
A DOCUMENT-BASED TRACEABILITY MODEL FOR TEST MANAGEMENT

AZRI BIN AZMI

UNIVERSITI TEKNOLOGI MALAYSIA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/199242967?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A DOCUMENT-BASED TRACEABILITY MODEL FOR TEST

MANAGEMENT

AZRI BIN AZMI

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Doctor of Philosophy (Computer Science)

Faculty of Computing

Universiti Teknologi Malaysia

DECEMBER 2017

iii

Specially dedicated to all my family and relatives.

iv

ACKNOWLEDGEMENT

First of all, I am thankful to God for giving me the opportunity and strength

to complete my PhD. I would like to take this opportunity to thank my main

supervisor, Prof. Dr. Suhaimi Bin Ibrahim for his encouragement, constant support,

advice and inspiration throughout this research.

I would also like to thank my wife and kids for their patience during the

course of my PhD. I am also grateful to all my friends who kept me motivated

during my research especially to Dr. Othman, Dr. Saiful, Mdm. Haslina and Dr.

Nazri Kama.

My thanks also go to all UTM AIS staff and individuals who have been

involved directly or indirectly in the project. Lastly, my appreciation also goes to

the experts for evaluating my model and prototype.

v

ABSTRACT

Software testing has became more complicated in the emergence of

distributed network, real-time environment, third party software enablers and the

need to test system at multiple integration levels. These scenarios have created

more concern over the quality of software testing. The quality of software has been

deteriorating due to inefficient and ineffective testing activities. One of the main

flaws is due to ineffective use of test management to manage software

documentations. In documentations, it is difficult to detect and trace bugs in some

related documents of which traceability is the major concern. Currently, various

studies have been conducted on test management, however very few have focused

on document traceability in particular to support the error propagation with respect

to documentation. The objective of this thesis is to develop a new traceability

model that integrates software engineering documents to support test management.

The artefacts refer to requirements, design, source code, test description and test

result. The proposed model managed to tackle software traceability in both forward

and backward propagations by implementing multi-bidirectional pointer. This

platform enabled the test manager to navigate and capture a set of related artefacts

to support test management process. A new prototype was developed to facilitate

observation of software traceability on all related artefacts across the entire

documentation lifecycle. The proposed model was then applied to a case study of a

finished software development project with a complete set of software documents

called the On-Board Automobile (OBA). The proposed model was evaluated

qualitatively and quantitatively using the feature analysis, precision and recall, and

expert validation. The evaluation results proved that the proposed model and its

prototype were justified and significant to support test management.

vi

ABSTRAK

Pengujian perisian menjadi semakin rumit dengan kemunculan rangkaian

teragih, persekitaran masa-nyata, pembekal perisian pihak ketiga dan keperluan

untuk menguji sistem pada pelbagai peringkat penggabungan. Senario-senario ini

telah mencetuskan keprihatinan terhadap kualiti pengujian perisian. Kualiti perisian

menjadi semakin kurang akibat aktiviti pengujian yang tidak cekap dan tidak

berkesan. Salah satu kelemahan utama adalah berikutan penggunaan pengurusan

ujian yang tidak efektif untuk menguruskan dokumen perisian. Dalam

dokumentasi, adalah sukar untuk mengesan dan menjejak pepijat dalam beberapa

dokumen berkaitan dimana jejak adalah kebimbangan utama. Pada masa kini,

pelbagai kajian telah dijalankan pada pengurusan ujian, namun sangat sedikit

memberi tumpuan kepada jujuk dokumen khususnya untuk menyokong penyebaran

ralat berkenaan dengan dokumentasi. Objektif tesis ini adalah untuk

membangunkan satu model jejak baharu yang menggabungkan dokumen

kejuruteraan perisian untuk menyokong pengurusan ujian. Artifak-artifak itu

merangkumi keperluan, reka bentuk, kod sumber, huraian ujian dan hasil ujian.

Model yang dicadangkan ini dapat menangani masalah jejak perisian dalam kedua-

dua jejak ke hadapan dan ke belakang dengan melaksanakan penuding berbilang

dwi arah. Platform ini membolehkan pengurus ujian mengemudi dan menangkap

satu set artifak yang berkaitan untuk menyokong proses pengurusan ujian.

Prototaip baharu telah dibangunkan untuk memudahkan pemerhatian jujuk perisian

pada semua artifak berkaitan di seluruh kitaran hayat dokumentasi. Model yang

dicadangkan kemudiannya diaplikasikan ke atas satu kajian kes projek

pembangunan perisian yang selesai dengan satu set lengkap dokumen perisian yang

dipanggil On-Board Automobile (OBA). Model yang dicadangkan telah dinilai

secara kualitatif dan kuantitatif menggunakan analisis ciri, precision dan recall, dan

pengesahan pakar. Keputusan penilaian membuktikan bahawa model yang

dicadangkan dan prototaipnya adalah wajar dan penting untuk menyokong

pengurusan ujian.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGEMENT iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF TABLES xiii

 LIST OF FIGURES xv

 LIST OF ABBREVIATIONS xix

 LIST OF APPENDICES xx

1 INTRODUCTION 1

 1.1 Overview 1

 1.2 Background of the Problem 3

 1.3 Statement of the Problem 6

 1.4 Objectives of the Study 7

 1.5 Scope of the Research 7

 1.6 Significance of the Study 8

 1.7 Thesis Outline 9

2 LITERATURE REVIEW 11

 2.1 Introduction 11

 2.2 Software Testing 11

viii

 2.2.1 Discussion on the Motivation of Software

Testing

 13

 2.3 Software Test Management 14

 2.3.1 Activities of Test Management 15

 2.3.2 Current Researches on Test Management 18

 2.3.2.1 TAI Approach 18

 2.3.2.2 Sigrid's Approach 19

 2.3.2.3 Agent-based Test Management

Approach

 20

 2.3.2.4 Architecture Centric Approach 22

 2.3.2.5 Summary of Test Management

Approaches

 23

 2.3.3 Test Management Issues 24

 2.3.4 Test Management Summary 28

 2.4 Software Documentation 28

 2.4.1 Software Testing Documentations versus

Test Management

 30

 2.4.2 Software Documentation Issues 31

 2.4.3 Software Documentation Summary 35

 2.5 Software Traceability 35

 2.5.1 Introduction of Software Traceability 35

 2.5.2 Dimension of Traceability 36

 2.5.2.1 Forward and Backward

Traceability

 37

 2.5.2.2 Implicit and Explicit Traceability 37

 2.5.2.3 Intra-Level and Inter-Level

Traceability

 38

 2.5.2.4 Material and Immaterial

Traceability

 39

 2.5.2.5 Pre-RS Traceability and Post-RS

Traceability

 39

 2.5.3 The Needs for Traceability 39

 2.5.4 Traceability Approach versus Traceability

ix

Model 40

 2.5.5 Some Studies on Existing Traceability

Approaches

 41

 2.5.5.1 Information Retrieval

Traceability

 42

 2.5.5.2 Event-based Traceability 44

 2.5.5.3 Goal Centric Traceability 44

 2.5.5.4 Scenario-Based Traceability 45

 2.5.5.5 Rule-Based Traceability 46

 2.5.5.6 Evaluation and Comparative

Study of Traceability Approaches

 47

 2.5.6 Some Studies on Existing Traceability

Model

 50

 2.5.6.1 Inter Requirement Traceability

Model

 52

 2.5.6.2 Coding Phase Requirements

Traceability Model

 53

 2.5.6.3 Total Traceability Model 54

 2.5.6.4 End-to-End Traceability Model 55

 2.5.6.5 TraceabilityWeb Model 56

 2.5.6.6 Evaluation of Software

Traceability Models

 58

 2.5.6.7 Comparative Study and Criteria

for Model Development

 59

 2.5.7 Discussion of Software Traceability and

Documentation

 65

 2.5.8 Issues in Traceability 66

 2.5.9 Summary of Software Traceability 71

 2.6 Summary of the Chapter 71

3 RESEARCH METHODOLOGY 73

 3.1 Introduction 73

 3.2 Research Design Strategies and Research Process 73

x

 3.3 Theoretical Framework 74

 3.4 Operational Framework 75

 3.5 Research Procedure and Activities 78

 3.5.1 Phase 1: Literature Review 78

 3.5.2 Phase 2: Modelling 79

 3.5.3 Phase 3: Design and Development 80

 3.5.4 Phase 4: Evaluation 80

 3.5.4.1 Qualitative Method – Feature

Analysis

 81

 3.5.4.2 Feature Analysis 82

 3.5.4.3 Features Rating 83

 3.5.4.4 Level of Importance 84

 3.5.5 Feature Set and Overall Scores 85

 3.5.5.1 Quantitative Method – Precision

and Recall

 87

 3.5.5.2 Qualitative Method – Expert

Validation

 89

 3.5.5.3 Questionnaire 90

 3.6 Instrumentation 91

 3.6.1 Case Study 92

 3.6.2 OBA Overview 92

 3.6.2 OBA Interface 93

 3.6.2.1 Driving Station 93

 3.6.2.2 Control Panel (MMI) 94

 3.6.2.3 Transmission Shaft 95

 3.6.2.4 Throttle 95

 3.7 Assumptions and Limitations 95

 3.8 Summary of Research Methodology 96

4 DESIGN AND DEVELOPMENT OF THE

PROPOSED MODEL

 97

 4.1 Overview 97

 4.2 Rationale of the DBT Model 97

xi

 4.3 Construction of the DBT Model Component 99

 4.4 Definition of the DBT Model 100

 4.4.1 Extractor 102

 4.4.2 XML Repository 103

 4.4.3 Analyzer 103

 4.4.4 Traceability Engine 104

 4.4.5 Traceability Repository 104

 4.4.6 Document Generator 105

 4.5 The DBT Architecture 105

 4.6 The DBT Process 106

 4.7 Design and Development of DBT 109

 4.7.1 DBT Use Cases 109

 4.7.2 DBT Class Diagram 110

 4.7.3 DBT Package Diagram Details 111

 4.7.3.1 Extractor Package 113

 4.7.3.2 Analyzer Package 115

 4.7.3.3 Traceability Engine Package 119

 4.7.3.4 Report Generator Package 126

 4.7.3.5 Queries Package 127

 4.7.4 DBT Relational Database 127

 4.7.4.1 Perform Trace Links Between

Artefacts

 130

 4.8 DBT Graphical User Interface 134

 4.9 Discussion on Design and Development of the

Proposed Model

 140

 4.10 Summary 141

5 EVALUATION OF THE PROPOSED MODEL 142

 5.1 Overview 142

 5.2 Features Mapping for Evaluation of Proposed

Model

 142

 5.3 Results of Feature Analysis 146

 5.3.1 Feature Set 1 146

xii

 5.3.2 Feature Set 2 150

 5.3.3 Feature Set 3 152

 5.3.4 Feature Set 4 153

 5.3.5 Feature Set 5 155

 5.3.6 Summary Result of Feature Analysis 157

 5.4 Case Study - OBA 161

 5.4.1 OBA Functionalities 162

 5.4.2 Traceability in OBA 164

 5.4.3 OBA Dataset 165

 5.5 Quantitative Evaluation Method – Precision and

Recall

 167

 5.5.1 Traceability Between STD and SRS 167

 5.5.2 Traceability Between SDD and SRS 170

 5.6 Expert Validation 173

 5.6.1 Questionnaire Result 173

 5.7 Discussion on the Evaluation Results 179

 5.8 Summary 181

6 CONCLUSION 182

 6.1 Summary and Achievement 182

 6.2 Contributions of the Research 184

 6.3 Limitation and Feature Works 185

REFERENCES 187

Appendices A - E 207 - 235

xiii

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Test management approach comparison 23

2.2 Test management issues 26

2.3 Software documentation issues 33

2.4 Evaluation of traceability approaches 48

2.5 Comparative study of traceability approaches 51

2.6 Comparative result of traceability models 58

2.7 Comparative study of traceability models 62

2.8 Criteria for model of component 63

2.9 Traceability issues 67

3.1 Operational framework 77

3.2 Method proposed by DESMET 81

3.3 Scoring scale 83

3.4 Level of importance of a feature with multiplier 84

3.5 Features and sub-features used in the analysis 85

3.6 Feature set weighting 87

3.7 Usability attributes adoption 91

4.1 Selection of component for DBT model 99

4.2 List of table in DBT 128

xiv

5.1 Selection of features for software development tool

evaluation

145

5.2 Comparison of overall scores details of feature analysis 148

5.3 Feature set scores and overall scores comparison 158

5.4 OBA documentation set 166

5.5 OBA component/work product 166

5.6 OBA tracing activities 167

5.7 Tracing between STD and SRS results 169

5.8 Tracing between SDD and SRS results 171

5.9 Experts profile 174

5.10 Cross tabulation percentage of gender and qualification 174

5.11 Cross tabulation of working experience 174

5.12 List of questions and usability criteria 175

5.13 Mean and standard deviation calculation 176

5.14 Comments/suggestions received from the experts 178

5.15 5-level mean analysis 178

xv

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 The V-model with software testing life cycle 13

2.2 System architecture of TAI 19

2.3 The test preparation phase in test management system 20

2.4 Adaptive test management system 21

2.5 Structure element service diagram 23

2.6 Software documentation in SDLC 29

2.7 Dimension of traceability 38

2.8 Inter-requirements traceability model 53

2.9 Coding phase requirements traceability model 54

2.10 Total traceability model 55

2.11 End-to-end traceability model 56

2.12 TraceabilityWeb model 57

2.13 The proposed research area 72

3.1 Traceability theoretical framework 75

3.2 Flowchart of research process 76

3.3 Research procedure and activities 78

3.4 General concepts of precision and recall 88

3.5 OBA interfaces – context diagram 94

4.1 Proposed document-based traceability (DBT) model 101

xvi

4.2 Multi linked-list implementation 104

4.3 The architecture of DBT 106

4.4 The process of DBT 108

4.5 DBT use cases 110

4.6 DBT class diagram 112

4.7 DBT packages (static organization) 113

4.8 DBT extractor package 114

4.9 DBT analyzer package 115

4.10 Lucene indexing process 118

4.11 DBT traceability engine package 120

4.12 Multi-bidirectional traceability links between artefacts 120

4.13 Part of SRS document - capturing ID and term 122

4.14 Part of SDD document - capturing SDD ID 123

4.15 Part of SDD document – capturing SDD ID and term 123

4.16 Mapping the source code term with SDD ID – SDD

document

124

4.17 Part of STD document – mapping STD ID 125

4.18 Searching for ID in STD for traceability 125

4.19 Report generator package 126

4.20 Queries package 127

4.21 DBT entity relationship diagram (ERD) 129

4.22 STD relation (table) with partial data 130

4.23 SRS relation (table) with partial data 131

4.24 STDxSRS relation (table) with partial data 131

4.25 Links between STD and SRS from view of set 131

4.26 Macro icon for DBT in Microsoft Word 134

xvii

4.27 STR (partial) - operate cruise control result 135

4.28 STR (partial) – set car calibration result 136

4.29 The failed result change into red and highlighted (set car

calibration)

136

4.30 The failed result change into red and highlighted (cruise

control)

137

4.31 Failed summary report 137

4.32 SRS data interface 138

4.33 STD data interface 139

4.34 SRS to STD traceability interface 139

5.1 Mapping of features for evaluation of proposed model (sub-

features not shown)

144

5.2 Feature set F1 level of scores (traceability) 149

5.3 F1 percentage of feature set score 149

5.4 Feature set F2 level of scores (document management) 151

5.5 F2 percentage of feature set score 151

5.6 Feature set 3 – level of score (defect management) 152

5.7 F3 percentage of feature set score 153

5.8 Feature set 4 – level of score (report) 154

5.9 F4 percentage of feature set score 154

5.10 F5 feature set score for activity support 156

5.11 F5 percentage of feature set score 156

5.12 Multiple metric graph for feature set score 159

5.13 Multiple metric graph for overall % score using feature set

weightings

159

5.14 % feature set score versus models 160

5.15 OBA sub-system component 161

xviii

5.16 Auto-cruise control state 162

5.17 Letter from client 163

5.18 Requirements document 163

5.19 OBA traceability hierarchy (bidirectional relationship) 165

5.20 Precision and recall graph for STR vs SRS 170

5.21 Precision and recall graph for SDD vs SRS 172

5.22 DBT leads to time efficiency 177

5.23 DBT easy to use 178

xix

LIST OF ABBREVATIONS

CSCI - Computer Software Configuration Item

DAS - Driving Assistance System

DBT - Document-based Traceability

DoD - Department of Defense

ERD - Entity Relationship diagram

IEEE - Institute of Electrical and Electronics Engineers

IRS - Interface Requirements Specification

ISO - International Organization for Standardization

OBA - On-Board Automobile

SDCP - Safe Drive Control Panel

SDD - Software Design Document

SDLC - Software Development Life Cycle

SDP - Software Development Plan

SRS - Software Requirements Specification

STD - Software Test Description

STR - Software Test Result

UML - Unified Modeling Language

UTM - Universiti Teknologi Malaysia

XML - Xtensible Markup Language

xx

LIST OF APPENDICES

APPENDIX TITLE PAGE

A OBA Data Set (Data Extraction – Traceability) 211

B OBA Data Set (Data Description) 218

C OBA Documents 222

D Expert Validation Questionnaire / Questionnaire

Answer Sheet

223

E List of Publications 239

CHAPTER 1

INTRODUCTION

1.1 Overview

Software testing is a vital phase in software development life cycle

preceding the software maintenance. Software testing has increased colossal

significance in the present competitive world of innovation, complexity and

challenging age of which software is expected to be more efficient and reliable

(Kassab et al., 2016). Software testing activities are carried out throughout the

software development lifecycle (SDLC) that involves several phases towards the

end of the test summary (Spillner et al., 2014). In general, software testing can be

divided into four categories; unit testing, integration testing, system testing and

acceptance testing (Jorgensen, 2014). As testing is an important platform to ensure

software quality and conformity involving many staff and documentations, it is

quite hard to effectively manage these activities at a time (Naik and Tripathy,

2011). Test management is dedicatedly engaged to manage all these activities and

to find ways to reduce the complexities.

Test management is the process of organizing testing and validating the

software. Effective test management is a vital part of developing high quality

software product (Kukreja et al., 2015). Through well-planned and well-managed

testing processes, the team can ensure that they are producing the high quality

software. The team is led by test manager who has the responsibility to manage

risk, reviews, assessments and audits. The function of a software test manager is to

2

effectively and efficiently lead the testing team. To fulfil this role, the leader must

comprehend the order of testing and how to successfully execute a testing procedure

while satisfying the customary administration part of a manager (Shuja and Krebs,

2007). The role includes quality and test advocacy, asset arranging and

administration, and determination of issues that block the test effort.

One of the main challenges in test management is to manage software

documentations. Documentation in software engineering is an artefact with the

purpose to share the information of which systems it belongs to. Test

documentation is identified as the pivotal point as stated by the IEEE829:2010 in

order to manage and to report test contents (Sidek, Noraziah and Wahab, 2011). In

other perspective, test maturity model takes documentation as an important measure

to associate test management to software test process improvement (Van

Veenendaal and Cannegieter, 2010). In other words, for test management to remain

useful throughout the phases with acceptable maintenance features built-in is to

adopt a good documentation model.

One of the activities involved in test management is traceability.

Traceability is the ability of linking various artefacts in software development life

cycle in forward and backward way (Schwarz, 2012). In the test management,

traceability is used to track the bugs back to the corresponding version of

requirements. Traceability has been proven to increase the effectiveness or the

efficiency of test management.

3

1.2 Background of the Problem

Nowadays software is becoming more complex. It consists of diverse

components with distributed locations, complex algorithms, on varieties of

platforms, many sub-contractors with different kind of development methodologies.

Complexity brings the fact that no software parts are indistinguishable. A software

can be considered as good and high quality if it has a vigorous software testing.

Software testing starts as early as software development begins with an enormous

testing activities (Parizi et al., 2014). These activities in software testing need to be

planned and managed properly; especially the defects or bugs are found during

testing. Each of the defects found needs to be traced to the corresponding

requirements. This practice is called software traceability.

Traceability is a vital part of software development and maintenance and

broadly recognized as a key to quality of the software (Zhang et al., 2016). It is

used to capture the link between software artefacts. It is required for the

development of safety-critical systems such as in domain of an aerospace

(ISO12207, DO-178B), railway (EN50128) and etcetera (Bouillon et al., 2013). In

addition, several international quality standards recommended traceability such as

IEEE 1291, ISO 9000ff, ISO 15504 and SEI, CMM/CMMI (Wiederseiner et al.,

2011).

Currently there are many researchers working on traceability. This is due to

the arise of many problem in the industries (Mustafa and Labiche, 2015). Though

traceability is proven to be having great impact on software project, there are still a

lot of problems such as it is an error prone and time consuming (Marques et al.,

2015b), cost-intensive (Maro et al., 2016; Regan et al., 2012), laborious (Shao et

al., 2013; Kamalabalan et al., 2015), ad-hoc traceability without strategy (Bouillon,

Mäder and Philippow, 2013) and difficult (Regan et al., 2012). There are a few

researches on traceability regarding to testing artefacts such as unit testing and class

(Qusef et al., 2010), test artefacts and code (Wiederseiner et al., 2011), test cases

4

and requirements (Noack et al., 2014), bugs and test cases (Kaushik et al., 2011),

design and test (Lormans and van Deursen, 2009). Although studies have shown an

increase in testing traceability, the research focuses on test result, bugs and test

cases is still vague (Garousi, Eskandar and Herkiloğlu, 2016). Research has

revealed that poor traceability can be an essential contributing factor to software

project failure (Parizi et al., 2014). Though, notwithstanding the available

commercial tools to support traceability, the actual practice of traceability remains

poorly documented (Cleland-Huang et al., 2012; Maro et al., 2016).

A poorly documented traceability would jeopardize the quality of the

software product especially in the critical-safety system. Software engineers

depend on system documentation as a guide in comprehension of the practical,

architectural design, and the usage of subtle elements of complex applications.

Software engineers are compelled to depend exclusively on source code when the

documentation does not exist. This is a failure-prone process and a time consuming

(Roth et al., 2013), particularly when one considers the amount of information

adaptation and domain mapping that is required to comprehend the architecture of a

multi-function software system. There are various inadequacies in current project

documentation methods (de Graaf et al., 2016). Since the initial days of software

development some of these insufficiencies have existed, for example the absence of

consistency between the source code and documentations. Other deficiencies have

only recently become apparent as vital issues, such as the intricacy in incorporating

existing documentations with newly created artefacts (Herwig, 2014). Numerous

studies have demonstrated that documentation regularly experiences the

accompanying issues:

(i) Nonexistent or of low quality (Alaranta and Betz, 2012; McBurney,

2015)

(ii) Out-dated (McBurney, 2015; Garousi et al., 2013; Satish and Anand,

2016)

(iii) Over abundant and without a definite objectives / incomplete

(Parnas, 2011; Dautovic, 2011)

5

(iv) Difficult to access and manage (for instance when the records are

scattered on different computers or in distinctive format: diagrams

and text) (Choudhury and Thushara, 2014)

(v) Difficult to trace / Lack of traceability (Satish and Anand, 2016;

Plosch, Dautovic and Saft, 2014)

 The key point solution to the above problems is not the documentation

itself, but how to manage the documentation. One or more types of documentation

may be made available at each testing phase. The contents of document may reflect

some duplication while others are disintegrated that make it difficult for test

manager to access, update and control the visibility of current status of testing

(Khan and Mattsson, 2012). Currently many researchers have been working on the

software documentation however very few are working on the importance of test

documentation as a way forward to support test management (Donald, 2013).

Despite this, test documentation is not given due respect by many testers

(Andrade et al,. 2013). Test documentation is treated as a time consuming task that

not many people would like to get involved with. Some organisations give less

attention on documentation with reason being the lack of staffing (Khan and

Mattsson, 2012). Worse, the distribution of man power allocated to testing

activities is not justified in that it is far less than the allocation assigned to the

development activities (Treude, Robillard and Dagenais, 2015). This gives more

strong reason to why there is a need to have a special emphasis on the need of test

documentations and the way to manage them.

Based on the evidence mention, there are fewer endeavours done to manage

document traceability in software testing artefacts. Hence, the need to develop new

traceability model that support test management is crucial.

6

1.3 Statement of the Problem

There is a need to establish integration amongst documentation such that all

can be made accessible and easy to manage. Secondly as different organization

may adopt different test documentation, it is necessary to make a survey to

understand the most relevant information that is practically used and adopted by the

industries. Thirdly, the existing software test documentations are difficult to

manage. Thus, there is a need to propose a special mechanism or model to manage

software testing documentation in integration. The key solution to above problems

is to establish an effective traceability model to support software testing

documentations.

This research investigates the need for customized software testing

documentation and formulates a software traceability model to support

documentation in software testing. The main research question is “How to design

and implement an effective software engineering documentation model based on

Software Engineering Standards using traceability model to support Test

Management?”

The sub questions of the main research questions are as follows:

(i) RQ1 : Why the existing software engineering documentation are not

fully adopted by test management and why the existing traceability

model still not able to manage the link between the artefacts?

(ii) RQ2 : What is the effective way to help test management in

maintaining a software traceability within a software engineering

documentation?

(iii) RQ3 : How to provide traceability links between artefacts that will

support test management ?

(iv) RQ4 : How to evaluate the usability of the proposed model to support

test management at some significant degree?

7

1.4 Objectives of the Study

The research objectives are mentioned based on the problem statement, are

as follows:

(i) To study and investigate current issues in software traceability

associated to software documentation and test management.

(ii) To formulate a new traceability model that integrates all software

engineering artefacts within a repository to support test management.

(iii) To design and develop the prototype of the proposed document-based

traceability model.

(iv) To evaluate the effectiveness and the efficiency of the proposed

model.

1.5 Scope of the Research

The scope of this study covers the following:

(i) This research focuses on traceability for software testing and its

associated components. This will involve the study on system level

of software testing (unit, integration, system, and acceptance) but not

on types of testing (example – smoke, security, performance,

regression, compliance etc.)

(ii) The testing documents will be used are Software Test Description

(STD) and Software Test Result (STR). No other testing documents

will be used.

(iii) Software engineering documents will be used besides software

testing documents are Software Requirements Specifications (SRS),

Software Design Document (SDD) and source code.

(iv) This is not a bug tracking system. It just uses documentation to

highlight the bugs inside the document.

8

1.6 Significance of the Study

Requirement traceability has been shown to give numerous advantages to

organization that make utilization of traceability methods. This is the reason

traceability is an imperative part of numerous standards for software development,

such as the CMMI , ISO 9001:2000 and ISO/IEC 15504/SPICE (Gotel et al., 2012).

Disregarding the advantages that traceability offers to the software engineering

industries, its practice confronts numerous difficulties (Kannenberg and Saiedian,

2009; Cleland-Huang et al., 2014). These difficulties can be distinguished under

the zones of cost in terms of endeavor and time, the trouble of keeping up

traceability through change, tool support, distinctive perspective focuses on

traceability by diverse stakeholders, hierarchical issues and legislative issues, and

poor documentation.

On the other hand, documentation plays a vital role in software development

and maintenance. Typical software system documentation consists of different type

of artefacts, ranging from source code, requirements, architecture design, testing

and many more. Good software documentation provides multiple views of a system

at different abstraction level and using different formats. As the quantity and

variety of information about software system develops, so does the requirement for

supporting consistency and traceability among distinctive levels of abstraction for

engineers (Nair et al., 2013).

A survey conducted by (Bouillon, Mäder and Philippow, 2013; Mustafa and

Labiche, 2017) shows that traceability between requirements and others artefacts

(especially testing) was rarely maintained in practice. Meanwhile, research

conducted by (Regan et al., 2012) indicates the needs of documentation in practice,

and the tools and technologies used to maintain, verify and validate such

documents.

Clearly, traceability is very important to trace the link between artefacts

involved in software development and maintenance of a software system.

9

1.7 Thesis Outline

This thesis discusses the issues concerning to traceability that relate to

testing artefacts which support test management. It highlights the problems and

limitation of software documentation, test management, traceability and the

similarity link between them. This thesis is organized as follows:

Chapter 2: Discusses in general about software testing, followed by test

management and it approaches and issues. This chapter discusses about software

documentation and the problems/issues. This chapter highlights the traceability

approaches, traceability models and issues. A comparison study was tabulated and

identifies the limitations and issues.

Chapter 3: Describes the research methodology in this research. It

explains the resign design, procedure and activities which are used in this research.

This chapter also discusses on the evaluation method, instrumentation, case study,

assumptions and limitation that have been adopted and observed in this research.

Chapter 4: Presents a conceptual of the proposed model. It also describes

the detailed component of the proposed model including the architecture and the

process. This chapter explains the development of the proposed model in the UML

notation.

Chapter 5: Elucidates the evaluation of the proposed model in terms of

effectiveness, efficiency and satisfactory. The quantitative and qualitative method

is apply; feature analysis, precision and recall, and expert validation. The results

are based on customer perception and metric calculation.

10

Chapter 6: This chapter concludes the research by describing the research

achievement and contributions. The last part explains the limitations and

suggestions for future works.

187

REFERENCES

Abualigah, L.M.Q. and Hanandeh, E.S. (2015). Applying Genetic Algorithms To

Information Retrieval Using Vector Space Model. International Journal of

Computer Science, Engineering and Applications. 5, 19.

Abubakar, H.I., Hashim, N.L. and Hussain, A. (2015). Verification Process of

Usability Evaluation Model for M-banking Application. Recent Advances in

Computer Science Proceedings of the 14th International Conference on

Applied Computer and Applied Computational Science (ACACOS ’15). 23-25

April. Kuala Lumpur: WSEAS, 182–189.

Aizenbud-Reshef, N., Nolan, B. T., Rubin, J. and Shaham-Gafni, Y. (2006). Model

traceability. IBM Systems Journal. 45, 515–526.

Alaranta, M. and Betz, S. (2012). Knowledge Problems in Corrective Software

Maintenance - A Case Study. 2012 IEEE 45th Hawaii International Conference

On System Science (HICSS). 4-7 June. Maui, Hawaii, USA: IEEE, 3746–3755.

Alexander, I. (2002). Towards Automatic Traceability in Industrial Practice.

Proceedings of the 1st International Workshop on Traceability in Emerging

Forms of Software Engineering. 23-27 September. Edinburgh, Scotland: ACM,

26–31.

Aljahdali, S., Hussain, S. N., Hundewale, N. and Poyil, A. T. (2012). Test

Management and Control. 2012 IEEE 3rd International Conference on Software

Engineering and Service Science (ICSESS). 22-24 June. Beijing, China: IEEE,

429–432.

Anand, T. and Mani, V.S. (2015). Practices to Make Agile Test Teams Effective:

Challenges and Solutions. 2015 IEEE 10th International Conference on Global

Software Engineering Workshops. 13-16 July. Ciudad Real, Spain: IEEE, 7–11.

188

Andrade, J., Ares, J., Martínez, M.-A., Pazos, J., Rodríguez, S., Romera, J. and

Suárez, S. (2013). An Architectural Model for Software Testing Lesson

Learned Systems. Information and Software Technology. 55, 18–34.

Anquetil, N., Sousa, A., Kulesza, U., Rummler, A., Mitschke, R., Moreira, A. and

Araújo, J. (2010). A Model-driven Traceability Framework for Software

Product Lines. Software & Systems Modeling. 9, 427–451.

Antoniol, G., Canfora, G., Casazza, G. and De Lucia, A. (2000). Information

Retrieval Models for Recovering Traceability Links Between Code and

Documentation. Proceedings 2000 International Conference on Software

Maintenance (ICSM ’00). 11-14 October. San Jose, CA, USA: IEEE, 40–49.

Antoniol, G., Canfora, G., Casazza, G., De Lucia, A. and Merlo, E. (2002).

Recovering Traceability Links Between Code and Documentation. IEEE

Transactions on Software Engineering. 28(10), 970–983.

Asuncion, H. and Taylor, R.N. (2007). Establishing the Connection Between

Software Traceability and Data Provenance. Institute for Software Research,

University of California, Irvine, Technical Report UCI-ISR-07-9.

Asuncion, H.U., Asuncion, A.U. and Taylor, R.N. (2010). Software Traceability

with Topic Modeling. 2010 ACM/IEEE 32nd International Conference on

Software Engineering. 2-8 May. Cape Town, South Africa: ACM/IEEE, 95–

104.

Asuncion, H.U., François, F. and Taylor, R.N. (2007). An End-to-end Industrial

Software Traceability Tool. Proceedings of the 6th Joint Meeting of the

European Software Engineering Conference and the ACM SIGSOFT

Symposium on The Foundations of Software Engineering. 3-7 September.

Dubrovnik, Croatia: ACM, 115–124.

Asuncion, H.U. and Taylor, R.N. (2012). Automated Techniques for Capturing

Custom Traceability Links Across Heterogeneous Artifacts. In Cleland-Huang.

J, Gotel. O and Zisman. A (Ed.) Software and Systems Traceability. (pp. 129–

146). London: Springer-Verlag.

Azram, N.A. and Atan, R. (2012). Traceability Method for Software Engineering

Documentation. International Journal of Computer Science Issues(IJCSI). 9,

216-220.

189

Baharuddin, R., Singh, D. and Razali, R. (2013). Usability Dimensions for Mobile

Applications - A Review. Research Journal of Applied Sciences, Engineering

and Technology. 5(6), 2225-2231.

Bajracharya, S., Ossher, J. and Lopes, C. (2014). Sourcerer: An Infrastructure for

Large-Scale Collection and Analysis of Open-source Code. Science of

Computer Programming. 79, 241–259.

Balaji, S. and Murugaiyan, M.S. (2012). Waterfall vs. V-Model vs. Agile: A

Comparative Study on SDLC. International Journal of Information Technology

and Business Management. 2, 26–30.

Bavota, G., De Lucia, A., Oliveto, R. and Tortora, G. (2014). Enhancing Software

Artefact Traceability Recovery Processes with Link Count Information.

Information and Software Technology 56(2), 163–182.

Bavota, G., Colangelo, L., De Lucia, A., Fusco, S., Oliveto, R. and Panichella, A.

(2012). TraceME: Traceability Management in Eclipse. International

Conference on Software Maintenance. 23-28 September. Riva del Garda, Italy:

IEEE, 642–645.

Beecham, S., Hall, T., Britton, C., Cottee, M. and Rainer, A. (2005). Using an

Expert Panel to Validate a Requirements Process Improvement Model. Journal

of Systems and Software. 76, 251–275.

Bertolino, A. (2003). Software Testing Research and Practice. In Börger E.,

Gargantini A. and Riccobene E. (Ed.) Abstract State Machines 2003 - Lecture

Notes in Computer Science, vol 2589 (pp. 1-21). Berlin: Springer-Valag

Heidelberg.

Bevan, N., Carter, J. and Harker, S. (2015). ISO 9241-11 Revised: What Have We

Learnt About Usability Since 1998? The 17th International Conference on

Human-Computer Interaction. 2-7 August. Los Angeles, CA, USA: Springer,

143–151.

Blaauboer, F., Sikkel, K. and Aydin, M.N. (2007). Deciding to Adopt Requirements

Traceability in Practice. In Krogstie J., Opdahl A. and Sindre G. (Ed.)

Advanced Information Systems Engineering. CAiSE 2007. Lecture Notes in

Computer Science, vol 4495 (pp. 294-308) Heidelberg Berlin: Springer-Verlag.

Black, R. and Jamie, L.M. (2014). Advanced Software Testing-Vol. 2: Guide to the

ISTQB Advanced Certification as an Advanced Test Manager. Vol. 2. Santa

Barbara, California: Rocky Nook, Inc.

190

Borg, M., Gotel, O.C. and Wnuk, K. (2013). Enabling Traceability Reuse for

Impact Analyses: A Feasibility Study in a Safety Context. 2013 7th

International Workshop on Traceability in Emerging Forms of Software

Engineering (TEFSE). 19 May. San Francisco, California, USA: IEEE, 72–78.

Bouillon, E., Mäder, P. and Philippow, I. (2013). A Survey on Usage Scenarios for

Requirements Traceability in Practice. In Doerr J. and Opdahl A.L. (Ed.)

Requirements Engineering: Foundation for Software Quality. REFSQ 2013.

Lecture Notes in Computer Science, vol. 7830 (pp. 158-173) Heidelberg

Berlin: Springer-Verlag.

Buckley, J., Mens, T., Zenger, M., Rashid, A. and Kniesel, G. (2005). Towards a

Taxonomy of Software Change. Journal of Software Maintenance and

Evolution. 17, 309–332.

Captain, F.A. (2013). Six-Step Relational Database DesignTM: A Step by Step

Approach to Relational Database Design and Development(2nd ed).

CreateSpace Independent Publishing Platform.

Celebic, B., Breu, R. and Felderer, M. (2016). Traceability Types for Mastering

Change in Collaborative Software Quality Management. In Steffen B. (Ed.)

Transactions on Foundations for Mastering Change I. Lecture Notes in

Computer Science, vol 9960 (pp. 242-256) Cham, Switzerland: Springer.

Chang, C.K. and Christensen, M. (2003). Event-based Traceability for Managing

Evolutionary Change. IEEE Transactions on Software Engineering. 29, 796–

810.

Chen, X., Hosking, J. and Grundy, J. (2012). Visualizing Traceability Links

Between Source Code and Documentation. 2012 IEEE Symposium on Visual

Languages and Human-Centric Computing (VL/HCC). 30 September - 4

October. Innsbruck, Austria: IEEE, 119–126.

Chomal, V.S. and Saini, J.R. (2014). Significance of Software Documentation in

Software Development Process. International Journal of Engineering

Innovation and Research. 3, 410-416.

Chomal, V.S. and Saini, J.R. (2015). Software Template for Evaluating and Scoring

Software Project Documentations. International Journal of Computer

Applications, 116, 15-27.

191

Choudhury, J. and Thushara, B. (2014). Software Documentation in a Globally

Distributed Environment. 2014 IEEE 9th International Conference on Global

Software Engineering. 18-21 August. Shanghai, China: IEEE, 90–94.

Cleland-Huang, J., Settimi, R., BenKhadra, O., Berezhanskaya, E. and Christina, S

(2005). Goal-centric traceability for managing non-functional requirements.

Proceedings of the 27th International Conference on Software Engineering,

15-21 May. St. Louis, MO, USA: ACM, 362–371.

Cleland-Huang, J., Gotel, O. and Zisman, A (2012). Software and Systems

Traceability. London: Springer.

Cleland-Huang, J., Gotel, O. C. Z., Huffman Hayes, J., Mäder, P. and Zisman, A.

(2014). Software Traceability: Trends and Future Directions. Proceedings of

the on Future of Software Engineering (FOSE2014). 31 May - 7 June.

Hyderabad, India: ACM, 55–69.

Cleland-Huang, J. (2005). Toward improved traceability of non-functional

requirements. Proceedings of the 3rd International Workshop on Traceability

in Emerging Forms of Software Engineering TEFSE '05. 8 November. Long

Beach, California: ACM, 14–19.

Cleland-Huang, J., Settimi, R., Chuan Duan, et al. (2005). Utilizing supporting

evidence to improve dynamic requirements traceability. 13th IEEE

International Conference On Requirements Engineering, 2005. Proceedings.

29 August - 2 September. Paris, France: IEEE, 135–144.

Coronel, C. and Morris, S. (2014). Database Systems: Design, Implementation, &

Management (11th ed). United States: Cengage Learning.

Dautovic, A. (2011). Automatic Assessment of Software Documentation Quality.

2011 26th IEEE/ACM International Conference on Automated Software

Engineering. 6-10 November. Lawrence, Kansas, USA: ACM/IEEE Computer

Society, 665–669.

Davis, A.M. (1990). Software Requirements: Analysis and Specification. Upper

Saddle River, NJ, USA: Prentice Hall Press.

Delacroix, L. (2014). Longman Dictionary of Contemporary English. London,

United Kingdom: Pearson Longman.

Dennis, A., Wixom, B.H. and Roberta, M.R. (2015). Systems Analysis and Design:

An Object-Oriented Approach with UML, (5th ed) New Jersey: John Wiley &

Sons.

192

Devarajan, K., Wang, G. and Ebrahimi, N. (2015). A Unified Statistical Approach

to Non-Negative Matrix Factorization and Probabilistic Latent Semantic

Indexing. Machine learning. 99, 137–163.

Diesendruck, L., Kooper, R., Marini, L. and McHenry, K. (2014). Using Lucene to

Index and Search the Digitized 1940 us Census. Concurrency and

Computation: Practice and Experience. 26, 2167–2177.

Donald, F. (2013). Common Testing Problems: Pitfalls to Prevent and Mitigate.

Pittsburgh, Pennsylvania USA: Software Engineering Institute, Carnegie

Mellon University.

Doraisamy, M., Ibrahim, S. and Mahrin, M.N. (2015). Metric Based Software

Project Performance Monitoring Model. 2015 IEEE Confernece on Open

Systems (ICOS). 24-26 August. Malacca, Malaysia: IEEE, 12–17.

Dubey, S.K., Gulati, A. and Rana, A. (2012). Integrated Model for Software

Usability. International Journal on Computer Science and Engineering. 4,

429–437.

Egyed, A. (2003). A Scenario-driven Approach to Trace Dependency Analysis.

IEEE Transactions on Software Engineering. 116–132.

Egyed, A. (2001). A Scenario-Driven Approach to Traceability. Proceedings of the

23rd international conference on Software engineering, 12-19 May. Toronto,

Canada: ACM, 123–132.

Egyed, A., Graf, F. and Grünbacher, P. (2010). Effort and Quality of Recovering

Requirements-to-Code Traces: Two Exploratory Experiments. 2010 18th IEEE

International Requirements Engineering Conference (RE). 27 September - 1

October. Sydney, Australia: IEEE, 221–230.

Egyed, A. and Grünbacher, P. (2002). Automating Requirements Traceability:

Beyond the Record & Replay Paradigm. Proceedings of the 17th IEEE

International Conference on Automated Software Engineering. 23-27

September. Edinburgh, Scotland: ACM/IEEE, 163-171.

Eldh, S., Brandt, J., Street, M., Hansson, H. and Punnekkat, S. (2010). Towards

Fully Automated Test Management for Large Complex Systems. 2010 Third

International Conference on Software Testing, Verification and Validation. 6-

10 April. Paris, France: IEEE, 412–420.

Fernández-Sáez, A. M., Caivano, D., Genero, M. and Chaudron, M. R. (2015). On

the Use of UML Documentation in Software Maintenance: Results from a

193

Survey in Industry. 2015 ACM/IEEE 18th International Conference on Model

Driven Engineering Languages and Systems (MODELS). 30 September - 2

October. Ottawa, ON, Canada: IEEE, 292–301.

Fleischer, D., Schwerdtfeger, J., Capaul, P. and Thiel, V. (2012). Evaluation of

Open Source Tools for Test Management and Test Automation. Seminararbeit

DHBW Stuttgart.

Flint, S. (2009). A Conceptual Model of Software Engineering Research

Approaches. Proceedings of the 2009 Australian Software Engineering

Conference, 14-17 April. Gold Coast, Australia: IEEE, 229–236.

Galvao, I. and Goknil, A. (2007). Survey of Traceability Approaches in Model-

Driven Engineering. Enterprise Distributed Object Computing Conference,

EDOC’07. 15-19 October 2007. Annapolis, USA: IEEE, 313–326.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J (1995). Design Patterns:

Elements of Reusable Object-Oriented. India: Pearson Education

Gao, A. and Liu, Z. (2014). TAI: A Workflow-based Automated Testing

Management System. 2014 5th IEEE International Conference on Software

Engineering and Service Science (ICSESS). 27-29 June. Beijing, China: IEEE,

208–211.

Gao, L. (2011). Research on Implementation of Software Test Management. 2011

3rd International Conference on Computer Research and Development

(ICCRD). 11-13 March. Shanghai, China: IEEE, 234–237.

Garcia, J.E. and Paiva, A.C. (2016). A Requirements-to-Implementation Mapping

Tool for Requirements Traceability. Journal of Software. 11, 193–200.

Garousi, G., Garousi, V., Moussavi, M., Ruhe, G. and Smith, B. (2013). Evaluating

Usage and Quality of Technical Software Documentation: An Empirical Study.

Proceedings of the 17th International Conference on Evaluation and

Assessment in Software Engineering. New York, USA: ACM, 24–35.

Garousi, G., Garousi-Yusifoğlu, V., Ruhe, G., Zhi, J., Moussavi, M. and Smith, B.

(2015). Usage and Usefulness of Technical Software Documentation: An

Industrial Case Study. Information and Software Technology. 57, 664–682.

Garousi, V., Eskandar, M.M. and Herkiloğlu, K. (2016). Industry–academia

Collaborations in Software Testing: Experience and Success Stories from

Canada and Turkey. Software Quality Journal. 1–53.

194

Garousi, V. and Zhi, J. (2013). A Survey of Software Testing Practices in Canada.

Journal of Systems and Software. 86, 1354–1376.

Geraci, A. (1991). IEEE Standard Computer Dictionary: Compilation of IEEE

Standard Computer Glossaries. Piscataway, NJ, USA: IEEE Press.

Goodrich, M.T., Tamassia, R. and Goldwasser, M.H. (2014). Data Structures and

Algorithms in Java (6th ed). Hoboken, NJ: Wiley.

Gotel, O., Cleland-Huang, J., Hayes, J. H., Zisman, A., Egyed, A., Grünbacher, P.

and Antoniol, G. (2012). The Quest for Ubiquity: A Roadmap for Software

and Systems Traceability Research. 2012 20th IEEE International

Requirements Engineering Conference (RE). 24-28 September. Chicago,

Illinois, USA: IEEE, 71–80.

Gotel, O., Cleland-Huang, J., Hayes, J. H., Zisman, A., Egyed, A., Grünbacher, P.

and Mäder, P. (2012). Traceability fundamentals. In Cleland-Huang J., Gotel

O. and Zisman A. (Ed.) Software and Systems Traceability. (pp. 3-22) London,

United Kingdom: Springer-Verlag.

Gotel, O. and Finkelstein, A. (1994). An Analysis of the Requirements Traceability

Problem. Proceedings of the First International Conference on Requirements

Engineering. 18-22 April. Colorado Springs, CO, USA: IEEE, 94–101.

de Graaf, K. A., Liang, P., Tang, A. and Van Vliet, H. (2016). How Organization

of Architecture Documentation Affects Architectural Knowledge Retrieval.

Science of Computer Programming. 121, 75–99.

Graham, D. (2002). Requirements and Testing: Seven Missing-link Myths. IEEE

Software. 19, 15–17.

Grimán, A., Pérez, M., Mendoza, L. and Losavio, F. ((2006). Feature Analysis for

Architectural Evaluation Methods. Journal of Systems and Software. 79, 871–

888.

Grossman, D.A. and Frieder, O. (2012). Information Retrieval: Algorithms and

Heuristics. New York: Springer Science + Business Media, LLC.

Guo, J., Monaikul, N., Plepel, C. and Cleland-Huang, J. (2014). Towards an

Intelligent domain-specific Traceability Solution. Proceedings of the 29th

ACM/IEEE International Conference on Automated Software Engineering. 15-

19 September. Vasteras, Sweden: ACM, 755–766.

195

Hammad, M., Collard, M.L. and Maletic, J.I. (2011). Automatically Identifying

Changes That Impact Code-to-Design Traceability During Evolution. Software

Quality Journal. 19, 35–64.

Hassnain, M. (2015). A Comparative Study on Traceability Approaches in Software

Development Life Cycle. International Journal of Information Technology and

Electrical Engineering. 4, 1-4.

Hayes, J.H., Dekhtyar, A. and Osborne, J. (2003). Improving Requirements Tracing

Via Information Retrieval. Proceedings of the 11th IEEE International

Conference on Requirements Engineering. 8-12 September 2003. Monterey

Bay, USA: IEEE, 138-147.

Hedberg, H. and Lappalainen, J. (2005). A Preliminary Evaluation of Software

Inspection Tools, with the DESMET Method. Fifth International Conference

On Quality Software (QSIC 2005). 19-20 September. Melbourne, Australia:

IEEE, 45–52.

Herwig, V. (2014). Documentation of Software System. Jounal of Electrotechnic

and Computer Systems. 13, 240–246.

Ibrahim, S., Idris, N. B., Munro. M. and Deraman, A. (2005). Implementing a

Document-based Requirements Traceability: A Case Study. IASTED

International Conference on Software Engineering. 15-17 February 2005.

Innsbruck, Austria: Octa Press, 124–131.

Illes, T., Herrmann, A., Paech, B. and Rückert, J. (2005). Criteria for Software

Testing Tool Evaluation. A Task Oriented View. Proceedings of the 3rd World

Congress for Software Quality. 20-30 September. Munich, Germany: ISQI,

213–222.

ISO - International Organization for Standardization (2010). ISO 9241-210:2010 -

Ergonomics of Human-System Interaction - Part 210: Human-Centred Design

for Interactive Systems. Geneva, Switzerland: ISO.

Jaber, K., Sharif, B. and Liu, C. (2013). A Study on the Effect of Traceability Links

in Software Maintenance. IEEE Access. 1, 726–741.

Järvelin, K. and Kekäläinen, J. (2000). IR Evaluation Methods for Retrieving

Highly Relevant Documents. Proceedings of the 23rd Annual International

ACM SIGIR Conference on Research and Development in Information

Retrieval . 24-28 July. Athens, Greece: ACM, 41–48.

196

Javed, M.A. and Zdun, U. (2014). The Supportive Effect of Traceability Links in

Architecture-Level Software Understanding: Two Controlled Experiments.

2014 IEEE/IFIP Conference on Software Architecture (WICSA). 7-11 April.

Sydney, Australia: IEEE, 215–224.

Jorgensen, P.C. (2014). Software Testing: A Craftsman’s Approach - Fourth Edition

(4th ed.) Boca Raton Florida: CRC Press.

Kamalabalan, K., Uruththirakodeeswaran, T., Thiyagalingam, G., Wijesinghe, D.

B., Perera, I., Meedeniya, D. and Balasubramaniam, D.. (2015). Tool Support

for Traceability of Software Artefacts. Moratuwa Engineering Research

Conference (MERCon). 7-8 April. Moratuwa, Sri Lanka: IEEE, 318-323.

Kannenberg, A. and Saiedian, H. (2009). Why Software Requirements Traceability

Remains a Challenge. CrossTalk - The Journal of Defense Software

Engineering. 22(5), 14-19.

Kassab, M., DeFranco, J. and Laplante, P. (2016). Software Testing Practices in

Industry: The State of the Practice. IEEE Software. PP, 1-10.

Kaushik, N., Tahvildari, L. and Moore, M. (2011). Reconstructing Traceability

Between Bugs and Test Cases: An Experimental Study. 2011 18th Working

Conference On Reverse Engineering. 17-20 October. Lero, Limerick, Ireland:

IEEE, 411–414.

Keenan, E., Czauderna, A., Leach, G., Cleland-Huang, J., Shin, Y. and Moritz, E.

(2012). Tracelab: An Experimental Workbench for Equipping Researchers to

Innovate, Synthesize, and Comparatively Evaluate Traceability Solutions.

Proceedings of the 34th International Conference on Software Engineering. 2-9

June. Zurich, Switzerland: IEEE, 1375–1378.

Khan, A.S. and Mattsson, M.K. (2012). Management of documentation and

maintainability in the context of software handover. 2012 8th International

Conference On Computing Technology and Information Management (ICCM).

24-26 April. Seoul, South Korea: IEEE, 238–243.

Kim, M. W., Kim, W. Y., Son, H. S. and Kim, R. Y. C. (2011). A Test Management

System for Operational Validation. International Conference on Advanced

Software Engineering and Its Applications. 8-10 December. Jeju Island, Korea:

Springer, 305–313.

197

Kirova, V., Kirby, N., Kothari, D. and Childress, G (2008). Effective Requirements

Traceability: Models, Tools, and Practices. Bell Labs Technical Journal. 12,

143–158.

Kitchenham, B., Linkman, S. and Law, D. (1997). DESMET: A Methodology for

Evaluating Software Engineering Methods and Tools. Computing & Control

Engineering Journal. 8, 120–126.

Kornecki, A.J. and Zalewski, J. (2005). Experimental Evaluation of Software

Development Tools for Safety-Critical Real-Time Systems. Innovations in

Systems and Software Engineering. 1, 176–188.

Kotonya, G. and Sommerville, I. (1998). Requirements Engineering: Processes and

Techniques. Chichester, England: John Wiley & Sons.

Kritzinger, P.S. and Krüger, H. (2008). Software Traceability Using Latent

Semantic Analysis and Relevance Feedback. Technical Report CS08-01-00,

Department of Computer Science, University of Cape Town., 391–402.

Kruchten, P. (2004). The Rational Unified Process: An Introduction. Bostan, MA,

USA: Addison-Wesley.

Kukreja, S., Singhal, A. and Bansal, A. (2015). A Critical Survey on Test

Management in IT Projects. 2015 International Conference on Computing,

Communication Automation (ICCCA). 15-16 May. Greater Noida, India: IEEE,

791–796.

Lázaro, M. and Marcos, E. (2005). Research in Software Engineering: Paradigms

and Methods. Proceedings of the CAiSE'05 Workshops, Vol. 2. 13-15 June.

Porto, Portugal: Springer, 517–522.

Leino, V. (2001). Documenting Requirements Traceability Information: A Case

Study. Masters. Helsinki University of Technology.

Li, F.-S., Ma, W.-M. and Chao, A. (2008). Architecture Centric Approach to

Enhance Software Testing Management. 2008 Eighth International Conference

On Intelligent Systems Design and Applications, ISDA ’0., 26-28 November.

Kaohsiung, Taiwan: IEEE, 654–659.

Lodhi, A., Wind, S. and Turowski, K. (2013). Test Management Framework for

Managing IT Projects in Industry. 2013 IEEE 10th International Conference on

E-Business Engineering (ICEBE). 11-13 September. Coventry, United

Kingdom: IEEE, 509–514.

198

Lohar, S., Amornborvornwong, S., Zisman, A. and Cleland-Huang, J. (2013).

Improving Trace Accuracy Through Data-Driven Configuration and

Composition of Tracing Features. Proceedings of the 2013 9th Joint Meeting

on Foundations of Software Engineering. 18-26 August. Saint Petersburg,

Russian Federation: ACM, 378–388.

Lormans, M. and van Deursen, A. (2009). Reconstructing Requirements

Traceability in Design and Test Using Latent Semantic Indexing. Journal

Software Maintenance Evol Res Pract - TUD-SERG-2007-007. 1-32.

Louridas, P. (2011). Test Management. IEEE Software. 28, 86–91.

Madan, A. and Dubey, S.K. (2012). Usability Evaluation Methods: A literature

Review. International Journal of Engineering Science and Technology. 1, 590–

599.

Mäder, P., Philippow, I. and Riebisch, M. (2007). Customizing Traceability Links

for the Unified Process. In Overhage S. et al. (Ed.) Software Architectures,

Components, and Applications. QoSA 2007. Lecture Notes in Computer

Science, vol 4880 (pp. 53-71). Heidelberg, Berlin: Springer.

Maletic, J. I., Munson, E. V., Marcus, A. and Nguyen, T. N. (2003). Using A

Hypertext Model for Traceability Link Conformance Analysis. Proceeding of

The 2nd International Workshop on Traceability in Emerging Forms of

Software Engineering. October. Montreal, Canada: ACM, 47-54.

Malz, C. and Jazdi, N. (2010). Agent-based Test Management for Software System

Test. 2010 IEEE International Conference on Automation Quality and Testing

Robotics (AQTR). 28-10 May. Cluj-Napoca, Romania: IEEE, 1–6.

Marcus, A. and Maletic, J.I. (2003). Recovering Documentation-to-source-code

Traceability Links Using Latent Semantic Indexing. Proceedings of the 25th

International Conference on Software Engineering, 3-10 May. Portland, OR,

USA: IEEE, 125–135.

Marcus, A., Xie, X. and Poshyvanyk, D. (2005). When and How to Visualize

Traceability Links? Proceedings of the 3rd International Workshop on

Traceability in Emerging Forms of Software Engineering, 8 November. Long

Beach, CA, USA: ACM, 56-61.

Maro, S., Anjorin, A., Wohlrab, R. and Steghöfer, J. P. (2016). Traceability

Maintenance: Factors and Guidelines. Proceedings of the 31st IEEE/ACM

199

International Conference on Automated Software Engineering. 3-7 September.

Singapore: ACM, 414–425.

Marques, A., Ramalho, F. and Andrade, W.L. (2015a). Towards A Requirements

Traceability Process Centered on the Traceability Model. Proceedings of the

30th Annual ACM Symposium on Applied Computing. 13-17 April. Salamanca,

Spain: ACM, 1364–1369.

Marques, A., Ramalho, F. and Andrade, W.L. (2015b). TRL: A Traceability

Representation Language. Proceedings of the 30th Annual ACM Symposium

on Applied Computing. 13-17 April. Salamanca, Spain: ACM, 1358–1363.

Marshall, C., Brereton, P. and Kitchenham, B. (2015). Tools to Support Systematic

Reviews in Software Engineering: A Cross-domain Survey Using Semi-

structured Interviews. Proceedings of the 19th International Conference on

Evaluation and Assessment in Software Engineering. 27-29 April. Nanjing,

China: ACM, 26:1-26:6.

Marshall, C., Brereton, P. and Kitchenham, B. (2014). Tools to Support Systematic

Reviews in Software Engineering: A Feature Analysis. Proceedings of the 18th

International Conference on Evaluation and Assessment in Software

Engineering. 13-14 May. London, United Kingdom: ACM, 13:1-13:10.

Mazni, O., Sharifah-Lailee, S.-A. and Azman, Y. (2010). Agile Documents: Toward

Successful Creation of Effective Documentation. International Conference on

Agile Software Development. 1-4 June. Trondheim, Norway: Springer, 196–

201.

McBurney, P.W. (2015). Automatic Documentation Generation via Source Code

Summarization. Proceedings of the 37th International Conference on Software

Engineering-Volume 2. 16-24 May. Florence/Firenze, Italy: ACM/IEEE 903–

906.

McIntosh, C. (2013). Cambridge Advanced Learner’s Dictionary. New York, USA:

Cambridge University Press.

Meneely, A., Smith, B. and Williams, L. (2013). Validating Software Metrics: A

Spectrum of Philosophies. ACM Transactions on Software Engineering

Methodology. 21, 24:1–24:28.

Mustafa, N. and Labiche, Y. (2015). Modeling Traceability for Heterogeneous

Systems. 10th International Joint Conference on Software Technologies

(ICSOFT). 20-22 July. Colmar, France: IEEE. 358–366.

200

Mustafa, N. and Labiche, Y. (2017). The Need for Traceability in Heterogeneous

Systems: A Systematic Literature Review. Computer Software and

Applications Conference (COMPSAC), 4-8 July. Turin, Italy : IEEE, 305–310.

Nagano, S., Ichikawa, Y. and Kobayashi, T. (2012). Recovering Traceability Links

Between Code and Documentation for Enterprise Project Artifacts. 36th Annual

Computer Software and Applications Conference. 16-20 July. Izmir, Turkey:

IEEE, 11–18.

Naik, K. and Tripathy, P. (2011). Software Testing and Quality Assurance: Theory

and Practice. New Jersey: John Wiley & Sons.

Nair, S., de la Vara, J.L. and Sen, S. (2013). A Review of Traceability Research at

the Requirements Engineering Conference RE@ 21. 21st IEEE International

Requirements Engineering Conference. 15-19 July. Rio de Janeiro, Brazil:

IEEE, 222–229.

Namdar, S. and Mirakhorli, M. (2015). Toward Actionable Software Architecture

Traceability. Proceedings of the 8th International Symposium on Software and

Systems Traceability. 16-24 May. Florence/Firenze, Italy: IEEE/ACM, 36–

42.

Narmanli, M. (2010). A Business Rule Approach to Requirements Traceability.

Masters. Middle East Technical University.

Ng, E. and Mohan, V. (2015). Lucene 4 Cookbook. Birmingham, United Kingdom:

Packt Publishing Ltd.

Noack, T., Karbe, T. and Helke, S. (2014). Reuse-Based Test Traceability:

Automatic Linking of Test Cases and Requirements. International Journal on

Advances in Software. 7, 469–485.

Norman, G. (2010). Likert Scales, Levels of Measurement and the “laws” of

Statistics. Advances in health sciences education. 15, 625–632.

Oliveto, R., Antoniol, G., Marcus, A. and Hayes, J. (2007). Software Artefact

Traceability: The Never-Ending Challenge. International Conference On

Software Maintenance ICSM 2007. IEEE. 2-5 October. Paris, France: IEEE,

485–488.

Omar, S.F. (2013). A Software Traceability Approach To Support Requirement

Based Test Coverage Analysis. Masters. Universiti Teknologi Malaysia.

201

Papakitsos, E.C. (2014). An application of Cognitive Ergonomics to the Quality

Assurance of Software Documentation. International Journal of Academic

Research in Computer Sciences and Electrical Engineering. 1, 16–30.

Parizi, R.M., Lee, S.P. and Dabbagh, M. (2014). Achievements and Challenges in

State-of-the-Art Software Traceability Between Test and Code Artifacts. IEEE

Transactions on Reliability. 63, 913–926.

Parnas, D.L. (2011). Precise documentation: The key to better software. In Nanz S.

(Ed.) The Future of Software Engineering (pp. 125-148). Berlin, Heidelberg:

Springer, 125–148.

Perera, I., Meedeniya, D. and Bandara, M. (2015). A Traceability Management

Framework for Artefacts in Self-adaptive Systems. The 10th International

Conference on Industrial and Information Systems (ICIIS). 18-20 December.

Peradeniya, Sri Lanka: IEEE, 37–42.

Pinheiro, F.A. (2004). Requirements traceability. In do Prado Leite J.C.S. and

Doorn J.H. (Ed.) Perspectives on Software Requirements. Boston, MA:

Springer, 91–113.

Pinkster, I., Burgt, B. V. D., Janssen, D. and Veenendall, E. V. (2006). Successful

Test Management: An Integral Approach. Netherlands: Springer.

Plosch, R., Dautovic, A. and Saft, M. (2014). The Value of Software

Documentation Quality. 14th International Conference on Quality Software

(QSIC). 4-5 August. Boston, USA: IEEE, 333–342.

Pohjoisvirta, L. (2013). Choosing a Tool for Improved Software Test Management.

Masters. Tampere University of Technology.

Poston, R., Patel, J. and Dhaliwal, J.S. (2012). A Software Testing Assessment to

Manage Project Testability. 20th European Conference on Information Systems

(ECIS 2012). 11-13 June. Barcelona, Spain: ESADE, 1-12.

Qusef, A., Bavota, G., Oliveto, R., Lucia, A. D. and Binkley, D. (2013). Evaluating

Test-to-code Traceability Recovery Methods Through Controlled Experiments.

Journal of Software: Evolution and Process. 25, 1167–1191.

Qusef, A., Oliveto, R. and De Lucia, A. (2010). Recovering Traceability Links

Between Unit Tests and Classes Under Test: An Improved Method.

International Conference On Software Maintenance (ICSM), 12-18 September.

Timisoara, Romania: IEEE, 1-10.

202

Raja, U.A. and Kamran, K. (2008). Framework for Requirements Traceability.

Masters, Blekinge Institute of Technology, Sweden.

Regan, G., McCaffery, F., McDaid, K. and Flood, D. (2012). The Barriers to

Traceability and Their Potential Solutions: Towards a Reference Framework.

38th EUROMICRO Conference On Software Engineering and Advanced

Applications (SEAA). 5-8 September. Izmir, Turkey: IEEE, 319–322.

Regan, G., Flood, D. and Mc Caffery, F. (2015). The Development and Validation

of a Roadmap for Traceability. International Conference on Software Process

Improvement and Capability Determination. 16-17 June. Gothenburg, Sweden:

Springer, 45–57.

Rochimah, S., Wan Kadir, W.M. and Abdullah, A.H. (2011). Utilizing Multifaceted

Requirement Traceability Approach: A Case Study. International Journal of

Software Engineering and Knowledge Engineering. 21, 571–603.

Rongfa, T. (2012). Adaptive Software Test Management System Based on Software

Agents. In Yanwen Wu (Ed.) Advanced Technology in Teaching-Proceedings

of the 2009 3rd International Conference on Teaching and Computational

Science (WTCS 2009) (pp. 1-9). Berlin: Springer.

Roth, S., Hauder, M., Farwick, M., Breu, R. and Matthes, F. (2013). Enterprise

Architecture Documentation: Current Practices and Future Directions. 11th

International Conference on Wirtschaftsinformatik. 27th February - 1st March.

Leipzig, Germany: Wirtschaftsinformatik Proceedings, 911-925.

Salem, A.M. (2006). Improving Software Quality Through Requirements

Traceability Models. International Conference On Computer Systems and

Applications, 2006. 8-11 March. Sharjah, United Arab Emirates: IEEE, 1159–

1162.

Satish, C.J. and Anand, M. (2016). Software Documentation Management Issues

and Practices: A Survey. Indian Journal of Science and Technology. 9(20), 1-

7.

Schwarz, H. (2012) Universal Traceability. A Comprehensive, Generic,

Technology-Independent, and Semantically Rich Approach. Berlin: Verlag

Logos.

Schwarz, H., Ebert, J. and Winter (2009) A. Graph-based Traceability: A

Comprehensive Approach. Software and Systems Modeling, Springer. 9(4),

473–492.

203

Shahid, M. (2014) A Traceability Approach for Hybrid Coverage Analysis to

Support Software Maintenance. Doctor Philosophy. Universiti Teknologi

Malaysia, Skudai.

Shahid, M. and Ibrahim, S. (2016). Change Impact Analysis with a Software

Traceability Approach to Support Software Maintenance. 13th International

Bhurban Conference on Applied Sciences and Technology (IBCAST). 12-16

January. Islamabad, Pakistan: IEEE, 391–396.

Shao, J., Wu, W. and Geng, P. (2013). An Improved Approach to the Recovery of

Traceability Links between Requirement Documents and Source Codes Based

on Latent Semantic Indexing. International Conference on Computational

Science and Its Applications. 24-27 June. Ho Chi Minh City, Vietnam:

Springer, 547–557.

Sharma, H., Gupta, D. and Singh, R. (2015). Ranking Based Software Quality

Assessment Using Experts Opinion. International Conference On

Computational Intelligence and Communication Networks (CICN). 12-14

December. Jabalpur, India: IEEE, 1436–1441.

Shuja, A.K. and Krebs, J. (2007). IBM Rational Unified Process Reference and

Certification Guide: Solution Designer (RUP). Indianapolis, Indiana, United

States: IBM Press.

Sidek, R.M., Noraziah, A. and Wahab, M.H.A. (2011). The Preferable Test

Documentation Using IEEE 829. International Conference on Software

Engineering and Computer Systems. 27-29 June. Kuantan, Pahang, Malaysia:

Springer, 109–118.

Siebra, C.A. and Lino, N.Q. (2014). Integration of Autonomic Mechanisms to a

Test Management Solution. 9th International Conference On Software

Engineering and Applications (ICSOFT-EA), 2014. 29-31 August. Vienna,

Austria: IEEE, 269–276.

Simon, D. and Simon, F. (2012). Integrating Test and Risk Management. The 8th

International Conference on Quality of Information and Communications

Technology (QUATIC). 3-6 September. Lisbon, Portugal: IEEE, 97–102.

Sousa, A. L. (2008). Traceability Support in Software Product Lines. Bachelor

Degree, Universidade Nova de Lisboa, Portugal.

204

Spanoudakis, G., Zisman, A., Pérez-Miñana, E. and Krause, P. (2004). Rule-based

Generation of Requirements Traceability Relations. Journal of Systems and

Software. 72, 105–127.

Spillner, A., Linz, T. and Schaefer, H. (2014). Software Testing Foundations: A

Study Guide for the Certified Tester Exam. (4th ed.) Santa Barbara, California:

Rocky Nook, Inc.

Spillner, A., Linz, T. and Schaefer, H. (2011). Software Testing Foundations: A

Study Guide for the Certified Tester Exam. (3rd ed.) Santa Barbara, CA 93101,

USA: Rocky Nook.

Stettina, C.J. and Kroon, E. (2013). Is There an Agile Handover? An Empirical

Study of Documentation and Project Handover Practices Across Agile

Software Teams. International Conference On Engineering, Technology and

Innovation (ICE) & IEEE International Technology Management Conference,

24-26 June. Hague, Netherlands: IEEE, 1–12.

Tam, C. and Oliveira, T. (2016). Understanding the Impact of M-banking on

Individual Performance: DeLone & McLean and TTF perspective. Computers

in Human Behavior. 61, 233–244.

Thitisathienkul, P. and Prompoon, N. (2014). Quality Assessment Method for

Software Development Process Document Based on Software Document

Characteristics Metric. 9th International Conference On Digital Information

Management (ICDIM), 29 September - 1 October. Bangkok, Thailand: IEEE,

182–188.

Thomas, C. and Carolyn, B. (2015). Database Systems, A Practical Approach to

Design Implementation and Management. (6th ed.) Essex, England: Pearson

Education Limited.

Torkar, R., Gorschek, T., Feldt, R., Svahnberg, M., Raja, U. A. and Kamran, K.

(2012). Requirements Traceability: A Systematic Review and Industry Case

Study. International Journal of Software Engineering and Knowledge

Engineering. 22, 385–433.

Treude, C., Robillard, M. and Dagenais, B. (2015). Extracting Development Tasks

to Navigate Software Documentation. IEEE Transactions on Software

Engineering. 41(6), 565-581.

Tsuchiya, R., Kato, T., Washizaki, H., Kawakami, M., Fukazawa, Y. and

Yoshimura, K. (2013). Recovering Traceability Links Between Requirements

205

and Source Code in the Same Series of Software Products. Proceedings of the

17th International Software Product Line Conference. 26-30 August. Tokyo,

Japan: ACM, 121–130.

Tulasi, A., Chittoor, R. and Mani, V.. (2016). System Testing Optimization in a

Globally Distributed Software Engineering Team. 11th International

Conference on Global Software Engineering (ICGSE). 2-5 August. California,

USA: IEEE, 99–103.

Umamaheswari, E. and Ghosh, K. (2014). Software Quality: Dual Experts Opinion

and Conditonal Based Aggregation Method. International Journal of

Engineering and Technology (IJET). 6, 1167–1175.

Van Loggem, B. (2014). Software Documentation: A Standard for the 21st Century.

Proceedings of the International Conference on Information Systems and

Design of Communication. 16-17 May. Lisbon, Portugal: ACM, 149–154.

Van Veenendaal, E. and Cannegieter, J.J. (2010). Test Maturity Model integration

(TMMi). TMMi Foundation.

W. Linda (2006). Bidirectional Requirements Traceability. Westfallteam

Waitelonis, J., Exeler, C. and Sack, H. (2015). Linked Data Enabled Generalized

Vector Space Model to Improve Document Retrieval. NLP & DBpedia 2015

Workshop at 14th Int. Semantic Web Conferece.. 11 October. Bethlehem,

Pennsylvania, USA: CEUR-WS, 1-12.

Wang, Q., Xu, J., Li, H. and Craswell, N. (2013). Regularized Latent Semantic

Indexing: A New Approach to Large-scale Topic Modeling. ACM Transactions

on Information Systems (TOIS). 31, 5.

Weilkiens, T., Lamm, J. G., Roth, S. and Walker, M. (2015). B: The V-Model.

Model-Based System Architecture. Hoboken, NJ, USA: John Wiley & Sons.

Wesiak, G., Al-Smadi, M. and GÜtl, C. (2012). Towards an Integrated Assessment

Model for Complex Learning Resources: Findings from an Expert Validation.

15th International Conference On Interactive Collaborative Learning (ICL). 26-

28 September. Villach, Austria: IEEE, 1–7.

Wiederseiner, C., Garousi, V. and Smith, M. (2011). Tool Support for Automated

Traceability of Test/Code Artifacts in Embedded Software Systems. The 10th

International Conference on Trust, Security and Privacy in Computing and

Communications. 16-18 November. Changsha, China: IEEE, 1109–1117.

206

Wiegers, K. and Beatty, J. (2013). Software Requirements. (3rd ed.). Redmond,

Washington: Pearson Education.

Wijesinghe, D. B., Kamalabalan, K., Uruththirakodeeswaran, T., Thiyagalingam,

G., Perera, I. and Meedeniya, D.. (2014). Establishing Traceability Links

Among Software Artefacts. International Conference on Advances in ICT for

Emerging Regions (ICTer). 10-14 December. Colombo, Sri Lanka: IEEE, 55–

62.

Yu, L., Li, X. and Li, Z. (2011). Testing Tasks Management in Testing Cloud

Environment. The 35th Annual Computer Software and Applications

Conference, COMPSAC 2011. 18-20 July. Munich, Germany: IEEE, 76–85.

Zhang, C. and Zhan, S. (2013). Research and Implementation of Full-text Retrieval

System Using Compass Based on Lucene. Proceedings of the 2012

International Conference on Communication, Electronics and Automation

Engineering. 23-25 August. Xi’an, China: Springer, 349–356.

Zhang, Y., Wan, C. and Jin, B. (2016). An Empirical Study on Recovering

Requirement-to-code Links. 17th IIEEE/ACIS International Conference on

Software Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing (SNPD). 30 May - 1 June. Shanghai, China:

IEEE, 121–126.

Zhi, J., Garousi-Yusifoğlu, V., Sun, B., Garousi, G., Shahnewaz, S. and Ruhe, G.

(2015). Cost, Benefits and Quality of Software Development Documentation:

A Systematic Mapping. Journal of Systems and Software. 99, 175–198.

Zhi, J. and Ruhe, G. (2013). DEVis: A Tool for Visualizing Software Document

Evolution. 2013 First IEEE Working Conference on Software Visualization

(VISSOFT). 27-28 September. Eindhoven, Netherlands: IEEE, 1–4.

