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ABSTRACT 

Software testing has became more complicated in the emergence of 

distributed network, real-time environment, third party software enablers and the 

need to test system at multiple integration levels.  These scenarios have created 

more concern over the quality of software testing.  The quality of software has been 

deteriorating due to inefficient and ineffective testing activities.  One of the main 

flaws is due to ineffective use of test management to manage software 

documentations.  In documentations, it is difficult to detect and trace bugs in some 

related documents of which traceability is the major concern.  Currently, various 

studies have been conducted on test management, however very few have focused 

on document traceability in particular to support the error propagation with respect 

to documentation.  The objective of this thesis is to develop a new traceability 

model that integrates software engineering documents to support test management.  

The artefacts refer to requirements, design, source code, test description and test 

result.  The proposed model managed to tackle software traceability in both forward 

and backward propagations by implementing multi-bidirectional pointer.  This 

platform enabled the test manager to navigate and capture a set of related artefacts 

to support test management process.  A new prototype was developed to facilitate 

observation of software traceability on all related artefacts across the entire 

documentation lifecycle.  The proposed model was then applied to a case study of a 

finished software development project with a complete set of software documents 

called the On-Board Automobile (OBA).  The proposed model was evaluated 

qualitatively and quantitatively using the feature analysis, precision and recall, and 

expert validation.  The evaluation results proved that the proposed model and its 

prototype were justified and significant to support test management. 
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ABSTRAK 

Pengujian perisian menjadi semakin rumit dengan kemunculan rangkaian 

teragih, persekitaran masa-nyata, pembekal perisian pihak ketiga dan keperluan 

untuk menguji sistem pada pelbagai peringkat penggabungan.  Senario-senario ini 

telah mencetuskan keprihatinan terhadap kualiti pengujian perisian.  Kualiti perisian 

menjadi semakin kurang akibat aktiviti pengujian yang tidak cekap dan tidak 

berkesan.  Salah satu kelemahan utama adalah berikutan penggunaan pengurusan 

ujian yang tidak efektif untuk menguruskan dokumen perisian.  Dalam 

dokumentasi, adalah sukar untuk mengesan dan menjejak pepijat dalam beberapa 

dokumen berkaitan dimana jejak adalah kebimbangan utama.   Pada masa kini, 

pelbagai kajian telah dijalankan pada pengurusan ujian, namun sangat sedikit 

memberi tumpuan kepada jujuk dokumen khususnya untuk menyokong penyebaran 

ralat berkenaan dengan dokumentasi.  Objektif tesis ini adalah untuk 

membangunkan satu model jejak baharu yang menggabungkan dokumen 

kejuruteraan perisian untuk menyokong pengurusan ujian.  Artifak-artifak itu 

merangkumi keperluan, reka bentuk, kod sumber, huraian ujian dan hasil ujian.  

Model yang dicadangkan ini dapat menangani masalah jejak perisian dalam kedua-

dua jejak ke hadapan dan ke belakang dengan melaksanakan penuding berbilang 

dwi arah.  Platform ini membolehkan pengurus ujian mengemudi dan menangkap 

satu set artifak yang berkaitan untuk menyokong proses pengurusan ujian.  

Prototaip baharu telah dibangunkan untuk memudahkan pemerhatian jujuk  perisian 

pada semua artifak berkaitan di seluruh kitaran hayat dokumentasi.  Model yang 

dicadangkan kemudiannya diaplikasikan ke atas satu kajian kes projek 

pembangunan perisian yang selesai dengan satu set lengkap dokumen perisian yang 

dipanggil On-Board Automobile (OBA).  Model yang dicadangkan telah dinilai 

secara kualitatif dan kuantitatif menggunakan analisis ciri, precision dan recall, dan 

pengesahan pakar.  Keputusan penilaian membuktikan bahawa model yang 

dicadangkan dan prototaipnya adalah wajar dan penting untuk menyokong 

pengurusan ujian.   
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 
 

1.1 Overview 

 

Software testing is a vital phase in software development life cycle 

preceding the software maintenance.  Software testing has increased colossal 

significance in the present competitive world of innovation, complexity and 

challenging age of which software is expected to be more efficient and reliable 

(Kassab et al., 2016).  Software testing activities are carried out throughout the 

software development lifecycle (SDLC) that involves several phases towards the 

end of the test summary (Spillner et al., 2014).  In general, software testing can be 

divided into four categories; unit testing, integration testing, system testing and 

acceptance testing (Jorgensen, 2014).  As testing is an important platform to ensure 

software quality and conformity involving many staff and documentations, it is 

quite hard to effectively manage these activities at a time (Naik and Tripathy, 

2011).  Test management is dedicatedly engaged to manage all these activities and 

to find ways to reduce the complexities.   

 

 

Test management is the process of organizing testing and validating the 

software.  Effective test management is a vital part of developing high quality 

software product (Kukreja et al., 2015).  Through well-planned and well-managed 

testing processes, the team can ensure that they are producing the high quality 

software.  The team is led by test manager who has the responsibility to manage 

risk, reviews, assessments and audits.  The function of a software test manager is to 
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effectively and efficiently lead the testing team.  To fulfil this role, the leader must 

comprehend the order of testing and how to successfully execute a testing procedure 

while satisfying the customary administration part of a manager (Shuja and Krebs, 

2007).  The role includes quality and test advocacy, asset arranging and 

administration, and determination of issues that block the test effort. 

 

 

One of the main challenges in test management is to manage software 

documentations.  Documentation in software engineering is an artefact with the 

purpose to share the information of which systems it belongs to.  Test 

documentation is identified as the pivotal point as stated by the IEEE829:2010 in 

order to manage and to report test contents (Sidek, Noraziah and Wahab, 2011).  In 

other perspective, test maturity model takes documentation as an important measure 

to associate test management to software test process improvement (Van 

Veenendaal and Cannegieter, 2010).  In other words, for test management to remain 

useful throughout the phases with acceptable maintenance features built-in is to 

adopt a good documentation model.  

 

 

One of the activities involved in test management is traceability.  

Traceability is the ability of linking various artefacts in software development life 

cycle in forward and backward way (Schwarz, 2012).  In the test management, 

traceability is used to track the bugs back to the corresponding version of 

requirements.  Traceability has been proven to increase the effectiveness or the 

efficiency of test management.   
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1.2 Background of the Problem  

 

Nowadays software is becoming more complex. It consists of diverse 

components with distributed locations, complex algorithms, on varieties of 

platforms, many sub-contractors with different kind of development methodologies.  

Complexity brings the fact that no software parts are indistinguishable.  A software 

can be considered as good and high quality if it has a vigorous software testing. 

Software testing starts as early as software development begins with an enormous 

testing activities (Parizi et al., 2014). These activities in software testing need to be 

planned and managed properly; especially the defects or bugs are found during 

testing. Each of the defects found needs to be traced to the corresponding 

requirements.  This practice is called software traceability. 

 

 

Traceability is a vital part of software development and maintenance and 

broadly recognized as a key to quality of the software (Zhang et al., 2016). It is 

used to capture the link between software artefacts. It is required for the 

development of safety-critical systems such as in domain of an aerospace 

(ISO12207, DO-178B), railway (EN50128) and etcetera (Bouillon et al., 2013).  In 

addition, several international quality standards recommended traceability such as 

IEEE 1291, ISO 9000ff, ISO 15504 and SEI, CMM/CMMI (Wiederseiner et al., 

2011).   

 

 

Currently there are many researchers working on traceability.  This is due to 

the arise of many problem in the industries (Mustafa and Labiche, 2015).  Though 

traceability is proven to be having great impact on software project, there are still a 

lot of problems such as it is an error prone and time consuming (Marques et al., 

2015b), cost-intensive (Maro et al., 2016; Regan et al., 2012),  laborious (Shao et 

al., 2013; Kamalabalan et al., 2015), ad-hoc traceability without strategy (Bouillon, 

Mäder and Philippow, 2013) and difficult (Regan et al., 2012).  There are a few 

researches on traceability regarding to testing artefacts such as unit testing and class 

(Qusef et al., 2010), test artefacts and code (Wiederseiner et al., 2011), test cases 



4 

and requirements (Noack et al., 2014), bugs and test cases (Kaushik et al., 2011), 

design and test (Lormans and van Deursen, 2009).  Although studies have shown an 

increase in testing traceability, the research focuses on test result, bugs and test 

cases is still vague (Garousi, Eskandar and Herkiloğlu, 2016).  Research has 

revealed that poor traceability can be an essential contributing factor to software 

project failure (Parizi et al., 2014).  Though, notwithstanding the available 

commercial tools to support traceability, the actual practice of traceability remains 

poorly documented (Cleland-Huang et al., 2012; Maro et al., 2016).    

 

 

A poorly documented traceability would jeopardize the quality of the 

software product especially in the critical-safety system.  Software engineers 

depend on system documentation as a guide in comprehension of the practical, 

architectural design, and the usage of subtle elements of complex applications.  

Software engineers are compelled to depend exclusively on source code when the 

documentation does not exist.  This is a failure-prone process and a time consuming 

(Roth et al., 2013), particularly when one considers the amount of information 

adaptation and domain mapping that is required to comprehend the architecture of a 

multi-function software system.  There are various inadequacies in current project 

documentation methods (de Graaf et al., 2016).  Since the initial days of software 

development some of these insufficiencies have existed, for example the absence of 

consistency between the source code and documentations.  Other deficiencies have 

only recently become apparent as vital issues, such as the intricacy in incorporating 

existing documentations with newly created artefacts (Herwig, 2014).  Numerous 

studies have demonstrated that documentation regularly experiences the 

accompanying issues: 

 

(i) Nonexistent or of low quality (Alaranta and Betz, 2012; McBurney, 

2015) 

(ii) Out-dated (McBurney, 2015; Garousi et al., 2013; Satish and Anand, 

2016) 

(iii) Over abundant and without a definite objectives / incomplete 

(Parnas, 2011; Dautovic, 2011) 
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(iv) Difficult to access and manage (for instance when the records are 

scattered on different computers or in distinctive format: diagrams 

and text) (Choudhury and Thushara, 2014) 

(v) Difficult to trace / Lack of traceability (Satish and Anand, 2016; 

Plosch, Dautovic and Saft, 2014) 

 

 The key point solution to the above problems is not the documentation 

itself, but how to manage the documentation.  One or more types of documentation 

may be made available at each testing phase.  The contents of document may reflect 

some duplication while others are disintegrated that make it difficult for test 

manager to access, update and control the visibility of current status of testing 

(Khan and Mattsson, 2012).  Currently many researchers have been working on the 

software documentation however very few are working on the importance of test 

documentation as a way forward to support test management (Donald, 2013).   

 

 

Despite this, test documentation is not given due respect by many testers 

(Andrade et al,. 2013).  Test documentation is treated as a time consuming task that 

not many people would like to get involved with.  Some organisations give less 

attention on documentation with reason being the lack of staffing (Khan and 

Mattsson, 2012).  Worse, the distribution of man power allocated to testing 

activities is not justified in that it is far less than the allocation assigned to the 

development activities (Treude, Robillard and Dagenais, 2015).  This gives more 

strong reason to why there is a need to have a special emphasis on the need of test 

documentations and the way to manage them. 

 

 

Based on the evidence mention, there are fewer endeavours done to manage 

document traceability in software testing artefacts.  Hence, the need to develop new 

traceability model that support test management is crucial.   
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1.3 Statement of the Problem 

 

There is a need to establish integration amongst documentation such that all 

can be made accessible and easy to manage.  Secondly as different organization 

may adopt different test documentation, it is necessary to make a survey to 

understand the most relevant information that is practically used and adopted by the 

industries.  Thirdly, the existing software test documentations are difficult to 

manage.  Thus, there is a need to propose a special mechanism or model to manage 

software testing documentation in integration.  The key solution to above problems 

is to establish an effective traceability model to support software testing 

documentations. 

 

This research investigates the need for customized software testing 

documentation and formulates a software traceability model to support 

documentation in software testing.  The main research question is “How to design 

and implement an effective software engineering documentation model based on 

Software Engineering Standards using traceability model to support Test 

Management?” 

 

The sub questions of the main research questions are as follows: 

 

(i) RQ1 : Why the existing software engineering documentation are not 

fully adopted by test management and why the existing traceability 

model still not able to manage the link between the artefacts? 

(ii) RQ2 : What is the effective way to help test management in 

maintaining a software traceability within a software engineering 

documentation? 

(iii) RQ3 : How to provide traceability links between artefacts that will 

support test management ? 

(iv) RQ4 : How to evaluate the usability of the proposed model to support 

test management at some significant degree? 



7 

1.4 Objectives of the Study 

 

The research objectives are mentioned based on the problem statement, are 

as follows:  

(i) To study and investigate current issues in software traceability 

associated to software documentation and test management. 

(ii) To formulate a new traceability model that integrates all software 

engineering artefacts within a repository to support test management. 

(iii) To design and develop the prototype of the proposed document-based 

traceability model. 

(iv) To evaluate the effectiveness and the efficiency of the proposed 

model.  

 

 

1.5 Scope of the Research 

 

The scope of this study covers the following: 

(i) This research focuses on traceability for software testing and its 

associated components.  This will involve the study on system level 

of software testing (unit, integration, system, and acceptance) but not 

on types of testing (example – smoke, security, performance, 

regression, compliance etc.) 

(ii) The testing documents will be used are Software Test Description 

(STD) and Software Test Result (STR).  No other testing documents 

will be used. 

(iii) Software engineering documents will be used besides software 

testing documents are Software Requirements Specifications (SRS), 

Software Design Document (SDD) and source code. 

(iv) This is not a bug tracking system.  It just uses documentation to 

highlight the bugs inside the document. 
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1.6 Significance of the Study 

 

Requirement traceability has been shown to give numerous advantages to 

organization that make utilization of traceability methods.  This is the reason 

traceability is an imperative part of numerous standards for software development, 

such as the CMMI , ISO 9001:2000 and ISO/IEC 15504/SPICE (Gotel et al., 2012).  

Disregarding the advantages that traceability offers to the software engineering 

industries, its practice confronts numerous difficulties (Kannenberg and Saiedian, 

2009; Cleland-Huang et al., 2014).  These difficulties can be distinguished under 

the zones of cost in terms of endeavor and time, the trouble of keeping up 

traceability through change, tool support, distinctive perspective focuses on 

traceability by diverse stakeholders, hierarchical issues and legislative issues, and 

poor documentation. 

 

On the other hand, documentation plays a vital role in software development 

and maintenance.  Typical software system documentation consists of different type 

of artefacts, ranging from source code, requirements, architecture design, testing 

and many more.  Good software documentation provides multiple views of a system 

at different abstraction level and using different formats.  As the quantity and 

variety of information about software system develops, so does the requirement for 

supporting consistency and traceability among distinctive levels of abstraction for 

engineers (Nair et al., 2013). 

 

A survey conducted by (Bouillon, Mäder and Philippow, 2013; Mustafa and 

Labiche, 2017) shows that traceability between requirements and others artefacts 

(especially testing) was rarely maintained in practice.  Meanwhile, research 

conducted by (Regan et al., 2012) indicates the needs of documentation in practice, 

and the tools and technologies used to maintain, verify and validate such 

documents. 

 

Clearly, traceability is very important to trace the link between artefacts 

involved in software development and maintenance of a software system. 
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1.7 Thesis Outline 

 

This thesis discusses the issues concerning to traceability that relate to 

testing artefacts which support test management.  It highlights the problems and 

limitation of software documentation, test management, traceability and the 

similarity link between them.  This thesis is organized as follows: 

 

Chapter 2:   Discusses in general about software testing, followed by test 

management and it approaches and issues.  This chapter discusses about software 

documentation and the problems/issues.  This chapter highlights the traceability 

approaches, traceability models and issues.  A comparison study was tabulated and 

identifies the limitations and issues. 

 

Chapter 3:  Describes the research methodology in this research.  It 

explains the resign design, procedure and activities which are used in this research.  

This chapter also discusses on the evaluation method, instrumentation, case study, 

assumptions and limitation that have been adopted and observed in this research. 

 

Chapter 4: Presents a conceptual of the proposed model.  It also describes 

the detailed component of the proposed model including the architecture and the 

process.  This chapter explains the development of the proposed model in the UML 

notation. 

 

Chapter 5: Elucidates the evaluation of the proposed model in terms of 

effectiveness, efficiency and satisfactory.  The quantitative and qualitative method 

is apply; feature analysis, precision and recall, and expert validation.  The results 

are based on customer perception and metric calculation. 
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Chapter 6: This chapter concludes the research by describing the research 

achievement and contributions.  The last part explains the limitations and 

suggestions for future works. 
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