepage; P = Product page. PC = Product category page; C = Cluster page. The door

symbolizes a lead-in with the associated source. SEO = search engine optimization; SEM = search engine marketing.

Figure 5.11: Clickstream for user id 100196719. Abbreviations: PI = Pageimpression; LO = Leadout; L = List page;

S = Search result page; H = Homepage; P = Product page. PC = Product category page; C = Cluster page. The

door symbolizes a lead-in with the associated source. SEO = search engine optimization; SEM = search engine

marketing; Ad: Advertisement.
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Figure 5.12: Clickstream for user id 100095444. Abbreviations: PI = Pageimpression; LO = Leadout; L = List page;

S = Search result page; H = Homepage; P = Product page. PC = Product category page; C = Cluster page. The

door symbolizes a lead-in with the associated source. SEO = search engine optimization; SEM = search engine

marketing.

the number of lead-ins remains the same, but the interactions following an entry are higher.

The interaction sequences that are performed in one go are comparable to the user id

illustrated in Figure 5.12: several pages with several actions per lead-in.

A typical example of this is seen in user id 46668. With a total of 418 interactions,

s/he belongs to the third interaction bucket and behaves accordingly. Around 34% (144)

of all interactions are considered a lead-in. Looking at the paths the user performs on the

system, multiple types of behaviours can be observed. On the left-hand side, the typical

behaviour of a low-interaction user can be seen: several lead-ins with only a very few

interactions (pageimpression, query, leadout) before either a long or a very short waiting

time until the next lead-in. The other type of behaviour again resembles the paths seen

in Figure 5.12: longer sequences with potential reformulations of queries or clicks that go

back and forth between similar products or categories.

Figure 5.13: Sampled clickstream for user id 46668. Abbreviations: PI = Pageimpression; LO = Leadout; L = List

page; S = Search result page; H = Homepage; P = Product page. PC = Product category page; C = Cluster page.

The door symbolizes a lead-in with the associated source. SEO = search engine optimization; SEM = search engine

marketing; Ad: Advertisement.

Figure 5.13 displays a sample portion of the typical behaviour of user id 46668. Various

lead-ins, often with only one click, are mixed with short and longer sequences of multiple
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different products and page types. User 46668 seems to be one of the heavier users,

regularly coming back to work on the same or different information needs.

The interactions all belong to the same root category id. The category ids are

different between the sequences, but are all somehow related: the majority deal with

Photography (which is also the root category), landing on different types of video cameras.

Overall, the behaviour is consistent and intuitively understandable. The most interesting

thing is the mix of behaviours, which is a good indicator that the behaviour between

user ids with a low and a high number of total interactions does not change very much,

or at least not completely.

An estimation of typical user behaviour can be drawn from these examples in the

context of the previously explained statistics. It seems that a common theme for all inter-

action buckets (and therefore all users) is working on a specific topic in the form of short

sequences. These short sequences are best described as interaction bursts; users will come

to the system for a limited number of interactions on the same topic before leaving again,

eventually coming back in another burst. From what has been observed so far, this seems

to be a recurring pattern of behaviour that is mixed with infrequent, longer interaction

sequences.

A logical next step now is to see if the same behaviour is representative across the

whole user population. The interaction bursts and the behaviour variety in the form of

longer and shorter connected sequences are mainly dependent on the construct of lead-ins.

Therefore, the optimal way to see if this type of behaviour is representative is to analyse

these sequences in an aggregated way. To do so, the mechanical session-type of visits is

best suited since it aims to aggregate such sequences into individual sessions. The only

difference is the click path analysis, which may interfere with the order of these types of

sequences. Therefore, the visits can be used as the ground-truth for further analysis. This

circumstance is then used to compare and analyse all other session approaches and their

assumptions afterwards to see how they can reflect behaviour and look at their impact on

the numbers.

The next section first analyses the visits and assesses their potential to reflect the

behaviour presented in this section. The following sections are then focused on all other

session approaches to see how their assumptions hold up to the suppositions made in this

section and to analyse the impact of the differing methods on the respective measures.

5.2 Analysis of Session-Identification Approaches

The intention of this section is to quantify the impact of session modelling on several

evaluation measures related to system performance and user behaviour. The first section

deals with the mechanical session approaches and takes a look at the structural visit

approach, temporal inactivity and fixed time ranges. The second section evaluates the

logical session approaches, starting with an analysis of the baseline approaches using lexical

matching and followed by analysing the BM25 approaches using shared vocabulary. The

approaches using different variations of word2vec in the form of user traffic to vectors are
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analysed. The third section repeats that analysis with the combined approaches. Finally, a

comparative discussion looks at the differences between all the approaches in a summarized

form. The structure of the analysis is simple. The following measures are calculated at

session id level:

• System-related measures (number of sessions, conversion rate, lead-ins, bounce rate)

• User-related measures (sessions per user, time spent, number of visited categories,

products and issued queries, interactions per session, typical page sequences)

• Approach-related measures (number of root categories, number of topics, number of

breaks)

By looking at these indicators, the differences between the variants are discussed and put

in context to other approaches.

5.2.1 Mechanical Sessions

This section evaluates the mechanical session approaches and their impact on the previ-

ously explained measures. The first section is about the visits. The second section is about

the sessions identified by a maximum session length. The final section explains sessions

identified by temporal inactivity: the first part with a fixed threshold, the second part

with a dynamic threshold. In the following considerations, visits is used synonymously

when analysing the session approach based on the visit id. Approaches using an inactiv-

ity threshold are also called timeout sessions. The method using a fixed maximum time is

also called a fixed length session.

5.2.1.1 Structural Sessions – Visits

The visits are the most fundamental session approach. As defined in Section 4.1, visits

are technically a different concept when compared to sessions. They have no underlying

assumption since they simply replicate user behaviour (as far as the data allows). By

performing a click path analysis, the visits try to reconstruct the individual interaction se-

quences a user performs on the system with an entry point and an explicit last interaction.

There is no assumption about any information need, just the plain path representation.

By relying on a click path analysis, this approach is directly dependent on the quality of

the dataset; if there are untracked pages or the content of the tracked pages is incomplete

or patchy, there will be session breaks and incomplete sequences. This may lead to mis-

leading interpretations of user behaviour, because visits and, therefore, sequences are cut

short or are incorrectly connected.

Overall, there are 513,007,900 visits. The average visit has a length of around 2.83

interactions with a standard deviation of 2.92. The median is even more meaningful with

a value of two. The average number of visits per user id is 6.55 with a standard deviation

of 19.21 and a median of three. The maximum number of visits is 7,066. When using the

number of visits as a dimension, this measure has a cardinality of 1,917. In Figure 5.14, the
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Figure 5.14: Number of users per visits as a dimension.

distribution of unique user ids per visit id as a dimension is shown. The vast majority

of user ids (88.39%) have less than or equal to 10 visits. The highest share with around

42% of all user ids make only one or two visits. These users amount to only roughly

13.2% of all interactions though. The user ids with less than 10 visits make up 43.32% of

all interactions while the remaining 11.61% of user ids with more than 10 visits makes

56.68% of all interactions. Logically, the majority of the first two interaction buckets make

less than 10 visits, whereas the other buckets make more than 10 visits. The evidence is

not clear, but there is an indicator to support the supposition that user behaviour stays

somewhat similar with rising engagement with the system; that is, the more interactions

a user has, the more visits s/he will make, but the structure of those visits will remain

similar to an extended degree.

Table 5.2 shows the same metrics as the previous section, but calculated again on

a visit id basis. visit id basis. The same interaction buckets are retained to see if a

divergence on a sequence basis can be identified and to see if there is a difference in user

behaviour between the buckets. Additionally, the average time spent on the system is

calculated for every visit session.

Total ≤ 10 >10,≤ 30 >30,≤ 100 >100,≤ 500 >500

AM SD AM SD AM SD AM SD AM SD AM SD

interactions 2.47 3.87 1.91 1.45 2.47 2.75 2.57 3.6 2.77 4.39 3.48 8.71

interaction days 1.02 0.36 1.01 0.11 1.02 0.19 1.03 0.3 1.04 0.51 1.06 0.79

root categories 1.18 0.44 1.13 0.37 1.14 0.4 1.16 0.43 1.23 0.5 1.37 0.61

categories 1.27 0.7 1.2 0.5 1.22 0.61 1.25 0.66 1.34 0.78 1.56 1.18

queries 0.36 0.91 0.36 0.58 0.31 0.68 0.33 0.76 0.37 0.93 0.52 2.06

products 0.89 1.08 0.75 0.69 0.9 0.91 0.93 1.0 0.97 1.15 1.11 2.13

time btw. ints. 83.5 2, 109.33 51.87 1, 566.64 71.8 1, 908.66 97.65 2, 357.51 105.29 2, 388.07 119.67 2, 578.39

time in session 193.52 4, 708.25 69.22 2, 496.41 147.04 3, 956.46 225.3 5, 127.87 289.78 5, 726.09 446.73 7, 769.17

conversion rate 48.72% 34.06% 53.01% 53.87% 54.92% 58.64%

visit share 100% 27.91% 22.91% 21.86% 19.61% 7.71%

Table 5.2: Summary statistics for visits per interaction bucket. Measures are calculated as an average of the distinct

count of the respective measure per individual visit id. Abbreviations: AM = Arithmetic Mean, SD = Standard

Deviation.

The table paints a clear picture of how the system is visited. Overall, the differences

between the interaction buckets are relatively minor but definitely noticeable. The totals
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are as expected. The average of 2.47 interactions (along with the standard deviation of 3.87

interactions) matches the examples shown in the previous section. Considering the visited

categories, products and issued queries, the assumptions made seem to be correct as well:

on average, one to two categories are worked on in a single visit with a tendency towards

working on exactly one category. This corresponds with the small number of interactions

here. The time between interactions and the overall time on site is surprisingly high though;

this may be caused by artefacts in the data (i.e. tracking issues, methodical errors and

power users disturbing the distribution). The high-standard deviation seems to indicate

the assertions about possible artefacts as well.

The differences between interaction buckets are not too great. The average number of

interactions per visit grows in line with the total number of interactions a user makes.

The rate the average rises is another indicator that a high volume of visits still remains

relatively similar no matter the bucket; the rise in the standard deviation also supports the

previous assumption that there is a mixture of behaviour with a rising number of longer

visits alongside the typical short-sequence visits. Looking at the numbers related to the

content again, the average does not change significantly across the buckets where slightly

higher values represent the more engaged users. There is no real difference between the

interaction buckets and the total values; even the standard deviations are somewhat alike.

This is another indicator of similar behaviour; the average visit will only deal with one or

two topics with a tendency towards one topic; an exception are the power users according

to the standard deviations.

The time between interactions is not very surprising either. On average, the inter-

interaction time for a visit is around 83 minutes. There is a difference between the buckets,

which may be caused by the mixture of behaviours in the higher interaction buckets;

whilst the lower interaction buckets almost exclusively make very short visits that tend to

come in the previously mentioned bursts, the higher variants show a longer time is spent

between interactions. The inter-interaction time is generally relatively high but is most

likely disturbed by longer sequences. There is not much to learn from these numbers; one

assumption could be that the more interactions a user makes, the more likely it is that

they will spend more time in one session, thereby generating higher inter-interaction times

(and a larger time in session as can be seen in the table).

The last rows of the table show the actual share of visits per interaction bucket and,

related to that, the conversion rate calculated on a visit level and aggregated per interaction

bucket. The share of visits per interaction bucket is close to the distribution of interactions

per interaction bucket. The number of interactions per visit foreshadows the share of visits

per bucket. The more interactions a user id has, the more likely it is that the visits will

get longer. The conversion rates are as expected as well. The higher buckets deliver the

highest conversion rates in terms of making an average number of visits with a relatively

high and rising number of leadouts. The lowest bucket simply does not make that many

leadouts compared to the quantity of sessions. In total, a conversion rate of 48.72% seems

somewhat reasonable considering the type of system.
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Interaction Bucket Sequences Totals

All Users li oop (26.06%) — li q (8.54%) — li pc (5.94%) — li oop, lo (5.18%) — li hp (4.0%) 49.72%

≤ 10 li oop (28.5%) — li q (11.64%) — li pc (7.05%) — li oop, lo (5.09%) — li q, oop (3.65%) 55.93%

>10,≤ 30 li oop (25.38%) — li q (8.5%) — li pc (7.08%) — li oop, lo (5.34%) — li oop, oop (3.79%) 50.09%

>30, ≤ 100 li oop (26.31%) — li q (8.24%) — li pc (5.96%) — li oop, lo (5.6%) — li oop, oop (3.62%) 49.73%

>100, ≤ 500 li oop (25.59%) — li q (6.56%) — li hp (5.55%) — li oop, lo (5.29%) — li pc (4.34%) 47.33%

>500 li oop (19.69%) — li hp (11.38%) — li hp, oop (4.47%) — oop (3.99%) — li oop, lo (3.56%) 43.09%

Table 5.3: Top five sequences for visits per interaction bucket.

Table 5.3 lists the top five visit sequences by number of appearances in the data, shown per

interaction bucket. The share of these sequences on all visits is also shown as a percentage.

The bottom row shows the total share of sequences in all visit sequences in the respective

bucket. As can be seen at a glance, the top sequences are all very similar.

The top sequence for all buckets is exactly the same: a single click lead-in on a product

page. With around 25% for all buckets except the power user bucket, this is somewhat clear

evidence of how the majority of users visit the system. All other sequences are also very

short visits, the highest counting three clicks among the top five list. The table clarifies

that the general behaviour is very similar. With more and more interactions, the users

will mix-in longer sequences. This can be extrapolated from three things: first, the buckets

with more interactions have a growing number of slightly longer sequences in the top 10;

and two, the total share of the top five sequences decreases with the growing number

of interactions; and three, since the average number of visits rise with the growth in

interactions, the additional interactions must belong exactly with these longer sequences.

Especially the decrease of the total share indicates a greater variety of different sequences.

The share of interactions on different sequences between the interaction buckets is

also interesting. Visits with a single click on the homepage receive a higher share in the

higher interaction buckets. This is an indicator of more engagement; these users have to

perform a conscious act to visit the system as the homepage is only reachable when directly

searching for the system (or typing out the address). When looking at the overall numbers

of sequences, it is still very surprising to only see sequences with a maximum number of

three clicks. This is a profound indicator of system usage: users will more often use the

system for a quick search on a topic. Actual longer visits are relatively rare, 51.5% of all

visits have only one interaction.

To underline this point, interleaving behaviour within the visits should be analysed.

Interleaving behaviour would indicate multitasking; in the case of visits, this would mean

that the user travels multiple click paths at once. Click path analysis is ideal for this,

since it actually shows if a user works in multiple sequences. In total, only 1.6% of all

visits show interleaving properties. This means that the vast majority of these sessions

are straightforward sequences, whereas around 8 million show interleaving paths. That

is both low and very surprising, but a clear sign of the behaviour type described. The

average number of potential topics as defined in Section 4.5) is actually very similar to the

number of categories and root categories per visit as seen in Table 5.2: 1.5 potential topics

on average per visit. This is intuitively understandable as the topics are closely connected

to the category tree. In any case, the low number also follows the assumptions about user
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behaviour; users will visit the system in short sequences and will more than likely work

only on one topic in one subsequent sequence with no interruption.

This is an interesting conclusion to note for all following mechanical session approaches.

If in general user behaviour rarely shows interleaving behaviour and a focus on short se-

quences with a limited number of topics, the basic assumption about mechanical sessions

is clearly fulfilled. Therefore, some variant of timeout sessions might be capable of replicat-

ing user behaviour just as the visits do. The visits as a session approach seem to capture

user behaviour quite well overall, although no real estimation can be given about how

grave an impact the mentioned bugs will actually have. The biggest downside of using

visits alongside these potential errors is the computational complexity, especially in a live

environment. Keeping track of all session states for all user ids is potentially a very speed-

limiting factor that can be seen as a big disadvantage. From a qualitative perspective (and

assuming that the data quality is good enough), visits may be the closest approach to

actually replicate user behaviour on the system.

The data quality is actually the key here when talking about the qualitative perspec-

tive. If the quality is good enough, visits are a great way to observe user behaviour but

they are completely dependent on the data. This is clearly a disadvantage for this type of

session identification because the potential for errors and falsely constructed visits is great.

There are many examples of errors in the quality of the data that could be responsible

for incorrect session identification. Most prominently, an example may lie in the lack of

an http referer or, more precisely, a loss of valid interactions. In a lot of cases, user ids

visit the system with no referer at all – due to browser settings or via direct access by

bookmark or typing the URL in the address line. The algorithm cannot differentiate be-

tween these cases as there is no information present. Another error variant is a new visit

from an internal page that was not seen in the user history before. This can mean either

that the cookie value or the user id has been incorrectly set or, more likely, that some

events have been filtered or removed in the tracking due of certain conditions – a prime

example of this being an invalid HTTP status. Directly related to this is the existence of

parameters that are only added to the url in fully loaded interactions; sometimes, these

parameters are not visible in the http referer, making it impossible to connect these

events. The same is true for user ids manually manipulating url parameters or going

back and forth between pages with url parameters. If the user visits a page with external

parameters multiple times, there is no way to decide if these are new visits and to which

click path they actually belong.

The extent of these errors is for the most part not fully measurable. Session breaks

caused by mismatches between url- and http referer are especially difficult to detect

without digging very deep. A rough estimate can be made by counting the number of visits

starting directly from an idealo-page. This affects around 57 millon visits – roughly 11% of

the overall total. Additionally, there are 135m visits starting with an empty http referer,

accounting for 26% of the overall amount. These are only rough estimates, and especially

the empty http referers need not necessarily be incorrect session breaks; 37% (and prob-

ably even more) potentially incorrect session breaks does seem to be a high number though.
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Other approaches do not have these problems because they rely on different fields; the fol-

lowing sections will show how they differ from a numbers’ perspective.

5.2.1.2 Temporal Sessions – Fixed Length

The basic assumption for mechanical sessions in general and temporal sessions specifically

is that users will spend a certain amount of time on a single subject before moving onto

the next subject. Fixed length sessions (also referred to using the identifier tf (temporal

fixed)) are probably the oldest and most basic variant of sessions. This approach takes

the assumption very literally, trying to estimate the time a user will most likely work on

a given subject. After the time is up, a hard boundary is set and a new session begins.

With knowledge of what the visits look like and how very close to the base assumption

of the mechanical sessions they are, analysis of the fixed length sessions should reveal

some interesting insights. The difference between the visits and the mechanical sessions

assumption is that visits may be in close temporal proximity and that it’s usually a lead-in

to the system that starts a visit. The fixed length session may be able to capture that

behaviour and these sequences under the assumption that there is a typical temporal time

frame for such sequences to occur.

#Sessions CV-R B-R

tf5 426,196,079 58.64% 37.49%

tf10 379,381,854 65.87% 36.07%

tf15 359,698,513 69.48% 35.37%

tf20 348,197,625 71.77% 34.9%

tf30 334,675,756 74.67% 34.27%

tf45 323,595,977 77.23% 33.64%

tf60 316,804,935 78.89% 33.2%

tf90 308,159,712 81.1% 32.53%

tf120 302,448,723 82.63% 32.04%

tf180 294,520,625 84.86% 31.32%

tf360 281,207,349 88.87% 30.08%

tf720 267,565,842 93.4% 28.61%

tf1440 246,739,006 101.29% 26.33%

tfd 267,188,092 93.54% 28.8%

Table 5.4: System measures for tf sessions. Abbre-

viations: CV-R = Conversion Rate; B-R = Bounce

Rate.

The descriptive statistics in Table 5.4 describe

the impact on the system of the tested fixed

length variants. These are calculated by com-

paring the overall numbers on an approach

level; the measures are not calculated on a

user id basis, but simply by comparing the

sum of the respective measure with the calcu-

lated number of sessions. The number of ses-

sions, the conversion rate and the bounce rate

are shown as they are essential for measuring a

system’s performance from a business perspec-

tive. perspective.

The results are not surprising: The number

of sessions decreases with a longer fixed time length; this was expected and is only logical.

The number of sessions does not develop in the same way the time parameter does though:

where the allowed time period literally doubles from five to 10 minutes between tf5 and

tf10, the number of sessions only decreases by roughly 11%. This is even more interesting

when comparing tf15 to tf30 or tf30 to tf60, with a decrease of around 7% and 5.3%

respectively. The difference gets even smaller with a longer fixed length. This is an indicator

of somewhat uniform behaviour among the majority of users; a fixed parameter for sessions

would most likely be able to capture the behaviour for a large part of the user population.

While the leadouts are a fixed entity (there is an absolute number of leadouts which

does not change with the number of sessions), the conversion rate is directly dependent

on the absolute number of sessions. With this knowledge in mind, the numbers are very
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≤ 10 >10,≤ 30 >30, ≤ 100 >100, ≤ 500 >500

tf5 27.16% 22.1% 21.85% 20.2% 8.7%

tf10 27.99% 21.92% 21.73% 19.98% 8.38%

tf15 28.5% 21.86% 21.67% 19.82% 8.16%

tf20 28.84% 21.85% 21.62% 19.7% 7.99%

tf30 29.31% 21.86% 21.57% 19.52% 7.75%

tf45 29.74% 21.9% 21.53% 19.33% 7.49%

tf60 30.04% 21.95% 21.51% 19.2% 7.3%

tf90 30.44% 22.05% 21.49% 19.0% 7.02%

tf120 30.73% 22.13% 21.48% 18.84% 6.82%

tf180 31.17% 22.25% 21.47% 18.6% 6.51%

tf360 32.0% 22.52% 21.44% 18.1% 5.94%

tf720 32.99% 22.86% 21.38% 17.47% 5.3%

tf1440 34.58% 23.27% 21.11% 16.43% 4.6%

tfd 33.17% 22.95% 21.4% 17.35% 5.13%

Table 5.5: Share of tf sessions per interaction bucket.

reasonable. As expected and hardly surprising, the rate decreases with the number of

sessions. Another consideration is the fact that the conversion rate is directly dependent

on the number of sessions, which is again apparently directly dependent on the session

approach. This will be more interesting to explore in comparison with the other approaches.

The bounce rate is far more interesting than the conversion rate. Bearing in mind

that the number of sessions with only one interaction is directly dependent on the session-

identification algorithm, the bounce rate provides a clear indication of how well this ap-

proach captures user behaviour. The differences directly hint at how the maximum length

fits the sequences on the system: these range from 37.49% sessions with only one inter-

action for tf5 to 26.33% sessions for tf1440. The rate for the tfd sessions, grouping all

events of a user per day into one session is at 28.8%, which implies that there could be

a viable fixed length. The minimal difference between tf90 and tf120 as well as tf720

and tfd in terms of the total number of sessions and bounce rate is especially interesting;

essentially, there is only a very minor difference here especially for the latter. Theoretically,

this indicates that most users will perform all interactions within a 720-minute time frame.

The relatively steep decline of total sessions from tf180 to tf360 also indicates a specific

length that captures the majority of user interactions. All interactions could probably be

grouped into sessions with a time parameter between three and six hours without losing

that many sessions by increasing the length.

Looking at the numbers of sessions per interaction bucket in Table 5.5, there are only

small differences. There are no real surprises here; the distribution is relatively uniform.

One of the bigger differences can be seen for the tf1440 session approach regarding the

users with more than 500 overall interactions. Logically, these will have a smaller share of

sessions with a maximum length of 1,440 minutes, due to the huge number of interactions

over the course of the year. Likewise, the session approaches with a shorter length logically

have a lower share in the buckets with less overall interactions.

Having gained this impression from the overall numbers, now the focus shifts to the

different measures on the user id and session id levels. The goal is to understand the

nuances of the two session approaches and to look at whether the differences between users

affect the the overall numbers regarding each session approach. Every measure is calculated
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∅Sessions ∅Interactions CV-R B-R Lead-ins

AM SD AM SD AM SD AM SD AM SD

tf5 5.44 17.54 3.16 2.05 56.75% 76.92% 33.14% 32.85% 1.33 0.8

tf10 4.84 15.18 3.69 2.74 68.73% 107.66% 29.4% 32.64% 1.5 1.02

tf15 4.59 14.06 3.95 3.12 74.86% 119.58% 27.78% 32.41% 1.58 1.08

tf20 4.44 13.39 4.11 3.39 78.74% 127.12% 26.83% 32.22% 1.63 1.12

tf30 4.27 12.55 4.32 3.75 83.51% 139.4% 25.7% 31.95% 1.69 1.2

tf45 4.13 11.77 4.49 4.07 87.44% 147.8% 24.76% 31.68% 1.74 1.24

tf60 4.04 11.28 4.59 4.28 89.76% 152.96% 24.19% 31.48% 1.78 1.27

tf90 3.93 10.6 4.71 4.53 92.49% 159.1% 23.44% 31.2% 1.81 1.3

tf120 3.86 10.16 4.79 4.69 94.13% 162.73% 22.95% 31.0% 1.84 1.32

tf180 3.76 9.53 4.89 4.88 96.19% 167.13% 22.28% 30.7% 1.87 1.35

tf360 3.59 8.49 5.04 5.18 99.37% 173.47% 21.21% 30.18% 1.93 1.4

tf720 3.41 7.44 5.18 5.42 102.09% 178.21% 20.11% 29.61% 1.98 1.45

tf1440 3.15 6.22 5.41 5.7 106.75% 184.84% 18.32% 28.6% 2.07 1.53

tfd 3.41 7.27 5.17 5.42 101.82% 177.79% 20.33% 29.74% 1.97 1.46

Table 5.6: User measures for tf sessions regarding system usage. Abbreviations: CV-R = Conversion Rate; B-R =

Bounce Rate; AM = Arithmetic Mean; SD = Standard Deviation.

on a user id and session id level and then aggregated again by session approach. Table

5.6 shows the statistics.

The averages between the different approaches are quite different. As expected, the

average number of sessions per user decreases in line with the chosen maximum length.

Although the differences between the variants are quite large, they are not as big as one

might expect considering that the shortest maximum length is just five minutes and the

longest is a whole day. The variance ranges from 5.44 sessions on average for tf5 up to

3.15 sessions on average for tf1440. There is only a small difference between tf720 and

tfd. This is intuitively understandable: the majority of interactions are likely to happen

within the bounds of a day with only the occasional sequence of interactions spanning

different days, as reflected in the fewer sessions of tf1440 compared to tfd.

The average interactions per session behave in the same way, which is logical. The

longer the chosen maximum-length parameter, the greater the number of interactions

on average per session, suggesting that the interactions are at least happening somewhat

regularly. The distribution is similar to the number of sessions per user. The variance ranges

from 3.16 to 5.17. The observed similarities between the approaches persist. Interestingly,

the conversion rate is very similar compared to the conversion rate across all the approach

data. The same is true for the bounce rate, although the divergences are more obvious

here. The tfd sessions are a good indicator for further reasoning since they combine all

sessions of a single calendar day into one session. When looking at the bounce rate here,

it can be safely stated that 20.33% of the calculated visits have exactly one interaction

and these are the only interactions of that user on this respective day.

The lead-ins per session are all somewhat similar with a variance ranging from 1.33

for tf5 to 2.07 for tf1440. The differences indicate mixed behaviour; often, sequences of

interactions on the site are relatively short and start routinely with a new lead-in. This

is even reflected in the difference between tf5 and tf10; assuming most of these sessions

start with the same event (at least for users starting their sessions on different days),

the difference in lead-ins is relatively high. With this knowledge, one could argue that

the fixed length sessions may not be able to completely replicate the user behaviour as
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∅Root Categories ∅Categories ∅Products ∅Queries ∅Topics

AM SD AM SD AM SD AM SD AM SD

tf5 1.26 0.46 1.44 0.71 1.05 0.83 0.55 0.82 1.27 0.51

tf10 1.29 0.5 1.5 0.79 1.15 0.98 0.6 0.9 1.31 0.56

tf15 1.31 0.51 1.53 0.83 1.2 1.07 0.62 0.93 1.32 0.58

tf20 1.31 0.52 1.55 0.85 1.24 1.13 0.64 0.96 1.33 0.6

tf30 1.33 0.54 1.57 0.88 1.28 1.2 0.66 0.99 1.35 0.62

tf45 1.34 0.55 1.59 0.91 1.32 1.27 0.68 1.02 1.36 0.63

tf60 1.34 0.55 1.6 0.93 1.34 1.32 0.69 1.05 1.37 0.64

tf90 1.35 0.56 1.62 0.95 1.36 1.37 0.7 1.08 1.38 0.66

tf120 1.35 0.57 1.63 0.96 1.38 1.41 0.71 1.11 1.39 0.66

tf180 1.36 0.57 1.64 0.98 1.4 1.46 0.72 1.14 1.39 0.68

tf360 1.37 0.59 1.67 1.01 1.44 1.53 0.73 1.2 1.41 0.69

tf720 1.38 0.59 1.69 1.04 1.46 1.6 0.75 1.26 1.42 0.71

tf1440 1.4 0.61 1.72 1.07 1.51 1.66 0.77 1.3 1.45 0.73

tfd 1.38 0.59 1.68 1.04 1.46 1.6 0.74 1.26 1.42 0.71

Table 5.7: User measures for tf sessions regarding visited content. Abbreviations: AM = Arithmetic Mean; SD =

Standard Deviation.

shown before. Still, average lead-ins per session is surprisingly low (also considering the

low standard deviation), so they may be good enough to show the movements of a user

on the page.

Looking at the content measures in Table 5.7, there are only small differences between

the different approaches. This comes as a bit of a surprise, but it is also understandable

considering the type of system and how the users are searching. There are almost no

differences in the average number of distinct root and product categories visited (with

a logical tendency towards a higher number for the longer maximum-length variants).

The same is true for products, queries and the number of topics. The most interesting

takeaway here is that these values are similar for the tfd sessions too, which consolidate

all interactions per interaction day. This means that the general behaviour of users here

is actually relatively well depicted; mostly, it is only a small number of content-related

measures that are visited per interaction day. The small differences compared to the shorter

maximum-length sessions are relatively surprising nonetheless.

∅Time in

session

∅Inter-

Interactiontime

∅Interaction

days

AM SD AM SD AM SD

tf5 0.85 0.95 0.67 0.56 1.0 0.01

tf10 1.71 2.07 0.94 1.06 1.0 0.02

tf15 2.38 2.99 1.16 1.5 1.0 0.02

tf20 2.93 3.84 1.34 1.89 1.0 0.02

tf30 3.86 5.39 1.65 2.63 1.0 0.02

tf45 5.0 7.47 2.05 3.65 1.0 0.03

tf60 5.96 9.4 2.39 4.63 1.0 0.03

tf90 7.64 13.02 3.04 6.6 1.0 0.03

tf120 9.16 16.51 3.65 8.58 1.0 0.03

tf180 12.07 23.52 4.86 12.57 1.0 0.04

tf360 20.16 44.01 8.24 24.13 1.0 0.05

tf720 35.71 84.46 15.2 48.91 1.01 0.09

tf1440 97.32 224.27 40.41 124.27 1.06 0.19

tfd 35.33 88.27 14.66 49.35 1.0 0.0

Table 5.8: User measures for tf sessions regarding time spent.

Abbreviations: AM = Arithmetic Mean; SD = Standard De-

viation.

As with the content measures, the time-

related measures shown in Table 5.8 are

not that surprising. There are notice-

able differences between the variants,

but they are very reasonable consider-

ing that the maximum length has a di-

rect impact on any time-related mea-

sure. Interestingly, the average time in

session rises, but not in the same way the

maximum-length parameter rises, indi-

cating again that there is indeed a max-

imum length of time that may capture

the majority of related sequences. The

same is true for the inter-interaction

time. Here, the most interesting finding
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relates to the inter-interaction time, which stays at a comparatively low level; up to tf360,

it still averages at below 10 minutes between all interactions, but the interactions per ses-

sion increases for these same sessions. Meanwhile, the interaction days logically remain

very much the same with only a small divergence for the higher-length sessions.

Finally, Table A3 shows the top five sequences. Here, there is no real noticeable differ-

ence between the different approaches. As reflected in the table, the sequences of all session

approaches remain the same for all short sessions occurring on one day. A session starting

at 8 a.m. with two interactions and an inter-interaction time lower than five minutes, will

be the same no matter the maximum-allowed length set by the session-identification algo-

rithm. Taking into consideration that by and large all the sessions apparently mirror this

(around between 30% and 40% according to the bounce rate), the sequences, their shares

and the total chosen for the top five are reasonable. An interesting observation is that the

order of sequences changes from tf45 to tf60, with two lead-in clicks now on position five

instead of on a single product-page click.

This concludes the description of the maximum-length sessions. It is evident that

there are noticeable differences particularly in terms of sessions per user and interactions

per session across all approaches. The different levels of increase (or decrease, for that

matter) between the different approaches’ maximum length indicates that there is indeed

a maximum length that captures temporally close interactions across the user base. In

view of the fact that the average visited categories and topics are also comparably low,

the majority of these sessions might also, therefore, be related to the same information

need. The next section will show how temporal inactivity instead of maximum length

defines sessions.

5.2.1.3 Temporal Sessions – Inactivity Timeout

The purpose of inactivity timeout sessions is not so much to try to find the maximum length

of a typical session, but rather to intuit a valid inactivity time period that represents the

user’s inactivity between two different sessions. Since estimation of the maximum length

of time has so far not been that effective, the goal here is to find a common period of time

between two different topics that could be representative of the inactivity period used

to identify session boundaries. Assuming that such a timeout can be found and actually

represent user behaviour accordingly, the inactivity timeout sessions may be even better

at replicating user behaviour in terms of visits, as time periods can be a somewhat variable

means of working this out. This section describes all the temporal inactivity approaches

to see how the different timeouts change these figures.

This dissertation tests two types of temporal inactivity approaches: the first of these

are the fixed types of inactivity threshold; if the time between two interactions is longer

than a fixed specified threshold, a new session begins. The second type are variants with

a dynamic threshold that changes depending on certain conditions like the visited page

type or the visited category. In total, 22 different session approaches are analysed: 13
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with a fixed inactivity timeout (beginning with the prefix ti) and nine with a dynamically

calculated inactivity timeout (beginning with the prefix td).

Fixed inactivity timeout

The fixed inactivity timeout sessions assume that there is a global timeout capable of

reflecting the activity behaviour of all users. The assumption is that the inactivity time

between dealing with different topics or using the system in different sessions is the same

for the whole user population. The tested values range from five minutes of inactivity to

a complete day of inactivity with 1,440 minutes. The industry standard of 30 minutes

inactivity is included here as well as its spiritual predecessor of 26 minutes (originally 25.5

minutes) introduced by Catledge and Pitkow in 1995 [43].

#Sessions CV-R B-R

ti5 388,179,295 64.38% 38.63%

ti10 358,125,465 69.78% 36.8%

ti15 344,444,702 72.56% 35.9%

ti26 329,331,338 75.89% 34.83%

ti30 325,924,065 76.68% 34.57%

ti45 317,139,738 78.8% 33.86%

ti60 311,459,298 80.24% 33.36%

ti90 303,731,866 82.28% 32.66%

ti120 298,319,596 83.78% 32.16%

ti180 290,545,289 86.02% 31.44%

ti360 277,612,404 90.02% 30.16%

ti720 263,709,857 94.77% 28.73%

ti1440 235,395,534 106.17% 26.83%

Table 5.9: System measures for ti sessions. Ab-

breviations: CV-R = Conversion Rate; B-R =

Bounce Rate.

Table 5.9 gives an overview of the global system

measures for the fixed-inactivity timeout sessions.

There are tremendous differences in the number of

sessions between the different timeouts. The vari-

ance ranges from 388m five-minute timeout sessions

to only 235m ti1440 sessions, that is, those with

a 1,440-minute inactivity timeout. There is a dif-

ference of roughly 30m sessions between the five-

minute inactivity timeout and the 10-minute time-

out. Interestingly, the well-known 30-minute inac-

tivity timeout identifies 325m sessions, whereas the

ti26 as its originator results in 329m sessions. The

differences are quite large and do not seem to follow

an easily understandable pattern. The number of sessions decreases drastically the longer

the allowed inactivity timeout is, which is very reasonable. The conversion rate follows the

same behaviour.

The bounce rate is actually very similar compared to the maximum-length sessions,

which is quite surprising since the approaches work rather differently. Checking the overlap

here could be a good way to find where the remaining differences come from; this would

help in identifying a suitable maximum length and a global inactivity timeout if needed. In

any case, as for the tf sessions, roughly 30% of the identified sessions are bounced sessions

with only one interaction per session.

The differences between the ti and tf sessions are astonishingly small. Starting from

the 30-minute temporal threshold, both approach types identify a very similar number of

sessions when comparing the respective temporal boundary. For example, ti30 and tf30

as well as ti720 and tf720 show almost the same number of sessions. Analysing the data,

these approaches have a high overlap, almost identifying the exact same sessions. As an

example, 318m of the 325m ti30 sessions are exactly the same session; in other words, 95%

of all interactions in the data belong to the same ti30 and tf30 session. Similar numbers

can be observed for the other temporal boundaries. This is a highly interesting observation.

To stick with the well-known 30-minute boundary, what this observation points to is that
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only 5% of the interactions in this data take place more than 30 minutes after the first

interaction of a session.

≤ 10 >10,≤ 30 >30, ≤ 100 >100, ≤ 500 >500

ti5 28.46% 21.8% 21.54% 19.88% 8.31%

ti10 29.01% 21.79% 21.51% 19.69% 8.0%

ti15 29.33% 21.82% 21.5% 19.56% 7.79%

ti26 29.76% 21.88% 21.49% 19.37% 7.51%

ti30 29.88% 21.9% 21.49% 19.31% 7.43%

ti45 30.2% 21.97% 21.48% 19.16% 7.19%

ti60 30.44% 22.03% 21.48% 19.04% 7.01%

ti90 30.8% 22.14% 21.49% 18.85% 6.72%

ti120 31.08% 22.23% 21.49% 18.69% 6.51%

ti180 31.53% 22.38% 21.49% 18.42% 6.17%

ti360 32.36% 22.67% 21.47% 17.9% 5.6%

ti720 33.41% 23.04% 21.4% 17.2% 4.94%

ti1440 36.1% 23.91% 21.12% 15.41% 3.47%

Table 5.10: Share of ti sessions per interaction bucket.

Looking at Table 5.10 there are no

real differences between the distri-

bution of the session approaches

in the interaction buckets. Once

again, the distributions are very

similar to the maximum length

sessions: session approaches with

a higher timeout have a lower

share in the higher interaction

buckets and vice versa. Again,

this is very reasonable, since these

users are likely to visit the page daily or at least on a very regular basis, making a 1,440-

minute break between interactions a rarer observation because of the frequency of interac-

tions. It is quite interesting to see that the majority of differences can be found in the lowest

and the two power user buckets; the users in-between with more than 10 and less or equal

to 100 interactions share roughly the same number of sessions across all timeout variants.

This may signal uniform behaviour in these buckets with regards to the inter-interaction

time and the general system usage.

∅Sessions ∅Interactions CV-R B-R Lead-ins

AM SD AM SD AM SD AM SD AM SD

ti5 4.95 15.56 3.72 3.36 69.13% 120.78% 31.99% 33.33% 1.47 1.1

ti10 4.57 13.88 4.09 3.86 78.16% 137.03% 28.77% 32.84% 1.6 1.18

ti15 4.4 13.03 4.27 4.12 82.49% 144.87% 27.34% 32.52% 1.66 1.22

ti26 4.2 12.08 4.48 4.42 87.27% 153.59% 25.79% 32.1% 1.72 1.27

ti30 4.16 11.85 4.52 4.49 88.31% 155.45% 25.45% 31.99% 1.74 1.28

ti45 4.05 11.16 4.64 4.67 90.9% 160.11% 24.59% 31.7% 1.78 1.3

ti60 3.97 10.73 4.71 4.79 92.46% 162.94% 24.05% 31.5% 1.8 1.32

ti90 3.88 10.1 4.8 4.95 94.45% 166.55% 23.34% 31.21% 1.83 1.35

ti120 3.81 9.66 4.87 5.07 95.76% 168.88% 22.87% 31.0% 1.86 1.42

ti180 3.71 9.04 4.95 5.21 97.55% 172.02% 22.21% 30.7% 1.89 1.45

ti360 3.54 8.06 5.09 5.4 100.26% 176.44% 21.15% 30.18% 1.94 1.51

ti720 3.37 7.04 5.23 5.75 102.92% 181.51% 20.05% 29.6% 1.99 1.57

ti1440 3.0 5.25 5.59 7.01 109.96% 199.74% 18.2% 28.6% 2.13 1.95

Table 5.11: User measures for ti sessions regarding system usage. Abbreviations: CV-R = Conversion Rate; B-R =

Bounce Rate; AM = Arithmetic Mean; SD = Standard Deviation.

Looking at the numbers in Table 5.11, the variances among the average sessions per

user are smaller than for the tf sessions seen in Table 5.6. However, bearing in mind

the identification method, this is reasonable; looking at arbitrary inactivity time frames

between events to connect interactions should be more likely to result in a connected

session than connecting interactions within an arbitrary maximum length. On average,

there are 4.95 sessions per user for a five-minute timeout, decreasing to 3.0 sessions per

user for a 1,440-minute timeout. The average interactions seem to follow the same pattern,

with 3.72 interactions on average increasing to an average of 5.59 interactions.

More or less replicating the global measure, the conversion rate offers no surprises. The

bounce rate differs more widely: for the five-minute timeout it remains at around 30%,
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∅Root Categories ∅Categories ∅Products ∅Queries ∅Topics

AM SD AM SD AM SD AM SD AM SD

ti5 1.29 0.5 1.49 0.81 1.15 1.07 0.6 0.93 1.3 0.57

ti10 1.31 0.52 1.54 0.86 1.23 1.2 0.64 0.99 1.33 0.6

ti15 1.32 0.53 1.56 0.89 1.26 1.26 0.65 1.02 1.34 0.61

ti26 1.33 0.55 1.58 0.92 1.31 1.33 0.67 1.07 1.36 0.63

ti30 1.33 0.55 1.59 0.93 1.32 1.35 0.68 1.08 1.36 0.64

ti45 1.34 0.56 1.61 0.95 1.35 1.4 0.69 1.12 1.37 0.65

ti60 1.35 0.56 1.62 0.96 1.36 1.43 0.7 1.14 1.38 0.66

ti90 1.35 0.57 1.63 0.98 1.38 1.47 0.71 1.17 1.38 0.67

ti180 1.36 0.58 1.65 1.01 1.42 1.54 0.72 1.22 1.39 0.68

ti120 1.36 0.57 1.64 0.99 1.4 1.5 0.72 1.19 1.4 0.69

ti360 1.37 0.59 1.67 1.03 1.45 1.58 0.74 1.25 1.41 0.7

ti720 1.38 0.6 1.69 1.05 1.47 1.64 0.75 1.29 1.42 0.71

ti1440 1.41 0.62 1.74 1.11 1.54 1.83 0.78 1.45 1.46 0.75

Table 5.12: User measures for ti sessions regarding visited content. Abbreviations: AM = Arithmetic Mean; SD =

Standard Deviation.

but for the longer timeouts it drops to 20.05% and 18.2% for the 720- and 1,440-minute

timeout sessions respectively. This is a clear indicator that users may visit the system

twice a day; once in the morning and once in the evening and, regarding the latter, on

consecutive days. This is also somewhat reflected in the lead-ins with two per session on

average for the higher timeouts, but between two and 1.5 for the lower timeouts.

With this knowledge in mind, one might expect to see greater differences in relation

to the content visited, but the differences are comparably small and similar to the tf

sessions. Table 5.12 displays these measures. The differences between the session variants

are straightforward and similar to those seen for the tf sessions. The variance for the

visited categories on average is small, the standard deviation underlines that. Here, the

most interesting observation is that, seeing as even the five-minute timeout has an average

of 1.49 visited categories per session, there is a non-trivial number of users that visit

different categories in the same session. The slightly lower number of topics per session

could be an indicator of logically and contextually related sessions though, especially since

the number of visited root categories on average look very similar. The number of products

visited resembles the situation just drawn about the categories. The number of queries per

session is again relatively low for all session variants (and similarly low level).

Table 5.13 puts this in relation to the time spent in these sessions and the inter-

interaction time – there are no surprises. The ti1440 sessions are the only real outlier

because they seem to span multiple days, thereby connecting interactions that would

be two sessions for all other variants. Because of this, the average time in session and

naturally the inter-interaction time is comparably way higher. The same is true for the

ti720 sessions, spanning morning and evening again, but to a lesser extent. Again, an

interesting observation is the comparably low inter-interaction time for all approaches

below ti720 (and even including ti720 to an extent). All these approaches have a rather

low inter-interaction time of less than 10 minutes on average (and also seemingly low

standard deviations).

Generally, the inter-interaction time and the time in session is rather low. This indicates

that the majority of users stay only a certain amount of time on the system – measuring

the distribution here could hint at the look of a global maximum session length designed to
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fit the underlying data. Knowing what percentage of users stay in the same time buckets

makes it possible to estimate how well the inactivity timeout captures user behaviour and

to gauge the level of uniformity of this behaviour globally across the system. For now, it

suffices to say that there are notable dissimilarities between the different variants.

∅Time in

session

∅Inter-

Interactiontime

∅Interaction

days

AM SD AM SD AM SD

ti5 1.43 2.26 0.69 0.56 1.0 0.02

ti10 2.34 3.66 0.97 1.07 1.0 0.02

ti15 3.04 4.82 1.19 1.5 1.0 0.02

ti26 4.21 6.96 1.56 2.35 1.0 0.03

ti30 4.57 7.65 1.68 2.64 1.0 0.03

ti45 5.72 10.02 2.08 3.66 1.0 0.03

ti60 6.69 12.2 2.43 4.64 1.0 0.03

ti90 8.46 16.57 3.08 6.62 1.0 0.03

ti120 10.1 20.96 3.7 8.59 1.0 0.04

ti180 13.29 29.7 4.91 12.6 1.0 0.04

ti360 21.86 52.23 8.31 24.17 1.0 0.05

ti720 39.63 107.42 15.31 48.97 1.01 0.1

ti1440 123.47 361.19 41.01 124.38 1.08 0.28

Table 5.13: User measures for ti sessions regarding time spent.

Abbreviations: AM = Arithmetic Mean; SD = Standard Devi-

ation.

Again, an exception is seen in the

interaction days; even knowing that

an inactivity timeout allows unlimited

session lengths, it is still interesting to

see that most of the sessions are hap-

pening in a single day. Here, the inac-

tivity timeout seems to work and de-

livers a global result for all sessions.

Unsurprisingly, the top five se-

quences in Table A3 are no different

from the tf sessions or visits either.

The total share (around 30%) for the

top five is the same, as are the type of

sequences when comparing it to the tf

sessions or the visits. There is not that much difference here, but still some interesting

observations can be made.

Again, the usual sequence is the single lead-in click on the product page. Taking into

consideration that this is still 14.6% for the 1,440-minute inactivity timeout, it is safe

to say that this is the most common sequence for users. It is actually quite interesting

that, despite queries only being present in about 15% of all interactions, a single query to

the system appears to be a common sequence nonetheless. Of the identified sessions for

tf1440, 5.76% are a single lead-in query, which is the base for all other inactivity sessions

as well (with a rising share of sessions for the variants with a lower threshold). Interesting

and contrary to the session-identification approaches discussed above, the third position is

already a two-click sequence for all variants. With between 3.5% and 4.75%, these sessions

seem to make up a good portion of actual user behaviour. Considering that this is a lead-in

click on a product page followed by a leadout, it is safe to assume these two interactions

are related to the same information need. It will be interesting to see if these show up in

any of the logical sessions, and how large the share is there.

This concludes the section for the fixed inactivity timeouts. Overall, there were no real

surprises here. The biggest differences among the variants are actually seen in the number

of sessions and, therefore, in the number of sessions and interactions per user. The time

measures mostly correlate with this and the value of the inactivity threshold. Interestingly,

the content measures do not change that much, while the inter-interaction time is more

or less insignificantly small across the different sessions. This indicates several points:

• There could be a global inactivity timeout that captures the majority of user be-

haviour with regard to working on one information need
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• Users actually work mostly on a limited set of topics during a session

• Temporal inactivity and maximum session length are closely related

It will be interesting to see how the numbers change when looking at the logical approaches.

The next step is to see if they change with a dynamically calculated timeout, which is the

discussion in the next section.

Dynamic inactivity timeout

Sessions detected with a dynamic timeout use the same assumptions about user behaviour

as already described: that a user works on a specific topic for a certain amount of time,

which is identified by an inactivity gap that basically reflects the time that passes before

work on a new topic begins. Contrary to the fixed inactivity sessions which assumes a

global timeout, the dynamically calculated threshold is supposed to ensure that certain

characteristics of the system or the user base – depending on the algorithm – is taken into

account.

The approaches tested in this dissertation are all based on system specifics, with every

threshold calculated on a certain set of conditions. These conditions are combinations

of system parameters: visited page types, categories or seasonalities in the form of an

interaction day. Every session algorithm has a variance of thresholds depending on the

actual content the user visits at the respective time. For example, the tdpc approach

calculates thresholds based on visited page template and category id, so these would

be likely to have different timeouts for interactions on a product page in the category

E-Gitarren (electric guitars) compared to the category Katzenfutter (cat food).

#Sessions CV-R B-R

tdc 319,449,442 78.23% 33.86%

tdcm 319,460,083 78.23% 33.86%

tdp 320,740,004 77.92% 33.93%

tdpc 320,865,062 77.89% 33.87%

tdpcd 322,025,620 77.61% 33.71%

tdpd 321,777,937 77.67% 33.77%

tdpm 320,732,793 77.92% 33.92%

tdpr 320,760,829 77.91% 33.9%

tdr 319,385,497 78.25% 33.9%

Table 5.14: System measures for td sessions.

Abbreviations: CV-R = Conversion Rate; B-R

= Bounce Rate.

Table 5.14 shows the system numbers for the dif-

ferent td sessions. The numbers here come as quite

a surprise: taking the variance between the differ-

ent session-identification approaches, the numbers

at this scale are so low that the differences are al-

most negligible – between the number of sessions

as well as the conversion and bounce rates. This is

a highly interesting observation, since it essentially

means that the calculated dynamic thresholds are

either all very similar or are all in the exact same

range that they capture user behaviour uniformly,

meaning that either the features in use are meaningless or not decisive enough. This is a

strong argument for a global inactivity timeout, assuming the different variants actually

identify the same sessions and do not just result in the same overall number of sessions by

chance.

The bounce rate gives an indication of this because it counts the number of sessions

with only one interaction. Still, the ratio is more or less the same with only minor dif-
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ferences between the approaches. This indicates that the majority of single-event sessions

are the same here, although this will become even clearer when looking at the numbers

on a user id basis.

Curiously, all the measures here are almost identical as well. Table 5.15 displays the

system-related measures on a user id and session id basis. The average number of ses-

sions is between 4.08 and 4.11 per user with an average 4.53 to 4.61 interactions per

identified session. Logically, because apparently all approaches identify the same sessions,

the conversion rate, bounce rate and the number of lead-ins per session do not change in

unison.

∅Sessions ∅Interactions CV-R B-R Lead-ins

AM SD AM SD AM SD AM SD AM SD

tdc 4.08 11.38 4.6 4.58 90.07% 158.23% 24.73% 31.74% 1.77 1.29

tdcm 4.08 11.38 4.6 4.58 90.05% 158.17% 24.73% 31.74% 1.77 1.29

tdp 4.09 11.58 4.58 4.53 90.02% 158.27% 24.8% 31.78% 1.76 1.29

tdpc 4.09 11.57 4.57 4.5 89.79% 157.62% 24.82% 31.77% 1.76 1.29

tdpcd 4.11 11.73 4.53 4.4 88.98% 155.61% 24.87% 31.74% 1.75 1.28

tdpd 4.11 11.74 4.55 4.44 89.24% 156.33% 24.83% 31.74% 1.76 1.28

tdpm 4.09 11.57 4.58 4.53 90.01% 158.22% 24.8% 31.78% 1.76 1.29

tdpr 4.09 11.58 4.58 4.53 89.94% 158.07% 24.8% 31.77% 1.76 1.29

tdr 4.08 11.4 4.61 4.61 90.23% 158.75% 24.71% 31.74% 1.77 1.3

Table 5.15: User measures for td sessions regarding system usage. Abbreviations: CV-R = Conversion Rate; B-R =

Bounce Rate; AM = Arithmetic Mean; SD = Standard Deviation.

The number of average sessions and interactions is located somewhere in-between the ti30

and ti45 sessions, indicating a potential global inactivity timeout somewhere between 30

and 45 minutes. This is also true for other measures; the bounce rate as well as the number

of lead-ins per session is very close to the aforementioned fixed inactivity approaches. The

same checks as outlined above were made again to verify the extent of overlap between

these sessions.

Just as the analysis discussed above between the ti and tf sessions, the overlap between

the session approaches is very high. The ti30 sessions in particular are almost identical to

all the td approaches with only minor differences, with 97.63% of all interactions sharing

the same session id between ti30 and the td sessions. With knowledge of this overlap, it

makes sense to review the timeout statistics to see what can be revealed about the actual

timeouts from the data.

Maximum Minimum AM SD Median

tdpd 636.6 0.17 38.92 56.73 29.15

tdpm 291.39 0.31 35.38 30.93 29.26

tdr 78.14 0.18 38.92 15.05 38.21

tdcm 1, 290.94 0.0 37.2 18.68 37.8

tdpcd 1, 435.65 0.0 37.12 64.84 27.89

tdpr 189.47 0.02 29.38 24.0 26.58

tdc 184.38 0.14 36.97 12.23 37.63

tdpc 1, 432.4 0.0 33.8 46.88 29.84

tdp 142.79 0.31 36.16 29.14 29.68

Table 5.16: Descriptive overview of td timeouts. Abbreviations:

AM = Arithmetic Mean; SD = Standard Deviation.

Table 5.16 shows the descriptive statis-

tics relating to the calculated time val-

ues per dynamic inactivity approach.

The average is between 30 and 40 min-

utes with a rather fluctuating standard

deviation. The mean is also around

30 minutes. The minimum and maxi-

mum values are not really meaningful;

the minimum values are all below one

minute while the maximum values are

also very widespread. An interesting observation is that the maximum for the tdr sessions
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is rather low compared to the other session-identification approaches with a maximum of

about 78 minutes. Considering that the average is similar, it is safe to assume that the

majority of the values are also similar.

In any case, these inactivity gaps do not have to mean much. The interesting part

is how they get applied to the interaction data, which is most likely the cause for the

very similar identification results. If the majority of interactions is on the product page

(page template OffersOfProduct) in the category Smartphones (category id 19116 ),

all of these interactions are connected to sessions with the same or at least a very similar

timeout. The assumption is that neither the used device or seasonality in the form of the

month of the interaction have any real impact on the average time spent in the respec-

tive combination of dimensions, leading to a very similar timeout across all approaches

and, more importantly, across all interactions in the data itself. Some features are not

meaningful, others are applied predominantly in the dataset.

The remaining measures for the td sessions can be found in Table A4 and Table A5.

Considering that the measures regarding the visited content are also nearly identical across

all session approaches, the distribution of page templates and categories is most likely

the cause for the observed results. All the dynamic-inactivity approaches have an average of

1.34 root categories, 1.59–1.6 categories, 1.32–1.34 products, 0.7 queries and 1.36 potential

topics per session. The visited content is more or less the same with a few minor differences.

The number of 1.36 potential topics (and the values for the categories, naturally) could

be an indicator that the session boundaries are being too liberally detected. Then again,

this is also very similar to the ti sessions, which show the same quantity. Logically, the

numbers related to the session length and inter-interaction time are also nearly identical.

Again, this is close to the ti sessions with an average time in session of around about 5.3

minutes and an average inter-interaction time of about two minutes.

It is quite a surprise that the sessions with a dynamic timeout are, in the end, very

similar to the fixed timeout sessions with an apparent global timeout of somewhere between

30 and 45 minutes. As the test showed, the overlap between these session approaches is

relatively high, indicating that the majority of the td sessions are indeed identified with

roughly the same timeout which has to be around 35 minutes. This means, a 35-minute

timeout seems to be applicable here no matter the actually visited content (disregarding

the small differences at this point). This is an interesting observation, because it points to

a 35-minute global value that is more or less identical for the whole system and population.

With this knowledge in mind, it is now time to take a look at the logical session approaches

and see how the session identification worked out here.

5.2.2 Logical Sessions

This section is dedicated to the logical sessions. Having given an overview of the mechanical

sessions, now the various logical approaches without any temporal limit or mechanical

boundary will be analysed. With knowledge of the significant differences between the
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mechanical sessions, it will be interesting to see how the logical approaches will identify

sessions and to compare and contrast the differences here.

The first section takes a look at the lexical sessions. As their definition is aligned closely

with mechanical sessions in this dissertation, the lexical sessions will be analysed first to

see how big the differences are. Afterwards, the sessions identified by using the retrieved

similar categories using the BM25 algorithm are analysed. The final section will describe

logical sessions using category vectors.

5.2.2.1 Lexical Baselines

The first variant of the logical approaches is actually a mixture of logical assumptions

with a somewhat mechanical execution, at least in this dissertation. Just to recap, lexical

similarity is defined here as a match between categories of interactions; two interactions in

and in + 1 belong to the same session, when the root category id of these interactions

is identical. Otherwise, a new session begins.

With this session approach, an additional dimension is introduced that was not present

in the mechanical sessions. The two lexical variants are identical in their comparison

method, but the comparison context is now different: the first one (lcdb1) looks at con-

secutive events to compare them, just like all the mechanical approaches did up to now;

the second approach (ladb1) takes interleaving behaviour into account and compares not

only consecutive events but also all previous events with a reference event. While lcdb1

compares in with in +1, ladb1 uses the last event of all previous sessions as a comparison

base for in, allowing for interleaving patterns. As neither of the approaches takes time

passing into account, theoretically, therefore, both enable sessions of unlimited length.

#Sessions CV-R B-R

lcdb1 229,523,765 108.89% 28.96%

ladb1 145,886,471 171.31% 20.74%

Table 5.17: System measures for lexical ses-

sions. Abbreviations: CV-R = Conversion

Rate; B-R = Bounce Rate.

An important time-related element to consider here

are interactions that happen at exactly the same

time. The timestamp in the data used for chronolog-

ical ordering (and highly relevant in all logical ap-

proaches, therefore) are millisecond precision. When

two interactions have the same timestamp (which

can happen due to the granularity of milliseconds),

this leads potentially to differences when trying to reproduce the sessions since the order-

ing of events is non-deterministic. This affects around 37,000 of the 78m user ids. The

implications of this will be discussed at more length in Section 5.3; for now, it is enough

to know that reproducing the same numbers with the current configuration of the logical

algorithms is a random matter. It is likely that there will be a certain margin of difference,

although probably a small one in actuality, in the resulting sessions1.

Table 5.17 shows the system measures for both tested approaches. The difference in the

number of sessions is immediately apparent since it is very high. While the direct compari-

son between consecutive sessions identifies 229m sessions, the approach taking interleaving

1During the test runs in this dissertation, the resulting sessions for the baseline approaches differed by less

than 1,000 sessions in different calculation runs.
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behaviour into account detects considerably less sessions with only 145m sessions. From a

numbers’ perspective, this makes the direct comparison between consecutive events com-

parable to the ti1440. The conversion rate and bounce rate are also relatively, with a

difference of only two percentage points.

Looking at the overlap between these two approaches, the differences are notable

though. There seem to be around 100m sessions that are differently identified; the two

approaches do not identify the same sessions (although there is of course an overlap of in-

teractions in the same sessions). This is an interesting finding. Apparently, both approaches

identify a comparable number of sessions but a huge batch of these are differently struc-

tured. From this, it could be surmised that there are interaction sequences that occur

over the course of one day focused on one category branch, while on other days there are

sequences that may touch different branches. It would be interesting to know whether this

is a general behavioural pattern or if it’s only observable for certain users.

≤ 10 >10,≤ 30 >30,≤ 100 >100, ≤ 500 >500

lcdb1 83,795,007 36.51% 50,651,937 22.07% 43,169,997 18.81% 36,705,793 15.99% 15,201,031 6.62%

ladb1 78,139,912 53.56% 37,198,503 25.5% 20,426,076 14.0% 8,690,224 5.96% 1,431,756 0.98%

Table 5.18: Share of lexical sessions per interaction bucket. Displayed are the absolute number of sessions and the

share in percent.

The session approach using the non-consecutive comparison context creates fewer sessions;

the numbers here are not comparable to any of the previous approaches. The conversion

rate is logically higher, because the number of sessions is that much lower. The bounce rate

is very interesting though, since it is still on a similar level when comparing it to some of

the mechanical approaches; around 20% of all identified sessions are bounces. Considering

that there are still 145m sessions overall, about 30m apparently consist of interactions

disconnected from any other interaction (of the respective user id).

Table 5.18 breaks down the number of identified sessions per interaction bucket to look

at the size of the variances. The distributions across the buckets varies a lot between the

two session approaches. The table shows the absolute sessions as well as the share of all

sessions per approach and per bucket. The most interesting observation is the behaviour of

the higher interaction buckets. The bucket with the highest number of interactions (more

than 500) has only slightly over 1m sessions overall, which is equal to just 1% of the total

sessions for the second approach. Bearing in mind that these are sessions of around 150,000

user ids with around 137m interactions, this seems quite a low number. The same is true

for the bucket with more than 100 and less or equal to 500 interactions, but here it could

be assumed that users tend to have very long sessions identified by the second approach,

where they visit the same category branch repeatedly over time, working on the same

information need. The first bucket with less than or equal to 10 interactions looks quite

normal in comparison; the total number differs only slightly from the direct comparison

between consecutive events, which is logical considering that there is a limit to the number

of comparable events. If they all belong to the same category branch, both approaches will

identify very similar or even identical sessions. In the second approach, the categories seem
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to get more diverse as the number of interactions rise, resulting in the identification of

fewer sessions.

When the first approach is compared to its similar mechanical counterpart (ti1440),

again there is a surprisingly high similarity. The first interaction bucket is nearly identical

when comparing the number of sessions. With the exception of the last bucket, where the

lexical approach seems to identify slightly more sessions, the other buckets also show very

similar numbers. This is once again very logical, bearing in mind the number of interactions

used for comparison here. It is likely that the time constraint will connect more sessions

than the lexical approach in such a scenario.

∅Sessions ∅Interactions CV-R B-R Lead-ins

AM SD AM SD AM SD AM SD AM SD

lcdb1 2.93 8.08 5.94 7.53 118.08 215.98 17.56 28.12 2.42 2.82

ladb1 1.86 1.46 7.25 11.03 143.91 270.11 14.2 26.11 2.92 3.86

Table 5.19: User measures for lexical sessions regarding system usage. Abbreviations: CV-R = Conversion Rate;

B-R = Bounce Rate; AM = Arithmetic Mean; SD = Standard Deviation.

Table 5.19 compares both approaches on a user id/session id level. Again, the dif-

ferences and the apparent similarity of the first approach to the ti1440 sessions are very

interesting. The average values of both approaches are very close with the lexical approach

identifying slightly fewer sessions. Of course, this has an impact on the other values, be-

cause the average interactions per session are slightly higher. The conversion rate, bounce

rate and the number of lead-ins follow the same trend. This is interesting considering the

previously noted difference in the identified sessions – so it would seem that the actual

structure of the sessions remains similar in terms of behaviour.

The second approach is very different in comparison. While the average number of

sessions is below two per user, which is surprisingly low, the average number of interactions

is logically higher: with 7.25 interactions on average and a low bounce rate of only 14.2%,

this approach identifies rather long sessions with a low number of bounces; then again,

considering that the bounce rate for the first approach is 17.56%, the 14.2% bounces do not

seem so low. Essentially, to explain the nature of the bounced sessions, these focus on one

topic and are never picked up again, which is why the sessions are not continued. Breaking

these down among the interaction buckets, there is little difference across the different

buckets; they all have around 14% bounces, which is surprising but, in a way, logical; most

likely, the users are visiting a more or less disconnected root category or category during

these sessions. Looking at the data again, the majority (about 18.7m) of the bounced

sessions come from user ids with less than 10 overall interactions. Considering that there

is a limit to the numbers of categories that can be visited during 10 interactions, this seems

reasonable. The remaining bounces in the higher interaction buckets are more interesting;

a likely scenario here would be that users make use of the system for a limited number

of root categories rather than for every topic or information need they have, resulting in

single interactions on topics that are not regularly worked on.
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∅Root Categories ∅Categories ∅Products ∅Queries ∅Topics

AM SD AM SD AM SD AM SD AM SD

lcdb1 1.23 0.39 1.66 0.91 1.64 1.9 0.72 1.09 1.21 0.46

ladb1 1.24 0.4 1.85 1.14 1.89 2.34 0.86 1.58 1.32 0.6

Table 5.20: User measures for lexical sessions regarding visited content. Abbreviations: AM = Arithmetic Mean; SD

= Standard Deviation.

Table 5.20 shows the differences between the two lexical approaches regarding the vis-

ited content. Theoretically, the measures here should differ only minimally considering the

nature of the comparison method – both utilize matching root category ids to connect

interactions to sessions, thus only differing in the comparison context. This assumption

holds at least somewhat true, with the second approach showing only slightly higher av-

erage values. Again, this makes sense because of the algorithm’s potential to connect a

greater variety of categories to the same session, whereas in the first approach using direct

comparison, potential interleaving behaviour may cause the session to end prematurely.

The number of potential topics between the two approaches is not so different, with

slightly higher potential topics for ladb1. This is reasonable for the same rationale as

outlined above; as there are more opportunities for ladb1 to include more categories

throughout a session, the possibility of more topics is greater. The average number of

potential topics being 1.21 / 1.32 is curious in itself though, particularly in relation to the

lcdb1 sessions; here, one would assume that consecutive interactions with the same root

category belong to the same topic, which implies that the lcdb1 sessions have exactly one

topic. As this is definitely not the case, it must be presumed that the related categories

identified as potential topics do not necessarily belong to the same root category – which is

expected behaviour but also somewhat surprising as it means that categories in the same

root branch are not necessarily topically connected. A further observation is the similarity

in numbers between the mechanical sessions and the topics as well as root categories –

that these do not differ greatly is an indicator that the mechanical approaches are quite

close to being able to connect related interactions.

∅Time in

session

∅Inter-

Interactiontime

∅Interaction

days

AM SD AM SD AM SD

lcdb1 11, 293.31 40, 268.45 3, 775.46 17, 859.33 1.42 1.14

ladb1 23, 464.53 57, 474.03 6, 383.9 22, 357.26 1.69 1.72

Table 5.21: User measures for lexical sessions regarding time spent. Abbreviations: AM = Arithmetic Mean; SD =

Standard Deviation.

Both approaches have no time constraint in theory. They could very much go on indefi-

nitely. Table 5.21 reflects this notion, whereby the average values for time in session and

inter-interaction time are very high, indicating sessions spanning multiple days or even

weeks. In relation to the first approach, this points to yet another very clear divergence in

the ti1440 sessions. That the time in session and the time between interactions is much
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higher, indicates once again that they do not necessarily identify the same sessions, rather

only a similar number of sessions with similar content characteristics.

The second approach is even freer with these measures; here, there is no time constraint

and no constraint regarding the comparison context between events, so sessions may span

the whole year. The average of 23,000 minutes (around 16 days) with a standard deviation

of 57,000 (around 40 days) may indicate just that. Naturally, the inter-interaction time is

also very high with around 3,700 minutes for the first approach and 6,300 minutes for the

second approach. The interaction days are another clear indicator, although the average

here is lower. It can be assumed that while the time in session and the inter-interaction

time is somewhat disturbed by outliers, it is still reasonable considering the nature of the

algorithms.

To underline this idea, as the second approach is not constrained by consecutive inter-

actions it is interesting to note how other sessions may interrupt time spent in a session

or the inter-interaction time. To measure the impact of this interleaving behaviour, the

session breaks for this approach were counted. Overall, 17.98% of all ladb1 sessions show

interleaving behaviour, with an average of 2.84 breaks of interaction sequences (1.94 on

user id basis). This means that, on average, these sessions usually consist of around four

separate sequences. Still, the number of sessions that show no interleaving behaviour at

all is relatively high. Considering that interactions are connected via root category id

at any place on the timeline of a user’s history, the share seems rather low. This could

indicate multiple things: users tend to focus on a small set of topics in their interactions

with the system, especially in the lower interaction buckets, or shopping journeys may take

way longer than expected; it may very well be that the time frame of a year is not really

long enough to grasp a full view of the user’s interests – these users may work exclusively

on one topic before finally changing to another.

The sequences in Table A3 show the differences between the two approaches very well.

Overall, the sequences are similar to the general sequences, but the shares are noticeably

smaller compared to the other mechanical approaches. The bounced sessions still make up

the biggest share. Another interesting observation is that the ladb1 approach creates 1.7%

sessions with a lead-in on the homepage only; this is a clear weakness of the algorithm

since it cannot match pages without any category (like the homepage) and therefore does

not connect them if they are more than 24 hours from any other trace with a category.

Therefore, these are single clicks on a specific day with nothing else happening there.

Another potential breaking point are the query pages; these usually do not come with

a category id, the category id in the data is only added during preprocessing using an

IR algorithm and inventory data. This matching between category ids and queries may

lead to errors in a sequence; for example, a session break may occur when a user works

on a topic using queries and one of the queries is assigned an incorrect category id. This

would lead to session breaks. The relatively high number of session breaks in the lexical

approaches could indicate the possibility of such errors.

This concludes the section on the lexical approach. A number of interesting obser-

vations have emerged regarding the potential boundaries of lexical connections and how
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strict matching between category ids can potentially lead to longer sessions. Nonethe-

less, it seems likely that users do use the system as suspected: working on a specific topic

for some interactions before switching to the next topic after a break. The differences

in numbers between the two approaches are interesting as well since the two comparison

contexts apparently lead to very different sessions. Curiously enough, the visited-content

measures stay similar. It will be quite intriguing to see how these numbers might change

when the comparison between categories is even more liberal. This is the task of the next

section, which will show what happened when the sessions were identified by comparing

the matched-term vocabulary using the BM25 retrieval algorithm.

5.2.2.2 Shared-Term Space using BM25

This section reveals how the four different session approaches were performed using sim-

ilarity calculated by the shared-term space between categories, calculated and retrieved

via the BM25 retrieval algorithm. Note that the comparison method is the same for all

approaches and that only the comparison contexts differ. To recap on this, there are four

different comparison contexts: direct comparison between two consecutive interactions;

comparison between a reference interaction and all interactions of the session prior to the

reference interaction; direct comparison between a reference event and the last event of

all previous sessions; and lastly, the comparison between a reference interaction and all

interactions of all previous sessions2.

Here, the basic assumption is the same as for all logical sessions: users work on a single

topic, using interleaving behaviour, potentially over a longer period of time. However,

there are slight differences in assumptions between the different comparison contexts. The

consecutive comparison assumes that users work in small portions of interactions on the

same topic. When directly comparing two consecutive interactions, the assumption is that

the topic will probably evolve during a session, thus, only the last interaction is important

when connecting new interactions to the current session. Conversely, for the comparison

between all events, it is assumed that all sessions that relate to the same topic belong

together.

#Sessions CV-R B-R

bm25cd 308,865,935 80.91% 34.55%

bm25cc 299,628,724 83.41% 34.89%

bm25ad 231,283,812 108.06% 27.76%

bm25ac 215,728,569 115.85% 28.72%

Table 5.22: System measures for bm25 sessions.

Abbreviations: CV-R = Conversion Rate; B-R =

Bounce Rate.

The consecutive sessions differ from the interleav-

ing sessions. The consecutive comparison identi-

fies bursts of interactions belonging to the same

topic. Sessions belonging to the same topic may

occur multiple times, when the user decides to

work on a certain topic again. Connecting all

these related sessions may lead to journeys. The

interleaving sessions enable immediate identifica-

tion of journeys: instead of detecting and separating granular sessions focusing on a specific

2For simplicity, the four comparison contexts are put into two groups: consecutive and interleaving. Both

terms are used synonymously for the respective contexts.
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task, all interactions contextually related in any way are connected. This is important to

keep in mind when comparing the numbers.

The assumption for the comparison method using the shared-term space is based on

the simple idea that topically related categories will share a certain vocabulary. For exam-

ple, the category Smartphones will share many common words with contextually related

categories such as Handytaschen (mobile phone cases), Displayschutzfolien (screen protec-

tors) or even Kopfhörer (headphones). This may lead to some potential errors depending

on the category, but the general idea is that only categories that are at least somewhat

related should be connected. However, there is potential for an overly liberal connection

of categories.

Table 5.22 displays the top-level measures for the four variants. The table shows clear

differences in terms of session numbers. Both consecutive approaches identify far more

sessions than the lexical baseline approaches. They have a comparable number of ses-

sions as the ti60 to ti120 sessions but it can be assumed that the actually identified

sessions are structurally different. The two approaches allowing for interleaving behaviour

produce more sessions, somewhat comparable to the ti1440 sessions and the consecutive

lexical sessions, but less than the other lexical approach. Apparently, the BM25-based

term-matching is stricter than the matching of categories. This would somewhat make

sense, considering that the lexical sessions take the root category id into account, while

the bm25 matching is more fine-grained (although still very liberal). Logically, having a

stricter set of rules results in more sessions.

The conversion rate follows the session trend. Again, the bounce rate is more interest-

ing, this stays more or less similar. Despite the differences between the approaches, the

bounce rate is somewhere around 30%. Almost one-third of the identified sessions consist

of only one interaction, no matter the comparison context. This is likely to be because

these interactions are categories with few other similar categories – this would be the

case for more specific categories. Another possibility again may involve interactions on the

homepage that cannot be associated with any category from a similarity point of view

and are more than 1,440 minutes away from any other interaction, having an impact on

the bounce rate. It seemed unreasonable initially bearing in mind the broader comparison

context3 that the bounce rate for the bm25ac sessions is higher than for the bm25ad

sessions, but the absolute numbers for both approaches are reversed.

∅Sessions ∅Interactions CV-R B-R Lead-ins

AM SD AM SD AM SD AM SD AM SD

bm25cd 3.94 13.25 4.66 5.07 95.18% 173.13% 24.22% 31.2% 1.94 2.02

bm25cc 3.82 12.53 4.78 5.34 97.51% 177.72% 24.05% 31.25% 1.98 2.1

bm25ad 2.95 5.29 5.09 5.45 103.55% 180.08% 21.4% 29.66% 2.1 2.18

bm25ac 2.75 3.69 5.32 6.02 107.69% 188.19% 21.28% 29.72% 2.17 2.34

Table 5.23: User measures for bm25 sessions regarding system usage. Abbreviations: CV-R = Conversion Rate; B-R

= Bounce Rate; AM = Arithmetic Mean; SD = Standard Deviation.

3Using all interactions from all previous sessions for comparison should result in more connected sessions

compared to using only the last interaction of all previous sessions.
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Table 5.23 breaks the system usage down on a user id level. The number of sessions

per user decreases as the number of sessions decreases. Likewise, the interactions per

session increase. The same is true for the conversion rate and the bounce rate; the former

increases and the latter decreases. The number of lead-ins increases for the non-consecutive

comparison contexts. As visible, the conversion rate may rise above 100% due to the way

it is calculated (as described in Section 4.5 using the total number of lead-outs instead

of a binary encoding of the transaction); this also explains the high standard deviations,

apparently, some sessions have a high number of lead-outs in comparison to others.

Comparing the numbers to the lexical variants again, it is obvious that the bm25

sessions use stricter rules. The similar categories according to the bm25 ranking are ap-

parently different to the connection via root category. Unsurprisingly, the overlap between

the two- and four-session approaches is rather low; the identified sessions are structurally

different although the numbers regarding system usage are somewhat comparable. The

same is true for the mechanical sessions; the overlap seems even smaller. The identified

sessions, therefore, very much differ from the previously analysed approaches.

∅Root Categories ∅Categories ∅Products ∅Queries ∅Topics

AM SD AM SD AM SD AM SD AM SD

bm25cd 1.21 0.37 1.34 0.5 1.33 1.42 0.56 0.75 1.02 0.12

bm25cc 1.22 0.38 1.35 0.53 1.35 1.47 0.57 0.79 1.03 0.14

bm25ad 1.23 0.38 1.38 0.53 1.4 1.47 0.6 0.79 1.04 0.14

bm25ac 1.23 0.39 1.4 0.56 1.44 1.55 0.62 0.86 1.04 0.15

Table 5.24: User measures for bm25 sessions regarding visited content. Abbreviations: AM = Arithmetic Mean; SD

= Standard Deviation.

Table 5.24 shows the measures in relation to visited content. These are again quite sur-

prising when the aforementioned system numbers are considered. There are almost no

differences at all between the session approaches, which is another quite surprising find-

ing, considering the interleaving approaches should have the potential to encounter many

more categories. This is truer still for the actual comparison base; bearing in mind that

these session approaches use the complete session (i.e. all categories and their similar cat-

egories) when comparing a reference event, they should see more distinct categories per

session on average.

One explanation for this could be that the similarities between categories extracted by

the BM25 retrieval algorithm are simply very self-contained: every category has a set of

similar categories that is the same throughout all of these similar categories. For example,

the category Smartphones would have n similar categories with the category Handytaschen

(mobile phone cases) among them. Both categories would be likely to share a high overlap

between their n similar categories, indicating that the bm25 session identification would

lead to very strict logical sessions focusing on very specific tasks. This is the clear dis-

tinction that probably belongs with other logical variants also, which follow in the next

section.

Again, the time measures in Table 5.25 are comparably quite intuitive, although here

one might expect even higher numbers in relation to time spent in sessions for the ap-
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proaches comparing all previous sessions with a reference event. The time in session for

these is twice as high compared to the consecutive comparison approaches. Comparing this

finding to the lexical approaches, the time measures are much lower, indicating that the

identified sessions are shorter in general. The inter-interaction time reflects this as well;

lower than both the lexical approaches (because of the comparison method) but generally

higher than the mechanical approaches.

∅Time in

session

∅Inter-

Interactiontime

∅Interaction

days

AM SD AM SD AM SD

bm25cd 3, 918.33 20, 705.99 1, 563.44 10, 537.43 1.23 0.74

bm25cc 4, 099.07 21, 404.76 1, 570.73 10, 532.9 1.24 0.78

bm25ad 7, 456.73 25, 553.76 2, 871.9 13, 767.29 1.31 0.85

bm25ac 8, 087.8 27, 025.94 2, 903.89 13, 796.77 1.33 0.94

Table 5.25: User measures for bm25 sessions regarding time spent. Abbreviations:

AM = Arithmetic Mean; SD = Standard Deviation.

However, there are

only very minor dif-

ferences within the re-

spective comparison-

context groups. En-

abling the identifica-

tion algorithm to make

the comparison among

all previous interac-

tions in a session does not seem to make too much of a difference using the BM25 similar-

ities. These observations are further arguments for the self-containedness of these sessions

based on their category similarity; the shared-term space extracted by the BM25 ranking

seems to create somewhat enclosed-term silos among the top similar categories for a given

category.

Again, the top five sequences are more or less similar to the other approaches as well,

caused by the fact that the bounce rate is very similar to the other approaches. Table

A3 shows no real differences except that the interleaving session approaches already have

two-interaction sequences in the top five. Again, it is interesting to see that both these

approaches have very similar sequences and shares in the top five, yet again indicating that

the bm25-based comparison method is very self-contained regarding category similarity.

Looking at the interleaving behaviour, the values are similar to the lexical sessions. For

bm25ac, 13.58% of all identified sessions show interleaving behaviour, with an average

of 2.3 breaks in the identified sequences. For bm25ad, slightly different values can be

reported: 14.07% of the identified sessions show breaks with an average of 1.96 breaks.

Since the absolute values are much higher compared to the lexical variant from the previous

section, the similar percentages may be misleading. Nevertheless, the share of interleaving

sessions is slightly higher here. Around 30m of the identified sessions show interleaving

behaviour compared to the roughly 26m of the lexical variant. The difference is interesting,

but explainable by the actual session breaks – the lexical variant identifies fewer sessions

but with more session breaks.

5.2.2.3 Category Embeddings

The final logical approach tested in this dissertation utilizes word2vec to estimate cat-

egory similarities. Using the same four comparison contexts as before, the difference is

the method of comparison. Whereas before simply root category ids and the similarity
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as extracted by the BM25 retrieval algorithm were used, the following section deals with

approaches using word2vec on the complete user history of interactions to create category

vectors. The assumption behind these similarities is based on the same assumption for

the original word2vec algorithm presented by Levy and Goldberg [135]: words in close

proximity to each other are likely to be related. Therefore, the sequences of consecutive

categories are used to create category vectors.

These vectors are then used to calculate cosine similarity between the different cate-

gories of the category tree. The resulting values are used to match categories and decide

if they are similar, eventually deciding about session continuation or the start of a new

session. The distribution of the cosine similarity between categories is hard to interpret

because it is based on many different elements (i.e. context window, data structure, fur-

ther algorithm parameters). To decide if a category was similar to another, three different

thresholds were used: top 10 similar categories; all categories above a 0.5 threshold ac-

cording to the calculated cosine similarity; and a calculated threshold loosely based on the

distribution of the data (using the standard deviation). These three methods were tested

in all comparison contexts.

A specialty of the logical approaches tested in this dissertation is that the approaches

respect changing and evolving information needs. By the phrase ‘changing or evolving

information needs’, a change in the direction of working on a topic is meant; the algorithm

will compare categories based on their calculated similarities and assign a session id ac-

cordingly. If a new session id is assigned, the respective category id of the reference

interaction and all its calculated similar categories will be assigned the same session id.

Ultimately, this means that categories can be in multiple sessions although they are topi-

cally related because the most recent category is seen as the driving topic and will reassign

ids accordingly. For the comparison that follows, the categories will use the newly assigned

or reassigned session id. This was not really apparent in the bm25 sessions due to the

nature of the calculated similarities, but will be more prevalent in the vector approaches.

This peculiarity can be seen as a potential weakness of these types of algorithms. It

is a design choice that may be handled otherwise; in this dissertation, it is handled this

way to put some more weight on the most recent activity and to be able to have evolving

shopping journeys. Handling it differently by keeping every category id strictly within

one session would be likely to massively reduce the number of identified sessions. Another

foreseen downside would be that some categories may continually end up in their own

sessions due to their likeness being based on the cosine similarity, and this could lead to

different results for different categories even though they are potentially related.

Table 5.26 shows the overall system measures for the vector approaches. The list is ordered

by approaches first and then by comparison context respectively. The following tables are

ordered likewise. First come the sessions where all categories above 0.5 cosine similarity are

taken to be alike; next are the sessions taking the top-10 most similar sessions according

to cosine similarity; and lastly, the sessions with the calculated threshold. The comparison

contexts are shown as before. That the differences between the comparison contexts are

relatively high is very reasonable. The differences in-between these contexts are more or less
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similar to the bm25 sessions. Interestingly, the differences between the actual comparison

method variants are not that high. Using either the top 10 similar categories, all categories

above 0.5 cosine similarity or the ones determined via the calculated cut-off seems to make

a noticeable difference when identifying sessions, but the variance between the approaches

is rather small across all comparison contexts.

#Sessions CV-R B-R

u2v05cd 302,896,160 82.51% 35.23%

u2v05cc 300,045,032 83.29% 35.27%

u2v05ad 218,918,746 114.16% 28.87%

u2v05ac 213,752,978 116.92% 29.12%

u2v10cd 301,526,828 82.88% 34.54%

u2v10cc 296,737,824 84.22% 34.62%

u2v10ad 221,684,899 112.74% 28.22%

u2v10ac 212,641,685 117.53% 28.77%

u2vccd 293,231,413 85.23% 33.99%

u2vccc 288,285,363 86.69% 34.13%

u2vcad 214,602,352 116.46% 27.77%

u2vcac 205,756,066 121.46% 28.27%

Table 5.26: System measures for u2v sessions. Ab-

breviations: CV-R = Conversion Rate; B-R =

Bounce Rate.

An important observation becomes appar-

ent when ordering by sessions. Usually, the ap-

proaches using all categories above the 0.5 thresh-

old of cosine similarity identify the most sessions,

followed by the top 10 with slightly less and the

cut-off sessions with even fewer identified ses-

sions. In the case of the ad sessions – allowing

interleaving behaviour but only using the last in-

teraction of a previously identified session for the

comparison to a reference object – the order is

different; here, the 0.5 cut-off sessions identify

slightly less sessions than the top 10 sessions. This

observation is hard to interpret, but it hints at

structural properties in the dataset that lead to different results. The likely cause of more

identified sessions in the top-10 approach is that the last category in certain interaction

sequences has more than 10 sessions above the 0.5 threshold. Curiously, when using di-

rect comparison between consecutive interactions, this effect is not apparent, although the

difference between the two session approaches is also very small here (only around 1.3m).

It can be surmised that the cut-off sessions identify sessions more liberally than the

other approaches, with the 0.5 threshold being the strictest. Analysing the dependencies

between the ratio of similar categories for a given category would be a good starting point

for improving this type of logical session. As is, the comparison methods are more or less

arbitrary but seem to be able to identify a somewhat similar number of overall sessions

– fine-tuning this similarity map may lead to a more fine-grained picture, but will most

probably result in a comparable number of sessions.

The bounce rate is consistent across the comparison contexts. The share of the bounced

sessions is usually the same. Although it seems that the share is higher for the sessions

identified using the complete session history when comparing it to the last-interaction

comparisons, the absolute numbers are less. This is expected but the share is nevertheless

relatively high. The same is true for the approaches allowing interleaving behaviour. It is

surprising to find the bounce rate this high considering the nature of these approaches.

Looking at the data again and aggregating the identified bounced sessions by category id,

it looks like a big part of the bounces come from either unconnectable interactions (i.e.

interactions on the homepage more than 1,440 minutes from any other interaction with

a meaningful category id) or are sessions by users with a small number of interactions

looking at different specific categories.
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∅Sessions ∅Interactions CV-R B-R Lead-ins

AM SD AM SD AM SD AM SD AM SD

u2v05cd 3.87 13.04 4.79 5.36 97.6% 178.34% 24.05% 31.28% 1.98 2.09

u2v05cc 3.83 12.75 4.84 5.53 98.41% 180.94% 23.99% 31.29% 1.99 2.15

u2v05ad 2.79 4.23 5.32 5.93 107.63% 187.72% 21.18% 29.67% 2.17 2.3

u2v05ac 2.73 3.68 5.41 6.26 109.2% 192.44% 21.14% 29.68% 2.2 2.4

u2v10cd 3.85 12.91 4.79 5.33 97.52% 177.62% 23.74% 31.12% 1.97 2.08

u2v10cc 3.79 12.48 4.86 5.51 98.85% 180.8% 23.67% 31.14% 2.0 2.12

u2v10ad 2.83 4.54 5.27 5.82 106.77% 185.96% 21.0% 29.58% 2.15 2.27

u2v10ac 2.71 3.59 5.42 6.26 109.41% 192.4% 20.95% 29.61% 2.2 2.38

u2vccd 3.74 12.42 4.9 5.48 99.51% 181.05% 23.07% 30.86% 2.02 2.12

u2vccc 3.68 11.98 4.98 5.74 100.97% 185.03% 22.97% 30.88% 2.04 2.21

u2vcad 2.74 4.28 5.41 6.02 109.22% 190.06% 20.39% 29.32% 2.21 2.33

u2vcac 2.63 3.36 5.56 6.55 112.04% 197.62% 20.34% 29.36% 2.25 2.48

Table 5.27: User measures for u2v sessions regarding system usage. Abbreviations: CV-R = Conversion Rate; B-R

= Bounce Rate; AM = Arithmetic Mean; SD = Standard Deviation.

Table 5.27 sets out the user-based system measures for the user2vec session approaches.

The various measures for the approaches follow the findings already mentioned. The dif-

ferences between the approaches within the same comparison contexts are not that high.

In terms of the average session per user, the difference between the approaches ranges

from 0.10 to 0.15 less sessions on average when compared to the 0.5 threshold sessions

with the cut-off variants. The difference is somewhat steady across all the comparison

contexts. One interesting observation is found in the standard deviations; the deviations

of the consecutive approaches are far greater than those that allow interleaving behaviour.

This is reasonable bearing in mind that the interleaving approaches connect interactions

easier than the consecutive ones, but it is still an important clue about user behaviour.

Apparently, there are users working consistently on the same topics without interruption

(allowing the consecutive approaches to connect all the interactions) whereas other users

switch relatively often between topics (causing a new session with every interruption). This

observation is not apparent in the interactions though, which may indicate that users make

the same number of interactions – either on the same categories or with new ones. The

interactions per session are also very closely aligned across the comparison contexts as

between the interactions too, with 5.56 interactions for the u2vcac sessions being the

highest and 4.79 being the lowest value for the u2v10cd or u2v05cd sessions.

The conversion rate and bounce rate do not differ significantly in comparison to the

overall system measures. The average bounce rate per user is lower, indicating that the

majority of overall bounced sessions come from users that have a low number of overall

interactions. With the bounce rate at 24% to roughly 20%, however, it is still relatively

high. It will be interesting to see if the temporal component changes that rate for the

combined approaches discussed in the following section. The number of lead-ins per session

is also not very surprising considering that it is a fixed entity that will change depending

on the length of the identified sessions. The longer sessions have logically more lead-ins on

average. The standard deviation here is very consistent across sessions, indicating again

that there is not a strong difference in session length across the approaches and comparison

contexts (despite the normal differences that were discussed).

168



∅Root Categories ∅Categories ∅Products ∅Queries ∅Topics

AM SD AM SD AM SD AM SD AM SD

u2v05cd 1.21 0.37 1.36 0.55 1.35 1.47 0.57 0.78 1.0 0.03

u2v05cc 1.21 0.38 1.37 0.58 1.36 1.5 0.57 0.81 1.0 0.03

u2v05ad 1.23 0.38 1.4 0.57 1.43 1.53 0.62 0.84 1.01 0.04

u2v05ac 1.23 0.38 1.41 0.6 1.45 1.58 0.63 0.88 1.01 0.05

u2v10cd 1.22 0.38 1.36 0.55 1.35 1.46 0.57 0.77 1.01 0.06

u2v10cc 1.22 0.38 1.37 0.57 1.36 1.5 0.57 0.8 1.01 0.06

u2v10ad 1.23 0.38 1.4 0.57 1.43 1.52 0.61 0.82 1.01 0.07

u2v10ac 1.23 0.39 1.42 0.6 1.46 1.58 0.63 0.88 1.01 0.07

u2vccd 1.22 0.38 1.39 0.59 1.38 1.49 0.58 0.81 1.0 0.0

u2vccc 1.23 0.39 1.41 0.62 1.39 1.54 0.59 0.84 1.0 0.0

u2vcad 1.23 0.39 1.44 0.61 1.46 1.55 0.63 0.86 1.0 0.0

u2vcac 1.24 0.4 1.46 0.65 1.49 1.63 0.65 0.93 1.0 0.0

Table 5.28: User measures for u2v sessions regarding visited content. Abbreviations: AM = Arithmetic Mean; SD

= Standard Deviation.

Table 5.28 shows the content measures such as the average number of visited categories

per session approach. Considering that all three comparison methods are based on the

category ids, these numbers provide information about the effectiveness of the method.

The average number of root categories per session is an indicator of how well the category

vectors are able to calculate similarity across the branch boundaries of the category tree.

Considering that the values are very similar across all comparison contexts and comparison

methods (ranging from 1.21 to 1.24), it can be assumed that the majority of the similar

categories per comparison method are within the same root category. These values are

almost identical to the lexical baseline approaches. This means that having a similar

category from another category branch is very rare. Looking at the data, again, this seems

to be true; when calculating the number of sessions for the u2vcac approach with 1.24

root categories on average, only around 255,000 sessions can be found that have more than

three root categories. Three or two root categories can be seen as common considering that,

for example, the homepage comes with the root category id 1 (103,503,749 interactions

in the dataset) and pages where it was not possible to assign a meaningful id have the

value 42 (1,356,610 interactions in the dataset). It would seem that either a) there are

no real similarities between different branches of the category tree, or b) the methods for

choosing similar categories based on the cosine similarity are too strict, or c) the basic

assumption for calculating the similarity was too naive.

The average number of categories per session displays the differences between the

comparison methods very well. Although once again the variance is not very high (1.36–

1.39 for the consecutive direct comparison and 1.41–1.46 for the interleaving approaches),

it is clear that the different methods allow more or less similar categories on average. And

in view of the fact that the cut-off sessions seem to provide the most similar categories for

a given category, the average numbers here are the highest. Likewise, the numbers for the

0.5 threshold sessions are the lowest in comparison. The difference between the comparison

context is smaller than expected.

The other measures look normal. The number of different products and the number of

queries increases with the length of the session. They very slightly increase with the cut-
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off sessions, although the difference between the approaches is minimal. Apparently, the

sessions with query interactions are similarly structured across the comparison methods.

∅Time in

session

∅Inter-

Interactiontime

∅Interaction

days

AM SD AM SD AM SD

u2v05cd 3, 896.09 20, 701.56 1, 493.49 10, 174.5 1.23 0.77

u2v05cc 3, 985.66 21, 113.04 1, 498.02 10, 174.03 1.24 0.79

u2v05ad 7, 674.42 26, 073.1 2, 756.91 13, 330.88 1.33 0.92

u2v05ac 7, 965.07 26, 853.61 2, 771.59 13, 345.01 1.34 0.96

u2v10cd 3, 849.01 20, 440.93 1, 485.33 10, 131.28 1.23 0.76

u2v10cc 3, 984.4 20, 922.78 1, 506.34 10, 147.56 1.24 0.78

u2v10ad 7, 509.15 25, 611.62 2, 750.08 13, 289.76 1.32 0.9

u2v10ac 7, 921.96 26, 642.98 2, 771.74 13, 311.38 1.34 0.95

u2vccd 4, 209.07 21, 693.42 1, 604.54 10, 670.81 1.24 0.78

u2vccc 4, 356.17 22, 311.57 1, 611.81 10, 670.79 1.25 0.81

u2vcad 8, 150.85 27, 151.41 2, 925.81 13, 879.5 1.34 0.93

u2vcac 8, 642.22 28, 386.87 2, 950.2 13, 903.18 1.35 0.99

Table 5.29: User measures for u2v sessions regarding time spent. Abbreviations: AM

= Arithmetic Mean; SD = Standard Deviation.

Table 5.29 shows the

measures related to

time spent on the site.

As expected, the time

in session and also the

inter-interaction time

is quite high and a

lot higher than for

all the mechanical ap-

proaches. They are

lower than the lex-

ical approaches and

more or less compara-

ble to the bm25 ses-

sions. The values are quite high overall. The time in session is usually around 2.5 to three

days for the consecutive sessions and between five to six days for the interleaving sessions.

The inter-interaction time ranges from around one to two days, indicating that many of

these sessions span multiple days.

Interestingly, the average interaction days are relatively low. These values may have

been disrupted by the number of bounces though. The maximum value for the u2vac

sessions as the most strict one is 365 days, for example. This session has interactions on

every day of the year. The other sessions – even the consecutive ones – have comparably

high maximum values. When looking at the distribution of interaction days per session,

the distribution clearly follows Zipf’s law though – the majority of sessions have only

one interaction day, no matter the session approach. Logically, the distribution is a lot

smoother for users with a higher number of interactions, but it is still very clear.

Finally, Table A3 shows the top five sequences. The most important observation here is

that the sequences are not that different from the previous approaches, even the mechanical

ones, but the totals are lower than for the mechanical variants. At first glance, this seems

surprising: not even the liberal logical sessions can connect certain interactions. On the

other hand, as discussed above, these are likely to belong to all the sessions of users with

a very low number of overall interactions as well as of users who looked only once into a

certain topic or category. Furthermore, as can be deduced from the sessions consisting only

of query interactions, these may be caused in addition by the preprocessing as explained

in Section 4.4.3.2.

While incorrectly assigned categories to query interactions may strongly provoke ses-

sion breaks for the consecutive sessions, apparently, they also influence the interleaving

variants; as already observed, users sometimes only make partial use of the category tree,

thus incorrectly assigned categories could lead to session breaks as well. Considering that
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the totals for the top five are lower in comparison, it can be safely assumed that the logical

variants are more diverse and, most likely, longer than the mechanical variants.

Turning to look at the session breaks, similar values as noted before are reported: the

user category vector variants all settle at around 14% interleaving sessions, with between

two to 2.3 session breaks on average. There is no real difference between the compar-

ison methods. Seeing that these approaches deliver numbers somewhat comparable to

the bm25 sessions, the similar percentage of interleaving behaviour makes sense. Appar-

ently, interleaving behaviour is similarly identified across the session approach comparison

method. This may well be worth investigating since it could reveal interesting details about

user behaviour, although, naturally, the similar values could also be pure coincidence.

This concludes the section for the logical approaches based on category vectors and

category similarities. While the numbers vary greatly from the mechanical approaches they

do not so much from the bm25 sessions. Structurally, they are not even that different;

for example, there is a great overlap between the bm25ac and the u2vcac sessions with

around 15m differently assigned sessions. As discussed above, there are some potential

errors with this kind of approach which relates directly to data quality:

• tracetimes

• incorrectly assigned categories

• incorrectly used cut-off for similarity

These issues have to be kept in mind when implementing logical sessions – naturally, they

are also valid for the other logical variants. Nevertheless, there is great potential, especially

when aiming to understand highly engaged users. There are examples where the logical

approaches connect sessions across the whole year, enabling an overview to understand

the complete journey of a specific user in dealing with a specific topic.

For example, user ids could be observed apparently using the system over the course

of the whole year to renovate a bathroom, visiting different related categories from time to

time with various other topics sprinkled in-between. Sure enough, a big part of the logical

sessions finds similar sessions to the mechanical ones. Users with two overall interactions

visiting product pages related to the same product in the same category will result in

one session no matter the algorithm. The same is true for most of the users with a low

number of overall interactions; if they visit the system once with a few interactions in the

same category range, they will also get one session. If they visit the system throughout

the year and land a certain interaction on a very specific category that they have not

visited / will not visit again, this kind of behaviour will also result in exactly one session

for the majority of approaches. The next section will combine the two types of session

identification: it will be interesting to see how that changes the different measures.
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5.2.3 Combined Approaches

In this section, the combined approaches are analysed. This type of ensemble approach

mixes mechanical with logical components to combine both approach types and utilize

their respective strengths. The section is structured like the previous one on logical ses-

sion variants. All logical approaches are combined with a selection of the fixed temporal

inactivity sessions. In addition, a widely acknowledged variant from the literature is tested

and presented with the geometric sessions.

5.2.3.1 Lexical Baselines with Temporal Inactivity

In this section, lexical matching is combined with a fixed temporal inactivity threshold.

First and foremost, combining the two components is intended to rid both approaches of

their more prevalent weaknesses of never-ending lexical sequences and unrelated tempo-

rally close interaction sequences. Without any temporal boundary, lexical sessions have

the potential to span the whole year. This may be reasonable for some systems, but will

result in a very low number of overall sessions. Furthermore, a session lacking any such

boundaries can hardly be used to measure short-term scale system performance. Mechan-

ical sessions, on the other hand, tend to connect interactions that are actually unrelated.

Combining the lexical sequences with an inactivity threshold may solve both problems to

create shorter sessions focusing on one topic.

To see the effect of the combination, a selection of inactivity thresholds was combined

with the lexical matching in both previously tested comparison contexts. Four values were

chosen for the consecutive comparison: five minutes, 30 minutes (as the industry standard),

1,440 minutes and, for a broader scope, 14 days (i.e. 20,160 minutes). In addition, four

values were chosen for the approaches allowing interleaving behaviour: 1,440 minutes, 14

days, 75 days and 180 days. Higher values for the interleaving sessions were imposed simply

because a five-minute window (in which other related interactions could happen) was felt

to be too low to make any significant difference in production. Thus, only values upwards

of a whole day are tested. Likewise, larger windows seemed not to be very practical for

the consecutive comparisons. It will be interesting to see how that assumption holds to

reality.

#Sessions CV-R B-R

lti5cdb1 428,209,378 58.36 42.1

lti30cdb1 373,299,068 66.95 39.07

lti1cdb1 303,701,559 82.29 34.05

lti14cdb1 246,895,650 101.22 30.5

lti1adb1 276,414,965 90.41 30.97

lti14adb1 195,715,922 127.69 25.99

lti75adb1 156,285,988 159.91 21.6

lti180adb1 144,934,232 172.44 19.7

Table 5.30: System measures for combined lex-

ical sessions. Abbreviations: CV-R = Conver-

sion Rate; B-R = Bounce Rate.

Table 5.30 lists the system numbers for the eight ap-

proaches. The list is ordered by comparison context

and inactivity threshold. As expected to some ex-

tent, the differences are quite large. First, all consec-

utive approaches create more sessions than the lex-

ical pendant without any temporal boundary. This

is interesting because even with a 14-day window,

the combined approach identifies around 17m more

sessions than the purely lexical approach. This is an

indicator that some users may very well work on the

same topic for more than 14 days without any in-
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terruption at all. The interleaving approaches create more sessions as well – except for

the variant with a 180-day window, which has 1m sessions less. Again, this can be ex-

plained by interactions with non-meaningful category ids – while such events are only

included in the original lexical variant if they are no more than 1,440 minutes from any

other interaction with a meaningful category id, the 180-day window variant includes

these interactions when they are within a 180-day frame.

When looking at the individual variants more closely, it is interesting to see that

the combined approaches all have more sessions than their mechanical counterparts as

well. To some extent, this is expected but the differences are still quite high. This is

an indicator of a different user behaviour; here, when comparing the number of sessions

to the fixed-length or temporal inactivity sessions, the related sequences apparently get

interrupted, starting a new session. This is especially visible for the variant with a five-

minute inactivity threshold: the bounce rate of 42.1% indicates a lot of session breaks, with

a noticeable increase when comparing it to tf5 or ti5. Considering that the total number of

identified sessions is very close to tf5 though, the total number of bounced sessions will be

higher. Nevertheless, similar observations can be made for the other consecutive sessions.

The number of sessions and the bounce rate are considerably higher in comparison to

the mechanical sessions, leading to the conclusion that the mechanical sessions deal with

multiple topics whereas the combined approaches are now creating more shorter sessions.

The interleaving sessions are challenging to interpret because there are no real other

comparable mechanical approaches. Placing them in relation to the original lexical variant,

the number of sessions drastically decreases the lower the inactivity threshold is. This is

very much expected behaviour for the 1,440-minute threshold, even though it is interesting

to see that the purely mechanical consecutive sessions with a 1,440-minute threshold iden-

tify more sessions than the interleaving variant. Apparently, the time between sequences

or interactions related to the same topic is eventually somewhat longer than one day,

leading to session breaks here that may be connected by the purely mechanical variants.

The divergences between the other variants are quite high as well; employing a 14-day

threshold captures far more related interactions than using only a one-day threshold. The

next gap is equally big – the 75 days again capture far more related interactions, leading

to a drastically reduced number of sessions. Increasing the threshold to 180 days does not

decrease the sessions as much, meaning that the majority of related interactions seem to

happen within 75 days of each other.

Table 5.31 breaks down these numbers on a per-user level to bring additional insights.

A first glance reveals that for the consecutive variants there are comparably high stan-

dard deviations for the average number of sessions. This is an indicator of differing user

behaviour, where some users will visit a broad variety of topics where others only focus

on a small subset. Equally, it could just mean that users work on a mixture of different

topics rather than working on a set topic subsequently. Overall, the values here are log-

ically higher than for mechanical counterparts as well as for the lexical variant. This is

true for all measures. The measures behave accordingly for the interleaving variants too.
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∅Sessions ∅Interactions CV-R B-R Lead-ins

AM SD AM SD AM SD AM SD AM SD

lti5cdb1 5.46 17.68 3.37 3.02 63.58% 114.04% 36.0% 33.83% 1.36 1.04

lti30cdb1 4.76 14.71 4.01 3.91 79.41% 143.28% 30.24% 33.3% 1.58 1.21

lti1cdb1 3.88 9.99 4.67 4.88 93.28% 167.16% 24.44% 31.49% 1.85 1.54

lti14cdb1 3.15 8.12 5.46 6.67 108.79% 197.8% 20.11% 29.64% 2.2 2.41

lti1adb1 3.53 7.23 4.84 5.04 96.45% 170.06% 22.95% 30.7% 1.89 1.56

lti14adb1 2.5 3.1 5.98 7.94 118.3% 214.08% 18.13% 28.49% 2.37 2.75

lti75adb1 1.99 1.67 6.95 10.64 137.15% 257.81% 14.89% 26.57% 2.78 3.7

lti180adb1 1.85 1.32 7.33 11.68 144.7% 275.57% 13.65% 25.73% 2.95 4.06

Table 5.31: User measures for combined lexical sessions regarding system usage. Abbreviations: CV-R = Conversion

Rate; B-R = Bounce Rate; AM = Arithmetic Mean; SD = Standard Deviation.

The bigger the inactivity threshold, the longer the sessions become, implicating increased

values for the measures.

Overall, the approaches vary greatly although they all are based on the same compar-

ison method and, to an extent, on the same comparison context. The inactivity threshold

makes a big difference to how the resulting sessions are identified. It would seem that it

is quite a challenge to capture user behaviour accurately; the correct balance between an

inactivity threshold and the respective comparison context is quite elusive. Considering

that, the basic assumption from the start of the section may not hold true; maybe the

optimal approach will be an interleaving approach with a lower inactivity threshold.

∅Root Categories ∅Categories ∅Products ∅Queries ∅Topics

AM SD AM SD AM SD AM SD AM SD

lti5cdb1 1.18 0.33 1.35 0.62 1.08 1.0 0.52 0.76 1.06 0.25

lti30cdb1 1.2 0.36 1.41 0.68 1.21 1.23 0.57 0.84 1.08 0.27

lti1cdb1 1.21 0.38 1.47 0.75 1.34 1.44 0.62 0.93 1.1 0.31

lti14cdb1 1.23 0.39 1.56 0.82 1.51 1.71 0.68 1.03 1.15 0.38

lti1adb1 1.22 0.38 1.49 0.77 1.37 1.47 0.64 0.98 1.11 0.32

lti14adb1 1.23 0.4 1.62 0.89 1.59 1.84 0.74 1.2 1.18 0.42

lti75adb1 1.25 0.41 1.78 1.07 1.81 2.23 0.83 1.52 1.28 0.58

lti180adb1 1.25 0.41 1.86 1.17 1.9 2.39 0.87 1.64 1.34 0.67

Table 5.32: User measures for combined lexical sessions regarding visited content. Abbreviations: AM = Arithmetic

Mean; SD = Standard Deviation.

Table 5.32 shows the content measures. While the assumption might be that the values

will be in close proximity, this does not correspond entirely with reality. Although the

variance for the average categories per session is not that high with 1.35 to 1.86, the

differences are still notable. Initially, one might assume that these values would be higher,

considering that these sessions are connected based on the same root category; bearing in

mind, however, that even the purely mechanical sessions had relatively low numbers here.

It is still interesting to see that the purely mechanical variants have higher numbers on

average; even comparable to the session approaches allowing interleaving behaviour. This

is another clear indicator of user behaviour. Even the approach with a 180-day inactivity

timeout has only slightly higher categories on average, meaning that most users interact

with the system for a very limited number of categories per root category id.

Accordingly, the products and queries behave likewise. Interestingly, the number of

average products per session is higher for the interleaving sessions compared to the purely

174



mechanical ones, although the categories are on a comparable level. Potentially this indi-

cates that the number of categories is not a crucial indicator of user behaviour, but the

number of products is. Apparently, users visit more products in the same categories. This

is a reasonable assumption overall, again considering the type of system and how users

interact with it. The number of topics per session is also understandable. Logically, the

higher the inactivity timeout, the higher the potential for multiple sessions.

∅Time in

session

∅Inter-

Interactiontime

∅Interaction

days

AM SD AM SD AM SD

lti5cdb1 1.63 10.47 1.13 11.02 1.0 0.01

lti30cdb1 4.23 12.23 2.02 11.02 1.0 0.02

lti1cdb1 85.63 263.34 34.76 115.03 1.06 0.21

lti14cdb1 1, 368.68 3, 964.88 436.02 1, 390.38 1.27 0.83

lti1adb1 93.17 276.39 35.9 115.96 1.06 0.22

lti14adb1 1, 819.36 4, 754.36 499.09 1, 455.14 1.34 1.01

lti75adb1 9, 932.04 23, 868.58 2, 520.99 7, 514.46 1.6 1.61

lti180adb1 19, 392.14 46, 603.31 4, 909.38 15, 667.83 1.71 1.83

Table 5.33: User measures for combined lexical sessions regarding time spent. Abbreviations: AM = Arithmetic

Mean; SD = Standard Deviation.

Table 5.33 shows the time measures to underline the structural difference between these

session approaches. Of course, the comparison context has the biggest impact, but the

inactivity threshold seems to have a big impact as well, especially on the interleaving

variants. Taking the differences seen here, these are likely to be caused by outliers; al-

though the divergence between lti75adb1 and lti180adb1 seems too high considering

the differences analysed previously. Other than this, the differences between the variants

are relatively high.

Looking at the top five sequences in Table A3, the divergence between the consecutive

variants is particularly apparent. The difference in the total percentages for the top five

sequences is quite high; even the top sequences (which is as usual a single lead-in click

on a product page) have a very different share between the different comparison contexts.

The difference gets smaller the higher the inactivity threshold is.

The interleaving behaviour in these sessions is quite different. Logically, the number

of sessions showing interleaving behaviour is dependent on the time constraint. For the

long inactivity timeouts (75 and 180 days), the values are close to the baseline variant

ladb1: 15.08%–17.36% with 2.73–2.85 session breaks on average. There is an interesting

observation to make here in relation to the difference in the number of days: apparently,

the gap between the 75 days and the 180 days is big enough to connect sessions using the

longer inactivity timeout that actually belong together. For the smaller time constraints

(one day and 14 days), the number of interleaving sessions as well as the average session

breaks decrease: 4.87%–10.02% with 1.56–2.23 breaks. Despite having only a maximum of

one day between interactions, there are still a relatively high number of interleaving ses-

sions compared to the variants with a higher constraint; nonetheless, the overall numbers

are quite low. The majority of sessions are straightforward with no real interleaving be-

haviour. This looks even more interesting when lti1adb1 is compared with lti1cdb1: the
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divergence between the 276m–303m sessions is not explained solely by the number of inter-

leaving sessions (about 13m sessions for lti1adb1), but caused, compellingly, apparently,

by a small number of sessions with a very high number of session breaks.

5.2.3.2 Shared-Term Space with Temporal Inactivity

The next section combines the bm25 similarity function with the fixed temporal inactivity

thresholds. The basic assumption is the same as before: combining the strengths of both

approach types to get rid of the weaknesses. The difference to the aforementioned lexical

combination approaches are the additional comparison contexts as well as the different

comparison method. It will be interesting to see whether the statements made previously

about the self-containedness of the bm25 category similarity is apparent here as well.

As before, similar values were chosen for the variants. For the consecutive comparisons,

three values were chosen: five minutes, 30 minutes and 1,440 minutes. The variants with 14

days were omitted. For the interleaving variants, four versions were tested: 1,440 minutes,

14 days, 75 days and 180 days.

#Sessions CV-R B-R

bm25ti5cd 462,413,589 54.05% 44.21%

bm25ti5cc 457,641,841 54.61% 44.31%

bm25ti30cd 412,472,229 60.59% 41.44%

bm25ti30cc 406,788,004 61.44% 41.59%

bm25ti1cd 353,801,526 70.64% 37.06%

bm25ti1cc 346,643,630 72.1% 37.28%

bm25ti1ad 319,821,010 78.14% 33.11%

bm25ti1ac 311,471,360 80.24% 33.42%

bm25ti14ad 258,863,980 96.54% 29.62%

bm25ti14ac 246,474,512 101.4% 30.31%

bm25ti75ad 235,749,939 106.01% 27.63%

bm25ti75ac 220,970,579 113.1% 28.5%

bm25ti180ad 229,260,341 109.01% 26.92%

bm25ti180ac 213,749,268 116.92% 27.83%

Table 5.34: System measures for combined bm25 ses-

sions. Abbreviations: CV-R = Conversion Rate; B-R

= Bounce Rate.

Table 5.34 shows the overall number of sessions

and the associated conversion and bounce rates.

Generally, the number of sessions is relatively

high. Comparing the consecutive combined ses-

sions to their purely mechanical counterparts,

the combined sessions have far more sessions.

As before, this is expected but the difference is

very high. This may be interpreted as an indi-

cator that the BM25 similarity is rather strict

and even faulty to an extent. The bounce rate

in particular is quite high across all consecutive

sessions; the bm25ti5cc sessions with a five-

minute inactivity threshold, shows over 200m

bounced sessions. The sessions with a 1,440-

minute timeout identify over 100m sessions more than their mechanical counterpart. Once

again the increase in sessions is to be expected, but is rather high – especially considering

that the bounce rate is also higher.

Although the interleaving variants identify fewer sessions, there are still far more than,

for example, the lexical variants. Considering that the lexical variants had a comparatively

low number of categories per session, it is somewhat strange to see the impact of the

BM25 similarities quite so high. It seems that either the retrieved similar categories are

off the mark of usual user behaviour or that they are highly specific, hence the higher

number of session breaks, because they cannot possibly reflect usual user behaviour. It

will be interesting to see whether the user-history category vectors perform differently

here. Conversion rate and bounce rate perform rather uniformly, following the decreasing

number of sessions. It is still very interesting to see the bounce rate this high, even for
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the interleaving variants with a 180-day inactivity timeout. A bounce rate of 26.92%

for 229m sessions equals 61m bounced sessions. The sheer quantity of bounced sessions

seems strange and is yet another indicator of the peculiarities associated with this type of

similarity calculation.

The system measures shown in Table A6 follow the same patterns. Logically, there

are fewer sessions overall with a higher inactivity timeout. The interleaving comparison

contexts usually identify fewer sessions with more interactions: the sessions tend to be

longer on average. The bounce rate on a per-user basis likewise stays high; on average

around 20% of all sessions per user, even for the 180-day window. This could be down

simply to somewhat unconnectable categories, but a more likely explanation is that low-

interaction users looking at unrelated categories are disturbing the average here.

The content measures in Table A7 are quite similar in-between the approaches. It is

interesting to see that the number of average categories per session remains similar to

the lexical approaches, despite the assumption that the BM25 similarity calculation is a

lot stricter. The deep dive into the data that would be necessary to uncover the issues

here are outside the scope of this dissertation. It is somewhat questionable to see similar

average content- and time values along with far more sessions. Nevertheless, the choice of

comparison method, context or inactivity threshold does seem to make an impact, which

may explain the quite big differences between all these sessions. The effect is quite similar

to the lexical combination approaches. When the time-related measures – which can be

found in Table A8 – are compared to the combined approaches using lexical matching,

the values are lower. This is just as expected and explains the higher number of sessions.

The differences caused by the temporal threshold are also naturally very high between the

approaches.

The fact that the introduction of the temporal threshold raises the potential of more

session breaks in the bm25 sessions is a logical effect. Still, the increase when introducing

an inactivity timeout of five or 30 minutes is quite high; 100m more sessions, prompted

only by the implementation of a 30-minute timeout is a significant divergence, which

causes very different system measures. Interestingly, the content measures do not differ

that much. Ultimately, the tendency of the bm25 sessions to impose session breaks seems

greater than for the other logical approaches. The similarity retrieval algorithm works,

but needs more fine-tuning: for example, the content of the e-commerce-specific text may

not be suitable for finding similar categories without further adjustment to the retrieval

algorithm (or the documents, in any case).

5.2.3.3 Category Embeddings with Temporal Inactivity

This section analyses the logical approaches in combination with a mechanical timeout.

The category similarity determined by word2vec on the user history is used in combination

with a temporal inactivity timeout. The intention is the same: to allow logical sessions a

mechanical ending to potentially have no sessions that span the whole year.
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#Sessions CV-R B-R

u2v05ti5cd 457,028,558 54.68% 44.39%

u2v10ti5cd 455,774,632 54.83% 44.03%

u2vcti5cd 450,926,682 55.42% 43.76%

u2v05ti5cc 455,991,403 54.81% 44.4%

u2v10ti5cc 453,378,131 55.12% 44.08%

u2vcti5cc 448,845,900 55.68% 43.8%

u2v05ti30cd 406,679,566 61.45% 41.74%

u2v10ti30cd 405,342,083 61.66% 41.31%

u2vcti30cd 399,878,149 62.5% 41.0%

u2v05ti30cc 405,332,467 61.66% 41.75%

u2v10ti30cc 402,418,159 62.1% 41.38%

u2vcti30cc 397,310,961 62.9% 41.05%

u2v05ti1cd 347,716,468 71.87% 37.5%

u2v10ti1cd 346,305,355 72.17% 36.95%

u2vcti1cd 339,887,635 73.53% 36.55%

u2v05ti1cc 345,822,886 72.27% 37.52%

u2v10ti1cc 342,511,906 72.97% 37.04%

u2vcti1cc 336,459,169 74.28% 36.63%

u2v05ti14cd 308,368,930 81.04% 35.34%

u2v10ti14cd 306,960,624 81.42% 34.68%

u2vcti14cd 299,303,431 83.5% 34.19%

u2v05ti14cc 305,770,681 81.73% 35.38%

u2v10ti14cc 302,146,443 82.71% 34.83%

u2vcti14cc 294,754,777 84.79% 34.31%

Table 5.35: System measures for consecutive combined u2v sessions. Abbreviations: CV-R = Conversion Rate; B-R

= Bounce Rate.

The structure is a bit different now, since the number of varying session approaches

is far bigger due to there being three separate comparison methods: top 10 most similar

categories; 0.5 threshold; and cut-off sessions. All these methods are tested with the same

set of temporal inactivity thresholds: five minutes, 30 minutes, 1,440 minutes, 14 days for

the consecutive variants, 1,440 minutes, 14 days, 75 days and 180 days for the interleaving

variants. In combination with the comparison contexts, that makes 48 different variants,

12 combinations for every comparison method variant.

Table 5.35 shows the overall sessions for all variants relying on consecutive comparison.

The list is ordered by comparison method and comparison method and temporal inactivity

threshold. There are three rows per comparison context and threshold, representing the

different comparison method subvariants. The differences are quite high when the complete

list is considered, but are not actually that high when looking at the differences in the

individual subvariants.

The overall variance ranges from 457m to 294m sessions when comparing the ap-

proaches using a five-minute timeout with the variant of a 14-day inactivity gap. Looking

at the comparison method subvariants and the comparison context subvariants, the dif-

ferences are not that high when staying in the same comparison category. The biggest

difference is induced by the inactivity timeout. This can also be seen in the bounce rate,

which decreases with a higher timeout. The variance here is not that high – roughly

10% difference from 44.39% to 34.19%, but the difference in absolute numbers is logically

higher (decrease in bounced sessions 202m–102m with a difference of around 158m sessions

overall). Again, this is caused by the timeout rather than the comparison method.

178



This is the most interesting observation here. The differences between the compar-

ison method subvariants are very small again, even smaller than for the purely logical

approaches. As before, the calculated cut-off seems to include the most similar categories

per category, while the 0.5 threshold and top 10 most similar category variants are some-

what close to each other, delivering mixed results – sometimes, there are more sessions

when using the 0.5 similarity, other times there are more with the top 10 most similar cat-

egories. This is apparently dependent on the threshold and comparison context as well, at

least to some extent. This could mean that some vaguely similar categories are visited less

often than others – or only after a more extended time frame. Since the effect is so small

(the differences are usually around 2m sessions), this could also be down to anomalies in

the data or in the similarity calculation. The biggest effect on the differing session num-

bers seems to be caused by the timeout. The lower that is, the more restrictive the session

models work, introducing more potential session breaks by cutting short engagement in

topics.

#Sessions CV-R B-R

u2v05ti1ad 310,045,159 80.61% 33.35%

u2v10ti1ad 311,566,308 80.21% 33.06%

u2vcti1ad 306,540,785 81.53% 32.82%

u2v05ti1ac 308,130,602 81.11% 33.41%

u2v10ti1ac 307,315,533 81.32% 33.22%

u2vcti1ac 302,831,132 82.53% 32.95%

u2v05ti14ad 247,383,439 101.02% 30.28%

u2v10ti14ad 249,713,150 100.08% 29.8%

u2vcti14ad 243,611,312 102.59% 29.48%

u2v05ti14ac 243,850,987 102.49% 30.43%

u2v10ti14ac 242,926,971 102.88% 30.18%

u2vcti14ac 237,279,638 105.33% 29.81%

u2v05ti75ad 223,642,592 111.75% 28.58%

u2v10ti75ad 226,320,634 110.43% 27.99%

u2vcti75ad 219,474,949 113.87% 27.56%

u2v05ti75ac 218,928,488 114.15% 28.8%

u2v10ti75ac 217,898,455 114.69% 28.47%

u2vcti75ac 211,303,578 118.27% 28.0%

u2v05ti180ad 217,009,417 115.16% 27.96%

u2v10ti180ad 219,750,212 113.73% 27.33%

u2vcti180ad 212,709,792 117.49% 26.86%

u2v05ti180ac 211,920,760 117.93% 28.19%

u2v10ti180ac 210,812,680 118.55% 27.84%

u2vcti180ac 203,974,303 122.52% 27.32%

Table 5.36: System measures for interleaving combined

u2v sessions. Abbreviations: CV-R = Conversion Rate;

B-R = Bounce Rate.

Table 5.36 shows the overall system values

for the interleaving sessions in the same way

the consecutive variants were displayed. The

same effects are visible here. The overall vari-

ance is huge when looking at the overall to-

tals: a decrease of 310m to only 203m ses-

sions. Likewise, the bounce rate decreases

from 33.35% (103m bounced sessions) to

26.86% (56m bounced sessions). Again, the

differences are not that big between the com-

parison method subvariants and compari-

son context subvariants; here, the same be-

haviour as seen in the consecutive sessions

can be observed. Clearly, the actual num-

ber of similar categories per reference cat-

egory makes a difference, but in the case of

the chosen variants the differences are small.

Here, there is no notable difference to the

purely logical approaches using the category

vectors. There is a somewhat notable differ-

ence in comparison to the bm25ti sessions,

however; here, the impact seems to be slightly greater. The overall effect is as anticipated

and as already observed with the other combined approaches. Generally, the number of

sessions increases when introducing inactivity thresholds to the logical comparisons, ex-

cept that the non-meaningful categories are easier to connect with the higher thresholds.

Were that the case and they were still treated differently, the number of sessions would be

higher still. Again, it is interesting to note that the higher time thresholds seem to have

little impact on the interleaving comparison contexts. In addition, once again, the differ-
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ences between 75 days and 180 is marginal no matter the comparison method subvariant

or comparison context subvariant. In the case of the consecutive approaches, the time

threshold makes a much larger difference no matter how big it is. Again, the comparison

method subvariant makes only a subtle difference here.

The system measures shown in Table A9 on a per-user basis are hardly surprising.

They follow the same patterns as the overall system measures, where the average numbers

of sessions and interactions per session are closely related to the overall number of sessions.

The same is true for the conversion and bounce rates and logically also for the lead-ins.

It can be confirmed that the divergences, mostly introduced by the different inactivity

thresholds, are large. As can be seen in Table A10, from a content perspective, the av-

erage numbers are close to the logical approaches. Similarly, commonly there is only one

root category per session and on average 1.26 to 1.46 categories per session, which is a

slightly lower number than the typical mechanical session. Again, the number of products

and queries is related to the number of identified sessions, which decrease with a higher

inactivity threshold. As expected the identified topics are very low, as are the differences

in logical approaches. This could mean that either the sessions are still very similarly

structured or that the measures are somewhat distorted by the quantity of data – both

reasons are likely but considering that the standard deviations are also at least somewhat

similar, the first assumption seems more likely.

The time measures in Table A11 are also directly affected by the mechanical thresholds.

Naturally, the average time in session and the inter-interaction time are usually lower

than for the mechanical pendants, this is because the logical comparison between events

introduces another dimension that potentially leads to shorter sessions. The same is true

when comparing them to the logical pendants without any mechanical boundary; the

variants with 180 days are very close though. This is again only logical because a 180-day

inactivity timeout will only rarely have an effect.

5.2.3.4 Geometric Approach to Session Segmentation

This final section dealing with the combined approaches looks at the geometric session-

identification approach introduced by Gayo-Avello in 2009 [80]. This session approach was

developed to incorporate both temporal and lexical distance between query interactions,

eventually combining them into a single distance function utilized to decide on session

break or session continuation. Originally, the lexical distance was computed by matching

query terms by way of character n-gram comparisons. This dissertation uses the cosine

similarity calculated previously to measure the similarity between category vectors based

on user history. This choice was made because the data lacked enough meaningful queries

and because the session identification aims to connect contextually related pages, which

are identified by the category id that is inherent to each page.

The algorithm usually takes a value range between 0 and 1 as input. Since this would

theoretically include all of the over 2,300 categories for a given category, the lower boundary

was set to be 0.1 to achieve similarities that are more meaningful. While this helps in the
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capture of only vaguely similar categories to use for the comparison, it may still be a) either

too liberal or b) too strict, as the discoveries made in the previous sections have outlined.

Thus, while the algorithm works, this may nonetheless be a good point to fine-tune it to

achieve better quality results.

The values for the temporal distance are also represented in the range from 0 to 1.

The temporal distance might be seen as a degrading factor that decreases as more time

passes between two interactions. For the experiments, three values were chosen: one day,

14 days and 75 days. Smaller values are not reasonable because of the degrading nature of

the temporal distance. For example, with a maximum distance of 24 hours (i.e. one day),

the category similarity must be very high for interactions that are around 24 hours apart

to be able to connect these two interactions into one session. While the original algorithm

tested only the 24-hour window as a reasonable time period for user interactions with a

system, this dissertation experiments with higher values as well, to see if the algorithm is

sufficiently robust to work with these numbers. Thus, the assumption here is that a higher

temporal distance could make the comparison too liberal.

All four comparison contexts were tested. The original work by Gayo-Avello [80] only

tested consecutive comparison with a reference event and the complete session history.

Here, the assumption is as usual; the comparison context will have a big impact on the ses-

sion numbers because the interleaving behaviour will circumvent potential session breaks.

#Sessions CV-R B-R

geomu24cd 296,104,692 84.4% 32.52%

geomu24cc 290,945,430 85.9% 32.61%

geomu14cd 247,540,067 100.96% 29.67%

geomu14cc 238,492,729 104.79% 29.92%

geomu24ad 280,213,676 89.19% 30.7%

geomu24ac 275,590,269 90.68% 30.82%

geomu14ad 218,814,074 114.21% 27.29%

geomu14ac 210,212,581 118.89% 27.7%

geomu75ad 192,194,826 130.03% 25.09%

geomu75ac 182,000,121 137.32% 25.58%

Table 5.37: System measures for geometric sessions.

Abbreviations: CV-R = Conversion Rate; B-R =

Bounce Rate.

Table 5.37 shows the high-level numbers for

the geometric sessions. The variance overall is

around 114m sessions when comparing all vari-

ants. The differences between the comparison

context subvariants are quite small but between

the overarching comparison context the differ-

ences are higher. This is again logical. Compar-

ing the identified sessions to the combined vari-

ants from the previous section, the conclusion

is that the initial assumption is true: the tem-

poral value is very liberal due to its degrading,

and the geometric approach identifies far fewer

sessions. The effect observed here is that temporally close interactions are connected even

when the similarity score of the categories is low.

Interestingly, the bounce rate remains highly comparable with the other approaches.

Even though the degrading temporal inactivity should cause even loosely connected in-

teractions to be combined into one session, there is still a 25% share of bounced sessions

even for the 75-day variant. These are still 45m sessions with only one interaction. This

might be caused by the 0.1 gap introduced for the category similarity, whereby even very

close interactions will not be connected if their similarity is below 0.1. This limitation may

be a bit too harsh, but otherwise larger temporal factors are likely to connect close inter-

actions no matter what. This would be a good point to fine-tune these approaches since
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∅Root Categories ∅Categories ∅Products ∅Queries ∅Topics

AM SD AM SD AM SD AM SD AM SD

geomu24cd 1.27 0.46 1.51 0.79 1.36 1.44 0.65 0.98 1.11 0.33

geomu24cc 1.28 0.47 1.53 0.84 1.37 1.48 0.66 1.03 1.12 0.37

geomu14cd 1.3 0.48 1.57 0.85 1.48 1.65 0.7 1.06 1.14 0.37

geomu14cc 1.31 0.5 1.6 0.94 1.51 1.93 0.72 1.45 1.16 0.43

geomu24ac 1.28 0.48 1.54 0.85 1.39 1.5 0.67 1.06 1.13 0.37

geomu24ad 1.28 0.46 1.52 0.8 1.37 1.45 0.66 1.0 1.12 0.33

geomu14ad 1.3 0.48 1.59 0.87 1.51 1.69 0.72 1.11 1.15 0.38

geomu14ac 1.31 0.5 1.62 1.0 1.56 2.18 0.76 1.94 1.17 0.45

geomu75ad 1.32 0.5 1.65 0.92 1.62 1.86 0.77 1.2 1.18 0.44

geomu75ac 1.34 0.53 1.7 1.17 1.7 2.72 0.83 2.73 1.21 0.57

Table 5.38: User measures for geometric sessions regarding visited content. Abbreviations: AM = Arithmetic Mean;

SD = Standard Deviation.

they are directly dependent on the similarity comparison. In the use case here, connecting

interactions of categories that are only very vaguely similar was not intended.

The system measures differ accordingly as shown in Table A12, with the differences

following the overall system numbers. The average number of sessions ranges from 3.78

to 2.32 with average interactions per session from 4.78 to 6.64. Per user, the bounce rate

is also lower, being reduced to a share from 23% to 16.5%. Potentially, these bounces

could have been avoided had an even bigger time period been imposed or the 0.1 gap been

removed. Nonetheless, it is important to remember that the similarity should be handled

with care, since it has been shown that rules that are too-liberally imposed with a high

temporal inactivity result in a very low number of sessions. Even now, the average number

of sessions is already relatively low. The majority of users are likely to have only one

session in this constellation.

Table 5.38 shows content measures following the assumptions already made. The fact

that there is a slightly higher number of root categories and categories per session is

a clear indicator that nearly the full range of category similarities have been utilized.

The higher number of average topics per session underlines this: the geometric approach

usually connects more categories and therefore more topics in one session than all the

other approaches. Whether this is a good or a bad thing is a question to ask from a

qualitative perspective; the question is deserving of close analysis before putting such an

approach into a production environment. Then again, this is the case for all approaches

that use the calculated similarity, because they all depend on the quality of these similarity

comparisons.

From a time perspective, there are huge differences between the different variants as

shown in Table A13. Naturally, this is expected, but still the variance is relatively high.

The same behaviour has been observed for the other approaches combining mechanical

and logical components. The values seen here are slightly smaller in comparison to the

user category vector approaches, for example, but this is reasonable considering that more

interactions are usually connected, creating smaller gaps.

This concludes the summary for the geometric session approach. The actual concept

seems to work quite well, but more fine-tuning of the similarity between interactions is

required. As the distance measures used to compare interactions cross-influence each other,
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Figure 5.15: Line chart of all session approaches with their respective number of identified sessions over time: per

month of their starting day (top) and end day (bottom).

they need careful evaluation and fine-tuning to work optimally. The similarity between

categories may be harder to balance than similarity in natural language – it may well be

the case that the algorithm is not fully suited to working with this kind of data.

5.3 Discussion

This final section discusses the previously analysed results of all session approaches. Al-

though many points have already been discussed in the context of the various approaches,

this section will briefly summarize these again and highlight the most important points,

bringing to the fore the most notable differences between the various approaches. Finally,

a selection from all the approaches is made in preparation for the next chapter.

Before a description of the advantages and disadvantages, Figure 5.15 shows all session

approaches again over the course of the year. The figure at the top shows the number of

sessions per starting day – meaning the day of the first event of a session – while the

bottom figure shows the number of sessions per end day – the last interaction of a session.
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The intention of the two figures is to map the session behaviour on the system over the

course of the year to observe any general structural differences.

The differences in the numbers of sessions are very clear. The more interesting ob-

servation is the close similarity of the trends between the 135 session approaches. When

looking at the sessions per the month of the session start day, the various approaches

behave very much alike. The lines of session approaches with a higher number of sessions

(i.e. the combined approaches with a five-minute inactivity timeout) show steeper trends

than the approaches with fewer overall sessions, but the general trend is very similar. Jan-

uary represents a special case here: where usually the session approaches identify sessions

as relatively stable throughout the year (except for November due to Black Friday), the

approaches in the lower third of the top figure identify the most sessions in January (or

at least a comparable amount to November). The reason for this is the longevity of the

identified sessions by logical or combined approaches with a higher timeout; they may

span the whole year if the user comes back time and again to work on the same topic.

This observation is underlined by the bottom figure, displaying sessions by their end

day, meaning the day of the last interaction of a session. Here, the general trends again are

very similar; the line chart actually closely resembles the one showing sessions by start day.

This is expected to some extent; it signals that the majority of sessions start and end on

the same day, even the logical and combined approaches. As seen particularly well in the

bottom figure, a high number of sessions end in December (even more than in November),

contrary to the other approaches with more identified sessions. These session approaches

identify sessions that span the whole year or a long period of time, a bigger proportion of

them ending in the last month or even on the last day of the year. Presumably, were new

data fed into the algorithms, these sessions would go on for even longer.

Table A14 lists all approaches again in direct comparison. The table shows the overall

numbers of sessions, the bounce rate as well as the average root categories, categories

and products per session. As can be seen, the differences between all approaches is fairly

high. The variance in the number of sessions ranges from 513m to 144m, while the bounce

rate follows accordingly – 51.5% as the highest share of visits and only 19.7% for the

lti180adb1 sessions – the approach with the fewest number of sessions. The table is

ordered by the number of sessions. Visually, it can be roughly divided into three parts: the

first third is made up of the combined approaches with a very small temporal threshold,

followed by multiple mechanical sessions and some combined / logical approach in-between

and almost exclusively combined approaches in the bottom third.

The structure is a logical one: a combination of the more or less strict logical com-

parison method and the additional low mechanical boundary identifies a relatively high

number of sessions with a high bounce rate. All the combined approaches with a five-

minute boundary create more sessions with a higher bounce rate than the tf5 sessions;

this observation is interesting, since the tf sessions simply split interaction sequences into

temporal buckets. The fact that these five-minute buckets identify fewer sessions than the

combined approaches indicates that the combined approaches are probably too short. The

increased bounce rate is another indicator of that. The combined approaches with a 30-
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minute timeout now follow. These identify slightly fewer sessions but still have a bounce

rate of above 40%. The variance here, however is not particularly high.

A big block of mechanical sessions then follows this, with the occasional combined

approach in-between. It is noteworthy that even the ti30 sessions with the 30-minute in-

dustry standard inactivity threshold identify fewer sessions than the combined approaches

with a one-day temporal inactivity threshold and the consecutive comparison contexts. As

discussed above, the td sessions come very close in terms of numbers to the ti30 sessions

with a noticeable overlap. Likewise, there is a high overlap between the tf and ti sessions.

Most of the interactions for the majority of the user base seem to happen in very close

proximity.

Many more logical approaches along with combined approaches follow in the bottom

section of the table that show fewer identified sessions than the mechanical variants. The

last third of the table is almost entirely comprised of the combined approaches with a

high temporal boundary and the interleaving comparison contexts – mixed with the logical

approaches with no temporal boundary at all. The smallest number of sessions is identified

by the baseline approaches that use simple matching between root categories and the

geometric approach that uses the calculated similarity from the user category vectors in

a quite liberal way. Logically, these approaches have also the lowest bounce rates – they

simply connect interactions very freely.

More interesting insight is found in the differences in averages of visited root category

and category per session, as well as the products. The measures in the table are calculated

across all sessions without aggregating at user id level beforehand. The average number of

root categories is consistently very low across all session approaches. The highest values are

reached by the mechanical approaches with the higher inactivity or fixed thresholds with

around 1.3 visited root categories per session. Only the more liberal combined approaches,

the geometric variants with the higher timeouts, can reach the same level. Overall, the

differences are relatively small though, which is somewhat expected as the number of

root categories is limited. The majority of sessions will only visit one root category (not

counting the pages with a non-meaningful root category).

This changes when looking at the actual visited categories. There are rather noticeable

differences between the different approaches. The highest value, with 2.03 categories per

session, is achieved by the baseline approaches with lexical matching, in combination

with inactivity as well as purely logical. This is reasonable considering their nature and

comparison method. Aside from that, the values are relatively evenly distributed at around

1.5 categories per session. Most interestingly, there is not that much difference between

logical and mechanical sessions. This is especially visible for the combined variants with

a low inactivity threshold and their mechanical counterparts: while ti5 and tf5 have 1.38

and 1.35 categories on average, the ensemble pendants only have between 1.22 and 1.28.

Even the wider ranging one-day combined variants have only around 1.3 categories. The

variants responsible for interleaving behaviour only have slightly higher values: from 1.42

categories for u2vcti14ac to 1.51 for u2vcti180ac. The geometric variants have around
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1.65 categories for the 75-day inactivity approaches. The consecutive variants usually have

a lower value.

The purely logical variants all have between 1.3 and 1.5 categories (except for the

aforementioned baseline variants). There is usually a visible difference between consec-

utive and interleaving approaches. When comparing the consecutive logical variants to

the mechanical approaches, the mechanical variants usually have more categories; espe-

cially for the longer inactivity timeouts. The latter also have comparable numbers to the

non-consecutive logical variants. The same observations can be made for the products,

although the values are usually lower. The values appear to be slightly higher for the

non-consecutive combined approaches in comparison to all other approaches.

Advantages and Disadvantages of Approaches

These point to the main differences between mechanical, logical and combined approaches

immediately apparent here. Mechanical approaches do not usually span longer time pe-

riods, whereas purely logical or combined approaches with a longer threshold tend to go

on for a very long time – at least among the more engaged users with a higher number of

interactions. Among users with a smaller number of interactions, a very similar number

of sessions is usually seen no matter the session approach (though logically this depends

on how users interact with the system). Ultimately, all these possibilities offer advantages

and disadvantages. Following a user journey over the course of a year in, for example,

renovating a bathroom is valuable information; likewise, it may be interesting to know

that this user visits the system regularly for a set period of time and works on different

topics in a sequence with limited interruption.

A discussion of the advantages and disadvantages may lead to the conclusion that

different session approaches identify sessions of differing extents and in search of various

types of information. Finding the right approach for a system or the right set of approaches

is most likely the key to be able to fully understand the user population. Of the 135 ses-

sion approaches analysed in this dissertation, some have definitely performed better than

others in the sense that the identified sessions have come closer to reasonably representing

user behaviour. In other words, identifying these sessions under the assumption that a

user performs some interactions within a 30-minute time period, in three sessions using a

five-minute inactivity timeout, is probably unreasonable (although, of course, this is debat-

able). Data quality is an additional factor that has direct implications for the performance

of these algorithms and, therefore, on the quality of the sessions. With this in mind, some

approaches can be discarded right away; these will not be considered in the second part

of the evaluation and utilizing them in a production environment is not recommended.

Visits: Path-Based

First and foremost, these data-quality issues show up in the visits. In theory, the path-based

approach is the closest representation of user behaviour. When a user enters the system

and clicks through various pages, meanwhile opening the system in a new tab looking

for different (or the same) topics, only the path-based approach is able to actually catch
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two different sessions here4. Moreover, it is only by connecting the different interactions

using the path a user takes that it is possible to trace user movement – the visits reveal

which pages are visited first and in which order certain pages or actions are called. This

is not necessarily based on temporal order and can only be retrieved by looking at the

relationship between url and http referer.

This might be valuable information when analysing user behaviour: to learn whether

users get stuck on a certain page, or which pages are visited before generating income and

fulfilling business goals, may be of great help to improve a system. The same can certainly

be achieved to an extent with mechanical or logical approaches, but not as concisely

and specifically as the path-based approach. The reliance of the path-based approach on

clean and specific information is simultaneously its biggest weakness and even risk. As the

analysis has already discussed, the visits are entirely dependent on the quality of the data.

With 58m sessions with no clear origin and the highest bounce rate of all approaches,

the path-based concept’s data quality seems not good enough for it to work in practice.

There are various examples where the algorithm is not able to connect interactions al-

though they belong together; either because of marketing campaign parameters in the

http referer that are not transferred to the url of the next interaction or reloaded con-

tent that removes the connection between two interactions. What is more, the untracked

parts of the system have the potential to lead to recurring session breaks. The high number

of identified sessions suggest the same. Overall, the visits are too dependent on clean and

functional tracking to be able to work flawlessly, and the information gained by correctly

identified visits could be superseded by too many incorrect assumptions. Thus, for the

purposes of this dissertation, as the visits were deemed to be too flawed, they are not used

further in the evaluation.

Mechanical Sessions

The mechanical session-identification approaches seem to deliver stable results. They are

easy to understand, easy to implement and can be considered a reliable way to track user

engagement with a system over time. The different variants – fixed session length, fixed

inactivity timeout, dynamic inactivity timeout – behave surprisingly similarly, indicating

certain global patterns in user behaviour. Again, identifying these patterns may be very

helpful in improving a system. There are various easily spotted examples in the data.

For example, some interesting insights have been revealed about how the different

timeouts lengths connect with the number of identified sessions. The most prominent

example is the obvious overlap between the ti30, ti45 and all the dynamically calculated

timeout sessions. The statistics relating to the dynamic timeouts at first appear as if

they would offer a more diverse landscape of different session lengths depending on the

property used to calculate them, but ultimately, the results are almost identical (within

the td sessions) and in-between the ti30 and ti45 sessions with a relatively high overlap.

This indicates a global timeout somewhere in that timeout area – not necessarily the 30

minutes, but somewhere close.

4Technically, the logical approaches could do the same job, but not as cleanly as the path-based approach.
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This is underlined by the fact that the information gain (i.e. the number of identified

sessions) decreases very little with a longer timeout frame. The difference in identified

sessions between ti30 and ti45 or ti60 is rather low compared to the increase of the

actual timeout. This logically changes when using 1,440 minutes as a timeout because

this approach connects sessions on different days; the gain is still not that high though.

Likewise, the strong overlap between the tf and ti sessions is another argument here.

There is only a minor difference between the tf30 or ti30 sessions, indicating that the

inactivity timeout is seldomly applied at all; all interactions happen within the 30 minutes

from the first interaction anyway. The same is true for the many other tf sessions and

their ti pendants.

Other obvious examples of this are the session approaches with a 720-minute timeout

or a 720-minute maximum session length, as well as the approach that simply combines all

the interactions of a user per day into one session. These three variants identified almost

exactly the same number of sessions with a variance of only 4m when comparing tf720 and

ti720. That these approaches have 60m more sessions than, for example, the 30-minute

variants suggests that two sessions per day are hardly a rarity (at least when 30 minutes

is considered the standard session).

From a content perspective, the mechanical sessions are also very similar, which is

logical considering the overlap. The averages for categories and lead-ins per session for

these session variants is somewhere between 1.3 to 2.1 for the lead-ins and 1.47 to 1.65 for

the categories. The lead-ins indicate that these sessions definitely do not represent user

behaviour as accurately as the visits would – unrelated user visits are connected here. The

average number of categories, on the other hand, seems pretty plausible when taking a

view across all session approaches.

At any rate, the mechanical sessions seem to be very good at capturing regularly re-

occurring user behaviour. Depending on which factor is significant – behaviour on the

system or regular activity – the timeout can be adjusted to represent the needs of the

system. The lower the timeout, the more granular the representation of user behaviour

becomes. In relation to the number of identified sessions, a timeout of between 30 to

90 minutes seems reasonable for a standard session, while the 720-minute timeout seems

simply to capture session days – just like the session-day approach. As the lower timeouts

and 1,440-minute timeout sessions tend to split user behaviour differently these are seen as

special cases. Extended time ranges would probably be more reasonable to better capture

user behaviour over certain time periods, while the shorter timeouts are probably simply

unreasonable choices.

Logical Sessions

The logical approaches represent the big black box of the session approaches in this dis-

sertation. Where the mechanical sessions are predictable in their way of comparing in-

teractions and identifying sessions, the lexical and semantical comparisons are not. The

comparison of interactions based on their topical relatedness instead of just subtracting

188



timestamps was an experiment conducted without any expected outcome. The introduc-

tion of comparison contexts added another dimension and yet another level of complexity.

The general observation is that there are divergences between the different comparison

methods, but not as strong as one would expect. This could signal a good working category-

similarity system. The difference between the user category vector approaches has been

discussed above; the number of identified sessions is also somewhat close to the number of

bm25 variants. The comparison method or rather the system to calculate similarity does

not seem to be overly important – at least when only the user category vector variants are

being compared. The thresholds require fine-tuning, but the differences between these are

minimal. Likewise, in comparison with the bm25 sessions, there are minimal differences,

although the identified sessions could be seen to differ greatly. Looking at the data again,

indeed an overlap exists between bm25ac and u2v05ac, showing only a rather small

number of differences.

Only the lexical matching baseline variants differ significantly, identifying fewer sessions

than all the other logical variants. This is reasonable as discussed previously. Connecting all

sessions of a root category branch leads to very broadly scoped sessions. Of great interest

is the consecutive baseline: with 229m identified sessions, this approach still identifies less

sessions than, for example, the tfd session per day approach, indicating that users will

work on the same topic over multiple days, or rather work in multiple sessions, without

interruption.

A general observation could be that there is no real need for the fine-grained comparison

contexts: the difference in outcomes between, for example, the ac and ad sessions is in most

cases negligible. There are differences (usually around 10m sessions for the interleaving

contexts, even less for the consecutive variants), but the difference overall is so low that

the ac and cc (or ad and cd) sessions may be considered good enough. This may hold true

only for the use case in this dissertation though. Generally, it seems that the comparison

context is not that important for the purely logical approaches.

Again, the most important aspect is data quality: having recalculated the approaches,

the number of identified sessions vary from run to run. As discussed, this is caused by iden-

tical timestamps of interactions of the same user, leading to non-deterministic behaviour.

But incorrectly assigned or even missing categories can also lead to problems. Especially

the preprocessing step of assigning categories to queries may have introduced errors that

need to be handled when using logical sessions in a production environment. Altogether,

while the resulting errors or problems may not be that critical they certainly do make an

impact on the resulting measures, thus potentially leading to incorrect interpretations and

decisions. The influence of data quality is certainly higher here than for the mechanical

approaches.

Ultimately, while there are some highly significant differences between the logical ses-

sions and mechanical variants, at the same time they do not differ that much. Looking

at the consecutive approaches, these have structural similarities to the mechanical ap-

proaches. They can be seen as finer-grained parts of the mechanical sessions, dividing the

sequence of interactions of a user into topically related parts. Following this assumption,
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these approaches could be used to do just that: mechanical sessions could be used to ob-

serve user engagement over time while the consecutive logical approaches could be used

to see how users approach certain topics. The same is true for the approaches allowing

interleaving behaviour: these enable system owners to understand users’ engagement with

a certain topic or even a collection of related topics over time, improving understanding

of the time users take to fulfil a business goal.

Combined Approaches

Finally are the combined approaches, which attempt to combine the properties of both the

mechanical and the logical session-identification approaches. This can be directly observed

in the numbers of the identified sessions as well as in the properties of these sessions.

Overall, the combined approaches tend to identify far more sessions than their mechanical

counterparts and a comparable quantity to the logical variants, at least with the higher

timeouts.

Again, the comparison context subvariant does not seem to be that important here.

The combined variants within the same context variant identify a comparable number of

sessions with negligible differences. The inactivity timeout seems to be the most important

factor. While the comparison context and the comparison method seem to only marginally

change the resulting sessions, the timeout drastically increases or decreases the outcome.

To weigh up the results, the numbers of resulting sessions between the combined inter-

leaving approaches with a 1,440-minute inactivity timeout and the 30-minute inactivity

variant are comparable, but naturally show negligible overlap – especially since one ap-

proach uses consecutive comparison between events and the other takes interleaving be-

haviour into account. Nonetheless, what is interesting about these approaches is their

comparable number of sessions, which surely implies that they can reveal useful informa-

tion about user behaviour and system usage.

The results overall are a challenge to interpret. The introduction of longer timeouts does

not seem to have a particularly notable impact on the logical comparison method, whereas

the shorter timeouts seem to impact relatively harshly, strictly interrupting, for example,

the consecutive lexical variants. Selecting the correct timeout seems to be what is key here,

which is dependent on what the desired outcome is. With a timeout of 75 or 180 days, the

difference compared to the purely logical variants is negligible. The 1,440-minute inactivity

timeout and the even lower variants seem to separate the sessions very strictly, creating far

more sessions than the purely mechanical pendants. The 1,440-minute inactivity timeout

sessions could be used to create either topically-related consecutive segments or related

shorter segments within a confined time period. Both have their raison d’etre, but need to

be considered in the context of the system. The same is true for the variants with a 14-day

timeout – the results here are different compared to their non-combined counterparts and

should cater to different system needs.

As discussed, the geometric sessions present a special case: their unique way of iden-

tifying session connection and session breaks leads to results that differ from the other

combined approaches. For example, the geomu14ac variant identifies less sessions with a
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14-day timeout than the u2v10ti180ac variant with its 180-day timeout – thus, clearly,

the geometric approaches evaluate similarity more freely than the other logical comparison

methods. Whilst this ‘flexibility’ could be seen as an advantage or a hindrance, it needs

thorough analysis to understand why it is the case. It is not possible to dig deeper to gain

a fuller understanding into the working mechanisms or why they differ from the other

combined approaches within the scope of this dissertation, although needless to say the

geometric sessions should be thoroughly evaluated before they are introduced to the pro-

ductive environment. The supposition is that the geometric-session approach is unsuitable

for this type of data or way of finding similarities between topics; using the calculated

similarity between categories is less than ideal to achieve the degrading distance required

by this approach, because even non-similar categories have some value of similarity to a

reference category.

This concludes initial discussion of the various session approaches analysed in this dis-

sertation. As presented, the session-identification algorithms deliver very different results.

The difference within the approach types – mechanical, logical and combined – is depen-

dent on different factors. Whereas for the mechanical sessions, apparently only the length

of the session or the inactivity timeout influences the outcome, for the logical approaches

there is greater complexity: there are the comparison method and the comparison context,

even though there is no time constraint here. All factors influence the results for the com-

bined approaches too, but evidently the timeout is the most crucial factor. Additionally,

the comparison method has an impact as well: the differences between the lexical, seman-

tical and geometric approaches are quite noticeable. Ultimately, the findings suggest that

the various session types cater to distinct system needs – the different session definitions

reveal disparate information about user behaviour, system usage and how users interact

over time. These strengths and weaknesses are summarized again later in Table 7.1.

191



Chapter 6

Applying Sessions in Potential

Production Scenarios

This chapter is the second part of the evaluation process in this dissertation. Where the

previous section descriptively analysed the 135 session approaches to show the differences

in the outcomes, this section actually utilizes the results in a selection of use cases. First,

the dataset used in the case studies was prepared. A sample dataset was generated by true

random sampling. It was ensured that the sample data was representative of the complete

dataset. Only a selection of representative session approaches was used.

Having done this, three different use cases were implemented, all of these answering typ-

ical business questions and demonstrating how different session-identification algorithms

will lead to different outputs. The first use case deals with the previously utilized cat-

egory similarity. Here, the resulting session data is used to train sequence embeddings

to determine relationships between categories. This experiment will show how the result-

ing similarities vary when using different session approaches. The second use case is a

recommendation task. An example from the literature is reproduced with a variety of

models. The third use case deals with user clustering. Using a DBSCAN [74] implemen-

tation, user ids in the sample are clustered based on their session behaviour. The results

are then discussed and analysed. Finally, the chapter ends with a summary of how the

different session approaches impact the system evaluation and analysis.

Bucket user id share interaction share

≤ 10 69.09% 21.77%

>10,≤ 30 21.66% 23.06%

>30,≤ 100 7.22% 23.01%

>100,≤ 500 1.86% 21.78%

>500 0.18% 10.39%

Table 6.1: Descriptive statistics for the inter-

action buckets in sampled dataset.

The sample is a 0.5% fraction of the original

dataset’s user id population, taken via true ran-

dom Bernoulli sampling. It is supposed to contain

the same data for every user id, therefore a sam-

ple of the user id instead of actual rows was neces-

sary. The resulting dataset contains 391,257 distinct

user ids with a total of 6,275,248 interactions. De-

scriptive values are shown in Table 6.1 to compare

the sample statistics to the complete dataset.

The distribution of users and interactions is almost identical to the original dataset.

The shares per interaction bucket are the same, indicating a strong overlap in properties.
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This is also true for the other measures. Further statistical validation was not performed.

At this scale, a correctly sized random sample should be valid enough to appropriately fit

the data in its entirety. The assumption is that the sample is representative of the total

number of identified sessions.

Approach Sessions ∅Sessions ∅Interactions ∅Categories B-R

u2vcti30cd 1,982,458 5.07 3.17 1.27 41.11%

u2vcti30cc 1,970,021 5.04 3.19 1.27 41.16%

u2vcti1cd 1,687,023 4.31 3.72 1.31 36.67%

u2vcti1cc 1,669,952 4.27 3.76 1.31 36.75%

ti30 1,616,825 4.13 3.88 1.46 34.43%

u2vcti1ad 1,522,246 3.89 4.12 1.34 32.81%

lti1cdb1 1,510,402 3.86 4.15 1.41 34.06%

u2vcti1ac 1,504,302 3.84 4.17 1.34 32.94%

u2vcti14cd 1,485,399 3.8 4.22 1.35 34.32%

geomu24cd 1,472,810 3.76 4.26 1.43 32.55%

u2vcti14cc 1,462,293 3.74 4.29 1.36 34.45%

u2vccd 1,454,600 3.72 4.31 1.36 34.12%

geomu24cc 1,448,111 3.7 4.33 1.43 32.63%

ti180 1,443,988 3.69 4.35 1.53 31.32%

u2vccc 1,429,489 3.65 4.39 1.37 34.26%

geomu24ad 1,393,275 3.56 4.5 1.45 30.65%

lti1adb1 1,375,339 3.52 4.56 1.45 30.92%

geomu24ac 1,371,057 3.5 4.58 1.45 30.76%

tfd 1,328,808 3.4 4.72 1.59 28.72%

u2vcti14ad 1,211,744 3.1 5.18 1.42 29.43%

u2vcti14ac 1,181,268 3.02 5.31 1.41 29.74%

lcdb1 1,140,546 2.92 5.5 1.61 28.94%

u2vcad 1,067,141 2.73 5.88 1.5 27.69%

u2vcac 1,024,081 2.62 6.13 1.5 28.17%

ladb1 726,069 1.86 8.64 2.03 20.62%

lti180adb1 722,392 1.85 8.69 2.03 19.64%

Table 6.2: Descriptive statistics for sessions in sampled dataset.

Table 6.2 lists the session approaches again with some of the most important descriptive

statistics. The trends between the different approach mechanics resemble the trends in the

original dataset. There are clear differences between the different variants, both structural

as well as in terms of apparent content. The number of sessions is the clearest measure here,

drastically decreasing (and following the trend in the original dataset) with an increasing

timeout. The divergences between logical and mechanical sessions are clear as well. The

identified sessions from the combined approaches vary strongly with the timeout used.

Logically, the variances for the other measures are quite high as well; on average sessions

range from 5.07 to 1.85 while average interactions per session range from 3.17 to 8.69. The

bounce rate behaves accordingly, decreasing in line with fewer identified sessions. This

has a direct impact on the outcome of the case studies, because the preprocessing steps

filter out all sessions with a single interaction. This is common practice, although it may

drastically change the quantity of input data as can be seen in the table.

The number of average categories per session is relatively high for the longer-lasting

combined sessions and the purely logical sessions, but comparatively they match the level

of all the other approaches. It will be interesting to see how the contents of the sessions in-

fluence the algorithms. It is anticipated that the diversity of categories within the identified

sessions will have a strong impact on the first two use cases.
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6.1 Revisiting Category Similarity Vectors

This first task is all about identifying similar categories based on user category embeddings

to validate the category tree and to show divergences in category similarity between session

approaches. Earlier, this was used to generate the comparison mechanic for the logical

sessions using category similarity based on category embeddings. The same procedure is

employed now in a business case. The goal of this use case is to analyse the root category

tree and to explore how it overlaps with the actual category similarity as perceived by the

system users. The same assumptions are used for this exploratory analysis as previously:

users are thought to visit categories based on their current information need, manifesting

in the close proximity of similar categories as identified by the session approaches. While

the previous calculation was performed on the complete user history in the hope that the

algorithm would sort out any potential contradictions to that basic behavioural assumption

with the sheer quantity of data, now the algorithm is trained on the individual sessions as

identified by the session approaches.

The actual business case is this simple: By relying on the swarm intelligence of the

users of the system, evaluating their sessions will find similar categories based on the

session sequences. For every category id of all 2,300 categories in the dataset, the top 251

similar categories are identified. Every category in this list has a root category; the number

of different root categories in this top 25 list is calculated per category id and then

averaged per session approach. A high number of root categories indicates high diversity

and potentially the need for changes to the category tree, while a low number indicates that

the category tree works well according to the session approach now in use. Additionally, the

calculated cosine similarity per top 25 categories per category id per session approach is

descriptively analysed using the minimum, maximum, average and the sum. The sum per

all similar categories per category id per session approach is also calculated. The cosine

similarity is used as a way of showing structural divergences between the approaches –

divergences in the calculated descriptive measures indicate different categories in close

proximity in the sessions used for the category embeddings.

It is important to remind readers that this business case is completely dependent on the

basic assumptions of a session as defined in Section 4.1. As the premise is that all identified

sessions deal with one information need, it can, therefore, be assumed that the number of

different topics in the form of different categories and root categories is limited. Should the

user behave differently and work on more than one topic, then the session-identification

approach in use will not have fulfilled its basic assumption. In practice, this will most

likely be true for the majority of mechanically identified sessions; nonetheless, to be able

1The top 25 per categories are chosen somewhat arbitrarily. The average number of categories per root

category is around 132. In order to have a comparable base, 25 categories per category was deemed a

good enough number of categories for this comparison.
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to implement this use case, it is assumed that the identified sessions deal with one topic2.

With this in mind, the assumption of this use case – that different root categories are an

indicator of a non-functional category tree – can be seen as a given precondition.Therefore,

the business case can be understood more as a comparison between the session approaches

and not so much one to provide a ‘given truth’ about the category tree.

Ultimately, the business goal is to have similar categories in the category tree, as this

would be beneficial for the navigational properties of the system as well as for SEO. The

defined goal here is to verify the category tree implemented in the page architecture.

Having similar categories in the same branch is important for the design of the system

because otherwise navigation might fail and search engines may have a hard time crawling

the website. The premise of the business goal relies on the assumptions of the individual

session approaches. For mechanical sessions, this is the time constraint: a user will deal with

a certain topic within a fixed period of time or without interruption for a specific amount

of time. For the logical sessions, this is self-explanatory since only similar categories are

supposed to be visited. Actually, the outcome here will be very interesting; having only

similar categories to calculate category similarity may lead to unexpected results.

In the main, this task is intended to show the divergences in category sequences between

the different session approaches. The realization that these sequences will result in different

category similarities is a clear indicator of the different output in this type of use case.

The results may also show whether the assumptions of the session approaches hold true,

or whether the mechanical sessions are apt to show very contradictory results.

Table 6.3 (on the next page) shows the results of the evaluation. It depicts the average

number of root categories in the top 25 most similar categories per category per session

approach as well as the number of tokens. Also presented are the multiple measures relating

to the similarity score of the top 25 categories per category: the minimum, the maximum,

the average and the sum. The last column contains the sum of all similar categories per

category, equal to the size of the vocabulary per session approach. The tokens are the

categories used in the embedding task.

The differences between the baseline (complete history) and the various session ap-

proaches as well as among the session approaches are quite big. At first glance, there

seems to be a visible correlation between the number of tokens and the cosine similarity –

the more tokens used as input for the algorithm, the lower the actual overall cosine similar-

ity seems to be. This is somewhat reasonable since cosine similarity is in the range of [-1,

1]. The more tokens the algorithm has at its disposal, the more precise the development

in the similarity relationships between the categories.

Interestingly, the minimum and maximum scores are rather low for the similarity score

for the first 25 items when the number of tokens is high. This applies to the complete

2In a production environment, a use case like this can only be implemented if the identified sessions are

validated. This means that their basic assumption should be qualitatively evaluated; this is not the

scope of this dissertation. For the sake of being able to still apply the sessions in this use case, it is still

assumed that all identified sessions deal with only one information need in order to show differences

between the approaches.
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Approach Tokens ∅Roots Min@25 Max@25 ∅@25 Sum@25 Sum@Vocab

complete history 1,665,652 6 0.4 0.53 0.44 11.03 237.98

tfd 1,076,315 6 0.38 0.55 0.42 10.43 392.84

ti180 1,019,712 6 0.36 0.58 0.42 10.49 410.91

ti30 941,603 4 0.38 0.51 0.42 10.54 437.85

geomu24ac 793,745 2 0.58 0.7 0.62 15.46 618.76

geomu24cc 783,240 2 0.58 0.7 0.62 15.44 625.37

geomu24ad 770,745 2 0.61 0.71 0.65 16.24 668.57

geomu24cd 768,569 2 0.61 0.73 0.65 16.3 669.46

lti180adb1 1,171,349 2 0.71 0.81 0.75 18.79 741.16

ladb1 1,189,393 2 0.7 0.81 0.75 18.66 741.48

lcdb1 958,983 1 0.67 0.79 0.71 17.85 759.48

lti1adb1 759,979 1 0.67 0.8 0.7 17.44 773.25

lti1cdb1 958,983 2 0.66 0.8 0.69 17.21 784.25

u2vcac 726,461 3 0.72 0.82 0.76 18.88 799.2

u2vcti14ac 618,459 4 0.72 0.83 0.77 19.3 812.58

u2vcad 691,801 3 0.75 0.88 0.82 20.59 819.21

u2vcti1ac 525,641 4 0.7 0.84 0.78 19.51 825.18

u2vcti14ad 594,318 4 0.73 0.88 0.81 20.18 828.26

u2vccc 570,242 4 0.74 0.87 0.8 20.02 829.15

u2vcti14cc 543,720 3 0.74 0.86 0.8 20.04 832.45

u2vcti1ad 512,774 2 0.72 0.87 0.81 20.13 835.54

u2vcti1cc 490,092 5 0.75 0.87 0.8 19.96 836.69

u2vccd 555,248 3 0.71 0.86 0.8 19.98 838.81

u2vcti30cc 442,238 4 0.74 0.89 0.8 20.12 842.3

u2vcti14cd 529,982 4 0.75 0.88 0.81 20.36 843.43

u2vcti1cd 479,777 4 0.73 0.88 0.8 20.03 845.8

u2vcti30cd 434,272 3 0.74 0.87 0.8 20.04 856.78

Table 6.3: Overview of sequence embedding results per session approach. Depicted are the number of tokens and

the number of average root categories per top 25 similar categories per category, averaged per session approach.

Additionally, minimum, maximum, average and sum of the cosine similarity of the top 25 similar categories per

category per session approach and the sum across all similar categories are shown.

history and the mechanical sessions. The similarity scores are also quite low and the total

score overall is low as well, hinting at many negative values for the cosine similarity.

Considering that these variants all have a high number of average root categories, there

seems to be a connection between the diversity of categories in sessions and the ability of

the algorithm to calculate similarity distances in this vector space properly. It is interesting

to see that the mechanical variants are very close to the complete history as the baseline

in terms of the presented values. Bearing in mind that the complete history delivered

reasonable results (after manual evaluation) with more or less clear similarity scores, it

can be assumed that with more data and adequate training time, the results for the

mechanical sessions could be comparably reasonable as well.

In contrast to this, the lexical sessions (at least ladb1 and lti180adb1) also have

above 1m tokens but show scores very different to the mechanical sessions and the base-

line’s. The scores for the logical and combined approaches are higher overall, although the

minimum and maximum are still close in most cases. However, while the overall sum is

much higher, the sum for the first 25 categories is almost doubled for the highest scoring

approach (u2vcti30cd) in comparison to the baseline. There also seems to be a rather

clear distinction between the comparison contexts: the consecutive comparisons tend to

score even higher than the interleaving approaches.

The lower the number of tokens, the higher the score seems to be. There does not

appear to be any clear connection with the number of average root categories, although,

again, an interesting observation is that the mechanical sessions / the baseline score the
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highest on average. In any case, the number of average root categories differs greatly

between the approaches – these deliver clearly different results.

Overall, it can be safely assumed that the input data has a strong effect on the algo-

rithm results. The results’ implications are interesting: For one, it can be assumed that a

high category diversity per sequence (i.e. per session) has a high impact on the algorithm

output, leading to a more conservative similarity rating. This may be easily mitigated by

simply feeding more data or more training iterations. Likewise, the more constrained se-

quences in terms of diversity seem to calculate similarity between the contained categories

much more easily. This is especially visible when comparing the geometric approaches with

the combined approaches using a consecutive comparison context and a shorter timeout.

The divergence between these is very clear and attributable very likely to the fact that the

geometric approaches contain more categories on average overall, while the combined ap-

proaches with the consecutive comparison context are both more self-contained and more

easily interrupted because of the different comparison mechanic.

The self-containedness of these approaches in comparison with the interleaving ap-

proaches and the geometric variants is also a reason for the reduced number of tokens.

As the preprocessing removes repeated consecutive categories and then removes sequences

with only one remaining category, the probability of this happening is much higher for

the consecutive comparison contexts (especially with a short inactivity timeout) because

these approaches naturally tend to generate quite short sequences. For example, when the

u2vcti30cd variant is compared to the ti30 sessions, the difference in the number of to-

kens is quite large – where the ti30 approach simply connects every consecutive category,

similar or not, the u2vcti30cd approach only connects similar consecutive categories. If

there is a repetition of categories (which is often the case), a sequence of exactly one

interaction is more likely after preprocessing.

From an overall perspective, this is a clear indicator of user behaviour regarding the

session approaches. In contrast to the basic assumption for the mechanical sessions – that

users work on one information need before working on another, separated by breaks – the

users in this dataset seem to work on multiple unrelated topics. This behaviour leads to

more self-contained sequences for the combined approaches and more diverse sequences for

the mechanical sessions, in the end resulting in different embeddings. Another indicator

of this is seen in the lcdb1 lexical variant: connecting consecutive interactions only when

the root category is the same, the results are still different to the mechanical sessions even

though the number of tokens is comparable.

Of course, these assumptions are only based on the algorithm output with several

caveats. For one, the data input was rather low for an embedding algorithm. While more

data does not always improve the output, particularly as more data always means more

noise [299], it can still be supposed that the results would be smoother and better for

comparison purposes with more data or even longer training. Then again, the preprocessing

is an essential step when applying such an algorithm [197]. Seeing as the impact of the

preprocessing on the different session approaches is quite big, this is a strong argument to

choose a fitting approach carefully when using machine learning. Another caveat relates

197



to the way the logical approaches use similarity based on the same algorithm utilizing

the baseline data, and how this could represent a self-fulfilling prophecy as regards user

behaviour, this is a point that should be kept in mind when interpreting the results.

In summary, using the same input data plus applying the same data preprocessing

seems to have a strong impact on the output of the algorithm. Logically, the results per

session approach are not completely different in terms of which categories are similar to

which category, but the differences are still very noticeable. For example, across all session

approaches, the distinct count of all similar categories for the top 25 similar categories for

the category Smartphones is 93, indicating at least some diversity but also some overlap

between the various approaches.

Taking a bird’s-eye perspective on the shared content related to the similar categories

across all categories, unsurprisingly, the baseline shares the biggest overlap with the me-

chanical categories. When comparing the top 25 similar categories across all categories,

from a possible complete overlap of 58,000, around 27,000 are shared with the mechanical

approaches. The lowest overlap is around 21,000 shared similar categories with some the

combined approaches. This is also the lower overall boundary: around 20,000 to 21,000 cat-

egories are shared, no matter the session approach. The higher overall boundary is different

though: the logical semantical and combined approaches share up to around 50,000 over-

lap. Interestingly, this seems to be dependent on the comparison mechanic – the variants

using lexical, semantical or a geometric comparison all only share around 28,000 cate-

gories. This is a strong indicator that the comparison mechanic (i.e. using either vector

embeddings or geometric distance) creates structurally different sessions.

This gets even more interesting when comparing the mechanical sessions with the

other approaches. They seem to have a high overlap of similar categories among each

other (around 40,000) but not so much with the semantical combined approaches (around

22,000). Nevertheless, the geometric approaches seem to be more similar: here, the overlap

is higher with around 30,000 categories among the top 25 per category. These findings

confirm the suppositions made previously.

Figure 6.1 takes an example of shared categories in the category Smartphones. The

figure shows the connection between the session approaches. If two approaches share a

similar category in the top five similar categories, they are connected. A connection is only

made when they share at least two entries to make the stronger connections more visible.

As can be seen, there are some interesting connections that indicate a certain proximity

between approaches. For one, there seems to be a great overlap between the logical lexical

variants – they share a high number of similar categories among them, but not so many

compared to the other approaches. The baseline only shares more than one category with

this approach group, but not with any other approach. This is an interesting indicator of

their structural similarity. Likewise, all the logical approaches obviously share a high level

of overlap; this makes sense considering that they all use the same mechanic, although the

sessions may vary greatly in length. The mechanical approaches also have a high overlap

among each other, but are also somewhat connected to the geometric variants. Overall,

the figure underlines the findings presented for this specific example. In the theory, the
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Figure 6.1: Chord chart of similarity connections between the session approaches for the top five similar categories

of the category Smartphones.

figures look similar for all categories, but in practice the findings are largely unreadable

due to all the connections. Therefore, the example of Smartphones has been chosen to

illustrate how it would look in practice.

This concludes the discussion on the category sequence embeddings use case. The

results underline the discoveries from Chapter 5. They clearly show differences in the

algorithm output when using structurally different input data, although the actual data is

still the same. As other research has reported, many factors affect the building of word or

item embeddings [72, 135]. The results in this dissertation clearly underline these findings.

6.2 Predicting What’s Next: Session-Based Recommenda-

tion

The second use case tested in this dissertation is an example from the literature. As was

mentioned in Section 2.5, recent years have seen quite a rise from sequential models like

recurrent neural networks (RNN) and their subvariants such as long short-term memory

networks (LSTM). Delivering impressive results and an enormous predictive power based

on sequences of data, these models continue to attract a lot of attention. Although review

articles state that simple baselines may deliver comparable or even better results [156],

the actuality and potential of these models is undisputed. This dissertation reproduces the

model proposed by Ruocco et al. [225] along with some of their proposed baseline models

(among other things, a traditional session-based RNN [102]).
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Technically, the use case is not a prediction task but one modelled as a session-based

recommendation. The models are trained on the sessions of users and evaluated on their

last session. For every interaction of this last session, the model recommends a set of items

– categories in this implementation – and ranks them accordingly. Theoretically, only the

correct category id of the next interaction is the target, so the results are evaluated as

a binary classification task using recall and mean reciprocal rank per interaction step in

the session.

What is special here is the fact that the tested models all stay the same while the input

data is changed. The different session approaches identify different sessions, which in turn

are used for training and testing the model. By taking into consideration the assumptions

that guide all the approaches, an estimation can be made of how the input data affects

the way the model predicts what the next item is (or multiple item recommendations) in

a respective session for that specific session approach. Ultimately, this makes it possible

to state how well the model is able to generalize on the basis of the input data.

Four different models are tested: most popular (mp); k-nearest Neighbours (knn); a

traditional session-based RNN (pRNN) [102] and the model proposed by Ruocco et al.

[225], using a session-based RNN alongside information taken from embedded historical

sessions (iRNN). All of these were also used in the original article, whose implementation

this dissertation reproduces. Multiple models are tested as a sanity check and to see

how the different session approaches perform under different conditions. While both deep

learning models are broadly similar, the two baseline models work differently. Technically,

this type of variety is not required to show the differences in the input defined by the

session approaches, but overall it is beneficial because it widens the perspective.

The mp is a baseline model that simply recommends the most popular items in the

dataset. Here, this means that all category ids are sorted by occurrence and the top-

k items are recommended at every interaction step in a session. Furthermore, another

baseline model, knn, determines the number of co-occurrences of items per session. The

recommendation is then a list of category ids with the highest co-occurrences per cate-

gory id of the respective interaction step. The session-based pRNN is a sequential model:

it bases its recommendations on which category ids are visited in a session, how, and in

which order. On conclusion of the session, this user information is discarded – in a new

session, the model makes a prediction based solely on the new session, using no contextual

information at all. The same technique is used for the iRNN, although Ruocco et al. came

up with the idea to improve the session-based RNN by creating embeddings for previous

sessions and including them as starting input for the session-based recommendations.

Since there seems to be no standard evaluation of session-based recommendations

[156], this dissertation follows the evaluation of the original work, splitting user’s sessions

80:20 – 80% of identified sessions used for training and 20% used for testing. In practice,

for all runs, this means that not only is the structure of the input data in the training

set different, but that the data for the test set is also. For example, session approaches

that are able to identify interleaving behaviour would also generate recommendations for

that interleaving behaviour – the model is tested on the identified session events, which
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do not necessarily have to be in chronological order. This comes with some limitations:

in a productive environment – as the actual session context becomes usable only after

the session-identification process – the session identification would always run before the

recommendations are generated by the model.

The limitation this evaluation set-up poses is interesting as is the overall question of

how to manage it. In terms of the 80:20 split based on user sessions, this could result in

a big difference in the training- and test-sets per user per session approach. In practice,

it would probably be more reasonable to run the test on a chronologically ordered set of

interactions – without the boundary of a session (i.e. training everything up to a certain

point in time and testing everything again afterwards). Then again, the training set is

structured according to the session approach. The session approach defines the sequence

of interactions, so it is actually reasonable to generate predictions for such a specifically

defined session. The session approach delivers the context for which the model generates

output. Testing the algorithm on non-structured data would actively hinder the delivery

of high-quality results: one can see the session approach as part of the algorithm in this

case, amplifying the quality of the output (or at the very least changing it). From this per-

spective, using the 80:20 split as suggested seems reasonable. Therefore, this dissertation

stays with the original 80:20 split and the respective evaluation, but mindfully respects

its limitations while interpreting the resulting evaluation measures.

With the four models and the design for the experiment ready, some pre-emptive

assumptions can be made. From the findings of the previous chapter and with knowledge

of the mechanics of the respective session approaches and what the identified sessions may

look like, some potential outcomes seem more probable than others. This is especially true

for the baseline algorithms. For instance, it is far more likely that a good hit rate will be

achieved by using the most popular items across all sessions for the mechanical sessions,

than for the logical or combined ones. This makes sense: the category mix is more or less

random for the mechanical approaches, meaning that a popular category might be visited

in any session and at any point in time. Using logical mechanics, this is not the case: here,

the session may revolve around a specific topic, only including related categories that do

not necessarily have to be among the most popular ones, resulting in a very low recall.

Contrary to this, a logical session dealing with a popular topic might achieve very good

results; still, the mechanical variants are anticipated to perform better results here. This

is also true for the geometric approaches since their comparison mechanic is not as strict

as the logical ones, potentially leading to more mixed categories in a session.

The knn baseline is more difficult to assess. Potentially, logical sessions may have

an advantage here. The coupling of categories that often appear next to each other for

use in generating recommendations are likely to work better when all the categories are

related anyway, which would be the case for logical sessions. On the other hand, the base

assumption of the mechanical sessions – that the inactivity timeout represents a topic

break – may lead to similar performance. It is difficult to predict the results of the RNNs

beforehand. Under normal circumstances, it could be assumed that the session approaches

using a logical comparison mechanic would have an advantage here: using topical closeness
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to create recommendations seems to be more promising than simply using chronological

sequences of categories that are only assumed to be similar. In practice this means that

the RNNs are trained on the same categories they generate as predictions, whereas the

mechanical approaches are trained on every data point. It will be interesting to see in this

context whether the underlying assumptions about the session approaches actually hold

true.

Approach Users Sessions

(Training)

Sessions

(Test)

ti30 30,557 217,659 68,011

ti180 30,005 203,258 64,126

tfd 30,300 194,378 62,045

u2vccc 25,615 159,969 51,318

u2vccd 26,806 169,757 54,310

u2vcac 23,647 98,327 34,885

u2vcad 25,742 121,119 41,584

ladb1 22,818 64,665 25,762

lcdb1 27,478 149,452 49,465

u2vcti30cc 27,647 203,620 63,240

u2vcti30cd 28,322 207,667 64,546

u2vcti1cc 26,777 182,606 57,547

u2vcti1cd 27,590 188,919 59,475

u2vcti1ac 25,437 166,119 52,863

u2vcti1ad 26,380 174,006 55,211

u2vcti14cc 26,221 164,345 52,617

u2vcti14cd 27,284 173,461 55,405

u2vcti14ac 24,008 119,523 40,416

u2vcti14ad 25,449 135,322 45,003

lti1cdb1 28,156 183,490 58,339

lti1adb1 26,867 166,874 53,611

lti180adb1 22,790 64,917 25,845

geomu24cc 27,243 172,947 55,320

geomu24cd 28,030 182,099 57,950

geomu24ac 26,197 160,991 51,848

geomu24ad 26,835 169,568 54,289

Table 6.4: Overview of number of sessions and users in the

dataset for the recommendation task.

Table 6.4 shows the number of sessions for

all approaches, their respective training-

and test split, as well as the number of

distinct users. It is clear that the prepro-

cessing (i.e. cut-off after 20 interactions,

no repeated consecutive categories) has a

strong impact on the overall number of ses-

sions. The notable differences between the

session variants (indicating potential struc-

tural differences) seems reasonable consid-

ering the different mechanics and the fluc-

tuating bounce rates as well as the different

comparison contexts. The number of users

stays on a similar level with minimal diver-

gences across the approaches. It is interest-

ing to see that more users are retained by

the mechanical variants after preprocessing

while the logical variants seem to lose more

data in general.

The effect of fewer sessions is particularly apparent for the lexical variants allowing

interleaving behaviour (combined approach as well as purely logical). These approaches

show a very limited number of sessions for both the training set and test set, but this again

is reasonable since they have the lowest overall number of sessions of all the approaches

with the potential to result in long sequences of repeated categories for many users. Yet,

since the number of users remains comparable with the other approaches, it is probable

that the respective lexical variants simply connect the same categories in sequences, re-

sulting in less sessions per user in both datasets. This is an intriguing finding for both the

assumptions of the models and the session approaches: How is the iRNN going to perform

if the chronological ordering of the sessions is disturbed by the preprocessing? and How

is is the dependency on previous sessions going to develop when the ordering is unrelated

to topic recency as it is for the logical sessions? Whereas the ordering of the mechanical

sessions is straightforward because of their basic assumption, the logical sessions assume

a different ordering of events, at least the interleaving variants do. This is equally compli-

cated for consecutive variants: usually, consecutive sessions identified by a logical mechanic

are assumed to deal with different topics when there is no combination mechanic involved.
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At this stage, it is not really possible to estimate beforehand what impact the number

of variable sessions will have on the model output. In all likelihood, the model would be

able to deliver better results with more training data. Nonetheless, since preprocessing is

essential in the preparation process, it was decided to keep the size of data as is; as the

session approach itself is responsible for the structure of the input data, here, therefore,

the number of sessions can already be seen as an example of the approach’s impact on the

model output. It will be interesting to see if there is a correlation between the quantity of

data and the model output.

Table 6.5 lists the results for all session approaches and all models. The reported

values are averaged across all session interaction steps up until the maximum length of

20 interactions. Highest overall values are highlighted. All models were trained until the

evaluation measures no longer improved up until a maximum of 10 epochs. The majority

of approaches reached this point around epoch seven, after which the results started to

diminish again.
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The reported results are quite interesting. From an algorithmic point of view, the

statements made in the original work by Ruocco et al. [225] could be confirmed. No

matter the session approach representing the input data, the proposed inter-intra RNN

delivers the best results. From a logical point of view this is reasonable, since information

from earlier session contexts as well as the current context should make it easier to make

predictions (or recommendations) for the current behaviour. A particularly compelling

insight is that almost all session approaches are able to generate impressive results using

this model. Although previous sessions would not necessarily have been dealing with the

same topic (i.e. for the mechanical variants), the results are still very good.

The reported values for R@20 are quite impressive. It seems that in the majority of

sessions, the target category is among the list of the recommended top 20 items. Even R@5

does not seem to be too far off – the difference is modest against R@20. The MRR is even

more promising. In over half of the test cases, the iRNN model seems to be able to predict

or recommend the correct target item for logical approaches. The mechanical variants,

including the lexical logical baselines, achieve slightly less impressive results. There is a

clear difference in performance even for the iRNN. The numbers for MRR@1 for the lexi-

cal variants are quite surprising. Here, the low performance was not expected, but seems

somewhat reasonable; putting all category ids of the same root category into one session

without regard to actual similarity may introduce an error margin bigger than originally

anticipated. It seems that actual topical connections are interrupted here. That the in-

activity timeout sessions appear to perform better is very interesting, indicating a more

compatible mixture of categories and actual temporal proximity of logically connected

topics. This is confirmed by the combined approach using the lexical matching actually

performing on par with the other logical approaches: lti1adb1 and lti1cdb1 indicate that

using one day as a timeout helps put topically related categories together, no matter how

liberal the mechanic is. This is doubly underlined by the very poor results of lti180adb1,

again due to its connecting potentially unrelated categories over a long period of time.

Nonetheless, the difference between mechanical sessions on the one hand, and the logi-

cal and combined approaches on the other, is relatively big and ought to be acknowledged.

There is a clear improvement in predictive power when using sessions constructed with

logical mechanics. Another important observation is that there seems to be a divergence

between a) the comparison contexts and b) the logical and combined approaches. For one,

the direct comparison always seems to perform slightly better than a comparison based

on all categories in the respective session. This could indicate that recent items attract

higher relevance, in that users work on information needs, formulate additional goals, and

then move on to different tasks. This is reflected in these sessions: categories may end up

in different logical sessions because the most recent item determines the current similarity

map for any comparison with a future interaction. Moreover, the model seems to work bet-

ter with the consecutive approaches than the approaches allowing interleaving behaviour,

although it seems that the direct comparison has an even greater impact here than the

actual context. This could also be why the combined approaches appear to achieve better

overall results than the purely logical approaches. Although the difference is rather slight
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here, the recency factor introduced by the timeouts seems to be beneficial. It is also highly

interesting that the shorter timeouts seem to work better than the longer timeouts. This is

another indicator of the dominance of recent categories in determining current behaviour.

These observations are not only true for the iRNN, but seem to be similar for the other

models. The pRNN follows a very similar pattern, only usually with slightly less favourable

results. The difference is again very reasonable, considering that the iRNN simply has

more information available than the pRNN. This as well could be interpreted as another

argument for this recency dominance theory: context knowledge of the previous session

can lead to improvements due to the information not being removed after the session is

over. In theory, this should be more apparent in the sessions with a shorter timeout. For

example, it is assumed that the 14-day timeout gains less advantageous knowledge of the

previous session than a 30-minute timeout. The effect is visible in the table (i.e. when

comparing the measures between the models), but the difference is quite small and could

be due to other factors as well. Some of the approaches even generate better results for

R@20 with the pRNN.

The previously made assumptions about how the baselines would perform seem to not

hold true for this particular testing scenario. The most popular categories in particular

do not seem to work for the majority of approaches. It is intriguing to see that the ti30

sessions (and the mechanical sessions in general) perform very badly here; in comparison to

the combined approaches with a 30-minute timeout, this seems very surprising. Since the

assumption is that many of these are simply the same sequences, one would usually expect

to see them corresponding at some level. Then again, the anomaly could be put down to

preprocessing and the removal of repeated consecutive items, whereby the similar sessions

between them have been removed and only the differing ones remain. In these sessions,

the combined approaches may perform training better than the mechanical variants.

The same is true for knn, although the overall results seem slightly better than the

most popular recommendations. The mp model has a better average MRR@1 in most

cases though, indicating a higher hit rate by simply using the most popular category id.

This is a good example of how the overall system affects the performance of the model

– in around one-third of all cases, simply predicting the category id with the overall

highest interactions is sufficient. Due to this, the performance of the models should be

taken with a grain of salt; if the majority of interactions is on the same category id

anyway, recommending the correct target item should be quite easy. The trends otherwise

match all the other models. For R@20, the results are relatively close to the performance

of pRNN. The same is true for R@5, although the difference is slightly more obvious.

Comparatively, the MRR does not perform quite so well. Overall, the general trends for

the measure are very similar across the models. The performance increase from baselines

to better adjusted models is relatively stable – in general, the models seem to work well

with every approach and the performance increase is comparable across all approaches.

Some approaches are curious though: as an example, the lti180adb1 lexical logical

session approach allows interleaving behaviour, and to all intents and purposes performs

comparably to the baseline lexical logical approach ladb1. The difference comes in the
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form of the 180-day inactivity timeout and the associated handling of interactions on pages

with no meaningful category id. While the assumption is that the inactivity timeout has

almost no effect here (the 180 days with interleaving behaviour is probably only breaking

sessions in very specific edge cases), the difference in handling of any interaction with

a non-meaningful category id results in sequences interrupted by these category ids.

Meanwhile, the baseline with no timeout has less of these interruptions, resulting in se-

quences with meaningful category ids only. This difference seems to cause massive prob-

lems for the algorithm. The conjecture is that the non-meaningful items interrupt the input

sequences and, therefore, dilute the actual meaningful sequences of related category ids.

There is an intriguing divergence here between knn and pRNN for recall: comparatively,

the iRNN delivers the better results for recall, but here the knn seems to outperform the

pRNN. This is highly interesting, especially since the pRNN MRR results are better. It

would seem that the pRNN is more often able to predict the target correctly or at least

among the top five, while the knn model predicts the target item more often among the

top 20 in general. This is the only case where this happens though.

Returning to the number of sessions, there is a clear pattern here. The number of

sessions used for training the models indeed correlates with the model outputs, although

there are some limitations to this statement. On the one hand, the trend is clear because,

obviously, the more training data used, the better the results will be. This seems to hold

true independent of the model, although some models may still be able to deliver solid

results even with less sessions. Likewise, a high number of sessions does not guarantee good

performance, as can be seen with the mechanical sessions. Nonetheless, the low number

of sessions for lti180adb1 and ladb1 seem to somewhat explain the comparably poor

results. Interestingly, the same cannot be said for u2vcac, which also had considerably

fewer sessions than the rest. Here, the algorithms still perform well enough to deliver

results comparable to other approaches, especially when compared to the other comparison

contexts with the same comparison mechanic. In conclusion, it can be surmised that a

combination of different effects, as discussed, is responsible and that probably that the

structure of the sessions is more important than the quantity of training data alone. The

models seem to be very sensitive to the session structure.

Another curious case is the performance of the u2vcti30cd and the results for the

combined approaches with a shorter timeout in general. Compared to all other approaches,

u2vcti30cd achieves the highest values for all measures and all models. Even for the

two baseline models, the reported results are impressive. On a comparable level is its

counterpart u2vcti30cc with the complete session history comparison mechanic, but as

already reported the direct comparison seems to work better in most cases.

To conclude the applied recommendation task, this section has shown that the com-

bined approaches using the embedding solution to compare similarity of interactions work

best no matter the algorithm. The mechanical variants and also the approaches using the

lexical matching of root categories fail to deliver results of the same quality. The geometric

approaches and also the purely logical variants using the embedding solution are better,
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but still not quite as good as the combined approaches. Several factors are potentially

responsible for this outcome. These will be discussed in more detail in Section 6.4.

6.3 Clustering Users Based on their Session Behaviour

The third use case is a simple clustering task to show how different input data may lead to

varying interpretations of the user population and, to some degree, of user behaviour. The

goal is to identify certain behavioural clusters depending on how users in the data interact

in sessions with the system. Knowledge about such clusters and their potential for different

behaviours enables system owners to target users in very specific ways. For example, users

with low recency may be targeted more often, while users with higher potential in this

respect may be contacted far more specifically; if they return to the system anyway, they

may be guided more towards their interests rather than simply being tempted back to the

system.

In the end, the clustering task here is very simple and straightforward. Having a set of

session-related features per user id should be sufficiently distinct to show the differences

between the different session approaches. Based on the results of the previous sections there

are multiple assumptions about how the resulting clusters may look. For one, the number

of clusters will probably be quite low for all session approaches simply because the majority

of users do not behave that differently; with a low number of overall interactions and very

likely only a few sessions, users will probably end up in the same cluster regardless of the

session approach. All session approaches may show an overall similarity, the assumption

being that the majority of users with a low number of interactions in total will end up in

the same cluster regardless of the session approach.

Aside from this, the supposition is that the different session approaches will generate

various clusters that may share some similarities. It will be interesting to see which session

approach users with a high number of interactions end up in: having a high number of

sessions in the ti30 approach because of many regular visits to the system across the

year does not necessarily equate to a high number of logical sessions. The features of this

sample user differ greatly.

As the aim of this dissertation is to highlight the distinctive features per session ap-

proach, each feature directly relates to session behaviour. The dataset used for the cluster-

ing always contains the same user ids, but the actual features are based directly on the

resulting sessions of the respective session approach. First and foremost is the number of

sessions per user, this being possibly the most important measure to indicate any poten-

tial cluster. The number of sessions almost always has some effect on the other measures

as well. Likewise, the average number of interactions per session is equally meaningful.

Depending on the mechanics of the session approach, the identified sessions are expected

to contain either a lot or only a few interactions.

Table 6.6 shows the number of clusters, the silhouette score and the respective number

of data points suspected to be noise per session approach. As a reminder, the silhouette

score is an indicator of the quality of the resulting clusters, that is, measuring to what
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extent the clusters are well-distinguished and how much they overlap. It is apparent im-

mediately from the silhouette score that the clustering for all session approaches seems

to identify a somewhat decent cluster. A score above 0.5 indicates at least reasonably

dense clusters. While the values vary only slightly, some observations can still be made

here, particularly in relation to the number of data points identified as noise by the algo-

rithm. Likewise, the number of clusters does not to change drastically, but there are some

differences.

Approach Clusters Silhouette Score Noise

ti30 73 0.5947 22,546

ti180 73 0.5875 19,658

tfd 72 0.586 19,011

u2vccc 78 0.5845 24,804

u2vccd 74 0.5428 20,098

u2vcac 75 0.661 9,712

u2vcad 74 0.6656 15,670

ladb1 67 0.7275 9,483

lcdb1 74 0.6603 21,230

u2vcti30cc 76 0.5388 31,953

u2vcti30cd 76 0.5508 37,227

u2vcti1cc 80 0.5253 27,998

u2vcti1cd 74 0.516 27,264

u2vcti1ac 73 0.5488 23,871

u2vcti1ad 76 0.5942 22,440

u2vcti14cc 73 0.5498 21,064

u2vcti14cd 74 0.5462 20,593

u2vcti14ac 79 0.6492 16,915

u2vcti14ad 74 0.6343 16,773

lti1cdb1 82 0.6341 22,164

lti1adb1 74 0.5993 19,103

lti180adb1 68 0.7333 4,371

geomu24cc 78 0.6056 21,158

geomu24cd 74 0.5956 20,852

geomu24ac 76 0.5987 24,564

geomu24ad 74 0.6154 19,047

Table 6.6: Overview of clusters per session ap-

proach. The table shows the amount of overall

clusters, the silhouette score as well as the amount

of data points that could not be associated with

any cluster.

The correlation between the silhouette score and

the number of noise data points seems obvious.

The approaches ladb1 and lti180adb1 have the

highest score and the least amount of identified

noise. Again, this does not necessarily constitute

higher-quality clustering, as this very much de-

pends on the input data and the preprocessing

in terms of normalization. Under the current cir-

cumstances, these approaches seem to provide

the clearest results though. At the other end of

the scale, u2vcti30cd has the highest number

of noise data points, but not the lowest silhou-

ette score – the correlation seems to be not that

straightforward.

Aside from the silhouette score and the num-

ber of noisy data points, the number of clusters is

relatively high. This is reasonable considering the

used hyperparameters: a minimum of 1,000 sam-

ples per cluster, with a neighbourhood of at least

100 samples in order to be considered a cluster

centroid, is likely to end up in a higher number of

clusters. In a separate run with higher values for these parameters, the number of clusters

was far lower per session approach but more or less in the same relation as shown in the

table. Interestingly, the silhouette score decreased drastically and the number of noisy

data points increased, which is why the current setting was used to show the differences

per session approach. This is an interesting observation though. The hyperparameters re-

quired for an HDBSCAN obviously have quite a big impact on the clustering results –

even greater than the actual session approach. The same is true for any normalization

applied beforehand. While the effect of these steps is quite apparent, the impact on the

session approach appears to be less so in comparison, although still always discernible.

Depending on which normalization is selected, the impact of the session approaches either

becomes clearer or not immediately apparent. While the actual hyperparameters seem to

conserve the impact of the session approaches as regards the relationship between them,

the quality appears to decrease.
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The number of identified clusters seems quite large, and considering that the algorithm

only uses two features, it is surprising to see so many apparent subgroups of reasonably

distinct behaviour. What is even more surprising is that the number of clusters only differs

slightly between what are overall very different session-identification approaches. It could

be that the relationship between the number of sessions and the average interactions per

identified session leads to a different number of clusters based on the session approach,

but from the number of clusters alone, this difference is not discernible. Looking at the

structure of the clusters, the observations are also very similar. The biggest cluster per

session approach always contains around 30,000 user ids.

Table A15 displays the 10 biggest clusters per session approach as well as the number

of data points assumed to be noise. The table shows the share of user ids assigned to

the cluster and the average number of input features used: that is, the average number

of sessions, with the average number of interactions per session per cluster, per session

approach. The results show a clear pattern with some surprising outliers: almost all session

approaches share the same clusters in their top 10, but in varying order and with different

shares of user ids. By using only the two features – sessions per user and average inter-

actions per session per user – the results clearly show how different yet similar the session

approaches are overall. The biggest cluster almost always contains the users with only one

session and exactly three interactions. Likewise, the other clusters among the top five are

also almost always made up of users making between two and five interactions overall.

The number of sessions varies slightly, but the cluster statistics are identical.

This simple clustering of the two features has some interesting implications. It is ba-

sically a segmentation into interaction and session buckets: a perfect clustering would

have the same cardinality as the number of distinct combinations of sessions and aver-

age interactions. This is logical. For the algorithm results, this means that the clusters

perfectly represent the differences of the session approaches, because the algorithm tech-

nically detects the same clusters per approach. For example, the cluster (or bucket) with

one session and three interactions seems to be the biggest cluster for all approaches except

u2vcti30cc and u2vcti30cd; for these two approaches, the bucket with two sessions of

only one respective interaction is bigger. It can be assumed that there is some overlap here

which could be attributed to the session approach.

The associated noise per cluster is also quite revealing. Taking the view that these are

users that could not be put into any of the other clusters or interaction/session partitions,

these are highly likely to be the combinations of features with a cardinality below 1,000.

Since the statistics of these noisy users differ greatly across the session approaches, it is

probable that there are differences between them regarding the distribution of sessions

and the respective interactions per session per user. Under the set hyperparameters, the

clustering as is makes sense. With wider parameters (i.e. a minimum cluster size of 10,000

and a more generous minimum number of close neighbours), the session/interaction com-

binations would be merged earlier, introducing bigger clusters but with more ambiguity.
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Completely allowing the algorithm to determine the cluster size (by using the default

values3 leads then logically to a very high number of clusters.

Approach Clusters Silhouette Score Noise

ti30 19,611 0.3924 72,232

ti180 20,040 0.3871 75,508

tfd 19,968 0.3884 77,326

u2vccc 20,606 0.4114 78,627

u2vccd 20,711 0.4216 77,276

u2vcac 20,545 0.3953 81,545

u2vcad 20,638 0.3904 82,309

ladb1 20,932 0.3687 82,350

lcdb1 20,767 0.3643 81,242

u2vcti30cc 19,295 0.4391 66,225

u2vcti30cd 19,355 0.4411 65,642

u2vcti1cc 20,228 0.4477 73,884

u2vcti1cd 19,991 0.4434 74,538

u2vcti1ac 20,172 0.4399 73,235

u2vcti1ad 20,107 0.4379 74,427

u2vcti14cc 20,388 0.41 80,868

u2vcti14cd 20,418 0.4108 80,543

u2vcti14ac 20,563 0.4124 76,890

u2vcti14ad 20,678 0.4166 77,145

lti1cdb1 19,986 0.4129 77,796

lti1adb1 20,489 0.426 73,822

lti180adb1 21,354 0.3815 79,423

geomu24cc 20,001 0.42 76,272

geomu24cd 20,147 0.4176 78,012

geomu24ac 20,038 0.4173 75,274

geomu24ad 19,865 0.406 79,194

Table 6.7: Overview of clusters per session ap-

proach with additional features. The table shows

the amount of overall clusters, the silhouette score

as well as the amount of data points that could not

be associated with any cluster..

When adding additional features to the cluster-

ing, the results become more diffuse. In another

run, the averages for time on site and category

per session were added to the feature set. To

avoid putting any assumptions into the data dis-

tribution, parameters were left as default. The

two additional features are intended to add some

variety to what are still thought as defining fea-

tures of the session approaches. As the average

number of categories is inherently defined by the

logical comparison mechanic, in theory it should

be somewhat different when comparing logical to

mechanical sessions. The average time on site is

assumed to be an even more distinctive feature

overall: where the purely logical sessions may go

on endlessly, the mechanical sessions are strictly

defined by their thresholds. The combined ap-

proaches may inherit a bit of both worlds with

very short and very long sessions. Evidence of

an even stronger effect is expected between the

comparison contexts. Table 6.7 shows the results

of this clustering approach. Allowing the algorithm to detect even very small clusters

strongly effects the outcome, with the number of clusters dramatically increasing and the

silhouette score decreasing. The numbers of users assumed to be noise are also higher.

This is logical. The algorithm will detect even very small clusters (that may not be very

well defined) up to a minimum of five samples, leading to a lower silhouette score and a

very high number of clusters. The noise cluster takes that highest share in all the session

approaches. Although there are differences among all the session approaches, their results

are more or less similar.

When looking at the top 10 clusters per approach again in Table A16, the differences

become more visible. While the first three clusters are again almost identical for all session

approaches, there are clear differences among the other clusters. The time on site seems

to be a highly defining factor; this is very obvious in the logical approaches with no time

constraint at all, holding users with a low to medium number of sessions with very high

time-on-site averages. The mechanical sessions have far lower values as do the combined

approaches, depending on the timeout in use. Another obvious divergence can be seen when

comparing the comparison contexts again. Depending on whether the comparison context

is consecutive or interleaving, the average values differ greatly. The consecutive variants

3Compare https://hdbscan.readthedocs.io/en/latest/api.html, retrieved 28 November 2021.
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show more similarity to the mechanical sessions, while the variants allowing interleaving

behaviour seem to differ in structure.

When looking at the results from a user behaviour-group perspective, it becomes quite

obvious that the highest share of users behaves similarly. No matter the session approach,

from a structural point of view, these users all behave identically: a small number of

sessions with a low number of interactions, spending little time on the system and engaging

with only one category. These probably represent users who visit the system only once

or twice with little or no connection between visits. Aside from this user group, varying

values can be observed throughout. It is important to underline that this variance does

not represent actual user behaviour but characterizes the session approach responsible for

the appearance of different behaviour.

Only the largest top 10 clusters are displayed: due to the high number of clusters,

the shares are low; the clustering is very granular and shows highly specific groups with

similar behavioural values. Ultimately, it is likely that the clusters among the session

approaches are quite similar when every cluster is compared to each other. These results

would be almost useless in a productive environment since, not only are the clusters far

too granular but also a total of 20,000 clusters is excessive and too high to be useful.

The challenge here would be to find the most appropriate preprocessing pipeline and an

algorithm with suitable parameters. Still, the results showing the top 10 clusters in Table

6.7 are meaningful: for example, the finding that the first three clusters are almost always

the same (identifying the same behaviour for these users) but aside from these are quite

different, is proof enough that the session approaches may produce very different user

values.

Overall, it has been shown that the different session approaches can be clustered quite

differently. The results seem somewhat similar when comparing the statistics per cluster,

but it is highly likely that the actual contents of these clusters look different. A user

may end up in completely different clusters depending on the session approach. This can

be quite easily observed when comparing the descriptive statistics per user – if they are

different across the approaches, the user is likely to end up in different clusters. The extent

to which this happens can be analysed relatively straightforwardly with clustered data.

When comparing the descriptive statistics per user per cluster and session approach, it

should become visible how frequently the identified behaviours of users differ.

The differences are quite high, just as expected: of the roughly 390,000 users in the

dataset, only around 8,000 share identical clusters across multiple session approaches when

engaging with the four different features. This is a quite strong argument for differing

behaviour. Only a fraction of users shows the same behaviour regardless of the session

model, allowing for completely different interpretations of their behaviour.

This is a highly interesting observation. In view of the fact that clustering algorithms

are used frequently by businesses to identify potentially important user groups (i.e. fi-

nancially valuable or highly engaged overall) and that marketing strategies are adapted

accordingly; the different session approaches have the potential to make a huge impact.

Marketing campaigns target users quite differently according to whether they make one
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session or many. Granted, the choice of features may be too naive and basing a marketing

campaign solely on information like this (where a lot of elements are quite arbitrarily cho-

sen) would be reckless to say the least, but the overall impact is clear. Using the results

from the different session approaches, system owners utilizing the data can – willingly or

unwillingly – make very different statements, thereby increasing or decreasing the system’s

business performance.

6.4 Measuring the Impact

The final section of this chapter is dedicated to discussing the results from the three use

cases. The objective now is to highlight the most important points and to summarize the

outcomes of the second part of the evaluation. Having seen the various session approaches

deliver fairly diverse results in three quite different use cases, the results are very obvious.

The first use case gave an overview of the structural composition of the different session

approaches. In this experiment, an embedding algorithm was trained on the different

sequences per session approach to enable it to find category similarities. The underlying

business case is simple: with knowledge about category similarity in user sequences it

is possible to validate the category tree as the internal page structure of the system. It

is beneficial to have similar categories in the same branch of the category tree both to

improve navigation and enhance search engine crawlers’ ability to crawl the website for

their indices. This works only under the assumption that sessions are seen as a construct

dealing with the same topic; users will work on exactly one information need during a

session. The session-identification approach defines how these sequences will look.

The goal of this use case was to prove how diverse the differently defined sequences

are in practice. By looking at the number of distinct root categories per similar categories

per category id, it is possible to estimate how topically close the identified categories

per category are. In addition, the scores of the cosine similarity per evaluated category

can be used to learn about the sequences’ structures. Furthermore, it can be assumed that

the cosine similarity depends very much on the input data, which indicates the confidence

level of the algorithm with regard to category similarity.

Huge variations between the different session approaches were shown. The primary and

most important point to consider is the divergence in the numbers of tokens between the

different session approaches, which appear to have a correlation with the cosine similarity.

The more tokens used as input data, the higher the overall cosine similarity scores (among

the top 25 categories, at least). Removing consecutive repeated items in the sequences

as well as eliminating sequences with only one interaction have very different effects on

the various session definitions. It is obvious that the combined approaches with a) a short

timeout or b) the consecutive comparison context have the least tokens but get the high-

est similarity scores. It can be deduced that this is caused by their internal structure.

The sequences from the mechanical examples seem to contain a great diversity of differ-

ent categories (as underlined by the many tokens), leading to far lower scores, essentially

indicating a lesser confidence of the algorithm (under these training circumstances). The
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purely logical sessions, the geometric sessions and the combined approaches with the in-

terleaving comparison context all allow a higher level of confidence. The lower number of

tokens still indicates diversity, but probably one more focused on a fairly similar area of

categories – the categories in these sequences more often appear together, hence the higher

similarity score. This is again improved by the combined approaches and the consecutive

comparison contexts, the most prominent example being the u2vcti30cd variant. There

is a straightforward reason for the high scores and the low number of tokens. Because the

sessions identified by this variant contain a highly specific range of categories, many of

the sequences are removed, resulting in a low number of tokens but a highly robust set

of category sequences – the same categories appear in the same neighbourhood again and

again, allowing the algorithm to identify similarity with high confidence.

The chord chart shown in Figure 6.1 underlines this. Although it depicts a specific

category, it exemplifies the obvious different relations of the various approaches. The results

are reasonable; considering that the logical sessions are built upon topical similarity created

by the user history, it actually makes sense that their results appear to be far more stable

and specific than the mechanical variants. The consecutive comparison contexts combined

with the 30-minute timeout for the combined sessions is also reasonable; here, the identified

sequences are likely to be the most specific, resulting in highly defined topically related

category clusters.

This very fact of their specificity may well be why these variants perform best in the

recommendation scenario. Using the sessions identified by the different approaches as input

data, the algorithm was trained to generate a list of potentially interesting categories for

every step in a session. This is a very classical business case: either presenting interesting

categories to the user according to their interests or even predicting the potential next click

to be able to guide the user towards the fulfilment of a business goal would be a valuable

feature for a system. Four different algorithms were tested in order to be able to highlight

the specific properties of the input sequences: a most popular item recommendation, a k-

nearest Neighbours algorithm and two recurrent neural networks (one purely session-based

and the other with a session-representation of previous sessions).

The set-up for this use case was based on the research of Ruocco et al. [225]. The

algorithms were trained on 80% of sessions per user and evaluated on the other 20%.

Sessions were ordered chronologically based on the timestamp of their first interaction,

potentially mixing all sequences of interleaving approaches. In relation to this test set-up,

it is important to note that performance of the model is not in theory an indicator of the

predictive power of the algorithm due to the different test sets. That said, this dissertation

views session identification as part of the experiment set-up and preprocessing, just as it

would be treated in a productive environment anyway. The results are still valid, therefore,

especially when the differences between the session approaches are considered.

The preprocessing has a quite strong effect. The removal of consecutive repeated items

and all users with less than three sessions is a challenging but necessary step in line with

the nature of the scenario. Since the experiments for the second use case are similar to

those of the first use case, the same effects are to be expected. Despite the divergences both
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in the nature of the results and their evaluation when comparing use cases one and two,

the outcome and the interpretation of them are quite similar. This is perfectly reasonable,

since both experiments are based on category sequences, whereas for the recommendation

scenario, recall and mean reciprocal rank at different k’s were used for evaluation.

To summarize the results, no matter the algorithm the same effects identified for the

category embeddings are observed. The mechanical approaches tend to have rather diverse

sequences whereas the combined consecutive approaches are highly specific. From a diver-

sity point of view, the geometric approaches appear to be a mixture of both worlds. Best

performing are the specific and temporally close sequences of the combined approaches

with a consecutive comparison context, which is an extremely reasonable finding. As users’

information needs change over time – evolving into different needs, widening or narrow-

ing a topic scope – the recency argument for this type of approach makes a lot of sense.

With the additional bonus of highly specific sequences, it seems very logical that these

approaches appear to perform best. The time aspect is of central importance apparently:

the combination of the topical similarity with a temporal component to symbolize re-

cency improves the quality of recommendations and predictions. Strictly speaking, this

is not a new finding: there are comparable recommendation scenarios in the literature

that describe work using RNNs aimed at incorporating time between events to improve

their recommendations [268, 300]. It seems that adding a time component is critical to

the correct attribution of the current information need. The results of the current use case

heavily underline this issue, seen by the improvements of the direct comparison compared

to the comparisons using all interactions of a previous session to construct logical sessions,

thereby attributing a higher importance to the most recent interaction. Arguments as to

why the combined approaches using a 30-minute timeout or even the 24-hour timeout

seem to deliver the best results across all models and approaches can therefore be put

down to a combination of several reasons:

• Recency of category interactions

• Topical proximity of interactions

• Model and system specifics

This dissertation takes the first two reasons as the more important ones, with the tendency

of the logical component being the principal element. As this applied recommendation

task has shown, the combined approaches with short timeouts apparently are able to

produce the best results, although the purely logical variants perform very well also. The

concept of the logical sessions (and therefore also the combined approaches) works very

well with recommendations. The example from the literature reproduced in this use case

tries something similar: to show how incorporating information from previous sessions

into session-based recommendations is inherently the same as creating logical sessions

– the ideas behind this are very similar, creating topically related context for current

interactions.
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It is interesting to see that the logical sessions still work better in comparison to the

mechanical variants even when using the additional context of the iRNN. For the mechani-

cal sequences, using previous session embeddings should improve the current session-based

recommendation to a certain extent. For the logical variants, this is actually counterintu-

itive, as the sessions already have the similar categories in one sequence. Intuitively, adding

previous session context may even dilute the results, but apparently the algorithm is able

to differentiate accordingly. This is an interesting finding that hints at the power of these

algorithms. As pointed out, the time element is another important addition: the recency

effect on the sequences is responsible for highlighting the current context and generating

shorter, highly specific sessions.

Finally, and by no means least, the performance of the algorithms is as dependent on

the model as it is on the system. For example, the performance of the most popular recom-

mendations seems to be very dependent on the system itself. In view of the fact that a huge

portion of interactions lands on the Smartphones, it could be that the recommendations

may be somewhat disturbed here. However, it is a good baseline approach, which makes

it all the more interesting that some approaches still achieve higher values than others

here, especially MRR@1. Additionally, the specifics of the model itself are important: In

a productive environment, tuning the hyperparameters for the different models according

to the specifics of the session approach may lead to improved results.

The third use case delivered results rather different to the first two cases. From an

evaluation point of view, the situation is similar to the category embeddings: there is no

good or bad result, the use case is simply supposed to demonstrate the differences in the

results. Therefore, little effort was spent to find the right feature set or the most suitable

preprocessing steps. The different input data was fed into the same algorithms and the

results were described. The difference compared to the other use cases manifests itself in

the form of the input data. Having previously used sequential category id data at the

session id and user id levels, now the clustering was performed on aggregated session

data at a user id level. This is quite an important distinction, for, whereas previously the

contents of the sessions was the crucial factor, now the algorithm only has the structure

of the sessions as input.

The business case is once again very typical in this scenario: clustering the user pop-

ulation in order to gain insights into or new hypotheses on how said users interact with

the system. Clearly, it is important for a system to have knowledge about their users: how

they behave, how they interact with the system and how they react to customer-related

communications. It is only through this that the system owner gains knowledge about user

behaviour and the strategy most likely to fulfil certain business goals or incentivize users

to help do so.

Using a hierarchical density-based clustering algorithm, two separate runs with differ-

ent settings and features were conducted. The outcomes were in line with the expectations,

showing very distinct results in the clusters associated with users dependent on the session

approach. The content of the sessions is not the only element that changes per different

identification, the structure changes very much also. Even though the clustering is heavily
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dependent on both the preprocessing and the features used as well, it became obvious

that, depending on which session approach is used to identify the sessions, user behaviour

is represented differently.

Where the first two use cases show that the tested session approaches perform very dif-

ferently under the given circumstances, the third use case shows an additional component.

It shows that while the clustering does not reveal at all which session approach delivers

better results, it does very clearly prove that users will be clustered differently depending

on the session approach. What this means is, if a system seeks to evaluate user behaviour

based on session behaviour to find the most engaged users or those most likely to generate

the highest financial value, the choice of session approach will be responsible for different

results. This is a very important observation since, basically, it means that the system

should be optimized to meet different objectives depending on the identified session. The

varying identification of sessions leads to varying interpretations of user behaviour on the

system.

This concludes the evaluation chapter of this dissertation. Here, it has been shown

that there are quite some differences not only in the content but also in the structural

composition of the sessions. All three use cases showed another aspect of the data and how

sessionized data can be applied in a business setting. As discussed, the session approaches

make room for divergent interpretations that lead to potentially very different conclusions

for system owners.
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Chapter 7

Conclusion

The final chapter of this dissertation provides a brief summary of the research and its most

important findings. In addition to discussing the potential limitations and shortcomings

of the research, a brief outline of possible starting points for future work is offered.

7.1 Summary

The dissertation opened with a thorough overview of the various concepts of sessions in

web information systems. It then went on to investigate the overarching research question

as to whether different session-identification implementations would impact analysis and

machine learning tasks and to survey the following three subquestions:

RQ1 How can sessions be modelled to represent one or more information needs?

RQ2 Are there differences in the results of different session-identification algorithms? Can

these results be attributed to specific identification and comparison mechanics?

RQ3 Will the performance of machine learning algorithms change depending on the input

data?

Chapter 2, the literature review, introduced the various concepts of sessionization and the

fairly long history of session-identification research. The state of research was outlined

from the start: from 1995 with the introduction of simple mechanical sessions and the

probable origin of the well-known industry standard – the 30-minute inactivity timeout –

by Catledge and Pitkow [43] to the rise of task-focused logical concepts of around 2010

with Jones and Klinkner [120], Gayo-Avello [80] or Hagen et al. [89] [88] and Liao et al.

[145]. The different concepts and their respective mechanics were presented and explained

with various examples from the literature.

The research has shown how the commonly used evaluation methods are somewhat

flawed and impractical to achieve the objective assessment of session-identification ap-

proaches. A brief introduction to how sessions are used in online information systems was

also given. State-of-the-art examples from the literature were then described to highlight

how these might benefit from other session concepts.

218



Chapter 3 introduced the information system that was used for the research experi-

ments. The system architecture, its features and structure and the most common business

cases were explained. In addition, the tracking concept active on the system was described

along with the problems that could possibly arise due to its implementation.

Chapter 4 presented the research design, explained the concepts and definitions, and

put forward the concise terminology established in this dissertation. It was shown how the

the dataset used in the research experiments was preprocessed to a final state, ready to be

further enriched with session information. Section 4.4 described in detail how all 135 session

approaches tested in this dissertation were constructed and implemented. The section

explained all the steps in the development, from the simple mechanical timeouts and fixed

lengths towards the more complex logical sessions using category similarity constructed

from category sequence embeddings. A novel approach tested in this dissertation was

presented: basing the calculation of category similarity and the identification of logical

sessions on user-category interaction history using embedding algorithms. The section

showed the methodological steps to reproduce these logical sessions using real data from

an online information system, thereby answering RQ1. Also described is implementation

of the adapted geometric session-identification approach reported by Gayo-Avello [80],

whereby instead of using lexical query similarity semantic category similarity was used.

Finally, the steps of the two-part evaluation were presented: refraining from using a

traditional gold-standard dataset measuring the actual quality of the identified sessions,

a different approach for evaluation was chosen instead. To answer RQ2, the dissertation

determined that using a thorough descriptive analysis in the first step of the evaluation was

the correct choice to show the divergences between all 135 implemented session variants.

The analysis was not aimed at assessing the quality of the produced results but simply

at highlighting the differences. The evaluation’s second part was more practical: it used

a sample of sessions from a selection of 26 approaches as input for machine learning

algorithms in the implementation of three typical business applications. The objective of

this step was to show the differences between the session-identification algorithms in a less

abstract way and to indicate the potential qualitative differences between them depending

on the application.

Chapter 5 was dedicated to the initial evaluation; providing extensive analysis based

on a variety of important measures, the differences between the results of the session

algorithms were elaborated to answer RQ2. An overview of the overall structure of the

dataset with a short user analysis was then presented, followed by sections that discussed

all types of tested session approaches in detail. This was followed by a discussion that

put together the most important results. These results are summarized in Table 7.1. The

table lists some of the more salient strengths and weaknesses and provides some general

comments on the different approaches, which it attempts to set out in relation to each

other.
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Chapter 6 then presented in detail how the sampled input data from 26 algorithms

is fed into three machine learning algorithms to answer RQ3. Experiments were run im-

plementing three different business cases: an embedding scenario to calculate category

similarity comparable to the procedure from Section 4.4.3.3, a recommendation scenario

with multiple different algorithms reproduced from the literature [225] and a clustering use

case using a well-suited clustering algorithm [34] [172] for exploratory data analysis. This

dissertation demonstrates that the output of these three algorithms changes drastically in

some cases and in some experimental circumstances with the data used here (RQ3).

With the design and development of the 135 session models, the extensive descriptive

analysis and implementation in three typical business case applications, this dissertation

shows in detail that selecting a suitable session model is highly important. It demonstrates

how when sessions are identified differently they may deliver varying interpretations of user

behaviour depending on how these users interact with the system. This dissertation has

underlined the fact that the same divergences are seen in the content also and that the

differences are therefore not only structurally superficial. This leads to the very likely

assumption that there are not only structural changes but also qualitative differences:

using the best session algorithm for certain applications will definitely lead to improved

results. In this regard, the dissertation concludes that sessionization should not be treated

as a given fact, because careful modelling of sessions is integral to the preprocessing of

data.

7.2 Contributions

In its conclusions, this dissertation has reported several findings to support its initial

statement: the research has found that the choice made between mechanical, logical or

combined session approaches for sessionizing data has a strong impact on the output.

Equally, it has been proven that the comparison mechanics, comparison contexts and

their subvariants make a difference to how the data may be interpreted. This is the most

important outcome: that the comparison mechanics, contexts and subvariants do make a

difference to the system and algorithm, not only in performance but financially as well in

the end. In addition, the research can report several other findings that will contribute to

future research and practice.

1. The establishment of a concise terminology for all session concepts, their subvari-

ants and their underlying logics enables future researchers to work with a common

language and common concepts.

2. The introduction of a method to identify logically connected sessions that represent

the information needs of users. Thus, instead of using queries, the topical connection,

based on user sequence history, calculates category similarities to estimate interaction

similarity. This mechanic enables system owners to understand the engagement and

needs of its users when interacting with a certain topic area without relying solely on

queries. The algorithm concept allows different levels of complexity or attachment,
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essentially offering the possibility to identify either specific tasks or broad journeys

as defined in Section 4.1.

3. Providing a comprehensive and holistic overview of the topic of session-identification

algorithms, including implementation, analysis and application of multiple different

mechanics, contexts and algorithms.

4. Presenting researchers the possibility to create specific topic-focused session datasets

based on actual data: for example, with the logical mechanisms, datasets can be se-

lected based on user sessions which focus on different information needs with varying

complexity and scope.

5. Showcasing a methodology with which to evaluate different session concepts in terms

of structure and objective quality.

In all, to the best knowledge of the author, the main contribution of the current dissertation

is to provide the most comprehensive comparison of session-identification algorithms to

date. This research provides a methodology to comprehensively implement, analyse and

compare a wide variety of mechanics, making it possible to understand user behaviour

from manifold perspectives and allowing system owners to better understand the effects

their session modelling has.

7.3 Limitations

Naturally, the dissertation has some limitations. There are multiple caveats in every section

that readers should bear in mind when considering the results and contributions. The

limitations concern different areas, but the list below contains the overarching topics:

• Data quality regarding the raw data and the assumed concepts

• Issues regarding the session data and preprocessing

• Variety of mechanics and applications

• Methodological limitations

The first thing to consider is the lack of data quality in the raw data. This was already

somewhat discussed in Section 3.5 and mentioned during the preprocessing steps in Section

4.3. There are multiple limitations regarding the used dataset that have a direct influence

on the identified sessions.

The most fundamental issue is the common user identifier. This dissertation employed

a user id concept based on the cookie value and pre-mapped hashed email information.

The principle underlying this is that multiple cookies which share common hashes are

associated with the last hash seen in the data, creating a unique and anonymous user id

for every set of related cookies and hashes. However, this concept may produce too many

errors: not least, the association may be faulty – the connection between the last known
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hash and related cookies is only an assumption. The second point is that the tracking

quality itself, based on cookie value as the common user identifier, might not be good

enough. It can be taken as read that many system users will not be recognized as they

enter the system; that is, users may be employing masking software or simply deleting their

cookies regularly / after every visit to the system. This known limitation cannot be fixed

by preprocessing the data any differently; when a user chooses not to be tracked, there

is no valid technical, legal or ethical option that can override this choice. Unfortunately,

it is not possible to estimate the impact of this, but it raises the question of whether the

majority of users with a low number of overall interactions do in fact return more than

once or twice but with different identifiers.

This research limitation may have had a big impact on the outcome of the tested

session algorithms. The absence of a reliable user identifier may well have interfered with

any logical consistency, leading to falsely connected or no interaction sequences connected

at all. Nonetheless, it is a limitation that cannot be changed. The assumption is that the

sheer quantity of data may have somewhat mitigated the effects. In addition, bearing in

mind that the effects would have been equal across all session approaches, the differences

between them therefore can still be seen as valid, even if the logical sessions may have

been hit the hardest. Also, in defence, it should be noted that other published research

deals with the exact same challenge and no practical solution has been forthcoming as yet.

Another common problem is information that is not available in the raw data. In

the the url and http referer fields, for example. In theory, both should have content

on every interaction the user has with the system, reporting the way users move on the

system. Unfortunately, often they are empty or plainly wrong. The tracking apparently

has issues with some elements of the website: sometimes, marketing parameters are added

or removed more or less arbitrarily, changing the relation between url and http referer.

This can be somewhat caught by preprocessing but often there are breaks in the path. An

additional problem here are completely missing traces or completely untracked content

(i.e. areas behind the login including the wish list). Both present very significant problems

that again have potential to lead to inconsistencies. For example, the research showed how

the visits depend very much on data quality in this regard. The many session breaks and

inconsistent sessions (and the highest number of single-interaction sessions) produced by

the path-based approach made it essentially useless.

A similar limitation revolves around this same issue of data quality. As Section 4.4.3.2

discussed, many interactions needed to be substituted with a category id to make use

of them in the logical sessions. This is a) a problem of the raw data, not containing

reliable identifiers although it should and b) a known limitation of this research. By adding

category ids to the query interactions using word embeddings, a certain error margin

was introduced. Once again, the effect of incorrectly assigned category ids is not easily

measurable, especially since these issues with identifiers are something to be expected in

the raw data. But it is still a limitation that may have had an impact on the logical and

combined sessions, potentially interrupting logically connected sequences. However, some

session approaches were more reliant on data quality than others.
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Generally, many steps in this dissertation relied on heavy preprocessing to generate

a usable dataset; many of these came with assumptions that could not really be tested

in any detail within the scope of this research. This meant that multiple intermediate

results were not actually evaluated in a proper sense, but rather simply regarded as good

enough for the time being and under the specific circumstances of the experiments (i.e. the

assignment of categories to queries, the thresholds for the logical sessions, the sampling).

This limitation belongs within the scope of this dissertation, therefore; in order to show

the differences between the session algorithms, the reported results were good enough. In

the future, the research and even practical implementation of the steps shown here should

be evaluated with care even though they seem ‘good enough’ for now.

Overall, the 135 variants, tested in three overarching categories with 11 subcategories,

brought an impressive variety and introduced many different mechanics and contexts. How-

ever, there is still room for more: the logical sessions used only three different comparison

mechanics (lexical matching, bm25 shared-term space and user sequence embeddings).

Greater diversity could definitely be introduced in relation to these mechanics: for exam-

ple, using a variety of distance calculations of the similarity may lead to different results;

or even completely different similarity mechanics using other features may produce worth-

while findings. The same is true for the combined approaches using only one example from

the literature: extended diversity would have been beneficial to produce an even broader

picture. These limitations were considered acceptable within the scope of this dissertation,

whereby a limited diversity of mechanics did not invalidate the assertion that there are

clear divergences between the different mechanics.

Additionally, and this relates also to the previous point, the dataset used in this re-

search is quite distinct. As it contains a limited number of query interactions, it is near-

impossible to transfer any algorithm used in other research for session identification di-

rectly to this dataset. The majority of the state-of-the-art research deals with query-based

search interaction datasets, usually only calculating similarity between queries. These al-

gorithms are not directly applicable on data structured in other ways. The point presents

both a limitation and an advantage in its contribution: the testing of these session algo-

rithms on a dataset that is not truly comparable to the other literature, also demonstrates

a way that research in this area and on similar datasets can be carried out.

Likewise, another methodological limitation is the difference in evaluation. While it

is commonplace to use a gold standard to evaluate session algorithms, this dissertation

disregarded this type of evaluation since it is prone to introducing subjectivity. The current

research, therefore, evaluated and tested the differences in an alternative way. For example,

an application from the literature was incorporated and tested and was shown to reproduce

the same limitations. As Ludewig and Jannach [156] report in their evaluation of many

different session-based recommendation scenarios, without a standard for evaluation the

various research is not really comparable anyway. However, again, given the circumstances,

the results of the current research experiment are valid.

A final point can be made about the selection of applications. The algorithms chosen for

this research can be considered state-of-the art, one testing an example from the literature
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and the other two utilizing well-tested machine learning models. The applications that

were tested delivered meaningful results by demonstrating how differently the session

approaches behave under given circumstances. Nonetheless, other more diverse and also

other traditional use cases could be recruited to demonstrate that there will always likely

be divergences even in something simple like a regression forecast.

7.4 Suggestions for Future Work

There are many possibilities to build upon the research conducted here. There are several

parts throughout this dissertation where more thorough evaluation or implementation may

have led to improved results. Developing these parts could offer a good starting point for

further research. There are some other ideas to present for future research based on the

findings reported in this dissertation.

The first of these that immediately springs to mind is to simply repeat the research

conducted here on different datasets. This dissertation has proven that there is a divergence

in the output of different session modelling in relation to interactions on an online price

comparison platform – a rather specific type of online information system. A no doubt

fruitful continuation in this line of work would be to test the methodology presented here,

simply reproducing it on different data to see if the statements hold generally true.

A further interesting step forward would be to develop more sophisticated and varie-

gated means to represent information need in logical sessions. Here, there are many options

that could be built upon to research finer-grained or broader logical sessions, representing

either very specific tasks or holistic user journeys. This dissertation presents both, de-

pending on the chosen method; future work might expand on this and create a framework

with different thresholds or completely other mechanics. A framework of hierarchies of

logical sessions – representing one or more information needs depending on mechanic and

threshold – would be an interesting project, enabling researchers to identify nuances in

outcome between the logical and combined sessions: presenting a way of programmatically

evaluating user satisfaction and users’ information needs.

Future research might involve expanding the testing of logical and combined sessions

and extending the comparisons between them. There is room to improve the depth and

diversity of the use cases. Evaluation of the recommendations could be conducted at

greater scale, for example, quantifying the effect of different scales of logical relatedness in

the session-based and session-aware recommendations. Likewise, the exploratory clustering

conducted in this dissertation could very well be extended with other appropriate and more

thorough preprocessing, carefully selected hyperparameters and added features. Another

potential extension might focus on the logical sessions to increase understanding of how

the resulting behaviours are clustered and, ultimately, how they look comparatively.

Finally, the introduction of logical sessions has increased knowledge about the different

strengths and inherent properties of the presented session approaches, opening up many

more possibilities relating to user analysis and user support. One of the more sophisticated

ideas to come out of the current research is to exploit the representations built by differ-
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ent types of sessions to simulate user behaviour. This could be an advanced user model

employing various levels of logical sessions and adapted mechanical sessions: with these

different levels of behaviour as represented by the sessions, an algorithm would be able

to construct complex user models. With the information generated by these user models,

it would then be possible to actually simulate users interacting with the system, thereby

easily creating artificial data to enable automatic evaluation of certain system features.

7.5 Closing Words

This dissertation has successfully answered its overarching research question: There is

definitely a strong difference between the results when mechanical, logical or combined

session identification is employed, no matter the application. The abundance of mechanics

and contexts tested here and the divergence in the results indicate that anyone working

with user-interaction data should be very cautious when preprocessing it to identify ses-

sions, as the difference in the output could be greater than expected. The dissertation

has highlighted how careless adoption of industry standards like the 30-minute inactivity

rule may not only significantly reduce the performance of algorithms but also, ultimately,

the systems. The key to understanding users and the usage of any information system

is finding the optimum session identification for the right application. Depending on said

application and the system and its users in general, the session-identification approach

may be different from use case to use case.

Convincing the community overnight is probably not possible, which is lamentable

considering that multiple research has already shown that recourse to logical sessions rather

than a continued reliance on mechanical sessions will improve the results of algorithms.

Hence there remains an incomprehensibly large quantity of applied work that simply

adopts the industry standard without sufficient forethought. The author is looking forward

at least to gradually incorporating the innovative and improved concepts presented in this

dissertation into practice within the industry.

226



Bibliography

[1] Adaji, I., K. Oyibo, and J. Vassileva (2018). “Shopper Types and the Influence of Per-

suasive Strategies in E-Commerce”. In: Proceedings of the Third International Work-

shop on Personalization in Persuasive Technology. Third International Workshop on

Personalization in Persuasive Technology (PPT18), Waterloo, ON, Canada, ed. by R.

Orji, M. Kaptein, J. Ham, et al. PPT ’18. CEUR Workshop Proceedings, Vol. 2089.

CEUR-WS.org, pp. 58–65.

[2] Adomavicius, G. and A. Tuzhilin (2005). “Toward the Next Generation of Recom-

mender Systems: A Survey of the State-of-the-Art and Possible Extensions”. In: IEEE

Transactions on Knowledge and Data Engineering 17.6, pp. 734–749. doi: 10.1109/

TKDE.2005.99.

[3] Agichtein, E., E. Brill, and S. Dumais (2018). “Improving Web Search Ranking by

Incorporating User Behavior Information”. In: ACM SIGIR Forum 52.2, pp. 11–18.

doi: 10.1145/3308774.3308778.

[4] Agichtein, E., R. White, S. Dumais, and P. Bennett (2012). “Search, Interrupted:

Understanding and Predicting Search Task Continuation”. In: Proceedings of the 35th

International ACM SIGIR Conference on Research and Development in Information

Retrieval. 35th International ACM SIGIR Conference on Research and Development

in Information Retrieval (SIGIR12), Portland, OR, USA, ed. by W. Hersh, J. Callan,

Y. Maarek, et al. SIGIR ’12. Association for Computing Machinery, pp. 315–324. doi:

10.1145/2348283.2348328.

[5] Agosti, M. and G. M. Di Nunzio (2007). “Web Log Mining: A Study of User Sessions”.

In: Proceedings of the 10th DELOS Thematic Workshop on Personalized Access, Pro-

file Management, and Context Awareness in Digital Libraries. 10th DELOS Thematic

Workshop on Personalized Access, Profile Management, and Context Awareness in Dig-

ital Libraries (PersDL07), Corfu, Greece, ed. by W. Kießling, G. Koutrika, T. Catarci,

et al. PersDL ’07, pp. 70–74.

[6] Ai, Q., Y. Zhang, K. Bi, and W. B. Croft (2020). “Explainable Product Search with a

Dynamic Relation Embedding Model”. In: ACM Transactions on Information Systems

38.1, pp. 1–29. doi: 10.1145/3361738.

[7] Alexopoulou, P. (2016). “A New Integrated Model for Multitasking during Web Search-

ing”. PhD thesis. Loughborough, England, UK: Loughborough University. 259 pp.

[8] Anderson, B. and D. McGrew (2017). “OS Fingerprinting: New Techniques and a Study

of Information Gain and Obfuscation”. In: Proceedings of the 2017 IEEE Conference

227

https://doi.org/10.1109/TKDE.2005.99
https://doi.org/10.1109/TKDE.2005.99
https://doi.org/10.1145/3308774.3308778
https://doi.org/10.1145/2348283.2348328
https://doi.org/10.1145/3361738


on Communications and Network Security. 2017 IEEE Conference on Communications

and Network Security (CNS17), Las Vegas, NV, USA. CNS ’17. IEEE, pp. 1–9. doi:

10.1109/CNS.2017.8228647.

[9] Ansari, Z. A., S. A. Sattar, and A. V. Babu (2017). “A Fuzzy Neural Network Based

Framework to Discover User Access Patterns from Web Log Data”. In: Advances in

Data Analysis and Classification 11.3, pp. 519–546. doi: 10.1007/s11634-015-0228-

4.

[10] Asadianfam, S. and M. Mohammadi (2014). “Identify Navigational Patterns of Web

Users”. In: International Journal of Computer-Aided Technologies (IJCAx) 1.1, pp. 1–

8.

[11] Aslanyan, G., A. Mandal, P. S. Kumar, A. Jaiswal, and M. R. Kannadasan (2020).

“Personalized Ranking in eCommerce Search”. In: Proceedings of The World Wide

Web Conference 2020. The World Wide Web Conference 2020 (WWW20), Taipei,

Taiwan, ed. by A. E. F. Seghrouchni, G. Sukthankar, T.-Y. Liu, et al. WWW ’20.

Association for Computing Machinery, pp. 96–97. doi: 10.1145/3366424.3382715.

[12] Aswadallah, A. H., R. W. White, P. Pantel, S. T. Dumais, and Y.-M. Wang (2014).

“Supporting Complex Search Tasks”. In: Proceedings of the 23rd ACM International

Conference on Information and Knowledge Management. 23rd ACM International Con-

ference on Information and Knowledge Management (CIKM14), Shanghai, China, ed.

by J. Li, X. S. Wang, M. Garofalakis, et al. CIKM ’14. Association for Computing

Machinery, pp. 829–838. doi: 10.1145/2661829.2661912.

[13] Aula, A., R. M. Khan, and Z. Guan (2010). “How Does Search Behavior Change as

Search Becomes More Difficult?” In: Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems. SIGCHI Conference on Human Factors in Computing

Systems (CHI10), Atlanta, GA, USA, ed. by E. Mynatt, G. Fitzpatrick, K. Edwards, et

al. CHI ’10. Association for Computing Machinery, pp. 35–44. doi: 10.1145/1753326.

1753333.

[14] Bandari, D., S. Xiang, J. Martin, and J. Leskovec (2019). “Categorizing User Sessions

at Pinterest”. In: Proceedings of the 2019 IEEE International Conference on Big Data

and Smart Computing. 2019 IEEE International Conference on Big Data and Smart

Computing (BigComp), Kyoto, Japan. BigComp ’19. IEEE, pp. 1–8. doi: 10.1109/

BIGCOMP.2019.8679211.

[15] Barkan, O., Y. Brumer, and N. Koenigstein (2016). “Modelling Session Activity with

Neural Embedding”. In: Proceedings of the Poster Track of the 10th ACM Conference

on Recommender Systems. 10th ACM Conference on Recommender Systems (Rec-

Sys16), Boston, MA, USA, ed. by I. Guy and A. Sharma. RecSys ’16. CEUR Workshop

Proceedings, Vol. 1688. CEUR-WS.

[16] Batmaz, Z., A. Yurekli, A. Bilge, and C. Kaleli (2019). “A Review on Deep Learning for

Recommender Systems: Challenges and Remedies”. In: Artificial Intelligence Review

52.1, pp. 1–37. doi: 10.1007/s10462-018-9654-y.

228

https://doi.org/10.1109/CNS.2017.8228647
https://doi.org/10.1007/s11634-015-0228-4
https://doi.org/10.1007/s11634-015-0228-4
https://doi.org/10.1145/3366424.3382715
https://doi.org/10.1145/2661829.2661912
https://doi.org/10.1145/1753326.1753333
https://doi.org/10.1145/1753326.1753333
https://doi.org/10.1109/BIGCOMP.2019.8679211
https://doi.org/10.1109/BIGCOMP.2019.8679211
https://doi.org/10.1007/s10462-018-9654-y


[17] Bayir, M. A., I. H. Toroslu, M. Demirbas, and A. Cosar (2012). “Discovering Better

Navigation Sequences for the Session Construction Problem”. In: Data & Knowledge

Engineering 73, pp. 58–72. doi: 10.1016/j.datak.2011.11.005.

[18] Beeferman, D. and A. Berger (2000). “Agglomerative Clustering of a Search Engine

Query Log”. In: Proceedings of the Sixth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. Sixth ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining (KDD00), Boston, MA, USA, ed. by

R. Ramakrishnan, S. Stolfo, R. Bayardo, et al. KDD ’00. Association for Computing

Machinery, pp. 407–416. doi: 10.1145/347090.347176.

[19] Belkin, N. J., M. Cole, and J. Liu (2009). “A Model for Evaluation of Interactive

Information Retrieval”. In: Proceedings of the SIGIR Workshop on the Future of IR

Evaluation. SIGIR Workshop on the Future of IR Evaluation (SIGIR09), Boston, MA,

USA, ed. by S. Geva, J. Kamps, C. Peters, et al. SIGIR ’09. IR Publications, pp. 7–8.

[20] Berendt, B., B. Mobasher, M. Nakagawa, and M. Spiliopoulou (2003). “The Impact of

Site Structure and User Environment on Session Reconstruction in Web Usage Anal-

ysis”. In: Mining Web Data for Discovering Usage Patterns and Profiles: Proceedings

of the 4th International Conference on Mining Web Data for Discovering Usage Pat-

terns and Profiles. International Workshop on Mining Web Data for Discovering Usage

Patterns and Profiles (WebKDD02), Edmonton, AB, Canada, ed. by O. R. Zäıane, J.
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A1 Overview of the columns in the dataset

Field Description Datatype

browser Name of the browser used for the interaction string(255)

category id Identifier of the category of the page interacted with bigint(19)

category name Name of the category of the page interacted with string(255)

category synonyms Synonyms of the category of the page interacted with string(255)

category type Type of the category of the page interacted with string(255)

cluster id Id of the cluster page interacted with string(255)

compared products List of product ids used in the product comparison user action string(255)

device Type of device used for the interaction string(255)

http referer URL of the previous page visited by a user string(255)

interactionday Human-readable date of the interaction date(10)

last tracetime Timestamp of the (chronologically) previous interaction of a user bigint(19)

list id Id of the list page interacted with string(255)

list query Query used to generate the list interacted with string(255)

main product id Id of the parent product of a product id when existing, otherwise product id bigint(19)

man query Query used to search for manufacturers on the respective manufacturer pages string(255)

manufacturer id Identifier of the manufacturer of a visited product string(255)

number of interactions Total of all interactions by an individual user entity bigint(19)

offer id Identifier of the offer interacted with string(255)

orders Identifier to mark an order bigint(19)

os Type of operating system used to visit the page string(255)

page template Type description of the page visited by a user string(255)

parent category id Identifier of the parent category of the category interacted with string(255)

product id Identifier of a visited product bigint(19)

product name Name of a visited product string(255)

product types Type of a visited product string(255)

query Query issued by a user string(255)

referer list query List query extracted from the referer string(255)

referer query Query issued by a user extracted from the referer string(255)

root category id Identifier of the highest level of a visited category bigint(19)

root category name Name of the highest level of a visited category string(255)

shop id Identifier for the shop a user interacted with string(255)

shop query Query used to search for shops on the respective shop pages string(255)

timespan Time between subsequent interactions of a user double(53)

trace id Unique identifier for every interaction string(255)

tracetime Unix timestamp of an interaction in milliseconds bigint(19)

url URL of the page visited by a user string(255)

user id General numeric identifier for a user entity bigint(19)

Table A1: Overview of the columns in the dataset.

A2 Overview of all tested approaches

Approach Method Mechanic Variant
Comparison

context
Identifier

1 M Structural Path-based
connecting http referer

and url
Cons., complH. visit id

2 M Temporal (Fixed) Inactivity Timeout 5m Cons., dir. ti5

3 M Temporal (Fixed) Inactivity Timeout 10m Cons., dir. ti10

4 M Temporal (Fixed) Inactivity Timeout 15m Cons., dir. ti15

5 M Temporal (Fixed) Inactivity Timeout 25.5m Cons., dir. ti25

6 M Temporal (Fixed) Inactivity Timeout 30m Cons., dir. ti30

7 M Temporal (Fixed) Inactivity Timeout 45m Cons., dir. ti45

8 M Temporal (Fixed) Inactivity Timeout 60m Cons., dir. ti60

9 M Temporal (Fixed) Inactivity Timeout 90m Cons., dir. ti90

10 M Temporal (Fixed) Inactivity Timeout 120m Cons., dir. ti120

11 M Temporal (Fixed) Inactivity Timeout 180m Cons., dir. ti180

12 M Temporal (Fixed) Inactivity Timeout 360m Cons., dir. ti360

13 M Temporal (Fixed) Inactivity Timeout 720m Cons., dir. ti720

14 M Temporal (Fixed) Inactivity Timeout 1,440m Cons., dir. ti1440

15 M Temporal Fixed Length 5m Cons., dir. tf5

16 M Temporal Fixed Length 10m Cons., dir. tf10

17 M Temporal Fixed Length 15m Cons., dir. tf15

18 M Temporal Fixed Length 20m Cons., dir. tf20

19 M Temporal Fixed Length 30m Cons., dir. tf30

20 M Temporal Fixed Length 45m Cons., dir. tf45

21 M Temporal Fixed Length 60m Cons., dir. tf60

22 M Temporal Fixed Length 90m Cons., dir. tf90

23 M Temporal Fixed Length 120m Cons., dir. tf120
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Identifier

24 M Temporal Fixed Length 180m Cons., dir. tf180

25 M Temporal Fixed Length 360m Cons., dir. tf360

26 M Temporal Fixed Length 720m Cons., dir. tf720

27 M Temporal Fixed Length 1,440m Cons., dir. tf1440

28 M Temporal Fixed Length Session Day Cons., dir. tfd

29 M Temporal
(Dynamic) Inactivity

Timeout
per page template Cons., dir. tdp

30 M Temporal
(Dynamic) Inactivity

Timeout
per category id Cons., dir. tdc

31 M Temporal
(Dynamic) Inactivity

Timeout
per root category id Cons., dir. tdr

32 M Temporal
(Dynamic) Inactivity

Timeout

per page template,

category id
Cons., dir. tdpc

33 M Temporal
(Dynamic) Inactivity

Timeout

per page template,

root category id
Cons., dir. tdpr

34 M Temporal
(Dynamic) Inactivity

Timeout

per page template, month

of interaction day
Cons., dir. tdpm

35 M Temporal
(Dynamic) Inactivity

Timeout

per category id, month of

interaction day
Cons., dir. tdcm

36 M Temporal
(Dynamic) Inactivity

Timeout
per page template, device Cons., dir. tdpd

37 M Temporal
(Dynamic) Inactivity

Timeout

per page template,

category id and device
Cons., dir. tdpcd

38 L Lexical Matching
category ids,

root category ids
Cons., dir. lcdb1

39 L Lexical Matching
category ids,

root category ids
All, dir. ladb1

40 L Semantic Term Space

sim. category ids

according to bm25L

ranking (top 10)

Cons., complH. bm25cc

41 L Semantic Term Space

sim. category ids

according to bm25L

ranking (top 10)

Cons., dir. bm25cd

42 L Semantic Term Space

sim. category ids

according to bm25L

ranking (top 10)

All, complH. bm25ac

43 L Semantic Term Space

sim. category ids

according to bm25L

ranking (top 10)

All, dir. bm25ad

44 L Semantic userCat2Vec
cosine sim. category ids

(top 10)
Cons., complH. u2v10cc

45 L Semantic userCat2Vec
cosine sim. category ids

(top 10)
Cons., dir. u2v10cd

46 L Semantic userCat2Vec
cosine sim. category ids

(top 10)
All, complH. u2v10ac

47 L Semantic userCat2Vec
cosine sim. category ids

(top 10)
All, dir. u2v10ad

48 L Semantic userCat2Vec
cosine sim. category ids

(> 0.5)
Cons., complH. u2v05cc

49 L Semantic userCat2Vec
cosine sim. category ids

(> 0.5)
Cons., dir. u2v05cd

50 L Semantic userCat2Vec
cosine sim. category ids

(> 0.5)
All, complH. u2v05ac

51 L Semantic userCat2Vec
cosine sim. category ids

(> 0.5)
All, dir. u2v05ad

52 L Semantic userCat2Vec
cosine sim. category ids

(cutoff)
Cons., complH. u2vccc

53 L Semantic userCat2Vec
cosine sim. category ids

(cutoff)
Cons., dir. u2vccd

54 L Semantic userCat2Vec
cosine sim. category ids

(cutoff)
All, complH. u2vcac

55 L Semantic userCat2Vec
cosine sim. category ids

(cutoff)
All, dir. u2vcad

56 C Geometric userCat2Vec cosine sim., 24h Cons., complH. geomu24cc

57 C Geometric userCat2Vec cosine sim., 24h Cons., dir. geomu24cd

58 C Geometric userCat2Vec cosine sim., 14d Cons., complH. geomu14cc

59 C Geometric userCat2Vec cosine sim., 14d Cons., dir. geomu14cd

60 C Geometric userCat2Vec cosine sim., 24h All, complH. geomu24ac

61 C Geometric userCat2Vec cosine sim., 24h All, dir. geomu24ad

62 C Geometric userCat2Vec cosine sim., 14d All, complH. geomu14ac

63 C Geometric userCat2Vec cosine sim., 14d All, dir. geomu14ad

64 C Geometric userCat2Vec cosine sim., 75d All, complH. geomu75ac

65 C Geometric userCat2Vec cosine sim., 75d All, dir. geomu75ad

66 C Lexical, temporal matching, inactivity
category id,

root category id, 5m
Cons., dir. lti5cdb1
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67 C Lexical, temporal matching, inactivity
category id,

root category id, 30m
Cons., dir. lti30cdb1

68 C Lexical, temporal matching, inactivity
category id,

root category id, 1,440m
Cons., dir. lti1cdb1

69 C Lexical, temporal matching, inactivity
category id,

root category id, 14d
Cons, dir. lti14cdb1

70 C Lexical, temporal matching, inactivity
category id,

root category id, 1d
All, dir. lti1adb1

71 C Lexical, temporal matching, inactivity
category id,

root category id, 14d
All, dir. lti14adb1

72 C Lexical, temporal matching, inactivity
category id,

root category id, 75d
All, dir. lti75adb1

73 C Lexical, temporal matching, inactivity
category id,

root category id, 180d
All, dir. lti180adb1

74 C Semantic, temporal usercat2vec, inactivity cosine sim. top 10, 5m Cons., complH. u2v10ti5cc

75 C Semantic, temporal usercat2vec, inactivity cosine sim. top 10, 5m Cons., dir. u2v10ti5cd

76 C Semantic, temporal usercat2vec, inactivity cosine sim. > 0.5, 5m Cons., complH. u2v05ti5cc

77 C Semantic, temporal usercat2vec, inactivity cosine sim. > 0.5, 5m Cons., dir. u2v05ti5cd

78 C Semantic, temporal usercat2vec, inactivity cosine sim. cutoff, 5m Cons., complH. u2vcti5cc

79 C Semantic, temporal usercat2vec, inactivity cosine sim. cutoff, 5m Cons., dir. u2vcti5cd

80 C Semantic, temporal usercat2vec, inactivity cosine sim. top 10, 30m Cons., complH. u2v10ti30cc

81 C Semantic, temporal usercat2vec, inactivity cosine sim. top 10, 30m Cons., dir. u2v10ti30cd

82 C Semantic, temporal usercat2vec, inactivity cosine sim. > 0.5, 30m Cons., complH. u2v05ti30cc

83 C Semantic, temporal usercat2vec, inactivity cosine sim. > 0.5, 30m Cons., dir. u2v05ti30cd

84 C Semantic, temporal usercat2vec, inactivity cosine sim. cutoff, 30m Cons., complH. u2vcti30cc

85 C Semantic, temporal usercat2vec, inactivity cosine sim. cutoff, 30m Cons., dir. u2vcti30cd

86 C Semantic, temporal usercat2vec, inactivity cosine sim. top 10, 1,440m Cons., complH. u2v10ti1cc

87 C Semantic, temporal usercat2vec, inactivity cosine sim. top 10, 1,440m Cons., dir. u2v10ti1cd

88 C Semantic, temporal usercat2vec, inactivity cosine sim. > 0.5, 1,440m Cons., complH. u2v05ti1cc

89 C Semantic, temporal usercat2vec, inactivity cosine sim. > 0.5, 1,440m Cons., dir. u2v05ti1cd

90 C Semantic, temporal usercat2vec, inactivity cosine sim. cutoff, 1,440m Cons., complH. u2vcti1cc

91 C Semantic, temporal usercat2vec, inactivity cosine sim. cutoff, 1,440m Cons., dir. u2vcti1cd

92 C Semantic, temporal usercat2vec, inactivity cosine sim. top 10, 14d Cons., complH. u2v10ti14cc

93 C Semantic, temporal usercat2vec, inactivity cosine sim. top 10, 14d Cons., dir. u2v10ti14cd

94 C Semantic, temporal usercat2vec, inactivity cosine sim. > 0.5, 14d Cons., complH. u2v05ti14cc

95 C Semantic, temporal usercat2vec, inactivity cosine sim. > 0.5, 14d Cons., dir. u2v05ti14cd

96 C Semantic, temporal usercat2vec, inactivity cosine sim. cutoff, 14d Cons., complH. u2vcti14cc

97 C Semantic, temporal usercat2vec, inactivity cosine sim. cutoff, 14d Cons., dir. u2vcti14cd

98 C Semantic, temporal usercat2vec, inactivity cosine sim. top 10, 1d All, complH. u2v10ti1ac

99 C Semantic, temporal usercat2vec, inactivity cosine sim. top 10, 1d All, dir. u2v10ti1ad

100 C Semantic, temporal usercat2vec, inactivity cosine sim. > 0.5, 1d All, complH. u2v05ti1ac

101 C Semantic, temporal usercat2vec, inactivity cosine sim. > 0.5, 1d All, dir. u2v05ti1ad

102 C Semantic, temporal usercat2vec, inactivity cosine sim. cutoff, 1d All, complH. u2vcti1ac

103 C Semantic, temporal usercat2vec, inactivity cosine sim. cutoff, 1d All, dir. u2vcti1ad

104 C Semantic, temporal usercat2vec, inactivity cosine sim. top 10, 14d All, complH. u2v10ti14ac

105 C Semantic, temporal usercat2vec, inactivity cosine sim. top 10, 14d All, dir. u2v10ti14ad

106 C Semantic, temporal usercat2vec, inactivity cosine sim. > 0.5, 14d All, complH. u2v05ti14ac

107 C Semantic, temporal usercat2vec, inactivity cosine sim. > 0.5, 14d All, dir. u2v05ti14ad

108 C Semantic, temporal usercat2vec, inactivity cosine sim. cutoff, 14d All, complH. u2vcti14ac

109 C Semantic, temporal usercat2vec, inactivity cosine sim. cutoff, 14d All, dir. u2vcti14ad

110 C Semantic, temporal usercat2vec, inactivity cosine sim. top 10, 75d All, complH. u2v10ti75ac

111 C Semantic, temporal usercat2vec, inactivity cosine sim. top 10, 75d All, dir. u2v10ti75ad

112 C Semantic, temporal usercat2vec, inactivity cosine sim. > 0.5, 75d All, complH. u2v05ti75ac

113 C Semantic, temporal usercat2vec, inactivity cosine sim. > 0.5, 75d All, dir. u2v05ti75ad

114 C Semantic, temporal usercat2vec, inactivity cosine sim. cutoff, 75d All, complH. u2vcti75ac

115 C Semantic, temporal usercat2vec, inactivity cosine sim. cutoff, 75d All, dir. u2vcti75ad

116 C Semantic, temporal usercat2vec, inactivity cosine sim. top 10, 180d All, complH. u2v10ti180ac

117 C Semantic, temporal usercat2vec, inactivity cosine sim. top 10, 180d All, dir. u2v10ti180ad

118 C Semantic, temporal usercat2vec, inactivity cosine sim. > 0.5, 180d All, complH. u2v05ti180ac

119 C Semantic, temporal usercat2vec, inactivity cosine sim. > 0.5, 180d All, dir. u2v05ti180ad

120 C Semantic, temporal usercat2vec, inactivity cosine sim. cutoff, 180d All, complH. u2vcti180ac

121 C Semantic, temporal usercat2vec, inactivity cosine sim. cutoff, 180d All, dir. u2vcti180ad

122 C Semantic, temporal Term space, inactivity
bm25L ranking sim. top

10, 5m
Cons., complH. bm25ti5cc

123 C Semantic, temporal Term space, inactivity
bm25L ranking sim. top

10, 5m
Cons., dir. bm25ti5cd

124 C Semantic, temporal Term space, inactivity
bm25L ranking sim. top

10, 30m
Cons., complH. bm25ti30cc

125 C Semantic, temporal Term space, inactivity
bm25L ranking sim. top

10, 30m
Cons., dir. bm25ti30cd

126 C Semantic, temporal Term space, inactivity
bm25L ranking sim. top

10, 1,440m
Cons., complH. bm25ti1cc

127 C Semantic, temporal Term space, inactivity
bm25L ranking sim. top

10, 1,440m
Cons., dir. bm25ti1cd
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128 C Semantic, temporal Term space, inactivity
bm25L ranking sim. top

10, 1d
All, complH. bm25ti1ac

129 C Semantic, temporal Term space, inactivity
bm25L ranking sim. top

10, 1d
All, dir. bm25ti1ad

130 C Semantic, temporal Term space, inactivity
bm25L ranking sim. top

10, 14d
All, complH. bm25ti14ac

131 C Semantic, temporal Term space, inactivity
bm25L ranking sim. top

10, 14d
All, dir. bm25ti14ad

132 C Semantic, temporal Term space, inactivity
bm25L ranking sim. top

10, 75d
All, complH. bm25ti75ac

133 C Semantic, temporal Term space, inactivity
bm25L ranking sim. top

10, 75d
All, dir. bm25ti75ad

134 C Semantic, temporal Term space, inactivity
bm25L ranking sim. top

10, 180d
All, complH. bm25ti180ac

135 C Semantic, temporal Term space, inactivity
bm25L ranking sim. top

10, 180d
All, dir. bm25ti180ad

Table A2: Overview of all tested approaches. Abbreviations: S = Structural, M = Mechanical, L = Logical, C =

Combination, Cons. = Consecutive, complH. = complete history, dir. = direct, sim. = Similarity, m = minutes, h

= hours, d = days.
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A3 Top 5 sequences for session approaches

Interaction Bucket Sequences Totals

tf5 li oop (17.74%) — li q (5.79%) — li oop→lo (4.56%) — oop (3.41%) — li pc (3.13%) 34.63%

tf10 li oop (17.96%) — li q (5.92%) — li oop→lo (4.42%) — oop (3.13%) — li pc (3.1%) 34.53%

tf15 li oop (17.95%) — li q (5.95%) — li oop→lo (4.33%) — li pc (3.09%) — oop (2.99%) 34.31%

tf20 li oop (17.89%) — li q (5.95%) — li oop→lo (4.27%) — li pc (3.08%) — oop (2.9%) 34.09%

tf30 li oop (17.77%) — li q (5.94%) — li oop→lo (4.19%) — li pc (3.07%) — oop (2.76%) 33.73%

tf45 li oop (17.6% ) — li q (5.93%) — li oop→lo (4.12%) — li pc (3.06%) — oop (2.62%) 33.33%

tf60 li oop (17.46%) — li q (5.92%) — li oop→lo (4.08%) — li pc (3.05%) — li oop→li oop (2.56%) 33.07%

tf90 li oop (17.22%) — li q (5.9% ) — li oop→lo (4.02%) — li pc (3.04%) — li oop→li oop (2.64% ) 32.82%

tf120 li oop ( 17.02%) — li q (5.88%) — li oop→lo (3.98%) — li pc (3.03%) — li oop→li oop (2.69%) 32.6%

tf180 li oop (16.71%) — li q (5.86%) — li oop→lo (3.92%) — li pc (3.01%) — li oop→li oop (2.76%) 32.26%

tf360 li oop (16.15%) — li q (5.82%) — li oop→lo (3.81%) — li pc (2.99%) — li oop→li oop (2.87%) 31.64%

tf720 li oop (15.47%) — li q (5.76%) — li oop→lo (3.69%) — li oop→li oop (2.98%) — li pc (2.95%) 30.85%

tf1440 li oop (14.28%) — li q (5.58%) — li oop→lo (3.43%) — li oop→li oop (3.11%) — li pc (2.87%) 29.27%

tfd li oop (15.56%) — li q (5.8%) — li oop→lo (3.71%) — li pc (2.98%) — li oop→li oop (2.92%) 30.97%

ti5 li oop (19.12%) — li q (6.22%) — li oop, lo (4.76%) — oop (3.35%) — li pc (3.3%) 36.74%

ti10 li oop (18.77%) — li q (6.18%) — li oop, lo (4.54%) — li pc (3.22% ) — oop (3.09%) 35.8%

ti15 li oop (18.52% ) — li q (6.13%) — li oop, lo (4.41%) — li pc (3.18%) — oop (2.96%) 35.2%

ti26 li oop (18.16%) — li q (6.07%) — li oop, lo (4.27%) — li pc (3.14%) — oop (2.79%) 34.43%

ti30 li oop (18.07%) — li q (6.05%) — li oop, lo (4.23%) — li pc (3.13%) — oop (2.74%) 34.22%

ti45 li oop (17.81%) — li q (6.01%) — li oop, lo (4.16%) — li pc (3.11%) — oop (2.59%) 33.68%

ti60 li oop (17.63%) — li q (5.98%) — li oop, lo (4.11% ) — li pc (3.09%) — li oop, li oop (2.53%) 33.34%

ti90 li oop (17.35%) — li q (5.95%) — li oop, lo (4.05%) — li pc (3.07%) — li oop, li oop (2.6%) 33.02%

ti120 li oop (17.14%) — li q (5.93%) — li oop, lo (4.0%) — li pc (3.06%) — li oop, li oop (2.65%) 32.78%

ti180 li oop (16.82%) — li q (5.91%) — li oop, lo (3.94%) — li pc (3.04%) — li oop, li oop (2.72%) 32.43%

ti360 li oop (16.22%) — li q (5.87%) — li oop, lo (3.83%) — li pc (3.01%) — li oop, li oop (2.82%) 31.75%

ti720 li oop (15.56%) — li q (5.82%) — li oop, lo (3.72% ) — li pc (2.99%) — li oop, li oop (2.91%) 31.0%

ti1440 li oop (14.6%) — li q (5.76%) — li oop, lo (3.51%) — li oop, li oop (2.98%) — li pc (2.97%) 29.82%

lcdb1 li oop (9.13%) — li q (6.83%) — q (3.2%) — li oop, li oop (2.51%) — li pc (2.21%) 23.88%

ladb1 li oop (7.1%) — li q (5.42%) — li oop, li oop (2.8%) — li pc (1.88%) — li hp (1.7%) 18.9%

bm25cd li oop (10.71%) — li q (7.67%) — q (3.88%) — lo (2.69%) — li pc (2.61%) 27.56%

bm25cc li oop (10.9%) — li q (7.82%) — q (3.87%) — lo (2.68%) — li pc (2.64%) 27.91%

bm25ad li oop (9.24%) — li q (7.09%) — li pc (2.6%) — li oop, li oop (2.48%) — li oop, lo (2.25%) 23.66%

bm25ac li oop (9.67%) — li q (7.43%) — li pc (2.72%) — li oop, li oop (2.54%) — li oop, lo (2.36%) 24.72%

u2v05cd li oop (10.93%) — li q (7.82%) — q (4.22%) — lo (2.79%) — oop (2.64%) 28.4%

u2v05cc li oop (10.99%) — li q (7.86%) — q (4.19%) — lo (2.77%) — li pc (2.64%) 28.45%

u2v05ad li oop (9.7%) — li q (7.37%) — li pc (2.71%) — li oop, li oop (2.54%) — q (2.48%) 24.8%

u2v05ac li oop (9.82%) — li q (7.49%) — li pc (2.75%) — li oop, li oop (2.57%) — q (2.45%) 25.08%

u2v10cd li oop (10.93%) — li q (7.79%) — q (4.03%) — lo (2.66%) — li pc (2.6%) 28.01%

u2v10cc li oop (11.0%) — li q (7.85%) — q (3.97%) — li pc (2.62%) — lo (2.62%) 28.06%

u2v10ad li oop (9.57%) — li q (7.31%) — li pc (2.65%) — li oop, li oop (2.54%) — q (2.35%) 24.42%

u2v10ac li oop (9.82%) — li q (7.51%) — li pc (2.74%) — li oop, li oop (2.58%) — li oop, lo (2.38%) 25.03%

u2vccd li oop (10.87%) — li q (7.7%) — q (3.92%) — li pc (2.62%) — li oop, lo (2.54%) 27.65%

u2vccc li oop (10.97%) — li q (7.77%) — q (3.89%) — li pc (2.65%) — li oop, lo (2.57%) 27.85%

u2vcad li oop (9.49%) — li q (7.19%) — li pc (2.66%) — li oop, li oop (2.56%) — li oop, lo (2.29%) 24.19%

u2vcac li oop (9.73%) — li q (7.38%) — li pc (2.75%) — li oop, li oop (2.61%) — li oop, lo (2.35%) 24.82%

lti5cdb1 li oop (18.29%) — li q (7.01%) — li oop, lo (4.41%) — oop (4.24%) — li pc (3.2%) 37.15%

lti30cdb1 li oop (17.17%) — li q (7.06%) — li oop, lo (3.9%) — oop (3.76%) — li pc (3.01%) 34.9%

lti1cdb1 li oop (14.11%) — li q (7.25%) — li oop, lo (3.32%) — li pc (2.85%) — q (2.62%) 30.15%

lti14cdb1 li oop (11.02%) — li q (7.19%) — q (3.01%) — li pc (2.62%) — li oop, lo (2.57%) 26.41%

lti1adb1 li oop (14.53%) — li q (6.73%) — li oop, lo (3.5%) — li pc (2.9%) — li oop, li oop (2.75%) 30.41%

lti14adb1 li oop (11.1%) — li q (6.65%) — li oop, li oop (2.81%) — li pc (2.76%) — li oop, lo (2.64%) 25.96%

lti75adb1 li oop (8.57%) — li q (5.86%) — li oop, li oop (2.85%) — li pc (2.26%) — li oop, lo (2.03%) 21.57%

lti180adb1 li oop (7.58%) — li q (5.44%) — li oop, li oop (2.86%) — li pc (2.0%) — li oop, lo (1.8%) 19.68%

Table A3: Top 5 sequences for session approaches.
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A4 User measures for td sessions regarding visited content

∅Root Categories ∅Categories ∅Products ∅Queries ∅Logics

AM SD AM SD AM SD AM SD AM SD

tdc 1.34 0.55 1.6 0.93 1.34 1.38 0.69 1.1 1.37 0.64

tdcm 1.34 0.55 1.6 0.93 1.34 1.38 0.69 1.1 1.37 0.64

tdp 1.34 0.55 1.6 0.93 1.33 1.37 0.68 1.08 1.36 0.64

tdpc 1.34 0.55 1.59 0.93 1.33 1.37 0.68 1.08 1.36 0.64

tdpcd 1.33 0.55 1.59 0.91 1.32 1.34 0.67 1.05 1.36 0.63

tdpd 1.34 0.55 1.59 0.92 1.33 1.35 0.68 1.06 1.36 0.63

tdpm 1.34 0.55 1.6 0.93 1.33 1.37 0.68 1.08 1.36 0.64

tdpr 1.34 0.55 1.6 0.93 1.33 1.37 0.68 1.08 1.36 0.64

tdr 1.34 0.55 1.6 0.94 1.34 1.39 0.69 1.1 1.37 0.64

Table A4: User measures for td sessions regarding visited content. Abbreviations: AM = Arithmetic Mean; SD =

Standard Deviation.

A5 User measures for td sessions regarding time spent

∅Time in

session

∅Inter-

Interactiontime

∅Interaction

days

AM SD AM SD AM SD

tdc 5.46 9.57 2.03 3.63 1.0 0.03

tdcm 5.46 10.91 2.03 6.53 1.0 0.03

tdp 5.35 9.31 1.99 3.54 1.0 0.03

tdpc 5.36 11.6 2.02 10.29 1.0 0.03

tdpcd 5.23 37.33 2.07 44.85 1.0 0.03

tdpd 5.2 8.87 2.02 3.74 1.0 0.03

tdpm 5.35 9.32 1.99 3.56 1.0 0.03

tdpr 5.35 9.38 2.0 3.61 1.0 0.03

tdr 5.46 9.54 2.02 3.55 1.0 0.03

Table A5: User measures for td sessions regarding time spent. Abbreviations: AM = Arithmetic Mean; SD =

Standard Deviation.

A6 User measures for bm25ti sessions regarding system us-

age

∅Sessions ∅Interactions CV-R B-R Lead-ins

AM SD AM SD AM SD AM SD AM SD

bm25ti5cc 5.84 19.86 3.11 2.75 60.25 109.97 38.74 33.91 1.28 0.99

bm25ti5cd 5.9 20.18 3.07 2.69 59.62 109.04 38.87 33.84 1.27 0.98

bm25ti30cc 5.19 17.37 3.65 3.5 74.15 135.95 33.31 33.78 1.47 1.15

bm25ti30cd 5.26 17.78 3.59 3.41 73.14 134.35 33.46 33.71 1.46 1.14

bm25ti1cc 4.42 13.67 4.16 4.18 85.06 154.49 28.06 32.56 1.68 1.42

bm25ti1cd 4.51 14.29 4.08 4.05 83.61 152.08 28.22 32.51 1.66 1.4

bm25ti1ac 3.97 9.46 4.33 4.28 88.19 156.75 26.18 31.6 1.73 1.43

bm25ti1ad 4.08 10.32 4.24 4.12 86.47 153.94 26.34 31.55 1.71 1.41

bm25ti14ac 3.15 5.32 4.97 5.46 100.68 177.65 22.66 30.36 2.01 2.06

bm25ti14ad 3.3 6.64 4.81 5.07 97.76 172.13 22.8 30.31 1.97 1.96

bm25ti75ac 2.82 4.01 5.28 6.03 106.6 187.23 21.07 29.64 2.16 2.35

bm25ti75ad 3.01 5.54 5.06 5.46 102.73 179.53 21.2 29.58 2.09 2.19

bm25ti180ac 2.73 3.63 5.37 6.17 108.26 189.43 20.58 29.39 2.2 2.42

bm25ti180ad 2.93 5.24 5.13 5.55 104.06 181.06 20.71 29.33 2.12 2.24

Table A6: User measures for bm25ti sessions regarding system usage. Abbreviations: CV-R = Conversion Rate; B-R

= Bounce Rate; AM = Arithmetic Mean; SD = Standard Deviation.
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A7 User measures for bm25ti sessions regarding visited con-

tent

∅Root Categories ∅Categories ∅Products ∅Queries ∅Logics

AM SD AM SD AM SD AM SD AM SD

bm25ti5cc 1.17 0.33 1.25 0.43 1.02 0.94 0.46 0.62 1.01 0.09

bm25ti5cd 1.17 0.32 1.24 0.41 1.01 0.93 0.46 0.61 1.01 0.08

bm25ti30cc 1.19 0.35 1.28 0.47 1.13 1.13 0.5 0.69 1.01 0.1

bm25ti30cd 1.19 0.35 1.27 0.45 1.12 1.11 0.49 0.67 1.01 0.09

bm25ti1cc 1.21 0.37 1.31 0.5 1.23 1.28 0.53 0.74 1.02 0.11

bm25ti1cd 1.2 0.36 1.3 0.48 1.21 1.26 0.52 0.71 1.02 0.1

bm25ti1ac 1.21 0.37 1.33 0.51 1.25 1.3 0.55 0.76 1.02 0.12

bm25ti1ad 1.21 0.37 1.32 0.49 1.24 1.27 0.54 0.73 1.02 0.1

bm25ti14ac 1.23 0.39 1.37 0.54 1.36 1.45 0.59 0.82 1.04 0.16

bm25ti14ad 1.23 0.38 1.35 0.51 1.34 1.4 0.58 0.77 1.03 0.15

bm25ti75ac 1.24 0.39 1.4 0.56 1.43 1.54 0.62 0.86 1.05 0.22

bm25ti75ad 1.24 0.39 1.38 0.53 1.39 1.46 0.6 0.79 1.05 0.21

bm25ti180ac 1.25 0.4 1.41 0.57 1.45 1.56 0.62 0.87 1.06 0.25

bm25ti180ad 1.24 0.39 1.39 0.53 1.41 1.47 0.6 0.79 1.05 0.24

Table A7: User measures for bm25ti sessions regarding visited content. Abbreviations: AM = Arithmetic Mean; SD

= Standard Deviation.

A8 User measures for bm25ti sessions regarding time spent

∅Time in

session

∅Inter-

Interactiontime

∅Interaction

days

AM SD AM SD AM SD

bm25ti5cc 1.48 10.41 1.13 11.07 1.0 0.01

bm25ti5cd 1.46 10.4 1.13 11.07 1.0 0.01

bm25ti30cc 3.77 11.9 1.98 11.06 1.0 0.02

bm25ti30cd 3.7 11.84 1.98 11.06 1.0 0.02

bm25ti1cc 70.93 232.99 32.18 111.64 1.05 0.19

bm25ti1cd 69.48 228.97 32.13 111.65 1.05 0.19

bm25ti1ac 77.91 243.88 33.38 112.65 1.05 0.2

bm25ti1ad 75.95 238.58 33.33 112.65 1.05 0.19

bm25ti14ac 1, 113.01 3, 286.21 362.92 1, 211.14 1.23 0.72

bm25ti14ad 1, 054.49 3, 127.47 361.95 1, 210.97 1.22 0.67

bm25ti75ac 4, 216.47 12, 405.08 1, 421.57 5, 401.83 1.32 0.93

bm25ti75ad 3, 915.77 11, 646.22 1, 413.65 5, 398.13 1.3 0.85

bm25ti180ac 7, 154.38 22, 292.71 2, 509.54 10, 664.05 1.35 0.98

bm25ti180ad 6, 607.32 20, 991.48 2, 489.37 10, 651.26 1.32 0.89

Table A8: User measures for bm25ti sessions regarding time spent. Abbreviations: AM = Arithmetic Mean; SD =

Standard Deviation.
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A9 User measures for combined u2v sessions regarding sys-

tem usage

∅Sessions ∅Interactions CV-R B-R Lead-ins

AM SD AM SD AM SD AM SD AM SD

u2v05ti5cc 5.82 19.84 3.14 2.8 60.65 110.69 38.57 33.97 1.29 0.99

u2v05ti5cd 5.83 19.95 3.13 2.78 60.51 110.4 38.6 33.96 1.28 0.99

u2v05ti30cc 5.17 17.4 3.7 3.58 74.76 137.19 33.15 33.81 1.48 1.16

u2v05ti30cd 5.19 17.55 3.68 3.54 74.49 136.61 33.19 33.8 1.48 1.16

u2v05ti1cc 4.41 13.84 4.21 4.29 85.83 156.29 27.92 32.58 1.7 1.43

u2v05ti1cd 4.44 14.08 4.19 4.23 85.41 155.32 27.96 32.57 1.69 1.43

u2v05ti14cc 3.9 12.7 4.69 5.21 95.32 174.06 24.76 31.6 1.92 1.98

u2v05ti14cd 3.94 12.99 4.65 5.08 94.67 172.26 24.82 31.59 1.91 1.93

u2v05ti1ac 3.93 9.46 4.4 4.41 89.31 158.85 25.89 31.53 1.75 1.44

u2v05ti1ad 3.96 9.75 4.37 4.33 88.84 157.74 25.93 31.53 1.75 1.44

u2v05ti14ac 3.11 5.33 5.06 5.66 102.11 180.89 22.41 30.28 2.04 2.12

u2v05ti14ad 3.16 5.81 5.0 5.45 101.18 178.2 22.46 30.27 2.02 2.05

u2v05ti75ac 2.79 4.02 5.37 6.27 108.13 191.48 20.89 29.57 2.18 2.41

u2v05ti75ad 2.85 4.56 5.29 5.95 106.72 187.03 20.93 29.56 2.16 2.31

u2v05ti180ac 2.7 3.64 5.46 6.41 109.76 193.77 20.43 29.34 2.22 2.47

u2v05ti180ad 2.77 4.2 5.37 6.06 108.18 188.87 20.48 29.32 2.2 2.37

u2v10ti5cc 5.79 19.68 3.15 2.81 60.91 110.9 38.32 33.94 1.29 0.99

u2v10ti5cd 5.82 19.86 3.13 2.78 60.55 110.31 38.38 33.91 1.28 0.99

u2v10ti30cc 5.14 17.21 3.71 3.6 75.12 137.49 32.86 33.75 1.49 1.16

u2v10ti30cd 5.17 17.45 3.68 3.53 74.53 136.41 32.93 33.72 1.48 1.16

u2v10ti1cc 4.37 13.57 4.23 4.31 86.29 156.66 27.6 32.47 1.7 1.43

u2v10ti1cd 4.42 13.95 4.19 4.21 85.44 155.01 27.68 32.45 1.69 1.42

u2v10ti14cc 3.86 12.41 4.72 5.22 95.87 174.5 24.43 31.46 1.92 1.95

u2v10ti14cd 3.92 12.85 4.65 5.05 94.65 171.76 24.51 31.44 1.91 1.92

u2v10ti1ac 3.92 9.35 4.41 4.42 89.52 159.06 25.73 31.5 1.75 1.44

u2v10ti1ad 3.98 9.86 4.36 4.3 88.53 157.13 25.81 31.47 1.74 1.43

u2v10ti14ac 3.1 5.24 5.07 5.66 102.34 181.1 22.24 30.22 2.04 2.09

u2v10ti14ad 3.19 6.03 4.97 5.37 100.59 177.05 22.3 30.19 2.01 2.03

u2v10ti75ac 2.78 3.93 5.38 6.27 108.34 191.43 20.7 29.5 2.18 2.39

u2v10ti75ad 2.89 4.84 5.25 5.83 105.92 185.39 20.76 29.47 2.14 2.28

u2v10ti180ac 2.69 3.55 5.47 6.41 109.98 193.73 20.24 29.26 2.22 2.45

u2v10ti180ad 2.8 4.5 5.32 5.93 107.31 187.08 20.3 29.23 2.18 2.33

u2vcti5cc 5.73 19.4 3.19 2.85 61.41 111.53 37.92 33.94 1.3 1.0

u2vcti5cd 5.75 19.56 3.17 2.82 61.1 110.99 37.98 33.92 1.3 1.0

u2vcti30cc 5.07 16.88 3.77 3.66 75.9 138.62 32.42 33.7 1.51 1.17

u2vcti30cd 5.1 17.1 3.73 3.59 75.38 137.58 32.49 33.67 1.5 1.17

u2vcti1cc 4.29 13.15 4.3 4.4 87.41 158.41 27.1 32.35 1.73 1.45

u2vcti1cd 4.34 13.51 4.26 4.3 86.63 156.74 27.18 32.33 1.71 1.44

u2vcti14cc 3.76 11.93 4.81 5.39 97.51 177.4 23.85 31.26 1.96 2.02

u2vcti14cd 3.82 12.36 4.74 5.18 96.32 174.4 23.93 31.25 1.94 1.95

u2vcti1ac 3.86 9.11 4.48 4.51 90.58 160.82 25.32 31.4 1.78 1.46

u2vcti1ad 3.91 9.57 4.43 4.39 89.68 158.89 25.39 31.38 1.76 1.44

u2vcti14ac 3.03 4.99 5.17 5.87 104.1 184.47 21.74 30.04 2.08 2.17

u2vcti14ad 3.11 5.75 5.07 5.53 102.37 179.96 21.81 30.02 2.05 2.07

u2vcti75ac 2.7 3.68 5.52 6.55 110.75 196.4 20.12 29.26 2.23 2.48

u2vcti75ad 2.8 4.56 5.37 6.04 108.2 189.3 20.19 29.24 2.19 2.34

u2vcti180ac 2.6 3.31 5.61 6.71 112.61 199.07 19.63 29.0 2.28 2.55

u2vcti180ad 2.71 4.23 5.45 6.15 109.77 191.22 19.69 28.97 2.23 2.39

Table A9: User measures for combined u2v sessions regarding system usage. Abbreviations: CV-R = Conversion

Rate; B-R = Bounce Rate; AM = Arithmetic Mean; SD = Standard Deviation.
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A10 User measures for combined u2v sessions regarding vis-

ited content

∅Root Categories ∅Categories ∅Products ∅Queries ∅Logics

AM SD AM SD AM SD AM SD AM SD

u2v10ti5cc 1.17 0.33 1.26 0.46 1.03 0.95 0.46 0.63 1.0 0.04

u2v10ti5cd 1.17 0.33 1.26 0.44 1.02 0.95 0.46 0.62 1.0 0.04

u2v10ti30cc 1.19 0.35 1.3 0.51 1.15 1.15 0.5 0.7 1.0 0.05

u2v10ti30cd 1.19 0.35 1.29 0.49 1.14 1.14 0.5 0.68 1.0 0.04

u2v10ti1cc 1.21 0.37 1.33 0.54 1.24 1.31 0.54 0.75 1.0 0.05

u2v10ti1cd 1.21 0.37 1.32 0.52 1.23 1.29 0.53 0.73 1.0 0.05

u2v10ti14cc 1.22 0.38 1.36 0.56 1.33 1.44 0.57 0.79 1.01 0.1

u2v10ti14cd 1.22 0.38 1.35 0.54 1.32 1.41 0.56 0.76 1.01 0.1

u2v10ti1ac 1.21 0.37 1.35 0.55 1.27 1.32 0.56 0.78 1.01 0.06

u2v10ti1ad 1.21 0.37 1.34 0.53 1.26 1.3 0.55 0.76 1.01 0.05

u2v10ti14ac 1.23 0.39 1.39 0.58 1.38 1.49 0.6 0.84 1.02 0.11

u2v10ti14ad 1.23 0.38 1.38 0.55 1.36 1.44 0.59 0.8 1.01 0.11

u2v10ti75ac 1.24 0.39 1.42 0.6 1.44 1.57 0.63 0.88 1.02 0.18

u2v10ti75ad 1.24 0.39 1.41 0.57 1.42 1.51 0.61 0.82 1.02 0.17

u2v10ti180ac 1.24 0.4 1.43 0.61 1.46 1.59 0.63 0.89 1.03 0.21

u2v10ti180ad 1.24 0.39 1.42 0.57 1.44 1.52 0.62 0.83 1.03 0.21

u2v05ti5cc 1.17 0.32 1.26 0.46 1.03 0.95 0.46 0.64 1.0 0.02

u2v05ti5cd 1.17 0.32 1.26 0.45 1.02 0.95 0.46 0.63 1.0 0.02

u2v05ti30cc 1.19 0.35 1.3 0.51 1.14 1.15 0.5 0.7 1.0 0.02

u2v05ti30cd 1.19 0.35 1.29 0.49 1.14 1.14 0.5 0.69 1.0 0.02

u2v05ti1cc 1.2 0.37 1.33 0.54 1.24 1.3 0.54 0.75 1.0 0.02

u2v05ti1cd 1.2 0.36 1.32 0.52 1.23 1.29 0.53 0.74 1.0 0.02

u2v05ti14cc 1.22 0.38 1.36 0.57 1.32 1.44 0.57 0.79 1.01 0.09

u2v05ti14cd 1.22 0.38 1.35 0.54 1.31 1.41 0.56 0.77 1.01 0.09

u2v05ti1ac 1.21 0.37 1.34 0.55 1.27 1.32 0.56 0.78 1.0 0.04

u2v05ti1ad 1.21 0.37 1.34 0.53 1.26 1.3 0.55 0.77 1.0 0.04

u2v05ti14ac 1.23 0.38 1.38 0.58 1.38 1.48 0.6 0.84 1.01 0.1

u2v05ti14ad 1.22 0.38 1.37 0.56 1.37 1.45 0.59 0.81 1.01 0.1

u2v05ti75ac 1.24 0.39 1.41 0.6 1.44 1.56 0.62 0.88 1.02 0.17

u2v05ti75ad 1.23 0.39 1.4 0.57 1.42 1.52 0.61 0.84 1.02 0.17

u2v05ti180ac 1.24 0.39 1.42 0.61 1.46 1.58 0.63 0.89 1.02 0.2

u2v05ti180ad 1.24 0.39 1.41 0.58 1.44 1.53 0.62 0.84 1.02 0.2

u2vcti5cc 1.18 0.33 1.28 0.49 1.04 0.96 0.48 0.66 1.0 0.0

u2vcti5cd 1.18 0.33 1.27 0.47 1.03 0.95 0.47 0.65 1.0 0.0

u2vcti30cc 1.2 0.36 1.32 0.54 1.16 1.16 0.52 0.73 1.0 0.0

u2vcti30cd 1.2 0.36 1.31 0.52 1.15 1.15 0.51 0.71 1.0 0.0

u2vcti1cc 1.21 0.38 1.35 0.58 1.26 1.33 0.55 0.79 1.0 0.0

u2vcti1cd 1.21 0.37 1.34 0.55 1.25 1.31 0.55 0.76 1.0 0.0

u2vcti14cc 1.23 0.39 1.39 0.61 1.35 1.47 0.58 0.83 1.01 0.09

u2vcti14cd 1.22 0.38 1.38 0.57 1.34 1.44 0.58 0.8 1.01 0.08

u2vcti1ac 1.22 0.38 1.37 0.59 1.28 1.35 0.57 0.82 1.0 0.0

u2vcti1ad 1.22 0.38 1.36 0.56 1.27 1.32 0.56 0.79 1.0 0.0

u2vcti14ac 1.24 0.4 1.42 0.63 1.4 1.52 0.62 0.88 1.01 0.09

u2vcti14ad 1.23 0.39 1.4 0.59 1.38 1.47 0.61 0.84 1.01 0.09

u2vcti75ac 1.25 0.4 1.46 0.65 1.47 1.62 0.65 0.93 1.02 0.16

u2vcti75ad 1.24 0.4 1.44 0.61 1.45 1.54 0.63 0.86 1.01 0.16

u2vcti180ac 1.25 0.41 1.47 0.66 1.5 1.64 0.66 0.94 1.02 0.2

u2vcti180ad 1.25 0.4 1.45 0.62 1.47 1.56 0.64 0.87 1.02 0.2

Table A10: User measures for combined u2v sessions regarding visited content. Abbreviations: AM = Arithmetic

Mean; SD = Standard Deviation.
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A11 User measures for combined u2v sessions regarding

time spent

∅Time in

session

∅Inter-

Interactiontime

∅Interaction

days

AM SD AM SD AM SD

u2v05ti5cc 1.5 10.41 1.13 11.07 1.0 0.01

u2v05ti5cd 1.49 10.41 1.13 11.07 1.0 0.01

u2v05ti30cc 3.82 11.94 1.98 11.06 1.0 0.02

u2v05ti30cd 3.8 11.92 1.98 11.06 1.0 0.02

u2v05ti1cc 71.36 234.5 32.15 111.58 1.05 0.19

u2v05ti1cd 70.96 233.43 32.14 111.58 1.05 0.19

u2v05ti14cc 865.78 2, 961.67 314.88 1, 158.99 1.19 0.63

u2v05ti14cd 855.4 2, 925.97 314.53 1, 158.95 1.18 0.62

u2v05ti1ac 78.96 246.3 33.43 112.66 1.05 0.2

u2v05ti1ad 78.46 244.93 33.42 112.66 1.05 0.2

u2v05ti14ac 1, 129.31 3, 333.9 361.62 1, 209.01 1.23 0.73

u2v05ti14ad 1, 109.42 3, 274.2 361.26 1, 208.86 1.23 0.71

u2v05ti75ac 4, 232.93 12, 571.01 1, 391.29 5, 336.68 1.33 0.95

u2v05ti75ad 4, 104.15 12, 183.21 1, 388.19 5, 335.24 1.32 0.92

u2v05ti180ac 7, 088.33 22, 353.65 2, 419.91 10, 436.03 1.35 1.0

u2v05ti180ad 6, 841.88 21, 668.5 2, 411.39 10, 430.17 1.34 0.96

u2v10ti5cc 1.51 10.42 1.13 11.07 1.0 0.01

u2v10ti5cd 1.49 10.41 1.13 11.06 1.0 0.01

u2v10ti30cc 3.84 11.96 1.98 11.06 1.0 0.02

u2v10ti30cd 3.8 11.92 1.98 11.05 1.0 0.02

u2v10ti1cc 71.77 235.05 32.14 111.51 1.05 0.19

u2v10ti1cd 70.98 233.06 32.11 111.51 1.05 0.19

u2v10ti14cc 869.58 2, 962.27 314.67 1, 157.29 1.19 0.63

u2v10ti14cd 852.8 2, 910.19 314.12 1, 157.28 1.18 0.62

u2v10ti1ac 78.98 246.34 33.36 112.54 1.05 0.2

u2v10ti1ad 77.95 243.72 33.33 112.53 1.05 0.2

u2v10ti14ac 1, 126.66 3, 324.87 360.69 1, 206.65 1.23 0.73

u2v10ti14ad 1, 092.89 3, 231.98 360.08 1, 206.45 1.23 0.7

u2v10ti75ac 4, 208.53 12, 463.48 1, 389.02 5, 323.06 1.33 0.95

u2v10ti75ad 4, 019.37 11, 949.84 1, 384.06 5, 320.3 1.31 0.9

u2v10ti180ac 7, 050.09 22, 155.62 2, 420.18 10, 415.75 1.35 1.0

u2v10ti180ad 6, 697.88 21, 258.63 2, 407.1 10, 406.04 1.34 0.94

u2vcti5cc 1.53 10.43 1.13 11.06 1.0 0.01

u2vcti5cd 1.52 10.42 1.13 11.06 1.0 0.01

u2vcti30cc 3.91 12.0 1.99 11.05 1.0 0.02

u2vcti30cd 3.87 11.96 1.98 11.05 1.0 0.02

u2vcti1cc 73.17 237.71 32.34 111.73 1.05 0.19

u2vcti1cd 72.41 235.74 32.31 111.73 1.05 0.19

u2vcti1ac 80.33 249.05 33.53 112.75 1.05 0.2

u2vcti1ad 79.36 246.48 33.5 112.74 1.05 0.2

u2vcti14cc 907.01 3, 045.89 322.65 1, 173.78 1.19 0.65

u2vcti14cd 888.63 2, 985.56 322.04 1, 173.74 1.19 0.63

u2vcti14ac 1, 173.28 3, 424.12 368.76 1, 223.22 1.24 0.75

u2vcti14ad 1, 137.41 3, 321.1 368.12 1, 223.0 1.23 0.72

u2vcti75ac 4, 506.58 13, 119.95 1, 448.43 5, 465.1 1.34 0.98

u2vcti75ad 4, 285.9 12, 503.82 1, 443.05 5, 462.28 1.33 0.93

u2vcti180ac 7, 626.21 23, 473.28 2, 542.37 10, 735.27 1.37 1.04

u2vcti180ad 7, 207.64 22, 384.72 2, 528.02 10, 725.85 1.35 0.97

Table A11: User measures for combined u2v sessions regarding time spent. Abbreviations: AM = Arithmetic Mean;

SD = Standard Deviation.
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A12 User measures for geometric sessions regarding system

usage

∅Sessions ∅Interactions CV-R B-R Lead-ins

AM SD AM SD AM SD AM SD AM SD

geomu24cd 3.78 9.95 4.78 4.9 95.15 168.52 23.09 30.89 1.87 1.5

geomu24cc 3.71 9.23 4.85 5.14 96.45 172.24 22.96 30.89 1.89 1.54

geomu14cd 3.16 7.91 5.45 6.32 108.13 192.95 19.55 29.31 2.15 2.14

geomu14cc 3.04 6.67 5.63 9.07 111.13 220.94 19.41 29.31 2.2 2.56

geomu24ad 3.58 8.13 4.87 4.98 96.88 169.99 22.28 30.39 1.9 1.51

geomu24ac 3.52 7.56 4.95 5.26 98.19 173.99 22.16 30.39 1.92 1.56

geomu14ad 2.79 4.68 5.69 6.74 112.4 198.46 18.54 28.65 2.23 2.28

geomu14ac 2.68 4.02 5.95 11.3 116.55 246.03 18.42 28.66 2.3 2.95

geomu75ad 2.45 3.46 6.18 7.99 121.74 218.09 16.63 27.55 2.44 2.8

geomu75ac 2.32 2.84 6.64 15.32 129.19 302.24 16.51 27.57 2.57 3.95

Table A12: User measures for geometric sessions regarding system usage. Abbreviations: CV-R = Conversion Rate;

B-R = Bounce Rate; AM = Arithmetic Mean; SD = Standard Deviation.

A13 User measures for geometric sessions regarding time

spent

∅Time in

session

∅Inter-

Interactiontime

∅Interaction

days

AM SD AM SD AM SD

geomu24cd 74.05 238.48 29.97 106.42 1.05 0.19

geomu24cc 77.7 249.74 30.44 106.82 1.05 0.2

geomu14cd 904.81 3, 038.64 276.34 1, 039.61 1.21 0.7

geomu14cc 988.48 3, 387.25 281.95 1, 044.5 1.23 0.83

geomu24ad 78.38 245.7 30.71 107.01 1.05 0.2

geomu24ac 82.25 258.41 31.14 107.4 1.05 0.21

geomu14ad 1, 081.05 3, 304.64 306.28 1, 074.92 1.24 0.77

geomu14ac 1, 197.71 3, 806.39 311.76 1, 079.95 1.27 0.97

geomu75ad 3, 875.96 11, 947.43 1, 082.33 4, 429.35 1.37 1.09

geomu75ac 4, 443.74 13, 967.06 1, 106.15 4, 454.88 1.42 1.49

Table A13: User measures for geometric sessions regarding time spent. Abbreviations: AM = Arithmetic Mean; SD

= Standard Deviation.
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A14 System measures for all sessions approaches

#Sessions B-R ∅Root Categories ∅Categories ∅Products

visit id 513,007,900 51.5% 1.18 1.27 0.89

bm25ti5cd 462,413,589 44.21% 1.16 1.22 0.95

bm25ti5cc 457,641,841 44.31% 1.16 1.22 0.96

u2v05ti5cd 457,028,558 44.39% 1.16 1.22 0.96

u2v05ti5cc 455,991,403 44.4% 1.16 1.22 0.96

u2v10ti5cd 455,774,632 44.03% 1.16 1.22 0.96

u2v10ti5cc 453,378,131 44.08% 1.16 1.23 0.96

u2vcti5cd 450,926,682 43.76% 1.16 1.23 0.97

u2vcti5cc 448,845,900 43.8% 1.16 1.23 0.97

lti5cdb1 428,209,378 42.1% 1.16 1.28 1.02

tf5 426,196,079 37.49% 1.22 1.35 1.06

bm25ti30cd 412,472,229 41.44% 1.17 1.25 1.0

bm25ti30cc 406,788,004 41.59% 1.17 1.25 1.01

u2v05ti30cd 406,679,566 41.74% 1.17 1.25 1.01

u2v10ti30cd 405,342,083 41.31% 1.17 1.26 1.02

u2v05ti30cc 405,332,467 41.75% 1.17 1.25 1.02

u2v10ti30cc 402,418,159 41.38% 1.17 1.26 1.02

u2vcti30cd 399,878,149 41.0% 1.18 1.27 1.03

u2vcti30cc 397,310,961 41.05% 1.18 1.27 1.03

ti5 388,179,295 38.63% 1.24 1.38 1.12

tf10 379,381,854 36.07% 1.24 1.39 1.14

lti30cdb1 373,299,068 39.07% 1.17 1.33 1.1

tf15 359,698,513 35.37% 1.26 1.42 1.17

ti10 358,125,465 36.8% 1.25 1.41 1.17

bm25ti1cd 353,801,526 37.06% 1.19 1.29 1.06

tf20 348,197,625 34.9% 1.26 1.43 1.2

u2v05ti1cd 347,716,468 37.5% 1.19 1.29 1.07

bm25ti1cc 346,643,630 37.28% 1.19 1.29 1.08

u2v10ti1cd 346,305,355 36.95% 1.19 1.3 1.08

u2v05ti1cc 345,822,886 37.52% 1.19 1.29 1.08

ti15 344,444,702 35.9% 1.26 1.43 1.2

u2v10ti1cc 342,511,906 37.04% 1.19 1.3 1.09

u2vcti1cd 339,887,635 36.55% 1.2 1.31 1.1

u2vcti1cc 336,459,169 36.63% 1.2 1.31 1.1

tf30 334,675,756 34.27% 1.27 1.46 1.23

ti26 329,331,338 34.83% 1.28 1.46 1.24

ti30 325,924,065 34.57% 1.28 1.46 1.24

tf45 323,595,977 33.64% 1.28 1.47 1.25

tdpcd 322,025,620 33.71% 1.28 1.47 1.25

tdpd 321,777,937 33.77% 1.28 1.47 1.25

tdpc 320,865,062 33.87% 1.28 1.48 1.25

tdpr 320,760,829 33.9% 1.28 1.48 1.25

tdp 320,740,004 33.93% 1.28 1.48 1.25

tdpm 320,732,793 33.92% 1.28 1.48 1.25

bm25ti1ad 319,821,010 33.11% 1.21 1.32 1.14

tdcm 319,460,083 33.86% 1.29 1.48 1.26

tdc 319,449,442 33.86% 1.29 1.48 1.26

tdr 319,385,497 33.9% 1.29 1.48 1.26

ti45 317,139,738 33.86% 1.29 1.48 1.27

tf60 316,804,935 33.2% 1.29 1.49 1.27

u2v10ti1ad 311,566,308 33.06% 1.2 1.33 1.16

bm25ti1ac 311,471,360 33.42% 1.21 1.32 1.16

ti60 311,459,298 33.36% 1.29 1.49 1.28

u2v05ti1ad 310,045,159 33.35% 1.2 1.32 1.16

bm25cd 308,865,935 34.55% 1.21 1.34 1.13

u2v05ti14cd 308,368,930 35.34% 1.2 1.32 1.13

tf90 308,159,712 32.53% 1.3 1.5 1.29

u2v05ti1ac 308,130,602 33.41% 1.2 1.32 1.16

u2v10ti1ac 307,315,533 33.22% 1.2 1.33 1.17

u2v10ti14cd 306,960,624 34.68% 1.21 1.34 1.14

u2vcti1ad 306,540,785 32.82% 1.21 1.34 1.18

u2v05ti14cc 305,770,681 35.38% 1.2 1.33 1.14

ti90 303,731,866 32.66% 1.3 1.51 1.3

lti1cdb1 303,701,559 34.05% 1.19 1.41 1.21

u2v05cd 302,896,160 35.23% 1.2 1.33 1.14

u2vcti1ac 302,831,132 32.95% 1.21 1.34 1.18

tf120 302,448,723 32.04% 1.3 1.51 1.31

u2v10ti14cc 302,146,443 34.83% 1.21 1.34 1.15

u2v10cd 301,526,828 34.54% 1.21 1.34 1.15

u2v05cc 300,045,032 35.27% 1.2 1.33 1.15

bm25cc 299,628,724 34.89% 1.21 1.34 1.15

u2vcti14cd 299,303,431 34.19% 1.21 1.36 1.16

ti120 298,319,596 32.16% 1.3 1.52 1.32

u2v10cc 296,737,824 34.62% 1.21 1.35 1.16

geomu24cd 296,104,692 32.52% 1.24 1.43 1.25
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u2vcti14cc 294,754,777 34.31% 1.21 1.36 1.17

tf180 294,520,625 31.32% 1.31 1.53 1.33

u2vccd 293,231,413 33.99% 1.21 1.37 1.17

geomu24cc 290,945,430 32.61% 1.24 1.44 1.26

ti180 290,545,289 31.44% 1.31 1.54 1.34

u2vccc 288,285,363 34.13% 1.21 1.37 1.19

tf360 281,207,349 30.08% 1.32 1.56 1.37

geomu24ad 280,213,676 30.7% 1.25 1.45 1.29

ti360 277,612,404 30.16% 1.33 1.57 1.38

lti1adb1 276,414,965 30.97% 1.2 1.45 1.29

geomu24ac 275,590,269 30.82% 1.25 1.46 1.3

tf720 267,565,842 28.61% 1.34 1.6 1.42

tfd 267,188,092 28.8% 1.34 1.6 1.42

ti720 263,709,857 28.73% 1.34 1.6 1.42

bm25ti14ad 258,863,980 29.62% 1.23 1.4 1.26

u2v10ti14ad 249,713,150 29.8% 1.22 1.4 1.28

geomu14cd 247,540,067 29.67% 1.27 1.52 1.37

u2v05ti14ad 247,383,439 30.28% 1.22 1.38 1.28

lti14cdb1 246,895,650 30.5% 1.21 1.53 1.37

tf1440 246,739,006 26.33% 1.37 1.66 1.49

bm25ti14ac 246,474,512 30.31% 1.23 1.39 1.28

u2v05ti14ac 243,850,987 30.43% 1.22 1.38 1.28

u2vcti14ad 243,611,312 29.48% 1.23 1.42 1.31

u2v10ti14ac 242,926,971 30.18% 1.22 1.39 1.29

geomu14cc 238,492,729 29.92% 1.26 1.53 1.4

u2vcti14ac 237,279,638 29.81% 1.22 1.42 1.32

bm25ti75ad 235,749,939 27.63% 1.25 1.46 1.35

ti1440 235,395,534 26.83% 1.37 1.67 1.52

bm25ad 231,283,812 27.76% 1.24 1.47 1.37

lcdb1 229,523,765 28.96% 1.21 1.61 1.45

bm25ti180ad 229,260,341 26.92% 1.25 1.48 1.38

u2v10ti75ad 226,320,634 27.99% 1.24 1.45 1.37

u2v05ti75ad 223,642,592 28.58% 1.23 1.43 1.37

u2v10ad 221,684,899 28.22% 1.23 1.47 1.39

bm25ti75ac 220,970,579 28.5% 1.24 1.45 1.39

u2v10ti180ad 219,750,212 27.33% 1.24 1.47 1.41

u2vcti75ad 219,474,949 27.56% 1.24 1.48 1.41

u2v05ti75ac 218,928,488 28.8% 1.23 1.43 1.38

u2v05ad 218,918,746 28.87% 1.22 1.44 1.39

geomu14ad 218,814,074 27.29% 1.27 1.55 1.46

u2v10ti75ac 217,898,455 28.47% 1.23 1.45 1.4

u2v05ti180ad 217,009,417 27.96% 1.23 1.45 1.4

bm25ac 215,728,569 28.72% 1.24 1.46 1.41

u2vcad 214,602,352 27.77% 1.24 1.5 1.43

u2v05ac 213,752,978 29.12% 1.22 1.44 1.41

bm25ti180ac 213,749,268 27.83% 1.25 1.47 1.43

u2vcti180ad 212,709,792 26.86% 1.25 1.51 1.45

u2v10ac 212,641,685 28.77% 1.23 1.46 1.42

u2v05ti180ac 211,920,760 28.19% 1.23 1.45 1.42

u2vcti75ac 211,303,578 28.0% 1.24 1.48 1.44

u2v10ti180ac 210,812,680 27.84% 1.24 1.47 1.44

geomu14ac 210,212,581 27.7% 1.27 1.56 1.49

u2vcac 205,756,066 28.27% 1.23 1.5 1.47

u2vcti180ac 203,974,303 27.32% 1.24 1.51 1.48

lti14adb1 195,715,922 25.99% 1.21 1.66 1.59

geomu75ad 192,194,826 25.09% 1.3 1.65 1.6

geomu75ac 182,000,121 25.58% 1.29 1.67 1.66

lti75adb1 156,285,988 21.6% 1.23 1.92 1.93

ladb1 145,886,471 20.74% 1.23 2.03 2.06

lti180adb1 144,934,232 19.7% 1.24 2.03 2.07

Table A14: System measures for all sessions approaches. Ordered by the amounts of session in descending order.

Abbreviations: CV-R = Conversion Rate; B-R = Bounce Rate.
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A15 Overview of statistics per cluster

1 2 3 4 5 6 7 8 9 10 Noise

ti30

user ids 6.83 5.59 5.59 5.51 4.5 3.68 3.57 3.41 2.91 2.9 5.76

sessions 1 1 1 2 1 2 2 1 1 1 25.16

interactions 3 4 2 1 5 1.5 2 6 7 8 9.27

ti180

user ids 7.5 6.34 6.26 5.02 4.77 3.86 3.4 3.26 3.23 3.21 5.02

sessions 1 1 1 1 2 1 5 1 2 1 21.85

interactions 3 2 4 5 1 6 3.25 7 1.5 8 13.99

tfd

user ids 7.84 6.74 6.57 5.26 4.36 4.06 3.42 3.34 3.29 3.02 4.86

sessions 1 1 1 1 2 1 1 1 5 2 19.16

interactions 3 2 4 5 1 6 7 8 3.44 1.5 13.47

u2vccc

user ids 7.39 6.72 6.24 4.87 4.38 3.66 3.63 3.12 2.97 2.94 6.34

sessions 1 1 1 1 2 1 5 2 2 1 18.49

interactions 3 2 4 5 1 6 3.35 1.5 2 7 11.93

u2vccd

user ids 7.37 6.72 6.21 4.83 4.38 3.62 3.14 2.99 2.89 2.62 5.14

sessions 1 1 1 1 2 1 2 2 1 5 23.06

interactions 3 2 4 5 1 6 1.5 2 7 3.86 11.24

u2vcac

user ids 7.39 6.72 6.24 4.87 4.38 3.66 3.58 3.4 3.14 2.94 2.48

sessions 1 1 1 1 2 1 2 2 5 1 12.01

interactions 3 2 4 5 1 6 1.5 2 4.71 7 22.92

u2vcad

user ids 7.37 6.72 6.21 4.83 4.38 3.62 3.61 3.42 2.89 2.74 4.01

sessions 1 1 1 1 2 1 2 2 1 2 11.31

interactions 3 2 4 5 1 6 1.5 2 7 2.5 16.76

ladb1

user ids 8.42 7.73 7.26 5.79 4.46 4.42 3.62 3.37 3.24 2.94 2.42

sessions 1 1 1 1 1 4 1 2 1 2 3.9

interactions 3 2 4 5 6 8.28 7 1 8 1.5 36.25

lcdb1

user ids 8.42 7.73 7.26 5.79 4.46 3.62 3.37 3.24 2.49 2.41 5.43

sessions 1 1 1 1 1 1 2 1 2 2 14.96

interactions 3 2 4 5 6 7 1 8 1.5 2 17.46

u2vcti30cc

user ids 6.62 5.49 4.48 4.43 4.33 4 3.48 2.74 2.51 2.25 8.17

sessions 2 1 1 1 2 2 1 2 1 6 24.71

interactions 1 3 2 4 1.5 2 5 2.5 6 2.02 6.76

u2vcti30cd

user ids 6.62 5.47 4.48 4.41 4.35 4.01 3.45 2.76 2.48 2.18 9.51

sessions 2 1 1 1 2 2 1 2 1 7 22.38

interactions 1 3 2 4 1.5 2 5 2.5 6 2.56 6.55

u2vcti1cc

user ids 6.56 5.74 5.42 5.36 4.21 3.66 3.44 3.09 2.7 2.49 7.16

sessions 1 1 1 2 1 2 2 1 6 2 20.38

interactions 3 2 4 1 5 1.5 2 6 2.95 2.5 10.62

u2vcti1cd

user ids 6.54 5.74 5.4 5.36 4.17 3.68 3.46 3.06 2.68 2.52 6.97

sessions 1 1 1 2 1 2 2 1 6 2 22.13

interactions 3 2 4 1 5 1.5 2 6 2.86 2.5 8.73

u2vcti1ac

user ids 6.56 5.74 5.42 5.36 4.21 4.05 3.75 3.63 3.09 2.85 6.1

sessions 1 1 1 2 1 2 2 5 1 2 19.39

interactions 3 2 4 1 5 1.5 2 3.19 6 2.5 13.14

u2vcti1ad

user ids 6.54 5.74 5.4 5.36 4.17 4.07 3.78 3.06 2.87 2.47 5.74

sessions 1 1 1 2 1 2 2 1 2 6 20.06

interactions 3 2 4 1 5 1.5 2 6 2.5 3.21 10.4

u2vcti14cc

user ids 7.19 6.47 6.03 4.7 4.63 3.49 3.26 3.09 2.8 2.66 5.38

sessions 1 1 1 1 2 1 2 2 1 5 21.09

interactions 3 2 4 5 1 6 1.5 2 7 3.82 12.83

u2vcti14cd
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user ids 7.16 6.47 6 4.65 4.63 3.77 3.45 3.28 3.1 2.76 5.26

sessions 1 1 1 1 2 5 1 2 2 1 22.32

interactions 3 2 4 5 1 3.24 6 1.5 2 7 12.72

u2vcti14ac

user ids 7.19 6.47 6.03 4.7 4.63 3.68 3.49 3.46 3.22 2.8 4.32

sessions 1 1 1 1 2 2 1 2 5 1 14.83

interactions 3 2 4 5 1 1.5 6 2 3.99 7 16.51

u2vcti14ad

user ids 7.16 6.47 6 4.65 4.63 3.7 3.47 3.45 3.24 2.76 4.29

sessions 1 1 1 1 2 2 2 1 5 2 13.91

interactions 3 2 4 5 1 1.5 2 6 3.88 2.5 17.76

lti1cdb1

user ids 7.08 6.13 5.91 4.97 4.66 3.51 3.36 3.2 2.86 2.58 5.66

sessions 1 1 1 2 1 1 2 2 1 1 20.68

interactions 3 2 4 1 5 6 1.5 2 7 8 10.98

lti1adb1

user ids 7.09 6.13 5.91 4.97 4.66 3.67 3.51 3.48 3.38 2.86 4.88

sessions 1 1 1 2 1 2 1 2 5 1 18.43

interactions 3 2 4 1 5 1.5 6 2 3.38 7 13.1

lti180adb1

user ids 8.5 7.84 7.32 5.83 4.49 4.35 3.65 3.26 3.25 2.87 1.12

sessions 1 1 1 1 1 4 1 2 1 2 5.47

interactions 3 2 4 5 6 8.38 7 1 8 1.5 60.57

geomu24cc

user ids 7.34 6.38 6.1 4.82 4.72 3.67 3.27 3.18 3.05 2.92 5.41

sessions 1 1 1 1 2 1 2 2 1 1 21.28

interactions 3 2 4 5 1 6 1.5 2 7 8 12.31

geomu24cd

user ids 7.31 6.38 6.06 4.78 4.72 3.62 3.48 3.3 3.21 3.01 5.33

sessions 1 1 1 1 2 1 5 2 2 1 22.42

interactions 3 2 4 5 1 6 3.29 1.5 2 7 10.27

geomu24ac

user ids 7.34 6.38 5.95 4.82 4.7 3.67 3.49 3.34 3.05 2.92 6.28

sessions 1 1 1 1 2 1 2 2 1 1 14.9

interactions 3 2 4 5 1 6 1.5 2 7 8 15.08

geomu24ad

user ids 7.31 6.38 6.06 4.78 4.72 3.62 3.49 3.37 3.01 2.81 4.87

sessions 1 1 1 1 2 1 2 2 1 1 20.42

interactions 3 2 4 5 1 6 1.5 2 7 8 12.3

Table A15: Overview of statistics per cluster. The table shows statistics for the 10 largest clusters and the noise

partition. Listed per session in the respective cluster are: the share of user ids per cluster, average number of

sessions and average number of interactions..
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A16 Overview of statistics per cluster with additional fea-

tures

1 2 3 4 5 6 7 8 9 10 Noise

ti30

u. 5.51 1.22 0.35 0.13 0.13 0.12 0.1 0.09 0.09 0.08 18.46

s. 2.0 3.0 4.0 5.0 9.0 11.0 10.0 8.0 12.0 7.0 9.98

int. 1.0 1.0 1.0 1.0 2.77 2.51 2.65 2.98 2.43 3.51 6.57

c. 1.0 1.0 1.0 1.0 1.22 1.09 1.2 1.38 1.08 1.57 1.81

t. 0.0 0.0 0.0 0.0 2.2 2.07 2.47 2.57 1.79 2.88 8.69

ti180

u. 4.77 1.01 0.29 0.14 0.1 0.1 0.1 0.09 0.09 0.09 19.3

s. 2.0 3.0 4.0 17.0 19.0 11.0 18.0 5.0 7.0 21.0 8.45

int. 1.0 1.0 1.0 2.82 2.83 2.63 2.72 1.0 3.73 2.86 7.09

c. 1.0 1.0 1.0 1.18 1.17 1.09 1.16 1.0 1.57 1.2 1.89

t. 0.0 0.0 0.0 7.01 6.45 5.51 6.05 0.0 7.52 8.63 27.7

tfd

u. 4.36 0.88 0.23 0.16 0.11 0.11 0.1 0.08 0.07 0.07 19.76

s. 2.0 3.0 4.0 15.0 16.0 18.0 17.0 19.0 20.0 5.0 7.44

int. 1.0 1.0 1.0 3.08 3.03 3.15 2.84 3.09 3.09 1.0 7.24

c. 1.0 1.0 1.0 1.2 1.2 1.23 1.21 1.25 1.22 1.0 1.91

t. 0.0 0.0 0.0 24.91 19.44 27.93 21.06 29.22 32.46 0.0 84.34

u2vccc

u. 4.38 1.23 0.35 0.13 0.07 0.07 0.05 0.05 0.05 0.05 20.1

s. 2.0 3.0 4.0 5.0 1.0 12.0 1.0 6.0 13.0 2.0 7.32

int. 1.0 1.0 1.0 1.0 13.0 3.16 2.0 1.0 3.17 1.5 6.79

c. 1.0 1.0 1.0 1.0 2.0 1.17 1.0 1.0 1.15 1.0 1.53

t. 0.0 0.0 0.0 0.0 5.87 1, 812.24 0.1 0.0 986.25 0.09 11, 374.02

u2vccd

u. 4.38 1.23 0.35 0.13 0.07 0.05 0.05 0.05 0.05 0.05 19.75

s. 2.0 3.0 4.0 5.0 1.0 1.0 6.0 2.0 2.0 2.0 7.68

int. 1.0 1.0 1.0 1.0 13.0 2.0 1.0 1.5 1.5 1.5 6.6

c. 1.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.5

t. 0.0 0.0 0.0 0.0 5.88 0.1 0.0 0.09 0.1 0.07 10, 942.61

u2vcac

u. 4.38 0.76 0.17 0.12 0.12 0.1 0.07 0.05 0.05 0.05 20.84

s. 2.0 3.0 4.0 14.0 13.0 15.0 1.0 1.0 10.0 2.0 4.52

int. 1.0 1.0 1.0 4.81 4.34 4.89 13.0 2.0 3.93 1.5 8.39

c. 1.0 1.0 1.0 1.42 1.33 1.4 2.0 1.0 1.2 1.0 1.65

t. 0.0 0.0 0.0 22, 636.06 18, 642.73 25, 292.42 5.87 0.1 11, 241.7 0.09 24, 589.64

u2vcad

u. 4.38 0.76 0.17 0.13 0.11 0.08 0.07 0.07 0.06 0.05 21.04

s. 2.0 3.0 4.0 13.0 15.0 14.0 8.0 1.0 10.0 1.0 4.94

int. 1.0 1.0 1.0 4.41 4.89 3.92 4.9 13.0 3.91 2.0 7.89

c. 1.0 1.0 1.0 1.35 1.42 1.31 1.5 2.0 1.2 1.0 1.6

t. 0.0 0.0 0.0 17, 809.83 21, 490.82 17, 458.05 14, 993.83 5.88 11, 541.73 0.1 22, 628.2

ladb1

u. 3.37 0.38 0.27 0.19 0.12 0.11 0.11 0.1 0.07 0.07 21.05

s. 2.0 3.0 8.0 4.0 5.0 4.0 5.0 4.0 5.0 1.0 2.56

int. 1.0 1.0 16.49 9.82 7.92 10.22 5.79 11.91 6.63 13.0 12.68

c. 1.0 1.0 3.46 2.75 2.4 3.0 2.0 3.25 2.2 2.0 2.41

t. 0.0 0.0 123, 079.5 76, 982.97 67, 865.26 67, 864.36 38, 431.3 75, 443.98 30, 775.95 5.8 58, 070.2

lcdb1

u. 3.37 0.82 0.2 0.09 0.09 0.08 0.08 0.07 0.07 0.07 20.76

s. 2.0 3.0 4.0 17.0 18.0 9.0 9.0 1.0 10.0 5.0 5.12

int. 1.0 1.0 1.0 3.77 4.09 3.78 3.09 13.0 3.21 1.0 8.78

c. 1.0 1.0 1.0 1.35 1.45 1.33 1.22 2.0 1.2 1.0 1.92

t. 0.0 0.0 0.0 3, 350.61 3, 991.06 5, 410.83 3, 253.74 5.8 4, 291.37 0.0 25, 539.34

u2vcti30cc

u. 6.62 1.91 0.61 0.26 0.11 0.09 0.09 0.08 0.08 0.08 16.93

s. 2.0 3.0 4.0 5.0 6.0 11.0 2.0 2.0 2.0 10.0 13.04

int. 1.0 1.0 1.0 1.0 1.0 2.53 1.5 1.5 1.5 2.33 5.24

c. 1.0 1.0 1.0 1.0 1.0 1.18 1.0 1.0 1.0 1.2 1.44

t. 0.0 0.0 0.0 0.0 0.0 1.75 0.09 0.1 0.07 1.43 7.73

u2vcti30cd

u. 6.62 1.91 0.61 0.26 0.11 0.09 0.09 0.08 0.08 0.08 16.78

s. 2.0 3.0 4.0 5.0 6.0 11.0 2.0 2.0 14.0 2.0 13.28

int. 1.0 1.0 1.0 1.0 1.0 2.53 1.5 1.5 2.28 1.5 5.17

c. 1.0 1.0 1.0 1.0 1.0 1.18 1.0 1.0 1.07 1.0 1.42

t. 0.0 0.0 0.0 0.0 0.0 1.76 0.09 0.1 1.56 0.07 7.73
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u2vcti1cc

u. 5.36 1.52 0.46 0.18 0.07 0.07 0.06 0.06 0.06 0.06 18.88

s. 2.0 3.0 4.0 5.0 6.0 1.0 2.0 2.0 2.0 2.0 10.25

int. 1.0 1.0 1.0 1.0 1.0 13.0 1.5 1.5 1.5 1.5 5.72

c. 1.0 1.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.45

t. 0.0 0.0 0.0 0.0 0.0 5.87 0.09 0.1 0.07 0.12 177.3

u2vcti1cd

u. 5.36 1.52 0.46 0.18 0.07 0.07 0.06 0.06 0.06 0.06 19.05

s. 2.0 3.0 4.0 5.0 6.0 1.0 2.0 2.0 2.0 2.0 10.36

int. 1.0 1.0 1.0 1.0 1.0 13.0 1.5 1.5 1.5 1.5 5.57

c. 1.0 1.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.43

t. 0.0 0.0 0.0 0.0 0.0 5.88 0.09 0.1 0.07 0.12 172.73

u2vcti1ac

u. 5.36 1.13 0.31 0.1 0.07 0.07 0.06 0.06 0.06 0.06 18.72

s. 2.0 3.0 4.0 5.0 1.0 2.0 2.0 2.0 2.0 2.0 8.93

int. 1.0 1.0 1.0 1.0 13.0 1.5 1.5 1.5 1.5 1.5 6.16

c. 1.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.49

t. 0.0 0.0 0.0 0.0 5.87 0.09 0.1 0.07 0.12 0.17 201.32

u2vcti1ad

u. 5.36 1.13 0.31 0.1 0.07 0.07 0.06 0.06 0.06 0.06 19.02

s. 2.0 3.0 4.0 5.0 1.0 2.0 2.0 2.0 2.0 2.0 9.03

int. 1.0 1.0 1.0 1.0 13.0 1.5 1.5 1.5 1.5 1.5 6.0

c. 1.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.47

t. 0.0 0.0 0.0 0.0 5.88 0.09 0.1 0.07 0.12 0.17 194.65

u2vcti14cc

u. 4.63 1.3 0.37 0.14 0.07 0.06 0.05 0.05 0.05 0.05 20.67

s. 2.0 3.0 4.0 5.0 1.0 6.0 1.0 2.0 2.0 2.0 8.27

int. 1.0 1.0 1.0 1.0 13.0 1.0 2.0 1.5 1.5 1.5 6.54

c. 1.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.5

t. 0.0 0.0 0.0 0.0 5.87 0.0 0.1 0.1 0.09 0.07 2, 134.12

u2vcti14cd

u. 4.63 1.3 0.37 0.14 0.07 0.06 0.05 0.05 0.05 0.05 20.59

s. 2.0 3.0 4.0 5.0 1.0 6.0 1.0 2.0 2.0 13.0 8.41

int. 1.0 1.0 1.0 1.0 13.0 1.0 2.0 1.5 1.5 2.95 6.36

c. 1.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.15 1.48

t. 0.0 0.0 0.0 0.0 5.88 0.0 0.1 0.1 0.09 549.13 2, 065.99

u2vcti14ac

u. 4.63 0.87 0.22 0.13 0.13 0.08 0.08 0.07 0.07 0.07 19.65

s. 2.0 3.0 4.0 15.0 16.0 18.0 17.0 10.0 1.0 19.0 5.79

int. 1.0 1.0 1.0 3.43 3.67 3.49 3.46 3.33 13.0 3.68 7.74

c. 1.0 1.0 1.0 1.17 1.21 1.19 1.17 1.2 2.0 1.21 1.58

t. 0.0 0.0 0.0 1, 460.15 1, 436.81 1, 637.33 1, 465.54 1, 307.09 5.87 1, 653.58 3, 086.45

u2vcti14ad

u. 4.63 0.87 0.22 0.1 0.08 0.07 0.07 0.07 0.06 0.06 19.72

s. 2.0 3.0 4.0 16.0 10.0 17.0 18.0 1.0 5.0 19.0 6.16

int. 1.0 1.0 1.0 3.4 3.41 3.36 3.35 13.0 1.0 3.55 7.4

c. 1.0 1.0 1.0 1.16 1.2 1.16 1.16 2.0 1.0 1.18 1.55

t. 0.0 0.0 0.0 1, 308.55 1, 408.44 1, 276.06 1, 466.28 5.88 0.0 1, 396.12 2, 939.1

lti1cdb1

u. 4.97 1.29 0.36 0.14 0.07 0.06 0.06 0.06 0.05 0.05 19.88

s. 2.0 3.0 4.0 5.0 1.0 20.0 2.0 2.0 2.0 1.0 8.76

int. 1.0 1.0 1.0 1.0 13.0 2.72 1.5 1.5 1.5 2.0 6.25

c. 1.0 1.0 1.0 1.0 2.0 1.13 1.0 1.0 1.0 1.0 1.6

t. 0.0 0.0 0.0 0.0 5.8 42.86 0.09 0.1 0.07 0.1 201.56

lti1adb1

u. 4.97 0.99 0.26 0.11 0.09 0.08 0.07 0.06 0.06 0.06 18.87

s. 2.0 3.0 4.0 18.0 19.0 5.0 1.0 20.0 2.0 2.0 7.84

int. 1.0 1.0 1.0 2.98 3.02 1.0 13.0 3.0 1.5 1.5 6.75

c. 1.0 1.0 1.0 1.16 1.18 1.0 2.0 1.14 1.0 1.0 1.67

t. 0.0 0.0 0.0 66.43 74.53 0.0 5.8 68.67 0.09 0.1 234.16

lti180adb1

u. 3.26 0.36 0.32 0.18 0.18 0.15 0.13 0.11 0.09 0.07 20.3

s. 2.0 3.0 8.0 5.0 5.0 5.0 4.0 5.0 9.0 1.0 2.53

int. 1.0 1.0 15.19 4.83 5.48 6.35 10.75 7.02 10.41 13.0 13.25

c. 1.0 1.0 3.23 1.6 1.8 2.0 3.0 2.2 2.65 2.0 2.46

t. 0.0 0.0 102, 574.08 30, 945.72 40, 298.02 41, 868.93 66, 324.84 39, 970.89 90, 005.35 5.8 49, 316.45

geomu24cc

u. 4.72 1.13 0.32 0.11 0.07 0.06 0.06 0.06 0.05 0.05 19.49

s. 2.0 3.0 4.0 5.0 20.0 2.0 21.0 2.0 1.0 1.0 8.24

int. 1.0 1.0 1.0 1.0 2.82 1.5 2.72 1.5 2.0 2.0 6.64

c. 1.0 1.0 1.0 1.0 1.14 1.0 1.12 1.0 2.0 1.0 1.67

t. 0.0 0.0 0.0 0.0 47.26 0.09 33.67 0.1 0.1 0.1 191.55

geomu24cd
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u. 4.72 1.13 0.32 0.11 0.06 0.06 0.05 0.05 0.05 0.05 19.94

s. 2.0 3.0 4.0 5.0 2.0 2.0 1.0 1.0 2.0 2.0 8.52

int. 1.0 1.0 1.0 1.0 1.5 1.5 2.0 2.0 1.5 1.5 6.36

c. 1.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0 1.63

t. 0.0 0.0 0.0 0.0 0.09 0.1 0.1 0.1 0.07 0.0 177.41

geomu24ac

u. 4.72 0.94 0.26 0.08 0.08 0.06 0.06 0.06 0.05 0.05 19.24

s. 2.0 3.0 4.0 5.0 20.0 2.0 22.0 2.0 1.0 1.0 7.67

int. 1.0 1.0 1.0 1.0 2.95 1.5 2.94 1.5 2.0 2.0 6.92

c. 1.0 1.0 1.0 1.0 1.15 1.0 1.15 1.0 2.0 1.0 1.7

t. 0.0 0.0 0.0 0.0 59.93 0.09 56.51 0.1 0.1 0.1 206.25

geomu24ad

u. 4.72 0.94 0.26 0.08 0.07 0.06 0.06 0.05 0.05 0.05 20.24

s. 2.0 3.0 4.0 5.0 20.0 2.0 2.0 1.0 1.0 2.0 7.64

int. 1.0 1.0 1.0 1.0 2.92 1.5 1.5 2.0 2.0 1.5 6.65

c. 1.0 1.0 1.0 1.0 1.15 1.0 1.0 1.0 2.0 1.0 1.67

t. 0.0 0.0 0.0 0.0 48.96 0.09 0.1 0.1 0.1 0.07 184.42

Table A16: Overview of statistics per cluster with additional features. The table shows statistics for the ten largest

clusters and the noise partition. The share of user ids per cluster as well as the average sessions and the averaged

number of average interactions per session in the respective cluster. Abbreviations: u. = user ids; s. = sessions; int.

= interactions; c. = categories; t. = time on site.
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