22 research outputs found

    Scalable, Efficient and Precise Natural Language Processing in the Semantic Web

    Get PDF
    The Internet of Things (IoT) is an emerging phenomenon in the public space. Users with accessibility needs could especially benefit from these “smart” devices if they were able to interact with them through speech. This thesis presents a Compositional Semantics and framework for developing extensible and expressive Natural Language Query Interfaces to the Semantic Web, addressing privacy and auditability needs in the process. This could be particularly useful in healthcare or legal applications, where confidentiality of information is a key concer

    Quantified vehicles: data, services, ecosystems

    Get PDF
    Advancing digitalization has shown the potential of so-called Quantified Vehicles for gathering valuable sensor data about the vehicle itself and its environment. Consequently, (vehicle) Data has become an important resource, which can pave the way to (Data-driven) Services. The (Data-driven Service) Ecosystem of actors that collaborate to ultimately generate services, has only shaped up in recent years. This cumulative dissertation summarizes the author's contributions and includes a synopsis as well as 14 peer-reviewed publications, which contribute to answer the three research questions.Die Digitalisierung hat das Potenzial für Quantified Vehicles aufgezeigt, um Sensordaten über das Fahrzeug selbst und seine Umgebung zu sammeln. Folglich sind (Fahrzeug-)Daten zu einer wichtigen Ressource der Automobilindustrie geworden, da sie auch (datengetriebene) Services ermöglichen. Es bilden sich Ökosysteme von Akteuren, die zusammenarbeiten, um letztlich Services zu generieren. Diese kumulative Dissertation fasst die Beiträge des Autors zusammen und enthält eine Synopsis sowie 14 begutachtete Veröffentlichungen, die zur Beantwortung der drei Forschungsfragen beitragen

    CloudOps: Towards the Operationalization of the Cloud Continuum: Concepts, Challenges and a Reference Framework

    Get PDF
    The current trend of developing highly distributed, context aware, heterogeneous computing intense and data-sensitive applications is changing the boundaries of cloud computing. Encouraged by the growing IoT paradigm and with flexible edge devices available, an ecosystem of a combination of resources, ranging from high density compute and storage to very lightweight embedded computers running on batteries or solar power, is available for DevOps teams from what is known as the Cloud Continuum. In this dynamic context, manageability is key, as well as controlled operations and resources monitoring for handling anomalies. Unfortunately, the operation and management of such heterogeneous computing environments (including edge, cloud and network services) is complex and operators face challenges such as the continuous optimization and autonomous (re-)deployment of context-aware stateless and stateful applications where, however, they must ensure service continuity while anticipating potential failures in the underlying infrastructure. In this paper, we propose a novel CloudOps workflow (extending the traditional DevOps pipeline), proposing techniques and methods for applications’ operators to fully embrace the possibilities of the Cloud Continuum. Our approach will support DevOps teams in the operationalization of the Cloud Continuum. Secondly, we provide an extensive explanation of the scope, possibilities and future of the CloudOps.This research was funded by the European project PIACERE (Horizon 2020 Research and Innovation Programme, under grant agreement No. 101000162)

    CloudOps: Towards the Operationalization of the Cloud Continuum: Concepts, Challenges and a Reference Framework

    Get PDF
    The current trend of developing highly distributed, context aware, heterogeneous computing intense and data-sensitive applications is changing the boundaries of cloud computing. Encouraged by the growing IoT paradigm and with flexible edge devices available, an ecosystem of a combination of resources, ranging from high density compute and storage to very lightweight embedded computers running on batteries or solar power, is available for DevOps teams from what is known as the Cloud Continuum. In this dynamic context, manageability is key, as well as controlled operations and resources monitoring for handling anomalies. Unfortunately, the operation and management of such heterogeneous computing environments (including edge, cloud and network services) is complex and operators face challenges such as the continuous optimization and autonomous (re-)deployment of context-aware stateless and stateful applications where, however, they must ensure service continuity while anticipating potential failures in the underlying infrastructure. In this paper, we propose a novel CloudOps workflow (extending the traditional DevOps pipeline), proposing techniques and methods for applications’ operators to fully embrace the possibilities of the Cloud Continuum. Our approach will support DevOps teams in the operationalization of the Cloud Continuum. Secondly, we provide an extensive explanation of the scope, possibilities and future of the CloudOps.This research was funded by the European project PIACERE (Horizon 2020 Research and Innovation Programme, under grant agreement No. 101000162)

    Exploiting general-purpose background knowledge for automated schema matching

    Full text link
    The schema matching task is an integral part of the data integration process. It is usually the first step in integrating data. Schema matching is typically very complex and time-consuming. It is, therefore, to the largest part, carried out by humans. One reason for the low amount of automation is the fact that schemas are often defined with deep background knowledge that is not itself present within the schemas. Overcoming the problem of missing background knowledge is a core challenge in automating the data integration process. In this dissertation, the task of matching semantic models, so-called ontologies, with the help of external background knowledge is investigated in-depth in Part I. Throughout this thesis, the focus lies on large, general-purpose resources since domain-specific resources are rarely available for most domains. Besides new knowledge resources, this thesis also explores new strategies to exploit such resources. A technical base for the development and comparison of matching systems is presented in Part II. The framework introduced here allows for simple and modularized matcher development (with background knowledge sources) and for extensive evaluations of matching systems. One of the largest structured sources for general-purpose background knowledge are knowledge graphs which have grown significantly in size in recent years. However, exploiting such graphs is not trivial. In Part III, knowledge graph em- beddings are explored, analyzed, and compared. Multiple improvements to existing approaches are presented. In Part IV, numerous concrete matching systems which exploit general-purpose background knowledge are presented. Furthermore, exploitation strategies and resources are analyzed and compared. This dissertation closes with a perspective on real-world applications

    Génération automatique d'alignements complexes d'ontologies

    Get PDF
    Le web de données liées (LOD) est composé de nombreux entrepôts de données. Ces données sont décrites par différents vocabulaires (ou ontologies). Chaque ontologie a une terminologie et une modélisation propre ce qui les rend hétérogènes. Pour lier et rendre les données du web de données liées interopérables, les alignements d'ontologies établissent des correspondances entre les entités desdites ontologies. Il existe de nombreux systèmes d'alignement qui génèrent des correspondances simples, i.e., ils lient une entité à une autre entité. Toutefois, pour surmonter l'hétérogénéité des ontologies, des correspondances plus expressives sont parfois nécessaires. Trouver ce genre de correspondances est un travail fastidieux qu'il convient d'automatiser. Dans le cadre de cette thèse, une approche d'alignement complexe basée sur des besoins utilisateurs et des instances communes est proposée. Le domaine des alignements complexes est relativement récent et peu de travaux adressent la problématique de leur évaluation. Pour pallier ce manque, un système d'évaluation automatique basé sur de la comparaison d'instances est proposé. Ce système est complété par un jeu de données artificiel sur le domaine des conférences.The Linked Open Data (LOD) cloud is composed of data repositories. The data in the repositories are described by vocabularies also called ontologies. Each ontology has its own terminology and model. This leads to heterogeneity between them. To make the ontologies and the data they describe interoperable, ontology alignments establish correspondences, or links between their entities. There are many ontology matching systems which generate simple alignments, i.e., they link an entity to another. However, to overcome the ontology heterogeneity, more expressive correspondences are sometimes needed. Finding this kind of correspondence is a fastidious task that can be automated. In this thesis, an automatic complex matching approach based on a user's knowledge needs and common instances is proposed. The complex alignment field is still growing and little work address the evaluation of such alignments. To palliate this lack, we propose an automatic complex alignment evaluation system. This system is based on instances. A famous alignment evaluation dataset has been extended for this evaluation

    Educational Technology and Education Conferences, January to June 2016

    Get PDF
    corecore