991 research outputs found

    Deep Learning for Software Defect Prediction: An LSTM-based Approach

    Get PDF
    Software defect prediction is an important aspect of software development, as it helps developers and organizations to identify and resolve bugs in the software before they become major issues. In this paper, we explore the use of machine learning algorithms for software defect prediction. We discuss the different types of machine learning algorithms that have been used for software defect prediction and their advantages and disadvantages. We also provide a comprehensive review of recent studies that have used machine learning algorithms for software defect prediction. The paper concludes with a discussion of the challenges and opportunities in using machine learning algorithms for software defect prediction and the future directions of research in this field. This paper surveys the existing literature on software defect prediction, focusing specifically on deep learning techniques. Compared to existing surveys on the topic, this paper offers a more in-depth analysis of the strengths and weaknesses of deep learning approaches for software defect prediction. It explores the use of LSTMs for this task, which have not been extensively studied in previous surveys. Additionally, this paper provides a comprehensive review of recent research in the field, highlighting the most promising deep learning models and techniques for software defect prediction. The results of this survey demonstrate that LSTM-based deep learning models can outperform traditional machine learning approaches and achieve state-of-the-art results in software defect prediction. Furthermore, this paper provides insights into the challenges and limitations of deep learning approaches for software defect prediction, highlighting areas for future research and improvement. Overall, this paper offers a valuable resource for researchers and practitioners interested in using deep learning techniques for software defect prediction.

    User Modeling and User Profiling: A Comprehensive Survey

    Full text link
    The integration of artificial intelligence (AI) into daily life, particularly through information retrieval and recommender systems, has necessitated advanced user modeling and profiling techniques to deliver personalized experiences. These techniques aim to construct accurate user representations based on the rich amounts of data generated through interactions with these systems. This paper presents a comprehensive survey of the current state, evolution, and future directions of user modeling and profiling research. We provide a historical overview, tracing the development from early stereotype models to the latest deep learning techniques, and propose a novel taxonomy that encompasses all active topics in this research area, including recent trends. Our survey highlights the paradigm shifts towards more sophisticated user profiling methods, emphasizing implicit data collection, multi-behavior modeling, and the integration of graph data structures. We also address the critical need for privacy-preserving techniques and the push towards explainability and fairness in user modeling approaches. By examining the definitions of core terminology, we aim to clarify ambiguities and foster a clearer understanding of the field by proposing two novel encyclopedic definitions of the main terms. Furthermore, we explore the application of user modeling in various domains, such as fake news detection, cybersecurity, and personalized education. This survey serves as a comprehensive resource for researchers and practitioners, offering insights into the evolution of user modeling and profiling and guiding the development of more personalized, ethical, and effective AI systems.Comment: 71 page

    Route Anomaly Detection Using a Linear Route Representation

    Get PDF

    A Survey and Evaluation of Android-Based Malware Evasion Techniques and Detection Frameworks

    Get PDF
    Android platform security is an active area of research where malware detection techniques continuously evolve to identify novel malware and improve the timely and accurate detection of existing malware. Adversaries are constantly in charge of employing innovative techniques to avoid or prolong malware detection effectively. Past studies have shown that malware detection systems are susceptible to evasion attacks where adversaries can successfully bypass the existing security defenses and deliver the malware to the target system without being detected. The evolution of escape-resistant systems is an open research problem. This paper presents a detailed taxonomy and evaluation of Android-based malware evasion techniques deployed to circumvent malware detection. The study characterizes such evasion techniques into two broad categories, polymorphism and metamorphism, and analyses techniques used for stealth malware detection based on the malware’s unique characteristics. Furthermore, the article also presents a qualitative and systematic comparison of evasion detection frameworks and their detection methodologies for Android-based malware. Finally, the survey discusses open-ended questions and potential future directions for continued research in mobile malware detection

    Web Archive Services Framework for Tighter Integration Between the Past and Present Web

    Get PDF
    Web archives have contained the cultural history of the web for many years, but they still have a limited capability for access. Most of the web archiving research has focused on crawling and preservation activities, with little focus on the delivery methods. The current access methods are tightly coupled with web archive infrastructure, hard to replicate or integrate with other web archives, and do not cover all the users\u27 needs. In this dissertation, we focus on the access methods for archived web data to enable users, third-party developers, researchers, and others to gain knowledge from the web archives. We build ArcSys, a new service framework that extracts, preserves, and exposes APIs for the web archive corpus. The dissertation introduces a novel categorization technique to divide the archived corpus into four levels. For each level, we will propose suitable services and APIs that enable both users and third-party developers to build new interfaces. The first level is the content level that extracts the content from the archived web data. We develop ArcContent to expose the web archive content processed through various filters. The second level is the metadata level; we extract the metadata from the archived web data and make it available to users. We implement two services, ArcLink for temporal web graph and ArcThumb for optimizing the thumbnail creation in the web archives. The third level is the URI level that focuses on using the URI HTTP redirection status to enhance the user query. Finally, the highest level in the web archiving service framework pyramid is the archive level. In this level, we define the web archive by the characteristics of its corpus and building Web Archive Profiles. The profiles are used by the Memento Aggregator for query optimization

    A document based traceability model for test management

    Get PDF
    Software testing has became more complicated in the emergence of distributed network, real-time environment, third party software enablers and the need to test system at multiple integration levels. These scenarios have created more concern over the quality of software testing. The quality of software has been deteriorating due to inefficient and ineffective testing activities. One of the main flaws is due to ineffective use of test management to manage software documentations. In documentations, it is difficult to detect and trace bugs in some related documents of which traceability is the major concern. Currently, various studies have been conducted on test management, however very few have focused on document traceability in particular to support the error propagation with respect to documentation. The objective of this thesis is to develop a new traceability model that integrates software engineering documents to support test management. The artefacts refer to requirements, design, source code, test description and test result. The proposed model managed to tackle software traceability in both forward and backward propagations by implementing multi-bidirectional pointer. This platform enabled the test manager to navigate and capture a set of related artefacts to support test management process. A new prototype was developed to facilitate observation of software traceability on all related artefacts across the entire documentation lifecycle. The proposed model was then applied to a case study of a finished software development project with a complete set of software documents called the On-Board Automobile (OBA). The proposed model was evaluated qualitatively and quantitatively using the feature analysis, precision and recall, and expert validation. The evaluation results proved that the proposed model and its prototype were justified and significant to support test management

    A New Intrusion Prevention System for Protecting Smart Grids from ICMPv6 Vulnerabilities

    Get PDF
    Smart Grid is an integrated power grid with a reliable, communication network running in parallel towards providing two way communications in the grid. It’s trivial to mention that a network like this would connect a huge number of IP-enabled devices. IPv6 that offers 18-bit address space becomes an obvious choice in this context. In a smart grid, functionalities like neighborhood discovery, autonomic address configuration of a node or its router identification may often be invoked whenever newer equipments are introduced for capacity enhancement at some level of hierarchy. In IPv6, these basic functionalities like neighborhood discovery, autonomic address configuration of networking require to use Internet Control Message Protocol version 6 (ICMPv6). Such usage may lead to security breaches in the grid as a result of possible abuses of ICMPv6 protocol. In this paper, some potential newer attacks on Smart Grid have been discussed. Subsequently, intrusion prevention mechanisms for these attacks are proposed to plug-in the threats

    Security Engineering of Patient-Centered Health Care Information Systems in Peer-to-Peer Environments: Systematic Review

    Get PDF
    Background: Patient-centered health care information systems (PHSs) enable patients to take control and become knowledgeable about their own health, preferably in a secure environment. Current and emerging PHSs use either a centralized database, peer-to-peer (P2P) technology, or distributed ledger technology for PHS deployment. The evolving COVID-19 decentralized Bluetooth-based tracing systems are examples of disease-centric P2P PHSs. Although using P2P technology for the provision of PHSs can be flexible, scalable, resilient to a single point of failure, and inexpensive for patients, the use of health information on P2P networks poses major security issues as users must manage information security largely by themselves. Objective: This study aims to identify the inherent security issues for PHS deployment in P2P networks and how they can be overcome. In addition, this study reviews different P2P architectures and proposes a suitable architecture for P2P PHS deployment. Methods: A systematic literature review was conducted following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) reporting guidelines. Thematic analysis was used for data analysis. We searched the following databases: IEEE Digital Library, PubMed, Science Direct, ACM Digital Library, Scopus, and Semantic Scholar. The search was conducted on articles published between 2008 and 2020. The Common Vulnerability Scoring System was used as a guide for rating security issues. Results: Our findings are consolidated into 8 key security issues associated with PHS implementation and deployment on P2P networks and 7 factors promoting them. Moreover, we propose a suitable architecture for P2P PHSs and guidelines for the provision of PHSs while maintaining information security. Conclusions: Despite the clear advantages of P2P PHSs, the absence of centralized controls and inconsistent views of the network on some P2P systems have profound adverse impacts in terms of security. The security issues identified in this study need to be addressed to increase patients\u27 intention to use PHSs on P2P networks by making them safe to use
    corecore