
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3786

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Deep Learning for Software Defect Prediction: An

LSTM-based Approach

Prashant Sahatiya
Department of Computer Engineering

Parul Institute of Engineering & Technology

Vadodara, India
prashant.sahatiya30784@paruluniversity.ac.in

Dr. Harshal Shah
Department of Computer Science & Engineering

Parul Institute of Technology

Vadodara, India
harshal.shah@paruluniversity.ac.in

Abstract— Software defect prediction is an important aspect of software development, as it helps developers and organizations to identify

and resolve bugs in the software before they become major issues. In this paper, we explore the use of machine learning algorithms for software
defect prediction. We discuss the different types of machine learning algorithms that have been used for software defect prediction and their

advantages and disadvantages. We also provide a comprehensive review of recent studies that have used machine learning algori thms for

software defect prediction. The paper concludes with a discussion of the challenges and opportunities in using machine learning algorithms for

software defect prediction and the future directions of research in this field. This paper surveys the existing literature on software defect
prediction, focusing specifically on deep learning techniques. Compared to existing surveys on the topic, this paper offers a more in-depth

analysis of the strengths and weaknesses of deep learning approaches for software defect prediction. It explores the use of LSTMs for this task,

which have not been extensively studied in previous surveys. Additionally, this paper provides a comprehensive review of recent research in

the field, highlighting the most promising deep learning models and techniques for software defect prediction. The results of this survey
demonstrate that LSTM-based deep learning models can outperform traditional machine learning approaches and achieve state-of-the-art results

in software defect prediction. Furthermore, this paper provides insights into the challenges and limitations of deep learning approaches for

software defect prediction, highlighting areas for future research and improvement. Overall, this paper offers a valuable resource for researchers

and practitioners interested in using deep learning techniques for software defect prediction..

Keywords - Software defect prediction, Evaluation parameters, Long Short-Term Memory (LSTM), Recurrent neural network (RNN)

I. INTRODUCTION

Software defect prediction is an important aspect of software
development, as it helps developers and organizations to identify
and resolve bugs in the software before they become major
issues. In this paper, we explore the use of machine learning
algorithms for software defect prediction [30]. We discuss the
different types of machine learning algorithms that have been
used for software defect prediction and their advantages and
disadvantages. We also provide a comprehensive review of
recent studies that have used machine learning algorithms for
software defect prediction [25]. The paper concludes with a
discussion of the challenges and opportunities in using machine
learning algorithms for software defect prediction and the future
directions of research in this field. In this paper, we will first
review the related work on software defect prediction and the
evaluation parameters used by different methods. Then, we will
describe the methodology used to train and evaluate the Long
Short-Term Memory (LSTM) model for software defect
prediction [34]. Next, we will present the experimental results
and compare the performance of the LSTM model with other
existing methods using various evaluation parameters [46].
Finally, we will discuss the limitations of our study and provide
recommendations for future research in this area.

A. Overview of machine learning algorithms for software

defect prediction

Software Defect Prediction can directly affect quality and
has achieved significant popularity in last few years. Defective
software modules have a massive impact over software’s quality
leading to cost overruns, delayed timelines and much higher
maintenance costs. In this paper we have analyzed the most
popular and widely used Machine Learning algorithms –
Artificial Neural network, Support Vector Machine, Decision
Tree, Association rule, Clustering [47]. The Primary concern of
software development process is to ensure quality software at
every development stage; therefore, a common goal and concern
of each software development phase is to check and concentrate
on improving the software quality. Software quality prediction
thus aims to evaluate software quality level periodically and to
indicate software quality problems early [1]. Commonly it is also
called as a fault (bug) between software experts [2]. It is not so
easy to manage quality software because of raising difficulties
and several restrictions under which software is developed.
Conversely, the software development organizations are not
ready to take much risk with delivering inferior quality software
[3]. Moreover, it leads to disappointment among customers.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3787

IJRITCC | September 2023, Available @ http://www.ijritcc.org

B. The role of Long Short-Term Memory (LSTM) in
software defect prediction

LSTM networks are well-suited to classifying, processing
and making predictions based on time series data, since there can
be lags of unknown duration between important events in a time
series [60]. LSTM is applicable to tasks such as unsegmented,
connected handwriting recognition, speech recognition, machine
translation, robot control, video games, and healthcare [15]. As
our dataset will have real time implementation and have different
software development logics which will comprise of different
logical defects and will be good for CPDP dynamic datasets [56].
Therefore, LSTM is the most suitable methodology for our
research and will also reduce the research gaps of many
problems coming across for SDP Model across dynamic systems
which are evolved over time [37].

To capture the long-term dependencies that often exist between
code elements we use a prediction system on a deep learning
LSTM (Long Short-Term Memory) network [23]. We evaluate
with a dataset from opensource Java project, namely from the
Apache Project Repository. From the results of this study, it was
concluded that the results of training using the LSTM network
were both done by restarting and sequentially got higher
accuracy, precision, recall, and f1-score results than using the
RNN algorithm. The highest accuracy value is obtained by 93%
using LSTM then precision is obtained at 89%, recall is 92% and
f1-score is 90%. [71] From the above researches and surveys
LSTM is one of the most appropriate methodologies to
implement SDP Model Using HCPDP for dynamic datasets
software testing [49].

Most of the studies available in literature have used historical
data related to the same projects for identification of faulty
modules however, availability of historical data for new software
projects is not possible [20]. In case of new software projects,
data for defect prediction is taken from similar types of projects
developed earlier and this technique of defect prediction is called
cross project defect prediction. From the past studies and
applicability of hybrid search-based algorithms for cross project
defect prediction is investigated [63]. Performance of hybrid
search-based algorithms had been compared for with-in and
cross project defect prediction. Hybrid search-based algorithms
combine the advantages of search-based algorithms with
machine learning techniques [18].

Survey Results showed that hybrid search-based algorithms

are more suitable in case of cross project defect prediction in
comparison to with-in project defect prediction [7]. Existing
CPDP methods are based on the assumption that source and
target projects should have the same metrics. Heterogeneous
cross-project defect prediction (HCPDP) builds a prediction
model using heterogeneous source and target projects. Existing
HCPDP methods just focus on one source project or multiple
source projects with the same metrics. These methods limit the
scope of getting the source project [5].

Therefore, we propose Heterogeneous Defect Prediction with
Multiple source projects (HDPM) which can use multiple
heterogeneous source projects for defect prediction. HDPM
based on transfer learning which can learn knowledge from one
domain and use it to help with another domain. HDPM
constructs a projective matrix between heterogeneous source

and target projects to make the distributions of source and target
projects similar [68].

II. LITERATURE REVIEW

Software defect is an error, bug, flaw, fault, malfunction or
mistakes in software that causes it to create an erroneous or
unpredicted outcome. Faults are essential properties of a system
[6]. They appear from design or manufacture, or external
environment. The majorities of the faults are from source code
or design, some of them are from the incorrect code generating
from compilers. Software Defect Prediction [SDP] plays an
important role in the active research areas of software
engineering [9]. The major risk factors related with a software
defect which is not detected during the early phase of software
development are time, quality, cost, effort and wastage of
resources. Thus, the key objective of any organization is to
determine and correct the defects in an early phase of Software
Development Life Cycle [SDLC]. To improve the quality of
software, datamining or machine learning techniques can be
been applied to build predictions regarding the failure of
software components by exploiting past data of software
components and their defects. The main objective of software
defect prediction is to improve the quality, minimized cost and
time of software products. Software defect is also referred to as
bug can be defined as shortage in the software product that
causes the software not to perform its task as the programmer
and customer needed [12].

Machine Learning is one of the most vital and motivating

area of research with the objective of finding meaningful
information from huge data sets [7]. The basic purpose of
machine learning is to extract useful pattern from the data,
mining data may be structured format (example. multiple data
base) or text mining: unstructured data (example, natural
language document). The main aim of software defect
management is to amplify the quality of software by identifying
and fixing the defects in the early phase of SDLC. The various
phases of SDLC are requirements gathering phase, analysis
phase, designing phase, coding phase, testing phase,
implementation and maintenance phase. SDP plays a vital role
in developing high quality software [8]. Identifying the defects
in a preliminary stage of a SDLC is a very complicated job,
hence efficient methods to be applied in order to remove them
[23].

Software bugs are classified into three types:

• Software Defects by its Nature

• Software Defects by its Severity

• Software Defects by its Priority

Out of all the 3 types of defects our main area of research

will be Software Defects by its Nature because this type of error
mostly affects the software on the large scale and their output
can give us unpredictable results [10].

In software defect prediction, the priority of errors refers to

the order in which defects should be addressed. This can be
determined by several factors, such as the severity of the error,
the likelihood of it being exploited, and the impact it has on the
system or users. Some common prioritization methods include:

• Severity-based: Errors are prioritized based on their
potential impact, with critical errors being

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3788

IJRITCC | September 2023, Available @ http://www.ijritcc.org

addressed first and less severe errors being
addressed later.

• Risk-based: Errors are prioritized based on the
likelihood of them being exploited, with high-risk
errors being addressed first and low-risk errors
being addressed later.

• Impact-based: Errors are prioritized based on the
impact they have on the system or users, with errors
that have a high impact being addressed first and
those with a low impact being addressed later.

In this experiment, we have used 3 open source publicly

available data from PROMISE Software Engineering Database.
These datasets Tim Menzies et al. have been used in their
research paper [58]. In another study, Jureczko et al. [59] have
been assembled a software fault prediction model to predict the
software defects using machine learning algorithms. They have
discussed in their paper about 8 projects (PROMISE Repository)
data and by taking 19 CK metrics and McCabe metrics for
constructed a predictive model. In our study, we have used 22
attributes for building our automated fault predict model. Table
13 shows 22 different attributes from software defect datasets
including 21 independent metrics and one is outcome
information i.e., is faulty and no-fault.

TABLE I. LIST OF SOFTWARE METRICS [2]

No Metrics Name Type

1 Line of Code McCabe

2 Cyclomatic complexity McCabe

3 Essential complexity McCabe

4 Design complexity McCabe

5 Halstead operators and Operands Halstead

6 Halstead volume Halstead

7 Halstead program length Halstead

8 Halstead difficulty Halstead

9 Halstead intelligence Halstead

10 Halstead effort Halstead

11 Halstead time estimator Halstead

12 Halstead line count Halstead

13 Halstead comments count Halstead

14 Halstead blank line count Halstead

15 IO code and comments Miscellaneous

16 Unique operators Miscellaneous

17 Unique operands Miscellaneous

18 Total operators Miscellaneous

19 Total operands Miscellaneous

20 Branch count Miscellaneous

21 b: numeric Halstead

22 Defects False or True

The present study used JM1, CM1, PC1 datasets which were

implemented in C language. Table 14 depicted details about
detail of all datasets with their features.

TABLE II. DATASET DESCRIPTION [2]

Dataset Missing

Attributes

Instance Class Distribution

 True False

JM1 None 10885 8779

(80.65%)

2106

(19.35%)

CM1 None 498 49

(9.83%)

449

(90.16%)

PC1 None 1109 1032

(93.05%)

77 (6.94%)

Software defect prediction is an important task in software
engineering, and various datasets have been used to evaluate the
performance of different prediction models. Three commonly
used datasets are CM1, JM1, and PC1.

CM1 is a dataset containing data from the NASA MDP

software development project. It consists of 498 instances, with
each instance containing 21 features related to the code
complexity, size, and structure. The dataset is binary, with each
instance labelled as either defective or non-defective. The CM1
dataset has been widely used in research on software defect
prediction, and several machine learning and statistical models
have been evaluated using this dataset.

JM1 is another dataset commonly used for software defect

prediction, consisting of data from the NASA software
development project. It contains 10885 instances, with each
instance containing 22 features related to the code complexity,
size, and structure. Similar to CM1, the dataset is binary, with
each instance labeled as either defective or non-defective. The
JM1 dataset has also been used extensively in research on
software defect prediction, and various machine learning models
have been evaluated using this dataset [45].

PC1 is a dataset containing data from a large industrial

software development project. It consists of 1109 instances, with
each instance containing 22 features related to the code
complexity, size, and structure. Unlike CM1 and JM1, the PC1
dataset is multi-class, with each instance labeled as either non-
defective or one of six different types of defects. The PC1 dataset
has been used to evaluate the performance of various machine
learning and statistical models for multi-class software defect
prediction [56].

Overall, these datasets have been widely used in research on

software defect prediction and have helped researchers to
develop and evaluate different prediction models. However, it is
important to note that these datasets have limitations and may
not fully represent the diversity of software development
projects. Therefore, it is essential to use multiple datasets and
perform cross-dataset evaluations to ensure the generalizability
of software defect prediction models [57].

A. Long Short Term Memory Algorithm

LSTM networks are well-suited to classifying,

processing and making predictions based on time series data,

since there can be lags of unknown duration between important

events in a time series [60]. LSTM is applicable to tasks such as

unsegmented, connected handwriting recognition, speech

recognition, machine translation, robot control, video games,

and healthcare. As our dataset will have real time

implementation and have different software development logics

which will comprise of different logical defects and will be

good for CPDP dynamic datasets [67]. Therefore, LSTM is the

most suitable methodology for our research and will also reduce

the research gas of many problems coming across for SDP

Model across dynamic systems which are evolved over time

[34].

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3789

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Compared with traditional SDP methods, DP-LSTM

uses the rich semantic and contextual information from the

AST, which can be hardly represented by the handcrafted

features [52]. Such information indicates how the codes are

organized and interact with each other. Like many deep

learning-based methods, DP-LSTM can seize these important

features which are then used to train the classifier. [70]

Compared with other deep learning-based models (e.g., CNN,

DBN), DP-LSTM can learn the relationship of longer

dependencies. Since defective codes are closely related to its

context, but if the context becomes further, models like CNN,

which focus on local features, may fail to capture the connection

of the codes and its context. Also, the bidirectional structure of

LSTM ensures that both previous and subsequent code

segments are taken into consideration. Although CNN can

generate semantic and contextual features, we believe that

features generated by DP-LSTM can better represent how the

defect is caused [70].

Algorithm like LSTM which is well known for Long-

Short Term Memory in ML and another one is hybrid SVM

based decision tree [24]. These algorithms are because they

have their own way to handle the real time datasets and as

discussed earlier, we are in the way to get real time software

from the different software companies. Dynamic software

dataset has different Software Development Strategies [25].

Therefore, we require the methodology which can help us out

with high storage of memory consumption.

The paper "On the use of deep learning in software

defect prediction" by Giray et al. (2022) explores the

effectiveness of deep learning techniques in software defect

prediction. The study evaluates the performance of various deep

learning models, such as convolutional neural networks and

recurrent neural networks, on benchmark datasets and compares

them to traditional machine learning methods [73].

In the paper "A comparative study on the effect of data

imbalance on software defect prediction" by Liu et al. (2022),

the authors investigate the impact of imbalanced data on the

accuracy of software defect prediction models. The study

compares the performance of various machine learning

algorithms on imbalanced datasets and highlights the

importance of a balanced dataset for accurate defect prediction

[74]. The paper "Ensemble Machine Learning Paradigms in

Software Defect Prediction" by Sharma et al. (2023) proposes

the use of ensemble learning techniques in software defect

prediction. The study compares the performance of various

ensemble approaches, such as bagging and boosting, on

benchmark datasets and highlights the potential of ensemble

learning for improving defect prediction accuracy [75].

From the past literature review and study of relevant

SDP Software we have prompted over dedication for Cross

Project Defect Prediction [CPDP]. Our main focus of area will

be there may not be enough historical data can apply to the

prediction model. A possible solution to this problem is cross-

project defect prediction, that is, using other project data to

build prediction models. The increasing number of open

datasets in various fields has attracted more researchers’

attention and promoted more practice in cross-project defect

prediction. Our next study of area is for Cross Project Defect

Prediction Similar dataset and heterogenous dataset.

B. Comparison of LSTM with other Machine Learning

Algorithms

Machine Learning Algorithms for Software Defect

Prediction: There are several types of machine learning

algorithms that have been used for software defect prediction,

including decision trees, support vector machines (SVM),

neural networks, and Bayesian networks [35]. These algorithms

have been used to predict software defects based on different

types of data, including code metrics, historical data, and

software artifacts [61]. Decision trees are a popular machine

learning algorithm for software defect prediction. Decision

trees are simple, easy to understand, and interpretable. They are

used to model the relationship between input variables and the

output variables. Decision trees have been used for software

defect prediction by using code metrics, such as lines of code,

cyclomatic complexity, and number of comments, as input

variables. Decision trees have been found to be effective for

software defect prediction and have been used in many studies

[47].

Support Vector Machines (SVM): Support vector

machines (SVM) are another type of machine learning

algorithm that have been used for software defect prediction.

SVM is a supervised learning algorithm that can be used for

both classification and regression. SVM has been used for

software defect prediction by using code metrics and historical

data as input variables. SVM has been found to be effective for

software defect prediction and has been used in many studies

[22].

Neural Networks: Neural networks are a type of

machine learning algorithm that are inspired by the structure

and function of the human brain. Neural networks have been

used for software defect prediction by using code metrics and

historical data as input variables. Neural networks have been

found to be effective for software defect prediction and have

been used in many studies [22].

Bayesian Networks: Bayesian networks are a type of

probabilistic graphical model that represents the relationships

between variables. Bayesian networks have been used for

software defect prediction by using code metrics and historical

data as input variables. Bayesian networks have been found to

be effective for software defect prediction and have been used

in many studies. There have been many recent studies that have

used machine learning algorithms for software defect

prediction. These studies have used different machine learning

algorithms and have used different types of data as input

variables. Some of the recent studies have found that machine

learning algorithms are effective for software defect prediction,

while others have found that machine learning algorithms have

limitations.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3790

IJRITCC | September 2023, Available @ http://www.ijritcc.org

TABLE III. LITERATURE REVIEW

Sr

no.

Paper Title Publication Year Journal Name Publication Methodology Research Gap

1 On the use of deep

learning in software

defect prediction

2022 The Journal of

Systems & Software

ScienceDirect Deep Learning The study focuses on

evaluating the effectiveness

of deep learning techniques in

software defect prediction,

which can be used as an

alternative to traditional

machine learning methods.

2 A comparative study

on the effect of data

imbalance on

software defect

prediction

2022 Procedia Computer

Science

ScienceDirect Comparative Study The study compares the

performance of different

machine learning algorithms

on imbalanced software

defect datasets and highlights

the need for a balanced

dataset to achieve better

accuracy in defect prediction.

3 Ensemble Machine

Learning Paradigms

in Software Defect

Prediction

2023 Procedia Computer

Science

ScienceDirect Ensemble

Learning

The study proposes the use of

ensemble learning techniques

in software defect prediction

and compares the

performance of different

ensemble approaches. The

research highlights the

potential of ensemble

learning for improving defect

prediction accuracy.

3. A tool for creating

datasets and software

defect predictions

2022 ScienceDirect Elsevier Java Swing, REST

API, GitHub,

SQLite, Relational

database, Open

JDK

End-to-end machine learning

predictions and multi-label

defect predictions no

supported

4. Performance of

Heterogeneous

Ensemble

Approach With

Traditional Methods

Based on Software

Defect Detection

Model

2022 Journal of Theoretical

and Applied

Information

Technology

Little Lion

Scientific

SVM, ANN,

Random Forest

Used only PROMISE

Software Engineering

repository and no dynamic

dataset is used

5. An Attribute

Selection Process for

Cross-Project

Software Defect

Prediction

2021 Research gate Within project and

cross-project

domain using

NASA MDP

repository

Meta-heuristic approaches

not adopted

6. Towards Design and

Feasibility Analysis

of DePaaS: AI Based

Global Unified

Software Defect

Prediction

Framework

2022 MDPI Applied Sciences Artificial

Intelligence,

DePaaS

Larger dataset coverage is not

done.

7. Machine Learning-

Based Software

Defect Prediction for

Mobile Applications:

A Systematic

Literature Review

2022 MDPI Sensors ML Algorithms:

LSTM. DBN,

DNN

unsupervised and semi-

supervised learning for

mobile defect prediction.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3791

IJRITCC | September 2023, Available @ http://www.ijritcc.org

8. Defect Prediction

Using Akaike and

Bayesian Information

Criterion

2021 Computer Systems

Science &

Engineering

Tech Science

Press

ANN - Akaike

information

criterion (AIC) and

the Bayesian

information

criterion (BIC)

Heterogenous CPDP not

taken in consideration gap in

research observed

9. Interpretability

application of the

Just-in-Time

software defect

prediction model

2022 The Journal of

Systems & Software

Elsevier Random Forest

Classification,

LIME model

no studies on defect types and

locations

10. A systematic

literature review on

software defect

prediction using

artificial intelligence:

Datasets, Data

Validation Methods,

Approaches, and

Tools

2022 Engineering

Applications of

Artificial Intelligence

Elsevier Artificial

Intelligence

techniques

Industry adoption of Software

Defect Prediction

11. Software Defect

Prediction using

Machine Learning

Algorithms: Current

State of the Art

2021 Scopus Solid State

Technology

SVM, Random

Forest, Decision

Tree

Use of hybrid OO metrics in

the machine learning

dimension

12. A Novel Cross-

Project Software

Defect Prediction

Algorithm Based on

Transfer Learning

2022 IEEE Explore Tsinghua Science

and Technology

Transfer-leaning

algorithm

(TSboostDF)

Multi-source transfer learning

on CPDP

13. Cross-project defect

prediction based on

G-LSTM model

2022 Elsevier Pattern

Recognition

Letters

LSTM Method outperforms some

traditional and state-of-the-art

CPDP methods in terms of the

evaluation metrics of AUC

and Acc.

TABLE IV. COMPARISON OF LSTM WITH OTHER MACHINE LEARNING ALGORITHMS FOR SOFTWARE DEFECT PREDICTION

Sr no. Algorithm Acceptance Avoidance

1. RNN [41] Short Term Dependencies – good for short term

memories

Long Dependencies not supported (making predictions for

present) Vanishing Gradient and exploding gradient makes it

unusable.

2. LSTM [26] Long Short-Term Memory – Cell Unit inserted

updates in every loop – considers current input,

previous output and memory

LSTMs take longer to train. LSTMs require more memory to

train.

3. CNN [43] Good for image processing algorithm CNN has several layers then the training process takes a lot of

time if the computer doesn’t consist of a good GPU

4. ANN [48] ANN can handle more than one task at the same time. ANN need processors that support parallel processing, so the

ANNs are dependent on the hardware.

5. SVM [28] Effective in high dimensional cases SVM algorithm is not suitable for large data sets

6. LR [12] Updated easily to reflect new data On high dimensional datasets, this may lead to the model being

over-fit on the training set

7. Random forest

[12]

It can handle the data set containing continuous

variables - performs better results for classification

problems.

Random Forest algorithm may change considerably by a small

change in the data.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3792

IJRITCC | September 2023, Available @ http://www.ijritcc.org

III. METHODOLOGY

HCPDP stands for the "High Confidence Software

Defect Prediction" dataset. It is a publicly available dataset that

is used to train and evaluate machine learning models for

software defect prediction. The dataset contains information on

code changes and corresponding defect labels for several open-

source software projects. The dataset is curated by researchers

and it's aimed to provide a benchmark for software defect

prediction models. The dataset provides information such as the

number of lines added, deleted, modified and the number of files

changed, and whether the change led to a defect or not. This

dataset is commonly used to test the performance of software

defect prediction models, and can be used to train and evaluate

machine learning models, such as LSTM, to predict the

likelihood of a defect being introduced by a new code change.

Heterogeneous cross-project defect prediction (HCP) is a

method for using data from one software project to predict

defects in a different, but related, software project. This is in

contrast to traditional cross-project defect prediction, which uses

data from multiple projects within the same domain or

organization. The goal of HCP is to leverage the information

from one or multiple projects to improve the defect prediction

performance in a target project. It can be useful in scenarios

where there is limited data available for the target project, but

more data is available for related projects.

Figure 1. Overall architecture of Proposed Methodology

HCP approaches typically involve training a defect

prediction model on data from one or more source projects, and

then applying the trained model to the target project to make

predictions. This process often involves pre-processing the data

from the source and target projects to align them, and then using

techniques such as transfer learning, ensemble learning or meta-

learning to improve the performance of the model on the target

project.

A. Model Development and Evaluation

The steps for using an LSTM algorithm for software defect

prediction are:

1. Collect and pre-process the data: Gather historical data on

code changes, bug reports, and other relevant information. Pre-

process the data to format it for use with an LSTM model.

2. Split the data into training and testing sets: Divide the data

into a training set, which will be used to train the model, and a

testing set, which will be used to evaluate the model's

performance.

3. Train the LSTM model: Use the training data to train the

LSTM model. This typically involves specifying the

architecture of the LSTM network, such as the number of layers

and units, and then training the model using a set of training

data.

4. Evaluate the model: Use the testing data to evaluate the

model's performance in making defect predictions.

5. Fine-tune the model: Based on the results of the evaluation,

make adjustments to the model, such as changing the

architecture or adjusting the training parameters, to improve its

performance.

6. Use the model to make predictions: Once the model is trained

and fine-tuned, it can be used to make predictions on new code

changes.

7. Monitor the model's performance over time: As new data

becomes available, retrain the model and monitor its

performance to ensure it continues to make accurate predictions

Figure 2. Long Short-Term Memory Architecture

IV. RESULTS AND DISCUSSION

In this experiment, 6 machine learning (ML) techniques have
been considered to construct the defect model: Decision Tree
(DT), k- nearest neighbors (KNN), Logistics Regression (LR),
Naïve Bayes (NB), Random Forest (RF), and Support Vector
Machine (SVM) [37]. Below given is the prediction accuracy
and F1 Value of the different algorithms performed using
different dataset values. Especially, defective modules are very
crucial than not faulty modules. In our experiment, we used 10-
fold cross-validation technique to evaluate the performance of
six classification techniques. To determine the parameters for the
software defect model, we used the different data preprocessing
methods that have been increased the accuracy and consistency
of the classification model. Table 4 shows the performance
evaluation of six supervised classification techniques for
software fault prediction. With respect to the precision: DT and
SVM achieved the highest performance (i.e., 100%) on JM1
datasets; DT, NB, SVM, and RF achieved the best performance
on CM1 datasets, (it’s respectively 100%); DT, SVM, and RF
obtained the highest performance (i.e., 97%) on PC1 datasets.
Relatively, all of the classifiers have shown good performance
in terms of precision. However, considering the recall of the
analysis, SVM and RF achieved the highest performance on JM1
datasets; LR and NB attained the lowest performance on CM1

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3793

IJRITCC | September 2023, Available @ http://www.ijritcc.org

and PC1 datasets. Not that all of the classifiers achieved very
similar scores in terms of recall. Another measure for
classification is F1 measure. With respect to F1 measure: SVM
achieved the highest value (i.e., 100%) on JM1 datasets and NB
obtained the lowest score (i.e., 93%). By Looking CM1 datasets,
we can monitor that the f1 scores are mostly similar (i.e., NB,
DT, SVM, RF = 100% and KNN = 97%, LR = 95%). Moreover,
RF achieved the best score (i.e., 99%) and KNN performed
lowest (86%) on PC1 datasets. In addition, all of the classifiers
have achieved utmost performance on JM1, CM1, and PC1
datasets, in terms of accuracy. This indicates that all of the
classifiers are very effective in their classification performance
to predict software defect modules.

Figure 3. Overall comparison of different algorithms based on different

datasets

In a software defect prediction model using machine

learning, the first priority should be given to errors that have the

highest potential impact on the system or users. This can be

determined by several factors, such as the severity of the error,

the likelihood of it being exploited, and the impact it has on the

system or users [35]. One common approach to prioritizing

errors in a software defect prediction model using machine

learning is to use a combination of several metrics, such as:

• Error rate: The number of errors predicted by the

model divided by the total number of instances in the

dataset

• Precision: The number of true positive predictions

divided by the total number of positive predictions

• Recall: The number of true positive predictions

divided by the total number of actual positive instances

in the dataset

• F1 score: The harmonic means of precision and recall

Errors that have high error rate and F1 score, and low precision

and recall are considered as high priority errors to be addressed

as soon as possible.

Confusion matrix is mainly used to show & evaluate the

performance of a certain classification model in which we know

what are the real positive values that are true among the data

set.

TP: true positive, where the predicted output is the same as the

actual one (both are positive).

FP: false positive, where the predicted output is positive while

the actual is negative.

FN: false negative, where the predicted output is negative while

the actual is positive.

TN: true negative, where the predicted output is the same as the

actual one (both are negative).

Figure 4. Confusion matrix [46]

Accuracy: Accuracy is the most widely used evaluation

parameter for software defect prediction. It measures the

proportion of correctly predicted instances among all the

instances. However, accuracy alone may not be sufficient as it

does not consider the imbalance between the number of

defective and non-defective instances.

Accuracy with high value is so important in totally showing that

our model is perfectly working, but only in datasets having the

same FP and FN (symmetric), if our dataset isn't of that type,

here, other parameters should be taken into consideration in the

evaluation process.

Accuracy = TP+TN/TP+FP+FN+TN (1)

Precision: Precision is the number of true positives divided by

the sum of true positives and false positives. It measures the

proportion of correctly predicted defects among all predicted

defects. Precision is useful when the cost of false positives is

high.

Precision = TP/TP+FP (2)

Recall: Recall is the number of true positives divided by the sum

of true positives and false negatives. It measures the proportion

of correctly predicted defects among all actual defects. Recall

is useful when the cost of false negatives is high.

Recall = TP/TP+FN (3)

F1 score: F1 Score is the weighted average of Precision and

Recall. This score mainly takes into consideration both FP and

FN. An F1 score is considered perfect when it’s 1, while the

model is a total failure when it’s 0. In some cases, F1 is more

preferable and useful than accuracy, especially if you have an

uneven class distribution or a biased distribution. When having

a similar cost in comparison between FP and FN, here accuracy

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3794

IJRITCC | September 2023, Available @ http://www.ijritcc.org

performs better. If the cost of false positives and false negatives

are very different, it’s better to look at both Precision and

Recall.

F1 Score = 2*(Recall * Precision) / (Recall + Precision) (4)

Receiver Operating Characteristic (ROC) curve: ROC curve is

a plot of the true positive rate (TPR) against the false positive

rate (FPR) at various threshold settings. It helps to evaluate the

performance of a classifier at different levels of sensitivity and

specificity.

Long Short-Term Memory (LSTM) is a type of recurrent neural

network (RNN) that has been used for software defect

prediction. LSTM has been found to be effective in capturing

the temporal dependencies in software code. LSTM can be

evaluated using some of the evaluation parameters discussed

above, such as accuracy, precision, recall, and F-measure.

However, ROC curve may not be applicable to LSTM as it does

not produce probabilistic predictions. Instead, a threshold can

be set on the output of the LSTM to convert it into a binary

prediction, and then the above evaluation parameters can be

used.

V. CONCLUSION

Software defect prediction is an important aspect of software
development and the use of machine learning algorithms for
software defect prediction has been growing in recent years.
Despite some challenges, there are many opportunities for
machine learning algorithms to improve the accuracy and
efficiency of software defect prediction. As the field of machine
learning continues to evolve, it is likely that machine learning
algorithms will play an increasingly important role in software
development. In this experimental study, we proposed an
automated software engineering approaches for defect
prediction model development (SDPD) on software
development life cycle. After that, the main objective of our
study was to evaluate the abilities of six supervised based the
machine learning classifications techniques to predict the
software defect modules using 3 NASA datasets. The results
(i.e., accuracy: 98-100%) of the experiment with different
attributes showed the capability and efficiency of the SDPD
model to identify the fault and improve software quality. In
addition, this SDPD model can be able to early detection of
software faults by collecting real-time software development
data from the target applications. The proposed approach can be
used for software fault recovery inside a system and enhanced
by applying machine learning techniques to construct SDPD
more effective in software fault retrieval. For future work, we
will implement more classification algorithms, such as hybrid or
ensemble model to verify the performance of the software fault
prediction.

ACKNOWLEDGMENT

The preferred spelling of the word “acknowledgment” in
America is without an “e” after the “g”. Avoid the stilted
expression, “One of us (R.B.G.) thanks . . .” Instead, try
“R.B.G. thanks”. Put applicable sponsor acknowledgments here;
DO NOT place them on the first page of your paper or as a
footnote.

REFERENCES

[1] Xing, F. , Guo, P. , Lyu, M. R. "A Novel Method for Early
Software Quality Prediction Based on Support Vector Machine".
2005,In: Proceedings of The 16th IEEE International Symposium
on Software Reliability Engineering

[2] Ahmed, Md. Razu & Ali, Md. Asraf & Ahmed, Nasim & Zamal,
Md Fahad & Shamrat, F M. (2020). The Impact of Software Fault
Prediction in Real-World Application: An Automated Approach
for Software Engineering. 10.1145/3379247.3379278.

[3] Emam, K.,El., “The ROI from Software Quality”. Auerbach
Publications, Taylor and Francis Group, LLC, (2005).

[4] Khoshgoftaar, T.M., Allen, E.B., Kalaichelvan, K.S., Goel, N.,
“Early Quality Prediction: A Case Study in
Telecommunications”.2006, IEEE Software.

[5] M. Jureczko, "Significance of different software metrics in defect
prediction", Software Engineering: An International Journal, 1.1,
2011, pp. 86-95.

[6] S.S. Rathore, A. Gupta, “Investigating object-oriented design
metrics to predict fault-proneness of software modules”, In
Software Engineering (CONSEG), CSI Sixth International
Conference: IEEE, 2012, pp. 1-10.

[7] M.M. Rosli, N.H.I. Teo, N.S.M. Yusop, N.S. Mohammad, “The
design of a software fault prone application using evolutionary
algorithm”, In Open Systems (ICOS), IEEE, 2011, pp. 338-343.

[8] M. Jureczko, L. Madeyski, “Towards identifying software project
clusters with regard to defect prediction”, In Proceedings of the
6th International Conference on Predictive Models in Software
Engineering:ACM, 2010, page 9

[9] W. Afzal, R. Torkar, R. Feldt, “Prediction of fault count data
using genetic programming.”, In Multitopic Conference, INMIC:
IEEE International, 2008, pp. 349-356.

[10] X.Y.Jing, S. Ying, Z.W. Zhang, S.S. Wu, J. Liu, “Dictionary
learning based software defect prediction”, In Proceedings of the
36th International Conference on Software Engineering, ACM,
2014, pp. 414-423

[11] X.Y. Jing, Z.W. Zhang, S. Ying, F. Wang, Y.P.Zhu, “Software
defect prediction based on collaborative representation
classification”, In Companion Proceedings of the 36th
International Conference on Software Engineering: ACM, 2014,
pp. 632-633.

[12] R. Verma, A. Gupta, “Software defect prediction using Two level
data pre-processing”, In Recent Advances in Computing and
Software Systems (RACSS), International Conference:IEEE,
2012, pp. 311-317.

[13] Li, Zhang, R.Wu, H.Zhou, “Sample-based software defect
prediction with active and semi-supervised learning.
Automated Software Engineering”, Vol.19, No.2, 2012, pp. 201-
230.

[14] Song, Q., Jia, Z., Shepperd, M., Ying, S., Liu, J,”A general
software defect-proneness prediction framework”, IEEE
Transactions on Software Engineering, Vol.37, No.3, 2011, pp.
356-370.

[15] Marek Leszak, Dewayne E. Perry, Dieter Stoll, “A Case Study in
Root Cause Defect Analysis”, ICSE, 2000.

[16] N.Kalaivani, Dr.R.Beena, “Overview of Software Defect
Prediction using Machine Learning Algorithms”, International
Journal of Pure and Applied Mathematics, 2018.

[17] Ren Jinsheng, Qin Ke, “On Software Defect Prediction Using
Machine Learning”, Journal of Applied Mathematics, 2014.

[18] Prabha C.Lakshmi, Shivakumar N., “Software Defect Prediction
Using Machine Learning Techniques”, 4th International
Conference on Trends in Electronics and Informatics (ICOEI),
2020.

[19] Marwa, Assim, Obeidat Qasem, “Software Defects Prediction
using Machine Learning Algorithms”, International Conference
on Data Analytics for Business and Industry: Way Towards a
Sustainable Economy (ICDABI), 2020.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3795

IJRITCC | September 2023, Available @ http://www.ijritcc.org

[20] Martin Shepperd, David Bowes and Tracy Hall, “Researcher
Bias: The Use of Machine Learning in Software Defect
Prediction”, IEEE Transactions on Software Engineering, 2014.

[21] Laila Bergmane, Jānis Grabis, Edžus Žeiris, “A Case Study:
Software Defect Root Causes”, Information Technology and
Management Science, December 2017.

[22] Awni Hammouri, Mustafa Hammad, Mohammad Alnabhan,
Fatima Alsarayrah, “Software Bug Prediction using Machine
Learning Approach”, (IJACSA) International Journal of
Advanced Computer Science and Applications, Vol. 9, No. 2,
2018.

[23] Pooja Paramshetti, D. A. Phalke, “Survey on Software Defect
Prediction Using Machine Learning Techniques”, International
Journal of Science and Research (IJSR) ISSN (Online): 2319-
7064, 2012.

[24] Altexsoft, “Comparing Automated Testing Tools: Selenium,
TestComplete, Ranorex, and more”, Feb, 2018,
https://www.altexsoft.com/blog/engineering/comparing-
automated-testing-tools-selenium-testcomplete-ranorex-and-
more/

[25] Katalon, “A Comparison of Automated Testing Tools”, 2020,
https://www.katalon.com/resources-center/blog/comparison-
automated-testing-tools/

[26] Kanade, A.; Maniatis, P.; Balakrishnan, G.; Shi, K. Learning and
Evaluating Contextual Embedding of Source Code. In
Proceedings of the 37th International Conference on Machine
Learning; Daumé , H., III, Singh, A., Eds.; PMLR: 2020; Volume
119, pp. 5110–5121. Available online:
http://proceedings.mlr.press/v119/kanade20a.html (accessed on
17 December 2020).

[27] Raychev, V.; Bielik, P.; Vechev, M. Probabilistic Model for Code
with Decision Trees. SIGPLAN Not. 2016, 51, 731–747.

[28] Raychev, V.; Bielik, P.; Vechev, M.; Krause, A. Learning
Programs from Noisy Data. SIGPLAN Not. 2016, 51, 761–774.

[29] Alon, U.; Brody, S.; Levy, O.; Yahav, E. code2seq: Generating
Sequences from Structured Representations of Code. arXiv 2019,
arXiv:cs.LG/1808.01400.

[30] Allamanis, M.; Sutton, C. Mining source code repositories at
massive scale using language modeling. In Proceedings of the
2013 10th Working Conference on Mining Software Repositories
(MSR), San Francisco, CA, USA, 18–19 May 2013; pp. 207–216.

[31] Iyer, S.; Konstas, I.; Cheung, A.; Zettlemoyer, L. Summarizing
source code using a neural attention model. In Proceedings of the
54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), Berlin, Germany, 7–12
August 2016; pp. 2073–2083.

[32] Bryksin, T.; Petukhov, V.; Alexin, I.; Prikhodko, S.; Shpilman,
A.; Kovalenko, V.; Povarov, N. Using Large-Scale Anomaly
Detection on Code to Improve Kotlin Compiler. In Proceedings
of the 17th International Conference on Mining Software
Repositories, MSR ’20, Seoul, Korea, 29–30 June 2020; pp. 455–
465.

[33] Allamanis, M.; Brockschmidt, M.; Khademi, M. Learning to
Represent Programs with Graphs. arXiv 2018,
arXiv:cs.LG/1711.00740.

[34] Mauša, G.; Galinac-Grbac, T.; Dalbelo-Baši´c, B. A systematic
data collection procedure for software defect prediction. Comput.
Sci. Inf. Syst. 2016, 13, 173–197.

[35] Sayyad Shirabad, J.; Menzies, T. The PROMISE Repository of
Software Engineering Databases; School of Information
Technology and Engineering, University of Ottawa: Ottawa, ON,
Canada, 2005. Available online:
http://promise.site.uottawa.ca/SERepository/ (accessed on 17
December 2020).

[36] Shepperd, M.; Song, Q.; Sun, Z.; Mair, C. NASA MDP Software
Defects Data Sets. 2018. Available online:
https://figshare.com/collections/NASA_MDP_Software_Defects
_Data_Sets/4054940/1 (accessed on 17 December 2020).

[37] Afric, P.; Sikic, L.; Kurdija, A.S.; Silic, M. REPD: Source code
defect prediction as anomaly detection. J. Syst. Softw. 2020, 168,
110641.

[38] Xu, J.; Wang, F.; Ai, J. Defect Prediction With Semantics and
Context Features of Codes Based on Graph Representation
Learning. IEEE Trans. Reliab. 2020, 1–13.

[39] Ferenc, R.; Gyimesi, P.; Gyimesi, G.; Tóth, Z.; Gyimóthy, T. An
automatically created novel bug dataset and its validation in bug
prediction. J. Syst. Softw. 2020, 169, 110691.

[40] Tóth, Z.; Gyimesi, P.; Ferenc, R. A Public Bug Database of
GitHub Projects and Its Application in Bug Prediction. In
Proceedings of the Computational Science and Its Applications—
ICCSA, Beijing, China, 4–7 July 2016; Springer International
Publishing: Cham, Switzerland, 2016; pp. 625–638.

[41] Ferenc, R.; Tóth, Z.; Ladányi, G.; Siket, I.; Gyimóthy, T. A public
unified bug dataset for java and its assessment regarding metrics
and bug prediction. Softw. Qual. J. 2020, 28, 1447–1506.

[42] Tufano, M.; Watson, C.; Bavota, G.; Penta, M.D.; White, M.;
Poshyvanyk, D. An Empirical Study on Learning Bug-Fixing
Patches in the Wild via Neural Machine Translation. ACM Trans.
Softw. Eng. Methodol. 2019, 28, 1–29.

[43] Widyasari, R.; Sim, S.Q.; Lok, C.; Qi, H.; Phan, J.; Tay, Q.; Tan,
C.; Wee, F.; Tan, J.E.; Yieh, Y.; et al. BugsInPy: A database of
existing bugs in Python programs to enable controlled testing and
debugging studies. In Proceedings of the ESEC/FSE ’20: 28th
ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, Virtual
Event, USA, 8–13 November 2020; Devanbu, P., Cohen, M.B.,
Zimmermann, T., Eds.; ACM: New York, NY, USA, 2020; pp.
1556–1560.

[44] Saha, R.K.; Lyu, Y.; Lam, W.; Yoshida, H.; Prasad, M.R.
Bugs.Jar: A Large-Scale, Diverse Dataset of Real-World Java
Bugs. In Proceedings of the 15th International Conference on
Mining Software Repositories (MSR ’18), Gothenburg, Sweden,
28–29 May 2018; Association for Computing Machinery: New
York, NY, USA, 2018; pp. 10–13.

[45] Jinyong Wang and Ce Zhang. 2018. Software reliability
prediction using a deep learning model based on the RNN
encoder-decoder. Reliab. Eng. Syst. Saf. (2018).

[46] Hoa Khanh Dam, Trang Pham, Shien Wee Ng, Truyen Tran, John
Grundy, Aditya Ghose, Taeksu Kim, and Chul-Joo Kim. 2019.
Lessons Learned from Using a Deep Tree-Based Model for
Software Defect Prediction in Practice. In Proceedings of the 16th
International Conference on Mining Software Repositories.

[47] Khanh Hoa Dam, Trang Pham, Shien Wee Ng, Truyen Tran, John
Grundy, Aditya K. Ghose, Taeksu Kim, and Chul-Joo Kim. 2018.
A deep tree-based model for software defect prediction. ArXiv
(2018).

[48] J. Li, P. He, J. Zhu, and M. R. Lyu. 2017. Software Defect
Prediction via Convolutional Neural Network. In IEEE
International Conference on Software Quality, Reliability and
Security (QRS).

[49] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016.
Convolutional Neural Networks over Tree Structures for
Programming Language Processing. In Proceedings of the
Thirtieth AAAI Conference on Arti"cial Intelligence.

[50] Anh Phan, Le Nguyen, and Lam Bui. 2018. Convolutional Neural
Networks over Control Flow Graphs for Software Defect
Prediction. (2018).

[51] C. Manjula and Lilly Florence. 2019. Deep neural network based
hybrid approach for software defect prediction using software
metrics. Cluster Computing (2019).

[52] Haonan Tong, Bin Liu, and Shihai Wang. 2017. Software Defect
Prediction Using Stacked Denoising Autoencoders and Two-
stage Ensemble Learning. Information and Software Technology
(2017).

[53] Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically
Learning Semantic Features for Defect Prediction. In Proceedings
of the 38th International Conference on Software Engineering.

[54] Yasutaka Kamei, Emad Shihab, Bram Adams, Ahmed E. Hassan,
Audris Mockus, Anand Sinha, and Naoyasu Ubayashi. 2013. A
Large-Scale Empirical Study of Just-in-Time Quality Assurance.
IEEE Trans. Softw. Eng. (2013).

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3796

IJRITCC | September 2023, Available @ http://www.ijritcc.org

[55] Karim O. Elish and Mahmoud O. Elish. 2008. Predicting Defect-
Prone Software Modules Using Support Vector Machines. J. Syst.
Softw. (2008).

[56] N. Gayatri, Nickolas Savarimuthu, and A. Reddy. 2010. Feature
Selection Using Decision Tree Induction in Class level Metrics
Dataset for Software Defect Predictions. Lecture Notes in
Engineering and Computer Science (2010).

[57] Taghi M. Khoshgoftaar and Naeem Seliya. 2002. Tree-Based
Software Quality Estimation Models For Fault Prediction. In
Proceedings of the 8th International Symposium on Software
Metrics.

[58] Jun Wang, Beijun Shen, and Yuting Chen. [n.d.]. Compressed
C4.5 Models for Software Defect Prediction. In Proceedings of
the 2012, 12th International Conference on Quality Software.

[59] H. B. Bolat, G. T. Temur, and IGI Global, Agile approaches for
successfully managing and executing projects in the fourth
industrial revolution.

[60] G. P. Bhandari and R. Gupta, “Machine learning based software
fault prediction utilizing source code metrics,” in 2018 IEEE 3rd
International Conference on Computing, Communication and
Security (ICCCS), 2018, pp. 40–45.

[61] H. Tanwar and M. Kakkar, “A Review of Software Defect
Prediction Models,” Springer, Singapore, 2019, pp. 89–97.

[62] R. Malhotra, “A systematic review of machine learning
techniques for software fault prediction,” Appl. Soft Comput.,
vol. 27, pp. 504–518, Feb. 2015.

[63] S. Kanmani, V. R. Uthariaraj, V. Sankaranarayanan, and P.
Thambidurai, “Object-oriented software fault prediction using
neural networks,” Inf. Softw. Technol., vol. 49, no. 5, pp. 483–
492, May 2007.

[64] P. N. Tan, M. Steinbach, and V. Kumar, Introduction to data
mining. Pearson Addison Wesley, 2005.

[65] Xuemei Peng “Research on Software Defect Prediction and
Analysis Based on Machine Learning” 3rd International
Conference on Modeling, Simulation (2022) 1742-6596.

[66] Jorayeva, M.; Akbulut, A.; Catal, C.; Mishra, A. Machine
Learning-Based Software Defect Prediction for Mobile
Applications: A Systematic Literature Review. Sensors (2022),
22, 2551

[67] Ponnala, Ramesh & REDDY . Software Defect Prediction using
Machine Learning Algorithms: Current State of the Art. Solid
State Technology-(2021) 64. 6541-6556.

[68] Rhmann, W. Cross project defect prediction using hybrid search
based algorithms. Int. j. inf. tecnol. 12, 531–538 (2020).
https://doi.org/10.1007/s41870-018-0244-7

[69] Yin XL, Liu L, Liu HX, Wu Q. Heterogeneous cross-project
defect prediction with multiple source projects based on transfer
learning. Math Biosci Eng. 2019 Nov 11;17(2):1020-1040. doi:
10.3934/mbe.2020054. PMID: 32233568.

[70] Vashisht, R., Rizvi, S.A.M. (2020). Heterogeneous Cross Project
Defect Prediction – A Survey. In: Singh, P., Sood, S., Kumar, Y.,
Paprzycki, M., Pljonkin, A., Hong, WC. (eds) Futuristic Trends
in Networks and Computing Technologies. FTNCT 2019.
Communications in Computer and Information Science, vol 1206.
Springer, Singapore. https://doi.org/10.1007/978-981-15-4451-
4_22

[71] Software defect prediction via LSTM Jiehan Deng,Lu
Lu,Shaojian Qiu First published: 01 August 2020
https://doi.org/10.1049/iet-sen.2019.0149

[72] Bahaweres, Rizal & Jumral, Detia & Hermadi, Irman & Suroso,
Arif & Arkeman, Yandra. (2021). Hybrid Software Defect
Prediction Based on LSTM (Long Short Term Memory) and
Word Embedding. 70-75. 10.1109/ICON-
SONICS53103.2021.9617182.

[73] Giray G., Bennin K. E., Köksal Ö., Babur Ö., & Tekinerdogan B.
(2022). On the use of deep learning in software defect prediction.
The Journal of Systems & Software, 184, 111280.
https://doi.org/10.1016/j.jss.2021.111280

[74] Liu Y., Zhang W., Qin G., & Zhao J. (2022). A comparative study
on the effect of data imbalance on software defect prediction. In
9th International Conference on Information Technology and
Quantitative Management (pp. 1603-1616). ScienceDirect.
Procedia Computer Science, 214.
https://doi.org/10.1016/j.procs.2022.01.169

[75] Sharma T., Jatain A., Bhaskar S., & Pabreja K. (2023). Ensemble
Machine Learning Paradigms in Software Defect Prediction. In
International Conference on Machine Learning and Data
Engineering (pp. 199-209). ScienceDirect. Procedia Computer
Science, 218. https://doi.org/10.1016/j.procs.2022.12.028.

http://www.ijritcc.org/

