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Abstract— Software defect prediction is an important aspect of software development, as it helps developers and organizations to identify 

and resolve bugs in the software before they become major issues. In this paper, we explore the use of machine learning algorithms for software 
defect prediction. We discuss the different types of machine learning algorithms that have been used for software defect prediction and their 

advantages and disadvantages. We also provide a comprehensive review of recent studies that have used machine learning algori thms for 

software defect prediction. The paper concludes with a discussion of the challenges and opportunities in using machine learning algorithms for 

software defect prediction and the future directions of research in this field. This paper surveys the existing literature on software defect 
prediction, focusing specifically on deep learning techniques. Compared to existing surveys on the topic, this paper offers a more in-depth 

analysis of the strengths and weaknesses of deep learning approaches for software defect prediction. It explores the use of LSTMs for this task, 

which have not been extensively studied in previous surveys. Additionally, this paper provides a comprehensive review of recent research in 

the field, highlighting the most promising deep learning models and techniques for software defect prediction. The results of this survey 
demonstrate that LSTM-based deep learning models can outperform traditional machine learning approaches and achieve state-of-the-art results 

in software defect prediction. Furthermore, this paper provides insights into the challenges and limitations of deep learning approaches for 

software defect prediction, highlighting areas for future research and improvement. Overall, this paper offers a valuable resource for researchers 

and practitioners interested in using deep learning techniques for software defect prediction.. 
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I.  INTRODUCTION 

Software defect prediction is an important aspect of software 
development, as it helps developers and organizations to identify 
and resolve bugs in the software before they become major 
issues. In this paper, we explore the use of machine learning 
algorithms for software defect prediction [30]. We discuss the 
different types of machine learning algorithms that have been 
used for software defect prediction and their advantages and 
disadvantages. We also provide a comprehensive review of 
recent studies that have used machine learning algorithms for 
software defect prediction [25]. The paper concludes with a 
discussion of the challenges and opportunities in using machine 
learning algorithms for software defect prediction and the future 
directions of research in this field. In this paper, we will first 
review the related work on software defect prediction and the 
evaluation parameters used by different methods. Then, we will 
describe the methodology used to train and evaluate the Long 
Short-Term Memory (LSTM) model for software defect 
prediction [34]. Next, we will present the experimental results 
and compare the performance of the LSTM model with other 
existing methods using various evaluation parameters [46]. 
Finally, we will discuss the limitations of our study and provide 
recommendations for future research in this area. 

 

A. Overview of machine learning algorithms for software 

defect prediction 

Software Defect Prediction can directly affect quality and 
has achieved significant popularity in last few years. Defective 
software modules have a massive impact over software’s quality 
leading to cost overruns, delayed timelines and much higher 
maintenance costs. In this paper we have analyzed the most 
popular and widely used Machine Learning algorithms – 
Artificial Neural network, Support Vector Machine, Decision 
Tree, Association rule, Clustering [47]. The Primary concern of 
software development process is to ensure quality software at 
every development stage; therefore, a common goal and concern 
of each software development phase is to check and concentrate 
on improving the software quality. Software quality prediction 
thus aims to evaluate software quality level periodically and to 
indicate software quality problems early [1]. Commonly it is also 
called as a fault (bug) between software experts [2]. It is not so 
easy to manage quality software because of raising difficulties 
and several restrictions under which software is developed. 
Conversely, the software development organizations are not 
ready to take much risk with delivering inferior quality software 
[3]. Moreover, it leads to disappointment among customers. 
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B. The role of Long Short-Term Memory (LSTM) in 
software defect prediction 

LSTM networks are well-suited to classifying, processing 
and making predictions based on time series data, since there can 
be lags of unknown duration between important events in a time 
series [60]. LSTM is applicable to tasks such as unsegmented, 
connected handwriting recognition, speech recognition, machine 
translation, robot control, video games, and healthcare [15]. As 
our dataset will have real time implementation and have different 
software development logics which will comprise of different 
logical defects and will be good for CPDP dynamic datasets [56]. 
Therefore, LSTM is the most suitable methodology for our 
research and will also reduce the research gaps of many 
problems coming across for SDP Model across dynamic systems 
which are evolved over time [37]. 

 
To capture the long-term dependencies that often exist between 
code elements we use a prediction system on a deep learning 
LSTM (Long Short-Term Memory) network [23]. We evaluate 
with a dataset from opensource Java project, namely from the 
Apache Project Repository. From the results of this study, it was 
concluded that the results of training using the LSTM network 
were both done by restarting and sequentially got higher 
accuracy, precision, recall, and f1-score results than using the 
RNN algorithm. The highest accuracy value is obtained by 93% 
using LSTM then precision is obtained at 89%, recall is 92% and 
f1-score is 90%. [71] From the above researches and surveys 
LSTM is one of the most appropriate methodologies to 
implement SDP Model Using HCPDP for dynamic datasets 
software testing [49]. 
 

Most of the studies available in literature have used historical 
data related to the same projects for identification of faulty 
modules however, availability of historical data for new software 
projects is not possible [20]. In case of new software projects, 
data for defect prediction is taken from similar types of projects 
developed earlier and this technique of defect prediction is called 
cross project defect prediction. From the past studies and 
applicability of hybrid search-based algorithms for cross project 
defect prediction is investigated [63]. Performance of hybrid 
search-based algorithms had been compared for with-in and 
cross project defect prediction. Hybrid search-based algorithms 
combine the advantages of search-based algorithms with 
machine learning techniques [18]. 

 
Survey Results showed that hybrid search-based algorithms 

are more suitable in case of cross project defect prediction in 
comparison to with-in project defect prediction [7]. Existing 
CPDP methods are based on the assumption that source and 
target projects should have the same metrics. Heterogeneous 
cross-project defect prediction (HCPDP) builds a prediction 
model using heterogeneous source and target projects. Existing 
HCPDP methods just focus on one source project or multiple 
source projects with the same metrics. These methods limit the 
scope of getting the source project [5]. 

 
Therefore, we propose Heterogeneous Defect Prediction with 
Multiple source projects (HDPM) which can use multiple 
heterogeneous source projects for defect prediction. HDPM 
based on transfer learning which can learn knowledge from one 
domain and use it to help with another domain. HDPM 
constructs a projective matrix between heterogeneous source 

and target projects to make the distributions of source and target 
projects similar [68]. 

II. LITERATURE REVIEW 

Software defect is an error, bug, flaw, fault, malfunction or 
mistakes in software that causes it to create an erroneous or 
unpredicted outcome. Faults are essential properties of a system 
[6]. They appear from design or manufacture, or external 
environment. The majorities of the faults are from source code 
or design, some of them are from the incorrect code generating 
from compilers. Software Defect Prediction [SDP] plays an 
important role in the active research areas of software 
engineering [9]. The major risk factors related with a software 
defect which is not detected during the early phase of software 
development are time, quality, cost, effort and wastage of 
resources. Thus, the key objective of any organization is to 
determine and correct the defects in an early phase of Software 
Development Life Cycle [SDLC]. To improve the quality of 
software, datamining or machine learning techniques can be 
been applied to build predictions regarding the failure of 
software components by exploiting past data of software 
components and their defects. The main objective of software 
defect prediction is to improve the quality, minimized cost and 
time of software products. Software defect is also referred to as 
bug can be defined as shortage in the software product that 
causes the software not to perform its task as the programmer 
and customer needed [12]. 

 
Machine Learning is one of the most vital and motivating 

area of research with the objective of finding meaningful 
information from huge data sets [7]. The basic purpose of 
machine learning is to extract useful pattern from the data, 
mining data may be structured format (example. multiple data 
base) or text mining: unstructured data (example, natural 
language document). The main aim of software defect 
management is to amplify the quality of software by identifying 
and fixing the defects in the early phase of SDLC. The various 
phases of SDLC are requirements gathering phase, analysis 
phase, designing phase, coding phase, testing phase, 
implementation and maintenance phase. SDP plays a vital role 
in developing high quality software [8]. Identifying the defects 
in a preliminary stage of a SDLC is a very complicated job, 
hence efficient methods to be applied in order to remove them 
[23]. 

 
Software bugs are classified into three types: 

• Software Defects by its Nature 

• Software Defects by its Severity 

• Software Defects by its Priority 
 
Out of all the 3 types of defects our main area of research 

will be Software Defects by its Nature because this type of error 
mostly affects the software on the large scale and their output 
can give us unpredictable results [10]. 

 
In software defect prediction, the priority of errors refers to 

the order in which defects should be addressed. This can be 
determined by several factors, such as the severity of the error, 
the likelihood of it being exploited, and the impact it has on the 
system or users. Some common prioritization methods include: 

• Severity-based: Errors are prioritized based on their 
potential impact, with critical errors being 
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addressed first and less severe errors being 
addressed later. 

• Risk-based: Errors are prioritized based on the 
likelihood of them being exploited, with high-risk 
errors being addressed first and low-risk errors 
being addressed later. 

• Impact-based: Errors are prioritized based on the 
impact they have on the system or users, with errors 
that have a high impact being addressed first and 
those with a low impact being addressed later. 

 
In this experiment, we have used 3 open source publicly 

available data from PROMISE Software Engineering Database. 
These datasets Tim Menzies et al. have been used in their 
research paper [58]. In another study, Jureczko et al. [59] have 
been assembled a software fault prediction model to predict the 
software defects using machine learning algorithms. They have 
discussed in their paper about 8 projects (PROMISE Repository) 
data and by taking 19 CK metrics and McCabe metrics for 
constructed a predictive model. In our study, we have used 22 
attributes for building our automated fault predict model. Table 
13 shows 22 different attributes from software defect datasets 
including 21 independent metrics and one is outcome 
information i.e., is faulty and no-fault. 

TABLE I.  LIST OF SOFTWARE METRICS [2] 

No Metrics Name Type 

1 Line of Code McCabe 

2 Cyclomatic complexity McCabe 

3 Essential complexity McCabe 

4 Design complexity McCabe 

5 Halstead operators and Operands Halstead 

6 Halstead volume Halstead 

7 Halstead program length Halstead 

8 Halstead difficulty Halstead 

9 Halstead intelligence Halstead 

10 Halstead effort Halstead 

11 Halstead time estimator Halstead 

12 Halstead line count Halstead 

13 Halstead comments count Halstead 

14 Halstead blank line count Halstead 

15 IO code and comments Miscellaneous 

16 Unique operators Miscellaneous 

17 Unique operands Miscellaneous 

18 Total operators Miscellaneous 

19 Total operands Miscellaneous 

20 Branch count Miscellaneous 

21 b: numeric Halstead 

22 Defects False or True 

 
The present study used JM1, CM1, PC1 datasets which were 

implemented in C language. Table 14 depicted details about 
detail of all datasets with their features. 

TABLE II.  DATASET DESCRIPTION [2] 

Dataset Missing 

Attributes 

Instance Class Distribution 

   True False 

JM1 None 10885 8779 

(80.65%) 

2106 

(19.35%) 

CM1 None 498 49 

(9.83%) 

449 

(90.16%) 

PC1 None 1109 1032 

(93.05%) 

77 (6.94%) 

 

Software defect prediction is an important task in software 
engineering, and various datasets have been used to evaluate the 
performance of different prediction models. Three commonly 
used datasets are CM1, JM1, and PC1. 

 
CM1 is a dataset containing data from the NASA MDP 

software development project. It consists of 498 instances, with 
each instance containing 21 features related to the code 
complexity, size, and structure. The dataset is binary, with each 
instance labelled as either defective or non-defective. The CM1 
dataset has been widely used in research on software defect 
prediction, and several machine learning and statistical models 
have been evaluated using this dataset. 

 
JM1 is another dataset commonly used for software defect 

prediction, consisting of data from the NASA software 
development project. It contains 10885 instances, with each 
instance containing 22 features related to the code complexity, 
size, and structure. Similar to CM1, the dataset is binary, with 
each instance labeled as either defective or non-defective. The 
JM1 dataset has also been used extensively in research on 
software defect prediction, and various machine learning models 
have been evaluated using this dataset [45]. 

 
PC1 is a dataset containing data from a large industrial 

software development project. It consists of 1109 instances, with 
each instance containing 22 features related to the code 
complexity, size, and structure. Unlike CM1 and JM1, the PC1 
dataset is multi-class, with each instance labeled as either non-
defective or one of six different types of defects. The PC1 dataset 
has been used to evaluate the performance of various machine 
learning and statistical models for multi-class software defect 
prediction [56]. 

 
Overall, these datasets have been widely used in research on 

software defect prediction and have helped researchers to 
develop and evaluate different prediction models. However, it is 
important to note that these datasets have limitations and may 
not fully represent the diversity of software development 
projects. Therefore, it is essential to use multiple datasets and 
perform cross-dataset evaluations to ensure the generalizability 
of software defect prediction models [57]. 

 

A. Long Short Term Memory Algorithm 

LSTM networks are well-suited to classifying, 

processing and making predictions based on time series data, 

since there can be lags of unknown duration between important 

events in a time series [60]. LSTM is applicable to tasks such as 

unsegmented, connected handwriting recognition, speech 

recognition, machine translation, robot control, video games, 

and healthcare. As our dataset will have real time 

implementation and have different software development logics 

which will comprise of different logical defects and will be 

good for CPDP dynamic datasets [67]. Therefore, LSTM is the 

most suitable methodology for our research and will also reduce 

the research gas of many problems coming across for SDP 

Model across dynamic systems which are evolved over time 

[34]. 
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Compared with traditional SDP methods, DP-LSTM 

uses the rich semantic and contextual information from the 

AST, which can be hardly represented by the handcrafted 

features [52]. Such information indicates how the codes are 

organized and interact with each other. Like many deep 

learning-based methods, DP-LSTM can seize these important 

features which are then used to train the classifier. [70] 

Compared with other deep learning-based models (e.g., CNN, 

DBN), DP-LSTM can learn the relationship of longer 

dependencies. Since defective codes are closely related to its 

context, but if the context becomes further, models like CNN, 

which focus on local features, may fail to capture the connection 

of the codes and its context. Also, the bidirectional structure of 

LSTM ensures that both previous and subsequent code 

segments are taken into consideration. Although CNN can 

generate semantic and contextual features, we believe that 

features generated by DP-LSTM can better represent how the 

defect is caused [70]. 

 

Algorithm like LSTM which is well known for Long-

Short Term Memory in ML and another one is hybrid SVM 

based decision tree [24]. These algorithms are because they 

have their own way to handle the real time datasets and as 

discussed earlier, we are in the way to get real time software 

from the different software companies. Dynamic software 

dataset has different Software Development Strategies [25]. 

Therefore, we require the methodology which can help us out 

with high storage of memory consumption. 

 

The paper "On the use of deep learning in software 

defect prediction" by Giray et al. (2022) explores the 

effectiveness of deep learning techniques in software defect 

prediction. The study evaluates the performance of various deep 

learning models, such as convolutional neural networks and 

recurrent neural networks, on benchmark datasets and compares 

them to traditional machine learning methods [73]. 

 

In the paper "A comparative study on the effect of data 

imbalance on software defect prediction" by Liu et al. (2022), 

the authors investigate the impact of imbalanced data on the 

accuracy of software defect prediction models. The study 

compares the performance of various machine learning 

algorithms on imbalanced datasets and highlights the 

importance of a balanced dataset for accurate defect prediction 

[74]. The paper "Ensemble Machine Learning Paradigms in 

Software Defect Prediction" by Sharma et al. (2023) proposes 

the use of ensemble learning techniques in software defect 

prediction. The study compares the performance of various 

ensemble approaches, such as bagging and boosting, on 

benchmark datasets and highlights the potential of ensemble 

learning for improving defect prediction accuracy [75]. 

 

From the past literature review and study of relevant 

SDP Software we have prompted over dedication for Cross 

Project Defect Prediction [CPDP]. Our main focus of area will 

be there may not be enough historical data can apply to the 

prediction model. A possible solution to this problem is cross-

project defect prediction, that is, using other project data to 

build prediction models. The increasing number of open 

datasets in various fields has attracted more researchers’ 

attention and promoted more practice in cross-project defect 

prediction. Our next study of area is for Cross Project Defect 

Prediction Similar dataset and heterogenous dataset. 

 

B. Comparison of LSTM with other Machine Learning 

Algorithms 

Machine Learning Algorithms for Software Defect 

Prediction: There are several types of machine learning 

algorithms that have been used for software defect prediction, 

including decision trees, support vector machines (SVM), 

neural networks, and Bayesian networks [35]. These algorithms 

have been used to predict software defects based on different 

types of data, including code metrics, historical data, and 

software artifacts [61]. Decision trees are a popular machine 

learning algorithm for software defect prediction. Decision 

trees are simple, easy to understand, and interpretable. They are 

used to model the relationship between input variables and the 

output variables. Decision trees have been used for software 

defect prediction by using code metrics, such as lines of code, 

cyclomatic complexity, and number of comments, as input 

variables. Decision trees have been found to be effective for 

software defect prediction and have been used in many studies 

[47]. 

 

Support Vector Machines (SVM): Support vector 

machines (SVM) are another type of machine learning 

algorithm that have been used for software defect prediction. 

SVM is a supervised learning algorithm that can be used for 

both classification and regression. SVM has been used for 

software defect prediction by using code metrics and historical 

data as input variables. SVM has been found to be effective for 

software defect prediction and has been used in many studies 

[22]. 

 

Neural Networks: Neural networks are a type of 

machine learning algorithm that are inspired by the structure 

and function of the human brain. Neural networks have been 

used for software defect prediction by using code metrics and 

historical data as input variables. Neural networks have been 

found to be effective for software defect prediction and have 

been used in many studies [22]. 

 

Bayesian Networks: Bayesian networks are a type of 

probabilistic graphical model that represents the relationships 

between variables. Bayesian networks have been used for 

software defect prediction by using code metrics and historical 

data as input variables. Bayesian networks have been found to 

be effective for software defect prediction and have been used 

in many studies. There have been many recent studies that have 

used machine learning algorithms for software defect 

prediction. These studies have used different machine learning 

algorithms and have used different types of data as input 

variables. Some of the recent studies have found that machine 

learning algorithms are effective for software defect prediction, 

while others have found that machine learning algorithms have 

limitations. 
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TABLE III.  LITERATURE REVIEW 

Sr 

no. 

Paper Title Publication Year Journal Name Publication Methodology Research Gap 

1 On the use of deep 

learning in software 

defect prediction 

2022 The Journal of 

Systems & Software 

ScienceDirect Deep Learning The study focuses on 

evaluating the effectiveness 

of deep learning techniques in 

software defect prediction, 

which can be used as an 

alternative to traditional 

machine learning methods. 

2 A comparative study 

on the effect of data 

imbalance on 

software defect 

prediction 

2022 Procedia Computer 

Science 

ScienceDirect Comparative Study The study compares the 

performance of different 

machine learning algorithms 

on imbalanced software 

defect datasets and highlights 

the need for a balanced 

dataset to achieve better 

accuracy in defect prediction. 

3 Ensemble Machine 

Learning Paradigms 

in Software Defect 

Prediction 

2023 Procedia Computer 

Science 

ScienceDirect Ensemble 

Learning 

The study proposes the use of 

ensemble learning techniques 

in software defect prediction 

and compares the 

performance of different 

ensemble approaches. The 

research highlights the 

potential of ensemble 

learning for improving defect 

prediction accuracy. 

3. A tool for creating 

datasets and software 

defect predictions 

2022  ScienceDirect Elsevier Java Swing, REST 

API, GitHub, 

SQLite, Relational 

database, Open 

JDK 

End-to-end machine learning 

predictions and multi-label 

defect predictions no 

supported 

4. Performance of 

Heterogeneous 

Ensemble  

Approach With 

Traditional Methods 

Based on Software 

Defect Detection 

Model 

2022 Journal of Theoretical 

and Applied 

Information 

Technology 

Little Lion 

Scientific 

SVM, ANN, 

Random Forest 

Used only PROMISE  

Software Engineering 

repository and no dynamic 

dataset is used 

5. An Attribute 

Selection Process for 

Cross-Project 

Software Defect 

Prediction 

2021 Research gate  Within project and 

cross-project 

domain using 

NASA MDP 

repository 

Meta-heuristic approaches 

not adopted 

6. Towards Design and 

Feasibility Analysis 

of DePaaS: AI Based 

Global Unified 

Software Defect 

Prediction 

Framework 

2022 MDPI Applied Sciences Artificial 

Intelligence, 

DePaaS 

Larger dataset coverage is not 

done. 

7. Machine Learning-

Based Software 

Defect Prediction for 

Mobile Applications: 

A Systematic 

Literature Review 

2022 MDPI Sensors ML Algorithms: 

LSTM. DBN, 

DNN 

unsupervised and semi-

supervised learning for 

mobile defect prediction. 
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8. Defect Prediction 

Using Akaike and 

Bayesian Information 

Criterion 

2021 Computer Systems 

Science & 

Engineering 

Tech Science 

Press 

ANN - Akaike 

information 

criterion (AIC) and 

the Bayesian 

information 

criterion (BIC) 

Heterogenous CPDP not 

taken in consideration gap in 

research observed 

9. Interpretability 

application of the 

Just-in-Time 

software defect 

prediction model 

2022 The Journal of 

Systems & Software 

Elsevier Random Forest 

Classification, 

LIME model 

no studies on defect types and 

locations 

10. A systematic 

literature review on 

software defect 

prediction using 

artificial intelligence: 

Datasets, Data 

Validation Methods, 

Approaches, and 

Tools 

2022 Engineering 

Applications of 

Artificial Intelligence 

Elsevier Artificial 

Intelligence 

techniques 

Industry adoption of Software 

Defect Prediction 

11. Software Defect 

Prediction using 

Machine Learning 

Algorithms: Current 

State of the Art 

2021 Scopus Solid State 

Technology 

SVM, Random 

Forest, Decision 

Tree 

Use of hybrid OO metrics in 

the machine learning 

dimension 

12. A Novel Cross-

Project Software 

Defect Prediction 

Algorithm Based on 

Transfer Learning 

2022 IEEE Explore Tsinghua Science 

and Technology 

Transfer-leaning 

algorithm 

(TSboostDF) 

Multi-source transfer learning 

on CPDP 

13. Cross-project defect 

prediction based on 

G-LSTM model 

2022 Elsevier Pattern 

Recognition 

Letters 

LSTM Method outperforms some 

traditional and state-of-the-art 

CPDP methods in terms of the 

evaluation metrics of AUC 

and Acc. 

TABLE IV.  COMPARISON OF LSTM WITH OTHER MACHINE LEARNING ALGORITHMS FOR SOFTWARE DEFECT PREDICTION 

Sr no. Algorithm Acceptance  Avoidance 

1. RNN [41] Short Term Dependencies – good for short term 

memories 

Long Dependencies not supported (making predictions for 

present) Vanishing Gradient and exploding gradient makes it 

unusable. 

2. LSTM [26] Long Short-Term Memory – Cell Unit inserted 

updates in every loop – considers current input, 

previous output and memory  

LSTMs take longer to train. LSTMs require more memory to 

train. 

3. CNN [43] Good for image processing algorithm CNN has several layers then the training process takes a lot of 

time if the computer doesn’t consist of a good GPU 

4. ANN [48] ANN can handle more than one task at the same time. ANN need processors that support parallel processing, so the 

ANNs are dependent on the hardware. 

5. SVM [28] Effective in high dimensional cases SVM algorithm is not suitable for large data sets 

6. LR [12]  Updated easily to reflect new data On high dimensional datasets, this may lead to the model being 

over-fit on the training set 

7. Random forest 

[12] 

It can handle the data set containing continuous 

variables - performs better results for classification 

problems. 

Random Forest algorithm may change considerably by a small 

change in the data. 
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III. METHODOLOGY 

HCPDP stands for the "High Confidence Software 

Defect Prediction" dataset. It is a publicly available dataset that 

is used to train and evaluate machine learning models for 

software defect prediction. The dataset contains information on 

code changes and corresponding defect labels for several open-

source software projects. The dataset is curated by researchers 

and it's aimed to provide a benchmark for software defect 

prediction models. The dataset provides information such as the 

number of lines added, deleted, modified and the number of files 

changed, and whether the change led to a defect or not. This 

dataset is commonly used to test the performance of software 

defect prediction models, and can be used to train and evaluate 

machine learning models, such as LSTM, to predict the 

likelihood of a defect being introduced by a new code change. 

Heterogeneous cross-project defect prediction (HCP) is a 

method for using data from one software project to predict 

defects in a different, but related, software project. This is in 

contrast to traditional cross-project defect prediction, which uses 

data from multiple projects within the same domain or 

organization. The goal of HCP is to leverage the information 

from one or multiple projects to improve the defect prediction 

performance in a target project. It can be useful in scenarios 

where there is limited data available for the target project, but 

more data is available for related projects. 

Figure 1. Overall architecture of Proposed Methodology 

 

HCP approaches typically involve training a defect 

prediction model on data from one or more source projects, and 

then applying the trained model to the target project to make 

predictions. This process often involves pre-processing the data 

from the source and target projects to align them, and then using 

techniques such as transfer learning, ensemble learning or meta-

learning to improve the performance of the model on the target 

project. 

 

A. Model Development and Evaluation 

The steps for using an LSTM algorithm for software defect 

prediction are: 

1. Collect and pre-process the data: Gather historical data on 

code changes, bug reports, and other relevant information. Pre-

process the data to format it for use with an LSTM model. 

2. Split the data into training and testing sets: Divide the data 

into a training set, which will be used to train the model, and a 

testing set, which will be used to evaluate the model's 

performance. 

3. Train the LSTM model: Use the training data to train the 

LSTM model. This typically involves specifying the 

architecture of the LSTM network, such as the number of layers 

and units, and then training the model using a set of training 

data. 

4. Evaluate the model: Use the testing data to evaluate the 

model's performance in making defect predictions. 

5. Fine-tune the model: Based on the results of the evaluation, 

make adjustments to the model, such as changing the 

architecture or adjusting the training parameters, to improve its 

performance. 

6. Use the model to make predictions: Once the model is trained 

and fine-tuned, it can be used to make predictions on new code 

changes. 

7. Monitor the model's performance over time: As new data 

becomes available, retrain the model and monitor its 

performance to ensure it continues to make accurate predictions 

 
 

Figure 2. Long Short-Term Memory Architecture 

 

IV. RESULTS AND DISCUSSION 

In this experiment, 6 machine learning (ML) techniques have 
been considered to construct the defect model: Decision Tree 
(DT), k- nearest neighbors (KNN), Logistics Regression (LR), 
Naïve Bayes (NB), Random Forest (RF), and Support Vector 
Machine (SVM) [37]. Below given is the prediction accuracy 
and F1 Value of the different algorithms performed using 
different dataset values. Especially, defective modules are very 
crucial than not faulty modules. In our experiment, we used 10-
fold cross-validation technique to evaluate the performance of 
six classification techniques. To determine the parameters for the 
software defect model, we used the different data preprocessing 
methods that have been increased the accuracy and consistency 
of the classification model. Table 4 shows the performance 
evaluation of six supervised classification techniques for 
software fault prediction. With respect to the precision: DT and 
SVM achieved the highest performance (i.e., 100%) on JM1 
datasets; DT, NB, SVM, and RF achieved the best performance 
on CM1 datasets, (it’s respectively 100%); DT, SVM, and RF 
obtained the highest performance (i.e., 97%) on PC1 datasets. 
Relatively, all of the classifiers have shown good performance 
in terms of precision. However, considering the recall of the 
analysis, SVM and RF achieved the highest performance on JM1 
datasets; LR and NB attained the lowest performance on CM1 
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and PC1 datasets. Not that all of the classifiers achieved very 
similar scores in terms of recall. Another measure for 
classification is F1 measure. With respect to F1 measure: SVM 
achieved the highest value (i.e., 100%) on JM1 datasets and NB 
obtained the lowest score (i.e., 93%). By Looking CM1 datasets, 
we can monitor that the f1 scores are mostly similar (i.e., NB, 
DT, SVM, RF = 100% and KNN = 97%, LR = 95%). Moreover, 
RF achieved the best score (i.e., 99%) and KNN performed 
lowest (86%) on PC1 datasets. In addition, all of the classifiers 
have achieved utmost performance on JM1, CM1, and PC1 
datasets, in terms of accuracy. This indicates that all of the 
classifiers are very effective in their classification performance 
to predict software defect modules. 

 

Figure 3. Overall comparison of different algorithms based on different 

datasets 

 

In a software defect prediction model using machine 

learning, the first priority should be given to errors that have the 

highest potential impact on the system or users. This can be 

determined by several factors, such as the severity of the error, 

the likelihood of it being exploited, and the impact it has on the 

system or users [35]. One common approach to prioritizing 

errors in a software defect prediction model using machine 

learning is to use a combination of several metrics, such as: 

• Error rate: The number of errors predicted by the 

model divided by the total number of instances in the 

dataset 

• Precision: The number of true positive predictions 

divided by the total number of positive predictions 

• Recall: The number of true positive predictions 

divided by the total number of actual positive instances 

in the dataset 

• F1 score: The harmonic means of precision and recall 

 

Errors that have high error rate and F1 score, and low precision 

and recall are considered as high priority errors to be addressed 

as soon as possible. 

 

Confusion matrix is mainly used to show & evaluate the 

performance of a certain classification model in which we know 

what are the real positive values that are true among the data 

set. 

 

TP: true positive, where the predicted output is the same as the 

actual one (both are positive). 

FP: false positive, where the predicted output is positive while 

the actual is negative. 

FN: false negative, where the predicted output is negative while 

the actual is positive. 

TN: true negative, where the predicted output is the same as the 

actual one (both are negative). 

 
 

Figure 4. Confusion matrix [46] 

 

Accuracy: Accuracy is the most widely used evaluation 

parameter for software defect prediction. It measures the 

proportion of correctly predicted instances among all the 

instances. However, accuracy alone may not be sufficient as it 

does not consider the imbalance between the number of 

defective and non-defective instances. 

 

Accuracy with high value is so important in totally showing that 

our model is perfectly working, but only in datasets having the 

same FP and FN (symmetric), if our dataset isn't of that type, 

here, other parameters should be taken into consideration in the 

evaluation process. 

       

Accuracy = TP+TN/TP+FP+FN+TN                           (1) 

Precision: Precision is the number of true positives divided by 

the sum of true positives and false positives. It measures the 

proportion of correctly predicted defects among all predicted 

defects. Precision is useful when the cost of false positives is 

high. 

Precision = TP/TP+FP                                                 (2) 

Recall: Recall is the number of true positives divided by the sum 

of true positives and false negatives. It measures the proportion 

of correctly predicted defects among all actual defects. Recall 

is useful when the cost of false negatives is high. 

Recall = TP/TP+FN                                                       (3) 

F1 score: F1 Score is the weighted average of Precision and 

Recall. This score mainly takes into consideration both FP and 

FN. An F1 score is considered perfect when it’s 1, while the 

model is a total failure when it’s 0. In some cases, F1 is more 

preferable and useful than accuracy, especially if you have an 

uneven class distribution or a biased distribution. When having 

a similar cost in comparison between FP and FN, here accuracy 
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performs better. If the cost of false positives and false negatives 

are very different, it’s better to look at both Precision and 

Recall. 

F1 Score = 2*(Recall * Precision) / (Recall + Precision)     (4) 

Receiver Operating Characteristic (ROC) curve: ROC curve is 

a plot of the true positive rate (TPR) against the false positive 

rate (FPR) at various threshold settings. It helps to evaluate the 

performance of a classifier at different levels of sensitivity and 

specificity. 

Long Short-Term Memory (LSTM) is a type of recurrent neural 

network (RNN) that has been used for software defect 

prediction. LSTM has been found to be effective in capturing 

the temporal dependencies in software code. LSTM can be 

evaluated using some of the evaluation parameters discussed 

above, such as accuracy, precision, recall, and F-measure. 

However, ROC curve may not be applicable to LSTM as it does 

not produce probabilistic predictions. Instead, a threshold can 

be set on the output of the LSTM to convert it into a binary 

prediction, and then the above evaluation parameters can be 

used. 

V. CONCLUSION 

Software defect prediction is an important aspect of software 
development and the use of machine learning algorithms for 
software defect prediction has been growing in recent years. 
Despite some challenges, there are many opportunities for 
machine learning algorithms to improve the accuracy and 
efficiency of software defect prediction. As the field of machine 
learning continues to evolve, it is likely that machine learning 
algorithms will play an increasingly important role in software 
development. In this experimental study, we proposed an 
automated software engineering approaches for defect 
prediction model development (SDPD) on software 
development life cycle. After that, the main objective of our 
study was to evaluate the abilities of six supervised based the 
machine learning classifications techniques to predict the 
software defect modules using 3 NASA datasets. The results 
(i.e., accuracy: 98-100%) of the experiment with different 
attributes showed the capability and efficiency of the SDPD 
model to identify the fault and improve software quality. In 
addition, this SDPD model can be able to early detection of 
software faults by collecting real-time software development 
data from the target applications. The proposed approach can be 
used for software fault recovery inside a system and enhanced 
by applying machine learning techniques to construct SDPD 
more effective in software fault retrieval. For future work, we 
will implement more classification algorithms, such as hybrid or 
ensemble model to verify the performance of the software fault 
prediction. 

ACKNOWLEDGMENT 

The preferred spelling of the word “acknowledgment” in 
America is without an “e” after the “g”. Avoid the stilted 
expression, “One of us (R.B.G.) thanks . . .”  Instead, try  
“R.B.G. thanks”. Put applicable sponsor acknowledgments here; 
DO NOT place them on the first page of your paper or as a 
footnote. 

REFERENCES 

[1] Xing, F. , Guo, P. , Lyu, M. R. "A Novel Method for Early 
Software Quality Prediction Based on Support Vector Machine". 
2005,In: Proceedings of The 16th IEEE International Symposium 
on Software Reliability Engineering 

[2] Ahmed, Md. Razu & Ali, Md. Asraf & Ahmed, Nasim & Zamal, 
Md Fahad & Shamrat, F M. (2020). The Impact of Software Fault 
Prediction in Real-World Application: An Automated Approach 
for Software Engineering. 10.1145/3379247.3379278. 

[3] Emam, K.,El., “The ROI from Software Quality”. Auerbach 
Publications, Taylor and Francis Group, LLC, (2005). 

[4] Khoshgoftaar, T.M., Allen, E.B., Kalaichelvan, K.S., Goel, N., 
“Early Quality Prediction: A Case Study in 
Telecommunications”.2006, IEEE Software. 

[5] M. Jureczko, "Significance of different software metrics in defect 
prediction", Software Engineering: An International Journal, 1.1, 
2011, pp. 86-95. 

[6] S.S. Rathore, A. Gupta, “Investigating object-oriented design 
metrics to predict fault-proneness of software modules”, In 
Software Engineering (CONSEG), CSI Sixth International 
Conference: IEEE, 2012, pp. 1-10. 

[7] M.M. Rosli, N.H.I. Teo, N.S.M. Yusop, N.S. Mohammad, “The 
design of a software fault prone application using evolutionary 
algorithm”, In Open Systems (ICOS), IEEE, 2011, pp. 338-343. 

[8] M. Jureczko, L. Madeyski, “Towards identifying software project 
clusters with regard to defect prediction”, In Proceedings of the 
6th International Conference on Predictive Models in Software 
Engineering:ACM, 2010, page 9 

[9] W. Afzal, R. Torkar, R. Feldt, “Prediction of fault count data 
using genetic programming.”, In Multitopic Conference, INMIC: 
IEEE International, 2008, pp. 349-356. 

[10] X.Y.Jing, S. Ying, Z.W. Zhang, S.S. Wu, J. Liu, “Dictionary 
learning based software defect prediction”, In Proceedings of the 
36th International Conference on Software Engineering, ACM, 
2014, pp. 414-423 

[11] X.Y. Jing, Z.W. Zhang, S. Ying, F. Wang, Y.P.Zhu, “Software 
defect prediction based on collaborative representation 
classification”, In Companion Proceedings of the 36th 
International Conference on Software Engineering: ACM, 2014, 
pp. 632-633. 

[12] R. Verma, A. Gupta, “Software defect prediction using Two level 
data pre-processing”, In Recent Advances in Computing and 
Software Systems (RACSS), International Conference:IEEE, 
2012, pp. 311-317. 

[13] Li, Zhang, R.Wu, H.Zhou, “Sample-based software defect 
prediction    with     active     and     semi-supervised   learning. 
Automated Software Engineering”, Vol.19, No.2, 2012, pp. 201-
230. 

[14] Song, Q., Jia, Z., Shepperd, M., Ying, S., Liu, J,”A general 
software defect-proneness prediction framework”, IEEE 
Transactions on Software Engineering, Vol.37, No.3, 2011, pp. 
356-370. 

[15] Marek Leszak, Dewayne E. Perry, Dieter Stoll, “A Case Study in 
Root Cause Defect Analysis”, ICSE, 2000. 

[16] N.Kalaivani, Dr.R.Beena, “Overview of Software Defect 
Prediction using Machine Learning Algorithms”, International 
Journal of Pure and Applied Mathematics, 2018. 

[17] Ren Jinsheng, Qin Ke, “On Software Defect Prediction Using 
Machine Learning”, Journal of Applied Mathematics, 2014. 

[18] Prabha C.Lakshmi, Shivakumar N., “Software Defect Prediction 
Using Machine Learning Techniques”, 4th International 
Conference on Trends in Electronics and Informatics (ICOEI), 
2020. 

[19] Marwa, Assim, Obeidat Qasem, “Software Defects Prediction 
using Machine Learning Algorithms”, International Conference 
on Data Analytics for Business and Industry: Way Towards a 
Sustainable Economy (ICDABI), 2020. 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 9 

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023 

___________________________________________________________________________________________________________________ 
 

 

    3795 

IJRITCC | September 2023, Available @ http://www.ijritcc.org 

[20] Martin Shepperd, David Bowes and Tracy Hall, “Researcher 
Bias: The Use of Machine Learning in Software Defect 
Prediction”, IEEE Transactions on Software Engineering, 2014. 

[21] Laila Bergmane, Jānis Grabis, Edžus Žeiris, “A Case Study: 
Software Defect Root Causes”, Information Technology and 
Management Science, December 2017. 

[22] Awni Hammouri, Mustafa Hammad, Mohammad Alnabhan, 
Fatima Alsarayrah, “Software Bug Prediction using Machine 
Learning Approach”, (IJACSA) International Journal of 
Advanced Computer Science and Applications, Vol. 9, No. 2, 
2018. 

[23] Pooja Paramshetti, D. A. Phalke, “Survey on Software Defect 
Prediction Using Machine Learning Techniques”, International 
Journal of Science and Research (IJSR) ISSN (Online): 2319-
7064, 2012. 

[24] Altexsoft, “Comparing Automated Testing Tools: Selenium, 
TestComplete, Ranorex, and more”, Feb, 2018, 
https://www.altexsoft.com/blog/engineering/comparing-
automated-testing-tools-selenium-testcomplete-ranorex-and-
more/ 

[25] Katalon, “A Comparison of Automated Testing Tools”, 2020, 
https://www.katalon.com/resources-center/blog/comparison-
automated-testing-tools/ 

[26] Kanade, A.; Maniatis, P.; Balakrishnan, G.; Shi, K. Learning and 
Evaluating Contextual Embedding of Source Code. In 
Proceedings of the 37th International Conference on Machine 
Learning; Daumé , H., III, Singh, A., Eds.; PMLR: 2020; Volume 
119, pp. 5110–5121. Available online: 
http://proceedings.mlr.press/v119/kanade20a.html (accessed on 
17 December 2020). 

[27] Raychev, V.; Bielik, P.; Vechev, M. Probabilistic Model for Code 
with Decision Trees. SIGPLAN Not. 2016, 51, 731–747. 

[28] Raychev, V.; Bielik, P.; Vechev, M.; Krause, A. Learning 
Programs from Noisy Data. SIGPLAN Not. 2016, 51, 761–774. 

[29] Alon, U.; Brody, S.; Levy, O.; Yahav, E. code2seq: Generating 
Sequences from Structured Representations of Code. arXiv 2019, 
arXiv:cs.LG/1808.01400. 

[30] Allamanis, M.; Sutton, C. Mining source code repositories at 
massive scale using language modeling. In Proceedings of the 
2013 10th Working Conference on Mining Software Repositories 
(MSR), San Francisco, CA, USA, 18–19 May 2013; pp. 207–216. 

[31] Iyer, S.; Konstas, I.; Cheung, A.; Zettlemoyer, L. Summarizing 
source code using a neural attention model. In Proceedings of the 
54th Annual Meeting of the Association for Computational 
Linguistics (Volume 1: Long Papers), Berlin, Germany, 7–12 
August 2016; pp. 2073–2083. 

[32] Bryksin, T.; Petukhov, V.; Alexin, I.; Prikhodko, S.; Shpilman, 
A.; Kovalenko, V.; Povarov, N. Using Large-Scale Anomaly 
Detection on Code to Improve Kotlin Compiler. In Proceedings 
of the 17th International Conference on Mining Software 
Repositories, MSR ’20, Seoul, Korea, 29–30 June 2020; pp. 455–
465. 

[33] Allamanis, M.; Brockschmidt, M.; Khademi, M. Learning to 
Represent Programs with Graphs. arXiv 2018, 
arXiv:cs.LG/1711.00740. 

[34] Mauša, G.; Galinac-Grbac, T.; Dalbelo-Baši´c, B. A systematic 
data collection procedure for software defect prediction. Comput. 
Sci. Inf. Syst. 2016, 13, 173–197. 

[35] Sayyad Shirabad, J.; Menzies, T. The PROMISE Repository of 
Software Engineering Databases; School of Information 
Technology and Engineering, University of Ottawa: Ottawa, ON, 
Canada, 2005. Available online: 
http://promise.site.uottawa.ca/SERepository/ (accessed on 17 
December 2020). 

[36] Shepperd, M.; Song, Q.; Sun, Z.; Mair, C. NASA MDP Software 
Defects Data Sets. 2018. Available online: 
https://figshare.com/collections/NASA_MDP_Software_Defects
_Data_Sets/4054940/1 (accessed on 17 December 2020). 

[37] Afric, P.; Sikic, L.; Kurdija, A.S.; Silic, M. REPD: Source code 
defect prediction as anomaly detection. J. Syst. Softw. 2020, 168, 
110641. 

[38] Xu, J.; Wang, F.; Ai, J. Defect Prediction With Semantics and 
Context Features of Codes Based on Graph Representation 
Learning. IEEE Trans. Reliab. 2020, 1–13. 

[39] Ferenc, R.; Gyimesi, P.; Gyimesi, G.; Tóth, Z.; Gyimóthy, T. An 
automatically created novel bug dataset and its validation in bug 
prediction. J. Syst. Softw. 2020, 169, 110691. 

[40] Tóth, Z.; Gyimesi, P.; Ferenc, R. A Public Bug Database of 
GitHub Projects and Its Application in Bug Prediction. In 
Proceedings of the Computational Science and Its Applications—
ICCSA, Beijing, China, 4–7 July 2016; Springer International 
Publishing: Cham, Switzerland, 2016; pp. 625–638. 

[41] Ferenc, R.; Tóth, Z.; Ladányi, G.; Siket, I.; Gyimóthy, T. A public 
unified bug dataset for java and its assessment regarding metrics 
and bug prediction. Softw. Qual. J. 2020, 28, 1447–1506. 

[42] Tufano, M.; Watson, C.; Bavota, G.; Penta, M.D.; White, M.; 
Poshyvanyk, D. An Empirical Study on Learning Bug-Fixing 
Patches in the Wild via Neural Machine Translation. ACM Trans. 
Softw. Eng. Methodol. 2019, 28, 1–29. 

[43] Widyasari, R.; Sim, S.Q.; Lok, C.; Qi, H.; Phan, J.; Tay, Q.; Tan, 
C.; Wee, F.; Tan, J.E.; Yieh, Y.; et al. BugsInPy: A database of 
existing bugs in Python programs to enable controlled testing and 
debugging studies. In Proceedings of the ESEC/FSE ’20: 28th 
ACM Joint European Software Engineering Conference and 
Symposium on the Foundations of Software Engineering, Virtual 
Event, USA, 8–13 November 2020; Devanbu, P., Cohen, M.B., 
Zimmermann, T., Eds.; ACM: New York, NY, USA, 2020; pp. 
1556–1560. 

[44] Saha, R.K.; Lyu, Y.; Lam, W.; Yoshida, H.; Prasad, M.R. 
Bugs.Jar: A Large-Scale, Diverse Dataset of Real-World Java 
Bugs. In Proceedings of the 15th International Conference on 
Mining Software Repositories (MSR ’18), Gothenburg, Sweden, 
28–29 May 2018; Association for Computing Machinery: New 
York, NY, USA, 2018; pp. 10–13. 

[45] Jinyong Wang and Ce Zhang. 2018. Software reliability 
prediction using a deep learning model based on the RNN 
encoder-decoder. Reliab. Eng. Syst. Saf. (2018). 

[46] Hoa Khanh Dam, Trang Pham, Shien Wee Ng, Truyen Tran, John 
Grundy, Aditya Ghose, Taeksu Kim, and Chul-Joo Kim. 2019. 
Lessons Learned from Using a Deep Tree-Based Model for 
Software Defect Prediction in Practice. In Proceedings of the 16th 
International Conference on Mining Software Repositories. 

[47] Khanh Hoa Dam, Trang Pham, Shien Wee Ng, Truyen Tran, John 
Grundy, Aditya K. Ghose, Taeksu Kim, and Chul-Joo Kim. 2018. 
A deep tree-based model for software defect prediction. ArXiv 
(2018). 

[48] J. Li, P. He, J. Zhu, and M. R. Lyu. 2017. Software Defect 
Prediction via Convolutional Neural Network. In IEEE 
International Conference on Software Quality, Reliability and 
Security (QRS). 

[49] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016. 
Convolutional Neural Networks over Tree Structures for 
Programming Language Processing. In Proceedings of the 
Thirtieth AAAI Conference on Arti"cial Intelligence. 

[50] Anh Phan, Le Nguyen, and Lam Bui. 2018. Convolutional Neural 
Networks over Control Flow Graphs for Software Defect 
Prediction. (2018). 

[51] C. Manjula and Lilly Florence. 2019. Deep neural network based 
hybrid approach for software defect prediction using software 
metrics. Cluster Computing (2019). 

[52] Haonan Tong, Bin Liu, and Shihai Wang. 2017. Software Defect 
Prediction Using Stacked Denoising Autoencoders and Two-
stage Ensemble Learning. Information and Software Technology 
(2017). 

[53] Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically 
Learning Semantic Features for Defect Prediction. In Proceedings 
of the 38th International Conference on Software Engineering. 

[54] Yasutaka Kamei, Emad Shihab, Bram Adams, Ahmed E. Hassan, 
Audris Mockus, Anand Sinha, and Naoyasu Ubayashi. 2013. A 
Large-Scale Empirical Study of Just-in-Time Quality Assurance. 
IEEE Trans. Softw. Eng. (2013). 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 9 

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023 

___________________________________________________________________________________________________________________ 
 

 

    3796 

IJRITCC | September 2023, Available @ http://www.ijritcc.org 

[55] Karim O. Elish and Mahmoud O. Elish. 2008. Predicting Defect-
Prone Software Modules Using Support Vector Machines. J. Syst. 
Softw. (2008). 

[56] N. Gayatri, Nickolas Savarimuthu, and A. Reddy. 2010. Feature 
Selection Using Decision Tree Induction in Class level Metrics 
Dataset for Software Defect Predictions. Lecture Notes in 
Engineering and Computer Science (2010). 

[57] Taghi M. Khoshgoftaar and Naeem Seliya. 2002. Tree-Based 
Software Quality Estimation Models For Fault Prediction. In 
Proceedings of the 8th International Symposium on Software 
Metrics. 

[58] Jun Wang, Beijun Shen, and Yuting Chen. [n.d.]. Compressed 
C4.5 Models for Software Defect Prediction. In Proceedings of 
the 2012, 12th International Conference on Quality Software. 

[59] H. B. Bolat, G. T. Temur, and IGI Global, Agile approaches for 
successfully managing and executing projects in the fourth 
industrial revolution. 

[60] G. P. Bhandari and R. Gupta, “Machine learning based software 
fault prediction utilizing source code metrics,” in 2018 IEEE 3rd 
International Conference on Computing, Communication and 
Security (ICCCS), 2018, pp. 40–45. 

[61] H. Tanwar and M. Kakkar, “A Review of Software Defect 
Prediction Models,” Springer, Singapore, 2019, pp. 89–97. 

[62] R. Malhotra, “A systematic review of machine learning 
techniques for software fault prediction,” Appl. Soft Comput., 
vol. 27, pp. 504–518, Feb. 2015. 

[63] S. Kanmani, V. R. Uthariaraj, V. Sankaranarayanan, and P. 
Thambidurai, “Object-oriented software fault prediction using 
neural networks,” Inf. Softw. Technol., vol. 49, no. 5, pp. 483–
492, May 2007. 

[64] P. N. Tan, M. Steinbach, and V. Kumar, Introduction to data 
mining. Pearson Addison Wesley, 2005. 

[65] Xuemei Peng “Research on Software Defect Prediction and 
Analysis Based on Machine Learning” 3rd International 
Conference on Modeling, Simulation (2022) 1742-6596. 

[66] Jorayeva, M.; Akbulut, A.; Catal, C.; Mishra, A. Machine 
Learning-Based Software Defect Prediction for Mobile 
Applications: A Systematic Literature Review. Sensors (2022), 
22, 2551 

[67] Ponnala, Ramesh & REDDY . Software Defect Prediction using 
Machine Learning Algorithms: Current State of the Art. Solid 
State Technology-(2021) 64. 6541-6556. 

[68] Rhmann, W. Cross project defect prediction using hybrid search 
based algorithms. Int. j. inf. tecnol. 12, 531–538 (2020). 
https://doi.org/10.1007/s41870-018-0244-7 

[69] Yin XL, Liu L, Liu HX, Wu Q. Heterogeneous cross-project 
defect prediction with multiple source projects based on transfer 
learning. Math Biosci Eng. 2019 Nov 11;17(2):1020-1040. doi: 
10.3934/mbe.2020054. PMID: 32233568. 

[70] Vashisht, R., Rizvi, S.A.M. (2020). Heterogeneous Cross Project 
Defect Prediction – A Survey. In: Singh, P., Sood, S., Kumar, Y., 
Paprzycki, M., Pljonkin, A., Hong, WC. (eds) Futuristic Trends 
in Networks and Computing Technologies. FTNCT 2019. 
Communications in Computer and Information Science, vol 1206. 
Springer, Singapore. https://doi.org/10.1007/978-981-15-4451-
4_22 

[71] Software defect prediction via LSTM Jiehan Deng,Lu 
Lu,Shaojian Qiu First published: 01 August 2020 
https://doi.org/10.1049/iet-sen.2019.0149 

[72] Bahaweres, Rizal & Jumral, Detia & Hermadi, Irman & Suroso, 
Arif & Arkeman, Yandra. (2021). Hybrid Software Defect 
Prediction Based on LSTM (Long Short Term Memory) and 
Word Embedding. 70-75. 10.1109/ICON-
SONICS53103.2021.9617182. 

[73] Giray G., Bennin K. E., Köksal Ö., Babur Ö., & Tekinerdogan B. 
(2022). On the use of deep learning in software defect prediction. 
The Journal of Systems & Software, 184, 111280. 
https://doi.org/10.1016/j.jss.2021.111280 

[74] Liu Y., Zhang W., Qin G., & Zhao J. (2022). A comparative study 
on the effect of data imbalance on software defect prediction. In 
9th International Conference on Information Technology and 
Quantitative Management (pp. 1603-1616). ScienceDirect. 
Procedia Computer Science, 214. 
https://doi.org/10.1016/j.procs.2022.01.169 

[75] Sharma T., Jatain A., Bhaskar S., & Pabreja K. (2023). Ensemble 
Machine Learning Paradigms in Software Defect Prediction. In 
International Conference on Machine Learning and Data 
Engineering (pp. 199-209). ScienceDirect. Procedia Computer 
Science, 218. https://doi.org/10.1016/j.procs.2022.12.028.

 

http://www.ijritcc.org/

