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II Abstract 

I. Abstract 

Advancing digitalization has highlighted the potential of so-called Quantified Vehicles for 

gathering valuable (vehicle) sensor data about the vehicle itself and its environment. Con-

sequently, (vehicle) Data has become an important resource of the automotive industry, 

which can pave the way to (Data-driven) Services. There are multiple roles to occupy in 

service generation, from data provider via service developer and service provider to end 

user. The (Data-driven Service) Ecosystem of actors that collaborate to ultimately generate 

services, has thus only shaped up in recent years. 

This dissertation was started in 2016 when literature and research in this field were still 

scarce. In retrospect, the rise of automotive Data-driven Services was accompanied. Vehicle 

Data, Data-driven Services, and the corresponding Data-driven Service Ecosystems have 

become an important market in recent years, as reports of analysts (e.g. Capgemini, Deloitte, 

KPMG, McKinsey, and PWC) show. The expectations even extend to statements about rad-

ical changes in automotive business models due to data-driven service possibilities. And 

such potentially radical changes of an economic driving force of Germany, where 830,000 

employees generated around 435 billion Euros in 2019, are undoubtly a relevant research 

topic. 

And so it is a variety of influences that characterize the service development or have so 

far prevented Data-driven Services from breaking through that could be investigated. How-

ever, the five objectives of this work are to (i) better understand how vehicle data becomes 

a relevant artifact for business and innovation, (ii) define and describe Quantified Vehicles 

as a form of digitalization in the automotive domain, (iii) develop concepts and Data-driven 

Services prototypically, that represent added value for consumers to enhance the under-

standing of challenges in service development, (iv) better understand the process and actors 

of value generation, and the interplay of the actors with each other in the ecosystem, by 

conducting empirical research involving automotive domain experts, and (v) conduct design 

activities backed by empirical research to conceptually model data-driven value generation 

and Data-driven Service Ecosystem building. 

To address the objectives, three research questions were defined, which were worked 

through in the research process with the help of eight subtopics. Within the framework of the 

cumulative dissertation, the author of this thesis contributed to a total of 14 publications (ten 
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as corresponding / main author) that can be assigned to these eight subtopics and that con-

tribute to answer the three research questions: Two publications for the subtopic Definition 

and Introduction of “Quantified Vehicles”, two publications for the subtopic Analysis of the 

Market: Services, Start-ups, OEMs, Business Models, and Trends, one publication for the 

subtopic Definition of a Research Agenda for the Information Systems Community, two pub-

lications for the subtopic Analysis and Definition of the VDVC (Vehicle Data Value Chain), 

three publications for subtopic Concepts along the VDVC, two publications for subtopic Pro-

totypical Implementations along the VDVC, and one publication each for the subtopics Anal-

ysis of Data-driven Service Ecosystems and Conceptual Model for Value Creation in Data-

driven Services.  

The 14 publications consist of three journal publications (E&I1, BISE, and IJIM), two 

book-series contributions (LNMOB, and LNBIP), eight conference contributions (NBM, i-

Know, ECIS, ICVES, WEBIST, CAiSE, AMCIS, and VEHITS), and a contribution in a 

BITKOM position paper (BITKOM). Thereby, the journal publications IJIM (Impact Factor 

8.21), BISE (Impact Factor 5.83), the ECIS conference publication (VHB-JQ3: B) are partic-

ularly outstanding, due to their high impact and prestige in the IS community. 

 

1  Short name of the publication medium. See the List of Abbreviations (page 309 ff) for the long name. 

javascript:;


IV Abstract 

Zusammenfassung 

Die fortschreitende Digitalisierung hat das Potenzial für sogenannte Quantified Vehicles auf-

gezeigt, welche wertvolle (Fahrzeug-)Sensordaten über das Fahrzeug selbst und seine Um-

gebung zu sammeln. Folglich sind (Fahrzeug-)Daten mittlerweile zu einer wichtigen Res-

source der Automobilindustrie geworden, da sie auch (datengetriebenen) Services ermögli-

chen können. Bei der Service-Generierung sind mehrere Rollen zu besetzen, vom Datenlie-

feranten über den Service-Entwickler und den Service-Anbieter bis hin zum Endnutzer. Das 

(datengetriebenene Service) Ökosystem von Akteuren, die zusammenarbeiten, um letztlich 

Services zu generieren, hat sich erst in den letzten Jahren herausgebildet. 

Diese Dissertation wurde im Jahr 2016 begonnen, als es noch wenig Literatur und For-

schung in diesem Bereich gab. Rückblickend wurde der Aufstieg von datengetriebenen Ser-

vices in der Automobilindustrie begleitet. Fahrzeugdaten, datengetriebene Services und die 

entsprechenden Ökosysteme sind in den letzten Jahren zu einem wichtigen Markt gewor-

den, wie Berichte von Analysten (z.B. Capgemini, Deloitte, KPMG, McKinsey und PWC) 

zeigen. Die Erwartungen reichen bis hin zu Aussagen über radikale Veränderungen der au-

tomobilen Geschäftsmodelle durch datengetriebene Servicemöglichkeiten. Und solche po-

tenziell radikalen Veränderungen eines Wirtschaftsstandortes Deutschland, in dem 830.000 

Beschäftigte im Jahr 2019 rund 435 Milliarden Euro erwirtschafteten, sind zweifelsohne ein 

relevantes Forschungsthema. 

Es gibt eine Vielzahl von Einflüssen, die die Serviceentwicklung kennzeichnen oder bis-

her den Durchbruch datengetriebener Services gehemmt haben, die untersucht werden 

könnten. Die fünf Ziele dieser Arbeit sind, (i) besser zu verstehen, wie Fahrzeugdaten zu 

einem relevanten Artefakt für Unternehmen und Innovationen werden, (ii) Quantified Vehic-

les als eine Form der Digitalisierung im Automobilbereich zu definieren und zu beschreiben, 

(iii) datengetriebene Dienste exemplarisch zu entwickeln, die einen Mehrwert für den Ver-

braucher darstellen, um das Verständnis für die Herausforderungen bei der Entwicklung von 

Diensten zu verbessern, (iv) den Prozess und die Akteure der Wertschöpfung sowie das 

Zusammenspiel der Akteure untereinander im Ökosystem besser zu verstehen, indem em-

pirische Forschung unter Einbeziehung von Domänenexperten aus dem Automobilbereich 

durchgeführt wird, und (v) durch empirische Forschung gestützte Designaktivitäten durch-

zuführen, um die datengetriebene Wertschöpfung und den Aufbau eines datengetriebenen 

Service-Ökosystems konzeptionell zu modellieren. 
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Um die Ziele zu adressieren, wurden drei Forschungsfragen definiert, die im For-

schungsprozess in Rahmen von sechs Unterthemen abgearbeitet wurden. Im Rahmen der 

kumulativen Dissertation hat der Autor dieser Arbeit an insgesamt 14 Publikationen (zehn 

als korrespondierender Autor / Hauptautor) mitgewirkt, die sich den sechs Unterthemen zu-

ordnen lassen und respektive dazu beitragen die drei Forschungsfragen zu beantworten: 

Zwei Publikationen zum Unterthema Definition und Einführung von "Quantified Vehicles", 

zwei Publikationen zum Unterthema Analyse des Markts: Services, Start-ups, OEMs, Busi-

ness Models, und Trends, eine Publikation zum Unterthema Definition einer Forschungs-

Agenda für die Informationssystem-Community, zwei Publikationen zum Unterthema Ana-

lyse und Definition der VDVC (Vehicle Data Value Chain), drei Publikationen zum Un-

terthema Konzepte entlang der VDVC, zwei Publikationen zum Unterthema Prototypische 

Implementierungen entlang der VDVC und je eine Publikation zu den Unterthemen Analyse 

datengetriebener Service-Ökosysteme und Konzeptionelles Modell zur Wertschöpfung in 

datengetriebenen Services.  

Die 14 Publikationen setzen sich aus drei Journal-Publikationen (E&I2, BISE und IJIM), 

zwei Buchreihenbeiträgen (LNMOB und LNBIP), acht Konferenzbeiträgen (NBM, i-Know, 

ECIS, ICVES, WEBIST, CAiSE, AMCIS und VEHITS) und einem Beitrag in einem BITKOM-

Positionspapier zusammen. Dabei sind die beiden Journal-Publikationen IJIM (Einflussfaktor 

8.21), BISE (Einflussfaktor 5.83), und die ECIS-Konferenzpublikation (B im VHB-JQ3 Ran-

king) aufgrund ihres hohen Einflusses und Prestiges in der IS-Community besonders her-

vorzuheben. 

 

2  Kurzname des jeweiligen Publikationsmediums. Die Langbezeichnung findet sich im Abkürzungsver-
zeichnis (List of Abbreviations, S.309). 
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Synopsis 1 

1. Synopsis  

1.1 Introduction 

The automotive industry is one of the economic driving forces in Germany and Austria. 

Around 830,000 employees in Germany generated around 435 billion Euros in 2019 (Austria: 

35,000 employees, 15 billion Euros) (bmwi, 2020; Statista, 2020; WKO, 2020), while many 

more people are involved along the entire value chain (FV, 2020). Globally, vehicle sales 

reached 65.5 million units (fell by four percent) in 2019 (Bekker, 2020). However, the auto-

motive industry is currently facing many challenges. To name just a few, automated driving, 

reduction of CO2 emissions (e.g. through renewable energy sources for drive technologies), 

and digitalization are urged topics in automotive in the period from 2016 to 2020, which cre-

ate a race among manufacturers for the fastest and most technologically advanced innova-

tion development. PWC (Kuhnert et al., 2018) even expects “radical change” and states, that 

the “car of the future is electrified, autonomous, shared, connected and yearly updated“, 

while the focus will be “on the user” because these technological developments are accom-

panied by a changed understanding of mobility and the changed purchasing and mobility 

behavior of customers (Kessler and Buck, 2017), which additionally increases pressure. Es-

pecially among young adults in industrialized countries (e.g. Germany, Japan, and the USA), 

mobility patterns have been changing in recent years, and “the idea of freedom” has been 

decoupled “from the idea of car ownership” (Kessler and Buck, 2017, p.109). Consequently, 

vehicle ownership decreases (Kuhnimhof et al., 2012; Kessler and Buck, 2017; Fulthorpe, 

2015), while young adults prefer the “ability to conveniently request, track, and pay for trips 

via mobile devices” (Murphy, 2016), thus e.g. “shared mobility [..] is growing as a mobility 

model” (Bertoncello et al., 2016, p. 10) among young adults, which are described as always 

being connected, ambivalent towards the car and adopting new transport technologies (Sa-

karia & Stehfest, 2013; Delbosc and Ralph, 2017). At the same time, analysts including Gart-

ner (Davenport et al., 2020), McKinsey (Bertoncello et al., 2016), and Accenture (Seiberth 

and Gründinger, 2018) argue, that vehicle manufacturers will have to compensate for this 

loss of revenues from vehicle sales with additional revenues, e.g. stemming from vehicle 

data monetization. And one way to monetize vehicle data are Data-driven Services which 

are based on vehicle data (Viereckl et al., 2016). 

As in many other industries, data has become an important resource, which can pave 

the way to novel services and optimization (Schüritz et al., 2017). Vehicle data represents 

this resource in the automotive industry (Kaiser et al., 2021), made available through the 
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connected car, “a communications hub that transmits as well as receives data and infor-

mation from its surroundings” (Fulthorpe, 2015). Connected cars can provide data for data-

driven services, and new players like ICT companies are joining the value creation chain to 

develop and provide such services. For instance, HIS (Fulthorpe, 2015) not only put the 

connected car in their list of top five automotive challenges (in 2015 and beyond) but report 

on “raised concerns that carmakers face the risk of becoming subordinate to the business 

models of other industries as new types of firms enter”. In the meantime, there is already a 

competition between startups, large-scale ICT enterprises, and vehicle manufacturers to ad-

dress this vehicle data (and data-driven service) market successfully (Probst et al., 2017; 

Viereckl et al., 2016), and to occupy the important roles present in value creation (Kaiser et 

al., 2017). “Where to play in the connected vehicle value chain” is an important decision, 

which should be “one of the first decisions for companies aiming to monetize vehicle data”, 

Deloitte (Hood et al., 2019) states. PWC (Kuhnert et al., 2018) expects that the “comprehen-

sive and rapid reorganization of the automotive sector, as we predict, will have far-reaching 

consequences for the entire industry and its value chains. Elementary structures and atti-

tudes will have to change fast in order to cope with the developments by 2030 and beyond.” 

While predicting increasing collaborations for vehicle manufacturers (i.e. with ICT compa-

nies), Kuhnert et al. (2018) state that it will be essential to link the “hardware” (i.e. the vehicle) 

with the “software” (i.e. the services)”. 

To remain competitive, the automotive industry (in Germany as in all of Europe) thus is 

facing a period of digital transformation, restructuring and change, to no longer just primarily 

offer goods (e.g. selling manufactured vehicles as the main product) and product-related 

services (e.g. selling spare parts and conducting maintenance work) (Kaiser et al., 2021; 

Viereckl et al., 2016). Obviously, this restructuring is a particularly interesting research con-

text as to its economic importance, and to its long tradition in catering to a basic human need 

– mobility (Piccinini et al., 2015). 

To go into the topics of the challenge in more detail, the currently urged topics in the 

automotive industry of automated driving, CO2 emission reduction, and digitalization are 

briefly described hereafter, as they already demonstrate (i) the need for and the increasingly 

important role of data, (ii) how Data-driven Services emerge and (iii) how collaboration be-

tween multiple players in the Data-driven Service Ecosystem is changing. 
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1.1.1 Data 

Data is becoming increasingly important in all industries, which turn to “collect data on eve-

rything” (Mayer-Schönberger and Cukier, 2013). Recently, artificial intelligence, which re-

quires data as input, has also become increasingly relevant. This is also the case in the 

automotive industry (Bertoncello et al., 2016), where much of the innovation comes from 

automation, based on data (Szalavetz, 2019). And this is how the challenges mentioned 

(automated driving, CO2 emission reduction, and digitalization) fit in, as they also contribute 

to generating even more data, which can be used in data-driven services. Thereby, the au-

tomotive industry also contributes to the hypothesis of an ever-increasing amount of data 

generated. And more and more value is seen in the data, as the following statements indi-

cate: Krzanich (2016) states, that “data is the new oil in the future of automated driving”. 

Soley et al. (2018) argues, that “connected vehicle data has higher value than people and 

companies are aware of.” and thus joins the opinion of researchers because the data ena-

bles data analysis, artificial intelligence, etc., which in turn can lead to e.g. revenues and 

sustainability (Lioutas and Charatsari, 2020). McAfee and Brynjolfsson (2012) explain, that 

data is an important source for decision making, as “data-driven decisions are better deci-

sions”, while Li et al. (2019) show that “free” digital goods can create a lot of value out of 

data, “because consumers lack knowledge regarding the value of their own data.” And so, 

data also enables data security breaches (Hirsch, 2013). However, even the European Com-

mission (2020) expects that “data-driven innovation will bring enormous benefits for citizens” 

and includes a “common European mobility data space” in its European strategy for data 

which should “facilitate access, pooling and sharing of data from existing and future transport 

and mobility databases”. Hence, vehicle data eventually paves the way for new types of 

data-driven services. 

And so, it is also data that, through data analysis, should even enable fully automated 

driving. Fully automated driving is currently a much-discussed topic in the automotive indus-

try, as it aims to turn drivers into passengers who no longer have to worry about driving. Not 

having to drive yourself would be a big change in the lives of many private individuals (es-

pecially commuters), but also in the economy, if for example in logistics drivers are no longer 

needed. There is also speculation that private individuals will use a means of transport rather 

as a service (quasi a robot taxi), and therefore do not necessarily have to own it anymore 

(vehicles are after all one of the most expensive purchases in peoples’ lives) (Fulthorpe, 
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2015). But this vision is still a long way off. Fully automated vehicles should be able to inte-

grate themselves in mixed traffic with non-automated or partially automated vehicles without 

being an annoyance, must therefore exchange data with other vehicles and the infrastruc-

ture. Besides, users expect automated vehicles to be safer than the human driver in order 

to build the necessary trust to be chauffeured. To achieve this, automated vehicles are 

equipped with additional sensors, e.g. RADAR, LiDAR, and video cameras, to perform a 

comprehensive 360° analysis of the environment and understand it by means of algorithms, 

and consequently collect more and more data, which could also be of interest for third parties 

(e.g. find parking lots, detect road surface damage, evaluate regional driving styles, etc.). 

In addition to automated driving, reducing CO2 emissions is also a currently urged topic, 

which interestingly has a strong connection to vehicle data. The vehicle’s on board diagnostic 

(OBD-2) interface originally was introduced, to capture vehicle data “which is relevant for 

testing whether the vehicle's emissions are still within tolerance” (Kaiser et al., 2020b). In 

general, in order to reduce CO2 emissions into the environment, newly registered vehicles 

must increasingly comply with stricter emission classes (e.g. EURO 1 to EURO 6), and man-

ufacturers must increasingly reduce the average fuel consumption of a vehicle fleet (briefly 

termed fleet consumption). Reducing fleet consumption is a difficult undertaking, as consum-

ers currently prefer to buy larger and heavier vehicles, e.g. SUVs. To reduce fleet consump-

tion, many vehicle manufacturers offer vehicles with different drive technologies including 

renewable energies, such as hybrid vehicles, electric vehicles, or hydrogen vehicles. There-

fore, in some cases, a vehicle is developed for several different drive systems in parallel 

(e.g. petrol, diesel, electric, hydrogen, hybrid versions), which leads to an increase in the 

number of vehicle variants that are quickly brought to market in smaller lot sizes. And mis-

takes and immature technology are quickly punished nowadays. For example, the recent 

release of the electrified Volkswagen ID.3 was criticized because it still had “serious prob-

lems with the software development” (Mayr and Slavik, 2020; Kane, 2020), while news on 

an electric vehicle that started to burn (Sun et al., 2020) spread quickly in the past, resulting 

in image damage. Consequently, it is increasingly important, also in the case of electrified 

vehicles, to have mass vehicle data from the field available for analysis and artificial intelli-

gence, e.g. to analyze and optimize battery performance (You et al., 2017). 

Concerning vehicle data, that enables analysis and artificial intelligence to be used in 

data-driven services, brings us back to the last urgent topic in the automotive industry: digi-
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talization. An industry that once provided physical transportation exclusively through me-

chanics and engineering by offering goods (e.g. selling manufactured vehicles as the main 

product) is now facing market pressure to offer digital features. Physical driving itself is taken 

for granted, and the quality differences between European manufacturers in terms of e.g. 

driving dynamics and crash behavior are shrinking, partly due to norms and standards tested 

in the European New Car Assessment Programme – Euro NCAP (Van Ratingen et al., 2016). 

Outstanding vehicles today are those, that are innovative in digitalization. From their working 

environment, consumers are increasingly used to the fact that the tools they use are digital 

and flexible. Thus, widgets often allow users to arrange user interfaces in the way they want. 

This was and is a challenge for traditional vehicle manufacturers, as suddenly functioning 

systems and systems of systems that were outsourced to suppliers were to change radically. 

For example, the vehicle cockpit, which in 2020 often appears as a digital touch screen with 

a personalized user profile, can also integrate smartphone applications (e.g. via Android 

Auto, Android Automotive or Apple Car Play (Apple, 2017)). Furthermore, digitization also 

brought new possibilities, since a sensor value can now be exchanged relatively easily with 

other software elements via software interfaces. Thus, and this is of special interest in this 

dissertation, a new field opened up since vehicle data (generated by vehicle sensors while 

driving) is potentially of interest to third parties. For instance, suppliers want to know how 

their components are used in the field (Childerhouse et al., 2003; Farahani et al., 2017). 

Insurance companies want to know how drivers drive (Tselentis et al., 2016). Traffic planners 

want to know how roads are used in reality (Kong et al., 2018). Road users want to be in-

formed in case of safety-critical situations of a vehicle, and so on. Unfortunately, in 2016, 

when this dissertation started, not a single vehicle manufacturer offered the possibility to 

directly use vehicle data, e.g. in integrated smartphone applications. However, emerging 

start-ups were already collecting data and offering services, using either a gateway device 

(e.g. the start-up Dash) connected to the vehicles’ OBD-II interface (that was never intended 

to be used like that), or smartphone sensors (e.g. the start-up Zendrive), e.g. by exploiting 

the smartphones’ acceleration sensor and GPS position, which allow to calculate an approx-

imation of vehicle speed and driving behavior (Stocker and Kaiser, 2016). The rich set of 

vehicle data, which would have been available on the internal bus system (e.g. CAN), was 

accessible with special measuring devices and interpretable with a decryption file (dbc file, 

“describes the communication of a single CAN network” (Vector, 2007)) only at that time, 

and making changes to the internal bus system is generally not allowed, except in test drives. 

But that has changed in recent years, so service providers (with the consent of the vehicle 
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owner) can now obtain data from the vehicle (a filtered dataset of internal bus system mes-

sages) via an OEM backend. 

1.1.2 Data-driven Services 

In general, the utilization of data and data analysis is expected to “offer new ways for growth 

and competitive advantage” (Schüritz et al., 2017; Davenport and Harris 2007; Davenport 

and Harris 2017). While the increasing data offer even opens up opportunities for the crea-

tion of entirely new (data) services (Manyika et al., 2011), data-driven business models that 

use data as their key resource and exploit the possibilities of analytics emerge (Hartmann et 

al., 2016). Schüritz et al. (2017) refer to the “offerings of these business models as data-

driven services” (but “digital services” is also common), which are seen as the main charac-

teristic of modern, digitalized mobility (Stocker et al., 2021). Probst et al. (2017) even expect 

that “in the long run, 30% to 40% of the value in the automotive value chain will be captured 

by digital services”. 

Data-driven services (in the automotive domain) may exploit vehicle sensor data. Mod-

ern passenger vehicles are equipped with sensors to (ideally) detect and react to every pos-

sible condition of the vehicle and its surrounding environment. The sensor data is generated 

by the sensor and is typically made available via a bus system to all electronic control units 

(ECUs) that need the information. Triggers use the input data for control loops or the call of 

actions, while persistent storing of the sensor data was not considered until a few years ago 

– the data volumes involved were simply considered too large. As a result, almost all the 

data disappeared again immediately after it was generated. This has changed in the last 

years, as some modern vehicles (in 2020) already provide the technical equipment to pos-

sibly transmit the data to a data-driven service. And the data already has its own market, 

e.g. data marketplaces (e.g. by the companies Caruso, or Otonomo) evolved in the last 

years, which have access to vehicle data and resell this data to service developers at a 

certain surcharge (Stocker et al., 2021; Kaiser et al., 2021; Spiekermann, 2019). Data mar-

ketplaces are even expected to “moving to the center of the data economy by providing an 

infrastructure for trading data and data-related services” (Spiekermann, 2019). Thereby, it is 

also attempted to pool data from several manufacturers to increase utility. In this respect, 

the EU project AutoMat (2018d) states in one of its deliverables, that “the higher the number 

of users on a given [data] package, the higher the return on it for the marketplace operator 

and OEMs.” And this can be seen in reality, for instance, the data marketplace by Caruso 
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offers “harmonized multi-brand in-vehicle data”, this means vehicle data from several man-

ufacturers (Audi, BMW, Ford, Mercedes-Benz, MINI, Volkswagen) can be integrated via a 

uniform interface (Caruso, 2020). 

The probably much faster ongoing quantified-self trend of other domains (e.g. sports) 

has shown that sensor data, which can be used to draw conclusions about the use of the 

vehicle and the environment, has definite potential (Swan, 2013). A real hype arose in recent 

years, for example, even hobby runners know best about pace, the average time for one 

kilometer or calorie consumption and can compare themselves with each other (i.e. 

Runtastic with 80 million registered users (Runtastic, 2016)), while cyclists even duel each 

other virtually on parts of the route like climbing a hill to know their place in the ranking 

(Strava, 2017). And ever since the consumer electronics industry took up the quantified-self 

subject, it was clear that vehicles, which had been equipped with a lot of sensor technology 

for quite some time, would sooner or later become an area of interest – and this is what has 

happened in the last five years. Consequently, the behavioral patterns of self-tracking can 

be transferred to vehicles, which capture sensor data about themselves and their environ-

ment (Stocker et al., 2017a). Possible fields of application in automotive are manifold. For 

instance, driver and driving statistics present quantified, comparable behavior to the driver 

and try to increase safety, a topic which is always in the attention of the automotive industry, 

which means there is a lot of investment available for this. Furthermore, the driving style of 

the driver also interests the driver himself to be able to increase awareness and compare 

himself with other drivers (gamification approach). Several smartphone applications have 

emerged, which use vehicle data, collected from an OBD gateway device, and analyze it for 

safe driving relevant events like harsh braking, which are then presented to the user (Kaiser 

et al., 2020c).  

However, software used to be not the core business of many vehicle manufacturers (Au-

toMat, 2016b; Volkswagen, 2019), and data-driven services are still not very widespread 

across them, but, perhaps since the sales figures for new cars have been stagnating or 

falling (Bekker, 2020), it is becoming increasingly interesting for vehicle manufacturers to 

make money via new possibilities, such as data-driven services (Probst et al., 2017). A Head 

of Data Services employed at a German Car Manufacturer once confirmed in an interview 

with the author of this thesis that they are also aware that they lack resources and skills in 

this area (software and data-driven service developers) and therefore deliberately contract 
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with external software companies (Kaiser et al., 2019b), who have already been trying for 

some time to penetrate the market of data-driven services in the automotive domain.  

Thus, the automotive industry ecosystem is slowly changing, in which software compa-

nies are increasingly becoming relevant players (Broy, 2006), as was also stated in a panel 

discussion at the conference monetizing car data in 2020, where the author of this thesis 

was a panelist together with representatives of BMW and Peregrine (service development 

company). Haghighatkhah et al. (2017) even state, that “the automotive industry is going 

through a fundamental change by moving from a mechanical to a software-intensive industry 

in which most innovation and competition rely on software engineering competence.” 

1.1.3 Data-driven Service Ecosystems 

In general, an ecosystem describes the relationships and interactions between living organ-

isms and their environment (Schulze et al., 2005; Briscoe and De Wilde, 2006), and is re-

cently increasingly used by researchers as “a new way to depict the competitive environ-

ment” (Jacobides et al., 2018). To distinguish an artificial ecosystem from a natural one, 

some authors add further attributes to the term to qualify it, e.g. software ecosystem, busi-

ness ecosystem, or digital service ecosystem (Immonen et al., 2015). However, a commonly 

agreed definition does not yet exist. (Kaiser et al., 2021) 

Considering the automotive industry, Teece (2007, p. 1325) defines an ecosystem as 

“the community of organizations, institutions, and individuals that impact the enterprise and 

the enterprise's customers and supplies” including “complementors, suppliers, regulatory 

authorities, standard-setting bodies, the judiciary, and educational and research institutions”. 

With a different point of view, Jacobides et al. (2018) define it as “a set of actors with varying 

degrees of multilateral, non-generic complementarities that are not fully hierarchically con-

trolled” (p. 2264). Furthermore, Adner (2016, p. 40) defines an ecosystem as “the alignment 

structure of the multilateral set of partners that need to interact in order for a focal value 

proposition to materialize”. And already Stocker et al. (2017a) describe, that the traditional 

balance of power with a strong Original Equipment Manufacturer (OEM) is currently chal-

lenged by digitalization, which encourages OEMs to cooperate with new partners in the mar-

ket (Subramaniam et al., 2019). (Kaiser et al., 2021) 

Taking business into account, Nischak et al. (2017) mention three essential components 

of digital business ecosystems: value exchange (innovation, information, products/services), 

resources (digital and non-digital), and actors (organizations, individuals, societies). This 
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definition can be adapted and specialized for digital automotive ecosystems (Kaiser et al., 

2021), or more specifically, data-driven service ecosystems. A data-driven service ecosys-

tem contains actors that in this case are original equipment manufacturers, data market-

places, or data service providers. These actors have access to resources (e.g. infrastruc-

ture), for generating, transmitting, and storing data. Leveraging these resources, the actors 

participate in value exchanges by providing or consuming data. (Kaiser et al., 2021) 

Nevertheless, research on Data-driven Service Ecosystems is still limited (plural, as 

each manufacturer can have its own ecosystem). Particularly in connection with vehicle data 

and the process of creating data-driven services, the literature repeatedly refers to data-

based business ecosystems (Kitsios et al., 2017; Curry, 2016; Nachira et al., 2007). For 

instance, Immonen et al. (2014) outline the open data ecosystem from a business viewpoint 

and define ecosystem actors such as application users, data and service providers, applica-

tion developers, and infrastructure providers along with their role in the data-based ecosys-

tem. Also, in many cases, the authors refer more to technical ecosystems (e.g. Kolbe et al., 

2017; Gerloff and Cleophas, 2017; Kuschel, 2008; Martínez de Aragón et al., 2018). In these 

technology-oriented perspectives, an analysis of the business relations enabled through the 

digitalization of the vehicle and the feasibility of new data-driven services is largely missing, 

while e.g. Athanasopoulou et al. (2019) report on digital technologies that “disrupt the exist-

ing business models within the automotive industry”. (Kaiser et al., 2021) 

However, vehicle manufacturers employ many developers with vehicle development, 

e.g. Volkswagen mentions about 20,000 developers (Reuters, 2019). The company's own 

developers, according to Diess, Volkswagen CEO, “90 percent hardware-oriented” (Reuters, 

2019), focus mainly on ensuring that the vehicles drive well (Athanasopoulou et al., 2019), 

with the development of software or even digital services being outsourced to supplier soft-

ware companies. In the VW Group, the percentage of all software in vehicles is “less than 

10 percent” (Volkswagen, 2019). Thus, innovations for data-driven services come from out-

side, from small, agile startups (Homfeldt et al., 2019).  

In retrospect, starting with innovative start-ups that developed a gateway device for the 

standardized OBD interface to collect data, develop first data-driven services (pay as you 

drive insurance, car monitoring, fleet tracking, tutoring for smarter / safer / greener driving, 

etc.) and make business, vehicle manufacturers have also discovered the topic for them-

selves (Kaiser et al., 2017b). One background was certainly that they did not want to be 

deprived of this new business area. Through research projects funded by the European 
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Commission, which develop concepts and define data formats for the data exchange from 

vehicles to cloud servers (e.g. project AutoMat coordinated by Volkswagen and project 

Cross-CPP), as well as investments in start-ups, vehicle manufacturers have approached 

the topic, and in some cases developed and launched their own services in parallel under 

the connected car brand (e.g. BMW’s brand BMW ConnectedDrive with BMW CarData to 

show key vehicle data to the user). An example of investments in start-ups is BMW’s (Ger-

man vehicle manufacturer) venture capital subsidiary BMW i Ventures, which has more than 

45 companies in their portfolio, including the start-ups Nauto and Zendrive, which analyze 

the driver behavior based on sensor data. As an example for developing and launching its 

own services, for instance, Audi developed a service called Green Light Optimal Speed Ad-

visory (GLOSA), which predicts the green phases of traffic lights and informs the driver about 

the optimal speed to pass the next traffic light within the green phase. Audi, therefore, 

teamed up with cities, to get access to the traffic light data. Another example, which shows 

that for applications cooperation between different actors of the data-driven service ecosys-

tem is necessary. 

Unfortunately, so far there seems to be no application, neither from manufacturers nor 

from third party service developers, which is outstanding, which really taps the full potential 

(Stocker et al., 2017a; Starepravo, 2019). In general, “complexity and dynamism [..] has 

made it difficult to make decisions regarding where to play and how to win” (Hood et al., 

2019) for actors of the ecosystem, mentioning issues like data ownership, willingness to pay, 

and decisions like ‘make or buy’, cooperation options, and data protection (privacy and trust). 

E.g. several vehicle manufacturers argued recently, that service development is not profita-

ble for them, (stated by representatives of Audi, BMW, and Daimler at the conference mon-

etizing car data in 2020), thus, manufacturers currently emphasize the “added value” for 

users that is created by the offer and attempts are being made to build so-called ecosystems 

in which third party service developers and service providers can develop services. Thus, 

vehicle manufacturers could cover its costs in the role of a data and platform provider. Addi-

tionally, there are efforts to achieve cross-manufacturer cooperation, e.g. a uniform data 

transfer concept of the German automotive industry called NEVADA (“Neutral Extended Ve-

hicle for Advanced Data Access”) concept should enable data intermediaries and service 

providers to make better use of vehicle data (VDA, 2017b; VDA, 2017c). A core element of 

the NEVADA concept is a backend of the respective vehicle manufacturer, which forwards 
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the data (depending on the use case class) to a neutral server (Reich et al., 2018). Further-

more, it is interesting, that i.e. BMW and Daimler, which officially cooperate long term to 

develop automated driving (BMW, 2019), also both contract with data marketplaces like 

Otonomo and Caruso, players of the data-driven service ecosystem. 

The data-driven service ecosystem, in which several companies cooperate to generate 

the value that is being created, is particularly interesting for research because it is unclear 

whether some players will survive in the long run. A senior executive at a premium OEM 

even stated in a McKinsey report, that “no single player can succeed on a stand-alone basis 

in establishing the digital ecosystem around the car, and multiple stakeholders need to work 

together” (Bertoncello et al., 2018). Especially start-ups that have brought in the innovation 

have the risk to be bought up (e.g. by bigger companies, like OEMs) or to disappear again 

(e.g. Automatic). However, the developments around data-driven services will have an im-

pact on the automotive market, and it is precisely the uncertainty of how the data-driven 

service market will develop that makes it so interesting and relevant. At the same time, there 

is no comparable work available in the automotive domain, so research in this field can be 

considered pioneering.  

So, while the automotive market has recently developed strongly (w.r.t. vehicle data uti-

lization and the entrance of new players (Cäsar et al., 2019)), it is part of this dissertation to 

analyze and understand exactly this market development within the Data-driven Service 

Ecosystem from a research perspective.  

1.2 Motivation 

The topic around Quantified Vehicles and Data-driven Services actually has quite a lot of 

aspects that one could study, and many different disciplines can provide valuable insights. 

Research on Quantified Vehicles can be partitioned in three areas: (i) Data, (ii) Services, 

and (iii) Ecosystems. These areas are highly interdependet and can all have a major impact 

on the future and can even support higher targets such as Vision Zero – the objective “to 

move close to zero deaths by 2050” (European Commission 2019) – since data provides the 

foundation for new services, and services are enabled and consumed by various stakehold-

ers that are part of ecosytems. One topic where this is particularly evident is value genera-

tion. After an introduction to the relevance and novelty of the topics, the vitality of the topic 

will be briefly discussed, followed by the identification of automotive constraints and research 

gaps on the topics of data, services, and ecosystems, to motivate this dissertation. 
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1.2.1 Topic Relevance and Novelty 

The dissertation was started in 2016 when literature and research in this field were still 

scarce. In retrospect, the rise of the subject was accompanied. Vehicle data, data-driven 

services, and the corresponding ecosystems have become an important market in recent 

years, as multiple exemplary statements of analysts in chronological order show in Table 1. 

The expectations even extend to statements about radical changes in automotive business 

models due to data-driven service possibilities, e.g. KPMG stated that the “automotive in-

dustry is shifting from asset-based to a service and software-driven business model. In 2025 

we drive on data and data drives us” (KPMG N.V., 2017). 

As a business information scientist, the author of this dissertation has observed that work 

on data-driven service solutions has been underway in the automotive domain in 2016 al-

ready, but even if its potential was (and still is) estimated high, market penetration is rather 

low in 2021. For example, Dash achieved more than 400,000 downloads and Automatic was 

acquired 2017 for about $100 million (TechCrunch, 2017), however, both popular services 

Automatic (c.f. Automatic Twitter, 2020) and Dash (homepage dash.by disappeared in sum-

mer 2020) vanished recently. 

Table 1 Exemplary statements of analysts on connected vehicles, data monetization, and trends. 

Analyst Exemplary statement(s) 

KPMG (2016) “In times of digitalization and connected vehicles, the customer, their data and revenues 

generated while driving a connected vehicle and using personal gadgets and apps are 

likely to be more significant than market share based on sold units. That means that in the 

future, 5,000 connected cars could be more valuable than 50,000 traditional, unconnected 

vehicles due to valuable revenue streams that can be generated in a connected car by 

customers providing information about their entire lifecycle.” 

McKinsey 

(Bertoncello et 

al., 2016) 

“Companies representing the high-tech, insurance, telecommunications, and other sectors 

that at once seemed, at most, “automotive adjacent” will play critical roles in enabling car 

data-related services that customers may be willing to pay for.” 

“With increasing proliferation of new features and services, car data will become a key 

theme on the automotive industry agenda and – if its potential is fully realized – highly 

monetizable.” 

“Together, these use cases have the potential to result in a total revenue pool of USD 450 

- 750 billion by 2030” 
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PWC (Viereckl 

et al., 2016) 

“In many industries, such as retail, banking, airline, and telecom, companies have long 

used the data they gather from customers and their connected devices to improve prod-

ucts and services, develop new offerings, and market more effectively. The auto industry 

has not had the frequent digital touch points to be able to do the same. The connected car 

changes all that.” 

“As revenues and profits shift from hardware to software, from products to services, and 

from the old economy to the new one, some players will succeed and others will falter.” 

KPMG (KPMG 

N.V., 2017) 

“We started with the statement “Cars are data-generating engines” and we concluded after 

our investigations, research and interviews that the statement is definitely true and, alt-

hough they are already generating a lot of data, cars will be even more data driven in the 

near future. Apart from generating data, more and more data will also be received and 

processed to support the driver and interact with his environment.” 

“OEMs do have access to more detailed data, e.g. for product improvement applications.” 

“New regulations in 2018 could possibly open the platform of the connected car to other 

non-OEM parties” 

“The automotive industry is shifting from asset-based to a service and software-driven 

business model. In 2025 we drive on data and data drives us.” 

Ovum (Zoller, 

2018) 

“The connected car ecosystem is starting to generate data from a wide variety of comple-

mentary sources” 

Deloitte (Hood 

et al., 2019) 

“The amount of data a vehicle generates is set to explode” 

“OEMs can find opportunities in data, but challenges exist” 

Capgemini 

(Cäsar et al., 

2019) 

“In 2023, there will be 352.9 million connected cars on the road – around 24% of all cars 

worldwide” [2018: 8%] 

“AI-powered use cases have high impact on driver experience and mobility services” 

“Collaborating with the right partners – big players, startups, and other OEMs – will be 

critical for success with connected vehicles.” 

“An important element of future mobility is an open service platform” 

Intellias (Hay-

din, 2020) 

“Connected and autonomous cars create new business opportunities for personal data 

monetization. However, organizational, technological, social and regulatory issues make 

strategic partnerships critical for OEMs.” 

KPMG (2020) 1154 automotive executives were surveyed for automotive key trends until 2030:  

- “50% rated connectivity & digitalization as extremely important”, which thus is ranked #2 

in 2020 (2016 & ‘19 ranked #1, 2017 & ‘18 ranked #2). 

- “45% rated Understanding the mobility ecosystem as extremely important”, which thus 

is ranked #6 in 2020 (like 2019).  

- “41% rated (Big) data monetization (e.g. vehicle & user data) as extremely important”, 

thus is ranked #9 in 2020 (2016, ‘17 & ‘19 ranked #7, 2018 ranked #6).  

“[Vehicle] Data is the raw material for ICT company business models” [..] “For years, au-

tomotive companies have been trying to find out in which areas data-driven business mod-

els have the highest probability of success.” [..] “Will data one day become so valuable 

that mobility becomes free of charge?” 
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As the analyst-statements above show, the potential is increasingly recognized, but there 

are still open points to be explored, which will be addressed in Subsection 1.2.3. First, how-

ever, the upcoming Subsection will demonstrate that data-driven services in the automotive 

sector have developed into a vital research topic during the dissertation project. 

1.2.2 Vitality of Research 

On the national level in Germany and Austria, as well as on the European level, several 

research projects and even a research program (BMWi program “Smart Service Welten” with 

the dedicated cluster “Mobilität”) are aiming to develop solutions to ease data-driven service 

development using vehicle data. The author of this dissertation had the chance to contribute 

to the projects AEGIS, EVOLVE (both funded by EU H2020), SCOTT, InSecTT (both EU 

ECSEL JU), and D-TRAS (bilateral Germany and Austria funded by BMWi and FFG). Further 

projects of other consortia worth noting include e.g. AutoMat, Cross-CPP (both EU H2020), 

CAR-BITS.de, and StreetProbe (both BMWi). 

The increase in research activities is also reflected by the number of scientific publica-

tions in this area. To provide an ex-post overview about scientific research activity in the field 

of value creation in data-driven services in the automotive domain, Figure 1 is intended to 

provide an overview on how research on value creation through data-driven services in the 

automotive domain is steadily increasing. Gusenbauer and Haddaway (2020) concluded, 

that ScienceDirect, Scopus, and ACM DL are appropriate as principal search systems for 

systematic reviews or meta-analyses, while IEEE Xplore is listed as a supplementary search 

system, thus they were added. AISeL was added to this overview as well, as the information 

systems (IS) community is deemed to be relevant for the research of this dissertation, and 

they call themselves the “central repository for research papers and journal articles relevant 

to the information systems academic community” (AISeL, 2020). In total, 303 papers were 

published since 2011, visualized in Figure 1 by the number of papers per search system per 

year. Articles that used the following terms were included:  

(value creation OR value)  

AND (data-driven services OR data-based services)  

AND (automotive OR vehicle OR car OR mobility) 

More than 52% of the resulting papers have been published in the last two years (2019 

and 2020), an indicator that research in this area is increasing and that the topic itself is 

relevant to research, even if the overall number of related publications declined slightly in 
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2020 (possibly due to the COVID pandemic situation). Figure 1 also emphasizes, that the 

dissertation was started when literature and research in this field were still scarce and that 

the rise of the subject was accompanied. 

 

Figure 1  Search results (all fields) in AISeL, ScienceDirect, Scopus, IEEE and ACM (2011-2019). 

1.2.3 Issues and Research Gaps 

Although there have been efforts by vehicle manufacturers for several years now to develop 

data-driven services, as well as research projects and research, relatively few services are 

offered even in 2020. This is related to how the automotive industry is structured and where 

the industry comes from. Hence, in the following the issues of long automotive development 

cycles and the vehicle manufacturers’ position on software development and data sharing 

are exemplified to illustrate the constraints for data-driven service development in the auto-

motive industry. Furthermore, several research gaps are introduced and explained which in 

consequence serve as a basis for the research questions, which will be presented in Sub-

section 1.4.1. At the end of each sub-subsection a grey box summarizes the issues or the 

research gaps to provide an overview.  
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1.2.3.1 Automotive Development Cycles 

One reason why there is still relatively little service on offer is certainly related to the “issue 

of long development cycles” in the automotive industry (Kaiser et al., 2019b), meaning that 

vehicle development takes about three to five years (Berggren and Magnusson, 2012) from 

the idea to the start of production. The long automotive development cycles are a problem 

for software development, e.g. KPMG (2016) states: “As customers increasingly aim to be 

always connected, relationships are shifting to a much more service-oriented and new data-

driven business model for which the traditional automotive industry is rather unprepared 

compared to other industries, as companies from the information and communication tech-

nology sector (ICT)” [..] “In our survey, few respondents show an understanding that some 

components require a shorter product development cycle. More than 40% of executives from 

OEMs still say that IT hardware and software components can be developed in the longer 

product development cycle, which at the end is not solving the clockspeed dilemma.” How-

ever, long automotive development cycles result in the consequence that “if it is not fore-

seen/enabled already today in the development of the vehicle to share specific data, then it 

will not be possible until about 2025 to have it present in a vehicle on the street” (Kaiser et 

al., 2019b), as a representative of a German automotive manufacturing company stated. To 

summarize, it will thus take a few more years before the developments of data-driven ser-

vices are available in series vehicles. Whereas the question remains whether expectable 

changes such as standardization of data provision (interfaces), available signals and data 

frequency to enable holistic traffic analyses, for example, will again take several years to be 

available in series vehicles. On the other hand, the major European vehicle manufacturers 

are not yet properly structured to manage the software development of such data-driven 

services on their own, while ICT companies still have to overcome a number of hurdles in 

order to be able to engage accordingly. 

 

1.2.3.2 Vehicle Manufacturers’ Position on Software Development and Data Sharing  

Vehicle manufacturers have traditionally tended to develop and sell vehicles that can drive 

well (Athanasopoulou et al., 2019), and there are still comparatively few departments at ve-

hicle manufacturers that deal with software or even digital services, as the following state-

ments indicate. “Today our 20,000 developers are 90 percent hardware-oriented” Herbert 

Due to the long development cycles in the automotive industry,  

it takes years for innovations to find their way into series vehicles. 
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Diess, CEO of German carmaker Volkswagen said in 2019 (Reuters, 2019). Christian Sen-

ger (Head of Software Volkswagen Group) even admits, that “today, our share [of self-de-

veloped software as a portion of all software in Volkswagen Group vehicles] is less than 10 

percent” (Volkswagen, 2019), which in turn means that 90% were outsourced to supplier 

software companies in 2019. And so, it is no surprise that innovations for data-driven ser-

vices came from outside here, from small, agile start-ups (Homfeldt et al., 2019). 

Furthermore, vehicle manufacturers were and are unclear about enabling data-driven 

services. While the ACEA (European Automobile Manufacturers Association) promoted car 

data sharing (ACEA, 2017), the VDA (Verband der Automobilindustrie e.V.) opposed it. The 

VDA states, that “modern vehicles have up to one hundred on board control units that con-

stantly communicate with each other to ensure the correct driving and customer functionality” 

(VDA, 2016), and sees any intervention in these systems (for example, write and read activ-

ities on the OBD-2 interface or devices that read the CAN-bus data traffic) as a safety risk, 

since one could influence the systems. In addition, there is the challenge that vehicles are 

often on the road for more than 15 years (or much longer as oldtimer), a long time in which 

the possibilities of the IT industry continue to develop, for example once secure encryption 

techniques may no longer be considered secure in the future. And to prevent possible hack-

ing of vehicles, VDA suggest that car manufacturers “have to hold a stronger position in the 

future and may limit the capabilities of third parties to freely access car data.” 

 

After the issues presented, which are intended to show that software innovations have tra-

ditionally had a difficult situation with prominent European vehicle manufacturers, research 

gaps in the development of services are highlighted in the following, which have not yet been 

adequately addressed by research. 

1.2.3.3 Vehicle Data Monetization and Vehicle Data Demand 

Concerning Data, the first question is whether there is a need that can be met with vehicle 

data that makes it necessary to generate and collect the data at all, e.g. with Quantified 

Vehicles. In the case of vehicle data, sensor data has been available for a long time because 

it is needed for the “driving” function. Start-ups then used OBD dongles to collect and analyze 

The developers of the most important European vehicle manufacturers are  

traditionally hardware-oriented, while software development is largely outsourced  

to suppliers. 

It is feared that (direct) access to vehicle data can create security gaps and make 

vehicles vulnerable (e.g. to hackers). 
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data and showed that there is a need. For the vehicle manufacturers, however, it is an in-

vestment question. After all, vehicle manufacturers first have to modify the vehicles to enable 

data collection, e.g. an ECU (configurable from outside) connected to the vehicles’ CAN bus 

which is capable of collecting and transmitting vehicle data to a cloud server. A Head of Data 

Services employed at a German vehicle manufacturer stated in an interview with the author 

of this dissertation, that “vehicles are equipped with more expensive technology to enable 

data sharing”, and that these investments should later be covered by revenues (Kaiser et 

al., 2021). 

Consequently, a highly relevant question is for what data there is a demand, because 

this influences requirements for vehicle data. Analysts tend to state which areas are mone-

tizable and thus business relevant for companies, e.g. KPMG (2020) identified “four main 

areas in which companies are investing to make use of data..”: “1) Optimization of internal 

processes, 2) Predictive maintenance, 3) Customer journey mapping, 4) Revenue streams 

from parallel industries (e.g., insurance, infrastructure, healthcare)”.  

Researchers like Bauer et al. (2019) investigate how consumers could benefit, e.g. if 

there is even a market for trusted car data, as vehicle data could increase trust for buyers 

when buying a used vehicle, and what effect this would have on sales prices. Since poten-

tially even big (vehicle) data can be created (Kaiser et al., 2020b), how to process and per-

sistently store the data is also a topic, e.g. Zhang et al. (2017) mention that “designing large-

scale IoV [Internet-of-Vehicles] systems has become a critical task that aims to process big 

data uploaded by fleet vehicles and to provide data-driven services”.  

Furthermore, even the European Commission raises the topic of data generated by cars 

in an article and also highlights the topic of customer engagement: “While value creation will 

soon concentrate on data generated by cars, critical control points include the HMI, Digital 

Platforms, real-time geospatial information, and car sensor data. Three main areas of com-

petition are thus emerging: data management, Human-Machine interface and customer en-

gagement” (European Commission; 2017). Especially since the introduction of GDPR, there 

is also a need to clearly define what the data is collected for, and the questions arise how 

vehicle data can be accessed and collected, to whom the data belongs, and what quality the 

vehicle data has, to find out whether the data is reliable. 
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1.2.3.4 Data-driven Service Demand and Development 

Vehicle data can enable data-driven services. Data-driven Services are defined as “services 

that support the decision-making process of customers through the provision of data and 

analytics” (Schüritz et al., 2019) which, “coupled with the generation and collection of big 

data [..] are becoming of great importance to business, economy and society” (Rizk et al., 

2018).  

However, as explained in the last sub-subsection, someone must also want to use the 

added value that a service provides to generate revenues and cover the costs (Piparsania, 

2019), which raises the question, which user applications can be served with results from 

the data analysis, and which players in the market are interested in paying for them (KPMG, 

2020; Hood et al., 2019). Piparsania (2019) mentions, that Counterpoint (analyst company) 

“estimates connectivity revenues will exceed 500 billion US dollars by 2030”, and lists avail-

able services through connected cars including remote features (e.g. door unlocking), emer-

gency assistance alerts, remote diagnostics (e.g. maintenance alerts), onboard features 

(e.g. vehicle tracker, geo-fencing, parking information) and infotainment. Seiberth and Grün-

dinger (2018) (estimation based on six sources from analysts and researchers) or Koch et 

al. (2018) even state, that in 2050, 50% of the vehicle manufacturers' revenue will be based 

on data-driven services. Albertsson and Edström (2013) did a comprehensive study on how 

a company like Volvo could create revenues from connected car data, including pricing strat-

egies and how they affect value capturing. Thereby, Albertsson and Edström mention direct 

revenues, i.e. subscription fees and indirect revenues, i.e. an improved customer relation-

ship. Unfortunately it is not published how much the manufacturers currently earn with con-

What are Quantified Vehicles? 

What is the demand for vehicle data? 

What are the requirements for vehicle data? 

How can vehicle data be accessed and collected? 

Who owns vehicle data? 

What quality does vehicle data have? 
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nected car services, not even in BMW's annual reports, for example. There are only esti-

mates of globally connected car revenues, e.g. “revenues of USD 18.4 billion in 2018 will 

grow to USD 30.6 billion in 2023” (Statista, 2019).  

Nevertheless, there are still relatively few service offerings, and there seemed to be cer-

tain hurdles and problems for software companies to develop services. For example, there 

was no well-documented specification of how a service could be developed, hence publica-

tions from the community as well as research carried out in the frame of this dissertation 

project have shown that several points around Data, Services and Ecosystems were unclear, 

as explained in detail in the following. For instance, KPMG (2016) concludes, that “around 

70% of the executives state that across all corporate functions, data use is at an early stage, 

or even desired, but its realization and application is to be defined. And some go even further, 

stating that it is not in use at all”. This entails the question of how the data must be pre-

processed so that it can be used properly (Andrienko et al., 2016). For instance, Kolarova et 

al. (2017) underpin that in stating: “Despite the advantages of vehicle data, there are still 

some challenges related to data collection and interpretation. The data are not faultless and 

requires elaborative pre-processing steps to cope with gaps or implausible records. Also, 

data sets gathered using different methods of data collection differ in their structure, content 

or variable units.” When it comes to data-driven service development, questions arise on 

which analyses on the data are valid at all, because poor data quality could lead to wrong 

assumptions. Zhang et al. (2017) questioned how usable vehicle data really are, by charac-

terizing Internet-of-Vehicle data as “large volume with a low density of value and low data 

quality” which “pose challenges for developing real-time applications”. 

 

1.2.3.5 Data-driven Service Ecosystem and Value Generation 

With the general shift toward software development, an increase in cooperation and compe-

tition between automotive and ICT companies is expected, which makes it interesting to 

investigate because it is unclear how ICT companies will be integrated into the processes, 

For which data-driven services (based on vehicle data) is there a demand? 

How can data-driven services (based on vehicle data) be developed? 

How can collected vehicle data be processed and persistently stored? 

Which analyses on vehicle data lead to meaningful results? 
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what roles they will take on, how the balance of power will shift, and how the automotive 

ecosystem is changing. “In business the digital transformation brings greater efficiency and 

effectiveness of existing value chains, the realignment of value chains, and opportunities to 

create new value” (Reddy and Reinartz, 2017). As described above, the automotive industry 

is currently facing a paradigm shift towards new data-driven services based on vehicle usage 

data, as they are expected to provide added value to consumers. Thus, the automotive in-

dustry will sooner or later establish a process (or several ones), which will transform vehicle 

usage data into services. Such paradigm shifts are also investigated in other domains like 

the software industry, and examples from literature exist, which consistently focus on the 

value creation process to do so. For instance, Hilkert et al. (2010) state, that the “possible 

paradigm shift in the software industry [..] is to be considered on the level of the involved 

market players and hence aims at the analysis of value creation structures.” This also applies 

to data-driven services in the automotive domain, where Data-driven Service Ecosystems 

are the environments in which data-driven services are developed and delivered. While the 

sum of the actors involved in data-driven service delivery and their relationships form the 

foundation of data-driven service ecosystems, they are about to change when ICT compa-

nies takeover certain roles in the value creation process.  

Cooperation and competition between vehicle manufacturers and ICT companies are 

experiencing ups and downs in recent years. According to KPMG (2020) “competition be-

tween automotive manufacturers and ICT companies has increased” in 2020, while the trend 

was rather towards cooperation in 2019. A representative from Flixbus explains, that “IT 

companies are closer to the customer than OEMs (e.g. Android on the smartphone). OEMs 

need to build an ecosystem to observe client behaviors, and IT companies have a large 

advantage here. As of today, they will always come faster into information”, while also a 

representative from Audi AG agrees: “When it comes to data services, collaboration is key. 

No car maker can tackle the challenges on its own” (Seiberth and Gründinger, 2018). How-

ever, from a research perspective and related to the ecosystem topic, it is yet unclear which 

actors exist on the market, and who takes over which role in the ecosystem to jointly develop 

data-driven services. Hence, the question is, which cooperations the existing and new actors 

have to form (Cäsar et al., 2019; Kaiser et al., 2019b; Haydin, 2020; Kaiser et al., 2021) to 

jointly develop data-driven services. 

Furthermore, the question of cooperation also raises the question of where ICT compa-

nies should contribute their expertise, which in turn raises the underlying question of how 
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value can actually be generated from vehicle data. If the data and services do not generate 

added value (for example, revenues or increased safety and satisfaction), they will not be 

considered in the long automotive development cycles and thus not be integrated into / en-

abled by future vehicles. But even if future vehicles are going to collect data and enable 

services, it is necessary to clarify how value is generated in data-driven service development 

in order to make the fundamental and tacit knowledge explicit and thus available to all inter-

ested parties. If it is, for instance for many ICT companies, unclear how to get the data, how 

to process it, or if the data quality is insufficient and does not allow for valuable analyses, it 

will be difficult to develop services that convince customers.  

To answer these questions, a description of value creation would be helpful, but even 

more prominent representatives of data-driven value creation seem to have their problems 

with this. Comparing vehicle data with big data, the literature review of Furtado et al. (2017) 

shows that there is no clear view on value creation with big data yet, but many similar ap-

proaches. Nevertheless, two central application areas of big data value creation mentioned 

by Davenport (2014) should be mentioned: (i) data as input for explanatory and predictive 

models, to improve decision making, and (ii) product and service improvement through in-

sights from data analysis (Davenport, 2014; Furtado et al., 2017). However, large quantities 

of (vehicle) data (big vehicle data) was used to promise great potential for value creation in 

the past. But this assumption, big data => great potential, is exactly what is not yet working 

for big data. “Yet this big data revolution has so far fallen short of its promise” Huberty (2015) 

states while adding: “Close examination shows that firms have largely used big data to im-

prove on existing business models, rather than adopt new ones; and that those improve-

ments have relied on data to describe and predict activity in worlds largely of their own mak-

ing.” Huberty therefore criticizes the fact that big data is mainly used to optimize existing data 

businesses. But he also suggests what should change: “The big gains from big data will 

require a transformation of organizational, technological, and economic operations on par 

with that of the second industrial revolution. Then, as now, firms had to invest heavily in 

industrial research and development to build the foundations of entirely new forms of value 

creation. Those foundations permitted entirely new business models [..]” (Huberty, 2015). 

And also in the automotive sector, for example in 2020, presentations at the conference 

“monetizing car data” have been pushing back in order to lower expectations, as these new 

business models have yet to be explored. Therefore, this dissertation also focuses on value 

creation and investigates the process of how value is created, to illustrate it by means of a 
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value chain. Hence, especially the questions related to Data and Services posed in the pre-

vious sub-subsections are not in random order but involve a certain process along the value 

chain, from data via analysis to service, along a Vehicle Data Value Chain. While such value 

chains already exists for big data (e.g. Big Data Value Chain by Curry, 2016), there is no 

such value chain for data-driven services in automotive yet, a clear research gap. 

At the same time, it was noticed that it is perhaps not yet clear who plays what role in 

the ecosystems and the value creation process, for example, in accessing data created from 

vehicle sensors (“vehicle data”). Since in 2016, when this thesis was started, there was usu-

ally no data interface from the vehicle available, that was intended for data exchange. Thus, 

many software companies used the vehicle's on-board diagnostic interface (OBD-II), which 

is standardized but, as experienced, implemented differently for each vehicle and manufac-

turer. The possibility of accessing vehicle data via the OBD interface without even involving 

the vehicle manufacturer led vehicle manufacturers to argue that this should be prevented 

for safety reasons (VDA, 2016). A well-thought-out idea in times of successful platforms pro-

viders, as this would put vehicle manufacturers in a position where they are the only ones 

who can provide access to data, and thus determine the price. Some companies (e.g. 

Zendrive) use the smartphone and its sensors to be independent of the vehicle. In addition 

to software companies (vehicle data service providers) and vehicle manufacturers, there 

were and are other players who want to find their place in the ecosystem, such as external 

gateway providers, data intermediaries, data marketplaces, external data source providers, 

and many potential consumers, as we have learned. Consumers can also play a decisive 

role in this respect, as the services could highlight various safety-related problems (potholes, 

driver distraction, danger zones, etc.) that are of public interest (e.g. traffic planning, traffic 

radios, etc.), which could lead to regulation that these data must be available, probably free 

of charge. Such regulations could restart the process of ecosystem formation in upcoming 

years. One more reason why the relevant sub-themes should be examined accordingly. 

To summarize, we have shown in the last three sub-subsections, divided into the topics 

of Data, Services and Ecosystems, that around the topic of Quantified Vehicles there are still 

many unanswered questions at the beginning of the dissertation (gray boxes). It is unclear 

what Quantified Vehicles are, what data they can provide, what restrictions exist, and what 

the quality of the data is. Furthermore, there are open points in the development and provi-

sion of data-driven services, which makes the development of services complex and chal-

lenging. This in turn is due to the lack of knowledge of the ecosystem, because neither the 
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players and their relationships are clear, nor is the value chain known. This dissertation 

seeks to address this particular research gap in order to enable and support the design and 

exploration of Quantified Vehicles, the data they generate, the data-driven services they en-

able, and the ecosystem of stakeholders involved. 

1.3 Focus and Objectives of this Dissertation 

Digitalization turns vehicles into ‘Quantified Vehicles’ when they collect data about them-

selves and their environment. Quantified vehicles, which are often described in the literature 

as connected vehicles (although this term is more associated with autonomous driving func-

tions) thus produce data with their vehicle sensors.  

Consequently, Data is the first main aspect of this dissertation, as data is essentially the 

enabler for any services. The set of available signals and their maximum sampling rate, in 

fact, determines possible analyses and, as a result, possible target markets and customers. 

And it is just these target markets and customers who influence, through their demand, which 

service offering will be successful. Services are the second main aspect of this dissertation. 

Quantified Vehicles enable such data-driven services (through the data generated). The hy-

pothesis that the data of millions of vehicles on the road must not only serve driving, but as 

a by-product that can support higher targets such as Vision Zero, was the main reason to 

choose this topic as a thesis topic. At the beginning of the dissertation, there were initiatives 

and services on the market where it was unclear how they are structured and how they 

function and what purpose they serve. Consequently, there were open questions that are to 

be addressed here. And even the first look at services on the market showed that develop-

ment by a single company is possible, but scales poorly. For larger solutions, it was foresee-

Which cooperations do existing and new actors in the data-driven service eco-

system need to enter into in order to develop data-driven services (based on vehicle 

data)? 

How can value be generated from vehicle data? 

What is the underlying data value chain that enables data-driven services based 

on vehicle data? 

Who plays what role in the data-driven service ecosystems and in the value crea-

tion process? 
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able that cooperation between several players would be required, for example, vehicle man-

ufacturers and service providers. And with these cooperations, it will of course be exciting to 

see who takes on which role and who has which business models. This brings us to the third 

aspect of this dissertation, Ecosystems. Quantified Vehicles lead to the emergence of eco-

systems in service creation processes. Figure 2 summarizes in an overview, how the three 

key constituents of the topic Quantified Vehicles – Data, Services and Ecosystems – belong 

together. To repeat, Quantified Vehicles generate Data. The data of Quantified Vehicles en-

ables Data-driven Services, while the sum of actors involved in service delivery and their 

relationships constitute the Ecosystems. 

 

Figure 2 Quantified Vehicles provide Data for data-driven Services. The sum of actors involved 

in service delivery and their relationships constitute the Ecosystem. 

To summarize, the three key constituents Data, Services, and Ecosystems are relevant and 

fundamental topics related to the business informatics discipline and design- and knowledge-

oriented contributions within this dissertation will ultimately support also other disciplines in 

their work. It is the goal of this dissertation to create knowledge and insights on the key 

constituents of Quantified Vehicles: Data, Services and Ecosystems, to ultimately support 

the answering of the related research questions (will be presented in the following Section 

in Subsection 1.4.1).  

This analysis could be done involving several disciplines, which all provide added value 

for research: In addition to psychology, whether indications of wrong driving behavior actually 

help or additionally distract, it is on the one hand computer science with architectures and 

the software development to develop services, and on the other hand mechanical engineer-

ing in order to be able to correctly interpret sensor data, which is actually used for purposes 

other than those for which it was intended and was never meant to be passed on. Last but 

not least, business informatics provides the glue between all relevant disciplines. Business 
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Informatics connects IT and business, combining technical, business, and sociological 

knowledge for the recognition and optimization of economic processes (Gabler 

Wirtschaftslexikon, 2020; Fink et al., 2006). The business information scientist understands 

both economic relationships and software code. As an essential contribution, tools and meth-

ods are developed to understand the problems and to solve them most economically, e.g. to 

develop the services together with a software team and accordingly to work out concepts 

how such services can be scaled. As a business information scientist, the author of this 

dissertation focused on the latter, being aware that other disciplines are equally important. 

Thereby, the objectives are to: 

(i) better understand how Vehicle Data becomes a relevant artifact for business and inno-

vation 

(ii) define and describe Quantified Vehicles as a form of digitalization in the automotive do-

main 

(iii) develop concepts and data-driven services prototypically, that represent added value for 

consumers to enhance the understanding of challenges in service development 

(iv) better understand the process and actors of value generation, and the interplay of the 

actors with each other in the ecosystem, by conducting empirical research involving au-

tomotive domain experts 

(v) conduct design activities backed by empirical research to conceptually model data-

driven value generation and data-driven service ecosystem building 

This section is now followed by Section 1.4, which presents the research approach used. 

The focus on the three key points Data, Services and Ecosystems is also reflected in the 

three research questions, which are presented in detail in Subsection 1.4.1. In the process 

of answering the research questions, both design-oriented and knowledge-oriented contri-

butions were developed, as is shown in subsections 1.4.2 ‘Research Process’ and 1.4.3. 

‘Research Methods’. Section 1.5 then provides an overview and a detailed description of all 

contributions to answer the three research questions. The individual contributions them-

selves (all of which were also published in very similar form as a peer-reviewed publication) 

are then presented in detail in chapters 2-15. Finally, a conclusion, a summary, and an out-

look of the dissertation are drawn in Chapter 16. 
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1.4 Research Approach  

1.4.1 Research Questions 

To investigate the undoubtedly very recent and exciting topic of Quantified Vehicles, the data 

generated by them, the services they enable, and the actors and relationships in the eco-

system of value creation, research questions for this thesis are set up. Since the topic is new 

and there is no relevant preliminary work that exactly matches the topic, the central question 

is, what are vehicle data-driven service ecosystems, and why are they relevant for business 

informatics. This superordinate topic was already addressed in previous parts of this Synop-

sis, which allows us to move on to more specific questions, each of which focuses on one of 

the three concepts within the dissertation title: Data, Services and Ecosystems. 

A digital ecosystem, as defined by Gartner Research (2019) “is an interdependent group 

of enterprises, people and/or things that share standardized digital platforms for a mutually 

beneficial purpose (such as commercial gain, innovation or common interest).” We apply this 

to the Data-driven Service Ecosystems, which are thus formed by the organizations involved 

in service delivery and their relationships to each other, which in turn partially use vehicle 

data from Quantified Vehicles. In the context of this dissertation, the interest was particularly 

high to find out, how data-driven services can be technically created from vehicle data and 

how this is managed resulting in data-driven service ecosystems. In the Vehicle Data Value 

Chain steps, first of all, it requires vehicles, which, with the appropriate hardware and soft-

ware, generate vehicle data and enable the acquisition of vehicle data. Such vehicles can 

be termed Quantified Vehicles (Stocker et al., 2017a). Thus, the first research question deals 

in detail with what Quantified Vehicles actually are and how important they are for ecosystem 

development. Thereby it covers the concept of Data. 

 

Research Question 1: What are Quantified Vehicles and why are they important for 

Data-driven Service Ecosystems? 

 

As soon as it has been clarified what data Quantified Vehicles can make available for service 

developers, what standards and developments exist for accessing vehicle data, the question 

of the corresponding concrete technical implementation of services arises. A broad spectrum 

from i) the definition of value-creating steps (Vehicle Data Value Chain), ii) conceptual soft-

ware architectures to shed light on aspects such as efficiency, effectiveness, privacy, etc. up 
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to iii) the description of concrete prototypical implementations of data-driven services ad-

dress the second research question, which thereby covers the concept of Services.   

 

Research Question 2: How can vehicle data-driven services be engineered in an effi-

cient and effective way? 

 

And since such services, which in the future are expected to be integrated into every new 

vehicle and to have enormous business potential, the hypothesis is made that several actors 

with interrelationships form the data-driven service ecosystem. To advance research in this 

respect, it is important to explore how such ecosystems are constituted. Hence, the third 

research question covers the concept of Ecosystems: 

 

Research Question 3: What are important actors and relationships for service delivery 

in Vehicle Data Service Ecosystems? 

 

To answer the three research questions, an iterative research process using a mixture of 

different research approaches and methods was started in 2016 and is described in detail in 

the following. 

1.4.2 Research Process 

Congram and Epelman (1995) proposed the so-called Structured Analysis and Design Tech-

nique (SADT), originally introduced by Ross (1977; Dickover et al., 1977), to describe activ-

ities from a process perspective. Similar to Ahmed (2016), the author of this dissertation 

sees the methodological framework SADT as flexible in terms of notations and steps, thus 

suitable for describing research processes of scientists, such as those of a dissertation, for 

example. Figure 3 visualizes the generic structured activity box of SADT. An activity has 

three inputs and one output. The three inputs are 1) Control, which represents external in-

fluences, such as regulations, standards, etc., 2) Input, which represents what was added to 

the activity, and 3) Mechanism, which represents how the input was generated or used. 

Consequently, Output represents the output of the activity described. 
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Figure 3 The generic structured activity box of the Structured Analysis and Design Technique 

(SADT) (Own representation, originals to be found in Congram and Epelman (1995) or 

Dickover et al. (1977)). 

In Figure 4, the research process carried out in this dissertation is visualized according to 

the Structured Analysis and Design Technique (SADT). Starting activity “Formulate Re-

search Questions” on the upper left corner acts as a control element for all other activities. 

In accordance with the research questions on the main topics Data, Services and Ecosys-

tems, the three activities i) “Define and introduce ‘Quantified Vehicles’ (QV)”, ii) “Define the 

Vehicle Data Value Chain (VDVC)” and iii) “Analyze the Vehicle Data-driven Service Eco-

system” emerged. With increasing knowledge about the value chain and the ecosystem, 

hardware and software artifacts were developed with the activity “Design and Develop Arti-

facts along Value Chain Steps” within research projects (AEGIS, SCOTT, EVOLVE), which 

the author worked on during his dissertation. The findings were also used to show the infor-

mation system community with a research agenda where there is still potential for further 

research. This is included in the activity “Define a Research Agenda for the IS community”. 

The individual activities were carried out using a wide variety of mechanisms (which have 

been colored in each case), in this case rather research methods, such as “Literature Re-

view” (black), “Conceptual / Reference Modeling” (yellow), “Inductive Research” (orange) 

“Case Study” (purple),  “Prototyping” (grey), “Qualitative-empirical Cross-sectional Analysis” 

(green), “Empirical Intervies / Field Study” (dark red). Activity outputs can be found on the 

right side, e.g. “Data-driven Service Ecosystem Model”. 
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Figure 4 The research process carried out in this dissertation visualized with the Structured Anal-

ysis and Design Technique (SADT). 

In order to look at the process from a different perspective too, it will be presented in chron-

ological and simplified form in the following, visualized in Figure 5. Again, to answer the 

research questions RQ1-RQ3, several process steps were run through in the course of a 

research process, and contributions were developed which answer the research questions. 

In 2016, when literature on the exploitation of vehicle data for data-driven services was 

scarce, the term Quantified Vehicles was derived from Quantified Self and defined accord-

ingly. In a subsequent step, a market analysis provided an overview of data-driven services 

offered by vehicle manufacturers and third-party companies such as start-ups. Based on this 

market analysis and to advance research in the field of information systems, a research 

agenda for the IS community was developed. Since value creation followed a certain pattern, 

which was also evident in the activities conducted by the reviewed start-ups, the Vehicle 

Data Value Chain (VDVC) was first introduced as a conceptual model to sketch data-based 

value creation and further improved in several iterations using the knowledge of automotive 

domain experts. Furthermore, the development of concrete examples for data-driven ser-

vices and concepts was started to better understand not only the business challenges but 

also the technical challenges. Finally, as of 2018, research revealed that several actors are 

involved in the creation of data-driven services, creating vehicle data-driven service ecosys- 
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Figure 5 The research process carried out in this dissertation (chronological and simplified). 

tems with dependencies and strong business relationships. Consequently, work was con-

ducted until mid of 2020 to better understand such ecosystems and the role of data-driven 

value generation. However, it should be noted that these steps were interwoven and that it 

was moved back and forth between the activities, which is obvious due to the strong link 

between data, services and ecosystems. 

In the course of the research process, the results already briefly mentioned were obtained, 

with the next section briefly showing an overview of the set of methods used for this purpose. 

1.4.3 Research Methods 

This dissertation was written as a cumulative dissertation. A cumulative dissertation is a dis-

sertation consisting of several scientific articles, with each article measured against the qual-

ity standards of the corresponding international scientific community. Thereby, each article 

has a specific objective, uses a proper method (or even mixed-methods by combining qual-

itative and quantitative research, c.f. Jogulu and Pansiri, 2011), and presents findings, which 

contribute to one ore more research questions. Consequently, there is no methodology chap-

ter in this dissertation that describes the one specific method that was used. However, a brief 

overview of which methods were used in the individual contributions / publications will be 

shown in the following, while they are then presented in detail in the chapters that introduce 

and present the publications. 
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In scientific articles it is common to show what the current state of knowledge is by means 

of a Literature Review (e.g. summarized in a related work section). Here, too, a literature 

review (sometimes more or less detailed, depending on the publication) was carried out in 

all fourteen publications to build the scientific basis, in which the author of the dissertation 

was involved in thirteen out of fourteen cases. For the further content in the publications, a 

comprehensive set of methods was used. For instance, Inductive Research was used to 

develop theories on which there has been little research, including e.g. the Vehicle Data 

Value Chain (VDVC), and the Open Vehicle Data Platform (OVDP). Furthermore, design-

oriented methods were used to create new artifacts, for instance the method of Conceptual 

Modeling was used to design five published iterations of the Data-driven Service Ecosystem 

(once based on Design Science), while Reference Modeling was used to design the VDVC 

model, and Prototyping was used to develop concrete Data-driven Services.  

In addition, behaviouristic methods were used to study behavior and trends in relation to 

IT usage. In this respect, the method Qualitative-empirical Cross-sectional Analysis was 

used to introduce the topic of Quantified Vehicles, analyse the positions and actions of pop-

ular start-ups and vehicle manufacturers, to provide a research agenda, and to analyse the 

Data-driven Service Ecosystem. The Case Study method was used to evaluate the VDVC, 

while Empirical Field Studies were used to demonstrate and evaluate a prototypical setup 

and to iterate a model on privacy levels in sharing vehicle data3 based on user feedback. 

Finally, also empirical interviews with experts were the basis for in total three publications, 

including a research agenda and a Data-driven Service Ecosystem model. 

There are also some methods that are relevant to the topics covered by the dissertation 

but have not been explicitly mentioned or applied in the publications. These will also be 

briefly listed here, along with an explanation of why they were not used or how they influ-

enced the work. For instance, in the automotive industry, the focus has long been “on tangi-

ble output”, a mindset described in Product-Dominant Logic (P-D Logic), “which arose from 

the success of the Industrial Revolution” (Spohrer et al., 2008a). In the meantime, a second 

worldview or mindset has been added, the Service-Dominant Logic (S-D logic) for marketing. 

Two coexisting mindsets in conflict, or a “product–service continuum” (Olivia and Kallenberg, 

2003). Since the dissertation is also about data-driven services, the author has considered 

 

3  Planned and supervised by the author of this thesis, but carried out by student as part of his master's 
thesis. 
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the theoretical framework of S-D logic, for example the ten “service-dominant logic founda-

tional premises” (Vargo and Lusch, 2008), to understand services. However, the most cited 

scientific S-D logic contributions are in the field of marketing and retail, and so it is under-

standable that their focus is on understanding the service world, not how to build services. 

This can already be recognized in the formulation of the S-D logic foundational premises 

(FP), e.g. FP4: “Knowledge is the fundamental source of competitive advantage” and FP7: 

“The enterprise can only make value propositions”. Unfortunately, S-D logic does not help 

with the concrete development of artifacts, because it is not a method and does for instance 

not provide a template on how to access or process (vehicle) data. Consequently, also Ser-

vice Science, “the study of value co-creation interactions among entities” (Spohrer et al., 

2008b) known as service systems, which is built on the foundation of the above mentioned 

S-D logic, is a theory to better understand service innovation (Maglio and Spohrer, 2008), 

which has its origins in marketing too, and is based on ten foundational concepts too, for 

instance resources, service system entities, and access rights (Spohrer et al., 2008a). In 

line, as a dissertation in the field of business informatics, this thesis aimed also about finding 

out how services are created, though less theoretically, rather what the technical hurdles are 

and what the technical development steps are. Thus, S-D logic as well as Service Science 

were dealt with at the beginning of this dissertation, but it was interpreted more as a basic 

literature. In the rather technical contributions of the “technology-driven subject” Quantified 

Vehicles (Stocker et al. 2017a), which also performs analysis of Data-driven Service Eco-

systems from the perspective of the data and does not analyse the money (value) flows 

(Kaiser et al., 2021), Service Science is mentioned only once (in Kaiser et al., 2019b) in the 

fourteen publications included in this dissertation.  

Similarly, Product-Service Systems (PSS) Engineering is more technical than Service 

Science, but still provides rather theoretical contributions. Müller (2013) defines PSS as “cus-

tomer, lifecycle, and sustainability oriented socio-technical systems, solutions, or as offers, 

integrating products and services” and adds that “PSS is a system level approach although 

components are affected by requirements broken down from the system level”. Conse-

quently, the most frequently used methods in association with PSS, according to Cavalieri 

and Pezzotta (2012), are precisely methods that support requirements engineering or con-

cept development on a meta-level, and do not directly support the development. E.g. the 

method TRIZ is used “to optimize the idea generation process”, while the method Quality 
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Function Deployment (QFD) is used “to translate customer requirements into engineering 

characteristics” (Cavalieri and Pezzotta, 2012). 

Moreover, also a differentiation to hybrid products should be given. Hybrid products, or 

"hybrid value creation strategy" (Velamuri et al., 2011), different terms exist, is a strategy 

that is also present in the automotive industry. It is “i.e. the process of generating additional 

value by innovatively combining products (tangible component) and services (intangible 

component)” (Velamuri et al., 2011). In case of the automotive domain, the vehicle is sup-

plemented by services or offered as a service. The literature review by Velamuri et al. (2011, 

Table 3) shows that publications in the field of hybrid value creation strategy take a macro / 

strategic / marketing / business level / innovation / design / organization perspective, or ex-

amine sustainable aspects. However, it was much more the goal of this dissertation to find 

out how data-driven value creation is structured in the automotive industry (a rather technical 

/ data perspective), to make it explicit / transparent, and to understand it, and not to develop 

for example a strategy how a more sustainable ecosystem would look like. That is why the 

publications never mention hybrid products or closely related concepts. 

To summarize, each peer reviewed publication answers a specific sub-research ques-

tion mentioned in the paper, and for the rather data-driven / technical or understanding-ori-

ented contents the respectively most appropriate methods were chosen, which in retrospect 

also withstood the scientific discourse and were positively reviewed. In the following section, 

the research results are now presented in detail, structured according to research questions 

to which the publications have made the greatest contribution. 

1.5 Research Results 

As shown (c.f. Figure 2), Data, Services and Ecosystems are strongly interrelated. For in-

stance, in data-driven service ecosystem studies, the services and their stakeholders are 

considered, which in turn are based on specific vehicle data. Therefore, the majority of the 

contributions which are presented in chapters 2 to 15 address not only one topic, but two or 

even all of the three topics (Data, Services and Ecosystems), and consequently contribute 

to answering several research questions.  

To reduce complexity, each contribution and the related publication in which the contri-

bution has been communicated to the scientific community is linked only to the research 

question to which it makes the main contribution. The following Figure 6 provides an over-
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view of which publications address which research question. Each star figure in column Sci-

entific Publications stands for a publication, for instance, E&I is the abbreviation for (German-

speaking) Journal Elektrotechnik und Informationstechnik. Each contribution / scientific pub-

lication corresponds to one chapter in this dissertation.   

 

Figure 6 Research questions, chapters contributing to their answers, main findings, and scien-

tific publications that address them. 

After this overview, the next sections provide summarized insights into the particular scien-

tific publications and the contributions of the author of this thesis. In addition, for each re-

search question, a table provides an overview of the chapters answering the question, in-

cluding title of the publication (which is equal to the chapter title, or translated into English), 

results and research methods (from the author of this thesis), and the medium (a specific 

journal, conference, or series) of the scientific publication. For contributions in well-known 

journals and conferences, the current ranking in the following three ranking lists is provided, 

if available: 

• VHB Jourqual 3: business informatics 4 (short “VHB-JQ3” in the tables) 

o applicable for both, Journals and Conferences 

• Computing Research & Education 5 (short “CORE`18” in the tables)  

o applicable for Conference Proceedings only 

• ABDC Journal List 6 (short “ABDC-JQ” in the tables)  

o applicable for Journals only 

 

4  https://vhbonline.org/fileadmin/user_upload/JQ3_WI_01.xlsx 

5  http://portal.core.edu.au/conf-ranks/?by=all&source=CORE2018 

6  https://abdc.edu.au/wp-content/uploads/2020/04/abdc_jql_2019_0612-1.1.xlsx 
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1.5.1 Results for Research Question 1 

First, targeting Research Question 1, what are Quantified Vehicles and why are they im-

portant for Data-driven Service Ecosystems, Chapters 2 and 3 contribute to answer it with a 

deduction and definition of the terms Quantified Car and Quantified Vehicles from Quantified 

Self and also introduce surrounding topics, including services, business models, and digital 

ecosystems. In addition, Chapters 4 and 5 provide an analysis of the market by examining 

the approaches of the two main groups of players – vehicle manufacturers and tech start-

ups – including a business model analysis of their existing services. Furthermore, Chapter 6 

demonstrates the relevance of Vehicle Information Systems (Vehicle IS) for the IS commu-

nity. Vehicle IS are thereby defined as “a class of software applications processing vehicle 

data and/or other relevant data from different sources to finally provide valuable and action-

relevant information to the vehicle driver and/or to other stakeholders.” The chapter closes 

with a set of example research questions for selected research directions, to show that there 

are still many unresolved research questions. Table 2 provides an overview of all contribu-

tions to answer Research Question 1, showing methods and results of the author of the 

dissertation, and the publication medium. After the table, the text goes into more detail about 

the contributions of each chapter, structured into the corresponding subtopics of the research 

process (c.f. Figure 5): (i) Definition and Introduction of “Quantified Vehicles”, (ii) Analysis of 

the Market: Services, Start-ups, OEMs, Business Models, and Trends, and (iii) Definition of 

a Research Agenda for the Information Systems Community.  

1.5.1.1 Definition and Introduction of “Quantified Vehicles” 

As described in the introduction, publications and research were still scarce when this dis-

sertation was started in 2016 and 2017 (c.f. Figure 1). Therefore, the dissertation project 

started with a definition and introduction to the topic as well as the establishment of the name 

Quantified Vehicles. This was done with two initial publications in scientific journals: E&I 

(Chapter 2) and BISE (Chapter 3). The idea for this dissertation project was still emerging in 

these two initial publications, therefore the author of this dissertation was at not the main 

author of these two publications. After that, however, the author of the dissertation took over 

the lead. 

In Chapter 2, it is described that the continuous collection of vehicle data facilitates the 

generation of innovative products, services, and business models. This is underpinned with 

three case studies of start-ups – Automatic, Mojio and Dash – and investment figures. 
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Table 2 Chapters contributing to RQ1, their title, author results, research methods, and medium 

it was published in.  

Ch. Title Author Result(s) (AR) & Research Method(s) (RM) Medium and Rank 

2 

Quantified Car: Po-
tentials, business 
models and digital 
ecosystems  
(translated into English) 

AR: Introduction to the Quantified-Car-phenomenon, 
Definition of Quantified-Cars, Analysis of business 
models of startups providing Data-driven Services, and 
a Data-driven Service Ecosystem for Quantified Cars. 

RM: Literature Review, Qualitative-empirical Cross-
sectional Analysis, and Conceptual Modeling. 

(German-speaking)  
Journal Elektrotechnik 
und Informationstechnik 
(e&i) 

 
 

 

3 

Quantified Vehicles: 
Novel Services for 
Vehicle Lifecycle 
Data 

AR: Introduction and Definition of Quantified Vehicle as 
a topic and its relevance to the Information Systems 
(IS) community. Market analysis (e.g. five start-ups) 
w.r.t. business models. 

RM: Literature Review, Qualitative-empirical Cross-
sectional Analysis, and Conceptual Modeling. 

Journal Business & Infor-
mation Systems Engi-
neering (BISE)  

 
VHB-JQ3: B 
ABDC-JQ: A 

 

4 

Quantified Cars: An 
exploration of the po-
sition of ICT start-ups 
vs. car manufacturers 
towards digital car 
services and sustain-
able business models 

AR: Investigation of the status of Data-driven Services, 
including stakeholders, start-up examples and their 
value propositions, two approaches to collect data 
(OBD-2 vs. smartphone), and the current position of ve-
hicle manufacturers.  

RM: Literature Review, and Qualitative-empirical 
Cross-sectional Analysis. 

Intern. Conference on 
New Business Models 
(NBM) 

 
 

 

5 

Digital Vehicle Eco-
systems and New 
Business Models: An 
Overview of Digitali-
zation Perspectives 

AR: Investigation of the status of Data-driven Services 
including a brief investigation of selected vehicle man-
ufacturers and their digital service strategies. 

RM: Literature Review, and Qualitative-empirical 
Cross-sectional Analysis. 

Intern. Conference on 
Knowledge Technolo-
gies and Data-driven 
Business (i-KNOW) 

 
 

 

6 
A Research Agenda 
for Vehicle Infor-
mation Systems 

AR: Introduces Vehicle Information Systems (Vehicle 
IS) as a new class of information systems (IS). Relevant 
research directions and example research questions 
are provided for the IS community. 

RM: Literature Review, Empirical Interviews, and Qual-
itative-empirical Cross-sectional Analysis. 

European Conference on 
Information Systems 
(ECIS) 

 
VHB-JQ3: B 
CORE`18: A 

 

 

Thereby, the author of this dissertation contributed by examining the quantified car startups' 

(from the US) business models, which use vehicle data for data-driven services (see Table 

3, an excerpt of the table which is published in Stocker and Kaiser, 2016). In addition the 

dissertation author was responsible for (i) the data-driven service ecosystem model pre-

sented, which shows how ICT players will contribute to creating a new data-driven service 

ecosystem within the automotive domain, and (ii) for the conclusion and discussion of the 

introduction of Quantified Vehicles (referred to in the article as Quantified Car). The ecosys-

tem model includes important actors, such as cloud providers, service providers, primary 

and secondary end-users.  

E&I

BISE

NBM

i-K
now

ECIS
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Table 3 An excerpt overview of Quantified Vehicle start-ups. (Source: Stocker and Kaiser, 2016) 

Company 
Value  
proposition 

Possible use 
Business  
applications 

Costs 
Inves-
tors 

auto-
matic.com 
San Francisco 
(USA), 
founded 2011 

Connects car with 
the digital life of 
the driver. Ena-
bles drivers with 
knowledge about 
themselves and 
the vehicle to 
drive safer and 
smarter. 

Connects the vehicle 
to many apps, for ex-
ample for problem di-
agnosis, consumption 
optimization, location 
and emergency ser-
vices. Includes a web 
dashboard with com-
prehensive statistics. 

Cloud-based ser-
vices for insur-
ance companies, 
fleet operators 
and vehicle man-
ufacturers, provi-
sion of the data 
analysis infra-
structure. 

$99.95 for the 
OBD2 adapter 
to enter the 
digital ecosys-
tem, no infor-
mation on busi-
ness service 
pricing 

$24 
million 
in 3 
rounds 
from 
13 in-
ves-
tors 

.. .. .. .. .. .. 

zubie.com 
Sullivans Is-
land (USA), 
founded 
05/2012 

We make driving 
safer, easier & 
cheaper. Con-
nects your vehicle 
to the Internet for 
real-time infor-
mation on your 
smartphone. 

Find driving skills, be-
havioral warnings, 
rankings, maintenance 
tips, engine diagnos-
tics, battery warnings, 
emergency services, 
tracking, motion re-
cording, perks and gas 
stations. 

Solution for in-
surance compa-
nies and vehicle 
providers, fleet 
tracking, GPS 
tracking, vehicle 
condition moni-
toring, driver be-
havior. 

Different price 
models, of 
once $99 for 
OBD2 adapters 
and $10 per 
month. Busi-
ness use from 
$17.95 per 
month. 

$25.87 
million 
in 5 
rounds 
from 8 
inves-
tors 

 

Chapter 3 is based on the publication in the BISE (Business & Information Systems Engi-

neering) journal, in which the term Quantified Vehicles is introduced and defined for the first 

time as “the behavioral patterns of self-tracking [that] can be transferred to vehicles, which 

capture sensory data about themselves and their environment, thus becoming ‘Quantified 

Vehicles’” (Stocker et al., 2017a). Besides, it shows which trends exist internationally and in 

Europe, their relevance for research, and the existing research gap and the relevance of 

Quantified Vehicle research for the BISE journal community. The BISE journal publishes 

scientific research on the effective and efficient design and utilization of information systems 

and is, therefore, a relevant medium to publish scientific work in the field of business infor-

matics. The relevance of Quantified Vehicle research for BISE is expressed by proposing a 

research framework and a discussion of its elements. 

The author of this dissertation mainly contributed to Chapter 3 (which is based on this 

BISE publication) with an investigation of the business models of the quantified vehicle 

startups and the development of the data-driven service ecosystem model (a refinement of 

the ecosystem model from Chapter 2, see Figure 7). Moreover, the dissertation author was 

also involved in the creation of the other contents, for example, through brainstorming, dis-

cussions and revisions, thus contributed to the introduction and definition of Quantified Ve-

hicles. 
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Figure 7 A preliminary model of the Data-driven Service Ecosystem. (Source: Stocker et al., 

2017a) 

1.5.1.2 Analysis of the Market: Services, Start-ups, OEMs, Business Models, and 

Trends 

After the introduction to Quantified Vehicles, in which a number of start-ups were already 

named and analyzed in terms of business models in two publications, the next step was to 

conduct an even more intensive market analysis, in which the positions of vehicle manufac-

turers were also examined and compared. This was published in two publications in the year 

2017, which are related to each other. Chapters 4 and 5 are based on these publications. 

In detail, Chapter 4 provides insights into the Quantified Vehicle phenomenon and ex-

plores the approaches of the two major stakeholder groups, car manufacturers and tech 

start-ups, on their journey to develop novel digital services and sustainable business models. 

The chapter examines stakeholders who have an interest in the data, lists trending start-ups 

and investigates their visions, goals, and business models, shows developments in the be-

havior of German vehicle manufacturers, and attempts to derive future trends from this. 

Chapter 5 provides a short overview of the digitalization phenomenon in general, the 

impact of digitalization in the automotive domain through quantified vehicle start-ups and 

new business models, as well as a brief investigation of the position of vehicle manufacturers 

and their digital service strategies – all of them concluded in a comparison of value creation 

for business model elements. 
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As the two chapters / publications are related to each other, also the contribution of the 

dissertation author is related to both. Thereby, the author of this dissertation conducted the 

literature review (with second author of the two publications the chapters are based on) and 

contributed as the main author within discussions and revisions to the overview on stake-

holders with interest in the services, start-up examples and their value proposition, the two 

approaches to collect data (OBD-2 vs. smartphone), and the current position of vehicle man-

ufacturers. 

1.5.1.3 Definition of a Research Agenda for the Information Systems Community 

Once an initial overview of the market was available, the aim was to create a scientifically 

sound overview of how relevant the topic is for a target community (in this case the IS com-

munity) and which research questions still need to be answered by it. This was successfully 

accomplished with a publication at the prestigious ECIS conference presented in Chapter 6. 

In detail, the chapter introduces Vehicle Information Systems (Vehicle IS) as a new class 

of Information Systems (IS). Furthermore, this chapter investigates existing literature on Ve-

hicle IS published by the academic IS community, provides a definition of the term ‘Vehicle 

Information System’ and gives an overview of relevant research directions with a set of ex-

ample research questions, to assist the academic IS community to advance the state-of-the-

art in designing Vehicle IS. The article finally proposes a research agenda for vehicle infor-

mation systems with a set of research questions targeted as IS researchers. 

Thereby, the author of this dissertation conducted the literature review, co-authored the 

introduction and motivation, was responsible for Subsection “Scope and Examples of Vehi-

cle IS”, was also involved in defining the concept of Vehicle IS, managed the development 

of the research agenda and sample research questions which is based on six conducted in-

depth interviews, and co-authored the conclusions and future work section. Figure 8 shows 

the research directions which were used to frame the research questions in this publication. 
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Figure 8 Research directions for Vehicle IS. (Source: Kaiser et al., 2018b) 

1.5.2 Results for Research Question 2 

Second, targeting Research Question 2, how can vehicle data-driven services be engineered 

in an efficient and effective way, structured into the corresponding subtopics of the research 

process (c.f. Figure 5), chapters 7-8 answer it with an “Analysis and Definition of the VDVC”, 

while chapters 9-11 answer it by presenting “Concepts along the VDVC”, and while chapters 

12-13 answer it by presenting “Prototypical Implementations along the VDVC”. The vehicle 

data value chain on the one hand shows the structure of service development, and on the 

other hand makes services comparable. Examples are a concept for data sharing using an 

Open Vehicle Data Platform, and the description a Vehicle Data Logger, an IoT platform, a 

data-driven vehicle telematics service, a service to detect individual driving behavior and 

potholes on the street, and a smartphone application. Table 4 provides an overview of all 

contributions to answer Research Question 2, showing the methods used and the results of 

the author of the dissertation, and in which medium the paper was published. Hereafter fol-

lows a description of the contributions of each chapter in more detail. 

1.5.2.1 Analysis and Definition of the VDVC 

“One of the greatest challenges in operation management is creating a process that will 

transform input into services, and product value to internal, as well as external, customer 

added value” (Gertner, 2013). This process is called value creation and can be described 

with a descriptive model (Carlucci et al., 2004) of the so-called “value chain”. According to 

Kaplinsky and Morris (2000), the “value chain describes the full range of activities which are 

required to bring a product or service from conception, through the different phases of pro-

duction (involving a combination of physical transformation and the input of various producer  

Human Domain:
Social Science & 

Humanities

Governance 
Domain:
Economics, Law & 
Organization

Technical Domain:
Technology

Data analytics and 
artificial intelligence for 
vehicle data processing

Wearables for 
Vehicle IS

Privacy, trust, security, safety, 
legal, moral and ethical 
aspects in vehicle data 
processing and usage

Standardization of 
vehicle interfaces 
and information

Business  models and 
platform ecosystems in the 

context of Vehicle IS

Decision support 
systems (DSS) in the 
context of Vehicle IS
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Table 4 Chapters contributing to RQ2, their title, author results, research methods, and medium 

it was published in.  

Ch. Title Author Result(s) (AR) & Research Method(s) (RM) Medium and Rank 

7 

The Vehicle Data 
Value Chain as a 
Lightweight Model to 
Describe Digital Vehi-
cle Services. 

AR: Definition of the Vehicle Data Value Chain (VDVC), 
Application of the VDVC to describe and compare existing 
digital vehicle services. 

RM: Literature Review, Inductive Research and Refer-
ence Modeling. 

Intern. Conference on 
Web Information Sys-
tems and Technolo-
gies (WEBIST) 

 
CORE`18: C 

 

8 

Digital Services 
Based on Vehicle Us-
age Data: The Under-
lying Vehicle Data 
Value Chain 

AR: Refinement and definition of the Vehicle Data Value 
Chain (VDVC) using eight characteristics per step. In ad-
dition, the VDVC is used to classify data-driven services. 

RM: Literature Review, Inductive Research, Reference 
Modeling, and Case Study. 

Series on Lecture 
Notes in Business  
Information Pro-
cessing (LNBIP) 

 
VHB-JQ3: C 

 

9 

Towards a Generic 
IoT platform for Data-
driven Vehicle Ser-
vices 

AR: Development of the concept to collect, process, and 
use vehicle data for data-driven services with the focus on 
the IoT platform for data-driven vehicle services under my 
leadership in project SCOTT. Development (telemetry 
data visualization) and co-development (Vehicle Data 
Logger) of certain artifacts.  

RM: Literature Review, and Prototyping. 

IEEE Intern. Confer-
ence on Vehicular 
Electronics and Safety 
(ICVES) 

 
 

 

10 

Towards a Privacy-
preserving Way of 
Vehicle Data Sharing 
– a Case for Block-
chain Technology? 

AR: Co-development of the concept for a blockchain-
based privacy-preserving way of vehicle data sharing, 
and the concept of an Open Vehicle Data Platform 
(OVDP). Development of an e3value model about actors 
and value flows of a data-driven service ecosystem. 

RM: Literature Review, Inductive Research, and Concep-
tual Modeling. 

Part of book series 
Lecture Notes in Mo-
bility (LNMOB) 

 
 

 

11 

A Lightweight Frame-
work for Multi-device 
Integration and Multi-
sensor Fusion to Ex-
plore Driver Distrac-
tion. 

AR: Analysis of related work, and planning and implemen-
tation of the field study. 

RM: Literature Review, and Empirical Field Study. 

Intern. Conference on 
Advanced Information 
Systems Engineering 
(CAiSE) 

 
VHB-JQ3: C 
CORE`18: A 

 

12 

Use of Automotive 
Big Data for the De-
velopment of Two 
New Applications 

AR: Administration of the description of developed proto-
typical applications. Thereby, the individual steps of the 
Vehicle Data Value Chain are run through to develop two 
applications for users. 

RM: Prototyping. 

BITKOM position pa-
per “Practical use 
cases of artificial intel-
ligence & big data in in-
dustry” 

 
 

 

13 

A Vehicle Telematics 
Service for Driving 
Style Detection: Im-
plementation and Pri-
vacy Challenges 

AR: Preparatory work (definition of privacy levels (c.f. 
10.3.2), and deduction of the “willingness to share data” 
model) and supervision of empirical work on privacy re-
lated content. In addition, co-development of the proof-of-
concept implementation. 

RM: Literature Review, Inductive Research, Reference 
Modeling, Empirical Field Study, and Prototyping. 

Intern. Conference on 
Vehicle Technology 
and Intelligent 
Transport Systems  
(VEHITS)  

 
 

 

 

services), delivery to final consumers, and final disposal after use”. However, those tradi-

tional value chains of incumbent companies are challenged by digital transformation.  

WEB
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To better understand and capture the ongoing digital transformation in the automotive do-

main, the Vehicle Data Value Chain (VDVC) is introduced as a lightweight model to describe 

and examine Data-driven Services. The first version of the Vehicle Data Value Chain was 

developed back in 2017, and was once submitted to the TRA (Transport Research Arena) 

2018 conference. An abstract was then accepted by the ETC (European Transport Confer-

ence) 2018, where it was also presented. The abstract (considered as VDVC - Iteration 1, 

c.f. Figure 5, page 31) was published publicly (Kaiser et al., 2018a), but as an abstract it was 

not specifically included in the list of publications of this dissertation. In the course of the 

ETC submission, a full paper could also be submitted for review for the Special Issue of 

Transport Research Procedia, but unfortunately this Journal ultimately selected a different 

topic for the Special Issue. After a revision, the full paper was accepted for WEBIST 2019 

(considered as VDVC - Iteration 2), and also got on the short list of candidates to win the 

WEBIST 2019 best student paper award. In detail, the WEBIST 2019 paper presented in 

Chapter 7 introduces the VDVC as a lightweight model, grounded on big data, to describe 

and examine data-driven services, to better understand and capture the ongoing digital 

transformation in the automotive domain. Additionally, the VDVC is applied to data-driven 

services from the market to identify commonalities and differences. 

Thereby, the author of this dissertation – as the corresponding author – contributed to 

writing and incorporated the experience from the development and analysis of Data-driven 

Services (in research projects) that the value creation of services is subject to a certain pat-

tern, comparable to the Big Data Value Chain. Thus, Subsections 7.2.2 and 7.2.3, where the 

VDVC is proposed and described in detail (c.f. Figure 9) as a lightweight model and applied 

to existing Data-driven Services, originated under the responsibility of the author of this dis-

sertation, based on discussions with the second author and the last author. 

Since the author of this dissertation was invited to expand on the WEBIST paper (Kaiser 

et al., 2019a) for submission to the LNBIP series, the VDVC definition was extended accord-

ingly (considered as VDVC - Iteration 3) and now describes the value creation process in 

more detail using eight characteristics. In particular, each value-creating step (from Gener-

ation to Usage) is described with a set of characteristics, e.g. the scope for the step, the 

input data, the output data generated, typical actors involved, typical architectures, relevant 

trends and tools and, finally, the contribution of a particular step to value creation, as shown 

in Figure 10. Hence, Chapter 8 presents this iterated and extended version of VDVC pub-

lished in Kaiser et al. (2019a) and uses it as a model for better structuring, describing, and 
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Figure 9 The Vehicle Data Value Chain (VDVC) based on Kaiser et al. (2018a; 2019a). (Source: 

Kaiser et al., 2020b) 

testing digital services based on vehicle usage data. To show the general applicability and 

usefulness of the VDVC in a practical context and to evaluate it, two cases are shown, where 

the VDVC is used to classify two implemented data-driven services, (i) an intermodal mobility 

service, and (ii) a pothole and driving style detection service.  

As described above, theoretical insights such as the Vehicle Data Value Chain were also 

derived from own experience in the conception, development and application of Data-driven 

Services in which the author of this dissertation was involved. During the years of the dis-

sertation project, the author had the chance to work on several research projects, to gain 

experience, for example, in the international research projects AEGIS, SCOTT, InSecTT, 

EVOLVE, D-TRAS and in internal strategic projects (at Virtual Vehicle Research GmbH) 

CLOud conNEcted CAR (CloneCAR), Wearables4Drivers, and Lightweight Digital Mobility 

Assistance. Research projects, which are funded with EU funding and/or national funding, 

are expected to disseminate their findings, thus there are also several (rather) technical pa-

pers that follow now, starting with contributions that present a concept, and concluding with 

contributions that focus on prototypical implementations, where the transition between the 

categories is fluid and some publications show both a concept and prototypical implementa-

tions. 
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Figure 10 The Vehicle Data Value Chain (VDVC) – Iteration 4, derived from Curry (2016) extended 

with characteristics. (Source: Kaiser et al., 2020b) 
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1.5.2.2 Concepts along the VDVC 

In the case of project SCOTT, the author of this dissertation led the task (WP11 Task 3) in 

which a data-driven service was developed, together with colleagues and partners from the 

company RISE from Sweden (and JIG from Spain, but they did not join publication writing). 

As part of the dissemination, the concept was published in a peer-reviewed paper. Chapter 

9 presents this concept to collect, process, and use vehicle data to enable data-driven ser-

vices. Challenges like independence, scalability, and flexibility while ensuring e.g. privacy, 

and accountability must be considered for an IoT platform supporting data provision for ser-

vices. Thus, this chapter presents a conceptual architecture of a generic IoT platform for 

enabling such data-driven services and describes how such a platform can be implemented, 

ranging from the gateway device capturing and transmitting the vehicle data, to a vehicle 

data-driven service application with added value for the driver. 

Thereby, the author of this dissertation was responsible for Subsections 9.2.1 and 9.4.1 

on related work for Quantified Vehicles and the description of the Vehicle Data Logger. Fur-

thermore, as task leader in the SCOTT research project (WP11, Task 3) in which this ap-

proach was developed, the concept was also developed under the leadership of the disser-

tation author based on joint discussions and brainstorming sessions. Furthermore, the list of 

“potential applications for the end users” in Section 9.3 was added, and the telemetry data 

visualization on which Figure 11 (Figure 45 in the corresponding chapter) is based, was 

developd by the author of this dissertation in the internal project CloneCar and made avail-

able for this publication. 

 

Figure 11 Telemetry data visualization utilizing OBD-II data. (Source: Papatheocharous et al., 2018) 

In the next publication, based on an internal company meeting, a concept idea on the topic 

of vehicle data sharing was created together with the second and fifth authors of the publi-

cation, which Chapter 10 is based on. Vehicle data, a valuable source for digital services, 
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allows analysis that touches personal privacy, thus, this chapter deals with the question of 

what would be a privacy-preserving way of vehicle data exploitation. To answer this question 

the blockchain-based Open Vehicle Data Platform concept is presented, followed by a dis-

cussion on unsolved technical and non-technical issues. 

Thereby, the author of this dissertation stepped into the role as the first and correspond-

ing author when M. Steger left the company and wrote the original draft in the concept sec-

tion (10.3) based on the joint considerations. Figure 12 illustrates, how a broker entity using 

Blockchain technology would manage the data exchange with Data-driven Services, if the 

driver/vehicle owner agrees. 

 

Figure 12 Data exchange between origin (vehicle) and target (service providers) is managed by a 

broker using Blockchain technology for smart contracts. (Source: Kaiser et al., 2019b) 

In addition, the author of this dissertation designed the e3value model that shows the actors 

and value flows of a (vehicle data sharing) data-driven service ecosystem, illustrated in Fig-

ure 13 (Figure 48 in the corresponding chapter), and co-authered all other sections of the 

publication.  

Furthermore, in the internal project Wearables4Drivers, the aim was to use sensor fusion of 

four consumer devices, to analyze driver behavior. A Vehicle Data Logger provided vehicle 

data (e.g. vehicle speed), a smartwatch provided GPS position, heart rate data, and accel-

eration data (to analyze hand movements), a MicroSoft HoloLens provided head movement 

data, and a smartphone was used as central hub for data exchange. As a result, the heart 

rate from the smartwatch and the current vehicle position were shown in the HoloLens while 

driving. Based on this setup, the author of this dissertation conducted an empirical field study 

with ten volunteers, which were asked to perform sequences of specific motions which sim-

ulate a variety of distraction tasks. The concept, the empirical field study and the evaluation 

have been published in a generic way as a lightweight technical framework for the real-time 

Cloud Service 
Provider

Broker

Broker

1..n
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Figure 13 Actors and value flows (e3value model) of a data-driven service ecosystem. (Source: 

Kaiser et al., 2019b) 

fusion of vehicle data and other contextually relevant data, as will be shown in Chapter 11. 

In the publication, the proposed framework is used to assess the driver’s status with appro-

priate measurement equipment, to detect driver distraction and driver inattention, which are 

both major challenges in road traffic and major causes of accidents.  

1.5.2.3 Prototypical Implementations along the VDVC 

The last two publications answer Research Question 2 by means of prototypical imple-

mentations. The the first of the two publications is also based on project work, this time from 

the AEGIS and EVOLVE projects. Here, for instance, vehicle data (collected with the Vehicle 

Data Logger) was pre-processed and analysed accordingly to detect potholes on the road 

from the data, and to calculate a risk/safety-driving-score that indicates how safely the driver 

is driving. With this content, there was an application for a presentation at the annual 

BITKOM Big-Data.AI Summit (#BAS19), which was accepted, and conducted by the author 

of the thesis. As a result of the presentation at the Big-Data.AI Summit 2019, the author of 

the thesis was invited to submit a contribution to a BITKOM position paper. In this paper, 

together with the co-authors, developments from several research projects are described, 

while partly content from project deliverables was reused, in which the author of the thesis 

has collaborated. In detail, Chapter 12 shows, on a level targeted at practitioners, how the 

individual steps of the VDVC are run through to finally provide two applications for end-users, 
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(i) the detection of individual driving behavior (c.f. Figure 14, for example the trip with ID 

“Trip_069” is less risky than 56.72% of all trips) and (ii) the detection of potholes on streets. 

In particular, details such as the correct alignment of the coordinate system, that this is es-

sential for further data analysis and the data pipeline, which shows the sequence and 

branching of the implementation, are shown. 

 

Figure 14 Map visualization of a trip (left) and driver trip details (right). (Source: Kaiser et al., 2020a) 

The (chronologically) last publication of prototypical implementations again deals with the 

results of the SCOTT project. In contrast to chapter 9, in which the concept was presented, 

chapter 13 rather describes results of the project work under the leadership of the author of 

the dissertation. In order to bring the topic of privacy into focus once again (because here 

too there were repeated considerations and ideas in the course of the dissertation project), 

the results of the master's thesis by Tom Szilágyi, whose content was supervised by the 

author of the dissertation, were also included.  

In detail, Chapter 13 shows how individual components of the VDVC have been imple-

mented for a proof-of-concept resulting in a data-driven service for driving style detection 

and what has to be considered in terms of privacy. This chapter also presents the results of 

an empirical study on privacy, e.g. which data, for which services, and under which circum-

stances the survey participants would log and provide the data. Thereby, the contents of the 

section on data privacy (13.1) are based on joint considerations by the author of the disser-

tation and the last author of the publication. These considerations, such as the “preliminary 

model of the willingness to share data” and a preliminary version of the “privacy levels for 

vehicle data sharing” (c.f. Figure 15 or Figure 60 in the corresponding chapter), served as 

input for Tom Szilágyi's master's thesis (Szilágyi, 2019), in which he investigated the level 

system for data sharing in an empirical study under the guidance of the author of the disser-

tation. Furthermore, as leader of the corresponding task in the SCOTT research project 

(WP11, Task 3), through regular meetings with the partners, the author of the dissertation 

was involved in the conception of all steps described in the service implementation section 
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(13.2). Thereby, he co-developed / supported the iteration of the Vehicle Data Logger 

(13.2.1) used in project SCOTT together with the second and third authors, based on the 

initial design and development of the former colleague Benjamin Fischer. 

 

Figure 15 Privacy levels for vehicle data sharing. (Source: Szilágyi, 2019; Kaiser et al., 2020c) 

1.5.3 Results for Research Question 3 

Third, targeting Research Question 3, what are important actors and relationships for service 

delivery in Vehicle Data Service Ecosystems, Chapters 14-15 contribute to answering it. 

Thereby, conceptual models of Data-driven Service Ecosystems in the automotive domain 

are presented, which were developed based on expert interviews. Table 5 provides an over-

view of all contributions to answer Research Question 3, showing the methods used and the 

results of the author of the dissertation, and in which medium the two papers were published. 

After the table, the text goes into more detail about the contributions of both chapters.  

1.5.3.1 Analysis of Data-driven Service Ecosystems 

In the last two publications that are part of this cumulative dissertation, the data-driven ser-

vice ecosystem is analyzed to better understand the value creation process. Both publica-

tions are based on interviews with experts from the automotive domain. 

Chapter 14 (based on the publication in 25th Americas Conference on Information Sys-

tems – AMCIS 2019) sheds light on the actors involved in the creation of data-driven services 

in the automotive domain. Thus, it examines the ecosystem transformed by the emergence 

of data-driven services. To improve the understanding, it analyses both the actors and the  
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Table 5 Chapters contributing to RQ3, their title, author results, research methods, and medium 

it was published in.  

Ch. Title Author Result(s) (AR) & Research Method(s) (RM) Medium and Rank 

14 

Understanding Data-
driven Service Eco-
systems in the Auto-
motive Domain. 

AR: Development of a conceptual, high-level Data-driven 
Service Ecosystem model and the related data ecosystem 
in the Automotive Domain, based on expert interviews and 
a literature review conducted.  

RM: Literature Review, Empirical Expert Interview Study, 
Qualitative-empirical Cross-sectional Analysis, and Con-
ceptual Modeling.  

Americas Confer-
ence on Information 
Systems (AMCIS) 

 
VHB-JQ3: D 
CORE`18: A 

 

15 

Conceptualizing 
Value Creation in 
Data-driven Services: 
The Case of Vehicle 
Data 

AR: Development of a conceptual model for value creation 
in vehicle Data-driven Services – a model that connects key 
actors with value-adding data sharing processes – based 
on expert interviews and a literature review conducted. 

RM: Literature Review, Empirical Expert Interview Study, 
Qualitative-empirical Cross-sectional Analysis, and Con-
ceptual Modeling. 

International Journal 
of Information Man-
agement (IJIM) 

 
VHB-JQ3: C 
ABDC-JQ:A* 

 

 

role of vehicle sensor data from an ecosystem perspective. Based on literature analysis, 

results from eleven expert interviews are used for the examination to gain relevant actors in 

the ecosystem as well as their relationships, data flows, and services. Results thus provide 

a fundamental understanding of data-driven service ecosystems in the automotive domain 

and form the basis for future IS research on (big) data flows and analytics within such eco-

systems. 

Thereby, as corresponding author, the author of this thesis conducted the literature re-

view to derive a preliminary model of the Data-driven Service Ecosystem, developed the 

interview guide, contacted interview participants, conducted four interviews in person, and 

seven interviews online. Furthermore, the interviews and the related work were analyzed 

and the original draft of (i) the high-level model of the automotive Data-driven Service Eco-

systems, (ii) the detailed model of the data ecosystem as shown in Figure 16 below (c.f. 

Figure 66 in the corresponding chapter), and (iii) the overview of the providers and consum-

ers of selected data-driven services were developed by the author of the thesis. 

 

Figure 16 Detailed model of the data ecosystem. (Source: Kaiser et al., 2019b) 

AMC
IS

IJIM
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1.5.3.2 Conceptual Model for Value Creation in Data-driven Services 

Furthermore, based on the AMCIS publication, an article for International Journal of Infor-

mation Management (IJIM) was formed in seven iterations. It states, that the digitalization of 

the automotive industry brings fundamental changes to how value is created and by whom. 

As part of this transformation, the creation of data-driven services generates new value 

streams, thus leading to the emergence of new actors and ultimately, new market configu-

rations. Eventually, vehicle data paves the way for new types of data-driven services. Chap-

ter 15, based on the IJIM article, provides a model suitable to support academics and prac-

titioners in the identification of the actors that will play a key role in data-driven service gen-

eration and resources involved in value creation processes. Based on interviews with eleven 

prominent experts of the central European automotive industry, a conceptual model that 

connects these key actors with value-adding data sharing processes is developed. To vali-

date the model, it is applied to a real-life case: the design of a data-driven service for road 

surface quality detection. Furthermore, the model’s implications to both theory and practice 

are discussed.  

Thereby, based on eleven domain-expert interviews, the author of this thesis has con-

tinued to work with the co-authors on this journal publication, which presents a conceptual 

model for value creation in Vehicle Data-driven Services. As the corresponding author, he 

wrote, reviewed and edited the original draft with the help of the co-authors. Specifically, the 

author of this thesis conducted the literature search in established scientific electronic data-

bases with the second author, developed the interview guide, and conducted four interviews 

in person and seven interviews online. He critically compared and analysed the interviews 

and related work, and developed the original draft of the conceptual model in discussions 

with the second author. Based on discussions with the co-authors, the author of this thesis 

iterated the results and improved the model and the article accordingly based on several 

reviewer feedbacks (reviews from four top-ranked conferences and journals). In Figure 17 

(Figure 72 in the corresponding chapter) below the conceptual model is illustrated. In addi-

tion, the author of this thesis participated in the development and writing of the model vali-

dation and in the writing of the discussion and conclusion sections. 
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Figure 17 A conceptual model for value creation in vehicle data-driven services. (Source: Kaiser 

et al., 2021) 

 

1.6 Summary 

To summarize, a synthesized overview of the contents of the Synopsis is given in the follow-

ing.  

The ongoing digitalization of the incumbent industries opens up new opportunities for 

value creation. Thereby, data gets increasingly important as a source, to develop and pro-

vide data-driven services. In the introduction, it has been shown that this can be applied to 

the automotive industry (e.g. exploiting vehicle usage data) and actually is a currently urged 

topic in the industry and is slowly reaching the scientific community. The introduction and 

analysis of the term “Quantified Vehicles” in 2017 showed, that it is quite new and that there 

is almost no research on it, as it was in the emerging phase when the dissertation was 

started, and even in 2020 the harmonization processes are not yet complete. This allows the 

conclusion, that findings within this dissertation form a new and relevant contribution to the 

ongoing research, as not everything is already set and defined yet. 

In the automotive industry, data-driven services based on vehicle usage data offer the 

opportunity for (i) value creation for the automotive industry (e.g. predictive maintenance, 

product analysis, and improvement), and (ii) other consumers (e.g. pothole analysis for road 

can act as
actoractor

Provider of Data-driven 
Services

Ecosystem
Entity

can act as

provides

is consumed by

Data Value Creation Process

Digital Ecosystem Actor Roles

can act as

can act as

can act as

Raw or Processed 
Vehicle / Context. Data

Service-specific 
Vehicle / Context. Data

Consumable 
Service Data

Participating Entities

provides vehicle/contextual data for..

Regulating 
Authorities

Other Entities

can influence

Data Marketplace / 
Platform / Portal Provider

Vehicle 
Data

Context. 
Data

Vehicle 
Data

Vehicle User
Contextual 
D. Provider

Vehicle 
Manufacturer

Gateway 
Provider

provides consumable service data for

In
cr

ea
si

n
g 

va
lu

e 
o

f 
d

at
a 

fo
r 

d
at

a 
co

n
su

m
e

r

Vehicle User
Other 

Consumers

provides service specific data for

provides raw/processed data for

is transformed into

is transformed into

is transformed into

provides

is consumed by

provides

is consumed by

provides

is consumed by



54 Synopsis 

maintenance, traffic analysis for traffic planners), and (iii) added value for the driver (e.g. 

tutoring services, information on driving style, comparison possibilities). Thereby the value 

creation opportunity represents an important factor in maintaining innovation in the automo-

tive industry, to find new ways of generating value for other consumers, and to increase / 

maintain customer loyalty of vehicle drivers. 

With data analysis, new players from the ICT sector are also pushing into the value 

chains, as the automotive industry traditionally tends to outsource software development. 

The cooperation of the different companies from the automotive and ICT sector for the de-

velopment of data-driven services based on vehicle data is presented as an ecosystem, 

which is just establishing at this time of formation. 

Thus, the aim of this dissertation, entitled ‘Quantified Vehicles: Data, Services, Ecosys-

tems’, is to increase understanding on, define and explore Quantified Vehicles that generate 

data about themselves and their environment, and its three key constituents: i) (vehicle) 

Data, ii) the Data-driven Services that can be generated from them, and iii) the Data-driven 

Service Ecosystem that develops data-driven services. The lack of research on this topic 

and the importance of the automotive industry for the European and global economy under-

lines the relevance of this dissertation.  

To investigate the recent and exciting topic of Quantified Vehicles, the data generated 

by them, the services they enable, and the actors and relationships in the ecosystem of value 

creation, three research questions were set up. The research questions were then worked 

through in the presented research process by fourteen individual contributions, all of which 

were also published to and accepted by the scientific community. The results, analyses, and 

prototypes provide answers and solutions to the three very relevant and larger research 

questions that were motivated at the beginning. The individual contributions were summa-

rized above, and are presented in full detail in the upcoming chapters 2-15. However, to 

provide not only a view on scientific publications from a research question viewpoint (c.f. 

Figure 6), a topic-related overview including all 14 publications is provided in Figure 18 be-

low. In retrospect, the idea for this dissertation project developed in the two initial publications 

E&I (Chapter 2) and BISE (Chapter 3), therefore the author of the dissertation was not the 

main author (lighter blue color) of these two publications. After that, however, the author of 

the dissertation took over the lead and is the main author (darker blue color) of 10 of the 

following 12 publications. 
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Figure 18 A topic-related overview of the results – fourteen peer reviewed papers. 

In brief, first, the topic of Quantified Vehicles was defined and introduced, and then the state-

of-the-art of data-driven services based on vehicle usage data was investigated in the market 

with several market analyses. From this, a research agenda was successively derived, which 

confirmed, among other things, that value creation and value generation are insufficiently 

investigated. Subsequently, the VDVC was defined and iteratively improved, for example 

with findings from proof-of-concept implementations, literature, and expert interviews. In the 

final part, primarily the cooperation of actors in the ecosystem was examined. Hence, two 

tangible key results of this dissertation are i) the design of a value chain for data-driven 
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services in the automotive domain, and ii) the design of an data-driven service ecosystem 

model.  

The 14 publications consist of three journal publications (E&I, BISE, and IJIM), two book-

series contributions (LNMOB, and LNBIP), eight conference contributions (NBM, i-Know, 

ECIS, ICVES, WEBIST, CAiSE, AMCIS, and VEHITS), and a contribution in a BITKOM po-

sition paper (BITKOM). Thereby, the journal publications IJIM (Impact Factor 8.21), BISE 

(Impact Factor 5.83), the ECIS conference publication (VHB-JQ3: B), and the publication in 

the book series LNBIP (VHB-JQ3: C) are particularly outstanding, due to their high impact 

and prestige in the IS community, as shown in Table 6. 

Table 6 Outstanding publications where the author of this dissertation contributed. 

Medium Statistics 

IJIM 

Impact Factor: 8.21 (Feb. 2021) 

2.88 in SJR 2019, Q1 (best quartile for MIS)7 

ranked A* in the ABDC journal list ranking 

C in VHB -JOURQUAL3 (ranking from 2015) 

BISE 

Impact Factor: 5.83 (Feb. 2021) 

1.31 in SJR 2019, Q1 (best quartile for IS) 

A in the ABDC journal list ranking 

B in VHB -JOURQUAL3 

ECIS 
A in CORE`18 

B in VHB -JOURQUAL3 

LNBIP 
C in VHB -JOURQUAL3 

0.26 in SJR 2019, Q3 (third quartile for IS/MIS) 

 

The next few years will show how much data-driven services will become an important factor 

in the automotive industry. In any case, the work of this dissertation on “Quantified Vehicles: 

Data, Services, Ecosystems” has contributed to a better understanding of the value creation 

steps of VDVC and has shown, for example, how the ecosystem currently looks and thus 

also has a share in future changes. The author hopes that the results have created a fruitful 

basis on which other researchers or even industry players can build further. Finally, Chapter 

16 provides a summary from the author's personal perspective. 

 

7  https://www.scimagojr.com/journalsearch.php?q=15631&tip=sid 
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2. Quantified Car: Potentials, Business Models 

and Digital Ecosystems 8 

Summary and Author Contribution 

Definition and Introduction of “Quantified Vehicles”  
(Paper 1/2) 

In this journal article, the term Quantified Car is introduced and derived from the Quantified 
Self trend. Modern vehicles enable such Quantified Cars – a continuous collection of ve-
hicle lifecycle data which facilitates the generation of innovative products, services, and 
business models. The article describes how start-ups from the USA use vehicle data for 
data-driven services, and that this will also become relevant for the European region. The 
ICT players will create a new digital ecosystem within the automotive domain. In this digital 
ecosystem there are several important actors: cloud providers, service providers, primary 
and secondary end users. With three case studies – Automatic, Mojio and Dash – use 
cases and the potential of start-ups are shown, and many similarities are identified. The 
potential is discussed based on investment figures, which reach $20 million in some 
cases. To sum up, this article provides an introduction into the Quantified-Car-phenome-
non and analyses the business models of three different Quantified-Car-startups. 
 

Here, I focussed on the introduction to and the definition of Quantified Vehicles 
(termed Quantified Cars in the paper) as an emerging trend for Europe. In doing so, I tried 
to shed light on business models of start-ups in this field, to increase understanding of 
how startups utilize vehicle data for Data-driven Services, and how they commercialize 
the services. In addition, the discussion on the constitution of the Data-driven Service 
Ecosystem is started (termed Quantified Car Ecosystem in the paper). 

 

2.1 From Quantified Self to Quantified Car 

In a networked world, physical objects of daily life collect more and more data about them-

selves and their environment and slowly transform into “Smart, Connected Products” (Porter 

and Heppelmann, 2014; Porter and Heppelmann, 2015). Products become a source of data 

and data scientists evaluate the ever-increasing amount of data collected over the entire life 

cycle of these intelligent products in order to gain interesting insights into user or product 

behavior. In the private sector, for example, the Quantified Self Movement uses the tools of 

modern data-based analysis to gain multi-layered insights into the own organism. 

 

8  The content of this chapter was translated into English for integration into this English-language dis-
sertation and is based on  

 Stocker, A., and Kaiser, C. (2016). Quantified car: potentials, business models and digital ecosys-
tems (original german title: Quantified Car: Potenziale, Geschäftsmodelle und Digitale Ökosysteme). 
e&i Elektrotechnik und Informationstechnik, 133(7), 334-340. DOI 10.1007/s00502-016-0429-3. 

 This is an open access article distributed under the terms of the Creative Commons CC BY license 

https://creativecommons.org/licenses/
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As a term, Quantified Self refers to the growing willingness of many people to collect 

data about themselves, their behavior and their environment, whether biological, behavioral 

or physical (Swan, 2009; Swan, 2013; Swan, 2015). Today, millions of Quantified-Selfers 

want to gain multilayered insights into personal, health or sports issues by systematically 

collecting, analyzing and evaluating data. They often use their personal smartphone, which 

is equipped with a variety of sensors and tools and accompanies the Quantified-Selfers on 

a daily basis. The Quantified-Self-Trend, which was already awarded its own term in 2007, 

shows its economic relevance primarily through recent acquisitions of mobile smartphone 

apps in the sports sector. In 2015, for example, Adidas acquired a majority stake in the 

Austrian company Runtastic for around 220 million EUR (Runtastic, 2015). The ecosystem 

built by Runtastic now offers consumers a wide range of health and fitness products, services 

and content. As of April 2016, Runtastic's popular app already has over 80 million registered 

users (Runtastic, 2016). This example shows very clearly that established industry leaders 

are now investing large sums of money to participate in innovative technology start-ups in 

the quantified self environment. Analyst Gartner even expects a market volume of 5 billion 

USD for quantified self devices in 2016 (McIntyre, 2013). 

In the lives of many people, vehicles are a big purchase and are associated with high 

value and interest for their owners. The interest in insights gained by quantifying vehicle 

lifecycle data, such as diagnosing the condition of objects, analyzing and optimizing driving 

style, or improving one's own driving safety by integrating environmental data, can be seen 

as particularly high, especially among vehicle enthusiasts. This is because vehicles also 

have a high potential as a data source for enabling new services. If the term Quantified Self 

refers to the recording, analysis and evaluation of data generated in the course of one's own 

activities, the term Quantified Car, by analogy, covers the systematic collection of vehicle 

lifecycle data in the usage phase and subsequent intelligent analysis in order to provide 

benefits for various stakeholders. 

2.2 Quantified Car as Enabler of Digital Ecosystems 

Due to constant changes in the competitive environment caused by the digital transfor-

mation, there is a high pressure on companies to adapt. The current debate on digitization 

focuses primarily on the networking of technical devices used in everyday life (Yoo et al., 

2010). Digital ecosystems represent the habitat of digital content by forming a technically 

separate system that networks hardware, software, content and services with each other 

(Ammon and Brem, 2013). According to this classification, the much-cited Apple ecosystem, 
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for example, consists of iPod, iPhone, iPad, Mac Desktop, MacBooks and peripherals (hard-

ware), iOS/Mac OS, Office Suite & Core Apps, iTunes & iBooks, tools for media developers 

(software), music podcasts, audio books, music video, TV series, movies, eBooks, iBooks, 

textbooks (content), iCloud and iTunes (services). The opportunities created by such digital 

ecosystems are minimized by risks, not least because providers are constantly confronted 

with the need to rethink their services as well as the underlying business models in order to 

take strategic measures, if necessary, that will result in a classic, innovative or disruptive 

reorientation (Matt et al., 2015). 

Digital ecosystems have also emerged around the quantified self-trend: In addition to 

classic smartphones, a range of smart products such as smart glasses, smart watches, or 

fitness wristbands are available to enable further facets of continuous data collection and 

data analysis. For this reason, the marketplaces of Google and Apple offer an unmanageable 

number of quantified self applications. Some manufacturers of the smart, connected prod-

ucts mentioned above, already offer their own marketplaces where third parties can also 

provide applications, such as Recon Instruments (Recon Instruments, 2016), a company 

acquired by Intel. 

Compared to Quantified Self, the Quantified Car movement is still in its infancy, and user 

numbers are correspondingly lower. There is a lot of discussion today, particularly with re-

gard to the development of driver assistance systems, about networking the vehicle with 

other vehicles (“Car2Car”) as well as with the infrastructure ("Car2X"). However, an innova-

tive use of the life cycle data collected from vehicles with a focus on generating added value 

for the driver – in analogy to the quantified self-movement – has not yet reached a high level 

of importance among European vehicle manufacturers. This leaves the question unan-

swered as to how the Quantified Self phenomenon can be successfully transferred to the 

vehicle. 

Modern vehicles are high-performance computers on four wheels. Equipped with exten-

sive and complex sensor technology, they already collect a vast amount of data about them-

selves and, with the widespread availability of driver assistance systems, increasingly about 

their environment. According to the EU project AutoMat (AutoMat, 2016a), which is coordi-

nated by Volkswagen and deals with technical issues relating to the establishment of a mar-

ketplace for vehicle life cycle data, a modern vehicle processes up to 4,000 signals per sec-

ond in the Controller Area Network (CAN) bus system (ISO, 2015) established in vehicles, 

making it a much more comprehensive and interesting sensor measuring node and data 
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generator than the smartphones and wearables used by quantified self-sufficient data col-

lection. Today, the continuous collection and ongoing analysis of vehicle data serves a cen-

tral purpose, the guarantee or monitoring of vehicle functions. However, the possibilities for 

further, intelligent use of this data go far beyond this original purpose, as completely new 

products, services and even digital ecosystems could be developed. 

2.3 Quantified Car Ecosystems 

2.3.1 Actors of a Digital Ecosystem for Quantified Cars 

The following actors can be defined in a quantified car ecosystem:  

• Primary end users, as individual service consumers, are drivers/owners of vehi-

cles, who benefit directly and immediately from innovative products, visualizations, 

statistics, gamification elements and driving style optimization recommendations, 

which they have created by providing their data. 

• Secondary end users are organizations or organizational units such as city plan-

ners, insurance companies or fleet operators who indirectly benefit from collected 

and evaluated vehicle life cycle data by consuming the services provided by service 

providers. 

• Service providers, in turn, are organizations that offer products/services to primary 

and/or secondary end users and thereby generate revenue. These include, for ex-

ample, fleet management service providers, service providers for driving style-de-

pendent insurance, or service providers for preventive vehicle maintenance ser-

vices. All services are based on data provided by primary end users. 

• Cloud providers (platform operators) are responsible for operating the entire infra-

structure of a digital ecosystem and making it available to service providers. Primary 

and secondary end users, as individual or organizational service consumers, are 

users of the services provided by service providers in this cloud infrastructure. 
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Figure 19 Actors of a Digital Ecosystem for Quantified Cars. (Stocker and Kaiser, 2016) 

2.3.2 Innovation driver USA - quo vadis Europe? 

While enormous efforts have been made in the USA for some years now to develop digital 

ecosystems for quantified car, this development almost completely bypasses Europe. Apart 

from the already mentioned EU project AutoMat, only isolated and comparatively small ac-

tivities without significant impact are taking place in Europe. In contrast, a very lively start-

up scene has established itself in the USA, financed with enormous venture capital invest-

ments of sometimes more than USD 20 million, as Table 7 shows. According to CrunchBase, 

a portal with information on innovative technology companies and related investor infor-

mation, companies such as Magna International, Continental ITS, and BMW i Ventures also 

invest alongside the IT scene. 
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Table 7 Quantified Car Start-ups in the USA (Venture capital and investment information from 

Crunchbase.com, last accessed 25.07.2016). (Stocker and Kaiser, 2016) 

Company 
Value  
proposition 

Possible use 
Business ap-
plications 

Costs 
Inves-
tors 

auto-
matic.com 
San Francisco 
(USA), 
founded 2011 

Connects car 
with the digital 
life of the 
driver. Ena-
bles drivers 
with 
knowledge 
about them-
selves and the 
vehicle to 
drive safer 
and smarter. 

Connects the vehicle to 
many apps, for example 
for problem diagnosis, 
consumption optimiza-
tion, location and emer-
gency services. Includes 
a web dashboard with 
comprehensive statis-
tics. 

Cloud-based 
services for 
insurance 
companies, 
fleet opera-
tors and vehi-
cle manufac-
turers, provi-
sion of the 
data analysis 
infrastructure. 

$99.95 for the OBD2 
adapter to enter the 
digital ecosystem, no 
information on busi-
ness service pricing 

$24 
million 
in 3 
rounds 
from 
13 in-
ves-
tors 

moj.io 
Vancouver 
(CAN), 
founded 
10/2012 

Empowerment 
of the driver. 
Connect your 
devices to 
your vehicle at 
any time. 

Access to a marketplace 
for vehicle networking 
apps (location tracking, 
vehicle diagnostics, driv-
ing analyses, ...), open 
platform for accessing 
the vehicle, developer 
center, API.  

Not explicitly 
mentioned 

$149 for the OBD2 
adapter to enter the 
digital ecosystem. In-
cludes 3G/4G con-
nectivity. 

$10.3 
million 
in 3 
rounds 
from 6 
inves-
tors 

dash.by  
New York 
(USA), 
founded 
06/2012 

Enabling 
smart, safe, 
green and af-
fordable driv-
ing. 

Connected Car platform, 
services for vehicle diag-
nostics, fuel efficiency, 
emergency services, 
driver comparisons, 
gamification and com-
munity services 

Not explicitly 
mentioned 

Also works with 
OBD2 adapters from 
other manufacturers, 
which can be pur-
chased from the 
dash webshop 

$1.9 
million 
in 3 
rounds 
from 8 
inves-
tors 

vin.li 
Dallas (USA),  
founded 2014 

Your vehicle - 
your way. 
Brings count-
less apps to 
your vehicle, 
from security 
to entertain-
ment to WIFI. 

High-speed WIFI, app 
store for the vehicle, all 
kinds of smart vehicle 
apps and services for 
download in a dedicated 
app store, developer 
portal. 

Not explicitly 
mentioned 

$199.99 for the 
OBD2 adapter to get 
started in the digital 
ecosystem. Includes 
3G/4G connectivity. 
Additional cost for In-
ternet/Wifi depending 
on data volume re-
quired. 

$6.5 
million 
in 2 
rounds 
from 6 
inves-
tors 

zendrive.com 
San Francisco 
(USA), 
founded 2013 

Safe drivers - 
safe roads, 
smartphone 
based safety 
on roads in 
cities, for 
fleets and indi-
viduals 

Analysis of smartphone 
sensor data through ma-
chine learning. Driver 
and fleet analyses. Colli-
sion detection, insur-
ance support, etc. De-
veloper kit and API. 

Fleet ser-
vices, insur-
ance, car 
sharing. 

Different pricing 
models, from free to 
$4 per driver/month 
for fleets. Business 
rates are not listed. 

$15 
million 
in 3 
rounds 
from 
15 in-
ves-
tors 

zubie.com 
Sullivans Is-
land (USA), 
founded 
05/2012 

We make driv-
ing safer, eas-
ier & cheaper. 
Connects your 
vehicle to the 
Internet for 
real-time infor-
mation on 
your 
smartphone. 

Find driving skills, be-
havioral warnings, rank-
ings, maintenance tips, 
engine diagnostics, bat-
tery warnings, emer-
gency services, tracking, 
motion recording, perks 
and gas stations. 

Solution for 
insurance 
companies 
and vehicle 
providers, 
fleet tracking, 
GPS tracking, 
vehicle condi-
tion monitor-
ing, driver be-
havior. 

Different price mod-
els, of once $99 for 
OBD2 adapters and 
$10 per month. Busi-
ness use from 
$17.95 per month. 

$25.87 
million 
in 5 
rounds 
from 8 
inves-
tors 
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These developments show very clearly that the automotive industry also estimates the mar-

ket value of a digital ecosystem for Quantified Car as enormous, although from today's per-

spective it is not the innovation driver there. The EU project Automat coordinated by 

Volkswagen cites three main reasons why the automotive industry in particular, with its Con-

nected efforts, is not yet in a position to establish an open and comprehensive digital eco-

system (AutoMat, 2016b):  

• At present, offerings relating to the Connected Vehicle are characterized by brand-

specific business approaches that have resulted in proprietary and closed individual 

solutions. Original Equipment Manufacturers (OEMs) are entering completely new 

markets as vehicle manufacturers, which do not necessarily correlate with their core 

business.  

• Current Connected Services focus on the individual vehicle buyer, which inevitably 

leads to data protection concerns. At present, no consideration is being given to how 

anonymous vehicle lifecycle data could be used in other contexts that do not con-

cern the individual driver. 

• The associated risk of cooperation between competing OEMs with regard to a com-

mon, standardized provision of vehicle lifecycle data in a digital ecosystem is a major 

hurdle why such a system has not yet been established. 

2.4 Case Studies for Quantified Car Ecosystems 

In the following, the business models of the three quantified car case studies Automatic, 

Mojio and Dash are analyzed according to the methodology of Stähler (2002), where busi-

ness models are roughly differentiated according to the three aspects value proposition, ar-

chitecture of value creation and revenue model. 

2.4.1 Quantified Car Case Study 1: Automatic 

Value proposition: According to the slogan "Connect your car to the rest of your digital life", 

the San Francisco-based company Automatic Labs (Automatic, 2017) offers applications for 

end customers and business users. In order to be able to use them, a special adapter must 

first be operated on the standard diagnostic interface (OBD) of a vehicle, which provides 

vehicle data via a smartphone paired via Bluetooth to various apps as a database, which 

can be obtained via a separate marketplace, the Automatic Gallery. 
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Architecture of value creation: Automatic has been offering a range of services for private 

users since 2011. These include, for example, extensive statistics on trips on the smartphone 

and in a browser dashboard, functions for diagnosing engine and ECU problems, feedback 

on the respective driving style, functions for finding a parked vehicle, collision detection with 

emergency services, and the possibility of linking vehicle functions with other digital services 

from the web via Automatic using IFTTT (If This, Then That) (IFTTT, 2016). Automatic Labs 

also offers services for business customers. These include the operation of an automotive 

cloud, cloud-based vehicle insurance, services for the intelligent maintenance of vehicles 

and for increased customer loyalty in after-sales, fleet management and data analysis. Spe-

cific solutions for OEMs are in planning.  

Revenue model: The Automatic OBD-II Adapter is available in the USA for USD 99.95 

and is required for entry into the Automatic quantified car ecosystem (lock-in effect). All ser-

vices are limited to the USA. Prices for business solutions are not actively communicated on 

the Automatic Labs website. 

2.4.2 Quantified Car Case Study 2: Mojio 

Value proposition: Similar to Automatic, Mojio (Mojio, 2016) also wants to "empower" the 

driver by allowing him to connect to his vehicle at any time using a single device, the 

smartphone. With Mojio, too, the interface between smartphone and vehicle consists of an 

adapter operated on the vehicle's OBD-II port.  

Architecture of added value: Mojio also offers a wide range of apps and services for 

drivers. These range from location tracking, vehicle diagnostics, driving analytics and driving 

style analysis to the use of mobile apps provided by third parties in the Mojio digital ecosys-

tem. With the Developer Center, Mojio also offers an open Connected Car platform with 

Application Programming Interfaces (APIs) and Software Development Kits (SDKs) to ena-

ble third parties to easily develop apps.  

Revenue model: Mojio operates an online shop where the OBD-II adapter including a 

built-in sim card for the AT&T mobile network can be purchased for USD 149 in the USA. 

This means that Mojio has direct connectivity of the vehicle to the Internet – and not, as with 

Automatic Labs, only via a paired smartphone. 

2.4.3 Quantified Car Case Study 3: Dash 

Value proposition: In line with the slogan "Smarter.Driving.Everyday.", the app from the New 

York company dash (Dash, 2017), founded in 2012, uses an OBD-II adapter to once again 
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collect vehicle lifecycle data to inform drivers in real time about interesting events. In the 

business version, vehicle lifecycle data is also presented in aggregated form for fleets. 

Architecture of added value: The Dash app is freely available for Android and IOS and 

can communicate with several OBD-II adapters available on the market, which can be pur-

chased for example via Dash's online shop. Highlights of Dash are analyses of driving be-

haviour and vehicle condition, ratings and rankings (community functions), personal trend 

analyses and a map function to find the parked vehicle again. Dash also offers a platform for 

developers with the Dash Chassis API under the keyword "Internet of Cars". 

Earnings model: From TechCrunch, a popular online news portal for technology and 

Internet companies, referred to as "FitBit for Cars", Dash intends to generate interesting 

insights from the collected vehicle life cycle data via its own analytics platform ("Dash IQ"), 

which will also be offered to other organizations. Dash is also a project partner in the 

DriveSmart project of the New York City Department of Transportation (New York City DOT, 

2016), which aims to help drivers save time and money while driving more safely through 

feedback from the app. For example, drivers receive rewards when they drive in New York 

outside rush hour or use less congested routes. However, the website does not provide any 

information on specific sources of revenue. 

2.5 Conclusion and Discussion 

After an introduction to the quantified car phenomenon and to the efforts of US start-ups to 

establish digital ecosystems in this field, the business models of the quantified car case 

studies, Automatic, Mojio and Dash were described according to the methodology of Stähler 

(2002). It is striking that all three players pursue similar application scenarios. They each aim 

to generate relevant information from the vehicle life cycle data collected during the usage 

phase and to visualize this information for drivers accordingly. According to an analysis of 

the number of downloads from Android installations on Google Play, Dash (100,000-500,000 

downloads) seems to be the most widespread, ahead of Automatic (10,000-50,000 down-

loads) and Mojio (1,000-5,000 downloads). The following illustration shows exemplary 

screenshots of the respective basic apps, which allows the similarities of the application 

scenarios to be deduced from the design of the user interface. 
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Figure 20 Exemplary screenshots of the GUIs of Quantified Car Apps. (Stocker and Kaiser, 2016) 

In summary, the fuel for successful quantified car ecosystems is the vehicle life cycle data 

provided by drivers. Only when a critical mass of drivers voluntarily provide a critical mass 

of data can these Digital Ecosystems come into being. But this requires a variety of incen-

tives, which can probably only be generated by interesting and free services with added 

value for drivers.  

The chicken and egg problem is that drivers provide a large amount of data for third 

parties to develop applications based on, but many drivers will probably only provide data 

when interesting and beneficial services already exist. Parallels can be drawn between the 

chicken-and-egg problem of the "Web of Cars" and the chicken-and-egg problem of the Web 

of Data (Latif et al., 2009; Stocker et al., 2010). In order to overcome such a chicken-and-

egg problem at all, the start-ups researched in this article were partly started with very simple 

applications that should allow drivers to quickly perceive a benefit.   

Compared to the already established Quantified-Self-Movement, the Quantified-Car-

Movement is still in its infancy, especially in Europe. The issue of data protection is very 

strongly anchored in politics, society and industry, particularly in the German-speaking coun-

tries. Accordingly, projects relating to data protection aspects must be carried out with a very 

sensitive approach. Not only for this reason, it can be assumed that a radical data-driven 

innovation in the Quantified Car environment will not necessarily be carried out by European 

vehicle manufacturers from the perspective of technology development.  

DashAutomatic Mojio
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Nevertheless, initial activities for data collection and transmission in connection with new 

vehicles have already taken place in Europe, as described in an article by Heise Online as 

reporting on an ADAC experiment (ADAC, 2016). However, it is not clear from these activi-

ties how collected vehicle lifecycle data is intended to generate benefits for the driver, nor 

how drivers can configure or prevent partial or total data transfer through selective data pro-

tection settings. 

It is precisely in such a sensitive environment that startups from the USA, which do not 

suffer from a "privacy burden", are coming up with fresh ideas. Comparable to the activities 

of IT giants such as Google, Apple and Facebook, the topic of data protection is being 

pushed "a little" into the background for the time being. The competition between IT compa-

nies and established industry giants from the automotive industry for dominance in the es-

tablishment of digital ecosystems around vehicle life cycle data will certainly be exciting, as 

a current discussion paper from the BVDW describes (BVDW, 2016). The long-term exploi-

tation strategy of some quantified car start-ups is certainly to sell technology and its user 

base to major players in the automotive and IT industries. Such a strategy can be seen in 

the very high risk capital investments on the one hand and the intransparent revenue models 

of the start-ups on the other. 

Finally, it should be explicitly pointed out at this point that a number of start-ups focusing 

on the development of services related to mobility and smart cities have also emerged in 

Europe in recent years. However, these have far less risk capital than their "competitors" 

from the USA and are therefore probably not competitive in the long term. In Austria, for 

example, Parkbob (Parkbob, 2016) is an innovative manufacturer of a smart parking system, 

which has attracted an investment of EUR 250,000 in 2016. German vehicle manufacturers 

have already recognized the relevance of the Smart Parking topic. The German premium 

manufacturer BMW, for example, is working together with the US company and traffic data 

analyst INRIX (USD 143 million in 7 rounds of 6 investors according to Crunchbase.com) on 

a corresponding solution for intelligent parking as part of the ConnectedDrive initiative (IN-

RIX, 2016). 
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3. Quantified Vehicles: Novel Services for Vehi-

cle Lifecycle Data 9 

Summary and Author Contribution 

Definition and Introduction of “Quantified Vehicles”  
(Paper 2/2) 

This journal article builds on the journal article from Chapter 2 (Stocker and Kaiser, 2016) 
and extends it with a research framework for the BISE community. The term Quantified 
Vehicles is derived and defined. In addition, it shows which trends exist internationally and 
in Europe, and their relevance for research. The article shows the existing research gap 
and the relevance of Quantified Vehicle research for BISE (Business & Information Sys-
tems Engineering) journal community by means of a research framework and discusses 
its contents. The BISE journal is a journal that publishes scientific research on the effective 
and efficient design and utilization of information systems and is therefore a relevant me-
dium to publish scientific work in the field of business informatics. 

 

Here, I focussed on the introduction to and the definition of Quantified Vehicles as an 
emerging topic to the BISE/IS community, the community I primarily want to address with 
my research. In doing so, I tried to shed light on business models of start-ups in this field, 
to increase understanding of how startups collect vehicle data for the services, and how 
they commercialize the services. I added the European start-up ulu.io to the overview of 
start-ups and their business models, to show that the trend is slowly reaching Europe, but 
is still being driven by enormous investments in the US. Furthermore, I wanted to include 
the high investment numbers of those start-ups to demonstrate how high investors per-
ceive the market value. In addition, the discussion on the constitution of the Data-driven 
Service Ecosystems is started (termed Digital Ecosystems in the paper) and the reader 
learns why Quantified Vehicles are relevant for the BISE/IS community. 

 

3.1 Quantified Vehicles 

Three trends have shown significant impact in recent years: (1) The Internet of Things (Wort-

mann and Flüchter, 2015) has become an enabler for a connected world full of smart objects 

equipped with sensors and supplies enormous and still rising amounts of (2) Big Data 

(Mayer-Schönberger and Cukier, 2013), which can be analyzed and then turned into busi-

ness value in various areas, including (3) the Quantified Self movement as a popular exam-

ple for everyday life big data analytics (Swan, 2009). On a more abstract level, capturing real 

 

9  The content of this chapter is based on  

 Stocker, A., Kaiser, C., and Fellmann, M. (2017). Quantified vehicles. Business & Information Sys-
tems Engineering (BISE), 59(2), 125-130. DOI 10.1007/s12599-017-0465-5 

 Reprinted/adapted by permission from Springer Nature and Copyright Clearance Center: Springer 
Nature, Copyright © 2017, Springer Nature (2017). 



Quantified Vehicles 69 

world events and digitizing them into machine-readable data to satisfy needs or assist hu-

mans and machines in decision making, evaluation and comparison of physical world events 

has become increasingly important. Even a new branch of business has emerged through 

such big data analytics for data-driven innovations, while information overload has wiped off 

its negative image and has become the beautiful bride everybody wants to dance with. 

Mayer-Schönberger and Cukier’s (2013) pragmatic book on the capacity of big data to 

change the world has become an international bestseller and was referenced by researchers 

more than 1000 times according to Google Scholar. 

In line with these developments, consumer products are increasingly connected to the 

Internet and have become a major source of data, too. So-called smart, connected products 

(Porter and Heppelmann, 2014 & 2015) are capable of capturing an increasing amount of 

data about their product life through all kinds of embedded sensors. The archetype of a 

smart, connected product is the well-known, widely used, and constantly switched on 

smartphone. The smartphone has become an interesting hub for sensors of all kinds, and 

has therefore kicked off the development of new services encapsulated in mobile applica-

tions. Some of those applications promise an additional value for the smartphone user by 

applying algorithms for sensor data analysis if the user is willing to share the required sensor 

data. 

In the age of computing humans have become data-generating subjects, because they 

consciously or unconsciously leave behind ‘electronic traces’ when using their computer 

(Wolf, 2013). ‘Quantified self-tracking’ (later shortened to ‘quantified self’) is a more current 

term, referring to an intended collection of any data about the self that can be measured, 

including biological, physical, behavioral, or environmental information (Swan, 2009). Quan-

tified-selfers are a diverse group of early adopters including life hackers, data analysts, com-

puter scientists, health enthusiasts, gamers, productivity gurus, and patients, who track 

many kinds of data about themselves (Choe et al., 2014). Making use of this data collected 

through smartphones or wearables in the private domain to learn more about one's body and 

leisure behavior is an emerging topic and has become a major creator of value (PWC, 2016). 

This quantified self-movement, or in more general terms the pattern of collecting per-

sonal data via consumer devices and making sense of this data thereafter, has increasingly 

gained attention throughout many areas – not only in domain of quantified self-tracking ser-

vices (Swan, 2009). Given the fact that vehicles have turned into ‘computers on wheels’ 

(Haberle et al., 2015) and the intimate relation between a driver and a car, it is quite obvious 
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and straightforward to also interpret cars as customer devices. In this way, the pattern of 

self-tracking via customer devices adopted by the quantified-self community can be trans-

ferred to vehicles which in this sense become Quantified Vehicles. From this perspective, 

the data modern vehicles collect holds a huge potential for further exploitation and value 

creation. The automotive industry is still in the early beginning of leveraging this potential. 

Quantifying vehicles in terms of analyzing gathered data and developing innovative applica-

tions and third party services for the consumer context is currently not the state of the art in 

the vehicle domain, especially from the perspective of Original Equipment Manufacturers 

(OEMs). Although a vast amount of data for the purposes of steering, regulating and inform-

ing has already been collected, up to now this data is mainly processed to ensure vehicle 

functionality. Exploring novel application scenarios complementing their core mode of use is 

hence among the most important topics in the automotive industry. Lifecycle data generated 

and transmitted by vehicles may further be a part of a future connected world (Swan, 2015). 

They will enable a wide range of application scenarios and business models and therefore 

have to be considered a valuable area for BISE research. 

3.2 Current Developments: Towards Digital Ecosystems 

for Quantified Vehicles 

The EU funded project termed AutoMat and coordinated by Volkswagen kicked off in April 

2015 and is one of the first approaches to establish an automotive big data marketplace for 

innovative cross-sectorial vehicle big data services (AutoMat, 2016a). According to the pro-

ject outline, more than 4000 signals are processed per second inside modern vehicles, and 

the amount of data transferred by the Controller Area Network (CAN)-Bus (ISO, 2015) inside 

a single vehicle accumulates to about 500 MB per hour. This continuously generated vehicle 

lifecycle data embodies a significant business potential not only for vehicle OEMs, but for all 

kinds of cross-sectoral industries.  

However, this potential to use vehicle lifecycle data for purposes other than driving cur-

rently remains almost untapped by automotive OEMs. According to AutoMat, the automotive 

industry has not yet been able to successfully establish an ecosystem for Quantified Vehicle 

apps equivalent to that of smartphone manufacturers. In its problem statement, the AutoMat 

project mentions three reasons why OEMs are currently struggling:  

• brand-specific business approaches dominate, and as a consequence there is a 

lack of brand-independent vehicle lifecycle data,  
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• current proprietary vehicle services focus on the individual customer, which results 

in privacy concerns, and few ideas exist how anonymized vehicle data can be used 

to establish other services, and  

• the implied or required collaboration between OEMs on vehicle data and services is 

considered risky in terms of competition. 

Apart from this individual major research project, digital innovation in the Quantified Vehicle 

domain seems rather to be pushed forward by a steadily growing number of innovation-

friendly start-up companies, the majority of them located in the USA. They aim to create 

market demand by first providing novel platforms, APIs, apps and services. Their market 

approaches share a few commonalities: All of them provide a basic branded hardware re-

quired for capturing vehicle data from the CAN bus and transferring it directly (via embedded 

3G/4G modem) or indirectly (via the vehicle driver's smartphone) to a cloud platform. This 

task is usually conducted by providing a proprietary adapter connected to the standardized 

vehicle On Board Diagnostic interface (OBDII standard), which is available in any modern 

vehicle. Some of these startups even allow third party apps and services to be built on top 

of vehicle data, which is not gathered by just one single vehicle but by a plethora of vehicles. 

In the best case, all vehicles would supply a cloud platform vendor with their lifecycle data 

to enable a digital ecosystem with interesting applications and services for drivers and other 

stakeholders similar to those ecosystems which Apple and Google have created for 

smartphone apps. To increase the customer value of such services, vehicle lifecycle data 

could eventually be enriched by data from other sources including weather data or map data. 

This creates synergies with the open data movement.  

Applications and services provided via an established Quantified Vehicle cloud can gen-

erate value for the individual vehicle driver (e.g., assessing personal driving style and offering  

suggestions how to improve it), for an organization (e.g., easing insurance contracts or sup-

porting fleet management), or even for both, to ensure a sustainable business model. Table 

8 below presents a preliminary overview of Quantified Vehicle start-ups and services ob-

tained through desktop research (using a combination of the terms “quantified”, “connected”, 

“vehicle”, “car”, and “startup”). Information regarding funding was collected via crunch-

base.com. 
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Table 8 Overview of Quantified Vehicle start-ups. (Stocker et al., 2017a) 

Company Value Proposition Personal Use 
Business 
Use 

Revenue Model Funding 

auto-
matic.com 
San Francisco 
(USA), founded 
2011 

Connect car to the 
rest of the digital 
life. Empower driv-
ers with knowledge 
about themselves 
and their cars so 
they can drive safer 
and smarter 

Connect the car to 
a world of apps, 
car problem diag-
nosis, Fuel effi-
ciency, location 
and emergency 
service, Web 
dashboard, keep 
track of the car, 
third party apps 

not explicitly 
mentioned 

Light version: 
$49.55 for car 
adapter and free 
apps for iPhone 
and Android 
Pro version: 
$129.95 for car 
adapter, unlimited 
3G syncing for 5 
years, crash alert 
service  

$24M in 3 
round 
from 12 
investors 

moj.io 
Vancouver 
(CAN) & Palo 
Alto (USA), 
founded 
10/2012 

Be a smarter 
Driver. Open plat-
form for connected 
cars, enables a 
suite of apps to em-
power and inform  
car drivers.  

Access to market-
place for con-
nected car apps 
(location tracking, 
vehicle diagnos-
tics, recalls and 
maintenance, driv-
ing analytics, ac-
cerlerometer), API 

Aiming to 
launch car-
rier-braned 
car services  

Not explicitly men-
tioned 

$10.3M in 
2 rounds 
from 6 in-
vestors 

ulu.io 
Eindhoven 
(NED), 
founded 
12/2014 

Create a more sage 
and better driving 
experience by 
opening up the car 
ecosystem and 
connect all cars to 
the internet. 

Car insigts, car 
monitoring, assis-
tants, learning to 
improve driving 
behavior, saving 
money while driv-
ing 

Solutions for 
insurance, 
leasing, car 
dealership 
and repair 
shops 

Personal use: 
€129 excl. VAT per 
year;  
business use: 
€177 excl. VAT per 
year 

$558.75k 
in 2 
rounds 
from 2 in-
vestors 

vin.li 
Dallas (USA),  
founded 2014 

Your car, your way: 
Brings an endless 
range of apps to 
your car, from 
safety to entertain-
ment to onboard 
wifi.  

Highspeed wifi, all 
kinds of smart car 
apps and services 
downloaded via an 
own appstore. 
More than 40 apps 
and integrations. 
App ecosystem for 
the car. 

not explicitly 
mentioned 

Not explicitly men-
tioned 

$7M in 2 
rounds 
from 6 in-
vestors 

zendrive.com 
San Francisco 
(USA), founded 
2013 

Improving driving 
for everyone 
through better data 
and analytics: Use 
smartphone sen-
sors to measure a 
driver's behavior  

Powerful analytics 
using machine 
learning algo-
rithms, driver and 
fleet analytics. 
Collision detection, 
Insurance support, 
etc. Provider of 
SDK and API 

Insurers, 
cashare, 
valet, plat-
form partner 

Free for 1-4 driv-
ers, $4 per 
driver/month for 5-
249 drivers, no 
prices communi-
cated for 250+ 
drivers (fleets, in-
surance partners, 
platform partners) 

$20M in 3 
rounds 
from 14 
investors 

zubie.com 
Sullivans Is-
land (USA), 
founded 
05/2012 

We make driving 
safer and worry 
free: Connect car to 
the Internet to de-
liver real-time infor-
mation to the 
smartphone. 

Driving insigts, be-
havior alerts, lead-
erboard, mainte-
nance alerts, en-
gine diagnostics, 
low battery alert, 
roadside assis-
tance, live map, 
trip tracking, mo-
tion monitor, 
perks, fuel finder 

Solutions for 
insurance 
and car 
dealers,  low 
cost fleet 
tracking, 
GPS track-
ing, vehicle 
health, 
driver per-
formance   

Personal use for 
$99.95 per year  
Business use 
starts at $17.95 
per month (includ-
ing $49.95 for de-
vice) 

$25.87M 
in 5 
rounds 
from 8 in-
vestors 
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In the following, the authors abstract from concrete product and service offerings available 

so far (cf. Table 8) and sketch the concept of a Quantified Vehicle cloud, which could serve 

as a basis for novel applications and services. In order to make the concept of “Quantified 

Vehicles” achieve its full potential, at least four different types of stakeholders have to be 

considered:  

1. Primary end users (individual service consumers) are vehicle drivers who directly 

benefit from innovative products, visualizations, statistics, gamification aspects, and 

recommendations based on assessing their shared vehicle lifecycle data. Value 

generated on the individual level is an incentive to share personal driving data.  

2. Secondary end users (organizational service consumers) are organizations which 

indirectly benefit through collected and assessed vehicle lifecycle data from multiple 

vehicles by consuming special services (e.g. engineering, city planning, advertis-

ing). 

3. Service providers are organizations which provide Quantified Vehicle services for 

primary and secondary end users, thereby generating revenues (e.g., providing fleet 

management services, traffic-style dependent insurance services, vehicle mainte-

nance prediction services).  

4. The cloud service provider (platform provider) operates the required infrastructure 

for the Quantified Vehicle ecosystem and allows service providers to establish their 

services based on vehicle lifecycle data as well as primary and secondary end users 

to consume these services and share their vehicle lifecycle data in return. 
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Figure 21 A digital ecosystem for quantified cars. (Stocker et al., 2017a) 

3.3 Relevance of Quantified Vehicles for BISE Research 

As an interdisciplinary subject, conducting research in the Quantified Vehicle domain re-

quires the integration of different disciplines, ranging from vehicle enthusiasts, mechanical 

engineers, electrical engineers, information designers, and computer scientists. As recent 

advances in information technology are a core enabler for Quantified Vehicles, BISE faces 

a wide range of research challenges through the emergence of Quantified Vehicles, from 

business model design to the ideation, conceptualization and development of Quantified Ve-

hicle apps and services. 

Relevant aspects and their relations are illustrated in the next figure that may serve as 

an initial research framework for Quantified Vehicles. Quantified Vehicles will require new 

infrastructures such as interfaces for sensor data and data storage capabilities. Based on 

this foundation, vehicle lifecycle data can be collected. With this data, new processes and 

new insights will emerge, which use this data in conjunction with appropriate data analytics 

techniques. On top of this, new business models and strategies are possible. Though Quan-

tified Vehicles as such is a technology-driven subject, cross-cutting concerns such as human 

aspects (e.g., needs, intentions, expected benefits) as well as security and privacy issues 

cannot be neglected. Finally, the overall design space for Quantified Vehicles will be con-

strained by different legal aspects and by standards representing commonly agreed technol-

ogies and practices. 
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Figure 22 A research framework for Quantified Vehicles. (Stocker et al., 2017a) 

3.3.1 Infrastructure, Processes, and Data Analytics 

Modern vehicles gather an enormous amount of data and information, raising manifold chal-

lenges concerning storing, securely transferring and analyzing this enormous amount of 

lifecycle data, which have to be solved. Moreover, problems of information integration will 

arise. In this regard, the integration of Quantified Vehicle data and services into existing 

enterprise information systems (EIS) such as Enterprise Resource Planning (ERP) systems 

will require novel approaches, e.g., for business analytics and visualization. To leverage the 

potential of vehicle lifecycle data, e.g., to improve decisions of the stakeholders, the way in 

which they are presented is of utmost importance. Intuitive visualizations, different point of 

views on the data, comparison possibilities and statistics amongst others, should be inte-

grated into EISs alongside the administration of the vehicles itself.  

3.3.2 Business Models and Strategies 

Quantified vehicles will enable novel apps and services and cause vast opportunities for 

business model innovation in various fields (Cichy et al., 2014). However, the ideation, de-

sign, and evaluation process of useful and valuable services and apps as well as standard-

ization issues of data and interfaces are a major challenge to be tackled in an interdiscipli-

nary way, which can be supported by BISE researchers through providing appropriate meth-

odology. Novel innovation approaches including, e.g., hackathons (Briscoe and Mulligan, 

2014) can provide means for quickly transforming ideas into experienceable demonstrators 

for Quantified Vehicle apps and for evaluating their business potential together with end us-

ers.  

Vehicle lifecycle data can be used to enable a broad portfolio of value-added consumer 

services including vehicle diagnostics, driving dashboards, or concierge services. Novel ap-

plications and services can generate value on the level of the individual driver as the primary 

beneficiary (e.g., benchmark driving style and offer suggestions on how to improve it), on 
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the level of an organization as the secondary beneficiary (e.g., traffic prediction for smart 

cities), and on that of the society (e.g., reduced fuel consumption or sharing approaches).  

Future research is required to determine the willingness of drivers to pay for Quantified 

Vehicle services and apps and to identify incentives for all stakeholders to share their vehicle 

lifecycle data. For example, it may be the case that the benefit of other stakeholders such 

as vendors or insurance companies dominates the value proposition – i.e., that individual 

users are not willing to pay for new data collection features of vehicles. Hence it has to be 

investigated in how far incentives to buy a “Quantified-enabled Vehicle” via transfer pay-

ments are possible. 

3.3.3 Human and Societal Aspects  

On the level of the individual driver, quantified vehicles offer a series of new possibilities to 

investigate driving behavior and drivability with respect to enhancing driving style, driving 

safety, and security. Quantified Vehicles enable new ways to investigate driver reaction and 

driver emotions by using computational approaches. In this way, also pleasure of use or 

additional stress and distraction may be measured. Obtaining easier access to vehicle lifecy-

cle data would encourage a larger group of researchers to use this data for better under-

standing driver experience and driver behavior (Wilfinger et al., 2013).  

On the level of the society, it has to be investigated what the merit of Quantified Vehicles 

could be in terms of safety, environmental impact as well as possible dangers such as in-

creased surveillance possibilities that create new potentials for misuse and unethical behav-

ior.  

3.3.4 Security, Privacy, Legal Aspects, and Standardi-

zation  

Quantified Vehicle ecosystems can only be successful if a critical mass of drivers shares 

their driving data. Hence, privacy concerns have to be mastered to support the emergence 

of third-party services with sufficient data to create representative statistics. If no data is 

shared, no value is generated. Raising awareness in the society on what kind of data vehi-

cles generate, process, store, and potentially transmit to a vehicle manufacturer is an im-

portant task which can be supported by researchers.  

The ‘My Car My Data’ campaign (MyCar MyData, 2016) started by Fédération Interna-

tionale de l’Automobile (FIA) educates car drivers about potentials and pitfalls of connectivity. 

One strategy is to let drivers decide about if and what data should be shared with whom to 
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be used in what kind of third party services. This raises the question if new data protection 

laws are needed or if existing regulations in the IT-domain are still sufficient. The legal status 

of Quantified Vehicle data (e.g., in legal procedures) has to be determined, which creates 

cross-disciplinary research opportunities for IT-oriented researchers cooperating with legal 

scholars. New legal questions will emerge, e.g., whether vehicle data is trustworthy in a legal 

sense (as replacement for the "driver’s logbook") and can serve as basis for vehicle tax 

calculations.  

Finally, in terms of technology, standardization may be the key to progress and may 

prevent competing and incompatible solutions. In this regard, it has to be investigated if cur-

rent standards such as CAN and OBD that were developed in the late 1990s of the previous 

century are still sufficient to establish digital ecosystems for Quantified Vehicles. Research-

ers should look into the degree to which information services should be standardized to fos-

ter the development of Quantified Vehicle ecosystems. The W3C for instance has estab-

lished an own automotive working group to create Web standards for the automotive industry 

(W3C, 2016). 
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4. Quantified Cars: An Exploration of the Posi-

tion of ICT Start-ups vs. Car Manufacturers To-

wards Digital Car Services and Sustainable Busi-

ness Models 10 

Summary and Author Contribution 

Analysis of the Market: Services, Start-ups, OEMs, Business Models, and Trends  
(Paper 1/2) 

This chapter provides insights into the quantified car phenomenon and explores the ap-
proaches of the two major stakeholder groups, car manufacturers and tech start-ups, on 
their journey to develop novel digital services and sustainable business models. While 
providing a playground for innovative US tech start-ups backed with risk capital, in con-
trast to that, especially German-speaking car manufacturers have been rather reluctant 
to reap the value of ‘their’ car operation data in delivering successful digital services to 
stakeholders. The chapter examines stakeholders who have an interest in the data, lists 
trending start-ups and investigates their visions, goals, and business models, shows de-
velopments in the behavior of German vehicle manufacturers, and attempts to derive fu-
ture trends from this. 

 

Here, I focused to draw the attention of the business model community to the Data-
driven Service trend in the U.S., while there are still no well-known services in Europe and 
no business model studies on this. I show that there are several stakeholder groups that 
should be interested in it. I also discovered open key questions concerning vehicle data 
(What data do I have, How is their quality? Etc.), which is a big risk for start-ups with the 
OBD-2 dongle approach, and that there is also an approach using smartphone data. Fur-
thermore, the reader learns that the German vehicle manufacturers tend to react nega-
tively to the trend and want to restrict the activities of start-ups.  

 

Capturing real world events and digitizing them into machine-readable information has be-

come increasingly important. The digital age has transformed humans to data generators, 

while they consciously or unconsciously have left behind their ‘electronic traces’ (Wolf 2013).  

‘Quantified self’ is a term coined to describe the intended collection of any measurably char-

acteristics about a person, including biological, physical, behavioral, or environmental as-

pects (Swan 2009). Usually data is collected through the consumer devices of ‘Quantified 

Selfers’, most notably through smartphones. 

 

10  The content of this chapter is based on  

 Kaiser, C.; Stocker, A.; Viscusi, G.; Festl, A.; Moertl, P.; and Glitzner M. (2017). Quantified Cars: An 
Exploration of the Position of ICT Start-ups vs. Car Manufacturers Towards Digital Car Services and 
Sustainable Business Models. In Proceedings of 2nd international conference on new business mod-
els (NBM), pp. 336-350. 



ICT Start-ups vs. Car Manufacturers 79 

Quantified self has become a major creator of value through Android/iOS mobile appli-

cations. One example is the Austrian start-up Runtastic which provide a smartphone appli-

cation (105 million registered users) to analyze how users perform when they run, bike, etc. 

Runtastic was acquired by Adidas in 2015 for about 220 million EUR. Adidas now holds the 

power to the knowledge of designing sportswear combined with the digital knowledge on 

usage gained through the user base of Runtastic, which can offer new insights for individual 

product development. This acquisition demonstrates that big industrial players invest into 

innovative quantified self start-ups with an exploitable mass of collected data from a broad 

user base. So what can this acquisition of a quantified-self start-up contribute to the car 

domain? During the last two decades, passenger cars have slowly turned into computers on 

wheels (Haeberle 2015) equipped with many sensors used for functionality, safety and joy. 

Taken into account that cars capture sensory data about themselves and about their envi-

ronment, the behavioral patterns of self-tracking can be transferred to cars (and vehicles in 

general), which in this sense become ‘Quantified Vehicles’ (Stocker et al., 2017a).  

Obviously, quantifying cars in terms of analyzing driving data and developing innovative 

applications is a comparably new phenomenon. The continuous collection of car operation 

data can enable the analysis of both car- and driver behavior and thereby facilitate the gen-

eration of innovative digital products, services as well as sustainable business models for 

many beneficiaries, including e.g. drivers and organizational customers. There are many 

opportunities to reduce emissions by stimulating safer driving and improving road safety 

while caring more about the natural environment by using novel digital services as the fol-

lowing Table 9 suggests. 

Table 9 Stakeholders and their interest towards digital services. (Kaiser et al., 2017b) 

STAKEHOLDERS INTEREST FOR DIGITAL SERVICES 

Individual drivers Individual drivers may be empowered to assess their personal driving style 

and get improvement suggestions to drive more safely or economically 

friendly. 

Various organiza-

tional customers 

Insurance companies, to name a typical beneficiary heavily investing into 

quantified car start-ups, can provide new kinds of insurance contracts for 

safer drivers and will be provided with new means to infer driving risks. 

Driving schools can be supported in supervising students based on digitally 

monitored driving styles, teaching them to drive safer and economically 

friendly. 
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Governmental  

authorities  

Road traffic departments of cities can be empowered to make informed de-

cisions based on their gained knowledge about traffic patterns, thereby in-

creasing road safety and reducing driving emissions in urban environments. 

Automotive  

industry 

Car manufacturers may use digital services to optimize powertrain calibra-

tion for special usage behavior (e.g. in postal delivery transport).  

Automotive engineers may improve the accuracy of driver models and test-

ing for advanced driver assistance systems. 

 

There are many stakeholders who have an interest in exploiting the data generated by cars 

either supporting their current business processes and models or adapting them towards 

establishing digital ecosystems. However, in the scope of this chapter, two stakeholder 

groups are of particular interest: Car manufacturers as the owners of the underlying technol-

ogy and ICT start-up companies especially from the tech savvy USA, who are keen to de-

velop new digital ecosystems in the automotive domain. Against this background, the chap-

ter outlines the following research question:  

What are the roles of start-ups vs. car manufacturers in 

delivering novel digital services and sustainable busi-

ness models built on car operation data analysis?  

After this introduction, the chapter will introduce background, motivation and the research 

approach in Section 4.1. Based on that, the chapter will present approaches towards novel 

digital services and elaborate on the positions of ICT start-ups versus car manufacturers, 

exploring suggestions of the VDA in Section 4.2. The chapter will conclude with a discussion 

on future opportunities of these two stakeholders in Section 4.3. 

4.1 Background and Research Approach 

4.1.1 Background and Motivation 

Digitalization is a sociotechnical process on encoding analog information into a digital format 

(digitizing) applied to social and institutional contexts, transforming their sociotechnical struc-

tures, thus rendering digital technologies infrastructural (Tilson et al., 2010). Digitalization 

results in digital artifacts characterized by editability, interactivity, reprogrammability/open-

ness, distributedness (Kallinikos et al., 2013), also implying a shift in product design moving 

from modularity to generativity (Yoo et al., 2012). Quantified cars are one of the key results 
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of digitalization in the automotive industry, where incumbents have to face competing con-

cerns systematically interrelated, as shown by Svahn et al. (2017) through the case of Volvo 

Cars: innovation capability, innovation focus, innovation collaboration, and innovation gov-

ernance. Thus, from a strategy perspective, digitalization enforces internetworking consid-

ered as “those business processes/activities conducted or mediated online between employ-

ees, customers, suppliers and partners of firms, using internet-based technologies accessed 

through internet-based infrastructures.” (Brews & Tucci, 2007, p.224). Besides incumbents 

digitalization enables digital entrepreneurship providing less bounded entrepreneurial pro-

cesses and outcomes and less predefinition in entrepreneurial agency (Nambisan, 2016), 

as shown also, e.g., by the rising number of start-ups focusing on quantified cars. Accord-

ingly, the role of information value is a central challenge in the competitive scenarios emerg-

ing from digitalization as well as information capacity of companies (Viscusi & Batini, 2014). 

Key questions here are: What data do I have? How is their quality? Can I exploit them in 

their full potential? What can I infer from them? While ICT start-ups have already started to 

apply the quantified self phenomenon to cars, launching apps and services to generate a 

new market, car manufacturers are currently in the transition process from vehicle manufac-

turers towards integrated mobility and data service providers. According to Dedrick (2010) 

researchers have framed the impacts of IT on environment as first-order (impacts from IT 

hardware during the product lifecycle), second-order (impacts of ICTs on other processes 

such as transportation or industrial production), and third-order effects (changes in lifestyles 

and economic structures). The latter are relevant when considering the increased use of 

social media transformative potential of ‘green’ information systems on the demand side, 

encouraging practices such as, e.g., carpooling and ridesharing applications coupled with 

the Internet of things (Malhotra et al., 2013). According to Malhotra et al. (2013) this two- 

way, sensor-driven communication is blurring the boundaries between the production side 

and the demand side. Furthermore, information systems and interdisciplinary strategies for 

quantified cars may provide models to assess the value of information, in particular the social 

value of related open data (Viscusi et al., 2014).  

Taking the above issues into account, business models are a key element for competing 

in markets characterized by extensive use of ICTs and currently transformed by digitaliza-

tion. In general terms, a business model describes the rationale of how an organization cre-

ates, delivers, and captures value (Osterwalder & Pigneur, 2010). Massa et al. (2017) pro-

vides a systematic view on the different perspectives on business model research pointing 
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out that business models can be considered as i) attributes of real firms, ii) cognitive/linguistic 

schema, and iii) formal conceptual representations/descriptions of the former two issues. As 

for conceptual representations, Al-Debei & Avison (2010) identified four key dimensions of 

business model: value proposition, value architecture, value network, value finance. As for 

business models as attributes of real firms it is worth mentioning the definition by Zott & Amit 

(2010), who conceptualize a business model as “a system of interdependent activities that 

transcends the focal firm and spans its boundaries. The activity system enables the firm, in 

concert with its partners, to create value and also to appropriate a share of that value” (2010, 

p. 216). This definition is useful for understanding business models of companies interested 

in quantified cars when linked to the above concept of internetworking and current perva-

siveness and strategic relevance of digital platforms (Parker et al., 2016). Considering quan-

tified cars, despite the “analyzing” stance of the main market players, a set of traditional and 

new business models can be applied (Shipilov, 2016), in particular the infomediary one 

(Afuah & Tucci, 2000) can be adopted under a utility perspective and extended from data 

collection for, e.g., marketing purpose to data useful for social value, as capability and func-

tioning they enable (Viscusi & Batini, 2016), and finally for sustainability issues.  

Besides environmental and societal issues, business sustainability refers to “business 

models and managerial decisions that creates value over the short, medium, and long terms, 

based on mutually beneficial interactions  between the company’s value chain and the social 

and environmental systems on which it depends” (Lüdeke-Freund et al., 2016, p. 18). Fur-

thermore, Schaltegger et al. (2016, p. 6) points out that a business model for sustainability 

“helps describing, analyzing, managing, and communicating (i) a company’s sustainable 

value proposition to its customers and all other stakeholders, (ii) how it creates and delivers 

this value, (iii) and how it captures economic value while maintaining or regenerating natural, 

social, and economic capital beyond its organizational boundaries.” Still, business model 

innovation in automotive industry asks for understanding the different ways the various ac-

tors can follow to innovate their business models; in particular, as pointed out by Massa & 

Tucci (2014, p. 424), business model design in newly formed organizations, which refers to 

their “entrepreneurial activity of creating, implementing and validating a business model”, 

and business model reconfiguration in incumbent firms, encompassing the reconfiguration 

and eventual acquisition of organizational resources to change an existing business model. 
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4.1.2 Research Approach 

This chapter is aimed to provide a first exploration of the position of innovative ICT start-ups 

vs. car manufactures towards establishing new services and sustainable business models. 

Although the topic quantified car per se is in the domain of car manufacturers, an increasing 

number of ICT start-ups have used their innovation capabilities to develop own means for 

capturing this valuable data source.  

Against this background the authors of this chapter conducted a desk research approach 

analyzing information available on the Web to further explore the activities of quantified car 

start-ups and car manufacturers. They have used a combination of the terms quantified, 

connected, vehicle, car, and start-up in search engines to capture the current developments. 

Furthermore they have used crunchbase.com to capture additional meta-information on 

company location, business and funding. 

After having identified the major quantified car start-ups, which are listed in Table 10, 

two authors have studied start-up websites in detail to find out more about their visions and 

goals as well as about their business models, products and services. Both authors have 

reviewed the websites of all start-ups and discussed their knowledge with the other person 

afterwards to come to a common understanding. The information was then validated by two 

additional persons, which are co-authors of this chapter as well. 

4.2 Results: An Exploration of Novel Services and Busi-

ness Models 

4.2.1 The Position of ICT Start-ups in the USA towards 

Exploiting Car Data 

In analogy to the quantified self movement, the dominating IT/Web industry of the USA has 

already lined up a series of quantified car start-up companies backed by risk capital, reaching 

more than 20 million USD in some cases, demonstrating how high investors perceive the 

market value of a car data ecosystem for quantified cars (Stocker et al., 2017a). The start-

ups exploit data generated by cars while driving. The crucial source for any data-driven start-

up is data and this statement also holds for quantified car start-ups. The following table lists 

start-ups which have been identified in desk research. It provides an overview and includes 

the company names, their URL as well as their value propositions provided on the website. 
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Table 10 Quantified Car Start-ups. (Kaiser et al., 2017b) 

COMPANY URL VALUE PROPOSITION 

Automatic automatic.com Unlimited car monitoring, zero fees. The only connected car adapter 

with unlimited 3G included. 

Automile automile.com #1 Fleet & Asset Tracking 

Dash dash.by Connect your car to Dash, to make driving smarter, safer, greener and 

more affordable. 

Metromile metromile.com Metromile’s pay-per-mile insurance offering saves low-mileage drivers 

a ton of money. 

Mojio moj.io The Leading Open Platform for Connected Cars 

Vinli vin.li …the leading car platform for bringing smart car functionality to any 

car on any lot, in any fleet, or in any shop. 

Zendrive zendrive.com Smartphone-powered road safety for cities, fleets, and individuals. 

Zubie zubie.com …connects your car to the internet to deliver real time location, trip his-

tory, maintenance alerts, engine diagnostics and driving insights. 

 

For data acquisition purposes, start-ups must involve car drivers/owners somehow. The car 

driver creates data while driving his car and therefore has to be understood as the owner of 

the driving data. While car manufacturers have a comparatively easy technical access to the 

data a car generates during its operation, tech start-ups have to identify novel ways on how 

to capture this data before they can use it in applications. The conducted research has iden-

tified two major data acquisition approaches pursued by the start-ups:  

• The first approach, pursued by the majority of quantified car start-ups including e.g. 

Automatic or Mojio, is to utilize a branded hardware plug connected to the OBD-II 

interface, a standardized interface for all modern cars. This allows them accessing 

certain car sensor data, e.g. speed or rpm. They may equip their devices with addi-

tional sensors including GPS or accelerometer to collect additional relevant data 

describing the movement of the car. Both plug and internet connectivity are usually 

not free of charge. They produce a lock-in effect to the particular business model of 

a quantified car start-up and are one way to safeguard revenues. 

• The second approach, e.g. pursued by Zendrive, is to use the sensors built into 

modern smartphones, e.g. GPS, accelerometer or luminance, to capture data while 
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driving. This makes smartphones suitable devices to track car trips, too. However, 

smartphones lack information provided by car sensors including emission data or 

rpm. Nevertheless, smartphones have the advantage of an ‘always on’ connectivity 

for event extraction and service provision. 

The reviewed start-ups have specialized in capturing, storing, and analyzing large quantities 

of car data and offering services in smartphone applications to motivate for sharing valuable 

driving data. The majority of start-ups are capable of extracting interesting driving events 

including e.g. hard brake, hard acceleration or speeding to name a few.  These events are 

hidden in the field data and have to be revealed through applying data analytics. Mobile 

applications running on the user’s smartphone then pull the results and visualize them on 

the driver’s smartphone. Figure 23 provides snapshots of such mobile app user interfaces. 

 

Figure 23 Start-up Apps: Automatic, Mojio and dash. (Kaiser et al., 2017b) 

Some start-ups even provide APIs and software development kits to software developers in 

order to increase their market reach through third party apps or even to become the most 

important car data service platform, through a business model comparable to Apple iTunes. 

Some may even pursue the strategy of being bought by a big player in the future. These 

start-ups are definitely eager to increase market penetration. Their main competencies are 

applying novel data analytics on large quantities of trip data, storing large quantities in their 

datacenters, providing innovative mobile applications to the user including gamification apps 

as well as dashboards and interfaces for other parties (e.g. fleet managers) to allow analytics 

on fleet data. 
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4.2.2 The Position of Car Manufacturers towards the 

Quantified Car Phenomenon 

Regarding access and ownership of car generated data, car manufacturers are in a compa-

rably lucky position. However, they were not very successful in exploiting this market yet. 

The potential to exploit car lifecycle data for purposes other than driving currently remains 

almost untapped by automotive OEMs (Stocker et al., 2017a). According to the EU research 

project AutoMat (2016c), the automotive industry has not yet been able to successfully es-

tablish an ecosystem for apps and services equivalent to that of smartphone manufacturers. 

The project mentions three reasons why OEMs are currently struggling: Brand-specific busi-

ness approaches dominate, and as a consequence there is a lack of brand-independent car 

lifecycle data. Current proprietary car services focus on the individual customer, what leads 

to privacy concerns, and few ideas exist how anonymized car data can be used to establish 

other services. The implied or required collaboration between OEMs on car data and ser-

vices is considered risky in terms of competition.  

However, success and interest in car data start-ups seem to have made an impact on 

OEMs business strategies. As the AutoMat system structure (Figure 24) illustrates, OEMs 

are interested in taking over the data provider role and to establish a car data ecosystem: 

Data acquisition systems will be integrated into cars. Cat data is transmitted to an OEM 

backend, where it can be cleaned and enriched with further relevant information before pub-

lishing it to service providers, e.g. tech-start-ups, which then can provide third party applica-

tions on a marketplace. Though there is an OEM backend, the Automat System terms its 

approach an ‘open ecosystem’ in its deliverables, where the willingness of other stakehold-

ers to pay for digital business models is an important topic, too. 
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Figure 24 The AutoMat System. (Source: AutoMat, 2016c) 

Tech start-ups heavily depend on the OBD-II interface yet. If access to this interface would 

be limited or denied, their business models would be endangered. A recent eeNews Auto-

motive (2017) article titled ‘German car industry plans to close OBD interface’ emphasizes 

the hypothesis that car manufacturers want to take over the data provider role, it states:  

“Instead, the data will be made accessible to interested 

third parties through a neutral server, and basically under 

control of the automotive industry.” 

There are two relevant recent position papers from VDA concerning the role of the German-

speaking car manufacturers towards digital car data ecosystems. The position paper ‘data 

protection principles for connected vehicles’ (VDA, 2014) refers to the continuous transfor-

mation of vehicles towards ‘connected vehicles’ with a permanent uplink to the internet and 

the feasibility to connect various data sources for establishing new services. The position 

paper suggests three principles for VDA members to handle the advancements in connec-

tivity and the new services associated with respect to responsible data handling as well as 

with data protection: 

• Transparency: VDA members strive for adequate information about the data in con-

nected vehicles and the use of these data. 

• Self-determination: VDA members are striving to enable customers to determine 

themselves the processing and use of personal data through various options. 
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• Data-security: VDA members strive to implement the strong safety culture in con-

nected vehicles. 

The short paper closes with a chart of data categories in connected vehicles and their rele-

vance for protection: 

 

Figure 25 Data categories in connected vehicles. (Source: VDA, 2014) 

The second position paper titled ‘access to the vehicle and vehicle generated data’ (VDA, 

2016) discusses data-centric requirements for security, privacy, and discrimination free in-

novation. According to this report, each OEM has the role of a system administrator and is 

hence responsible for the safe and secure transfer of car data to a business to business 

(B2B) OEM interface. Third parties can access this car data directly over the OEM B2B in-

terface or via neutral servers, which gather the data from the cars. 

 

Figure 26 Access to vehicle generated data. (Source: VDA, 2016) 
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According the information contained in the position paper, direct access to this data for third 

parties will be disabled. As a result, access to car data may be very limited in the future for 

start-ups, because OEMs want to increase their influence on what stakeholders can do what 

with the data cars generate. 

4.3 Conclusion and Outlook 

Modern cars have become data generators. Hence, their data can be collected, stored in 

databases, analyzed, and finally aggregated to generate new products, digital services, and 

business models. In analogy to the quantified self phenomenon which is about capturing the 

data about oneself to provide new insights to people’s behavior, the authors have coined the 

trend described above with the term quantified vehicles (Stocker et al., 2017a).  

The authors expect that many stakeholders have an interest in exploiting car data to 

provide digital services. There are certainly a lot of benefits to achieve if this is done accord-

ingly, which will increase individual driving safety as well as road safety. Furthermore many 

of these activities will have a direct influence on the environment as safer driving through 

less speeding, fewer braking, and smoother accelerating will positively correlate with reduc-

ing emissions while driving. 

Two concrete stakeholder groups were focused, US ICT start-ups and German car man-

ufacturers. While ICT start-ups adopt either an OBD-II interface plug or smartphone sensory 

to capture data, car manufacturers would have a direct access to car data – at least from a 

technical perspective. US ICT start-ups have occupied the market in a new freshness by 

creating new services and business models based upon analyzing large quantities of car 

data. They have built up an enormous expertise in gathering and exploring field data, detect-

ing patterns and events in the data or providing analyses which are of interest to drivers. 

However, recent articles and reports from VDA suggest that German car manufacturers have 

become aware of the huge market which is at loose to the ICT industry. Hence, OEMs start 

to advance own projects and discuss restricting the OBD-II interface. Car manufacturers are 

seeking new opportunities and may establish a data market for third party services. If Ger-

man car manufacturers will pursue the approach described in both VDA reports, then the 

battle on setting up a successful car data-service-ecosystem will progress to a very exciting 

next round. 
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5. Digital Vehicle Ecosystems and New Busi-

ness Models: An Overview of Digitalization Per-

spectives 11 

Summary and Author Contribution 

Analysis of the Market: Services, Start-ups, OEMs, Business Models, and Trends  
(Paper 2/2) 

This chapter investigates new business models created within the automotive industry 
based on vehicle data-driven services, causing an interesting power struggle between the 
various stakeholders. A bunch of innovation-friendly IT start-ups – the majority of them 
from outside Europe – has already put energy into the development of novel quantified 
vehicle services for various beneficiaries, including drivers as well as third parties, chal-
lenging the traditional role of vehicle manufacturers. They gather data on how vehicles 
are used and offer digital products and services exploiting this data. This chapter provides 
a short overview on the role of the digitalization phenomenon in general, the impact of 
digitalization in the automotive domain through quantified vehicle start-ups and new busi-
ness models, as well as a brief investigation of the position of vehicle manufacturers and 
their digital service strategies – all of them concluded in a comparison of value creation 
for business model elements. 

 

This paper was written at the same time as the paper for the NBM conference (Kaiser 
et al., 2017b), which makes them partly related in content. In contrast, with this contribu-
tion, a conference in the field of knowledge / information was addressed, and the focus 
was adopted accordingly. I contributed to this article as the main author by incorporating 
my knowledge gained from the lightweight online market research approach, the discus-
sions with the co-authors and members of research project AEGIS. We aimed to illustrate 
various developments (digitalization in the automotive domain, the emerging topic of Data-
driven Services, and new business models) that all indicate that Data-driven Services will 
be a very relevant topic in the future. Finally, we also compared the business models of 
the Data-driven Services of vehicle manufacturers with those of start-ups. 

 

Digitalization is an important driver of service and business model innovation in the vehicle 

domain. Digitalization challenges are currently often subsumed under the more popular term 

‘connected vehicles’. Taking a look on digital services and mobile applications, it emerges 

that connecting vehicles closer to their human drivers is an increasingly requested topic of 

research. Such include e.g. the detection of behavioral patterns from data collected during 

 

11  The content of this chapter is based on  

 Kaiser, C.; Stocker, A.; Viscusi, G.; (2017). Digital Vehicle Ecosystems and New Business Models: 
An Overview of Digitalization Perspectives. Platform Economy & Business Models workshop at i-
KNOW ’17. Link: http://ceur-ws.org/Vol-2025/paper_ddds_1.pdf 
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self-tracking activities (e.g. conclude from heart bpm value and GPS positions if a sport ac-

tivity is performed), which can be transferred to vehicles, too. As vehicles capture sensory 

data about themselves and their environment during operation and thereby reveal how they 

are used by a driver, they can become ‘Quantified Vehicles’ (Shipilov, 2016). Quantified ve-

hicles represent one key result of digitalization in the automotive industry, where incumbents 

have to face a key set of competing systemic challenges spanning from innovation capability, 

focus, and governance. In particular, digitalization has enabled digital entrepreneurship 

(Nambisan, 2016) providing less bounded entrepreneurial processes and outcomes and less 

predefinition in entrepreneurial agency, as shown also by the rising number of start-ups fo-

cusing on quantified vehicles (Kaiser et al., 2017b; Stocker et al., 2017a). 

Considering the development process of successful business models based on exploit-

ing vehicle operation data, there is currently a friendly competition between the major players 

from Information and Communication Technology (ICT) industry against the vehicle manu-

facturers on the supremacy of digital ecosystems. ICT start-ups have already successfully 

transferred the quantified-self (Neff and Nafus, 2016; Swan, 2013) phenomenon to vehicles 

and have launched apps and services to generate a whole new market, while vehicle man-

ufacturers are currently in the transition process from vehicle manufacturers towards inte-

grated mobility and data service providers (Kaiser et al., 2017b). Thus, the digital ecosystem 

for the incumbents and start-ups, which are competing in the quantified vehicles market, 

have to consider industry transformation in general, impacting on the overall digital infor-

mation assets available as well as on the sustainability of business models. 

This chapter aims to explore different approaches on developing platform oriented and 

sustainable business models for the occupation of digital services, probably the most lucra-

tive components in the future automotive industry, between the incumbent vehicle manufac-

turers and the emerging tech start-ups. In particular, this chapter aims to identify the main 

actors and roles in emerging digital ecosystems of vehicle usage data platforms and their 

contribution to eventually define an information infrastructure for an automotive industry cen-

tered around ‘quantified vehicles’.  

After this introduction, the chapter will provide a summary on digitalization as well as its 

implications for the automotive domain ranging in Section 5.1, whereas Section 5.2 outlines 

the applied research approach. Section 5.3 discusses relevant digital challenges of vehicle 

manufacturers and the increased competition on the way to digital services including recent 
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activities within the startup ecosystem. Section 5.4 concludes with an outlook and a classifi-

cation of value drivers and business model elements for each stakeholder investigated in 

this chapter. 

5.1 Background and Motivations on Digitalization 

Digitalization is a sociotechnical process that leverages the technical process of the encod-

ing of analog information in a digital format (digitizing) applied to broader social and institu-

tional contexts, transforming their sociotechnical structures, thus rendering digital technolo-

gies infrastructural (Tilson et al., 2010; Yoo et al., 2010). Furthermore, digitalization depends 

and results in digital artefacts characterized by attributes such as editability, interactivity, 

reprogrammability / openness, distributedness (Kallinikos et al., 2013), also implying a shift 

in product design moving from modularity to generativity (Lyytinen et al., 2016; Yoo et al., 

2012; Yoo, 2013). 

Quantified vehicles represent one of the key results of digitalization in the automotive 

industry, where incumbents have to face a key set of competing concerns systematically 

interrelated as shown by Svahn et al. (2017) through the case of Volvo: innovation capability 

(existing versus requisite), innovation focus (product versus process), innovation collabora-

tion (internal versus external), and innovation governance (control versus flexibility). In par-

ticular, it is worth noting that from a strategy perspective, the digitalization enforces internet-

working to be considered as “those business processes/activities conducted or mediated 

online by and between employees, customers, suppliers and partners of firms, using inter-

net-based technologies accessed through internet-based infrastructures.” (Brews and Tucci, 

2007, p.224). Besides incumbent’s digitalization enabled by digital entrepreneurship provid-

ing less bounded entrepreneurial processes and outcomes and less predefinition in entre-

preneurial agency (Nambisan, 2016), as shown also in the case of the specific industry, the 

authors consider a rising number of start-ups focusing on quantified vehicles. 

Taking these issues into account, the role of information and its value are a central chal-

lenge in the competitive scenarios emerging from digitalization as well. Consequently, a key 

issue is related to evaluation of the digital information asset of a company as well as its 

information capacity defined as the current stock of understandings informed by a given in-

stalled base (Viscusi and Batini, 2014). The key questions are:  

What data do I have? 

How is the quality of data? 
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Can I exploit it in their full potential? 

What can I infer from it given my current systems? 

According to Viscusi & Batini (2014) information capacity represents the potential of a digital 

information asset defined and evaluated independently from its usage, determining not only 

its economic value, but also the enabling capabilities.  

Considering the development process of successful business models based on exploit-

ing vehicle data, there is a competition between the major players from ICT industry against 

the vehicle manufacturers on the supremacy of digital ecosystems. ICT start-ups have al-

ready started to apply the quantified-self phenomenon to vehicles and have and launched 

apps and services to generate a new market, while vehicle manufacturers are currently in 

the transition process from vehicle manufacturers towards integrated mobility and data ser-

vice providers (Kaiser et al., 2017b; Stocker et al., 2017a). Yet, the digital ecosystem for the 

incumbents and start-ups competing in the quantified vehicles market have to consider an-

other industry transformation, impacting on the overall digital information asset available as 

well as the sustainability of business models.  

At the state of the art, the need to build on an appropriate ICT infrastructure, the open 

system integration of the energy landscape led to its definition as “Internet of Energy” (Ap-

pelrath et al., 2012; Karnouskos and Terzidis, 2007). As a consequence of the “Internet” 

metaphor, the energy related challenges and concerns have been alternatively interpreted 

as a consequence of lack of information “to enable and motivate economic and behaviorally 

driven solutions” (Watson et al., 2010). Consequently, “energy informatics” (EI) has emerged 

as a new field within information systems (IS) research to analyze, design, and implement 

systems increasing the efficiency of energy demand and supply infrastructure (Watson et 

al., 2010). According to Dedrick (2010) researchers have framed the impacts of IT on the 

environment as first, second, and third-order effects: 

• First-order effects: direct impacts from IT hardware during the product lifecycle, in-

cluding production, use and disposal of computer equipment. 

• Second-order effects: impacts of ICTs on other processes such as transportation or 

industrial production, influencing their environmental impact. 

• Third-order effects: are longer term and more dynamic impacts, occurring when 

widespread use of ICTs leads to changes in lifestyles and economic structures.  
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Third order effects are relevant when considering the increased use of social media trans-

formative potential for green IS on the demand side, encouraging better practices reducing 

the burden on the environment such as, e.g., the emerging carpooling and ridesharing ap-

plications impact on transportation coupled with the Internet of things (Malhotra et al., 2013). 

According to Malhotra et al. (2013) this two- way, sensor-driven communication is blurring 

the boundaries between the production side and the demand side. Furthermore, EI and IS 

and interdisciplinary strategies for quantified vehicles may provide models to assess the 

value of information, in particular the social value of related open data, adopting classification 

frameworks such as the one proposed by Viscusi et al. (2014).  

Over the last twenty years, actually after the massive access to the Internet and the 

World Wide Web, the interest in the strategy concept of business model has grown, thus 

becoming a key element for competing in markets characterized by extensive use of ICTs 

and currently transformed by digitalization. In general terms a business model describes the 

rationale of how an organization creates, delivers, and captures value (Osterwalder and 

Pigneur, 2010; Boons and Lüdeke-Freund, 2013).  

However business model is a multifaceted concept, still raising debate in academia as 

to its definition, Massa et al. (Massa et al., 2017) provided a systematic view on the different 

perspectives pointing out that business models can be considered as i) attributes of real 

firms (how firms do business), ii) cognitive/linguistic schema (how the way firms do business 

is interpreted by organizational members) and iii) formal conceptual representations/descrip-

tions of the former two issues. As for formal/ conceptual representations/descriptions, Al-

Debei & Avison (2010) identified four key dimensions of a business model: value proposition, 

value architecture, value network, value finance. Whereas as for business models as attrib-

utes of real firms it is worth mentioning, especially for the case the authors consider of auto-

motive industry and quantified vehicles, the definition by Zott and Amit (2010), who concep-

tualize a business model as “a system of interdependent activities that transcends the focal 

firm and spans its boundaries. The activity system enables the firm, in concert with its part-

ners, to create value and also to appropriate a share of that value” (Zott and Amit, 2010, 

p.216). This definition is particularly useful for understanding business models of companies 

interested in quantified vehicles when linked to the above concept of internetworking and 

current pervasiveness and strategic relevance of digital platforms (Eisenmann et al., 2006; 

Eisenmann et al., 2011; Parker et al., 2016; Yoo et al., 2012).  
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As argued by Nambisan (Nambisan, 2013, p.217), IT can act as either an operand re-

source “(often tangible and static) that an actor acts on to obtain support for executing a 

task”, or as an operant resource“ (often intangible and dynamic) that act on other resources 

to produce effects”. Accordingly, in a case a digital platform can be considered an enabler 

of innovation processes and outcomes; whereas, in the other case, it acts as a trigger, in-

forming rather than being informed by the users. Considering the automotive sectors and 

especially quantified vehicles, despite the “analysing” stance of the main market players, a 

set of traditional and new business models can be applied (Shipilov, 2016), in particular the 

infomediary one (Afuah and Tucci, 2000; Rappa, 2001) can be adopted under a utility per-

spective (Rappa, 2004) and extended from data collection for, e.g., marketing purpose to 

data useful for social value, as capability and functionings they enable (Viscusi and Batini, 

2016; Viscusi et al., 2014), and finally for sustainability issues. Besides environmental and 

societal issues, business sustainability refers to “business models and managerial decisions 

that create value over the short, medium, and long terms, based on mutually beneficial in-

teractions between the company’s value chain and the social and environmental systems on 

which it depends” (Lüdeke-Freund et al., 2016, p.18). Furthermore, according to Boons & 

Lüdeke-Freund (2013, p.14) a business model perspective may contribute to a sustainable 

innovation agenda to overcome internal and external barriers. Also, Schaltegger et al. (2016, 

p.6) points out that a business model for sustainability “helps describing, analyzing, manag-

ing, and communicating (i) a company’s sustainable value proposition to its customers, and 

all other stakeholders, (ii) how it creates and delivers this value, (iii) and how it captures 

economic value while maintaining or regenerating natural, social, and economic capital be-

yond its organizational boundaries.” Thus, considering the automotive industry and the po-

tential transformation enforced by digital innovation and quantified vehicles, business model 

innovation can open different horizons and path impacting the sustainability of companies, 

although how they can innovate their business models toward greater sustainability still need 

to be significantly addressed in research and practice (Foss and Saebi, 2016, p.221). Still, 

business model innovation in automotive industry asks for understanding the different ways 

the various actors can follow to innovate their business models; in particular, as pointed out 

by Massa & Tucci (2014, p.424), business model design in newly formed organizations, 

which refers to their “entrepreneurial activity of creating, implementing and validating a busi-

ness model”, and business model reconfiguration in incumbent firms, encompassing the re-

configuration and eventual acquisition of organizational resources to change an existing 

business model. 
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5.2 Research Approach 

This chapter is aimed to provide an overview of innovative ICT start-ups towards establishing 

new services and sustainable business models. Besides that, selected digitalization initia-

tives of German and Italian vehicle manufactures are analyzed. The authors conducted a 

lightweight online market research approach analyzing information available on the Web. 

They used a combination of the terms car, vehicle, connected, quantified, start-up and vehi-

cle in search engines to capture the current developments in the start-up domain.  

After having identified major quantified vehicle start-ups, two authors studied the start-

up websites in detail to find out more about their visions and goals as well as about their 

business models, products and services. Two out of the three authors reviewed the websites 

of all start-ups and discussed their knowledge with the third author afterwards to come to a 

common understanding. The information was then validated in discussions within the AEGIS 

project consortium as well (AEGIS, 2017). Furthermore the authors used crunchbase.com 

to capture additional meta-information on business and funding, where the authors revealed 

interesting facts on investments into tech start-ups as well as of strategic partnerships. 

As for the manufacturers for the countries considered, the authors carried out a market 

research on the websites of industry organizations, press news, and magazines, apart from 

policy documents from European Union organizations. They especially paid attention to re-

view the current digital services of vehicle manufacturers by taking into account the content 

on the various product websites, which is expected to be up to date. 

5.3 Results: Digitalization in the Automotive Industry 

5.3.1 Overview 

Digitally-enhanced driving is an emerging topic, which can be counted to the heavily used 

umbrella terms ‘connected cars’/’connected vehicles’ or ‘connected driving’. According to a 

definition from PWC (Viereckl et al., 2016) in their 2016 connected car report, connected 

vehicles are defined as vehicles that have access to the Internet and a variety of sensors, 

and that are thus able to send and receive signals, sense the physical environment around 

them, and interact with other vehicles or entities. According to this report, revenues in the 

automotive industry (will) shift from hardware to software, from products to services, and 

from old to new economy. The report highlights four trends changing the automotive compe-

tition: 
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• radically new technology at low price (increase in vehicle to infrastructure connec-

tivity (e.g. through 5G), increase in computing speed to operate artificial intelligence 

for self-driving, evolution of low cost sensors to make a vehicle aware of its sur-

roundings),  

• shorter innovation cycles by new high-tech entrants (non-traditional tech companies 

to offer new services as add-ons to automobiles and disrupt traditional vehicle value 

chain, Apple to invest $10 billion into an iCar, Google’s self-driving vehicles to drive 

more than 1,5 million miles, data-centric business models depend on revenues from 

ongoing services and the sale of information),  

• new mobility concepts and increasingly urban customers (urban residents to lose 

interest in owning vehicles, millennials in cities to face affordability issues, move-

ments towards vehicle sharing and ride sharing, expectations of highly sophisticated 

levels of connectivity and services), and  

• evolving regulatory and policy constraints (policy and regulations to lack behind the 

technological process, expect regulators to respond with laws ensuring the safety of 

driverless vehicles, cities to discourage the use of non-electric private vehicles).  

The PWC report further differentiates three main categories for technologies and services 

for connected vehicles:  

• Consumer services such as internet and cloud based digital services that add to 

driving experiences,  

• Connected vehicle packages with feature to improve or help managing the vehicle’s 

operation, and  

• Supply-side technologies as underlying systems connecting the vehicle to the wider 

world.  

Another report from McKinsey (Habeck et al., 2014) on the connected vehicle trend esti-

mates a global market size of 170 billion EUR to 180 billion EUR for vehicle connectivity in 

2020. This report foresees connectivity to trigger a redistribution of automotive revenue pools 

except vehicle operations – based on a survey of 2000 vehicle buyers. McKinsey perceives 

human-machine-interface (larger screens, multiple screens, innovative UIs, Augmented Re-

ality), vehicle condition data (for offering maintenance and insurance services), and dynamic 

real-time geo-information (oligopoly of TomTom, Here, and Google) to become key control 

points in this redistribution. This report has identified five different groups of vehicle buyers: 



98 Digital Vehicle Ecosystems and New Business Models 

maxed-out vehicle enthusiasts, integration and entertainment lovers, safe and secure navi-

gators, purists/minimalists and price conscious traditionalists, each group with own prefer-

ences and attitudes towards connectivity-related features. Along with the preliminary market 

analysis a 1st competition analysis is provided. According to the McKinsey report, the con-

nected vehicle ecosystem of the future will be highly influenced by additional players includ-

ing digital players, telecom players and insurers. 

• Vehicle manufacturers explore ways to exploit the connected vehicle into the provi-

sioning of a software operating system to serve as a platform for a potential app 

store, as well as into the development of specific apps and services.  

• Automotive suppliers want to establish direct relationships with the end customers 

of vehicles produced by vehicle manufacturers who they supply.  

• Digital players adapt their smartphone platforms to vehicle-specific customer needs 

and to integrate their infotainment into vehicle systems.  

• Telecom players see new opportunities in terms of infrastructures, while SIM cards 

are installed in vehicles.  

• Insurers expect new opportunities while e.g. offering telematics-based coverage op-

tions.  

The authors can expect a huge power struggle between all players – including vehicle man-

ufacturers – on who will reap most value from the connected vehicle market. According to 

the problem statement of the AutoMat project (Automat, 2017) coordinated by Volkswagen 

Research, the automotive industry has not yet been able to successfully establish an eco-

system for smart driving applications equivalent to that of smartphone manufacturers (Kaiser 

et al., 2017b). In its prior problem statement, the AutoMat project mentions three reasons 

why vehicle manufacturers are currently struggling: (i) Brand-specific business approaches 

dominate, and as a consequence there is a lack of brand-independent vehicle lifecycle data, 

(ii) current proprietary vehicle services focus on the individual customer, which results in 

privacy concerns, and few ideas exist how anonymized vehicle data can be used to establish 

other services, and (iii) the implied or required collaboration between vehicle manufacturers 

on vehicle data and services is considered risky in terms of competition. 

5.3.2 The Business Models of US Start-ups 

The IT industry of the USA has already lined up a series of tech start-ups backed by risk 

capital, reaching more than 20 million USD in some cases, demonstrating how high investors 
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perceive the market value of an ecosystem built on exploiting vehicle data (Kaiser et al., 

2017b). The majority of start-ups including automatic.com, automile.com, dash.by, moj.io, 

vin.li, zubie.com to name a few capture vehicle operation data through the On-board diag-

nostics (OBD) interface of the vehicle which is originally intended to provide a repair techni-

cian access to the status of the various vehicle subsystems and diagnostic information.  

These connected vehicle start-ups have specialized in capturing, storing, and analyzing 

large quantities of vehicle operation data and offering digital services in smartphone appli-

cations to motivate the driver for sharing valuable driving data. The majority of start-ups are 

currently capable of automatically extracting interesting driving events using computational 

intelligence including e.g. hard brakes, hard accelerations or speeding to name a few. These 

events are hidden in the gathered vehicle operation data (time series data) and have to be 

revealed through applying big data analytics. Mobile applications running on the driver’s 

smartphone then pull the results from the start-up’s datacenter and then visualize them on 

the driver’s smartphone or tablet. The majority of these start-ups provide mobile apps con-

nected to the OBD interface of the vehicle via Bluetooth with very similar functionality to the 

driver: These include for instance means to drive smarter by unlocking diagnostics and real-

time data and greener by using the app for gaining an overview on how driving habits influ-

ence fuel consumptions (dash.by), make the vehicle smarter by revealing insights of vehicle 

data and providing driving stats (automatic.com), or delivering real time location, trip history, 

maintenance alerts, engine diagnostics and driving insights (zubie.com). 

 

Figure 27 Exemplary snapshots of dash.by's mobile app. (Kaiser et al., 2017a) 
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Another interesting tech-startup recently receiving amongst others a huge investment from 

BMW i Ventures is Zendrive.com (BMW Group, 2014). Zendrive is taking advantage of the 

sensors built into modern smartphones to capture smartphone sensor data while driving, 

and provide cloud-enabled driving analytics aiming at safer drivers as well as on safer roads 

by using gamification features. According to the business information platform crunch-

base.com a bulk of investors of these start-ups stems from the insurance industry, too.  

5.3.3 Digital Services of Vehicle Manufacturers 

German vehicle manufacturers including AUDI, BMW, DAIMLER, and VOLKSWAGEN cur-

rently offer some digital/connected services. These services allow for instance accessing 

some vehicle functions through the drivers’ smartphone via mobile apps (e.g. lock/unlock the 

vehicle), vehicles conducting (semi-) automatic calls for emergencies in case of a detected 

accident, roadside assistance, or allowing (stolen) vehicle location via mobile apps to name 

a few.  

Their offer surely is expected to increase, taking also into account new strategic partner-

ships as well as investments into connected vehicle start-ups. For instance BMW i Ventures 

(BMW, 2017a) heavily invests into tech start-ups aiming to facilitate safer driving including 

e.g. Zendrive.com (providing smartphone-powered driving analytics including statistics and 

gamification), or Nauto.com (multi-sensor device to monitor the driving behavior including 

statistics especially for safety relevant events. Moreover BMW (BMW, 2017b) has recently 

teamed up with IBM in its activity to deploy the vehicle data platform and to enhance it with 

analytics features (IBM, 2017).  

The following subsubsections summarize information on USP and the different services 

captured from the various product websites of German vehicle manufacturers and published 

studies like Karlsson et al. (2016):  

AUDI 

“Innovative services and functions that connect drivers with their Audi and the world: that is 

Audi connect. myAudi and the Audi connect services make driving even more relaxing and 

safer.” Source: (Audi, 2017a) 

“The term ‘Audi connect’ covers all applications and developments that connect Audi 

vehicles to their drivers, the internet, transportation infrastructure and other vehicles. Audi is 

continually building up its lineup of products and services in this technical area – with new 
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solutions such as the Audi connect SIM and the traffic light information service for the US 

market.” (Audi, 2017b)  

BMW 

“BMW Connected is a personal mobility assistant which facilitates everyday mobility and 

assists drivers in reaching their destinations relaxed and on time. Mobility-relevant infor-

mation such as recommendations for optimal departure times are available remotely via 

smartphone or smartwatch and can be seamlessly transferred into the vehicle.” 

BMW ConnectedDrive (BMW, 2017c): 

• Remote Services: Locking and unlocking the vehicle, indicate the vehicle’s location 

by honking the horn or flashing the lights, or on a map in the app. Activate the vehi-

cle's climate control immediately or on schedule. 

• Concierge Services: Select travel destinations and get information, connect with 

call-center agents to look for nearest services or to book services, addresses sent 

directly to navigation system. 

• Real Time Traffic Information: Information about the current traffic situation, calcu-

late expected delays and recommend detours, on street parking information. 

• Intelligent Emergency Call: If an airbag is deployed, the BMW Call Centre is con-

tacted via an accident-proof telephone unit permanently installed in the vehicle, pre-

cise position of vehicle is communicated including relevant accidental data. 

• Digital Services: With BMW CarData a vehicle owner can view the key vehicle data 

and share them with third parties if required. 

DAIMLER 

“Mercedes me is your package of innovative services, products and lifestyle offers from Mer-

cedes-Benz, Daimler and our cooperation partners – including access to your vehicle via 

smartphone, of course.” 

Mercedes me' connect services (Mercedes, 2017a; Mercedes, 2017b): 

• Vehicle Setup: Remote Retrieval of Vehicle Status, Remote Door Locking and Un-

locking, Programming of Charge Settings and Pre-Entry Climate Control, Personal-

ization. 

• Vehicle Monitoring: Geofencing, Vehicle Tracker, Parked Vehicle Locator, Route 

Planning for plug-in hybrid vehicles. 
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• Parking using a smartphone app: Geofencing, Vehicle Tracker, Parked Vehicle 

Locator, Route Planning for plug-in hybrid vehicles. 

VOLKSWAGEN 

“VW Car-Net® makes your Volkswagen more like a friend. It gives advice, helps you along 

the way, entertains you, and watches out for you. It connects you to the world outside all 

from the comfort of your driver’s seat. VW Car-Net is your partner in drive.” 

VW Car-Net (Volkswagen, 2017):  

• Via app-connected drivers can access select smartphone apps right from their dash. 

• Guide & Inform Services via SiriusXM® Traffic subscription and SiriusXM® Travel 

Link 

Fiat Chrysler Automobiles (FCA) 

In order to not exclusively look at German vehicle manufacturers, at the glance some of the 

main initiatives by the Italian-controlled multinational corporation Fiat Chrysler Automobiles 

(FCA), oriented towards consumers and dealers are discussed in the following. As for con-

sumers, it is worth mentioning the Uconnect® navigation, entertainment (with CarPlay (Ap-

ple, 2017) to use iPhone while driving by putting his applications and functions on the vehi-

cle’s built-in display) and communication system that allows drivers to being connected while 

driving and paying attention to the road and related events (FCA, 2017a). Moreover, apart 

from CarPlay and iPhone, FCA is collaborating with Google to integrate the Android open-

source platform with the Uconnect 8.4-inch connected system (Audi, 2017a). 

Considering now dealers, The FCA Dealer Digital Programme is a collection of tools, 

process, and support channels aiming at coordinating the action by the different partners 

and acting in the digital space in order to enable the engagement of local in-market shoppers 

to increase selling (FCA, 2017b). Furthermore, the FCA Dealer Digital Websites are the only 

sites having traffic directly from the brand website’s dealer locator, thus increasing through 

this connection their visibility in search results on the main search engines such as e.g. 

Google also through the support of FCA Dealer Digital Advertising (DDA) Programme (FCA, 

2017b), a one-stop shop for digital advertising campaigns connecting dealers to Certified 

Providers with national coverage and extensive digital Automotive industry expertise helping 

dealers in digital marketing and sales. This connection to the brand websites is aimed not 

only to increase marketing and selling activities, but also to improve integration with FCA in 
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terms of timely updates of assets, campaigns, pricing and inventory. However, this integra-

tion, each Dealer Digital Website site, can be customized according to the value proposition 

of the dealer brand (FCA, 2017b).  

The FCA effort in digitization of customers’ experience and dealers services represents 

the basis for moving from connected to self-driving vehicles as shown by the partnership 

with Google and the announcement in the spring of 2016, that they would build 100 self- 

driving Chrysler Pacifica hybrids minivans, formerly tested in Arizona, California and Michi-

gan. Furthermore, Google's self-driving vehicle project, Waymo, has announced in April 

2017 a program on larger scale in Phoenix program using the FCA 500 Pacifica minivans, 

allowing hundreds of people in Phoenix applying on Waymo's website to ride in the vehicles 

in order to get feedback on the experience. (Associated Press Fiat Chrysler, 2017)  

5.4 Conclusion 

Digitalization is an unstoppable trend in the automotive industry in general and increasingly 

observable by the driver. In modern passenger vehicles, drivers can connect to the cloud, 

where services to drivers and other stakeholders are provided. Thereby three approaches 

have been discovered: 

• Brand dependent assistance services, which provide access to vehicle functions 

and services via smartphone. Users thereby get access to vehicle functions via 

apps. 

• Brand-independent apps and services, often as components of data ecosystems 

with several stakeholders, which provide transparency on driving data to be used 

e.g. in driving behavior analytics. 

• Strategic alliances of vehicle manufacturers with ICT firms (e.g. BMW teams up with 

IBM) to establish services & business models on how to make value out of vehicle 

data.  

As pointed out by Zott & Amit (2017) digitalization is strictly connected to product innovation 

and its acting both at business and customers/users side asks for new ideas and business 

models design in the case of start-ups and/or reconfiguration for vehicle manufacturer 

(Massa and Tucci, 2014). Following the perspective by Amit and Zott (2001; 2010; 2012) of 

business model as an activity system that defines the way a company does business, whose 

elements are content (the ‘What?’), structure (the ‘How?’), and governance (the ‘Who?’) and 

its value drivers are novelty, lock-in, complementarities, and efficiency, 
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Table 11 identifies business model’s elements and value drivers for start-ups and vehicle 

manufacturers (termed OEM for Original Equipment Manufacturers, in gray) discussed in 

previous sections. Vehicle manufacturers seem more oriented towards governance and the 

exploitation of complementarities as value drivers (thus confirming a platform orientation as 

business model (Parker et al., 2016)), with Volkswagen targeting novelty for customers 

through business model innovation at content level and FCA using it for efficiency and lock-

in at dealers level. As to this issue, the resulting ecosystems show a relevance of digital 

(entrants) players as partners and a focus of FCA on the inclusion of dealers as a key part 

of its value constellation (Normann and Ramìrez, 1994) rather than value chain, through 

internetworking. As for the start-ups, the ones considered appears to focus on ‘structure’ as 

business model element by mostly targeting (quite surprisingly) efficiency as value driver 

instead of novelty, thus having an execution orientation rather than a differentiation one to 

digital business (Viscusi, 2015). 

Table 11 Business model elements and source of value creation for vehicle manufacturers and 

start-ups in automotive. (Kaiser et al., 2017a) 

 

Company / Initiative Type Value drivers 
Business mo-

del element 

Audi / Audi connect OEM Complementarities Governance 

Automatic Start-up Efficiency Structure 

Automile Start-up Efficiency Governance 

BMW / BMW Connected OEM Complementarities Governance 

Dash Start-up Efficiency Structure 

FCA / Uconnect OEM Complementarities Governance 

FCA / Dealer Digital Programme/ Digital 

Websites/Dealer Digital Advertising 

OEM Efficiency / Lock-in Content 

Mercedes Benz-Daimler / Mercedes Me OEM Complementarities / Novelty Governance 

Metromile Start-up Efficiency Structure 

Mojio Start-up Complementarities Structure 

Vinli Start-up Complementarities Structure 

Volkswagen / VW Car-Net OEM Novelty Content 

Zendrive Start-up Efficiency Content 

Zubie Start-up Efficiency / Complementari-

ties 

Structure 
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6. A Research Agenda for Vehicle Information 

Systems 12 

Summary and Author Contribution 

Definition of a Research Agenda for the Information Systems Community  
(Paper 1/1) 

This chapter introduces vehicle information systems (Vehicle IS) as a new class of infor-
mation systems (IS). Vehicle IS are enabled through the data generated by a plethora of 
different sensors within modern vehicles, meshed up with data from a variety of different 
other sources. Expecting the awareness on and the needs for Vehicle IS to steadily in-
crease in the future, this chapter investigates existing literature on Vehicle IS published 
by the academic IS community. A definition of the term ‘vehicle information system’ and 
an overview of relevant research directions with a set of example research questions is 
provided, to assist the academic IS community to advance the state-of-the-art in designing 
Vehicle IS. 

 

The aim of this paper was to present my impressions, that Data-driven Services are 
becoming increasingly important and that there is a need for research, in one of the top 
conferences of the IS community in order to increase the international awareness and 
reach of our work. For this purpose, I administered the developments (e.g. definition of 
Vehicle IS, finding research directions and example questions) and developed content 
myself (e.g. literature review, in-depth interviews, certain research questions, summary). 
With the example research questions we also wanted to show other researchers from the 
IS community that application-oriented Data-driven Services still contain many aspects on 
which there is no IS research yet, to advance the state-of-the-art in designing Vehicle IS 
in the long run. 

 

According to numerous studies and reports published by business analysts from Gartner 

(Ramsey, 2017), IBM (IBM CAI, 2015), and McKinsey (Gao et al., 2016) digitalization is an 

important driver of service and business model innovation in the automotive domain. Modern 

passenger vehicles have slowly become ‘computers on four wheels’ equipped with a pleth-

ora of different types of sensors, generating and utilizing enormous amounts of data 

(Haeberle et al., 2015). While currently exclusively utilized for vehicle functionality and 

safety, the continuous collection of such vehicle data can facilitate the generation of novel 

IS for vehicle drivers and other stakeholders, even from beyond the automotive domain in-

cluding e.g. insurers, meteorologists, or city planners. Due to another practitioners’ report, 

future connected vehicles will heavily interact with ecosystems of automotive data (that may 

 

12  The content of this chapter is based on  

 Kaiser, C.; Stocker, A.; Festl, A.; Lechner, G.; Fellmann, M.; (2018). A research agenda for vehicle 
information systems. In Proceedings of European Conference on Information Systems (ECIS 2018). 
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be generated by other road users’ digital devices), with the digital infrastructure, and also 

with the data provided by other services (Strategy Engineers and fka, 2017). 

Obviously, current up-to-date vehicles already capture manifold types and amounts of 

data about themselves and their environment and, and in this way, can even be coined 

Quantified Vehicles. This term is borrowed from the quantified-self movement sharing similar 

thoughts and then transferred to the vehicle domain (Stocker et al., 2017a). Quantifying a 

vehicle represents one interesting field of digitalization in the vehicle domain, to which many 

tech-startups have already dedicated huge investments (Kaiser et al., 2017b). Meshing-up 

the data a modern vehicle generates during its operation phase with environmental data, 

weather data, governmental data, or data from complementary businesses is a hot topic in 

the vehicle industry. It may pave the way for new IS and open the door to currently untapped 

potentials and opportunities, as a recent report from VDA (2016) outlines.  

So, how can the IS community finally contribute to the digitalization of the automotive 

industry? Marabelli et al. (2017) state that the IS community has so far devoted relatively 

little attention to what they call sensor-based technologies in the vehicle domain. The pre-

liminary investigation of related work within the Association for Information Systems Elec-

tronic Library (AISeL) has confirmed this statement and the comparably limited interest of 

the academic IS community in vehicle-related IS. Applying the search string “vehicle infor-

mation systems” on abstracts from the AISeL retrieved just 3 scientific papers. Widening-up 

the scope of search by using the search string  

(vehicle OR automotive) AND information systems 

retrieves at least 67 publications, which still shows the limited awareness of the IS com-

munity in vehicle-related IS research directions. While the authors think the central topic 

Vehicle Information System has not yet fully arrived in the academic IS community, the au-

thors nevertheless assume the IS community to contribute greatly to the digitalization of the 

automotive industry by providing appropriate models, methods and guidelines, and explain-

ing or even predicting the behavior of the various road users involved.  

Though this research-in-progress is not intended to be a systematic literature review, it 

nevertheless investigates at least existing research from and explores which topics have 

been addressed so far by the academic IS community on the state of the art of Vehicle IS. 

By using AISeL the authors ensure the integration of quality assured, peer-reviewed scien-
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tific knowledge but avoid sources tending to be biased, as for example industry-driven tech-

nology roadmaps. In a further step, the authors aim for a definition of the term vehicle infor-

mation system. Then the authors propose a research agenda for directions, which the au-

thors deem of importance to the IS community in an emerging field of Vehicle IS. These 

research directions have been identified as a result of in-depth interviews with six experts 

from different engineering domains (business informatics, business studies, data science, 

informatics, mechanical- and electrical engineering) employed at an Austrian research cen-

ter, hosting several vehicle engineering disciplines, and three experts in management posi-

tions for product development from associated industrial partners, then synthesized and 

summarized by four authors and finally quality assured by the fifth author, a professor for IS. 

This chapter is structured as follows: After this introduction and motivation, the authors 

continue in Section 6.1 with a definition of the term vehicle information systems and further 

report on the results of this preliminary literature investigation on Vehicle IS in the AIS Elec-

tronic Library. In Section 6.2, the authors provide a research agenda for Vehicle IS as an 

emerging class of information systems. This research agenda includes relevant research 

directions and example research questions to explore without putting them in a temporal 

order yet as it would be the case for a scientifically sound technology roadmap (Garcia and 

Bray 1997, Phaal et al. 2003). The chapter closes with a summary, a limitation of research, 

and an outlook of future work in Section 6.3. 

6.1 Vehicle Information Systems (Vehicle IS) 

6.1.1 Towards a Definition of Vehicle IS 

It is the mission of the IS academic community to “advance the knowledge and excellence 

in the study and profession of information systems” (Association of Information Systems, 

2017). The IS discipline has a more than 40-year history evolving through four eras with 

considerable diversity amongst its members in terms of research interests and believes what 

belongs and what does not belong into the field, spanning a wide variety of themes like 

decision support systems, organizational impact of IS, IS adoption, IS evaluation, or 

knowledge management to name a few (Hirschheim and Klein, 2012). According to 

Nunamaker and Briggs (2011), one major purpose of the IS discipline is to “to understand 

and improve the ways people create value with information”, while studying the “understand-

ings people require so they can create new value, and of the analysis, design, development, 

deployment, operation, and management of systems to inform these understandings”.  
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While there has been a lot of attention within the IS community to investigate how IS – 

as an academic discipline – has evolved over time, there still seems to be no ultimate defi-

nition of what the tangible part of an information system (i.e. the system – not the discipline) 

factually is. Surprisingly, even many renowned scientific papers on IS dealing with the tan-

gible part – the information system –neither review prior definitions of this term nor provide 

an own definition. For instance, both highly cited papers from Delone and McLean (1992 and 

2003) on measuring the success of an information system within an organization introduce 

an IS success model without providing a sound definition on what the information system 

actually is. What seems to be a common practice in IS makes it more than challenging for 

us to provide a sound scientific definition of a vehicle information system.  

However, some rather practical definitions in the literature have proven to be helpful: For 

example, from a Management Information Systems (MIS) perspective, Laudon and Laudon 

(2013) define an information system “technically as a set of interrelated components that 

collect (or retrieve), process, store, and distribute information to support decision making 

and control in an organization”. Another example is from Neumann et al. (2014) who define 

a business information system as a “socio-technical system containing human beings and 

machines, which use and produce information to support and enable the processes and 

operations of an enterprise”. Taking into account the cited work, the authors understand 

information systems as socio-technical systems, supporting users to execute tasks by 

providing task-relevant information. Information provision typically is supported by hardware 

and software capable to process digitized input efficiently (which increasingly is available 

due to digitalization) that in turn creates opportunities for increased automation or new busi-

ness models.  

Before going towards a definition of a “vehicle information system”, the authors deem it 

important to distinguish Vehicle IS from a series of vehicle automation systems (Stanton and 

Young, 2010), including in particular automotive safety systems (e.g. anti-lock braking sys-

tem – ABS, or electronic stability control – ESP) and advanced driver assistance systems – 

ADAS (e.g. adaptive cruise control – ACC, or lane assist), which directly influence the driving 

process increasing safety and/or comfort. Vehicle automation systems even influence vehi-

cle dynamics while keeping the driver fully out of the loop. In contrast the factual interaction 

of the driver with the information processed by an information system is one fundamental 

property of Vehicle IS. Hence, the authors understand Vehicle IS as a class of software 
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applications processing vehicle data and/or other relevant data from different sources to fi-

nally provide valuable and action-relevant information to the vehicle driver and/or to other 

stakeholders. 

6.1.2 Scope and Examples of Vehicle IS 

In order to describe the transformation and enrichment of (vehicle) data to enable Vehicle IS 

a data value chain can be applied. The Vehicle Data Value Chain adapted from Curry et al. 

(2016) shown in the figure below outlines the data process from vehicle data generation to 

usage in Vehicle IS. 

 

Figure 28 Stages of a Vehicle Data Value Chain. (Kaiser et al., 2018b) 

A Vehicle IS is an IS providing information to users (e.g. the vehicle owner, the vehicle driver, 

or co-drivers who are granted the rights to access this information) during different phases 

of vehicle operation, most notable before a trip, during a trip, and/or after a trip has been 

completed. Depending on the particular vehicle operation phase, Vehicle IS can be used 

from inside a car (often referred to as in-vehicle information systems, e.g. by Ryder et al. 

(2016), Peng et al. (2014) and in a patent of Banski and Faenger (2017)) as well as from 

outside the car. Vehicle IS may directly use the dashboard of the vehicle, but may also ex-

tend the system border of the vehicle and establish a second dashboard (Stevens et al., 

2017). The following visualization provides two examples of Vehicle IS for each operation 

phase. 

 

Figure 29 Examples for Vehicle IS to be used before, during, and after a trip. (Kaiser et al., 2018b) 

Examples for Vehicle Information Systems

Optimization hints
No acceleration approaching a red light

Live visualization
Average speed of 74km/h, 4230 rpm

Driver behavior statistics
Number of safety relevant brake events

Routing suggestions
Based on known driving style & traffic

Driver tutoring
Approaching a crossing, release gas pedal now

Road statistics
Number of hard brakes per road/city/area
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6.2 A Research Agenda for Vehicle IS 

Our preliminary literature investigation of the AIS Electronic Library has retrieved few rele-

vant publications from the academic IS community related to Vehicle IS: Ryder et al. (2016) 

present an in-vehicle information system prototype for drivers providing warnings of upcom-

ing accident hotspots based on data collected from service users. Nastjuk et al. (2016) in-

vestigate the impact of in-vehicle IS on perceived range stress (fear of a discharged battery). 

Brandt (2013) reviews the past, present and future of IS in automobiles, especially paying 

attention to IS linked to electric vehicles. Taking a wider viewpoint, Brandt provides a cate-

gorization for Vehicle IS in convenience, communication, and entertainment (CCE), vehicle 

monitoring, geo IS and navigation, and finally safety and collision avoidance. Kolbe et al. 

(2015) investigated the influence of technological and sociodemographic factors on per-

ceived stress, resulting from human interaction with Vehicle IS. Wacker et al. (2014) inves-

tigated what information green IS should provide to the individual users of electric vehicles.  

Our preliminary analysis has shown that research is scattered and diverse. In accord-

ance to Rehm et al. (2017), the authors therefore argue that structuring research directions 

in three different domains, the technical domain (e.g. the technology enabling the Vehicle 

IS), the governance domain (e.g. a Vehicle IS has to be designed in accordance to legal and 

ethical standards), and the human domain (e.g. a Vehicle IS has to provide value to the 

human driver in order to be used) is a feasible approach when aiming towards a research 

agenda.  

So, in which areas within these three domains can the academic IS community finally 

contribute to the design of Vehicle IS? To answer this question, the authors apply an ap-

proach similar to Yoo et al. (2010) and comparable to Abbasi et al. (2016) briefly describing 

relevant research directions and providing a set of example research questions after an in-

troduction of the concept in scope. Those are presented in Table 12 at the end of this section. 

The identified research directions for Vehicle IS are classified in the proposed domain 

scheme from Rehm et al. (2017) as it can be seen in Figure 30. From this diagram it is 

apparent, that the authors are dealing with highly interdisciplinary research directions as all 

of them are part of at least two domains. 
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Figure 30 Characterizing research directions for Vehicle IS. (Kaiser et al., 2018b) 

6.2.1 Data Analytics and Artificial Intelligence for Vehi-

cle Data Processing 

Data is one key source for Vehicle IS – and data analytics is the key to leverage its value. 

The data generated by modern vehicles is of enormous size and often describes very volatile 

processes (AutoMat, 2017). It can thus not easily be interpreted by humans in raw form. 

Instead, it is necessary to either transform the data, i.e. to compute meaningful and inter-

pretable properties of the data (e.g. fuel consumption) or to assess the driving metric of 

interest by statistically describing it with a (machine learning) model. The metric “aggressive-

ness of driving” may serve as an example for the latter case: It cannot easily be computed 

directly, but only by complex interactions of many other, simpler parameters (Toledo et al., 

2008). In contrast, many of the parameters in-vehicle IS present to the driver are exactly 

computable by some formula derived from physical or chemical system properties and in 

most cases easily interpretable. Machine learning models, on the other hand, seem to be 

rarely used. 

Algorithms to build (“train”) such machine learning models are typically not directly lev-

eraging the raw data, but use so called features, i.e. calculated properties of data which are 

related to the parameter of interest. For many applications, especially in the context of vehi-

cles, it is not straightforward to choose the right set of features: If you want to model a prop-

erty of the driver, you need to ensure that the chosen features do indeed capture those 

properties and non-properties of the vehicle or of environmental conditions as road type or 

Human Domain:
Social Science & 

Humanities

Governance 
Domain:
Economics, Law & 
Organization

Technical Domain:
Technology

Data analytics and 
artificial intelligence for 
vehicle data processing

Wearables for 
Vehicle IS

Privacy, trust, security, safety, 
legal, moral and ethical 
aspects in vehicle data 
processing and usage

Standardization of 
vehicle interfaces 
and information

Business  models and 
platform ecosystems in the 

context of Vehicle IS

Decision support 
systems (DSS) in the 
context of Vehicle IS
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traffic volume. While other disciplines, like image recognition have developed de-facto stand-

ard sets of robust features for different tasks (Lowe, 1999; Rosten and Drummond, 2006; 

Alcantarilla et al., 2012), comparative feature sets for Vehicle IS are still missing. 

When machine learning models for Vehicle IS become more common, additional chal-

lenges will arise, especially ones related to safety and reliability. To ensure proper, correct 

and save behavior of the models, the development of suitable testing procedures will be-

come inevitable. It is however uncertain if such procedures can be based on classical ma-

chine learning quality metrics which give information on one model at a time only. Suitable 

testing will need to take the possible interactions between multiple models into account, and, 

to make things even harder, a ground truth to compare the results against is often not avail-

able or hard to obtain. 

6.2.2 Wearables for Vehicle IS 

Besides data directly linked to vehicles, also appliances usually rather related to “quantified 

self” (QS) can act as data source and operating infrastructure for a Vehicle IS. Wearables, 

including smartwatches, fitness trackers, head-mounted displays, smart clothing or jewelry, 

or even implantables, deliver a huge variety of data with different quality levels. Although De 

Moya and Pallud (2017) denote QS as an immature domain of research, their literature re-

view revealed that profound research was conducted in technological, health-related and, 

social domain. Applications based on wearables range from finger/hand gesture recognition 

using smartwatches (Xu et al., 2015) to emotion recognition systems via electrocardiography 

(Zhao et al., 2016) through to drowsiness detection of drivers (Warwick et al., 2015). Sun et 

al. (2017) explore challenges and future directions in the view of combined smart wearables 

and intelligent vehicles. The authors classify further research potential into Communications 

and Services like interference mitigation, Security and Privacy, System-Level Considerations 

in terms of, e.g. communication protocols or networks, and Other Issues covering for exam-

ple dynamic channel modelling or power supply issues. 

6.2.3 Privacy, Trust, Security, Safety, Legal, Moral and 

Ethical Aspects in Vehicle Data Processing and 

Usage 

Whenever data from human behavior is captured and leveraged in IS, ethical aspects have 

to be discussed, as the data might be exploited for other purposes, too. For example, thou-

http://ieeexplore.ieee.org/document/790410/
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sands of smartphone applications are available for “free”, if users agree terms and condi-

tions, which include access to personal information like search terms, or even the ability to 

record sound from the microphone. As a result, users of free applications often pay indirectly 

through data they provide to the application, which then can be sold on the digital data mar-

ket. At the moment, a majority of users does not care about privacy. However, this situation 

might change if their initial trust is destroyed. 

Especially with behavior-revealing information including speeding, accelerations in kick-

down-mode, or hard breakings, it is important that users can trust the IS to only use the data 

to improve their end user experience, e.g. to defuse dangerous crossroads instead of ex-

ploiting it for other purposes like automating the detection of speeders for the police. 

Consequently, regarding vehicle data and Vehicle IS, privacy and trust are related to 

each other, while security has to ensure that data and information is kept within defined 

boundaries, e.g. that no intruder can get access to a vehicle. This is safety relevant as well, 

as there will be services which also write data to the vehicle interface, and thereby possibly 

– depending on the setup – can have a negative impact on vehicle behavior. 

6.2.4 Standardization of Vehicle Interfaces and Infor-

mation 

Vehicle usage data is produced if a vehicle is operated, therefore it could be concluded that 

this data belongs to the person operating (be it manually or autonomously) and/or owning it. 

Currently, most of the produced raw data is not accessible to the driver at all. In turn, the 

authors believe that vehicle usage data, collected from a mass of vehicles, can lead to the 

development of novel services for various stakeholders, if it were publicly accessible. Con-

sequently, it has to be decided which stakeholders (e.g. vehicle manufacturers or public 

transport departments) are in charge of playing the governmental role in order to push stand-

ardization and execution. 

According to Pillmann et al. (2017a), standardization is required since in the current state 

parameters vary from engine type to engine type and from manufacturer to manufacturer. 

The amount of signals which are currently accessible and in fact available across all pas-

senger vehicle types and manufacturers is quite small (e.g. the signals defined in OBD-II 

standard to be found in ISO 15031-5) and thus not much greater than what one can find out 

using sensory of a smartphone mounted in the vehicle. 
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Another critical point is the anticipated amount of data to be sent and the querying fre-

quency used by the data logging device, as stressing the vehicles’ bus system for information 

exchange with this low-priority information retrieval might hinder more important actions. 

Standardization on higher levels of aggregated information is another topic: Different 

manufactures are typically no longer an issue as the collected data is more or less source-

agnostic. Nevertheless, it is still challenging to create a suitable data model, as the complex-

ity and variety of the computed information is huge. There are already ongoing research 

projects, which aim to create such models, specialized in representing transportation and 

traffic related data and its exchange. The DATEX II multi-part standard (http://www.da-

tex2.eu) and the EU project AutoMat proposing a Common Vehicle Information Model 

(CVIM) (Pillmann et al., 2017a) may serve as examples of such. 

6.2.5 Business Models and Platform Ecosystems in the 

Context of Vehicle IS 

According to Rehm et al. (2017), platform ecosystems conceptualize a platform as a “set of 

shared core technologies and technology standards underlying an organizational field that 

support value co-creation through specialization and complementary offerings” (Thomas et 

al. 2015). Consequently, platform owners provide the platform, manage, and control the eco-

system (e.g. Google with the Android platform), and according to Svahn et al. (2017) platform 

ecosystems based on vehicle data recently attracted vehicle manufacturers that seek to im-

prove “end user experience and open up new revenue streams” with digital technologies. 

Kuschel and Dahlbom (2007) stated that leveraging vehicle sensor data for services will 

not be profitable unless manufacturers make the sensor data open. Since then, vehicle sen-

sor data still is not publicly available or accessible. However, some ICT start-ups from the 

US exploit the OBD interface or the smartphone sensory for their Vehicle IS, which in turn 

now forces manufacturers to react and develop ideas how they can enter this promising 

market themselves, as the EU project AutoMat (AutoMat, 2017) shows. In case of the ICT 

start-ups, many stakeholders from different domains, especially insurance, made invest-

ments in this topic to develop and explore new business models (Kaiser et al. 2017b). Hence, 

Mikusz and Herter (2016) mention, there is a “research gap on value propositions in business 

models for the Connected Car”. 
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6.2.6 Decision Support Systems (DSS) in the Context of 

Vehicle IS 

Over the last decades, a shift from pure human-made decisions to more and more comput-

erized decision support systems could be observed. This is particularly true in the context of 

vehicles. Decision support or even automated decisions are provided for drivers with respect 

to (re)routing (Santos et al., 2011), braking in dangerous situations (Broggi et al., 2009), 

automated overtaking (Richter et al., 2016) or refueling (Suzuki et al., 2014). A recent article 

(Ryder et al., 2017) studies the impact of accident hotspot warnings on driver behavior. In 

this regard, increased driving data availability can even provide new options for stakeholders 

or infrastructure, like in the case of insurance risk selection processes (Baecke and Bocca, 

2017) or charging infrastructure planning (Dong et al., 2014). 

In the more distant future, fully automated vehicles will automatically obtain and interpret 

data from sensors correctly (positioning system, acceleration sensor, cameras, radar, etc.), 

aggregate and process this data, and decide on context-related information. However, until 

a sufficient level of automation is achieved, human interaction is required. Thus, humans will 

probably still play a major role in decision-making in foreseeable future. 

In the view of a transition phase towards automated vehicles, major questions regarding 

vehicles' DSS appear, concerning drivers as well as stakeholders. 

6.2.7 A Summary of Research Directions and Example 

Questions 

In the context of Vehicle IS, the academic IS community may pay attention to the outlined 

research directions. To support this, the authors provide a list of example research questions 

per research direction listed in the following table. 
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Table 12 Example research directions and questions for Vehicle IS. (Kaiser et al., 2018b) 

Research 
direction 

Example research questions per direction 

Data ana-
lytics and 
artificial 
intelli-
gence for 
vehicle 
data pro-
cessing 

- How can data analytics and artificial intelligence be leveraged for the design of Vehicle IS? 

- What added value can be generated for Vehicle IS users through applying machine learning 
and artificial intelligence on data their vehicle generates? 

- Which requirements will Vehicle IS pose on the quality of analysis algorithms? 

- What are the most relevant features in vehicle data that are useful for generating data-driven 
services? Which features describe the driver, which the environment? 

- What are relevant and available data sources for Vehicle IS? 

- How intrusive should information about possible dangers be presented to the driver in order 
to achieve optimal response?  

- How can the quality and reliability of complex models and information based on their interac-
tion be assessed?  

Weara-
bles for 
Vehicle IS 

- How can wearables contribute to optimized information provision? What type of information 
should be extracted from provided data? 

- Under which conditions can wearables provide additional insights in the context of a Vehicle 
IS? Which data and functionalities provide added value to an IS considering current status and 
future development of wearables? 

- Which requirements demand data of persons instead of data of vehicles? How can the sup-
ply of person-related data (e.g. level of stress) be organized while driving / co-driving? 

- How can wearables contribute to more safety, both for occupants and non-drivers, in the con-
text of a Vehicle IS? 

- How can wearables be integrated into the quantified vehicle? How can the integration be en-
sured, in particular between the priorities of rapid software development / maximizing safety? 

- To which extent are security-related as well as data privacy issues concerned, if wearables 
are integrated in the quantified car? How can unintended transfer of personalized data be pre-
vented? What is needed in order to guarantee information security? 

Privacy, 
trust, se-
curity, 
safety, le-
gal, moral 
and ethi-
cal as-
pects in 
vehicle 
data pro-
cessing 
and usage 

- What is the impact of privacy and trust to the design and appropriation of Vehicle IS?  

- How can Vehicle IS be designed in order to respect privacy and trust? 

- What kind of privacy and trust labelling is required to better judge the risk of using Vehicle 
IS? 

- How can IS design assure that the security of vehicles and as a consequence the safety of 
the vehicle driver is protected? 

- What are ethical issues linked to Vehicle IS and how can ethical concerns be considered in a 
best possible way? 

- How can the data owner of data generated by vehicle usage be defined? 

- How can Vehicle IS provide information on how and by whom data is used? 

Standardi-
zation of 
vehicle in-
terfaces 
and infor-
mation 

- What is the influence on standardization on the design of Vehicle IS? 

- How can the IS community support standardisation in the domain of Vehicle IS? 

- How can standardisation accelerate the emergence of Vehicle IS and new business models 
based on Vehicle IS? 

- What factors influence standardisation processes in the digital ecosystem of automotive in-
dustry? 

- What are roles of actors within the vehicle ecosystem with respect to standardisation pro-
cesses? 

- How and by whom could a governmental authority be installed to orchestrate standardization 
respecting all stakeholders equally? 

Business 
models 
and plat-

- How and by whom should platform ecosystems and business models be managed and con-
trolled in order to enable innovativeness and fairness? 

- What are different roles of stakeholders within a digital ecosystem for the Vehicle industry? 
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form eco-
systems 
in the con-
text of Ve-
hicle IS 

- What are individual value propositions in business models of Vehicle IS? 

- How can IS contribute to a better understanding of digital ecosystems in the vehicle domain? 

- How can ecosystems based on vehicle data be sustained? 

- What is the role of ICT start-ups in the design and sustainability of platform ecosystems in 
the context of Vehicle IS? 

Decision 
support 
systems 
(DSS) in 
the con-
text of Ve-
hicle IS 

- What are driving factors of public acceptance for semi or fully automated driving without the 
need for human supervision? 

- Under which conditions and to which extent is the transformation from human decision-mak-
ing to automated decision-making accepted? 

- How can interaction between manually-controlled and (semi-)automated vehicles be orga-
nized? 

- What kind of information needs to be provided by a Vehicle IS for decision support regarding 
vehicles? What are sufficient data to provide information? How can the processing of infor-
mation into decisions be designed? 

- How to cope with situations not represented in underlying decision support system's models? 
How can human decision-making be ensured if required? 

- In which way can DSS support non-drivers/stakeholders' decision-making? 

6.3 Conclusion and Future Work 

To conclude, this chapter presents a research agenda for Vehicle IS with relevant research 

directions, including a set of example research questions per direction which the authors 

deem important for the academic IS community to advance the state-of-the-art in designing 

Vehicle IS.  

The investigation of literature indicates increased research activities in the field of Vehi-

cle IS, but at the same time emphasizes the need for definition and standardization of con-

cepts and terms. To the best of the authors’ knowledge, the approach is the first one aiming 

at bridging the gap by defining a vehicle-centred IS. Furthermore, Vehicle IS is indicated as 

a new class of IS, which are currently probably considered too little by current research pub-

lished in the AIS Electronic Library. Though the AISeL database has a broad coverage of IS 

literature relevant for the IS discipline, including no additional academic libraries in the in-

vestigated related work clearly represents a limitation of the chapter. Evidently, the limitation 

to exemplary research questions is inherent to the current approach. 

Hence, for future work it is considered to conduct a systematic literature review in addi-

tional major scientific databases including e.g. ACM, ScienceDirect, Scopus, and Springer 

Link. Furthermore, to extend the research agenda (including the vehicle data generation 

stage) and develop a scientifically sound technology roadmap to even better support the IS 

community in finding appropriate and relevant research topics. In addition, it is planned to 

conduct a qualitative, system-oriented study to add perspectives from science, business, 

government and society in order to provide a holistic view of Vehicle IS. This study ensures 
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overcoming the limitation of exemplary research questions by offering a complete research 

agenda including a multi-dimensional set of relevant and precise research questions. 
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7. The Vehicle Data Value Chain as a Light-

weight Model to Describe Digital Vehicle Ser-

vices13 

Summary and Author Contribution 

Analysis and Definition of the VDVC 

(Paper 1/2) 

In this chapter, to better understand and capture the ongoing digital transformation in the 
automotive domain, the Vehicle Data Value Chain (VDVC), grounded on big data, is in-
troduced as a lightweight model to describe and examine Data-driven Services (termed 
digital vehicle services in the article). Current Data-driven Services are applied to the 
VDVC to identify commonalities and differences within three crucial steps: data genera-
tion, acquisition, and usage to evaluate the VDVC and show its general applicability in a 
practical context.  

 

I contributed to this article by incorporating my experience gained during the develop-
ment and analysis of Data-driven Services. While researching data-driven services, it be-
came increasingly clear that the development of services follows a certain pattern that is 
comparable to the Big Data Value Chain. Therefore, I wanted to define and describe the 
so called Vehicle Data Value Chain (VDVC) in this paper. The paper is based on the 
abstract I presented at the European Transport Conference (ETC) 2018 (Kaiser et al., 
2018a). In this paper, I derive the VDVC from the Big Data Value Chain and specify the 
individual steps. Furthermore, I show that the VDVC is also suitable to analyze and com-
pare existing services. The paper was on the short list of candidates to win the WEBIST 
2019 best student paper award, but unfortunately did not win. However, it did result in an 
invitation to extend the existing paper for a submission to the Lecture Notes in Business 
Information Processing (LNBIP) series, to be found in the upcoming Chapter 8. 

 

Digitalization is an important driver of innovation within all industries, including the automo-

tive industry (Accenture, 2016). While many digitalization challenges in the automotive in-

dustry are currently focused on bringing highly automated driving into practice (McKinsey 

and Company, 2016), it is also a crucial topic of research to explore how and which digital 

vehicle services can improve the current practice of manual driving or even enable novel 

applications for other stakeholders and other markets outside the automotive domain. 

 

13  The content of this chapter is based on  

 Kaiser, C., Festl, A., Pucher, G., Fellmann, M., and Stocker, A. (2019). The Vehicle Data Value 
Chain as a Lightweight Model to Describe Digital Vehicle Services. In Proceedings of the 15th Inter-
national Conference on Web Information Systems and Technologies (WEBIST), ISBN 978-989-758-
386-5, pages 68-79. DOI: 10.5220/0008113200680079 

 Copyrightc © 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved 
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The ongoing digitalization of passenger cars could even rearrange stakeholder power 

relations in the automotive industry. In the last decade, numerous IT start-ups from outside 

Europe have created several interesting digital services, exploiting data gained from the ve-

hicle on-board diagnostic (OBD) interface, from additional sensors built into a connected 

OBD plug-in device and/or from the driver’s smartphone. This could lead to new business 

models emerging in the automotive domain, some of which have already attracted the atten-

tion of car manufacturers. One prominent example is BMW i Ventures and its recent invest-

ments in start-ups such as Zendrive (2017) and Nauto (2017). 

Two current key drivers of digitalization in the automotive domain are the ever-increasing 

amount of vehicle data generated and the capability of modern information and communica-

tion technologies (ICT) to transform these data into business value for various stakeholder 

groups. These may include individual stakeholders (e.g. vehicle drivers) as well as organi-

zational stakeholders (e.g. insurance companies, infrastructure operators, or traffic opera-

tors). “Modern vehicles have up to one hundred on board control units that constantly com-

municate with each other to ensure the correct driving and customer functionality” (VDA, 

2016). Hence, vehicles are already generating vast amounts of data using in-vehicle sen-

sors. Certain parts of these data are safety-critical and will therefore not be allowed to leave 

the passenger car, while the remainder can and will be utilized to establish novel digital 

vehicle services (as indicated by the European Parliament in Directive 2010/40/EU (EU 

2013)), which can go far beyond merely assuring driving functionality and safety. 

Digital Vehicle Services are data processing services operating inter alia on vehicle data, 

which can provide added value to those consuming them. In this context, the term ‘service’ 

can be considered from two different points of view: On the one hand, a ‘service’ is under-

stood as a piece of software applying approaches from computer science to transform and 

merge different sources of data (be it raw or pre-processed) into new, enriched forms of 

aggregated data. If done correctly, the value of these enriched data is inherently higher than 

the sum of values of the single datasets which were combined in the process. On the other 

hand, a ‘service’ is understood as something of economic relevance, providing an added 

value to one or more stakeholder groups as a service offering. 

While the enormous amount of data available today enables the creation of valuable dig-

ital services in the first place, it also poses a great challenge with regard to data processing. 

To create value, data must be acquired, transformed, anonymized, annotated, cleaned, nor-

malized, aggregated, analyzed, appropriately stored and finally presented to the end user in 
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a meaningful way. This implies that an entire data value chain needs to be created, imple-

mented and monitored. With this in mind, the authors analyze, summarize and provide in-

sights into how existing initiatives on the market tackle this challenge. Hence, the authors 

aim to answer the following research question from the emerging field of digital vehicle ser-

vices research: What is the underlying data value chain enabling digital vehicle services and 

how can it be applied to describe existing services? 

To answer this research question, the authors first review the literature on relevant con-

cepts for digital vehicle services, including Quantified Self, Big Data, and the Internet of 

Things. Based on the Big Data Value Chain as described by Curry (2016), the authors derive 

a Vehicle Data Value Chain (VDVC) that is intended to provide a structure and a frame of 

reference allowing to systematically describe the transformation of data into valuable ser-

vices, to compare digital vehicle services and to understand and explain the data-related 

challenges associated with them in a second step. In a third step, the authors apply the 

developed VDVC and use it to finally classify current digital vehicle services offered by four 

selected start-ups and five car manufacturers.  

After this introduction and a description of motivation, the authors continue with the rel-

evance of (big) data from both a general point of view and a vehicle-specific perspective in 

Section 7.1. In Section 7.2, the authors describe how vehicle data are turned into digital 

vehicle services, introducing the vehicle data value chain as the underlying process of value 

generation. The authors then apply this vehicle data value chain to visualize and compare 

the digital product innovations by selected start-ups (Automatic, Dash, Vinli, Zendrive) and 

car manufacturers (BMW, Honda, Mercedes, Porsche, Opel) in Subsection 7.2.3, before the 

authors use the VDVC to analyze the digital mobility service MoveBW in detail in Subsection 

7.2.4. Finally, in Section 7.3, the chapter is concluded and provides an outlook on various 

current activities including standardization and other activities of the European Commission 

and car manufacturers and the ongoing research project AEGIS, which aims to ease data 

fusion and the linking of data artifacts from multiple data sources. 

7.1 From Data to Big Vehicle Data 

7.1.1 Data: One Aspect of Digitalization 

More than a decade ago, Tim O’Reilly formulated his extensively cited principles of the Web 

2.0 (O’Reilly, 2005) including one principle about the emerging value of data according to 

which “data is the next intel inside”.  Since then, the hype on how to generate added value 
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from all kinds of available data has been building. Data is the new buzzword. A book by 

Mayer-Schönberger and Cukier (2013) on how Big Data is changing our world has become 

an international bestseller and been cited by researchers more than 2964 times according 

to Google Scholar. Big Data has received considerable attention from multiple disciplines, 

including information systems research (Abbasi et al., 2016) and database management 

(Batini et al., 2015), to mention two of them.  

The volume of data is growing exponentially. It is expected that there will be more than 

16 zettabytes (16 Trillion GB) of useful data by 2020 (Turner et al., 2014). It is just a logical 

consequence that data generation, data analysis, data usage – 

 and related new business models – have found their way into all areas of life. Homes 

are increasingly equipped with smart meters, a replacement for mechanic measurement of 

electricity usage, enabling the emergence of digital services to assist home monitoring and 

to optimize electricity usage. Smartwatches can track the wearer’s behavioral data and cal-

culate periodic statistics such as daily, weekly, or monthly walking distances including 

burned calories per day, week, or month. Many people use their smartphones when exer-

cising to gather information on their workout. 

Smartphone apps such as Runtastic (2017a) and Strava (2017) help to monitor how and 

where people run or cycle, automatically calculating route, pace and periodic statistics in-

cluding mean speed, time per kilometer, and calories burned. These apps even allow sharing 

the aggregated data via social networks, thus enabling benchmarking with peers and in-

creasing the joy of exercise. The pattern of collecting, analyzing, and sharing data constitutes 

the baseline for individual improvements. Instantly calculated and visualized behavioral sta-

tistics are easy to compare or share with peers on social media. The collected information 

per se is not new to these communities. For instance, experienced runners started compar-

ing their real and average time per kilometer using stopwatches a long time ago. However, 

the simplicity of digital services and the fact that many friends on social media regularly post 

about their exercising routine has motivated a whole digital generation to track themselves, 

as 210 million Runtastic app downloads demonstrate (Runtastic, 2017b). 30 million app ses-

sions per month in Europe produce a reasonable amount of big movement data, which is 

sufficient for performing representative data analyses and attracts various stakeholders in-

cluding Adidas. 
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To summarize, digitalization has greatly simplified data collection and analysis methods 

which used to be too complex and/or only available to experts. Hence, more and more peo-

ple are joining the self-tracking movement and, in turn, produce more and more data which 

can be exploited using novel digital services. 

7.1.2 The Big Data Value Chain 

The internet age has spawned far more data on anything than any other technical or organ-

izational innovation. Big Data refers to the current conglomerate of newly developed meth-

ods and information technologies to capture, store and analyze large and expandable vol-

umes of differently structured data. In a definition by Demchenko et al. (2013), the defining 

properties of Big Data are Volume, Velocity, Variety, Value and Veracity, as shown in Figure 

31. Exploiting the new flows of data can even improve the performance of companies, if the 

decision-making culture is appropriate (McAfee and Brynolfsson, 2012). 

 

Figure 31 The 5 Vs of Big Data (derived from Demchenko et al., 2013). (Kaiser et al., 2019a) 

Big Data and intelligent things seem to have an intimate relationship. While in the Web 2.0 

era data was mainly generated by humans sharing user-generated content on portals includ-

ing YouTube, Wikipedia, or Facebook, the Internet of Things has led to new patterns of data 

generation driven by machines. Smart, connected objects equipped with all kinds of sensors 

have now taken over this task (Porter and Heppelmann, 2014 and 2015). The Quantified 

Self phenomenon is making use of these data generated by things (Swan, 2009 and 2015). 

Quantified Self refers to the intention to collect any data about the self that can be tracked, 
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including biological, physical, behavioral, and environmental information. Making use of 

these data to establish applications and services has become a major creator of value. This 

value is created through multiple activities which are chained together, while the value of the 

output is steadily increasing. 

The concept of a value chain was originally introduced by Porter to describe a series of 

activities of a company to create and build value (Porter and Millar, 1985). This value chain 

concept can also be applied to the data domain to describe activities ranging from data gen-

eration to the usage of data in data-driven services for the customer. Data value chains are 

a model to describe data flows as a series of steps, each of them transforming the value of 

data. The concept of data value chains has already been used to describe the value of Linked 

Data (Latif et al., 2009) as well as of Big Data by Curry et al. (2014) as illustrated in Figure 

32. The Big Data Value Chain mentions several steps of Big Data transformation in the pro-

cess of generating the data-driven result with the maximum business value. 

 

Figure 32 The Big Data Value Chain of Curry et al. (2014) / Curry (2016). (Kaiser et al., 2019a) 

7.1.3 Big Data in the Context of Vehicles 

Decades ago, vehicles were merely equipped with mechanical components such as me-

chanic handbrakes. However, electrification and comfort requirements continuously led to 

an electrically operated handbrake. The handbrake status (applied or released) and its pro-

cess status (handbrake is applying/releasing) can be captured and used as input for vehicle 

safety checks and other features. An applied handbrake will automatically be released if the 

driver starts driving to prevent damage. The data generated through all these vehicle func-

tions can be captured and used within other scenarios, e.g. to create statistics on how often 

a window is opened/closed or how often somebody is wedged in.  

Many vehicle sensors are currently only used to offer functionality and/or to increase 

comfort and safety. As sensors and car features may widely differ from manufacturer to 

Data Acquisition

• Structured data

• Unstructured data

• Event processing

• Sensor networks

• Protocols

• Real-time

• Data streams

• Multimodality

Data Analysis

• Stream mining

• Semantic analysis

• Machine learning

• Information 
extraction

• Linked Data

• Data discovery

• ‘Whole world’ 
semantics

• Ecosystems

• Community data 
analysis

• Cross-sectorial data 
analysis

Data Curation

• Data quality

• Trust / provenance

• Annotation

• Data validation

• Human-Data 
Interaction

• Top-down/bottom-
up

• Community / crowd

• Human computation

• Curation at scale

• Incentivization

• Automation

• Interoperability

Data Storage

• In-memory DBs

• NoSQL DBs

• NewSQL DBs

• Cloud storage

• Query interfaces

• Scalability and 
performance

• Data models

• Consistency, 
availability, 
partition-tolerance

• Security and privacy

• Standardization

Data Usage

• Decision support

• Prediction

• In-use analytics

• Simulation

• Exploration

• Visualization

• Modeling

• Control

• Domain-specific 
usage



The Vehicle Data Value Chain as a Lightweight Model 125 

manufacturer and even per car variant, there is not only one single truth about how much 

data is effectively generated by a modern vehicle today. For instance, the participants from 

the EU project Automat (2017 and 2018c) state that about 4000 CAN bus signals (one signal 

could be one measurement value) per second create up to 1 GB of data per CAN bus (with-

out mentioning a sample rate). According to Pillmann et al. (2017b), there are “usually 4-12 

CAN busses in one car” (with varying amounts of input signals).  

Considering the current hype around bringing highly automated driving into practice, 

several camera, radar and LiDAR (light detection and ranging) systems are additionally im-

plemented within vehicles to capture each angle of the vehicle’s environment. Autonomous 

vehicles are forced to exchange information with other vehicles (V2V) and with the infra-

structure (V2I), which will boost the amount of available vehicle data enormously in the fu-

ture. Considering different countries and different patterns of individual driving and mobility 

behavior, bringing highly automated driving into practice can be seen as a grand digitaliza-

tion challenge.  

However, while only some of these data can be exploited for digital vehicle services (e.g. 

because the sampling rate is too high or because some values are simply not relevant) and 

while only a portion of these data will be made accessible due to safety reasons (EU, 2013), 

the remainder of accessible sensor data from modern vehicles will most likely be sufficient 

to design and develop a reasonable number of novel digital vehicle services for various 

stakeholder groups, including individual drivers, various organizational customers, govern-

ment authorities, and the automotive industry (Kaiser et al., 2017b). To sum up, modern 

vehicles already constitute big vehicle data generators. 

7.2 Generating Business Value: From Vehicle Data to 

Digital Vehicle Services 

7.2.1 Generating Business Value by Leveraging the 

Self-tracking Trend 

Many digital natives enjoy generating data anytime and anywhere using mobile devices in-

cluding smartphones and smart watches. Increasing the knowledge about oneself and even-

tually enabling new discoveries while performing physical activities including running or cy-

cling has turned into a business-relevant phenomenon. The behavior of turning collected 

data about oneself into actionable knowledge and insight which is valuable for other stake-

holders, too, has been termed Quantified Self. Interestingly, the quantified self phenomenon 
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has recently been successfully transferred to the automotive industry by US-based start-ups. 

In this sense and quite analogously, Quantified Vehicles (Stocker et al., 2017a) imply a suc-

cessful transformation of data from different kinds of sensors related to the vehicle (in-vehicle 

sensors, smartphone and wearable sensors used by the driver) into actionable knowledge, 

e.g. on the behavior of the vehicle. This way, they generate value for different kinds of stake-

holders that are part of digital vehicle data service ecosystems such as insurance or fleet 

management providers, finally resulting in novel digital vehicle services in various domains 

(Kaiser et al., 2018b; Kaiser et al., 2019b).  

The pattern of self-tracking using consumer devices, as portrayed by the Runtastic ex-

ample, can be easily transferred to vehicles: By default, vehicles gather a plethora of vehicle 

operation data through sensors and control units safeguarding a vehicle’s functionality. How-

ever, these vehicle Big Data could be used to enable a series of apps and services. In the 

case of Runtastic, the combination of the company and the high volume of generated data, 

i.e. knowledge on where, how and how often users engage in physical activity such as run-

ning, was considered worth €220 million by the Adidas Group, which acquired Runtastic in 

2015 (Runtastic, 2015). 

The market value for vehicle data is considered to be even higher due to the importance 

of vehicles in first world countries. A number of US-based ICT start-ups seized this oppor-

tunity, now offering smartphone and web applications providing insights into vehicle-gener-

ated data, after they received up to €25 million of funding from investors (Stocker et al., 

2017a). Interestingly, while some car manufacturers and suppliers (e.g. Magna International, 

Continental ITS, and BMW i Ventures) are among the investors, forming strategic partner-

ships with start-ups, others participate in research projects and try to keep data-related busi-

ness in their own area of influence. This holds for Volkswagen, for example, which coordi-

nates the EU project Automat to develop a marketplace for vehicle lifecycle data (Stocker 

and Kaiser, 2016). Furthermore, recent reports from the German automotive industry asso-

ciation (VDA) suggest that car manufacturers “have to hold a stronger position in the future 

and may limit the capabilities of third parties to freely access car data.” To summarize, the 

potential of vehicle data seems to be such that it has become a battle worth fighting (Kaiser 

et al., 2017b). But how can vehicle data actually generate value? 

7.2.2 The Vehicle Data Value Chain 

In order to provide a structure and a frame of reference allowing to systematically describe 

the transformation of data into valuable services, to compare digital vehicle services and to 
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understand and explain the data-related challenges associated with them, a value chain for 

vehicle data can be used. In this regard, the authors propose the Vehicle Data Value Chain 

(VDVC) as a lightweight model. The authors derived the VDVC from the Big Data Value 

Chain (Curry et al., 2016, illustrated in Figure 32). The authors adapted Curry’s value chain 

regarding the name, number and order of stages to reflect the authors’ experiences from 

research projects in the automotive domain. The stage of (Vehicle) Data Generation was 

added as a separate stage to explicitly reflect the origin of the data (e.g. in-vehicle or related 

sensors). The stage (Vehicle) Data Acquisition corresponds to Curry’s Data Acquisition. 

Moreover, the authors have changed the order of Curry’s stages of analysis and curation 

since the authors interpret the terminology differently. For example, Curry seems to include 

normalization procedures implicitly within machine learning in the stage of Data Analysis, 

whereas the authors consider this as an important separate pre-processing step which cor-

relates with Curry’s stage of Data Curation. Hence, the authors have re-named Curry’s stage 

of Data Curation (Vehicle) Data Pre-processing, which is followed by the stages (Vehicle) 

Data Analysis, (Vehicle) Data Storage, and (Vehicle) Data Usage (see Figure 33). 

 

Figure 33 The Vehicle Data Value Chain derived from Curry (2016) and based on Kaiser et al. 

(2018a). (Kaiser et al., 2019a) 
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(Vehicle) Data Generation summarizes any sensors which can capture data directly 

(throttle pedal position) or indirectly (road surface condition). In the case of direct influence, 

the authors mainly see three data sources: In-vehicle sensors, smartphone sensors and in-

dividual user device sensors (e.g. a pulse transmitter belt). An indirectly influencing data 

source can be literally any relevant data source, for instance a road operator camera to 

indicate traffic flow. This process step is not included in the Big Data process described in 

Subsection 7.1.3, however, it is essential for the vehicle data value chain, as the data origin 

indicates the reliability and the influence type (direct, indirect). 

(Vehicle) Data Acquisition is the process of gathering the generated data. In-vehicle 

sensor data per se is not directly accessible, as it is captured with the purpose of safeguard-

ing a vehicle’s functionality and therefore only shared between the various electronic control 

units via one of the vehicle’s CAN buses. However, a filtered amount of these sensor data 

is already accessible via the On-board diagnostic (OBD) interface (Turker and Kutlu, 2015), 

which is intended to be used by service staff to read generated error messages. It is however 

possible to develop plug-in devices with internet connection, to effectively use the OBD-port 

as a sensor data source. There are already some professional solutions with data acquisition 

devices installed in the vehicle, which directly read signals from the CAN bus in an unfiltered 

way. To meet the requirements of the EU Directive 2010/40/EU inter alia on the costless 

provision of universal, road safety-related minimum traffic information (EU, 2013), a stand-

ardized interface would be feasible sooner or later. Data from smartphones is acquired by 

using specific applications, which are capable of gathering and transmitting data. In the case 

of external data sources restricted to sources accessible via the Internet, the main issue are 

the different availability and quality levels of the data. For example, APIs commonly limit the 

number of requests allowed per time interval, meaning that the acquisition process must be 

adapted to respect these thresholds. Gathered data is stored for further processing; the cho-

sen storage and format heavily depend on the following processing steps. 

(Vehicle) Data Pre-processing describes any anonymization, annotation, cleansing 

and normalization activities before any data analysis is conducted. Sensor values may in-

clude private user information or may be erroneous, different sensors may have their own 

sampling frequency and so on. Data quality highly influences service quality. For instance, if 

the GNSS signal accuracy is low, a trip may not be linked to the correct road and may lead 

to false conclusions. 
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(Vehicle) Data Analysis with the purpose of extracting useful hidden information in-

volves linking data from different data sources, exploring data, performing statistical anal-

yses, using machine learning algorithms, and, if needed, detecting events, etc. For instance, 

weather data can be linked with the vehicle speed on a certain road to detect if the driver 

drives differently when the road is wet or icy. 

(Vehicle) Data Storage “is the persistence and management of data in a scalable way 

that satisfies the needs of applications that require fast access to the data” (Curry, 2016). In 

the case of vehicle sensor data, persistent storage is usually achieved by using a combina-

tion of classic relational databases (for meta-data), Big Data file systems (for raw input data) 

and so called “time series databases”, which allow fast analyses on the stored contents. 

(Vehicle) Data Usage covers all ways of user or software interaction with the collected 

data and any conclusions derived from it in the above-mentioned process. The accessed 

data could either be regarded as the end result of the process, in which case it will be pre-

sented more or less directly to end users, or it could serve as input for further processing 

steps, forming a circular path in the processing chain. 

7.2.3 Applying the VDVC to Describe Digital Vehicle 

Services Offered by US Start-ups and Prominent 

Car Manufacturers 

The Vehicle Data Value Chain (VDVC) introduced in the previous section describes a set of 

activities to create value out of vehicle data. Consequently, a “vehicle data to service”-pro-

cess can be derived from the above mentioned VDVC. In this section, the authors aim to 

apply the VDVC as a lightweight model to characterize selected public digital vehicle ser-

vices offered by four start-ups and five car manufacturers. The stages of (Vehicle) Data Cu-

ration to (Vehicle) Data Storage of the value chain are part of the respective digital vehicle 

service providers’ business asset and are therefore not publicly available. In addition, not all 

digital vehicle service providers can be expected to publish a full list of third-party stakehold-

ers which have access to the vehicle data acquired. However, in a second step the authors 

add a detailed description of a single service called MoveBW, which was co-developed by 

one of the authors, so that the authors can give insights into the value chain of this service. 

Digital vehicle service providers the authors chose are presented in Table 13. This table 

focuses on services for individual drivers and explicitly observes the following three process 

steps: (i) (vehicle) data generation, (ii) (vehicle) data acquisition and (iii) (vehicle) data usage. 
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(Vehicle) data usage is structured using four categories: (a) Recommendation specifies all 

digital vehicle services that give recommendations to the user, e.g. how to improve fuel effi-

ciency; (b) Vehicle status & trip statistics lists services which represent the status of the 

vehicle (e.g. remaining fuel) and statistics from recent trips (e.g. a score representing the 

driver’s cautiousness); (c) Access to vehicle features gives a list of services which enable 

vehicle features to be accessed using a smartphone application (e.g. controlling the air con-

ditioning); (d) Other contains all services which go beyond the aforementioned categories.  

The resulting table shows that the various digital vehicle services provided by start-ups 

and car manufacturers (termed OEM for Original Equipment Manufacturer) vary in terms of 

data generation, data acquisition and data usage. For instance, start-ups access in-vehicle 

data mainly by exploiting the OBD interface, except for Zendrive, which relies on smartphone 

sensors only. The OBD plug-in devices used by the start-ups differ, as they have additional 

sensors built in to capture additional data and hardware to establish UMTS/WIFI connections 

for transmitting data to the storage. The only exception is Honda, which also uses the OBD 

plug solution. Car manufacturers use the advantage they have as the vehicle developer and 

rely on an integrated CAN bus device that can capture vehicle data from far more sensors 

than OBD-based devices. It is surprising that the offered digital vehicle services somehow 

resemble one another. 

Due to limited information access, the applicability of the VDVC for US tech start-ups 

and prominent car manufacturers has been shown using the steps Data Generation, Acqui-

sition, and Usage only. However, in the following section, the authors analyze one mobility 

service where the authors have insights into the full process using each step of the VDVC. 
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Table 13 A digital vehicle service overview focusing on Data Generation, Acquisition and Usage. 

(Kaiser et al., 2019a) 

 

7.2.4 Applying the VDVC to Describe MoveBW, a Digital 

Vehicle Service 

MoveBW is a regional, intermodal mobility service offered by a European industry consor-

tium and which is currently being developed to increase the compliance rate of transport 

users (e.g. the percentage of people using a park and ride option) with regard to the current 

transport strategy of the region. The strategy mainly aims at meeting air quality targets and 

Table 1: A digital vehicle service overview focusing on (Vehicle) Data Generation, Acquisition and Usage 

Service 
Provider 

Service 
Purpose 

Data Ge-
neration 

Data Ac-
quisition 

Data Usage for drivers including business customers 

Automatic 

(Start-up) 

Driving 
statistics 
to infer 
behavior 

In-vehicle 
sensors & 
device 
sensors 

OBD 
device 

Vehicle status & trip statistics (driving behavior insights using a 
score; event detection e.g. hard brakes or speeding; location & trip 
tracking; business tagging; fill up logging; vehicle error messages; 
crash alert) 

Other: IFTTT (IF This Then That) 

dash 

(Start-up) 

Driving 
statistics 
to infer 
behavior; 
Gamificati
on 

In-vehicle 
sensors & 
device 
sensors 

OBD 
device 

Recommendation (improve fuel efficiency; ranked refueling places) 

Vehicle status & trip statistics (driving behavior insights using a 
score; location & trip tracking; fuel quantity; live speed, rpm, 
engine load, etc.; vehicle error messages) 

Other: gamification (rewards, leaderboard) 

Vinli 

(Start-up) 

Ecosystem 
with 40 
Apps: 
individual 
purposes 

In-vehicle 
sensors & 
device 
sensors 

OBD 
device 

Some known services: Amazon ‘Alexa’: trip statistic integration 
when asked for (“Where is my car?”); IFTTT (IF This Then That) 
programmable functionality; ‘Home Connect’: e.g. close garage 
door when leaving with passenger car; etc. 

Zendrive  

(Start-up) 

Gamificati
on, fleet 
mgmt. 

Smart-
phone 
sensors 

Smart-
phone 
app 

Recommendation (coach safe driving) 

Vehicle status & trip statistics (driving behavior insights using 
scores, e.g. Caution Score; location & trip tracking) 

BMW (i) 
Connected
Drive  

(OEM) 

Personal 
mobility 
assistant 

In-vehicle 
sensors & 
external 
sources 

CAN bus 
device  

Recommendation (Navigation based on traffic status; parking place 
recommend.) 

Vehicle status & trip statistics (location & trip tracking; emergency 
call; fuel quantity) 

Remote access to vehicle features (unlocking; honking; air 
conditioning) 

Honda 

(OEM) 

Driving 
statistics 
to infer 
behavior 

In-vehicle 
sensors & 
device 
sensors 

OBD 
device  

Vehicle status & trip statistics (location & trip tracking even in car 
parks; emergency call; fuel quantity; vehicle error messages) 

Other: geo-fence alarms (leaves area) 

Mercedes 
me  

(OEM) 

Personal 
mobility 
assistant 

In-vehicle 
sensors & 
external 
sources 

CAN bus 
device  

Recommendation (Navigation based on traffic status; fleet mgmt.) 

Vehicle status & trip statistics (location & trip tracking; emergency 
call; trip logging; fleet mgmt.) 

Remote access to vehicle features (remote parking; unlocking; air 
conditioning) 

Opel 
OnStar 

(OEM) 

Personal 
mobility 
assistant 

In-vehicle 
sensors & 
external 
sources 

CAN bus 
device  

Vehicle status & trip statistics (location & trip tracking; emergency 
call; fuel quantity, tire pressure, etc.; vehicle error messages) 

Remote access to vehicle features (unlocking; honking) 

Other: Privacy options 

Porsche 
Connect 

(OEM) 

Personal 
mobility 
assistant 

In-vehicle 
sensors & 
external 
sources 

CAN bus 
device  

Recommendation (Navigation based on traffic status, including 
hints for frequently used routes if navigation is turned off; parking 
place recommend.) 

Vehicle status & trip statistics (location & trip tracking; emergency 
call; fuel quantity) 

Remote access to vehicle features (Smartphone and vehicle 
navigation are connected; unlocking; honking) 

Other: smart home features (close garage door when leaving with 
passenger car) 
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reducing traffic jams all over the federal province of Baden-Württemberg (Germany), includ-

ing its provincial capital Stuttgart. 

Stuttgart is geographically located in a valley basin, which has a negative effect on air 

pollution with particulate matter. Thus, the city of Stuttgart continuously develops transport 

strategies to better comply with air quality regulations. In the past, these strategies were 

communicated to the public using radio traffic messages or electric traffic signs only. How-

ever, the compliance rate and thus success were comparably low. The new MoveBW mobil-

ity service smartphone application aims to increase the compliance rate, especially that of 

visitors new to the region. It does so by including easy-to-use routing functionalities which 

are connected to rewards: Bonus points are granted if a user follows the recommended 

route. Collected bonus points can later be exchanged for immaterial or monetary values.  

Users of the MoveBW smartphone application can plan their trips in advance using the 

intermodal journey planner. They can pick their preferred combination of transport modes 

from different options suggested to them. Additional information is displayed, not only show-

ing travel time, but also eco-friendliness, travel costs and incentives gained (e.g. public 

transport vouchers and CO2 savings). Moreover, it is possible to directly book tickets for the 

different modes of transport included in their preferred journey and yet to receive only one 

bill. In this way, transport services such as public transportation, car sharing, bike sharing, 

and parking space management are integrated conveniently, encouraging users to make 

efficient use of all modes of transport. The application also provides on-trip navigation and 

information on traffic obstructions such as construction works or accidents. 

The MoveBW services are currently monitored and evaluated in an extensive trial phase. 

Based on the findings, both the digital service and traffic control strategies will be revised, 

aiming to maximize favored effects on the individual mobility behaviors of traffic participants, 

for example by applying different strategies for daily commuters and visitors. The 

smartphone application is planned to be released in the first quarter of 2019. Mock-ups of 

the current design are shown in Figure 34. 

 

Figure 34 The MoveBW smartphone application. (Source: Strukhoff et al., 2017) 
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Taking a wide range of data sources into account for the intermodal routing algorithms in the 

MoveBW App, data management becomes a challenge. The Vehicle Data Value Chain in-

troduced in this section helps to provide a clearer view. Its application to the underlying data 

transformation process, from Data Generation to Data Usage, is shown in Table 14. 

Table 14 An overview of digital vehicle service MoveBW including all VDVC steps (Kaiser et al., 

2019a) 

 

7.3 Conclusion and Outlook 

Digitalization has become an important driver of innovation in the automotive industry, ena-

bling a plethora of digital vehicle services. The authors have presented a review of available 

digital vehicle services offered by startups and car manufacturers and described them ap-

plying the Vehicle Data Value Chain (VDVC). Many of them were originally motivated by the 

self-tracking phenomenon, which has been transferred to the vehicle domain, constituting 

quantified vehicles. 

As an outlook, it should be mentioned that digital vehicle services and the required tech-

nological infrastructure to facilitate data acquisition, pre-processing, analysis and storage, 

are currently urged topics in the automotive domain. There are already initial ideas using 

Table 2: A digital vehicle service overview focusing on (Vehicle) Data Generation, Acquisition and Usage 

VDVC step Description of MoveBW-Service 

Data Generation Various sensor data and basic reference data is considered, e.g.  

- floating car data: average mean travel time per road segment based on 
anonymized GNSS data of vehicles,  

- stationary traffic measurement: rate of flow for single measurement locations, 

- public transport: schedule and sometimes occupancy rate,  

- car park interfaces: occupancy rate, 

- park & ride interfaces: occupancy rate, 

- air quality measurement units: air quality measurements and forecast (includes 
weather forecast); 

Data Acquisition Querying the web APIs from the various data sources. Additionally, the smartphone App 
which is used in Data Usage provides GNSS information, as this is used for on-trip routing 
and to detect which means of transport the user actually uses to be able to reward if the 
recommended option is used. 

Data Pre-processing Annotation, normalization and semantic extraction of data. Transformation of data to meet 
a common reference basis (in this case a public transport grid, no typical geo-coordinates). 
Furthermore, GNSS data from the smartphone App is anonymized (start- and end-
trajectories are truncated). In this step the data is hosted in a distributed database system 
(e.g. PostgreSQL cluster) 

Data Analysis A dynamic routing algorithm which also takes the provided intermodal transport strategy, 
CO2 savings, and personal preferences into account. A self-developed algorithm which 
utilizes pgRouting (an open source project to extend PostGIS/PostgreSQL to provide 
geospatial routing functionality) and the popular Dijkstra algorithm (to find the shortest 
path between nodes) 

Thus, the algorithm provides routing recommendations (weightings for routes) 

Data Storage A distributed database system, e.g. a PostgreSQL cluster 

Data Usage The MoveBW App currently being developed should help the commuter to choose a mode 
of transport and guides the commuter to the selected destination in compliance with 
environmentally-oriented traffic management strategies.  
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blockchain technology and brokers to make data sharing transparent and secure, as de-

scribed in Kaiser et. al (2019c). Yet, while some car manufacturers invest in start-ups, others 

limit access to data via the OBD interface, arguing that they are not suitable for digital vehicle 

services (VDA, 2017; ACEA, 2016). In contrast, the European Automobile Manufacturers 

Association ACEA promotes car data sharing (ACEA, 2017). 

One reason for activities in this area is the Commission Delegated Regulation (EU) No 

886/2013 (regarding Directive 2010/40/EU on Intelligent Transport Systems – ITS) published 

by the European Commission. It regulates the costless provision of universal, road safety-

related minimum traffic information to users and requests car manufacturers to provide 

safety-relevant data to the public by making it accessible through national contact points (EU 

2013).  

Furthermore, the International Organisation for Standardisation (ISO 2017) has set up a 

standardization work group titled ISO/TC 22/SC 31/WG 6 Extended Vehicle/Remote diag-

nostics (ISO 2018) to inter alia define access, content, control and security mechanisms for 

the provision of vehicle data for web services (VDA, 2017).  

In parallel, a joint initiative of 17 EU Member States and road operators is launching a 

solution for C-ITS services in order to transmit information from infrastructure (e.g. road side 

units) to the vehicle cockpit, e.g. to inform about slow or stationary vehicle(s), traffic jams 

ahead, weather conditions, speed limits, etc. (C-ROADS, 2017).  

Additionally, current EU-funded projects such as the AEGIS Big Data project or EVOLVE 

are developing solutions to ease the integration and fusion of multiple data sources for the 

purpose of service and business development using Linked Data (AEGIS, 2017; EVOLVE, 

2019; Latif et al., 2009). “Linked data is a lightweight practice for exposing and connecting 

pieces of data, information, or knowledge using basic web standards. It promises to open up 

siloed data ownership and is already an enabler of open data and data sharing” (Rusitschka 

and Curry, 2016).  

To conclude, the authors expect the market of digital vehicle services to grow tremen-

dously in the future, as the combination of vehicle data with data from external sources (e.g. 

weather data, traffic data, open data) will enable new scenarios for digital vehicle services. 
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8. Digital Services Based on Vehicle Usage 

Data: The Underlying Vehicle Data Value Chain 14 

Summary and Author Contribution 

Analysis and Definition of the VDVC  
(Paper 2/2) 

The quantify-everything trend has reached the automotive sector while digitalization is a 
still the major driver of innovation. New digital services based on vehicle usage data are 
being created for different actors and purposes. As a side effect, a growing number of ICT 
start-ups from outside Europe have entered the automotive market to work on innovative 
use cases. Their digital services are based on the availability of vehicle data on a large 
scale. To better understand and capture this ongoing digital change in the automotive 
sector, this chapter presents an extended version of the Vehicle Data Value Chain (VDVC) 
originally published in Kaiser et al. (2019a) and uses it as a model for better structuring, 
describing and testing digital services based on vehicle usage data. Furthermore, the 
VDVC is used to classify digital services of two projects, an intermodal mobility service 
and a pothole and driving style detection service, to evaluate the VDVC and show its 
general applicability and usefulness in a practical context. 

 

In this expansion based on Kaiser et al. (2018b) and Kaiser et al. (2019a), I wanted 
to describe the individual steps of the VDVC more precisely to give the reader an even 
better understanding of what each step entails and constitutes. Thereby, I describe the 
Scope, give examples for Inputs, Outputs, Actors, Architecture, Trends, and Tools and 
descibe the contribution to value creation. In addition, we expanded the paper with an 
evaluation, which includes two cases. The newly added second evaluation case describes 
a Pothole and Driving Style Detection Service, which we (first, second and last author) 
have developed together with other colleagues as part of an internal project under my 
leadership and in the EU projects SCOTT and EVOLVE. 

 

Modern mobility is an important driver of the increasingly global economy: raw materials are 

transported around the globe and processed into products in value-added processes until 

they finally find their way to the customer via many intermediate stations.  Passenger cars 

and trucks are assembled in a complex supply chain consisting of many small parts and 

 

14  The content of this chapter is based on  

 Kaiser, C., Festl, A., Pucher, G., Fellmann, M. and A. Stocker (2020). Digital Services Based on Ve-
hicle Usage Data: The Underlying Vehicle Data Value Chain. In: Bozzon A., Domínguez Mayo J.F., 
Filipe J. (eds) Web Information Systems and Technologies. WEBIST 2019. Lecture Notes in Busi-
ness Information Processing (LNBIP), vol 399. Springer, Cham. https://doi.org/10.1007/978-3-030-
61750-9_2 

 Reprinted/adapted by permission from Springer Nature and Copyright Clearance Center: Springer 
Nature, Web Information Systems and Technologies by Bozzon A., Domínguez Mayo F.J., Filipe J. 
(eds), Copyright © 2020, Springer Nature Switzerland AG (2020). 

https://doi.org/10.1007/978-3-030-61750-9_2
https://doi.org/10.1007/978-3-030-61750-9_2
https://rd.springer.com/book/10.1007/978-3-030-61750-9
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components and finally manufactured in several value-added steps on a production line be-

fore they are delivered to customers. This basic business principle was very successful in 

many domains for a long time, until digitalization added another business aspect, which is 

becoming an important driver and has even become the decisive criterion in many sectors, 

including the automotive industry (Accenture, 2016). Similar to smartphones, where the fo-

cus is no longer on the original innovation, i.e. telephoning, but on digital apps, it is becoming 

increasingly important for vehicles, too, which digital functionalities they offer – from the 

Bluetooth connectivity with smartphones to Vehicle-to-Infrastructure (V2I) and Vehicle-to-

Vehicle (V2V) services or to third-party services that someone can install. And in the context 

of vehicle use, services based on vehicle usage data have the potential to go beyond the 

usual application focus of quantified self-applications, namely self-optimization, learning 

about oneself, social comparison and interaction or gaming, as they can even be extended 

in a life-saving manner. Driving style analysis, for example, is able to detect driver fatigue 

and distraction (Lechner et al., 2019), two of the most common causes of accidents. Thus, 

it is crucial for research to explore how digital services based on vehicle data can improve 

the practice of driving or enable novel applications for other stakeholders and other markets 

outside the automotive domain (Stocker et al., 2017a). 

The basis for digitalization in the automotive domain are the ever-increasing amount of 

vehicle usage data generated (e.g. modern vehicles are increasingly equipped with radar, 

lidar and video to support ADAS functionalities) and the ever-increasing capacity of infor-

mation and communication technologies (ICT) to convert this data into business value for 

different stakeholder groups. These may include individual stakeholders (e.g. vehicle driv-

ers) as well as organizational stakeholders (e.g. car manufacturers, fleet managers, infra-

structure maintainers, or traffic planners). Utilizing “up to one hundred on board control units 

that constantly communicate with each other” (VDA, 2016), modern vehicles are already 

generating big data using in-vehicle sensors. Certain parts of this data are safety-critical and 

must there-fore not leave the car, while the rest can and will be used for the establishment 

of novel digital services based on vehicle usage data, which can go far beyond ensuring 

driving functionality and safety and opens up a multitude of possibilities. 

As IT companies enter the automotive market with their services, the balance of power 

between the players in the automotive industry may also change. IT start-ups have already 

created several interesting digital services based on data from the vehicle's on-board diag-

nostic (OBD) interface or from the driver's smartphone (Kaiser et al., 2017b). This has led to 
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the emergence of new business models in the automotive sector and has even attracted the 

attention of car manufacturers already. A prominent example is BMW i Ventures and its 

recent investments in start-ups such as Nau-to (improving the safety of commercial fleets, 

investment made in 2017) and Zūm (providing technologies for reliable child transportation, 

investment made in 2019). Now the point is reached where it has to be decided how to go 

on: Either the large vehicle manufacturers will buy in / redevelop the most promising digital 

services of the start-ups, or, to the vehicle could merely become an exchangeable device/ 

plat-form on which digital services run, similar to the smartphone. 

Digital services based on vehicle usage data are data processing services which, among 

other things, work with data related to vehicle driving and can offer added value to users. In 

this context, the term ‘service’ can be viewed from two different angles: On the one hand, a 

‘service’ is understood as a piece of software applying approaches from computer science 

to transform and merge different sources of data (be it raw data or pre-processed data) into 

new, enriched forms of aggregated data (Lechner et al, 2019). When performed correctly, 

the value of these enriched data is inherently higher than the sum of values of the single 

datasets which were combined in the process. On the other hand, a ‘service’ is understood 

as something of economic relevance, providing an added value as a service offering to one 

or more stakeholder groups. 

However, the market entry of start-ups has already created a new data-driven service 

ecosystem in the automotive sector, leading to new data flows and collaborations in service 

development, as Kaiser et al. (2019b) describes. In the high-level view of this empirically 

obtained ecosystem with experts from the field, there is a data flow from data providers to 

service providers, who offer services on the market that are consumed by service consumers 

at the end of the value chain. On closer inspection, for example, there are five ways in which 

a service provider can already obtain relevant data on a car trip, i) from a market place (e.g. 

otonomo.io), ii) directly from the car manufacturer (e.g. BMW), iii) from data intermediaries 

(e.g. HERE Technologies, which has a close relationship to BMW and Daimler), iv) from the 

results of other service providers and v) from external data sources (e.g. weather services, 

con-gestion warnings).   

The enormous amount of data available today makes the creation of valid digital services 

possible in the first place, but also poses a major challenge with regard to data processing 

(Xu et al., 2017). To create value, data must be acquired, trans-formed, anonymized, anno-

tated, cleaned, normalized, aggregated, analyzed, appropriately stored and finally presented 
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to the end user in a meaningful way. This implies that an entire data value chain must be 

created, implemented and monitored. With this in mind, Kaiser et al. (2019a) derived the 

Vehicle Data Value Chain (VDVC) from the Big Data Value Chain as described by Curry 

(2016) and a literature review on relevant concepts for digital services based on vehicle 

usage data, including Quantified Self, Big Data, and the Internet of Things. This VDVC is 

intended to provide a structure and a framework allowing to systematically describe the 

transformation of data into valuable services, to compare existing digital vehicle services 

with each other and to understand and explain the data-related challenges associated with 

them. Hence, the VDVC was used to analyze, summarize, and provide insights into existing 

start-up and vehicle manufacturer initiatives on the market. As a result, the authors decided 

to apply the VDVC in the development of services in two case studies, the intermodal mobility 

service MoveBW (case A) and a pothole and driving style detection service (case B). Finally, 

this chapter is an extended version of Kaiser et al. (2019a), elaborating the VDVC and using 

another case study of a digital service based on vehicle data for evaluating the improved 

VDVC. 

During the development of digital services based on vehicle data it will always be  nec-

essary to obtain an overview of certain characteristics of the individual data value chain 

steps, e.g. the scope of each step, the input data received in a particular step, the output 

data generated in a step, typical actors involved, typical architectures that are relevant, rel-

evant trends and tools and, finally, the contribution of a particular step to value creation. For 

this reason, the authors subsequently extend the VDVC presented in Kaiser et al. (2019a) 

by adding relevant characteristics to each data value chain step and thus aim to answer the 

following research question:  

What are the relevant steps in developing digital vehicle services that should be part of a 

data value chain and how can the contribution to value creation be described with charac-

teristics? 

After this introduction and motivation, the authors continue the chapter with a review of 

background information in Section 8.1. In Section 8.3, the extension of the Vehicle Data 

Value Chain is presented and described. The authors then apply this value chain to analyze 

the intermodal mobility service MoveBW (case A) as well as a pothole and driving style de-

tection service (case B) in Section 8.2. Finally, a conclusion and an outlook of the chapter is 

drawn in Section 8.4. 
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8.1 Background 

8.1.1 Data as Business Enabler 

Tim O’Reilly formulated his extensively quoted principles of Web 2.0 (O’Reilly, 2005) includ-

ing one about the emerging value of data more than a decade ago. Since then, the hype on 

how to generate added value from all kinds of available data has continued to grow. Data 

has become the new buzzword. A book by Mayer-Schoenberger and Cukier (2013) on how 

Big Data is changing our world has become an international bestseller and been cited by 

researchers more than 5360 times according to Google Scholar. Big Data has received con-

siderable attention from multiple disciplines, including information systems research (Abbasi 

et al., 2016) and database management (Batini et al., 2015), to name but two.  

Due to the exponential growth in the amount of data, for example, an amount of 16 zet-

tabytes (16 trillion GB) of useful data is expected in 2020 (Turner et al., 2014). It is just a 

logical consequence that data generation, data analysis, data usage – and the new business 

models associated with it – have found their way into all areas of life. Homes are increasingly 

equipped with smart meters, a replacement for mechanic measurement of electricity usage, 

enabling the emergence of digital services to assist home monitoring and to optimize elec-

tricity usage. Smartwatches can track the wearer’s movements and, create behavioral data 

and calculate periodic statistics such as daily, weekly, or monthly walking distances including 

burned calories per day, week, or month. Many people use their smartphones when exer-

cising to gather extra information on their workout effectivity. 

Smartphone apps such as Runtastic (2017a) and Strava (2017) help to monitor how and 

where people run or cycle, automatically calculating route, pace and period-ic statistics in-

cluding mean speed, time per kilometer, and calories burned. These apps even allow sharing 

the aggregated data via social networks, thus enabling benchmarking with peers and in-

creasing the joy of exercise. The pattern of collecting, analyzing, and sharing data constitutes 

the baseline for individual improvements. Instantly calculated and visualized behavioral sta-

tistics are easy to compare or share with peers on social media. The collected information 

per se is not new to these communities. For instance, experienced runners started compar-

ing their real and average time per kilometer using stopwatches a long time ago. However, 

the simplicity of digital services and the fact that many friends on social media regularly post 

about their exercising routine has motivated a whole digital generation to track themselves, 

as 300 million downloads of the Runtastic app (recently renamed to Adidas running) demon-

strate (Runtastic, 2020). 30 million app sessions per month in Europe produce a reasonable 
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amount of big movement data, which is sufficient for performing representative data analyses 

and have led to an acquisition by the sports clothing company Adidas. To summarize, digi-

talization has greatly simplified data collection and analysis methods which used to be too 

complex and/or only available to experts. Hence, more and more people are joining the self-

tracking movement and, in turn, produce more and more data which can be exploited using 

novel digital services. 

8.1.2 A Value Chain for Big Data 

In contrast to all previous technical or organizational innovations, the Internet age has made 

it possible for data volumes to reach undreamt-of dimensions. Big Data refers to the current 

conglomerate of newly developed methods and information technologies to capture, store 

and analyze large and expandable volumes of differently structured data. In a definition by 

Demchenko et al. (2013), the defining properties of Big Data are Value, Variety, Velocity, 

Veracity and Volume as shown in Figure 35. Exploiting the new flows of data can even im-

prove the performance of companies, if the decision-making culture is appropriate (McAfee 

and Brynolfsson, 2012). 

 

Figure 35 The 5 Vs of Big Data (Demchenko et al., 2013). (Kaiser et al., 2020b) 

It seems that smart things are increasingly based on big data analysis, which makes it pos-

sible to speak of an intimate relationship between those two. While in the Web 2.0 era data 

was mainly generated by humans sharing user-generated content on portals including 

YouTube, Wikipedia, or Facebook, the Internet of Things has led to new patterns of data 

generation driven by machines. Smart, connected objects equipped with all kinds of sensors 

have now taken over this task (Porter and Heppelmann, 2014 and 2015). The Quantified 

Self phenomenon is making use of these data generated by things (Swan, 2009 and 2015). 

Quantified Self refers to the intention to collect any data about the self that can be tracked, 

including biological, physical, behavioral, and environmental information. Making use of 

these data to establish applications and services has become a major creator of value. This 

value is created through multiple activities which are chained together, while the value of the 

output is steadily increasing. 
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A company's activities to create and build value were once described by Porter and Millar 

(1985) with the so-called concept of the value chain. However, this value chain concept can 

be applied to the data domain to describe activities ranging from data generation to the us-

age of data in data-driven services for the customer. Data value chains are a model to de-

scribe data flows as a series of steps, each of them transforming the value of data. Recently, 

Åkerman et al. (2018) described a data value chain in the context of production, where data 

analytics leads to regulations of a production system like in a closed loop control system. 

Furthermore, the concept of data value chains has been used to describe the value of Linked 

Data (Latif et al., 2009) and Big Data (Curry et al., 2014) as illustrated in Figure 36. As mod-

ern vehicles are likely to produce big data (e.g. from and for (semi-)automated vehicles), the 

Big Data Value Chain including several steps of Big Data transformation in the process of 

generating the data-driven result with the maximum business value is of high relevance to 

the automotive sector (Xu et al., 2017). 

 

Figure 36 The Big Data Value Chain of Curry et al. (2014) / Curry (2016). (Kaiser et al., 2020b) 

8.2 Evaluation of the VDVC 

8.2.1 Case A: Description of the intermodal mobility 

service MoveBW 

A regional, intermodal mobility service called MoveBW helps to increase the compliance rate 

of transport users (e.g. the percentage of people using a park and ride option) in relation to 

the current transport strategy of the region. The strategy offered by an European industry 

consortium mainly aims at meeting air quality targets and reducing traffic jams all over the 

federal province of Baden-Württemberg (Germany), including its provincial capital Stuttgart.  
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Geographically situated in a valley basin, Stuttgart, like all cities in valley basins (e.g. 

Graz), struggles with air pollution through fine dust. Thus, the city of Stuttgart continuously 

develops transport strategies to better comply with air quality regulations. In the past, these 

strategies were communicated to the public using radio traffic messages or electric traffic 

signs only. However, the compliance rate and thus success were comparably low. The 

MoveBW mobility service smartphone application aims to increase said compliance rate, 

especially that of visitors new to the region. It does so by including easy-to-use routing func-

tionalities which are connected to rewards: Bonus points are granted if a user follows the 

recommended route. Collected bonus points can later be exchanged for immaterial or mon-

etary values.  

The intermodal journey planner allows users of the MoveBW smartphone application to 

plan their trips in advance. They can pick their preferred combination of transport modes 

from different options suggested to them. Additional information is displayed, not only show-

ing travel time, but also eco-friendliness, travel costs and incentives gained (e.g. public 

transport vouchers and CO2 savings). Moreover, it is possible to directly book tickets for the 

different modes of transport included in their preferred journey and yet to receive only one 

bill. In this way, transport services such as public transportation, car sharing, bike sharing, 

and parking space management are integrated conveniently, encouraging users to make 

efficient use of all modes of transport. The application also provides on-trip navigation and 

information on traffic obstructions such as construction works or accidents. 

The MoveBW services are currently being monitored and evaluated in an extensive test 

phase. Based on the findings, both the digital service and traffic control strategies will be 

revised, aiming to maximize favored effects on the individual mobility behaviors of traffic 

participants, for example by applying different strategies for daily commuters and visitors. 

The smartphone application is planned to be released in the first quarter of 2019. Mock-ups 

of the current design are shown in Figure 37. 
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Figure 37 The MoveBW smartphone application provides functions for intermodal journey plan-

ning, traffic information, ticketing and on-trip navigation. (Source: Strukhoff et al., 2017) 

A special challenge regarding data management is the multitude of data sources for the 

intermodal routing algorithms in the MoveBW App. The Vehicle Data Value Chain introduced 

in Section 8.3 helps to provide a clearer view. Its application to the underlying data transfor-

mation process, from Data Generation to Data Usage, is shown in Table 15. 
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Table 15 An overview of the MoveBW-Service. (Source: Kaiser et al., 2019a) (Kaiser et al., 2020b) 

VDVC step Description of MoveBW-Service 

Data  

Generation 

Various sensor data and basic reference data is considered, e.g.  

- floating car data: average mean travel time per road segment based on anonymized 

GNSS data of vehicles,  

- stationary traffic measurement: rate of flow for single measurement locations, 

- public transport: schedule and sometimes occupancy rate,  

- car park interfaces: occupancy rate, 

- park & ride interfaces: occupancy rate, 

- air quality measurement units: measurements and forecast (includes weather fore-

cast); 
Data  

Acquisition 

Querying web APIs from the various data sources. Additionally, the smartphone App which is 

described in Data Usage provides GNSS information, which is used for on-trip routing and to 

detect which means of transport the user actually uses to be able to reward them if the rec-

ommended option is used. 

Data  

Pre- 

processing 

Annotation, normalization and semantic extraction of data. Transformation of data to meet a 

common reference basis (in this case a public transport grid, no typical geo-coordinates). Fur-

thermore, GNSS data from the smartphone App is anonymized (start- and end-trajectories 

are truncated). In this step the data is hosted in a distributed database system (e.g. Post-

greSQL cluster) 

Data  

Analysis 

A dynamic routing algorithm which also takes the provided intermodal transport strategy, CO2 

savings, and personal preferences into account. A self-developed algorithm which utilizes 

pgRouting (an open source project to extend PostGIS/PostgreSQL to provide geospatial rout-

ing functionality) and the popular Dijkstra algorithm (to find the shortest path between nodes). 

Provision of routing recommendations (weightings for routes) through this algorithm. 

Data  

Storage 

A distributed database system, e.g. a PostgreSQL cluster 

Data  

Usage 

The MoveBW App currently being developed should help the commuter to choose a mode of 

transport and guides the commuter to the selected destination in compliance with environ-

mentally-oriented traffic management strategies.  

 

In case of MoveBW, where all steps of the MoveBW service are known to the authors, the 

VDVC provides a framework to describe the service layer by layer and thus also helps others 

to understand the service and its underlying value chain. 

In the next subsection, the development of a pothole and driving style detection service 

is described using the VDVC. 
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8.2.2 Case B: Description of a Pothole and Driving Style 

Detection Service 

Generating value out of vehicle data is a challenging task: For this purpose, vehicle data 

analytics has become an important technique in identifying the value of generated vehicle 

data. However, to exploit this value in products and services, several steps must be per-

formed, and several (not only technical) challenges have to be solved. In the beginning, an 

appropriate analytics question must be identified such as e.g. identify the driving style of the 

driver from vehicle data, detect the road surface quality, identify potholes on roads, or predict 

the engine’s wear. 

Then, vehicle data must be captured: Three different approaches for data capturing are 

possible: the installation/use of own sensors within the vehicle to record vehicle movements 

and other contextual information, the connection of a vehicle data logger to the vehicle’s on 

board diagnostic (OBD) interface to capture vehicle data such as vehicle speed or RPM, or 

the installation of a professional Controller Area Network (CAN) logger to obtain even more 

vehicle data from the vehicle’s CPUs such as for example the state of vehicle assistance 

systems or the steering wheel angle. While the first option is probably the simplest one, it 

can only record contextual data and track the movement of the vehicle, but it does not allow 

access to vehicle sensors. The second option can provide already access to some vehicle 

sensor data such as vehicle speed or engine temperature, which is relevant for testing 

whether the vehicle's emissions are still within tolerance. The third option in theory provides 

access to all vehicle sensor signals, but only if the device listening to the CAN bus can de-

code the streamed raw CAN bus data to readable data, requiring either the vehicle manu-

facturer or the respective vehicle CPU manufacturer to provide the necessary decoding in-

formation (usually referred to as CAN-DBC files). 
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Figure 38 CAN DBC files. Source: CSS electronics (2020). (Kaiser et al., 2020b) 

Different data loggers may store the data in different formats. Typically, they can collect 

multiple signals at once, which are all transmitted on the same wire. Thus, the logger needs 

to know and save at least three different properties of the data: What was measured, what 

was its value and when was it measured. This naturally leads to a tabular format very similar 

to the example depicted in Table 16.  

While this format is convenient for the logger to store data, it is much less suited for a 

statistical analyses or automated processing of the data. There are three main difficulties: 

First, several signals are mixed together in one column, creating the need for grouping and 

filtering even before very simple operations. Second, there can be multiple signals that were 

measured at the same time, requiring the analyst to investigate multiple rows at once to 

check a single instance in time. The third difficulty lies in the varying sampling rates of the 

signals. Each signal may have been captured with a different rate and even within a single 

signal, smaller deviations of the sampling rate are possible and common. Clearly pre-pro-

cessing of the captured vehicle data is needed to make it better explorable for data analysts. 

Table 16 Vehicle raw data structure (example). (Kaiser et al., 2020b) 

Timestamp Signal Name Signal Value 

2019-9-13 5:28:36.206089 RPM 1500 

2019-9-13 5:28:36.226331 Acceleration-X 0.476 

2019-9-13 5:28:36.245312 Vehicle Speed 39 

2019-9-13 5:28:36.268915 Engine oil temperature 90 

.. .. .. 
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After the required vehicle data is stored, a series of further steps must be performed to pre-

pare the data for analysis. This data (pre-)processing process can be quite comprehensive 

and depends very much on the respective analysis question to be solved, e.g. the detection 

of potholes from vehicle data. A crucial step in this process is the alignment of the coordinate 

system of data logger and vehicle. Many signals are vector valued, with acceleration as the 

maybe most prominent example. To simplify analyses and interpretations, it is highly desir-

able to express these vectors in the reference frame of the car, i.e. x-Acceleration should be 

the component in the x-direction of the car / the driving direction. In general, one cannot 

assume that the logger was mounted such that its internal coordinate system corresponds 

to the one of the vehicle. This is especially true when cheap devices that are mounted by 

end-users are used. Any misalignment of the reference frames needs to be detected and 

corrected prior to analysis. 

As with most other data types, vehicle data signals should be searched for missing val-

ues, wrong values, and outliers and these should be removed. Some signals may contain a 

lot of noise and must be smoothed. To separate the signals into different columns the data 

should be transformed using the ‘signal name’ as pivot. Simultaneously, it makes sense to 

resample each signal to a common sampling rate from the analysis’ viewpoint. The “right” 

sampling rate again depends on the question the be answered. The result is than in a similar 

form as depicted in Table 3. Now each row corresponds exactly to a point in time and the 

time interval between the rows is constant, in this example 0.1s / 10Hz. 

Table 17 Structure of pre-processed vehicle usage data (example). (Kaiser et al., 2020b) 

Timestamp Engine Speed Acceleration-X Vehicle Speed .. 

2019-9-13 5:28:36.20000 1500 0.477 39  

2019-9-13 5:28:36.30000 1501 0.479 40  

2019-9-13 5:28:36.40000 .. .. ..  

 

The data prepared in this way can now be used to work on the vehicle data analysis question 

and/or to search for interesting events (such as potholes for example). Depending on the 

type of event, multiple signals can be relevant. Events should usually be post-processed to 

combine separate events, which are only divided by a short-time interruption, into a single 

event. The recorded events may be linked with weather and position data, so that for each 

event the time and place of occurrence as well as the prevailing weather is known. 
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For different types of events, different detection methods need to be employed. One can 

detect a pothole event (driving over a pothole) by investigating acceleration values and ro-

tation rates as follows: Consider the acceleration normal to the road, as well as the vehicle’s 

rotation around its lateral axis (‘pitch’) The acceleration readings will exhibit a distinct spike, 

while a certain pattern is simultaneously visible in the rotation rate: When the front tires are 

in the pothole, the front of the vehicle is lower than the rear, if the rear tires are in the pothole, 

it is vice versa, causing a rotation around the lateral axis. This results in a typical “pitch” 

movement that can be detected. In a last step, the results of the analysis – in this case the 

detected potholes – can be visualized on a map. In this case it supports drivers in not choos-

ing bad roads, or support road operators in better maintaining roads. 

To detect strong acceleration and braking events, the signals vehicle speed, acceleration 

in the direction of travel and rotation around the lateral axis (“pitching”) are particularly suit-

able. The “pitching” is caused by the change in weight distribution when the speed changes: 

when a vehicle is accelerating, more weight moves to the rear axle – the rear drops and the 

front rises. When a vehicle is braking, the opposite is true. These movements can be de-

tected. However, since detection using only a single signal can be prone to error, the devel-

opers always use several signals in the algorithm, which must all deflect simultaneously to 

trigger detection. 

The driving styles of drivers can differ in many facets (e.g.: comfort level, gear choice, 

aggressiveness). Depending on the type of vehicle the driving style may have a large influ-

ence on fuel/power consumption, component-wear and road safety. In an attempt to quantify 

this influence, the developers use all calculated events to calculate a 'risk score' that indi-

cates how unsafe a single trip was. The more safety-related events per time unit occurred in 

a trip, the higher the value. Furthermore, the developers consider the influence of environ-

mental conditions in their calculations. For example, heavy braking in rain will result in a 

higher risk than the same braking on a dry road. To make the risk score interpretable, the 

developers normalize it using the scores from all available trips as a basis. The developers 

then present the value as statistical rank, for example a value of 56.72% means that this trip 

is safer than 56.72% of all trips in the database. In a map visualization, the driver is presented 

the trip with markers indicating start and stop positions, as well as locations for safety-rele-

vant events. 

Based on this methodology, a smartphone application, shown in Figure 39, has been 

developed for drivers interested in monitoring their driving style. 
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Figure 39 A smartphone application for driving style detection. (Kaiser et al., 2020b) 

On the left screen named Home, the driver has an overview of his trips. In the presented 

figure, his overall score is 73.41%; he has 29 trips with a total distance of 560 kilometers. In 

these trips 1273 events have been detected, which are composed of 465 acceleration 

events, 628 brake events and 180 stand-still events. On a second screen named My Trips, 

which is displayed in the center, a list of the most recent trips, grouped by date, is shown. 

For each trip, the information on which location and at which time the trip started and ended 

is displayed together with the trip score and the trip distance. Selecting one of the trips opens 

a third screen named Trip Details, where additionally the events are decomposed into cate-

gories and the trip is visualized on a map. 

Now that the idea of this service has been described, the authors want to show in the 

following table how clear and comparable the service becomes by using the VDVC. 
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Table 18 An overview of the pothole and driving style detection service. (Kaiser et al., 2020b) 

VDVC step Description of pothole and driving style detection service 

Data  

Generation 

Vehicles are equipped with data loggers that record the signals required for pothole and driving 

style detection (e.g. speed, acceleration, rotation, position, etc.) These data loggers are con-

nected to the on-board diagnostic interface of the vehicle and additionally generate accelera-

tion, rotation and GPS data. 

Data  

Acquisition 

Vehicle movement data including OBD measurements as well as acceleration, rotation and 

position measurements is periodically recorded and imported as raw vehicle data into a local 

PostgreSQL database on the data logger. The collected data is made available as a data 

stream or as manually exported files in a PostgreSQL database running in the cloud. 

Data  

Pre- 

processing 

The pre-processing of the vehicle data includes the alignment of the datalogger's coordinate 

axis with the trajectories of the vehicle, the search for missing and incorrect values and outliers 

and their elimination, the smoothing of the signals to reduce noise and the interpolation of all 

signals to a useful sampling rate. Additionally, contextual weather data is integrated. 

Data  

Analysis 

For pothole detection, the acceleration perpendicular to the road and the “pitching” of the vehi-

cle (i.e. the rotation around the transverse axis) are used. If these exceed certain threshold 

values, a pothole event is generated. In comparison, vehicle speed, acceleration in the direction 

of travel and rotation around the transverse axis (“nodding”) are used to detect events relevant 

to driving safety, such as strong acceleration, braking and cornering maneuvers. If these ex-

ceed certain threshold values, a harsh acceleration, braking and cornering event occurs. 

Data  

Storage 

The events calculated in the analysis phase (harsh acceleration, braking, cornering as well as 

potholes) are stored in the PostgreSQL database together with their GPS locations and the 

corresponding weather information to visualize them on maps and perform additional statistical 

analyses, such as calculating a risk score for a single trip, taking into account the amount and 

severity of detected events per trip length as well as the respective weather conditions and a 

cumulative risk score for a driver. 

Data  

Usage 

Drivers should be provided with information to improve their driving. The application shown in 

the figure above should help the driver to monitor his own driving and compare it with the driving 

of other drivers in order to improve driving safety. Finally, the application can visualize detected 

potholes so that the driver can avoid driving into these potholes. 

 

8.2.3 Big Data Based on Vehicle Usage Data 

The automotive industry is also constantly finding innovations for its vehicles as a result of 

electrification and comfort requirements. For example, mechanical components such as 

hand brakes or window lifters are increasingly being changed to electronic versions, such as 

the electric hand brake and electric window lifters. The status (handbrake is applied or re-

leased) and its process status (handbrake is applying/releasing) can be captured and used 

as input for vehicle safety checks and other features. An applied handbrake will automatically 
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be released if the driver starts driving to prevent damage. The data generated through all 

these vehicle functions can be captured and used within other scenarios, e.g. to create sta-

tistics on how often a window is opened/closed or how often somebody is wedged in.  

Also due to the common practice of vehicle development to purchase many components 

from suppliers, many vehicle sensors have so far only been used to provide and support a 

specific functionality and to increase comfort and safety, although these vehicle sensor data 

may also be interesting for third parties. As sensors and car features may widely differ from 

manufacturer to manufacturer and even per car variant, there is not only one single truth 

about how much data is effectively generated by a modern vehicle today. For instance, the 

participants from the European research project AutoMat (Automat, 2017) state in a deliver-

able (Automat, 2018c) that about 4000 CAN bus signals (one signal could be one measure-

ment value) per second create up to 1 GB of data per CAN bus (without mentioning a sample 

rate). According to Pillmann et al. (2017b), there are “usually 4-12 CAN busses in one car” 

(with varying amounts of input signals). This clearly shows the high amount of data gener-

ated as a by-product during vehicle use. 

For highly automated driving, several camera, radar and LiDAR (Light Detection and 

Ranging) systems are currently being implemented in the vehicles to cover every corner of 

the vehicle environment. Autonomous vehicles may be forced to exchange information with 

other vehicles (V2V) and with the infrastructure (V2I), which will boost the amount of availa-

ble vehicle data enormously in the future. Considering different countries and different pat-

terns of individual driving and mobility behavior, bringing highly automated driving into prac-

tice will be a grand digitalization challenge.  

Although only part of this data is available for digital vehicle services (e.g. the high sam-

pling rates generate such large amounts of data that the limits of data transmission are ex-

ceeded, which would require re-sampling at a lower rate or some signals are simply not 

relevant) and while only a portion of these data will be made accessible due to safety reasons 

(EU, 2013), the remainder of accessible sensor data from modern vehicles will most likely 

be sufficient to design and develop a reasonable number of novel digital vehicle services for 

various stakeholder groups, including individual drivers, various organizational customers, 

government authorities, and the automotive industry (Kaiser et al., 2017b). To sum up, mod-

ern vehicles already constitute impressive generators of big vehicle usage data. 
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8.3 A Value Chain for Vehicle Usage Data 

8.3.1 Quantified-Self 

Digital natives like to have access to services anytime and anywhere and are therefore will-

ing to let their mobile devices such as smartphones and smart watches generate data around 

the clock. Increasing the knowledge about oneself and eventually enabling new discoveries 

while performing physical activities including running or cycling has turned into a business-

relevant phenomenon. The behavior of turning collected data about oneself into actionable 

knowledge and insight which is valuable for other stakeholders, too, has been termed Quan-

tified Self. Interestingly, the quantified self-phenomenon has recently been successfully 

transferred to the automotive industry by US-based start-ups. In this sense and quite analo-

gously, Quantified Vehicles (Stocker et al., 2017a) imply a successful transformation of data 

from different kinds of sensors related to the vehicle (in-vehicle sensors, smartphone and 

wearable sensors used by the driver) into actionable knowledge, e.g. on the behavior of the 

vehicle. This way, they generate value for different kinds of stakeholders that are part of 

digital vehicle data service ecosystems such as insurance or fleet management providers, 

finally resulting in novel digital services based on vehicle data in various domains (Kaiser et 

al., 2018b; Kaiser et al., 2019b).  

Self-tracking with consumer devices, as shown in the example of Runtastic (Adidas run-

ning), can also be transferred to vehicles: Vehicles already collect a large amount of operat-

ing data via sensors and control units that ensure the functionality of the vehicle. However, 

these big vehicle data could be used to enable a series of apps and services for different 

customer groups. The market value for vehicle usage data is considered to be even higher 

than for other markets due to the importance of vehicles in first world countries. A number of 

US-based ICT start-ups seized this opportunity, now offering smartphone and web applica-

tions providing insights into vehicle-generated data, after they received up to €25 million of 

funding from investors (Stocker et al., 2017a). Interestingly, while some car manufacturers 

and suppliers (e.g. Magna International, Continental ITS, and BMW i Ventures) are among 

the investors, forming strategic partnerships with start-ups, others participate in research 

projects and try to keep data-related business in their own area of influence. This holds for 

Volkswagen, for example, which coordinates the EU project AutoMat to develop a market-

place for vehicle lifecycle data (Stocker and Kaiser, 2016). Furthermore, recent reports from 

the German automotive industry association (VDA) suggest that car manufacturers “have to 

hold a stronger position in the future and may limit the capabilities of third parties to freely 
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access car data.” To summarize, the potential of vehicle usage data seems to be such that 

it has become a battle worth fighting (Kaiser et al., 2017b). How vehicle usage data gener-

ates value leads us to the next subsection in which the Vehicle Data Value Chain is de-

scribed. 

8.3.2 The Vehicle Data Value Chain (VDVC) 

To systematically describe the transformation of data into valuable services, the concept of 

value chain can create a suitable structure and framework. In this regard, the Vehicle Data 

Value Chain (VDVC) is proposed as a lightweight model. The VDVC was derived from the 

Big Data Value Chain (Curry et al., 2016, illustrated in Figure 40). The authors adapted 

Curry’s value chain regarding the name, number and order of stages to reflect the authors’ 

experiences from research projects in the automotive domain. The stage of Generation (of 

vehicle usage data) was added as a separate stage to explicitly reflect the origin of the data 

(e.g. in-vehicle or related sensors). The stage Acquisition (of vehicle usage data) corre-

sponds to Curry’s Data Acquisition. Moreover, the authors have changed the order of Curry’s 

stages of analysis and curation since the authors interpret the terminology differently. For 

example, Curry seems to include normalization procedures implicitly within machine learning 

in the stage of Data Analysis, whereas the authors consider this as an important separate 

pre-processing step which correlates with Curry’s stage of Data Curation. Hence, the authors 

have re-named Curry’s stage of Data Curation, Pre-processing, which is followed by the 

stages Analysis, Storage, and Usage (in each case: of vehicle usage data), as visualized in 

Figure 40. As the result of the processing could be the input for further analysis, an arrow 

back to Acquisition indicates the possible a circular path. 
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Figure 40 The Vehicle Data Value Chain derived from Curry (2016) and based on Kaiser et al. 

(2018b) and Kaiser et al. (2019a). (Kaiser et al., 2020b) 

Furthermore, to compare digital services based on vehicle data and to understand and ex-

plain the data-related challenges associated with them, the authors added eight character-

istics to each value chain step: i) Description / Scope to describe the scope of the step, ii) 

Input examples and iii) Output examples to name possible inputs and outputs per step, iv) 

Actor examples to name relevant actors in this step, v) Architecture examples to describe 

which architecture usually is used in a specific step, vi) Trend examples to name current 

trends in the specific value chain step, vii) Tool examples to name possible tools and viii) 

Contribution to value creation to summarize the contribution of this step to value creation. 

The single value chain steps are shown in Figure 41 and are described in the following sub-

subsections. 

8.3.2.1 Generation (of vehicle usage data) 

This step has the scope of generating measurements through any sensors which can cap-

ture condition data directly (engine RPM or vehicle speed) or indirectly (road surface). In the 

case of direct influence, the authors see three main data sources: In-vehicle sensors, 

smartphone sensors and sensors in individual user devices (e.g. a pulse watch). An indirect 

data sources can be literally any data source that provides information on the state of a 

vehicle, its driver or surroundings; an example could be a road operator camera to display 

traffic flow. This process step is essential for the vehicle data value chain, since the data 

origin determines the reliability and the type of influence (direct, indirect). The current trend 

to equip modern vehicles with ADAS functionalities (e.g. through the use of radar and lidar 
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sensors for better detection of the driving environment) increases the amount of data gener-

ated and the possibilities for use cases once more. 

8.3.2.2 Acquisition (of vehicle usage data) 

This step describes the process of collecting the generated data. In-vehicle sensor data is 

not directly accessible as it is secured in order to safeguard vehicle functionality and is there-

fore only exchanged between the various electronic control units via one of the vehicle’s 

internal bus systems, e.g. CAN bus. However, a filtered quantity of this sensor data is ac-

cessible via the On-board diagnostic (OBD) interface (Turker and Kutlu, 2015), which is in-

tended to be used by service staff to read out the generated error messages. It is therefore 

possible to develop plug-in devices with an internet connection, thereby effectively using the 

OBD-port as a source of sensor data. There are already some professional solutions with 

data acquisition devices built into the vehicle, which read signals directly from the CAN bus 

in an unfiltered way. To meet the requirements of the EU Directive 2010/40/EU – establishing 

inter alia the costless provision of universal, road safety-related minimum traffic information 

(EU, 2013) – a standardized interface would be feasible sooner or later. Data from 

smartphone sensors is acquired using specific applications, capable of gathering and trans-

mitting data. In the case of external data sources, the main issues are the varying availability 

and quality levels of the data. For example, APIs usually limit the number of requests allowed 

per time interval, so the acquisition process must be adapted to meet these thresholds. 

Gathered data is stored for further processing; the chosen storage and format heavily de-

pend on the subsequent processing steps. 

8.3.2.3 Pre-processing (of vehicle usage data) 

This step consists of the process of data preparation and integration. It is the sum of any 

anonymization, annotation, cleansing and normalization activities before any data analysis 

is conducted. Sensor values including private user information, erroneous sensor readings, 

different sensor sampling frequencies or unsynchronized data are examples of issues ad-

dressed in this stage. Data quality has a high impact on service quality. For instance, if the 

accuracy of the GNSS signal is low, a trip may not be linked to the correct road and may 

lead to wrong conclusions. 
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Figure 41 The Vehicle Data Value Chain derived from Curry (2016) and based on Kaiser et al. 

(2018b) and Kaiser et al. (2019a) extended with characteristics. (Kaiser et al., 2020b) 
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8.3.2.4 Analysis (of vehicle usage data) 

This step is the process of automatic insight generation, with the purpose of extracting useful 

hidden information. This involves linking data from different data sources, exploring the data, 

performing statistical analyses and using machine learning algorithms to detect latent infor-

mation hidden in the data. For instance, weather data can be linked to vehicle speed on a 

particular road to determine whether the driver is driving differently in wet or icy conditions. 

Weather data can be linked to acceleration data to determine whether a driver is driving 

aggressively in bad weather conditions. 

8.3.2.5 Storage (of vehicle usage data) 

In this step of the value chain, proper data access is established. It is already defined in the 

Big Data Value Chain as “the persistence and management of data in a scalable way that 

satisfies the needs of applications that require fast access to the data” (Curry, 2016). In the 

case of vehicle sensor data, persistent storage is usually achieved by using a combination 

of classical relational databases (for metadata), Big Data file systems (for raw input data) 

and so called “time series databases” to store data that changes with time, which allow fast 

analyses on the stored contents. 

8.3.2.6 Usage (of vehicle usage data) 

The final step deals with making the data available in human- or machine-readable form (or 

both, as required). It includes all kinds of user or software interaction with the collected data 

and any conclusions derived from it in the above-mentioned process. The retrieved data 

could either be regarded as the end result of the process, being presented more or less 

directly to end users, or it could serve as input for further processing steps, thus forming a 

circular path in the processing chain. 

8.4 Conclusion and Outlook 

An increasing number of digital services based on vehicle usage data are offered on the 

market and are increasingly used and demanded by users. Digitalization has not only be-

come an important driver of innovation in the automotive sector, but may also change the 

balance of power in the automotive sector in the long term. With the background that society 

is strongly driven by mobility, it is almost the authors duty to examine the emergence of 

digital services based on vehicle usage data more closely. Consequently, in this chapter the 

authors have looked at a way of better describing and structuring digital services based on 
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vehicle usage data. After a comprehensive analysis of related work, the authors have re-

viewed two different digital services by using the VDVC for a better structured description of 

how value is created. Using the VDVC model, the authors explicitly describe which activities 

must be carried out in the individual steps of the value chain in order to finally enable these 

two services. 

As an outlook, it should be mentioned that digital vehicle services and the required tech-

nological infrastructure to facilitate data acquisition, pre-processing, analysis and storage, 

are currently a hot topic in the automotive domain. There are already ideas for using block-

chain technology and brokers to make data sharing more transparent and secure, as de-

scribed in Kaiser et. al (2019c). Yet, while some car manufacturers invest in start-ups, others 

limit access to data via the OBD interface, arguing that they are not suitable for digital vehicle 

services (VDA, 2016; ACEA, 2016). In contrast, the European Automobile Manufacturers 

Association ACEA promotes car data sharing (ACEA, 2017). 

Regulation (EU) No. 886/2013 (concerning the Directive 2010/40/EU on Intelligent 

Transport Systems ITS), published by the European Commission, has actually been regu-

lating the provision of universal, road-safety relevant minimum traffic information to users 

free of charge for years and calls on car manufacturers to make safety-relevant data availa-

ble to the public via national contact points (EU 2013). While the vehicle manufacturers have 

long referred to the no longer up-to-date transmission standard based on WLAN technology 

(e.g. G5), several EU-wide initiatives (such as the C-ROADS initiative) have not given up, 

extending the development to telecommunications technologies (e.g. 4G, 5G) and present-

ing a concrete implementation plan for C-ITS services with Day 1 Applications. Since the 

end of 2019, the latest Volkswagen Golf is the first series-production vehicle on the market 

to use this data exchange standard. The C-ROADS initiative of several EU member states 

and road operators aims to use C-ITS services to enable the transmission of infrastructure 

information (e.g. roadside units) to the vehicle cockpit, e.g. to inform about dangerous situ-

ations, e.g. a vehicle backing out or pedestrians in the crosswalk behind the next bend. (C-

ROADS, 2017).  

At the same time the International Organisation for Standardisation (ISO 2017) has set 

up a standardization work group titled ISO/TC 22/SC 31/WG 6 Extended Vehicle/Remote 

diagnostics (ISO 2018) to inter alia define access, content, control and security mechanisms 

for the provision of vehicle data for web services (VDA, 2016).  
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Additionally, current EU-funded projects such as EVOLVE are developing solutions to 

ease the integration and fusion of multiple data sources for the purpose of service and busi-

ness development using Linked Data (EVOLVE, 2019; Latif et al., 2009). “Linked data is a 

lightweight practice for exposing and connecting pieces of data, information, or knowledge 

using basic web standards. It promises to open up siloed data ownership and is already an 

enabler of open data and data sharing” (Rusitschka and Curry, 2016).  

To conclude, the authors expect the market of digital services based on vehicle usage 

data to grow tremendously in the future, as the combination of vehicle data with data from 

external sources (e.g. weather data, traffic data, open data) will enable new scenarios for 

digital vehicle services. 
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9. Towards a Generic IoT Platform for Data-

driven Vehicle Services 15 

Summary and Author Contribution 

Concepts and Prototypical Implementations along the VDVC 
(Paper 1/5) 

This chapter presents a concept to collect, process and use vehicle data for data-driven 
services. Challenges like independency, scalability, and flexibility while ensuring e.g. pri-
vacy, and accountability must be considered for such an IoT platform. Thus, this chapter 
presents a conceptual architecture of a generic IoT platform for enabling such Data-driven 
Services and describes how this platform can be implemented, ranging from the gateway 
device (Vehicle Data Logger) capturing the vehicle data, to a vehicle data-driven service 
application for the driver. 

 

As part of the dissemination of our work in research project SCOTT (all authors of the 
paper were involved), we published the concept of our own Data-driven Service based on 
vehicle data developed under my administration in this paper in a generalized form. Here, 
besides the contribution to related work for Quantified Vehicles, I introduced the hardware 
to collect vehicle data from the OBD-2 interface, the Vehicle Data Logger, as it was its 
data that made analyses possible for us in this and other research projects in the first 
place. The Vehicle Data Logger hardware was initially developed by the former student 
employee Benjamin Fischer, supervised by the last author and me. When Benjamin left, I 
took over the assembling and the maintenance of the hardware and repeatedly persuaded 
colleagues to install the hardware in their vehicles to collect data. While author four de-
veloped the software of the data logger, he and I both individually used the collected data 
to build visualizations for end-users. For example, Figure 46 shows my overview of telem-
etry data, and Table 19 show the bill of material for the main components of the data 
logger. Moreover, the procedure presented in "Evaluation through a demonstrator" (Sec-
tion 9.4) describes steps of the VDVC, because the experiences we made in SCOTT, 
which are presented here, have contributed to the development of the VDVC. 

 

9.1 Motivation and Goals 

Automotive electronic systems nowadays expand rapidly and massively in becoming fully 

connected and capable of extended functionalities. Modern vehicles typically consist of sev-

eral dozens Electronic Control Units (ECUs) linked to communication networks processing 

data to ensure a vehicle's functionality. This rapid development is even more visible in the 

advances in vehicle software which are increasing both in complexity and functionality, rely-

ing on platforms developed entirely for the automotive domain (e.g., the standard Automotive 

 

15  The content of this chapter is based on  

 Papatheocharous, E., Frécon, E., Kaiser, C., Festl, A., and Stocker, A. (2018). Towards a generic 
IoT platform for data-driven vehicle services. In 2018 IEEE International Conference on Vehicular 
Electronics and Safety (ICVES) (pp. 1-6). IEEE. DOI: 10.1109/ICVES.2018.8519505 
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Open System Architecture – AUTOSAR). These denote extended software programming 

development environments with underlying subsystems, including language, runtime, com-

ponents and other associated libraries. 

These recent developments offer a range of possible service types classified in Axelsson 

et al. (2014) as:  

i. product services, to extend a product with new or improved functionality (usually 

targeting an end-user group), 

ii. process services, to improve the operation of a product as part of a larger process 

(often oriented to the product owners and having limited control over the actual prod-

uct development), 

iii. lifecycle services, to use data in ways that improve the associated lifecycle pro-

cesses, including predictive and preventive maintenance (usually targeting the man-

ufacturer of the product), and, 

iv. extended services, use data from products to improve the operation of decoupled to 

the product products or services (targeting administrators and governments). 

Taking into account the new advances and trends in the research field of vehicle engineer-

ing, this work lists a number of challenges starting from a trend, coined as the “Quantified-

self” (QS) or “Quantified Vehicles” (QV), which occurs as the world is becoming more and 

more equipped of smart connected things with sensors and actuators. Nevertheless, the 

business and technical benefits are not entirely obvious, i.e., how can they be reaped in a 

successful way, and several contenders (from start-ups to automotive suppliers, manufac-

turers up to large software companies) are in the search of the optimum platform and position 

to host and release it. Thus, a popular trend is the search of a universal Internet of Things 

(IoT) platform from a variety of emerging commercial and open source solutions. There are 

specific requirements that need to be satisfied, including offering functionality that opens up 

to new opportunities and more rigid challenges, such as privacy, safety and complying with 

regulations, e.g., the EU regulation of data privacy enforced recently in all businesses (Gen-

eral Data Protection Regulation – GDPR) and the General Safety Regulation (EC) No 

661/2009 in the automotive sector. 

This chapter describes the conceptual architecture of a generic IoT platform to support 

security, safety, automation, operations and management, based on the concepts men-

tioned above and the new advances and trends outlined, enabling data-driven services in 
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the vehicle domain. As a preliminary proof-of-concept, the authors have developed a de-

monstrator which supports two-way connectivity needs of third-party cloud services for quan-

tified connected vehicles. The proposed solution accepts, stores and processes vehicle data 

obtained from a Vehicle Data Logger connected to the OBD-II interface of the vehicle. Raw 

vehicle data is then analyzed on the proposed cloud-based platform with a focus on extract-

ing driving styles and behavior. The chapter shows how the solution enables the operation 

and management of third-party access to collect, store, transform, process and visualize 

data, and then feeding back the result to human drivers or other stakeholders. 

The main contribution of this chapter is the presentation of a generic IoT platform, build-

ing on open source technologies and containers, for seamlessly enabling novel data-driven 

connected vehicle services. The authors then validate the platform through a demonstrator, 

that is feeding interesting information, related to trips and driving behavior, gained from pro-

cessing real data from vehicles to drivers and other stakeholders through a mobile and a 

web application. 

The chapter is organized as follows: Section 9.2 covers the background work and chal-

lenges in the area, Section 9.3 analyses the proposed conceptual architecture and solution 

walk-through, Section 9.4 is about the proof-of-concept implementation through a demon-

strator, Section 9.5 provides a discussion of the main business and technical benefits of the 

solution, and, finally, Section 9.6 describes future research steps and conclusions. 

9.2 Background and Challenges 

In this section, the authors introduce the notion of Quantified Vehicles, as an extension of 

the Quantified-self concept, and the authors also describe the authors’ journey towards re-

alizing a generic IoT platform that proposes a technical solution to support security, safety, 

automation, flexibility and scalability. 

9.2.1 From Quantified-self to Quantified Vehicles 

The trends of digitizing real-world events and self-digitization have become increasingly im-

portant and have transformed humans to data generators (McFedries, 2013). The “Quanti-

fied-self” (QS) is a term coined to describe the quantitative assessment of measurable char-

acteristics about a person, including biological, physical, behavioral, and/or environmental 

aspects (Swan, 2009).  
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QS has become a major creator of value with the increase number of applications on 

smartphones and other consumer devices. E.g., Strava and Runtastic are popular applica-

tions to analyze and compare sports behavior (running, biking, etc.) and therefore possess 

detailed knowledge on what, how, where and when their users perform sports, which is highly 

privacy relevant. Runtastic was acquired by Adidas in 2015 for about 220 million EUR, which 

underpins the high potential of exploitable volumes of QS data (Kaiser et al., 2017). 

However, carrying out complex computing tasks with QS data on consumer devices, as 

well as sending it to a cloud platform can be challenging in terms of bandwidth and latency 

due to the amount of data produced (autonomous vehicles are expected to produce up to 

4TB per day (Krzanich, 2016). Modern vehicles are equipped with many sensors already 

and even more will be added for enabling assistive driving functionalities (i.e., LIDAR/RA-

DAR – LIght/RAdio Detection And Ranging, video). Several start-ups (including otonomo.io 

and moj.io), and research initiatives (including automat-project.eu and aegis-bigdata.eu) 

have identified and targeted this promising field, aiming to create value out of QS data of 

drivers and vehicles, termed as “Quantified Vehicles” (QV) (Stocker et al., 2017a; Swan, 

2015; Kaiser et al., 2018). However, vehicle manufacturers ensure that data, generated for 

and used for vehicle functionality, will not reveal any internal knowledge or access or intel-

lectual property for safety reasons, e.g. to not provide to outsiders with the information on 

how data is actually processed and used within a vehicle (AutoMat, 2018b).  

9.2.2 The Outlook for a Universal IoT Platform 

The development of cloud platforms to enable QV applications is a major trend in current 

technology start-ups and large companies, looking to reap the business opportunities cre-

ated by data. 

The increasing prevalence of several software platforms today calls for the ability to aug-

ment solutions and support an emerging portfolio of leading technology solutions and trends. 

It is unthinkable to design or use any software technology without standing on the shoulders 

of a multitude of layers of existing platforms. Popular contenders include Google Cloud, Mi-

crosoft Azure, Amazon Web Services, IBM Cloud and many more. Industrial vendors ride 

the Everything-as-a-Service (XaaS) (Duan et al., 2015) wave, through the provision of com-

puting resources and platform services for the realization of “Internet-first” applications, of-

fering different possibilities for management, operation and orchestration of the infrastruc-

ture.  
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Especially relevant to this chapter is a wide range of cloud platforms tuned to the specific 

needs of IoT applications. A documentation analysis of the commonalities between the ar-

chitectures of three IoT platforms from Google, Amazon and Microsoft and, to a lower extent, 

from Ericsson AppIoT was carried out by a subset of the authors of this chapter, with the 

overall aim to realize a generic platform with as few restrictions as possible. The motivation 

is wrapped around the emerging opportunities of: 

i. lower entry barriers (i.e., allow for new entrants to easily use and contribute the 

platform), 

ii. increased shared responsibility (i.e., provide joint responsibility and to not just one 

party), 

iii. increased framework support, and, 

iv. lower technological lock-in. 

Our analysis resulted in the generic design of an IoT platform encompassing the common 

features supported by the platforms analyzed, shown in Figure 42. The analysis has revealed 

a number of common functionalities and usage of same high-level concepts, even though 

different APIs and implementations occur. One of the contributions of this chapter is the 

design of this generic IoT platform and its instantiation in a demonstrator consisting of data-

driven vehicle services for drivers and other stakeholders. 

 

Figure 42 Generic IoT platform design. MQTT is preferred when communicating back to devices. 

(Papatheocharous et al., 2018) 

In the generic IoT platform design Figure 42, devices (any smart device with connectivity) go 

through the gateway (a device or software) to accomplish exchange of data with the platform. 

Some devices can also bypass the gateway. The exchange is carried out through MQTT 
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(Banks and Gupta, 2015) or HTTP connections, even though there is a plethora of other 

similarly purposed standards. The platform offers: 

i. telemetry ingestion (accepts data), 

ii. stream processing (data flows are processed and converted to unified formats), 

iii. storage (data is stored in one or several databases), analytics (data is statistically 

and semantically analyzed to extract information), 

iv. machine learning (data is processed with machine learning algorithms to extract 

knowledge and intelligence), 

v. visualization (data is depicted in meaningful charts and graphs to extract summa-

rized information, generalizations, locate anomalies, etc.), 

vi. lifecycle management (consists of supporting functions for the management of de-

vices, such as software updates or (re)configuration), 

vii. state (consists of storing the state of devices at all given times), and, 

viii. apps (consist of extended applications and services that can extend the platform 

and some offer additional functionality or end-user value). 

9.2.3 Provisions for Privacy and Regulations 

Another challenge encountered is performing secure data operations in cloud platforms pro-

visioning for security, privacy, safety, trust, etc. which is challenging for the following main 

reasons: (a) the various system types composing platforms and their purposes are becoming 

more and more variable in time, (b) infrastructures span over diverse geographical locations, 

(c) rapid distribution in type as well as in growing size and complexity of components and 

technologies, and, (d) there is a growing need in elasticity (resilience) and dynamic in the 

system's structure, behavior as well as interactions. Thus, developing and maintaining cloud 

platforms with end-to-end security and privacy is challenging but at the same time mandatory 

and a requirement from legislations and governments (i.e., GDPR, eCall – the European 

initiative for emergency rapid assistance to motorists involved in a collision anywhere in the 

EU). To cover this gap, cloud platforms need to provision for security, privacy, safety and 

control over data in an efficient way. The solution the authors propose in this work mitigates 

some of these challenges, as explained next. 

9.3 Conceptual Architecture and Solution Walk-through 

In this section the conceptual architecture of the solution followed by a solution walk-through 

is described. 



166 Towards a Generic IoT Platform 

The architecture of the proposed solution is composed of a generic IoT platform to sup-

port data-driven services for the Quantified Vehicles scenario and is illustrated in Figure 43. 

The architecture is designed in three layers providing: 1) a cloud platform to support novel 

QV services, 2) operations, and, 3) management provisions. 

 

Figure 43 Conceptual architecture: Docker (rightmost) manages infrastructure, operated in the 

cloud. Architecture maps onto generic IoT platform, using e.g. MQTT (telemetry inges-

tion), databases (storage) and Grafana (visualization). (Papatheocharous et al., 2018) 

A vehicle logger acts as the vehicle gateway device, and is designed as a generic data logger 

to capture OBD-II (ISO, 2016) (or CAN-bus (ISO, 2015)) data from vehicles as well as GPS, 

rotation, and acceleration data. The data is then stored directly on the logger waiting for 

favorable mobile connection conditions. When connection is established via the mobile net-

work, the logger sends the data to the cloud platform. 

The platform supports exchange of data with devices (either directly or via a gateway) 

and can accommodate cloud services deployed to ingest data, store, process and manage 

data in ways to create end-user value. 

The end-users are broadly illustrated in Figure 43 as connected vehicles, user-groups, 

operators (e.g., data operators, fleet managers), and, external partners (organizations or 

governments). 

Potential applications for the end-users’ support, among other:  

i. driver scores (calculations of risk, financial/cost, efficiency, or safety based on am-

plitudes of braking, accelerating, cornering, distraction, etc.), 
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ii. driver tutoring (suggestions, recommendations, warnings to improve e.g. safety), 

iii. driving route recommendations (alternative and recommended driving paths based 

on other drivers’ behaviors, e.g. usual “stand-still” times, diversions), 

iv. entertainment (games: earn points for driving safe, or become the major of a street), 

v. benchmarking (compare with other drivers and award “safest drivers”), and, 

vi. city planning (suggest alternative routes based on heat map overlays and identify 

potholes or obstacles). 

9.4 Evaluation through a Demonstrator 

As a proof-of-concept the authors have developed a demonstrator comprising of an own-

designed Vehicle Data Logger mounted on real vehicles, a cloud platform, collecting data 

and which in turn enables two data-driven services: one for individual drivers and one for 

external stakeholders (e.g., companies and governments). These are released through a 

mobile application and a web application. 

9.4.1 Vehicle Data Logger 

Our own-designed and implemented Vehicle Data Logger solution (shown in Figure 44), is 

used in multiple vehicles and by different drivers.  

 

Figure 44 Vehicle Data Logger mounted in a vehicle (connected to OBD-II, left) and the cape with 

GPS / IMU sensory (right). (Papatheocharous et al., 2018) 

The Vehicle Data Logger implementation is based on a BeagleBone Black single-board com-

puter, a low-cost, community-supported development platform. The hardware runs Debian 

Linux and is extended by a cape, an own-developed Printed Circuit Board (PCB) equipped 
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with a CAN chip, and with GPS and IMU sensory, switches and buttons. The cape is mounted 

on the BeagleBone's plug connector. It provides a software capable of reading telemetry 

data from the vehicles' OBD-II interface (or directly from the CAN bus system of the vehicle) 

when connected to it. Table 19 provides a list of the main components used in this low-cost 

device. 

Table 19 Bill of material for the main components of the data logger. (Papatheocharous et al., 

2018) 

Type Actual Component Used 

Base System Hardware 

Acceleration Sensor 

Rotation rate Sensor 

GPS positions 

CAN/OBD-II data Chip 

BeagleBone Black 

ADXL345 (via SparkFun 6 DoF IMU) 

ITG-3200 (via SparkFun 6 DoF IMU) 

Adafruit Ultimate GPS Breakout 

MCP2551 CAN chip 

 

The sensor data collected includes about five measurements per second for:  

i. vehicle data, e.g. available OBD-II data like vehicle speed,  

ii. acceleration and gyroscope measurements (in x, y, and z directions) from the IMU 

sensor, and  

iii. the GPS position including the current time-stamp. The data is stored on a local 

buffer and sent to a MQTT broker via a 4G cellular network modem, thus enabling 

applications for various stakeholders. An example of visualization of telemetry data 

for one driver is shown in Figure 45.  

 

Figure 45 Telemetry data visualization from OBD-II interface, i.e., intake manifold pressure, engine 

RPM, vehicle speed, engine load, etc. (Papatheocharous et al., 2018) 
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Using a standard single-board computer running Linux is a clear benefit, while software and 

building instructions for the own-developed cape are planned to be published in the future 

as well to enable scientists globally to participate in this research. A public dataset produced 

by the Vehicle Data Logger, demonstrating data quality, is already published at Zenodo 

(Stocker et al., 2017b).  

9.4.2 Cloud Services 

The cloud services architecture deployed for the demonstrator is already described in Figure 

43. Data ingestion from remote vehicles is made primarily through a MQTT broker, and for-

matted as JSON (Jennings et al., 2018). Use of the broker and the publish-subscribe pattern 

(Birman and Joseph, 1987) makes it possible for remote and external trusted partners to 

receive raw data if necessary. Data is transformed and pushed into two separated time-

series databases: InfluxDB and Timescale, a module of PostgreSQL, two competing solu-

tions that the authors are still evaluating. Upon trip detection, raw data is analyzed, and 

features are extracted in order to be inserted into the PostgreSQL database so they can 

serve as a base for the extended services described in the next subsection. Raw data can 

be visualized through Grafana, even though this is best achieved through application-spe-

cific user interfaces. The cluster provides web APIs for accessing analyzed data, for example 

from remote smartphone applications. All access to the services provided by the cluster, 

including the MQTT broker, is forcefully encrypted with Transport Layer Security (TLS) and 

certificates from Let's Encrypt, a certificate authority that provides free certificates for TLS 

encryption via an automated process (https://letsencrypt.org/). 

Through a substantial use of the various Docker (Merkel, 2014) tools (Engine, Compose, 

Swarm, Machine, etc. –  see the Management layer in Figure 43) and of Machinery, the 

architecture can easily be deployed and redeployed at any of the available cloud providers. 

Machinery is an open source software architecture management tool (available at: 

https://github.com/efrecon/machinery). It also encompasses a number of containers and so-

lutions for daily operations of the applications, including data backups or application super-

visions. 

9.4.3 End-User Applications 

For a proof-of-concept, the authors have used the data provided by the Vehicle Data Logger 

and the Cloud Services to enable two end-user applications, one for the driver and another 
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one for a city planner. While the first application provides interesting driving statistics includ-

ing safety-relevant events as an overlay on a geographic map in a mobile application, the 

latter application produces a heat map of safety-relevant hotspots in a city to help decision-

makers improving the transport flows in a web dashboard. Figure 46 shows a snapshot of 

the driver end-user application highlighting the events occurring during the trip and providing 

summary statistics for the trip (duration, speed, fuel consumption, etc.). 

 

Figure 46 End-user application: Analysis of trip data and visualization. (Papatheocharous et al., 

2018) 

9.5 Benefits and Discussion 

The following benefits, divided to business and technical, resulting from the taken approach 

are worth to discuss. 

9.5.1 Business Benefits 

Quantified Vehicles excavate a hidden business treasure by simply harvesting sensor data 

already produced for other purposes. The dreamlike scenario having live data streaming 

from every single vehicle in operation, attracts many data scientists and creative minds, not 

only from the automotive industry. Hence, several stakeholders (e.g. start-ups, vehicle man-

ufacturers, automotive suppliers, IT companies, service company providers) battle for ob-

taining the supremacy of this topic, whereas the lucrative role of the platform provider is 

already identified as a key element in the landscape. In times of increasing awareness and 
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governance on privacy (GDPR), the drivers producing data may benefit from the innovation 

perspective, e.g. by innovative driver assistance systems, but they will require to have a 

strong incentive to share their data.  

The proposed architecture based on open source technologies empowers IT companies 

and freelancers to set up individual platforms and to develop their own services in order to 

create an even more competitive business landscape. The need for innovation, productivity 

and reduced time-to-market in products may dramatically increase and create a difficult col-

laborative environment for key players of the automotive industry striving for competitive 

advantage. Many risks still need to be mitigated, e.g., related to licensing, rights, data own-

ership, accountability, negotiations, agreements and business models. 

9.5.2 Technical Benefits 

9.5.2.1 Security 

The proposed architecture takes a security-by-design approach through a widespread use 

of network encryption techniques and careful management of sensitive data within the plat-

form. For example, data is ingested directly, through secure APIs and using renewable TLS 

certificates. Within the cloud cluster, network communication occurs within encrypted overlay 

networks and keys are regularly and automatically rotated. Secrets that need to be shared 

between architectural components are stored in an encrypted and replicated key-value store, 

and made available as memory mapped files to relevant processes only. Finally, container-

ization techniques provide for a high level of encapsulation between the components, mak-

ing connections and dependencies explicit and traceable. 

9.5.2.2 Automation 

The cloud infrastructure and application are deployed and managed by Machinery, a high-

level infrastructure management tool at the top of the Docker tooling pyramid. Machinery 

takes a declarative approach to cluster management, resulting in describing the entire archi-

tecture (machines, services, networks, etc.) as configuration and code that can be managed 

as a set of project files placed under a version control system – whereas keeps secrets apart. 

9.5.2.3 Open APIs 

For the realization of smartphone applications, or other external services, the platform pro-

vides a REST interface to the trip data. PostgREST (https://postgrest.com/) turns any Post-

greSQL database directly into a RESTful API. This interface is application-independent and 
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generic, and it facilitates access to the underlying database from modern back-end services 

or devices. All other components of the architecture have well-documented APIs to support 

communication between the internal services. 

9.5.2.4 Standardized Data Formats 

While MQTT provides a standard for loosely decoupled communication between interested 

parties, it leaves several open design decisions, such as topics organization and data for-

mats. The proposed architecture uses SenML (Jennings et al., 2018) serialized to JSON as 

a common data streaming format. JSON was selected because of its ubiquitous implemen-

tations across platforms, toolkits and languages, but SenML can also be serialized to, e.g. 

CBOR for improved compactness. Integrating further formats, such as the CoRE link format 

(Shelby, 2012), could provide an embryo to a standardized management of devices and their 

capabilities. 

9.5.2.5 Scalability 

Scalability of the solution is principally achieved through the careful selection of architectural 

components that have a known migration path to horizontal scalability and high availability. 

In most cases, this means choosing and configuring components and technologies so that 

they will be able to scale out when necessary. Containers are orchestrated through Docker 

Swarm, thus providing a route to increasing replicas under load. 

9.5.2.6 Flexibility 

The major benefit of the declarative approach is to facilitate migration between cloud vendors 

through redeployments in other premises, provided that the appropriate credentials are avail-

able. By being built on top of Docker Machine, Machinery is not only able to interface with 

all major cloud vendors for the creation of virtual machines, but also to facilitate onboarding 

of existing bare-metal servers, if necessary. This increases the robustness of the solution by 

making it independent of any cloud provider. Continuous integration techniques permit to 

constantly improve and update application-specific containers, and redeploy as necessary. 

9.6 Conclusion and Future Work 

This chapter has presented a generic IoT architecture for enabling vehicle services and a 

demonstrator with end-user applications as a proof-of-concept. The results demonstrated, 

enable useful and usable set of data-driven services for vehicle drivers and other stakehold-

ers. The business and technical benefits are discussed. 
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Next, as future work, the authors plan to investigate improvements and extensions to the 

proposed  conceptual architecture presented. An example would be the offer to host private 

containerized Docker repositories to facilitate security and privacy configurations for the re-

alization and integration of end-user applications. Moreover, the authors will investigate how 

to elastically raise up or destroy machines and containers to adapt to the demand of vehicle 

fleets. Similarly, the authors plan to extend the implementations to facilitate continuous de-

ployments of applications or other back-end services. The authors would also like to inte-

grate deeper privacy concerns and regulations, so as to enable the automatic erase of user-

related historical content from all media and/or increase anonymization and minimize data 

inter-relations. Also, the authors’ vision is to further develop cooperative vehicle-infrastruc-

ture applications, eco-driving and assisted driving coaches and propose novel human-centric 

interfaces and displays for these applications. Such implementations will be further investi-

gated in future work and compared to existing implementations which enable data-driven 

vehicle services, in order to identify actors and their application domains which participate in 

such platforms, and their value models. 
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10. Towards a Privacy-preserving Way of Vehi-

cle Data Sharing – a Case for Blockchain Technol-

ogy? 16 

Summary and Author Contribution 

Concepts and Prototypical Implementations along the VDVC 
(Paper 2/5) 

This chapter is about vehicle data sharing. Vehicle data is a valuable source for digital 
services, and the exchange of vehicle and driving data will massively increase. Since ve-
hicle data from the field allows inferences and analysis which are in personal privacy, this 
chapter deals with the question on what would be a privacy-preserving way of vehicle data 
exploitation? To answer this question the blockchain based Open Vehicle Data Platform 
concept is presented, as well as a discussion on unsolved technical and non-technical 
issues. 

 

The origin of this paper was the discussion at that time about data ownership of vehi-
cle data, as well as an internal presentation of the second author on the topic of block-
chain. While the Automat project (Automat, 2017), in which vehicle manufacturers are also 
involved, published a video17 explaining that manufacturers should also have rights on 
vehicle data, in contrast, in this paper we present a blockchain-based concept that allows 
vehicle users to decide with whom they share their data. As corresponding author, I con-
tributed to this article by developing the concept idea jointly together with the second and 
the fifth author, by writing parts of the related work, the concept, and the conclusion sec-
tions, and by developing the e3value model showing actors and value flows of a vehicle 
data sharing ecosystem. Overall, with this publication we would like to continue and renew 
the discussion about data ownership, and show a way to give vehicle users the rights they 
deserve in our view. 

 

 

16  The content of this chapter is based on  

 Kaiser, C., Steger, M., Dorri, A., Festl, A., Stocker, A., Fellmann, M., and Kanhere, S. (2019). To-
wards a Privacy-Preserving Way of Vehicle Data Sharing – A Case for Blockchain Technology? In 
Proceedings of Advanced Microsystems for Automotive Applications (AMAA) 2018. Part of the Lec-
ture Notes in Mobility book series (LNMOB). Springer, Cham. pp 111.122. DOI: 10.1007/978-3-319-
99762-9_10 

 Reprinted/adapted by permission from Springer Nature and Copyright Clearance Center: Springer 
Nature, Copyright © 2019, Springer Nature (2019). 

17  https://www.youtube.com/watch?v=W3kxHd3CdL0&feature=emb_logo especially in the range of 4:21 
- 5:03 [last accessed February 2021] 

https://www.youtube.com/watch?v=W3kxHd3CdL0&feature=emb_logo
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10.1 Scope 

10.1.1 Motivation 

Future smart vehicles will provide advanced autonomous driving functions and will be highly 

connected to other vehicles, roadside infrastructure and to various cloud services. The infor-

mation gained through these wireless interconnections will be used by any smart vehicle to 

enrich its own information gathered by built-in sensors such as cameras and radar sensors 

to further increase the reliability of its autonomous driving functions. However, it will also 

assist to solve automotive research topics like detection of driver fatigue or driver distraction. 

These research topics will receive additional focus at the time autonomously driven vehicles 

will face real world problems on the street and will have to force the driver to takeover. How-

ever, the data collected within current vehicles of limited smartness can be used beyond 

assisting their drivers in driving. Moreover, vehicle data is valuable for third parties (Stocker 

and Kaiser, 2016; Stocker et al., 2017a; Kaiser et al., 2018b) including e.g. vehicle manu-

facturers (i.e., OEMs), suppliers, and traffic managers to name three stakeholders, although, 

there are still many open issues connected to the exchange of vehicle usage data. One 

dominant challenge for vehicle and driving data exploitation is how to safeguard the privacy 

of the driver. Despite the privacy regulation has gotten stricter in Europe with the General 

Data Protection Regulation (GDPR) (European Commission, 2018b), the authors argue that 

the exchange of vehicle usage data will increase a lot in the future due to two recent devel-

opments, tech startups pushing artificial intelligence technologies and the rising interest of 

the automotive industry to foster the automated driving paradigm.  

Shortcomings of current vehicle data provisioning approaches are: Data, information, 

and services are mostly exchanged within proprietary closed environments, as collected ve-

hicle usage data is usually directly sent from the smart vehicle to a single service provider 

(e.g., by a device connected to the OBD-II interface of the vehicle or via the drivers’ 

smartphone). As a result, a vehicle owner willing to share data with multiple service providers 

will have to provide the data multiple times while collecting the data with different devices in 

parallel. This can be critical due to the large amount of data collected by smart vehicles (up 

to 4TB of data per day are expected (Krzanich, 2016)), and because a significant portion of 

current service providers (e.g., Automile and Zubie) is using dedicated OBD-II dongles to 

gather data from smart vehicles. Thus, it is currently not feasible or at least not practical to 

use several services at the same time. Finally, these closed systems certainly disrespect the 

vehicle owner's privacy, as they do not make it transparent how they further monetize the 
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gathered data nor with whom they share it. They typically do not allow the end user to control 

what data is transferred and shared. And most of them have a lock-in effect, i.e. they use 

the vehicle data for their own purposes. Finally, their business models do not scale yet as 

their user community is still composed mostly of early adopters (Stocker et al, 2017). 

10.1.2 Contributions and Structure 

Sharing data always holds the risk of violating one’s privacy. So, what is a privacy-preserving 

way of vehicle data exploitation? Can the Blockchain technology act as an enabler?  

Blockchain technology is currently revolutionizing the way smart contracts between par-

ties will be managed due to its outstanding advantages namely decentralization and trans-

parency per design. The application of Blockchains as a solid basis for a secure data ex-

change platform seems to be promising to solve the challenge of monetizing vehicle usage 

data while protecting the data owner's privacy. In contrast to closed systems, a so-enabled 

Open Vehicle Data Platform for vehicle usage data based on smart contracts maintained 

within Blockchains would allow the user to choose which service providers can access cer-

tain vehicle data for which exploitation purpose. Thus, end users can make use of services 

from various service providers at the same time, while being in full control over the collected 

data, which will also be crucial for autonomous driving. Full control can be achieved by em-

ploying privacy settings for each authorized service provider. The user can decide whether 

to share only anonymized data (e.g., as required by traffic management systems), vehicle-

specific data (e.g., for OEMs for continuous improvement), or even user-specific data (e.g., 

as required by insurance companies to provide flexible insurance rates in Pay-As-You-Drive 

(PAYD) models (Husnjak et al., 2014)). Such a platform will be able to support a wide range 

of service providers and allow different benefit/business models advantageous for both the 

users and the service providers. 

Towards proposing a concept for an Open Vehicle Data Platform, in Section 10.1, the 

authors reviewed existing solutions for vehicle data sharing, highlight strengths and weak-

nesses, and particularly focused on potential privacy issues. Thereafter, in Section 10.2, the 

authors provide related work and background for Blockchain technology in the automotive 

domain and for connected vehicles. Consequently, the authors discuss the actors and roles 

of a vehicle data sharing ecosystem, the underlying privacy challenge and propose possible 

privacy setting schemes protecting the privacy of the involved users, followed by a concept 

for a Blockchain-based Open Vehicle Data Platform in Section 10.3. In the latter, Blockchain 

technology ensures a trustworthy data exchange between all involved entities and users. 
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After providing a description of a conceptual workflow, the authors discuss open issues and 

related aspects required to realize the proposed data sharing platform and thereby conclude 

the chapter with a discussion and outlook in Section 10.4. 

10.2 Related Work and Background 

10.2.1 Blockchain Technology (in automotive) 

Blockchains were first introduced as underlying technology of Bitcoin in 2008 (Nakamoto, 

2008). In this initial form, single transactions are used to describe a cash flow from one entity 

to another. Every new transaction is distributed to the entire Block-chain system and in a 

subsequent step a predefined amount of these transactions is compiled into a block, and 

finally this block is then stored in the Blockchain. The latter can be seen as a distributed 

database, where blocks are immutably chained to each other. The immutable property on 

block and on transaction level is ensured by using cryptographic hash functions and digital 

signatures. Every entity within the Blockchain system can easily verify a transaction as well 

as a block without requiring any trusted party within the system. 

Newer versions of Blockchain allow, besides the exchange of simple transactions, also 

the creation of smart contracts. The latter can be seen as executable “if-then” condition which 

is stored on the Blockchain and can e.g. be used to trigger a cash flow by an event (e.g., 

transfer the flat rent to the landlord on the 1st day of each new month). Besides simple 

examples, smart contracts also allow describing more complex relations between compa-

nies, governmental bodies, etc. and thus is a promising technology to realize a wide range 

of distributed ser-vices and applications in various industrial domains and especially w.r.t. 

IoT solutions. 

Thus, Blockchains and especially smart contracts can potentially be used to solve certain 

open issues in the automotive industry due to its capability to preserve privacy; in particular 

w.r.t. long-term research topics like detection of driver attention/fatigue and current topics 

like utilizing vehicles as distributed comprehensive environmental sensors, thereby connect-

ing vehicles to each other (V2V) as well as to surrounding infrastructure (V2I).  

As a result of this, Blockchain technology raised enormous attention in research, aca-

demia and industry. Various projects and initiatives covering different industrial domains 

were started in the last months with the goal of identifying real business opportunities for the 

use of Blockchain in future products, or even to develop concrete (distributed) applications 

where the use of Blockchain technology can be beneficial, including the automotive industry 
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which has identified potential areas for the use for Blockchains. Recently, automotive car 

manufacturers BMW, GM, Ford and Renault started the Mobility Open Blockchain Initiative 

(MOBI) together with other industrial and academic partners such as Bosch, Blockchain at 

Berkeley, Hyperledger, Fetch.ai, IBM and IOTA (Russel, 2018). Also, other vehicle manu-

facturers are evaluating Blockchains or are already working on concrete projects: In 2017, 

Daimler started a project where Blockchain technology is used to manage financial transac-

tions (Dotson, 2017). Furthermore, the automotive supplier ZF teamed up with IBM and UBS 

to work on a Blockchain-based automotive Platform called Car eWallet with the goal of pav-

ing the way for autonomous vehicles by allowing automatic payments and by providing other 

convenience features (Kilbride, 2017). 

Hence, Blockchain definitely gained attention in the automotive industry. How-ever, con-

crete ideas, products and services are needed to show that Blockchain is more than a hyped 

technology but rather allows the development of new business cases. 

10.2.2 Connected Vehicles and Data Exploitation 

Future vehicles will communicate with each other as well as with surrounding road infrastruc-

ture to collect valuable information about road conditions and to sense the current traffic 

situations (e.g., very relevant in traffic intersection scenarios). Furthermore, vehicles will in-

creasingly be connected to the Internet to provide a wide range of convenience services to 

the users, to gather latest traffic and map information, the current city traffic strategy or even 

to report an accident (i.e., eCall).  

This Internet connection could of course also be used to transfer environmental data 

collected by the vehicle itself (e.g., camera, Radar, or Lidar data) to the cloud. Intel recently 

released a statement saying that future (self-driving) vehicles will collect up to 4 TB of data 

each day (Krzanich, 2016). A wide range of different ser-vice providers (not restricted to 

automotive) would be interested in using the collected data in various ways. Sharing the 

collected data could/should also be beneficial for the owner/driver of the vehicle (see Section 

10.3.1) and, on the down side, will raise serious privacy issues, as the exchanged infor-

mation could be used to e.g. track down the user’s location or analyze the user’s behavior 

(see also Section 10.3.2).  
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Several tech startups such as Automile, Dash, and Zendrive, as well as large initiatives 

driven by vehicle manufacturers such as AutoMat (coordinated by Volkswagen), started ini-

tiatives with the goal to collect and utilize data from single vehicles up to entire fleets follow-

ing different purposes (Stocker et al, 2017):  

i. Provide specific services in order to generate a benefit for the driver or the vehi-

cle/fleet owner in return for sharing data. 

ii. Create value by monetizing the collected data coming from a mass of vehicles to 

third parties, which in turn use it as input for algorithms. 

iii. Further improve the business offerings of service providers and develop new ser-

vices. 

Furthermore, in times of a shift of the automotive industry towards digitalization, in times to 

manage different SAE levels of autonomous driving on the road simultaneously, and in times 

of the Internet of Things where sensors are increasingly connected to the Internet, the auto-

motive industry still tries to solve many long-known phenomena. These phenomena include 

for example the detection of the driver’s distraction, fatigue and trust or the vehicles security 

and safety, which will increasingly be done in the cloud, by feeding the algorithms with sen-

sitive and privacy relevant data from vehicle usage.  

Data ownership of vehicle sensor data seems to be yet unclear from a legal perspective. 

Driver, vehicle owner, passengers, and the vehicle manufacturer may claim their right on 

certain data. In the AutoMat project, coordinated by Volkswagen, it is argued that as usual 

in other domains, e.g. in the music show business, “the copyright is distributed proportionally 

among the members of the value chain” (AutoMat, 2018a). This copyright distribution would 

give vehicle manufacturers the right to use the data a driver produces without charge, and 

thus would bring vehicle manufacturers into the profitable data platform provider role (as they 

can integrate a data interface in their cars easily). However, from a driver’s/vehicle 

owner’s/passenger’s perspective, copyright should not be distributed as there would not be 

any data without them driving the vehicle. This is usual in many domains e.g. digital camera 

manufacturers do not have a copyright on produced photos, and a competitive market with 

open data platforms will force innovative solutions and offer more benefits to the data owner 

to attract data provision. 
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10.3 Towards Privacy-Preserving Vehicle Data Sharing 

10.3.1 A Vehicle Data Sharing Ecosystem 

A series of stakeholders including vehicle developers, vehicle manufacturers, insurers, and 

even smart cities could benefit a lot from an open privacy-preserving vehicle data sharing 

platform, and thus participate in a vehicle data sharing eco-system. The following Figure 47, 

sketches such a vehicle data sharing ecosystem and highlights the connections between the 

different stakeholders. The figure illustrates stakeholders and advantages for their busi-

nesses (based on shared vehicle data), as well as advantages for vehicle owners (using the 

service the stakeholder provides based on their shared data). Thereby different connection 

types and privacy levels are envisaged, as different stakeholders are interested in different 

aspects of the data collected by connected vehicles. 

 

Figure 47 Vehicle usage data can be used for various services and by different entities and bring 

ad-vantages to vehicle owner/user and service provider/consumer. (Kaiser et al., 2019b) 

As indicated in Figure 47, certain service providers such as city planners or map providers 

are not interested in who is driving (i.e., do not need driver-specific in-formation) or what 

specific type of vehicle (i.e., do not need vehicle-specific in-formation such as brand, color, 

or model). Thus, these services can be satisfied by providing anonymized vehicle usage 

data. Other (automotive) services targeting on the vehicle development lifecycle (e.g., pre-

dictive maintenance or wearout of vehicle components), will only require vehicle-specific 
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data, whereas other services will be mainly interested in user-specific information (i.e., who 

is/was driving).  

The proposed Open Vehicle Data Platform will address the fact that different services 

require a different kind of data and allow specifying which components of the collected data 

is shared to enable services. Thereby, privacy is especially addressed as a connected vehi-

cle will not necessarily have to share an entire dataset with a service provider but rather only 

the data which is really needed by the service provider to provide a specific service. In the 

simplified model of a vehicle data ecosystem four types of data sharing might be distin-

guished: sharing anonymous data, driver-specific data, vehicle specific data, or a combina-

tion of them. 

From a more abstract point of view, a vehicle data sharing ecosystem can have several 

types of actors linked by value flows, as indicated in the e3value model in Figure 48. For 

instance, a driver can share driving and vehicle data with a gateway provider who then for-

wards this data to a data platform provider. In return the driver may receive money but will 

probably have to mount a vehicle data gate-way device in his vehicle. A service provider 

may use driving data from the data market/platform to establish a preventive maintenance 

service for drivers. While drivers may pay service providers a fee for consuming this service, 

the data market receives another fee from the service provider for providing the technical 

da-ta, which is the baseline for this service.  

Consequently, the ecosystem has mutual dependencies and thus allows scenarios 

where e.g. a driver uses an attractive service which is offered for free, because an organi-

zational consumer (in current scenarios from the market usually without the knowledge of 

the driver) pays the service provider for the development and service provision in the back-

ground, in order to get the data or access to a valuable service based on this data. 
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Figure 48 Actors and value flows (e3value model) of a vehicle data sharing ecosystem. (Kaiser et 

al., 2019b) 

10.3.2 The Privacy Challenge for Data Sharing 

As discussed before, service providers will monetize data collected by connected vehicles 

and thus should reward drivers providing the data with certain benefits. In case that the ex-

change of data between the connected vehicle and the service provider is insecure (Valasek 

and Miller, 2015) (or the service provider itself is compromised / acts malicious), privacy 

issues ranging from tracking down the user to stealing sensitive information can arise. 

Hence, security and privacy must be addressed when de-signing a vehicle usage data plat-

form, and, as general rule, a service provider should only be allowed to access relevant (i.e., 

for providing a specific service) data collected by a connected vehicle. 

The driver may conduct a driving behavior which could be interpreted in a negative way 

and might not be willing to share the so generated driving data with others as this would 

either imply legal, social or ethical consequences. For instance, an aggressive driving be-

havior might cause social (if shared with friends while benchmarking) or even legal conse-

quences (if captured by the police). Drivers becoming aware of this fact may not want to 

contribute to any data sharing platform at all if their shared vehicle data could allow to cause 

negative consequences for them. This fact is also reflected in current studies and surveys, 

where users are asked about trust and privacy w.r.t. connected vehicles. In one of these 
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studies, Walter et al. (2018) details the user concerns regarding connected vehicles and 

highlights the needs for a privacy-aware data sharing mechanism. 

Defining a privacy configuration mechanism w.r.t usability and transparency brings up 

different opportunities:  

One approach is a distinction between vehicle specific and driver specific data, where 

one can opt to share both of them either anonymized or not, just one or none. 

Another approach would be to have four easy understandable levels with decreasing 

privacy: 

i. don’t share, where simply no data is shared at all,  

ii. private, where data is provided e.g. to calculate some basic individual statistics, but 

can-not be used for anything else,  

iii. anonymized for public usage, where data can be used like in private level and addi-

tionally is provided to public in an anonymized way, and  

iv. public, where all data is provided to public.  

However, this approach would raise awareness of drivers and service providers would have 

to adopt the concept, hence it limits possibilities and perhaps opens legal loopholes and at 

the end of the day it lacks transparency which specific data a service has access to.  

Therefore, the authors argue that it is feasible to adopt the approach of Android 

smartphone applications, which clusters the access to certain data into topics (i.e. An app 

needs access to one’s contacts and images). The level of detail is a decisive factor for such 

clusters: emission values can be clustered under a huge topic named vehicle sensor data or 

be seen as an individual emission values category, while using quite granular categories 

would require basic technical understanding of every user. The authors still see improvement 

potential as this solution has somehow a touch of too much information, comparable to terms 

and conditions no one really reads carefully. 

10.3.3 A Concept for a Blockchain-based Open Vehicle 

Data Platform 

The concept provided in this section sketches a privacy preserving Open Vehicle Data Plat-

form. Instead of going into detail and arguing for certain tools and architectures, we’d rather 

spread the idea by describing the workflow. 
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A vehicle is capable of acquiring a lot of valuable data and the driver of the connected 

vehicle shall be able to decide if and how this data is shared with service providers, as dis-

cussed earlier. In the proposed concept and as indicated in Figure 49, smart contracts based 

on Blockchain technology are used to specify whether a service is allowed to access data 

from a certain vehicle and also which kind of data will be shared.  

Once an agreement between the connected vehicle and the service provider (i.e., smart 

contract) is signed, Blockchain technology is exploited to i) make sure that the smart contract 

cannot be tampered with, as well as ii) to make the smart con-tract available to so called 

Brokers. The latter provides an online storage, where data collected by connected vehicles 

is stored securely, and it is also responsible to handle the access of a specific service on 

data stored on its online storage according to existing smart contracts. Furthermore, the 

Broker will maintain secure data connections between its online storage and connected ve-

hicles as well as service providers by using suitable protection mechanisms (e.g., TLS).  

In the proposed concept, several Brokers will take over the aforementioned tasks, and 

thereby also allow connected vehicles to switch between different Brokers or even to store 

data on different locations. The Blockchain will thereby fulfill two essential tasks. Firstly, the 

Blockchain provides tamperproof storage for smart contracts as well as other transactions, 

and secondly also provides a way to ensure the authenticity of data collected by a connected 

vehicle and stored on an online storage, as the hash of a collected dataset is integrated in a 

transaction and then stored on the Blockchain. Such a transaction can also be seen as a 

trigger for service providers informing them about the latest available dataset. 

Please note that storing data directly on the Blockchain is not advisable from technolog-

ical point of view. Also note that existing contracts on the Blockchain can simply be revoked 

or changed by filing a new contract between the connect-ed vehicle and the concerned ser-

vice provider. 
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Figure 49 Data exchange between origin (vehicle) and target (service providers) is managed by a 

broker using Blockchain technology for smart contracts. (Kaiser et al., 2019b) 

The proposed concept will rely on two different entities which are stored on the Blockchain, 

namely  

i. Smart contracts, describing which data is shared with a certain ser-vice provider and 

also specifies the corresponding reward. It will contain information about the Broker 

that is used to store the collected data, and the timespan in which a certain service 

is allowed to access the collected data. Each smart contract will be signed by the 

connected vehicle (is owner) and the service provider before it is stored on the 

Blockchain; 

ii. Dataset transactions, containing the hash of a dataset stored on the online storage 

of a Broker. Every transaction is signed by the connected vehicle (or its owner), and 

also by the Broker once the dataset was successfully transferred (and verified) to its 

online storage. 

The proposed concept is able to securely interconnect connected vehicles and services pro-

viders in a privacy-preserving way, by utilizing Blockchain as tamperproof, decentralized da-

tabase, as well as by using dedicated Brokers providing a secure online storage and han-

dling access control w.r.t. the stored data. In the following, the authors summarize seven 

steps required to share data between a connected vehicle and a service provider and use 

this example to highlight the benefits of the propose vehicle data sharing platform: 

1. Initially, the owner of a connected vehicle wants to use a certain service and, in 

further consequence, will get into contact with the responsible service provider. In 

this initial step, the user will be informed about the type of the data the service pro-

vider requires to provide a specific service.  

Cloud Service 
Provider

Broker

Broker
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2. If the user agrees to this terms, a smart contract specifying the relation between the 

connected vehicle, its owner, and the service provider is created and signed by the 

vehicle owner (representing the connected vehicle) and the service provider.  

3. Once the smart contract is finalized, it will be stored on the Blockchain. 

4. While being used, the connected vehicle will continuously collect valuable data, 

which is divided into datasets (e.g., after a predefined time or once a certain amount 

of data is collected) and sent encrypted to the online storage of the Broker. Each 

transferred dataset is accompanied by a dataset transaction containing the hash of 

the dataset as well as the digital signature of the connected vehicle (its owner).  

5. Hence, the Broker on the one hand can verify that the dataset was not altered while 

being transferred, and on the other is held from changing the dataset itself as this 

would invalidate the digital signature already included in the dataset transaction. 

Once the currently received dataset is verified, the Broker will add its signature (thus 

completes the transaction) to the transaction and broadcast it on the Blockchain 

network. 

6. Service providers can monitor the Blockchain and will be directly notified about the 

latest available dataset by looking for relevant dataset transaction. In case such a 

transaction was found, the service provider requests the dataset by establishing a 

connection with the Broker.  

7. Next, the latter looks for a suitable smart contract on the Blockchain and provides 

access to data as specified in the smart contract or declines the request in case no 

smart contract was found or it was revoked. 

10.4 Conclusion, Discussion and Outlook 

This chapter was aimed to launch the discussion on how the Blockchain technology may 

help to establish an open vehicle data sharing platform, respecting the privacy of both the 

vehicle owner and the vehicle driver. Thereby smart contracts are introduced as a mode to 

fully digitize the data sharing relationship between a consumer (e.g. a driver, who provides 

his data with the purpose to use services) and a service provider (e.g. a provider of a pre-

ventive maintenance service). They describe what kind of data will be provided by whom 

and for what data exploitation purpose. While these smart contracts are stored on the Block-

chain to increase the trust between the vehicle data sharing ecosystem stakeholders, the 

shared data itself will not be stored on the Blockchain, but for instance on a separate data 

platform and a data market. 
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However, a series of issues and research topics remain open and will be targeted in 

future work:   

There are certain pre-requisites vehicles would need for the provided concept. For ex-

ample, a standardized vehicle data interface across manufacturers, where in general all ve-

hicle data can be provided to extern (to be stored on SD card or on a hard drive if used for 

private purposes, or to be sent to online destinations), would ease data acquisition. Only 

data which is marked to be stored/sent to somewhere should be captured, all other data 

should be deleted or continuously overwritten.  

In order to participate, users need to be able to authorize themselves (e.g. to use their 

privacy settings in every vehicle they use) to the vehicle and the Broker, so they need to 

register and have an identity.  

Using Blockchain technology ensures a privacy preserving way to securely share the 

data from the vehicle to the service provider. If a service provider gets access to one’s data, 

then this indicates that he is not allowed to resell it unless this is explicitly mentioned in the 

contract. However, in praxis this can not be prevented with the presented concept, thus pri-

vacy can not fully be ensured. 

As mentioned in Section 10.3.2, how to cluster data in useful groups and in which gran-

ularity is a topic for future research. An initial version could be as follows:  

- Emission data 

- Vehicle data (e.g. base weight, number of passengers, year of manufacture, type, brand)  

- Environment data (e.g. road topography, temperature outside, rain) 

- Traffic data (e.g. detected entities around the vehicle including humans and vehicles, 

information about the streets throughput rate) 

- Driver data (e.g. Driver ID, music channel, mood, fatigue level, driving score, heart rate) 

- Ride data (e.g. GPS position, temperature inside, start datetime, target) 

- Other data 
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11. A Lightweight Framework for Multi-device 

Integration and Multi-sensor Fusion to Explore 

Driver Distraction 18 

Summary and Author Contribution 

Concepts and Prototypical Implementations along the VDVC 
(Paper 3/5) 

This chapter examines how a lightweight technical framework for the real-time fusion of 
vehicle data and other contextually relevant data could look like. Such a framework could 
be used to assess driver’s status with appropriate measurement equipment, e.g. to detect 
driver distraction and driver inattention. This is particularly of interest, as driver distraction 
and driver inattention are major challenges in road traffic and major causes of accidents. 
Especially novel quantification approaches combining data from different sensors and de-
vices are necessary for comprehensively determining causes of driver distraction. Thus, 
a generic architecture is presented and its application in a proof-of-concept implementa-
tion is shown. This application is also demonstrated and examined by means of an em-
pirical study, where drivers (study participants) perform distracting tasks, like using multi-
media interfaces or glancing at co-drivers. Preliminary results of our analysis have indi-
cated a high accuracy of distraction detection for individual distraction tasks and thus the 
framework’s usefulness. 

 

With this paper, we wanted to disseminate our findings from an internal project where 
we recorded fused sensor data from a smartphone, a smartwatch, and a smart glass in 
addition to vehicle data  to detect distraction. In this work, I was responsible for setting up 
and conducting the empirical field study, where we tested the solution and collected data 
for the evaluation. 

 

Driver distraction is a major challenge in road traffic, resulting in an enormous number of 

accidents and fatalities every year (NHTSA, 2018a; EU, 2018; NHTSA, 2018b). In a study 

based on the analysis of 997 crashes, Thomas et al. state that 11% of crashed drivers were 

distracted and 8% were inattentive (Thomas et al., 2013). However, distraction does not only 

concern manual passenger vehicle driving but is also a key issue towards increasingly au-

tomated driving functions, Advanced Driver Assistance Systems (ADAS) and autonomous 

driving. When driving scenarios are not covered by an automation, the advanced driving 

 

18  The content of this chapter is based on  

 Lechner, G., Fellmann, M., Festl, A., Kaiser, C., Kalayci, T. E., Spitzer, M., Stocker, A., (2019). A 
Lightweight Framework for Multi-device Integration and Multi-sensor Fusion to Explore Driver Distrac-
tion. In International Conference on Advanced Information Systems Engineering (CAiSE) (pp. 80-95). 
Springer, Cham. 

 Reprinted/adapted by permission from Springer Nature and Copyright Clearance Center: Springer 
Nature, Copyright © 2019, Springer Nature. 
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functions fail, and a manual take-over is required (Payre et al., 2017; Zeeb et al., 2015). For 

this purpose, termed “to keep the Human-in-the-loop”, drivers must be responsive and pre-

pared all the time: drivers must end activities unrelated to driving and give enough attention 

to take manual control of the vehicle in an adequate manner. 

Apart from the maturity level of the vehicle with respect to autonomous driving, one key 

point is correct measurement of driver distraction to assess driver’s status. Further develop-

ment of (partly) automated driving is highly dependent on qualitative and quantitative meas-

urement of driver distraction to trigger appropriate measures to get drivers back into the loop. 

In addition, safety of drivers at the present time will be increased significantly through these 

measures by improving mechanisms to avoid distraction. 

A major issue of measuring driver distraction is that in most existing approaches the 

sensors and devices are obtrusive, and already their application would distract the driver. 

For example, the methods of neuroimaging or eye tracking depend on bulky, distracting, and 

cost-intensive technical equipment and are therefore not applicable for daily use in real traffic 

but suitable only for experimental setups (ABC Science, 2018; American Psychological As-

sociation, 2018). Prototypical audiovisual systems for distraction measurement are in use 

but rarely in combination with other sensors (Eskenazi et al., 2018). However, available con-

sumer-grade hardware such as smartwatches, wristbands, smartphones, or other types of 

wearables are already used by many drivers. Data captured by their sensors bears a huge 

potential to be used in driver distraction detection – a potential currently not fully exploited in 

research. A recent practice-oriented driver distraction study published by Zendrive.com – a 

startup dedicated to better inferring distraction by using smartphone sensors investigating 

100 billion miles – found out that on an average day, over 60 percent of people use their 

phones at least once while being behind the wheel (Zendrive, 2018). This determines the 

potential of using popular consumer electronics owned by drivers for distraction research. 

But how can data from multiple sensors in different devices be captured and made available 

for analysis in a convenient way? A literature review has indicated a lack of lightweight frame-

works that integrate multiple sensors from multiple consumer devices in order to fuse data 

and enable a comprehensive analysis and detection of multiple distraction tasks. 

Hence, the objective of the research presented in this chapter is to answer the following 

research question: What is a lightweight software framework for multi-device integration and 

multi-sensor fusion for comprehensive driver distraction detection? Furthermore, this frame-

work should serve as a baseline for potential interventions in the case of driver distraction 
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and allow the measurement of interventions’ success. Apart from being lightweight and cost-

efficient, an important aspect of the proposed framework is easy extendibility, i.e. adding 

newly developed or improved sensors must be practical. This ensures the framework’s adap-

tion to various (distraction-related) data sources. 

Concerning driver distraction and driver inattention, the authors follow the definitions 

provided by Regan et al. (2011) who aim for better distinguishing driver distraction from other 

forms of inattention. They conclude that Driver Inattention means insufficient or no attention 

to activities critical for safe driving and driver distraction (they refer to Driver Diverted Atten-

tion as a synonym) as just one form of driver inattention. 

11.1 Background 

In the following sections, an overview of topics related to the presented research is provided. 

The authors discuss driver inattention/distraction followed by ways how to quantify drivers 

and driving, and finally the authors conclude with an overview of frameworks. 

Driving a vehicle is a complex task, and driver inattention and distraction increase the 

risk of having a crash. Transport researchers have paid a lot of attention to explore both 

topics in review articles, simulation studies and field trials. Most of the highly cited articles 

are review papers: Sussman et al. (1985) review research into driver attentional processes 

about safety implications of inattention, related psychological and physiological indices, and 

in-vehicle instrumentation for detection. Young and Regan (2007) provide a literature review 

for driver distraction, which is a priority issue in road safety in many countries worldwide. 

They explicitly highlight the effect of in-vehicle devices (in particular mobile phones) on driv-

ing performance. Dong et al. (2011) review technologies for driver inattention monitoring 

(distraction and fatigue) and discuss the application of hybrid measures to give more reliable 

solutions compared to single driver physical measures or single driving performance 

measures. Simulator studies and field trials are important for validating developed technical 

approaches. Horberry et al. (2006) present the findings of a simulator study which examined 

the effects of driver distracted while having to perform in-vehicle distraction tasks. Klauer et 

al. (2006) conducted a widely cited comprehensive study on the impact of driver inattention 

on near crash and crash risk, using data from the 100 Car naturalistic driving study. Their 

findings indicate higher risks when driving drowsy, or when engaging in complex tasks while 

driving. D’Orazio et al. (2007) propose a visual approach based on image recognition for 

monitoring driver vigilance, detecting if a driver’s eyes are open or closed while evaluating 

the temporal occurrence of eyes open to estimate the driver’s attention level validated in 



A Lightweight Framework for Multi-device Integration 191 

experiments. Fletcher and Zelinsky (2009) present a prototype system which can estimate 

a driver’s observations and detect driver inattentiveness based on eye gaze – road event 

correlation validated in laboratory experiments and road trials. 

Driving data resulting from quantification of drivers and driving is a valuable source for 

knowledge generation and can boost research in driver inattention and distraction. The quan-

tification of human behavior termed quantified self (Swan, 2009) has sped-up the generation 

of data and is a very popular example for everyday life data analytics. Individuals engaged 

in self-tracking any kind of biological, physical, behavioral, or environmental information 

(Swan, 2013) have led to a multitude of data that can be used for different purposes including 

detecting health issues or developing personalized training plans. This pattern of self-track-

ing by using consumer devices can be easily transferred to vehicles, and in this sense, may 

be termed as quantified vehicles (Stocker et al., 2017a). Sensors and electronic control units 

(ECUs) within modern vehicles create a plethora of vehicle operation data, but this data is 

hardly accessible for the reasons of safety and espionage. Although examples for real-time 

streaming of Controller Area Network (CAN) bus data are available (e.g. CSS electronics, 

2018), conversion of CAN data is restricted due to proprietary/manufacturer-specific stand-

ards (like SAE 2018). Yet, drivers and driving can be quantified either by using data accessed 

through the vehicles’ on-board diagnostics (OBD) interface, or by utilizing the driver’s wear-

ables. While much of the data gained from the OBD interface is not suitable to detect driver 

distraction (e.g. ambient temperature), there are a few valuable measurements including 

vehicle speed or vehicle RPM (revolutions per minute) that can be explored. Additionally, 

smartphones provide a set of useful data for quantifying drivers and driving, for example 

through GPS, acceleration and gyroscope sensors. Analogously, many wearables like 

smartwatches have similar sensors and generated data may be used to quantify certain 

tasks of drivers. 

Data collected by a driver’s wearables using Lightweight Frameworks for Multi-Device 

Integration and Multi-Sensor Fusion can be used to enable driver distraction and inattention 

detection mechanisms which are independent from a car’s built-in functionality. For instance, 

in the zendrive.com case which was introduced previously, two sensors from the driver’s 

smartphone have been used to quantify safety-critical smartphone usage during driving. But, 

for implementing such use cases, in-depth-knowledge about technical infrastructures for 

(multi-)sensor data acquisition, pre-processing, synchronization, and fusion is crucial. Much 

past research in multi-sensor integration has focused on hardware-based approaches for 



192 A Lightweight Framework for Multi-device Integration 

data acquisition (e.g., for physiological monitoring (Pandian et al., 2008) or context aware-

ness (Gellersen et al., 2002), to name two examples), which seems logical due to the former 

lack of devices with considerable computation power for dealing with software-based solu-

tions. In search of such software solutions, a review of the scientific literature has shown that 

approaches for multi-device integration and multi-sensor fusion with a focus on wearables 

are not sufficiently reported. While some researchers (for example Ramos et al., 2016; 

Shoaib et al., 2015; Vilarinho et al., 2015; Casilari et al., 2016) have already combined 

smartphone with smartwatch sensor data for recognizing human activities outside the driving 

domain, their papers lack the detailed description of applied technical frameworks for cap-

turing and synchronizing measurement data. It is obvious that these papers are focused on 

the analytics part, which is obviously more interesting for data scientists, but lack on the 

technical part which should also be considered relevant. With respect to detecting unsafe 

driving, researchers (Eskenazi et al., 2018; Giang et al., 2015; Liu et al., 2015) report on 

studies using sensor data from wearables. However, a description of their technical frame-

work enabling the reported analysis is missing, too. Finally, de Arriba-Pérez et al. (2016) 

present a research article elaborating on a technical framework, though embedded in an 

educational context. 

11.2 A Technical Framework for Real-time Fusion and 

Logging of Sensor Data 

11.2.1 Requirements 

In order to provide the basis for driver distraction detection, the framework must be able to 

record and integrate various data in a timely manner. Hence, requirements exist regarding 

which data should be recorded and how it should be stored and integrated. In the following, 

the authors describe fundamental requirements regarding these aspects. 

• Requirement 1: The framework should be able to record data about the driver, ve-

hicle state and the current GPS-position. 

Regarding the driver, physiological data is important such as movements of the driver’s head 

(e.g. to detect if the driver is looking on the street or not), movements of arms/wrist (e.g. to 

detect if hands are placed on the steering-wheel) as well as the driver’s heartrate (e.g. to 

detect situations of excessive stress). Regarding the vehicle state, data such as RPM or 

usage of the entertainment system is relevant (e.g. high RPM variation in combination with 
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frequent gear reductions may indicate a more focused driving style, while excessive enter-

tainment system usage may indicate the opposite). In order to detect the movement of the 

vehicle in the real world to obtain contextual information, GPS positioning data should also 

be recorded. 

• Requirement 2: The framework should provide access to integrated data via a com-

mon query interface as well as the capability to store real-time time series data.  

Access to integrated data via a common interface is an important requirement to facilitate 

the analysis of diverse sensor data. The database should moreover be capable of processing 

large volumes of insert operations in almost real time (e.g. to store acceleration, gyroscope 

and GPS data). Regarding analysis, the database should provide support for time series 

data, i.e. querying large amounts of sensor values with a timestamp.  

• Requirement 3: The framework should provide a mechanism for synchronizing data 

originating from various sensors from multiple devices. 

In order to synchronize sensor data such as GPS position, heartrate, head movement and 

RPM at a certain point in time, the timestamp of each sensor value could be used. As internal 

clocks of different sensors are not synchronized all sensors must agree on a common time. 

For this purpose, a GPS time stamp can be used since GPS sensors are available on many 

hardware devices such as smart glasses, smartwatches and inside vehicle data loggers 

used for experiments. 

11.2.2 Generic Architecture  

The generic architecture consists of an arbitrary number of generic components (GC) with 

various functions, thereby considering the requirements stated in the previous subsection. 

The GCs can acquire data from one or more sensors, but also – uni- or even bi-directionally 

– from other generic components through a receiver (GC reader). Such data collection is the 

primary and simplest function of a generic component. The data transfer-functionality makes 

the interchange of data between generic components possible and is built upon data collec-

tion, as collection of data is required before its transfer. For this purpose, a transmitter acting 

as a GC writer is integrated. Data integration and processing is an optional function sepa-

rated from transfer and performed in a data forwarder. The data forwarder of the GC may 

thus act as an integrator, thereby processing data from one or more different data sources 

(individual sensors or generic components). In summary, as shown in Figure 50, the GC is 

capable to perform following functions: (1) data collection, (2) data transfer, and (3) data 
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integration and processing. In addition, the GC has a configuration layer providing basic 

configuration options which is accessible by users for specific configuration requirements. 

These characteristics of the generic architecture allow to consider the framework as a 

general one which can be extended in various ways: as sensors quantify information from 

environment and bring them into a structured, machine-readable format, they can easily be 

connected to GCs. In particular, the structure of data in terms of measurement frequency 

and data types provided by different sensors is similar for many different sensors (as, e.g., 

accelerometers or gyroscopes), independent from specific brands or devices. However, the 

concrete implementation and respective performance of hardware determines both the num-

ber of performed tasks and sensors that can be added. 

 

Figure 50 Generic Architecture for real-time fusion and logging of sensor data. (Lechner et al., 

2019) 

11.2.3 Implementation  

In order to explore driver distraction, an instance based on the generic architecture is imple-

mented, satisfying the requirements stated previously (cf. Figure 51). A smartwatch (top left) 

that delivers physiological data such as heartrate, but also movement-related data such as 

gyroscope- and accelerometer data, is connected via Bluetooth to a smartphone (top right). 

Smart glasses (bottom right) are connected to a smartphone via WiFi in order to record head 

movements. The smartphone forwards data both from the smartwatch and the smart glasses 

to the central database (center) using a 4G LTE connection. Data about the vehicle state is 

collected by a vehicle data logger (bottom left) that also transfers data via a 4G LTE connec-

tion to the database. Results can be investigated in a user frontend on a web page. Regard-

ing the concrete implementation of the system, four main components have been created. 

(1) An Android Wear App was developed that consists of one component running on the 
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smartphone (Samsung Galaxy A5) interlinked with another component running on the smart-

watch (Huawei Watch 2). This design is also referred to as “companion app”. It provides the 

advantage that energy-intense tasks such as GPS data logging and writing data to the da-

tabase over a network connection are delegated to the more powerful (in terms of battery 

and computing power) smartphone. One or more smartwatch-smartphone pairings can be 

used for data acquisition at the same time. (2) A smart glasses App for Microsoft HoloLens 

was developed for logging head movements. (3) A Vehicle Data Logger that accesses the 

ODB-II interface of the car provides real-time car data. (4) The time-series database InfluxDB 

was installed on a server to store all collected data and provide data for further analysis. A 

high-precision GPS-timestamp was added to all these data sources for synchronization. For 

more information on used hardware and sensors acting as data sources, the authors refer 

to Table 20. 

The software architecture of the whole system follows the generic architecture.  

Figure 51 shows the system architecture. This architecture was implemented on several 

devices in several programming languages. The smart watch/smart phone implementation 

is in Java, the HoloLens implementation in C# and the Vehicle Data Logger implementation 

on the BeagleBone in C++. 

 

Figure 51 System architecture. (Lechner et al., 2019) 

Figure 52 shows the interface specification of the C# implementation for the HoloLens. This 

principle was also applied to the other involved components written in C++ and Java. The 

ISensorDataReceiver is responsible for acquiring the current log point from the attached 
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sensor. This could be done with a predefined sampling rate, but also asynchronous by trig-

gering the LogPointAvailable event when a new sensor value is present. The ISensorData-

Receiver reflects the receiver of the generic architecture. 

Every measurement regardless of the sensor type is stored in a LogPoint. A log point con-

sists of a timestamp, an array of captured values and names for the captured values. 

The IDataForwarder interface reflects the data forwarder defined in the general architecture. 

It is responsible for connecting the ISensorDataReceiver (receiver) with any appropriate 

IDataTransmitter (transmitter). Additionally, start/stop of the data acquisition is controlled by 

the IDataForwarder. Various configuration settings such as URL endpoints, sampling rates, 

Sensor IDs, are also handled by the IDataForwarder interface. The IDataTransmitter inter-

face reflects the transmitter of the general architecture. It is responsible for processing the 

acquired sensor value, e.g. store the value in a database, a local CSV file or to send the 

value over a WebSocket connection. All other devices and implementations follow the same 

generic architecture.  

From a practical viewpoint, stability of connections between devices has to be tested 

intensively in order to avoid unwanted disconnections. In addition, battery runtime of devices 

must be considered when planning test setups, as continuous receiving and transmitting of 

data consumes much more power than standard operation. The easy-to-realize regular 

measurement of timestamps from GNSS-devices and related synchronization of multiple de-

vices facilitates the joint usage of acquired data, as otherwise the devices in instances are 

prone to clock drift, what renders measurement data unusable. 

 

Figure 52 Interface definition in C# for HoloLens. (Lechner et al., 2019) 

11.2.4 Hardware and Equipment 

The applied types of hardware and equipment were determined according to the require-

ments of the experimental setup. A thorough market and requirements analysis led to the 

application of the hardware and equipment listed in Table 20. In addition, details concerning 
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the sensors of each device from which data was acquired are described. Please note that 

for all measurements along x-/y-/z-axis the reference system is provided by the sensor itself. 

Table 20 Overview of applied hardware/equipment and acquired sensors. (Lechner et al., 2019) 

Hardware & 

Equipment 

Sensor description &  

acquired data from sensors 

Huawei 

Watch 2 

(2 units) 

Off-the-shelf smartwatch based on Android Wear 2.0, offering a variety 

of sensors for data acquisition; one watch per wrist. 

- Along x-/y-/z-axis: acceleration including/excluding gravity, 
measured acceleration (with/without bias compensation), force of 
gravity 
- Around x-/y-/z-axis: Euler angles, rate of rotation (with/without 
drift compensation), estimated drift 
- Scalar component of the rotation vector 
- Heart rate in beats per minute 

Samsung 

Galaxy A5 

(2 units) 

Off-the-shelf smartphone serving running app for data acquisition (oper-

ating system: Android 7.0), one per smartwatch. 

- Latitude/Longitude of smartphone's position & GPS timestamp 

Microsoft  

HoloLens 

(1 unit) 

Off-the-shelf mixed reality glasses (Operating system: Windows Mixed 

Reality). 

- Current absolute position of HoloLens-camera on x-/y-/z-axis 
- Component of quaternion (x/y/z/w): current rotation of camera 
- Angle between two sequenced quaternions 
- Component of Euler angle (x/y/z) representation of rotation 

BeagleBone 

Vehicle Data 

Logger 

(1 unit) 

Non-commercial OBD-II Vehicle Data Logger based on BeagleBoard-

platform, including a sensor measurement cape, designed and manufac-

tured at Virtual Vehicle Research Center. Although being a standalone 

data logger, data is synchronized with other acquired data by GPS 

timestamp. 

- Acceleration x-/y-/z-axis including gravity [unit g] 
- Measured altitude above sea level 
- Rate of rotation around the x-/y-/z-axis 
- Latitude/Longitude of measured position & GPS timestamp 
- Various data according to OBD-II specification 

GoPro  

cameras 

(2 units) 

Mounted in the in-cabin room for videos about drivers. As only required 

for reasons of traceability during analysis phase, video data was not syn-

chronized with remaining data in real-time. 

- In-cabin video recording 
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11.3 Demonstration 

The implemented lightweight framework was applied in a real-world study. The field study 

allows to develop improved systems for detecting driver distraction, as the results allow to 

better infer concrete distraction tasks. In addition, it makes the preliminary examination of 

the level of obtrusion possible. 

11.3.1 Study Setup 

The implemented framework was used for logging and fusing data from drivers and vehicles 

to gain insights into detection of distraction during driving. In an experimental series, ten 

drivers (5 female, 5 male) were asked to perform sequences of specific motions which sim-

ulate a variety of distraction tasks. The used vehicle was a Ford Mondeo with automatic 

transmission with a customized front video recorder capturing (non-synchronized) context of 

driving for reasons of traceability. Age of drivers ranged from 26 to 43 years, with a mean of 

33.6 years (median: 34 years; standard deviation: 5.71). Depending on age, subjects were 

categorized as digital natives (age 18-30, 2:2), middle age (born in transition time to digital 

natives, age 31-40, 2:2), and digital immigrants (age 41+, 1:1). Six of the participants wore 

glasses, and 3 had prior experience with Smart Glasses. Test participants had to carefully 

read and sign an informed consent prior to the performance, where test purpose and proce-

dure have been described without biasing the test participants for the tests. They could quit 

the study at any time, nevertheless, all participants finished all their tasks. 

 A comprehensive distraction detection requires the recording of a variety of different 

tasks. Thus, two different scenarios were tested: performing tasks in a stationary vehicle 

(static scenario) and while driving (dynamic scenario), with 10 repetitions for each. The se-

quence of motions in the static scenario consisted of (S1 – task not related to driving) turn a 

knob at the center console; (S2 – task related to driving) release and put on hand brake; (S3 

– task not related to driving) look for at least 2 seconds into the eyes of the co-driver. In the 

dynamic case the tasks were (D1 – task related to driving) switch to Drive Mode, release the 

brake and accelerate to 5 km/h; (D2 – task not related to driving) turn a rotary knob at the 

center console; (D3 – task not related to driving) look for at least 2 seconds into the eyes of 

the co-driver; (D4 – task related to driving) stop the vehicle and switch to parking mode. The 

motions of the drivers were recorded and transmitted over the air to the database, applying 

the implemented framework. Drivers used smartwatches on both hands for acceleration and 

rotation of hand motions, and – despite the potential to be obtrusive – drivers wore smart 

glasses (HoloLens-device) in order to capture head motion data. A smartphone recorded the 
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GPS position of the vehicle, and a data logger built on the BeagleBone Black platform (bea-

gleboard.org/black) recorded acceleration, rotation as well as data from the OBD interface 

of the vehicle (e.g. RPM and speed) to collect contextual information. 

11.3.2 Evaluation of the Framework: Detection of Driver 

Distraction Tasks 

In a preliminary, post-experimental step, data was analyzed and assessed with the objective 

to detect motion patterns related to driver distraction by applying advanced methods of data 

science. For this purpose, measurement data obtained from smartwatches, smartphones 

and smart glasses was used, while contextual information provided by the vehicle data log-

ger was not required. Processing and manipulation of time series data was performed in 

Jupyter Notebook (Kluyver et al., 2016) with Python libraries pandas (McKinney, 2010) and 

numpy (Oliphant, 2006), while tsfresh (Christ et al., 2018) for feature extraction and scikit-

learn (Pedregosa et al., 2011) for classification were used. Data quality (e.g. plausibility, 

completeness, …) was checked at first. Subsequently, the data was cleaned and manually 

split into labelled sequences by the help of the videos recorded by the GoPro cameras 

mounted in the car. Each sequence represented time series data of a specific distraction 

task. Sequences of the same type were bundled in sets of identical tasks. In order to have 

positive and negative examples in each bundle, the authors added time series sequences of 

comparable length that did not represent the distraction task to the bundle. These were cho-

sen randomly from the available non-distraction data. Feature extraction from these ex-

tended bundles of time series data provided input values for machine learning algorithms. In 

the first step, importance of features was estimated using ExtraTreesClassifiers. Next, fea-

tures were sorted by their estimated importance, and a limited number (2, 3, …, 33, 34) were 

provided to the machine learning algorithms. Algorithms applied on data covered Support 

Vector Classification (SVC) with linear/RBF kernels, ExtraTreesClassifier, Random-

ForestClassifier, KNeighborsClassifier, and AdaBoostClassifier, all implemented in scikit-

learn and selected based on experience from similar approaches. Due to the limited amount 

of data the authors focused on a k-fold cross validation approach for each of the scenarios. 

Therefore, data was randomly partitioned into 10 subsamples of equal size. In each of the 

10 training runs, 9 (different) subsamples acted as training data, while the model was tested 

and validated in terms of prediction accuracy using the remaining subsample.  

Table 21 provides an overview of the results of these tests. In addition, the number of 

(positive and negative) input sequences, used sensor data, best performing algorithm and 
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number of features used for obtaining the best prediction are given. The results show a sat-

isfying accuracy in terms of distraction task classification. For all scenarios except (D4), the 

best average classification accuracy was greater or equal 90%, and for all except two, it was 

even greater than or equal to 95%. In general, classification was slightly worse in dynamic 

scenarios than in static ones, a fact that can be explained by less distinct data induced by 

vehicle movements. Apart from the finding that individual devices deliver sufficient infor-

mation to detect simple movements, considering joint sensors like accelerometer and gyro-

scope does not necessarily lead to better results in such experiments with limited amount of 

data (see (S2), (D4)): although additional dimensions can increase the amount of available 

information, the available data becomes sparse due to the increased dimension of the fea-

ture space. In order to overcome this potential issue, more data must be provided. Please 

note that the implemented framework can detect single movements using sensor data from 

a single device but is also capable to detect different types of distraction by a combination 

of devices. In order to provide a comprehensive distraction detection, such a combination is 

required. 

Table 21 Performance on classification of distraction tasks (A/G1: Accelerometer/Gyroscope 

smartwatch, G2: Gyroscope smart glasses). (Lechner et al., 2019) 
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(S1) 

29 + 29 A + G1 100% (0.000) ExtraTreesClassifier 9 

29 + 29 A 98.0% (0.060) SVC (linear) 21 

29 + 29 G1 100% (0.000) ExtraTreesClassifier 3 

(S2) 

29 + 29 A + G1 97.5% (0.075) SVC (linear) 4 

29 + 29 A 98.0% (0.060) SVC (linear) 2 

29 + 29 G1 97.5% (0.075) ExtraTreesClassifier 4 

(S3) 62 + 62 G2 97.5% (0.038) SVC (linear) 19 

(D1) 

60 + 60 A + G1 94.7% (0.043) AdaBoostClassifier 33 

60 + 60 A 93.0% (0.077) SVC (linear) 33 

60 + 60 G1 94.7% (0.043) AdaBoostClassifier 33 

(D2) 

55 + 55 A + G1 95.4% (0.084) RandomForestClassifier 2 

55 + 55 A 95.4% (0.084) RandomForestClassifier 2 

55 + 55 G1 94.2% (0.077) ExtraTreesClassifier 21 

(D3) 62 + 62 G2 95.8% (0.042) SVC (rbf) 28 

(D4) 

52 + 52 A + G1 88.8% (0.058) ExtraTreesClassifier 7 

52 + 52 A 90.0% (0.045) SVC (linear) 9 

52 + 52 G1 82.4% (0.074) ExtraTreesClassifier 31 
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11.3.3 Participant Survey and Results 

To evaluate comfort, usability and user experience of applied devices, all participants were 

asked to fill a questionnaire after the experiment to generate data for a qualitative evaluation 

of the experiment. In addition, drivers were also requested to provide answers on questions 

in a break between static and dynamic scenarios. 

 All participants had to answer some qualitative questions after both, the static and the 

dynamic scenarios. For example, regarding the wearing comfort of the smart glasses, on a 

scale from 1 (very uncomfortable) to 5 (very comfortable) all participants answered between 

2 and 4 (standard deviation 0.6), on average with 3.2 after the static scenarios. Ratings had 

a greater variance and were more negative on overall in the dynamic scenario (2.8 on aver-

age), e.g. participant 7 rated the wearing comfort very uncomfortable, while participant 3 

rated it as very comfortable.  

All answers to the question if any technical or external issues occurred during the study 

were related to the smart glasses, but no other device was mentioned. Despite that, regard-

ing the question if participants can imagine using the smart glasses regularly while driving 

using a 4-level Likert item (No=1 to Yes=4), results were rather towards Yes after the static 

scenario (mean: 3, std. dev.: 0.77), and surprisingly even more positive after the dynamic 

scenario (mean: 3.2, std. dev.: 0.75). Furthermore, participants were asked to answer the 

question “Describe the smart glasses experience. What do you think?” after static and dy-

namic scenarios. The answers showed a high variability in terms of weight, value of addi-

tional information, and interaction with the smart glasses. Selected positive statements after 

the static scenario include for example that “additional information using AR is good, as they 

are always in the visual field” (Participant 1), that the “weight is not annoying” (P2), that the 

“Experience is better than expected” (P3), or that it is “rather futuristic, but one could get 

used to it” (P5). In contrast, selected negative statements after the static scenario include for 

example an experienced “heavy weight” (P7), that the “Experience is worse than expected” 

(P8) and that it is “heavy, uncomfortable, difficult to interact” (P10). Participants 1, 2, 7 and 

10 reported “heavy weight” after the dynamic scenario, too. However, positive statements 

after the static scenario include that “one gets used to it easily” (P2), that the “experience is 

better than expected” (P3), that the experience is “good in general. Visualization flickered 

often but did not disturb (in contrast to the expectation)” (P4), and that the map visualization 

is “nice, as you always know where you are” (P6). 
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11.4 Conclusion 

In this work, the authors focused on exploring comprehensive detection of driver distraction 

based on a lightweight framework for multi-device integration and multi-sensor fusion. The 

research on similar frameworks in scientific literature revealed a lack of comparable ap-

proaches, what encouraged us to develop a generic architecture for connecting devices and 

respective sensors in order to achieve the research objective. The proposed generic archi-

tecture allows flexible configuration and linkage of generic components, thus being easily 

extendable by adding/removing generic components. In view of the very heterogeneous 

landscape, the generic architecture provided a standard frame of reference for all stakehold-

ers involved in the development process. Thus, instantiating the generic architecture was 

straightforward. Beyond that, the architecture supported the communication with a remote 

software developer: a significant improvement in terms of software quality could be observed 

when comparing the first version without using the architecture with the second version 

based on the generic architecture. Although not being validated, the instance of the frame-

work is expected to work also as baseline for potential interventions in the case of driver 

distraction: acquired data can directly serve as input for an analysis system with subsequent 

information of drivers. Of course, this gives rise to research on required real-time capabilities 

of such a system. 

The evaluation of the study in terms of a proof-of-concept has indicated that the imple-

mented framework is capable to acquire sufficient data with respect to quality and quantity 

from different sensors built into off-the-shelf consumer hardware to detect driver motions as 

a signal for driver distraction. Driver distraction mechanisms implemented in modern vehicles 

have a limited feasibility to fully capture all events to finally warn the driver and keep the 

driver in the loop, as they rely on data generated by the vehicles’ own sensory and do not 

integrate data from external devices like wearables (Kaiser et al., 2018b). With a view to 

improvement of such systems, data from multiple wearables of a driver may enable a better 

detection of distraction-related events and thereby contribute to increasing driving safety. 

Obviously, combining both approaches can turn out to be an effective way. In view of this, 

fusing data of wearables with other (additional) sources’ data would facilitate a more com-

prehensive distraction analysis. Although the study size and subsequently the size of the 

collected data are a limitation of the presented research, the small amount of data generated 
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and analyzed has delivered surprisingly accurate results concerning distraction task classi-

fication. Thus, a complete analysis, recognition and prediction of individual patterns is con-

ceivable. 

The developed framework has a wider application potential than being limited to the 

presented type of research. Besides the recognition of driver distraction through the classi-

fication of critical tasks, further applications based on data acquired by such a lightweight 

framework could cover, e.g. driving style detection and classification, storage of (driver-re-

lated) driving events in the case of accidents like black boxes in aviation, or the personalized 

adaption of features to habits. 
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12. Use of Automotive Big Data for the Develop-

ment of Two Applications 19 

Summary and Author Contribution 

Concepts and Prototypical Implementations along the VDVC 
(Paper 4/5) 

This chapter shows concretely how the individual steps of the Vehicle Data Value Chain 
are run through to finally provide two applications for users. The two applications are the 
detection of individual driving behaviour and the detection of potholes on the street. In 
particular, details such as the correct alignment of the coordinate system, as this is es-
sential for further data analysis, and the data pipeline, which shows the sequence and 
branching of the implementation, are shown. 

 

We applied for a presentation at the BITKOM event "Big-Data.AI Summit" (BAS) in 
2018 and 2019 with an abstract, which was accepted in each case. In 2019, I held the 
presentation, through which we were subsequently invited to elaborate on our experience 
in a BITKOM position paper on “Practical Use Cases of Artificial Intelligence & Big Data 
in Industry”, which is presented here. In doing so, we wanted to show how the individual 
steps of the vehicle data value chain are concretely run through in order to finally provide 
two applications for users. The descriptions show developments from several projects 
(including AEGIS, EVOLVE) in which I have collaborated. I administered the project of 
writing the paper, reviewed and edited the manuscript. 

 

A vehicle is a computer on four wheels. In a modern vehicle, numerous control units an 

enormous amount of data, which is collected by the installed sensor technology during vehi-

cle usage is generated to determine the function of the vehicle and the systems. Even the 

data generated by a single vehicle is the development of data-driven applications and ser-

vices is highly exciting. The true However, the potential of vehicle data can only be tapped 

when many vehicles from fleets or even all vehicles on the road at all provide their Big Data 

treasure. Combining this vehicle data with data from other domains is another desirable goal. 

This chapter shows how the data generated by sensors can be used in two concrete 

applications: the detection of the driving behavior of individual drivers to show the driving 

risk and the detection of potholes in an urban road network across several drivers and vehi-

cles. The chapter describes the necessary steps from the definition of the applications, the 

 

19  The content of this chapter is based on  

 Kaiser, C.; Festl, A.; and Stocker, A. (2020). Nutzung von Automotive Big Data zur Entwicklung 
zweier neuer Anwendungen. In BITKOM position paper on Practical Use Cases of Artificial Intelli-
gence & Big Data in Industry (original german title: Konkrete Anwendungsfällevon KI & Big-Data in 
der Industrie), pages 10-19. Link: https://bit.ly/2VsqTkv 
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acquisition of vehicle data, data pre-processing, the actual data analysis and the generation 

of results to support the decision making of drivers and infrastructure managers. 

For this purpose, a Big Data Analytics platform was used, which was developed in the 

project funded by the European Commission and combines numerous open source tools 

relevant for data scientists such as Spark, Kafka, Flink, Elastic, or Jupyter in one system. 

The two applications described in the article were realized as demonstrators on this big data 

analytics platform. 

12.1 Data Acquisition and Data Structure 

For data collection, an in-house developed data logger is used, which was implemented on 

the basis of a low-cost single-board computer (BeagleBone Black, comparable to a Rasp-

berry Pi). This data logger is connected to the on-board diagnostic interface (OBD) of a ve-

hicle and automatically starts data storage when the vehicle is started and operated. It auto-

matically ends data storage and shuts down when the engine is switched off. In addition to 

tapping classic vehicle data such as speed or rpm, the logger also contains additional sen-

sors for determining position and for recording rotation and acceleration. 

The raw data produced by the data logger is in tabular form and always contains exactly 

the measured value of a signal at any given time. In particular, several lines can describe 

different signals at the same time (Figure 53). In addition, the rate at which the values are 

acquired varies between the signals. Within a signal, this sampling rate is approximately 

constant, but smaller deviations are possible and common. Since the data logger can be 

mounted by the drivers at different positions in the vehicle, the coordinate system of the 

acceleration and rotation sensors of the data logger is basically not automatically aligned 

with the vehicle – the x-axis of the acceleration sensor, for example, does not have to be 

parallel to the x-axis of the vehicle. 

 

Figure 53 Structure of the raw data. (c.f. Kaiser et al., 2020a) 

In order to be able to use the data generated by the vehicle at all for the development of 

data-driven applications, an extensive data processing process is necessary, which is de-

scribed in the following sections. 
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12.2 Data Handling Process 

In order to extract the information required for the services from the data, three major steps 

must be taken: In data pre-processing, the data is prepared in such a way that meaningful 

further processing becomes possible. In the next step, relevant events such as strong accel-

eration, sharp braking or driving over a pothole are detected in the prepared data. In the last 

step, the actual analysis, the already calculated components are combined and displayed in 

interpretable visualizations. 

12.2.1 Data Pre-processing 

In this step, all signals are first scanned for outliers and these are removed. The signals of 

some sensors such as the acceleration sensor and the gyroscope contain a lot of noise and 

have to be smoothed. Additionally, the structure of the data is changed by giving each signal 

“its own” column. To make this possible, all signals have to be interpolated and sampled with 

a regular frequency. The result is again in tabular form, but now each row corresponds to 

exactly one point in time and the time interval between the rows is constant, for example 

0.1s / 10Hz (Figure 54). 

 

Figure 54 Structure of the pre-processed data. (c.f. Kaiser et al., 2020a) 

A particular challenge is the unknown position of the data logger in the vehicle. For a suc-

cessful data analysis it is essential to know the directions of the measured accelerations and 

rotations – but these directions depend on the unknown data logger position. The measure-

ments must therefore be “rotated” parallel to the coordinate axes of the vehicle (Figure 55). 

To do this, the authors determine the direction of travel, the road normal and the lateral 

direction from the measurements and calculate a rotation matrix from this. 
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Figure 55 Measurements shall be aligned with the coordinate axis of the vehicle. (Kaiser et al., 

2020a) 

12.2.2 Event Detection 

The data prepared in this way can now be searched for events relevant to the services. 

Different signals are relevant depending on the event type. All events are still post-pro-

cessed, for example, in order to combine events that are close together in time and are only 

separated by a short interruption into a single event. The detected events are linked with 

weather and position data, so that for each event the time and place of occurrence as well 

as the weather prevailing at that time is known. 

12.2.2.1 Potholes Events 

This type of event indicates that a pothole (or similar road damage) has been driven over. 

For detection, the acceleration normal to the road and the “nodding” of the vehicle (i.e. the 

rotation around its lateral axis) are considered. If the front tyres are in the pothole, the front 

of the vehicle is lower than the rear, if the rear tyres are in the pothole, it is the other way 

round. This results in a typical “pitching” movement which can be detected. 

12.2.2.2 Acceleration and braking events 

The signals of vehicle speed, acceleration in the direction of travel and rotation around the 

lateral axis (“nodding”) are particularly suitable for detecting strong acceleration and braking 

processes. The “pitching” is caused by the change in weight distribution when the speed 

changes: when accelerating, more weight moves to the rear axle – the rear drops and the 

front rises. When braking, the opposite is true. These movements can be detected. However, 
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since detection using only a single signal can be susceptible to errors, the authors always 

use several signals in the algorithm, which all have to deflect simultaneously to trigger de-

tection. 

12.2.2.3 Fast cornering events 

Fast cornering is characterized by high lateral acceleration. However, in order to use this 

information, one must first detect the curves themselves. For this purpose, an approximate 

curve radius at each point is calculated from the vehicle speed and lateral acceleration. With 

the help of this information, the curves themselves can be found and the fast cornering can 

be detected in further subsequent steps. 

12.2.3 Implementation 

The entire data processing process was implemented on a big-data platform that provides 

Apache Hadoop, Apache Spark and appropriate user interfaces, among others. All steps 

there can be executed fully automatically when new data arrives. Intermediate results are 

stored in separate datasets to enable use in other services or sharing with other users. Fig-

ure 56 shows an overview of the data processing chain. 

12.3 Applications 

By collecting, pre-processing and analyzing the data appropriately, applications can be cre-

ated that can support users from different domains and areas. The authors would like to pick 

out two examples. One is the detection of the driving behaviour of individual drivers, a use 

case that is intended to support individual drivers personally in the analysis of their own 

driving behaviour, and the other is the detection of potholes, which is of particular interest to 

infrastructure operators. 

12.3.1 Detection of Individual Driving Behaviour 

The driving style of motorists can be very different in many facets (e.g.: comfortable/fore-

sight/aggressive, gear choice, average distance and speed, attention, fatigue, etc.), and de-

pending on the type of vehicle (petrol, diesel, electric with and without recuperation, unladen 

weight, power) has a small or large influence on consumption, wear and tear and road safety. 

To illustrate this, the authors use all the events calculated in Section 12.2 and the information 

to which trip and to which driver they belong, to calculate a 'risk score' that indicates how 

safe a single trip was. The more safety-related events per trip (in relation to the track length), 

the lower the value. However, not only the number of safety-relevant events has an influ-

ence, but also the circumstances, especially the weather. For example, heavy braking 
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Figure 56 The data processing chain to identify, for example, heavy braking processes from raw 

vehicle data and display them in a visualization. (Kaiser et al., 2020a) 

 

in rain will result in a greater reduction in the value than the same braking on a dry road. 

The value itself is a statistical rank, for example a value of 56.72% means that this trip is 
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better than 56.72% of all trips in the database. In a map visualization (Figure 57), for exam-

ple, the driver is then shown all events of the trip with a marker. Blue markings correspond 

to strong accelerations, while red markings correspond to strong braking. 

 

Figure 57 Map visualization of a trip (left) and details of the trips of driver 1, for example the trip 

with trip_ID “Trip_069” is less risky than 56.72% of all trips (risk score). (Kaiser et al., 

2020a) 

12.3.2  Potholes Detection 

Roads also age, get asphalt cracks, holes, deform. In addition to the legal obligation of road 

maintenance by municipalities and cities (liability in the event of damage in the event of intent 

and gross negligence), one naturally also wants to offer the inhabitants and visitors of the 

municipality/city an adequate infrastructure. The city of Graz consumes approx. 25,000 tons 

of asphalt and 40,000 tons of frost-proof material per year and thus renovates 100,000 m² 

of roads annually (Gestrata, 2009). But how do you find out which roads are damaged to 

what degree and are in most urgent need of repair or renewal? A business enterprise of the 

city of Graz writes that in 2008 “90% of the road network was visually recorded with three 

own recording teams” and evaluated “according to a systemized damage catalogue” using 

the school grading system. This is where the problem already becomes apparent: such an 

analysis is costly, time-consuming, not completely objective and does not record all roads. 

This is where the second application case comes in, the automatic detection and display of 

potholes/road damage on a map. Specifically, the detected damages are displayed in a heat 

map – the color corresponds to the safety with which a pothole was detected (Figure 58). 

The data originate from several vehicles that are used privately in the Graz area. These 

were equipped with sensors by us: Thus, the authors have already achieved a high coverage 

of the inner city of Graz. Potholes are detected as an event, as described in subsection 

12.2.2, and stored together with GPS position, date and time. The greater the number of 

trips over the same section of road where a pothole is detected, the more serious the prob-

lem is. The map shows this as follows: Smaller problems are violet, medium problems are 
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green to yellow, and big problems are red. This can also be displayed as a table to compare 

the road condition on the basis of objective figures, even if the damping of the passenger 

compartment where the sensor is placed distorts the result a little. The individual problem 

areas can be communicated and repaired with pinpoint accuracy (as far as GPS accuracy 

allows). 

 

Figure 58 Heatmap of detected potholes/road damage in a part of Graz, Austria. (Kaiser et al., 

2020a) 

12.4 Conclusion 

The present chapter has shown how data generated by a vehicle via a data processing 

pipeline enables two interesting applications, the detection of the individual driving behavior 

of individual drivers and the aggregation of these data into a risk heatmap, as well as the 

detection of potholes in an urban road network and the visualization of the result in a 

heatmap. The article refers to the numerous challenges in data processing and shows pos-

sible solutions. 
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13. A Vehicle Telematics Service for Driving 

Style Detection: Implementation and Privacy 

Challenges 20 

Summary and Author Contribution 

Concepts and Prototypical Implementations along the VDVC 
(Paper 5/5) 

In this chapter it is shown how the authors have implemented individual components of 
the Vehicle Data Value Chain for a proof-of-concept. In line with the previous chapter, the 
concept of the data logger includes the possibility to set a privacy level. Therefore, this 
chapter also presents results of an empirical study on privacy, e.g. which data, for which 
services and under which circumstances the survey participants would log and provide 
the data.    

 

Here, I focused on two things: (i) to mention the privacy topic again in connection with 
vehicle data, as I consider this to be very important for acceptance among users, as well 
as (ii) the concrete implementation example to help interested software developers un-
derstand how they themselves can develop a service step by step (along the VDVC). 
Thereby, I was responsible for Section 13.1, I administered the implementation illustrated 
in the paper as task leader (project SCOTT), and I homogenized and revised the inputs 
of the co-authors. 

 

Increasing road safety is a major worldwide challenge. Though road safety in the EU has 

improved in the last decades, still more than 25.000 people have lost their lives on EU roads 

in 2017 (European Commission, 2018a). Harsh driving remains one of the major causes of 

accidents. A report from the NSTSCE (Camden et al., 2015) lists violating speed limits, ex-

cessive speed and lateral acceleration on curves, unplanned lane departures, frequent hard 

braking, close following distances, lateral encroachment, failure to yield at intersections, and 

general disobedience of the road rules as risky driving behavior. The NSTSCE report con-

tinues that a reduction in such risky driving should lead to a reduction in accidents and re-

lated deaths and injuries. Hence, making harsh and risky driving better visible to drivers and 

other stakeholders such as traffic planners or public authorities is a useful tool to develop 

better strategies for road safety improvement. In order to make it visible, vehicle telematics 

 

20  The content of this chapter is based on  

 Kaiser, C.; Stocker, A.; Festl, A.; Djokic Petrovic, M.; Papatheocharous, E.; Wallberg, A.; Ezquerro, 
G.; Ortigosa Orbe, J.; Szilagyi, T.; and Fellmann, M. (2020).  
A Vehicle Telematics Service for Driving Style Detection: Implementation and Privacy Challenges. In 
Proceedings of the 6th International Conference on Vehicle Technology and Intelligent Transport 
Systems - Volume 1 (VEHITS), ISBN 978-989-758-419-0, p.29-36. DOI: 10.5220/0009329400290036 
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data of so-called Quantified Vehicles (Stocker et al, 2017) provides the baseline of data 

needed for the analysis. However, in the current age of glass people, the road to total mon-

itoring, such as automated penalties, is not far away. Hence, privacy and trust are among 

research relevant topics in that field (Kaiser et al., 2018b) and must be achieved to get driv-

ers to join in. 

In the following sections, an empirical study on vehicle telematics data sharing is pre-

sented, which results into a preliminary model of the willingness to share data and five pri-

vacy levels that users would like to have to choose from. Although there is empirical evidence 

in the literature on actors of a service ecosystem (e.g. Kaiser at al., 2019b) and the value-

adding steps, descriptions of concrete implementations are still missing. Hence, an actual 

implementation of a vehicle telematics service is described afterwards, by outlining the re-

quired data acquisition, the data analytics process from data collection, the data computing 

in the cloud, and data use within an information system running on a smartphone developed 

along the steps of the so called Vehicle Data Value Chain (Kaiser et al., 2019a). The chapter 

concludes with a discussion of the results and their benefits to drivers and other stakeholders 

and a brief outlook. 

13.1 Empirical Study on Privacy in Vehicle Data Sharing 

For a long time, the industry was told that one would have large data treasures lying around 

if one only had to lift them. That this is not the case is shown by many practical examples 

where it is found that large amounts of data are available but not the right data to derive 

profitable findings. The situation is similar with vehicle telematics data: Exciting applications 

require big amounts of detailed data from a range of vehicles and drivers. Unfortunately, 

after several scandals in recent years where data was stolen or misused, many users lost 

their basic trust and are now more sensitive about who they give the data to. 

To investigate background in this field, the authors conducted a literature review and 

came up with the search string  

Data Sharing OR Data Sharing Theories AND  

(Automotive OR Automobile OR Vehicle OR  

Car OR Vehicle Data) 

which the authors applied to popular scientific search engines (SCOPUS, Google 

scholar, AISel) to identify 16 relevant results with data sharing theories. As a summary, the 
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majority of the 16 papers focus on technologies and application possibilities and give just 

little insights why someone would or would not share his driving data.  

In a next step, models and theories widely used for technology acceptance were inves-

tigated by the authors. However, neither the Technology Acceptance Model (e.g. TAM3) 

(Venkatesh and Bala, 2008), nor the three theories Unified Theory of Acceptance and Use 

of Technology (e.g. UTAUT2) (Venkatesh et al., 2012), the Theory of Reasoned Action 

(TRA) (Fishbein and Ajzen, 1975), or the Theory of Planned Behavior (TPB) (Ajzen, 1991) 

seem to fit ideally. In contrast, Ju and Mou (2018) show in their research model hypotheses 

that the willingness to disclose personal information depends not only on Controls, e.g. age 

or gender, which influence willingness, but also on the Costs and Rewards for disclosing 

privacy, an interesting approach.  

Based on the literature analysis, two of the authors compared their practical knowledge 

with the above-mentioned models and theories, and finally derived their own model, which 

is described in the following. 

13.1.1 A Data Sharing Willingness Model 

The authors found out, that the willingness to share vehicle data depends on the intended 

usage, which in turn depends on a mix of Benefits and Efforts, as visualized in Figure 59. 

Per intended usage, different benefits have a positive effect and can range from self-aware-

ness, optimization, rewards, image, comfort to predictive maintenance and thus tempt a po-

tential user to consider sharing vehicle telematics data for the intended usage. In contrast, 

per intended usage, different efforts have a negative effect, e.g. costs (acquisition), the tech-

nical effort for installation, ongoing expenses (operation, mobile phone costs), irritation 

through advertising/spam and lower privacy speak against a use. 

 

Figure 59 A preliminary model of the willingness to share data, e.g. vehicle telematics data. (Kai-

ser et al., 2020c) 

On this basis, the authors conducted an empirical online survey, which was distributed to 

members of the Faculty of Computer Science at the University of Rostock and to researchers 

at Virtual Vehicle Research GmbH. With the 42 survey participants, the authors tried to find 

out whether someone would pass on their vehicle telematics data, for which application 



A Vehicle Telematics Service for Driving Style Detection 215 

cases they would do so, and whether they would change this situationally, for example to 

block data transfer in certain periods of time. For the situational adaptation of the data trans-

fer, it was particularly interesting for us how many levels there should be here. Levels can 

range from, e.g. a binary level system that is either on or off, up to a fine-granular system 

with several levels which offer anonymization options and forwarding for selected service 

providers/services only. 

 

Figure 60 Empirical result: privacy levels for vehicle data sharing. (Szilágyi, 2019; Kaiser et al., 

2020c) 

13.1.2 Empirical Results 

Although the average of the 42 study participants proposed to provide four privacy levels 

(average 3.97, standard deviation 1.15) and described them, the two researchers who ana-

lyzed the results and synthesized the individual statements into the model shown in Figure 

60 detected five privacy levels, as only five levels include all viewpoints mentioned, namely 

contractual services vs. open services, anonymized data vs. not-anonymized data, private 

usage vs. public usage. However, if it has to be four levels, then the privacy levels Private 

Usage and Anonymized Usage can be merged, as this aspect has the lowest priority. The 

individual levels are described in the following. 

Level No Usage does not allow any collection or sharing of vehicle telematics data, and 

thus prevents any services. 
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Level Private Usage uses collected vehicle telematics data locally in the vehicle to cre-

ate e.g. statistics on driving behavior, which only the driver/owner can see in order to inter-

pret and optimize oneself. However, no data is shared with any third parties, thus no ser-

vices, other than installed services in the vehicle, can be used. 

Level Anonymized Usage includes the services installed in the vehicle, and additionally 

sends small amounts, e.g. statistics or histograms, of anonymized data to chosen third-party 

services. The driver can not be identified, due to anonymization, e.g. location data is not 

shared.  

Level Limited Usage is intended to optimize traffic for everybody, thus road specific 

data like traffic jams, potholes, accidents, slipping wheels, etc., is shared with other drivers 

on this road through a service. Hence, also a bigger amount of vehicle telematics data is 

shared, but still not all of them. and again, anonymized for third-party services. 

Level Public Usage does not restrict data transfer – all data will be shared using a 

proper sampling rate per signal (perhaps on demand). Third parties will be able to use this 

data without anonymization, e.g. to enable the comparison between friends or services which 

analyze regional differences in driving behavior. 

The survey participants also were asked to state, how interested they are in sharing their 

data for a particular domain, ranging from 1 (not likely) to 5 (very likely). In general, the 

survey participants’ willingness to share their vehicle telematics data for each domain (c.f. 

Table 22) were lower than in their interest. To summarize, the majority would provide data 

for traffic improvement and emergency services, while all the other mentioned domains 

would have to offer an individual added value (benefit) so that users give their data for it. 

Table 22 How willing are survey participants to share their data for a given set of domains. (Kaiser 

et al., 2020c) 

  m
or

e 
lik

el
y 


 m
or

e 
un

lik
el

y 

Domain 
Average  
(1 to 5) 

Standard 
deviation 

Community games 1.64 1.06 

Automobile club 1.86 1.18 

Pay as you drive insurance 2.02 1.33 

Services for drivers 2.74 1.43 

Vehicle improvement 2.86 1.41 

Public governance 2.86 1.39 

Weather detection 2.98 1.56 

Research (novel services) 3.29 1.49 

Traffic improvement 3.67 1.44 

Emergency services 4.00 1.40 
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Since different privacy levels lead to an increased effort for the service development if one 

offers a reduced solution for the privacy levels Private Usage, Anonymized Usage and Lim-

ited Usage, functionalities for setting privacy levels are difficult to find or not implemented at 

all in reality, although the customers would approve of this.  

Hence, in the following subsections of Section 13.2, the authors show how selected 

steps of an actual implementation approach of a vehicle telematics service for the driver can 

be done, and thereby reflect where and how privacy levels have to be taken into account. 

13.2 Vehicle Telematics Service Implementation 

In order to develop a smartphone application prototype which informs the driver about his 

recent driving style, several steps along a vehicle data value chain are involved and thus 

explained in the following subsections, to provide an overview of complexity and dependen-

cies. According to (Kaiser et al., 2019a), the value chain consists of the steps Data Genera-

tion, Data Acquisition, Data Pre-Processing, Data Analysis, Data Storage and Data Usage. 

In the following implementation example, the Vehicle Data Logger (Data Acquisition) 

collects data generated by vehicle sensors from the vehicle’s bus system via the OBD inter-

face and additional data generated from sensors at the logging device (Data Generation). A 

Cloud Platform receives the data and acts as temporary raw data storage and platform for 

data pre-processing and analysis (Data Pre-Processing and Data Analysis), e.g. use of an 

algorithm to detect harsh brake events. The processing results are then stored permanently 

(Data Storage) and provided to end users in a proper form (Data Usage), e.g. using a 

smartphone application. 

Privacy should play a role in data acquisition, so that only authorized data is collected. 

Per privacy level, different services are made possible with the data, meaning that individual 

data pre-processing and data analysis processes are needed per privacy level.  

In the service, the driver wants to learn about his driving style, e.g. get a score per trip 

which indicates if it was good (100), bad (0) or somewhere in-between, and wants to be able 

to check where events like harsh braking or harsh accelerating have been detected. While 

event detection and route recording can be done locally in the vehicle with a low privacy 

level, at least privacy level Anonymized Usage is needed to calculate the driving score, as 

in this case the amount of events are compared with the data from other drivers. 
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13.2.1 Vehicle Data Logger 

The first building block of this service is a data acquisition system, called vehicle data logger, 

which acts as gateway device to collect vehicle telematics data. The vehicle data logger is 

based on a BeagleBoard single platine computer featuring an additional “sensor cape” 

stacked onto it with GPS, rotation and acceleration sensors. The time-series data captured 

by the logger is stored on a MariaDB database on the logger. As soon as a connection is 

established via the mobile network, the logger can send captured data to the cloud platform. 

A rotary switch on the hardware device can be used to set the privacy level. To reduce the 

workload of mobile network connections and to increase the throughput, SenML data format 

is used for transmitting the data. SenML is a compromised data format especially developed 

for IoT device data. A TPM module is added via another stackable “cape” to provide encryp-

tion possibilities. A configuration file on the SD card can be used to configure database 

name, username, password, which sensors are recorded and the online API the data is sent 

to. A more detailed specification of the logger is provided in Papatheocharous et al. (2018) 

or Lechner et al. (2019).  

13.2.2 Cloud Platform 

The data logger described in the previous subsection sends data to a defined channel of a 

message broker, in this case a MQTT (Message Queuing Telemetry Transport) Broker. One 

of the MQTT listeners is triggered, parses and formats the data if needed and forwards it to 

a cloud platform hosted by the company RISE. The cloud platform aims to support the ex-

change of data between devices and accommodate the deployment of cloud computing ser-

vices. Connection between the cloud platform and devices occurs either directly or through 

a gateway. Any authorized smart device with connectivity can go through a gateway (a de-

vice or software designed for the purpose) to exchange data with the cloud platform. Devices 

may also choose to bypass the gateway and exchange data with the cloud platform directly. 

The data exchange can be carried out through MQTT or HTTP connections. 

The cloud platform offers telemetry ingestion (accepts data), stream processing (data 

flows are processed and converted to unified formats),  storage (data is stored in one or 

several databases), analytics (data is statistically and semantically analyzed to extract infor-

mation), machine learning (data is processed with machine learning algorithms to extract 

knowledge and intelligence),  visualization (data is depicted in meaningful charts and graphs 

to extract summarized information, generalizations, locate anomalies, etc.), lifecycle man-

agement (consists of supporting functions for the management of devices, such as software 
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updates or (re)configuration), state (consists of storing the state of devices at all given times), 

and, finally, apps (consist of extended applications and services that can extend the platform, 

and offer some additional functionality or end-user value). 

13.2.3 Cloud Computing Services 

Different types of cloud computing services can be deployed on the cloud platform. Foremost 

the solution provisions for edge and cloud computing services for safe and secure connected 

mobility applications. The services accommodate data ingestion, storage, processing and 

management. 

Data ingestion is made primarily through an MQTT broker, formatted as SenML JSON 

(Jennings et al., 2018). Use of the broker and the publish-subscribe pattern (Birman and 

Joseph, 1987) makes it possible for remote and external trusted partners to receive raw data, 

if necessary. Additionally, to increase trust in privacy, users should be able to listen to the 

defined channel (decrypted for them) to be able to check which data is sent. 

Data is stored through deployed databases, after any required preprocessing is carried 

out. Timescale (a module of PostgreSQL) for time-series data is used. Access to the data-

bases is encrypted with Transport Layer Security (TLS) and certificates from Let's Encrypt. 

Let's Encrypt (Internet Security Research Group (ISRG), 2019) is a certificate authority that 

provides free certificates for TLS encryption via an automated process. 

Management is accomplished through the use of several Docker (Merkel, 2014) tools, 

i.e., Engine, Compose, Swarm, Machine, and Machinery (Frécon, 2018). They offer efficient 

system architecture deployments for any type of cloud provider and provision for the daily 

operations of a number of containers and solutions necessary for the applications, such as 

data backup, restore and application supervision. 

13.2.4 Processing of Data 

Docker containers were set up in this prototype to process the data. Pre-processing and data 

analysis are dependent on the privacy level chosen, as each service has specific require-

ments for sampling rate or the need of position data. However, in this case, to inform the 

driver about his recent driving style, the two pre-processing steps (i) resampling and (ii) co-

ordination system alignment of vehicle and logging device start the processing, before algo-

rithms detect four event types (harsh brakes, harsh accelerations, standstills and potholes) 

in the data. Later, they are used to calculate an indicator how safe a driver’s trip was, com-

pared to other trips in the database.  
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Hence, the initial phase in the pre-processing of data is the resampling of the raw data, 

namely the measurement signals (e.g. acceleration, speed, GPS, etc.) which were recorded 

with individual sample rates on the data logging device. In data analytics this step is a chal-

lenge, as some measurement signals are recorded at irregular time intervals. For example, 

to receive data collected from the vehicles OBD interface, the Vehicle Data Logger is posting 

a request to the OBD interface. As the OBD device has low priority, while all other ECUs in 

the vehicle have a higher priority, it might happen that time intervals between two values for 

one signal type increase up to seconds. For each signal the recorded values must be inter-

polated/extrapolated using polynomial functions (e.g. natural splines), so there are no dis-

continuities in curves, and they are smooth. Hence, in this case a resampling of the signal 

values at the regular time interval of 10 Hz (1/10 sec) provides the data for the further anal-

ysis. 

The next pre-processing step is to align the coordinate system of sensor with coordinate 

system of the vehicle. It is usually unknown, how the Vehicle Data Logger was exactly 

mounted in the vehicle. Hence this is an important step to e.g. detect forward driving as 

forward driving if the logging device was mounted in the wrong direction, but also a few 

degrees shift would already make an impact in detecting i.e. hard accelerations and hard 

brakes. For solving this data analytics task, the following assumptions are adopted: the po-

sition of sensor is fixed during the trip and on average the vehicle Z-direction coincides with 

gravity vector, due to the fact that the vehicle drives horizontally. Then the following steps 

can be taken: identify Z-direction of the vehicle as direction of gravity, identify periods of 

deceleration and acceleration in the measurement using OBD data, identify driving direction 

as vector between the mean values for acceleration and deceleration, orthogonalize the driv-

ing direction and gravity vectors, compute vector in lateral direction as cross product of driv-

ing direction and gravity, compute rotation matrix from the driving direction, gravity and lat-

eral direction vectors and finally rotate accelerometer and gyroscope measurements. 

From the pre-processed measurement data, four different event types are extracted: 

brake, acceleration, standstill and pothole. Categorizing brake and accelerate events is 

based on the vehicle speed in combination with acceleration and deceleration values. Figure 

61 (right) shows a detected harsh acceleration event, where the driver accelerated from 

22.28 km/h to 37.28 km/h within five seconds. Identifying a pothole event is based on de-

tecting acceleration in Z direction and rotation around Y-axis (pitch). For example, both sig-

nals indicate short peaks at the beginning and the end of a pothole. 
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The safe driving score is based on statistical ranks. For each trip and each event type, 

event-rate per time unit is calculated (e.g. a trip has 0.1 hard brakes per hour). The trip-

event-score is also calculated as the percentage of trips with the lower event-rate, for the 

current event-type. The score for one trip, trip-score, is calculated as the mean of all trip-

event-scores for that trip. Finally, the driver-score is the latest value of the exponentially 

smoothed time series of trip-scores for that driver. The values for driver-score and trip-score 

are scaled from 0 to 100. Hence, a safe driving driver-score of 97 would mean, that this 

driver is currently better than 97% of all drivers in the database. A low safe driving score 

indicates a risky driver. 

The results of data processing can be obtained on trip level (trip meta-data like start time 

and end time, trip specific events with GPS location and meta-data, and a safe driving trip-

score), or on driver level (overall safe driving driver-score, summed up statistics like kilome-

ters driven or events for a requested time-period like last month). A PostgREST API takes 

data requests of authenticated users, and provides the data, e.g. for the smartphone appli-

cation described in the following subsection. 

13.2.5 Smartphone Application 

The Android Offline Trip Analyser (OTA) mobile application, will present to the users the 

information produced in the trips they conducted. The application collects the trip and event 

information from the PostgREST API. The purpose of the application is to present the user 

detailed information per trip with a focus on safe driving relevant events. 

Once a user is logged into the application, the user can switch between four menu items 

Home, History, Cars and Profile (c.f.Figure 61, left, on the bottom). 

The Home page, visualized in Figure 61 (left), visualizes a general summary and a sum-

mary of the events that have occurred during a selected time period, configurable with the 

filter on the right top, e.g. last day, last week, a specific selected timeframe or always. 

On the History page, users will find the history of their trips along with brief details, e.g. 

starting position, ending position, trip-score and privacy level per trip, sorted from the most 

recent to the oldest. Clicking a trip, if applicable, a sub-page on details of the individual trip 

is shown, including graph visualizations of the course of vehicle speed, RPM, etc., and an 

event overview of the trip per event type. The application user can also switch to a sub-page 

visualizing a map of the individual trip (c.f. Figure 61, right), to see the trip route on a map. 

Markers represent the detected events at the event location and allow interactive analysis of 
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the events, as a tooltip pops up on click providing detailed information, e.g. duration, start- 

and end-speed of the acceleration event in Figure 61. Hence, the user can zoom and navi-

gate through the map and click markers. Furthermore, below the map, four tables (one per 

event type:  brake, acceleration, standstill, pothole) list all event occurrences of the specific 

event type in this trip, to provide another viewpoint on the data. 

The SCOTT OTA aims to make it easier for the drivers to keep detailed control of trips, 

learn from it in order to improve their driving behavior. The safe driving score per trip gives 

a quick indicator and an objective evaluation of the driving style, while it is possible to analyze 

every event in detail as well if needed. 

  

Figure 61 Smartphone App for drivers: Home (left) and Trip Map (right). (Kaiser et al., 2020c) 

13.3 Conclusion and Outlook 

In this chapter, potentials and issues of vehicle telematics data sharing is investigated. 

Hence, the authors show a preliminary model of the willingness to share vehicle data, before 

the authors conduct an empirical study on the topic of privacy. Furthermore, the authors 

show how an actual implementation of a vehicle telematics service can look like, and where 

privacy has to be taken into account. 
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The results clearly show the single development steps along the vehicle data value 

chain, namely data collection, data computing in the cloud, and data use within an infor-

mation system running on a smartphone, to provide a safe and secure connected mobility 

smartphone application for drivers based on vehicle data. Furthermore, for every step a pri-

vacy-preserving way of a vehicle telematics service is discussed.  

While the potential of data-driven connected mobility services as well as the potential of 

driver statistic services is already proven by literature (Kaiser et al., 2018b) and a bunch of 

start-ups operating in this field (Kaiser et al., 2017b), this chapter misses a structured litera-

ture analysis for that topic, which is a clear limitation. Furthermore, the presented results, 

the data collection, the computing in the cloud and the secure connected mobility 

smartphone application need to be evaluated for scalability, to prove if hundreds of users 

can use it simultaneously. 

As an outlook, the mentioned privacy issues to be tackled, which are now discussed in 

each implementation step, will be implemented to evaluate this as well. 

 



224 Understanding Data-driven Service Ecosystems 

14. Understanding Data-driven Service Ecosys-

tems in the Automotive Domain 21 

Summary and Author Contribution 

Analysis of Data-driven Service Ecosystems 
(Paper 1/2) 

Vehicle data-driven services are becoming increasingly relevant, but still little is known 
about the actors involved. This chapter examines the ecosystem transformed by the emer-
gence of vehicle data-driven services. To improve the understanding, it analyses both the 
actors and the role of vehicle sensor data from an ecosystem perspective. Based on a 
literature analysis, results from expert interviews are used for the examination. Eleven 
experts are involved in the latter, including representatives of service providers, authori-
ties, data market providers, research institutions and vehicle manufacturers. By combining 
both results relevant actors in the ecosystem as well as their relationships, data flows and 
services are gained. Results thus provide a fundamental understanding of data-driven 
service ecosystems in the automotive domain and form the basis for future IS research 
on (big) data flows and analytics within such ecosystems. 

 

In this paper, I wanted to demonstrate in one of the most important IS conferences 
that Data-driven Service Ecosystems are not sufficiently researche, and that even domain 
experts have different views on what the ecosystem currently looks like, what makes it 
difficult for new actors (e.g. ICT companies) to participate. To do this, I analyzed related 
work, conducted eleven expert interviews, and synthesized a high-level model for data-
driven service ecosystems and a detailed data ecosystem model from the results to in-
crease understanding about the emergence of Data-driven Services. The interviews also 
revealed the dilemma that vehicle manufacturers do not want to/are not able to develop 
the services themselves, but also find it difficult to give external service providers access 
to the data. 

 

Digital innovation, digitization and digital transformation are on everyone's lips today. Both 

leading business analysts and strategy consultants such as Accenture (2016), Bain (2017), 

Deloitte (2017), KPMG (2017; 2018), and McKinsey (2016; 2017) and researchers (Kessler 

and Buck, 2016; Mikusz and Herter, 2016; Kohl et al., 2017; Mocker and Fonstad, 2017b) 

report on the increasing digitization of the automotive industry. In addition to the importance 

of current technological trends in shaping the automotive future, such as autonomous driving 

(Kung and Lin 2018), connected vehicles (Gerloff and Cleophas, 2017), intelligent manufac-

turing and maintenance (Laubis et al., 2016; Gerloff and Cleophas, 2017), blockchain (Kaiser 

 

21  The content of this chapter is based on  

 Kaiser, C., Stocker, A., Fellmann, M., (2019). Understanding Data-driven Service Ecosystems in the 
Automotive Domain. In Proceedings of 25th Americas Conference on Information Systems (AMCIS 
2019). 
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et al., 2019), and big data analytics (Dremel et al., 2017b), analysts are increasingly focusing 

on new relationships within digital ecosystems. 

Coined by ecologists, the ‘ecosystem’ term has been taken up in literature on economics 

(Pilinkienė and Mačiulis, 2014) and seems to have gained some attention in the IS commu-

nity over the last few years (Nischak et al., 2017; Ceccagnoli et al., 2012), too. In recent 

decades, both hardware-based platforms, such as PCs, mobile computing systems, and 

video game consoles, and software-based platforms, such as smartphone app stores and 

online marketplaces, have become increasingly important with regard to the creation of eco-

systems (Evans et al., 2006). However, many traditional organizations do still not think in 

terms of ecosystems. Instead they are thinking of participating in or even controlling a linear 

value chain (Weill and Woerner, 2015). In contrast, there are ecosystem drivers such as 

Amazon, Apple or Google, which provide platform technology to other participants to enable 

new business opportunities. In such platform ecosystems, technology owners co-create 

business value with other organizations that use their platform (Ceggagnoli et al., 2012). In 

the automotive domain, vehicles, too, can be understood as a platform technology. This way, 

vehicle manufacturers can build ecosystems together with other stakeholders, e.g. actors 

from information technology (Riasanow, 2017). Following this analogy further, vehicle man-

ufacturers could even promote the creation of platform ecosystems. As an example of an 

ecosystem in the automotive domain, Vaia et al. (2012) present a case of one of the largest 

Italian motor insurers together with a system integrator for telematics-based insurance.  

However, vehicles do not only establish platforms, but, as computers on wheels, they 

also generate valuable data (Stocker et al., 2017a). Vehicle data are the main source of 

data-driven service ecosystems as they can be linked to other data sources to enable inno-

vative uses. As an example, the technology startup Automatic (Automatic, 2018) has begun 

to establish a data-driven service ecosystem based on its core technologies. Automatic ac-

quires a limited set of vehicle sensor data using a branded (external) gateway device (in this 

case, an OBD dongle) connected to a vehicle’s on-board diagnostics (OBD) interface. This 

enables the synchronization of driving data with a connected smartphone, allowing the driver 

to keep track of driving behavior via the Automatic smartphone app. On the way to an Auto-

matic data-driven service ecosystem, third-party apps that also use the vehicle data captured 

by OBD dongles from Automatic have been developed for the Automatic platform (Auto-

matic, 2018). Third-party applications in this ecosystem include, for example, the creation of 

invoices based on mileage (FreshBooks, 2018), vehicle cost management (Xero, 2018), and 
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management of track earnings and warnings during ride sharing (SherpaShare, 2018). The 

Automatic example shows the potential of data-driven service ecosystems in the automotive 

sector. 

The ecosystem concept seems to be useful to better understand current and future re-

lationships between actors and services. However, it has rarely been applied in the automo-

tive domain as a tool for understanding data and value flows and cooperation between dif-

ferent actors. Furthermore, the concept of data-driven service ecosystems in the context of 

automotive innovation has not been considered very relevant in IS-related literature. In line 

with the research agenda for Vehicle Information Systems (Kaiser et al., 2018b), the authors 

have formulated the following research question: What are data-driven service ecosystems 

in the automotive domain and what are their actors and value flows? To answer this research 

question, the authors have conducted an analysis of IS literature to better understand the 

concept of ‘ecosystems’ in general. In a second step, the authors derived a preliminary 

model of an ecosystem with actors, value flows and services from the literature to understand 

the genesis of data-driven service ecosystems in the automotive domain. The authors finally 

discussed this model and elaborated it using knowledge of eleven experts in an expert inter-

view study.  

In the remainder of this chapter, the authors begin by explaining the ecosystem concept 

and how it can be applied to the automotive sector. This is followed by findings, including a 

list of actors, services, a high-level model of the data-driven service ecosystem and detailed 

views on the underlying data and service ecosystems as described in detail in Section 14.2. 

The results show that the ecosystem concept is suitable to understand the challenges of 

data-driven service ecosystems in the automotive domain. 

14.1 The Ecosystem Concept and Related Work 

Since the goal of the chapter is to shed light on the components and relations that form data-

driven service ecosystems, the authors first present related work on ecosystems that aims 

to further explain and clarify the ecosystem concept in the automotive domain. The authors 

then refer to related streams of research that address important aspects of such ecosystems. 

In general, the concept of an ecosystem is inspired by natural ecosystems, where it de-

scribes the relationships and interactions between living organisms and their environment 

(Schulze et al., 2005). The concept of ecosystems has been transferred as an analogy to 

various scientific disciplines, including Social Sciences, Computer Science and Natural Sci-

ence (Briscoe and De Wilde 2006). In order to delineate artificial ecosystems from natural 
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ecosystems, some authors add further attributes to the term to qualify it, e.g. software eco-

systems, business ecosystems or digital service ecosystems (Immonen et al., 2015). How-

ever, a commonly agreed definition of the term does not yet exist. With this in mind, Nischak 

et al. (2017) conducted an analysis of peer-reviewed articles on ecosystems and information 

systems that introduced the ecosystem concept based on how it was originally used by biol-

ogists. The authors emphasize that three components are essential elements of digital busi-

ness ecosystems, namely Value Exchange (innovation, information, products/services), Re-

sources (digital and non-digital) and Actors (organizations, individuals, societies). This defi-

nition can easily be adapted and specialized to data-driven service ecosystems in the auto-

motive domain (cf. Figure 62, the two leftmost ecosystems are depicted according to Nischak 

et al. (2017)). 

 

Figure 62 Biological, Digital Business and Data-Driven Service Ecosystem. (Kaiser et al., 2019b) 

Similar to a Digital Business Ecosystem, a Data-driven Service Ecosystem in the automotive 

domain contains Actors (e.g. car manufacturers, vehicle data service providers, etc.). These 

actors have access to resources which, in the case of a data-driven ecosystem in the auto-

motive domain, are Data and Infrastructure for generating, transmitting and storing data (e.g. 

vehicle sensor data, road condition data, etc.). With these resources, the actors participate 

in value exchange by providing or consuming Services (e.g. data-driven services for vehicle 

maintenance, short-term traffic management, etc.).  

In general, the concept of service ecosystems is often defined in literature as “relatively 

self-contained, self-adjusting systems of resource-integrating actors connected by shared 

institutional logics and mutual value creation through service exchange” (Akaka et al., 2012; 

Lusch and Nambisan, 2015). Despite these works on service ecosystems that also involve 
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data-driven services, research concerning data-driven service ecosystems in the automotive 

domain is still scarce: The query  

(automotive OR vehicle OR car) AND (digital service 

ecosystem OR data-driven service ecosystem) 

executed on Google Scholar produced 22 results (Nov. 2018), but after looking at the 

title and abstract, the authors concluded that no research work sufficiently addressed service 

ecosystems in the automotive domain.  Consequently, and to the best of the authors’ 

knowledge, no research work explicitly addresses data-driven service ecosystems in the 

automotive domain. However, further related research can be found for smaller sub-systems 

of such an ecosystem. First, the combination of Data and Infrastructure with Services is 

subject of many research works that analyze how vehicle sensor data can be aggregated 

and combined with other data to create meaningful information services along a big data 

value chain for vehicle data (Kaiser et al., 2018a; Kaiser et al., 2018b). Second, the interplay 

of Services and Actors has been extensively investigated in the fields of Value Networks 

(Pagani 2013) and, more recently, Service Science, where the theory of the Service-Domi-

nant Logic (S-D Logic) is of central importance (Vargo and Lusch, 2004). The theory implies 

that almost any product can be interpreted as a service, meaning that the physical compo-

nent is no longer the most important aspect.  

To sum up, the identified research streams emphasize either technical or business as-

pects but do not investigate the interrelationships and interdependencies between data, ser-

vices and actors in an integrated way. Furthermore, a systematic account of which actors 

are involved in which service and which data they can access is still missing. The authors 

close this gap by identifying relevant actors and their relationships, data flows and services. 

In doing so, the authors apply the perspective of automotive data-driven service ecosystems. 

14.2 Data-driven Service Ecosystems in the Automotive 

Domain 

14.2.1 Data Collection and Analysis 

After analyzing the relevant literature on ecosystems, the authors designed a model for data-

driven service ecosystems in the automotive domain, which the authors used as the main 

input for an expert interview study involving eleven experts in data-driven services from large 

industries (e.g. automotive manufacturers), small and medium enterprises (e.g. data-driven 
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startups) and research entities. Figure 63 lists background information on experts, e.g. ex-

pert 1 is involved in the standardization of Vehicle-to-Infrastructure (V2I) communication and 

acts as a representative in international committees in the automotive domain. Expert 2 leads 

a computer science degree program focusing on the automotive sector and deals with data-

driven services. Expert 7 leads a project to develop and launch a data marketplace, where 

the provision of vehicle data for data-driven services is a major issue, while expert 9 leads 

an automotive engineering company that develops hardware and software components for 

vehicle manufacturers dealing with vehicle sensor data. In summary, each individual expert 

has a strong background in data-driven services in the automotive domain. 

The authors had several meetings with these experts, either in person or virtually. The 

authors asked each of them for qualitative input on relevant actors and their influences, and 

on value flows between actors, and for feedback on the originally developed graphical eco-

system model. Semi-structured interviews, each lasting about 90 minutes, started with a set 

of questions about their background, i.e. their general professional experience and expertise 

area. The experts were asked to provide a comprehensive description of one data-driven 

service in the automotive domain they know of. Finally, they were requested to think five 

years into the future and briefly describe the changes they see. All interviews were tran-

scribed, apart from three cases where audio recording was not allowed, which is common in 

the automotive sector for confidentiality reasons. 

 

Figure 63 Background information on the expert interview study participants. (Kaiser et al., 2019b) 

The results of the expert interview study were graphical sketches of eleven models of actors 

and value flows in a data-driven service ecosystem and qualitative statements on coopera-

tion within the ecosystem. While some experts even outlined their own views on paper, oth-

ers provided stories about such an ecosystem. Some experts mentioned very concrete, data-

driven services and how they create value, while others remained on a higher level. Further 

Expert 
No. Type of Actor Personal Expertise w.r.t. 

data-driven services in the automotive domain
Work Exp. 

[years]
Expertise 

Level [1-5]
1 Public Authority representative in international committees 22 NC
2 Research Organization leader of computer science degree program 24 2-3
3 Research Organization researcher involved in vehicle data analytics projects 8 2
4 Research Organization researcher involved in projects with vehicle manufact. 4 3
5 Vehicle Data Service Provider senior manager of data-driven service provision 13 2
6 Public Authority representative in international committees 25 NC
7 Data Marketplace Provider leader of a data marketplace development 20 2
8 Vehicle Data Service Developer consultant involved in projects with public authorities 6 3
9 Engineering Service Provider owner of engineering service company 23 1-2

10 Vehicle Data Service Provider developer involved in data-driven service provision 4 2
11 Vehicle Manufacturer head of a data service department 18 1
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results were related to a graphical model of the Data-driven Service Ecosystem designed by 

us and shown to the experts, which gave feedback.  

The data generated in the expert interview study were analyzed by two different re-

searchers in a one-day workshop. The input for this workshop were the individual experts’ 

views on the ecosystem. In order to bring together eleven individual views of experts into a 

unified model, the researchers had to put themselves in the shoes of the experts and try to 

understand their specific points of view. This also included the coordination of actors (if pos-

sible) and the search for neutralized names for actors. At first, both researchers individually 

attempted to generalize eleven models into one model for data-driven service ecosystems. 

They then discussed their results with each other before defining the generalized model 

shown in Figure 65. They assessed whether all eleven expert opinions were adequately 

reflected in their generalized model, especially by assigning actors and services to the model 

referred to by the experts. A suitable graphical ecosystem model would make it possible to 

map common data-driven services, identify typical relationships and data flows between 

stakeholders or even identify services that have too many service providers or are monopo-

lies. The main result of this design process is a graphical ecosystem model consisting of two 

interconnected parts to increase readability and usefulness: The first part is a graphical 

model that relates to the perspective of data acquisition, sharing, and provision, which is 

similar for all services. The second part focuses on service development, provision, and 

consumption: The service (something of value) offered by a provider can vary per consumer, 

making graphical visualization difficult. Each actor’s relevance with regard to offering or con-

suming a data-driven service, as illustrated in the second part of the model, was derived 

from study statements that were aligned with the literature.  

14.2.2 A Model for Data-driven Service Ecosystems 

The first result of this chapter, as shown in Figure 64, is a summary of the relevant actors in 

the ecosystem, derived from the individual views of experts on ecosystems. In order to obtain 

a holistic ecosystem model with actors from different categories, the authors have not limited 

the type of actor to a single category (e.g. service providers). Instead, the authors included 

all the actors mentioned by the experts, while in some cases, two or more actors were 

aligned to one actor, which was then represented by a more general term. For example, 

cloud platform provider, database hosting provider, and web space provider were grouped 

under the term backend service provider; data marketplace, private data platform, public 

data platform, automotive data platform were summarized under the term data marketplace 
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provider; decision taker, EU/EC, and national regulation were summarized under the term 

public authority. In total, the 17 resulting and neutralized actors named by the experts are 

shown in Figure 64. For example, expert #1 mentioned six actors including vehicle data 

service provider, vehicle manufacturer, etc., as shown by an ‘x’ in the matrix. The two right-

most columns indicate whether the actor is included in the sub-parts of the high-level model 

as introduced later in Figure 65-Figure 67. 

A definition was created for all actors to provide a solid basis for discussion. As an ex-

ample, the backend service provider, e.g. aws.amazon.com, is defined as a company offer-

ing IT infrastructure services (e.g. servers, a cloud platform, databases management and 

hosting, load balancing, etc.), while the data intermediary, e.g. the company HERE owned 

by the vehicle manufacturers Audi, BMW and Daimler, is defined as a data aggregator with 

special relationships to vehicle manufacturers, uses data from various sources, aggregates 

it and provides it to contractual partners. 

 

Figure 64 Ranking of actors in data-driven service ecosystem based on expert interviews. (Kaiser 

et al., 2019b) 

In a next step, a high-level, generalized model of actors in a data-driven service ecosystem 

in the automotive domain was designed based on the contributions of the eleven experts, 

shown in Figure 65. This model consists of three main elements, the Data Ecosystem, which 

encapsulates actors and data flows (focusing on sensor data from the vehicle only, therefore 

no data input from drivers such as age or sex is taken into account), the Service Ecosystem, 

which encapsulates actors, service provision, and consumption activities, and finally the two 

major external influencing factors as indicated by the experts, the public authority with all 

regulations and the Technical Infrastructure Providers, which form the baseline for data-

driven services. 

                                                                        Expert Number

          Actor Name
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11

Ment

ions

Vehicle Data Service Provider x x x x x x x x x 9 yes yes
Vehicle Manufacturer x x x x x x x x x 9 yes yes
Marketplace Provider x x x x x x x x 8 yes

Road User (vehicle driver, biker, public transport user) x x x x x x x x 8 yes yes
Public Authority x x x x x x 6 yes
Technical Infrastructure Provider (e.g. telecommunication provider) x x x x x 5
Backend Service Provider x x x x x 5
Vehicle Hardware/Software Supplier, (external) Gateway Provider x x x x x 5 yes yes
Data Intermediary x x x 3 yes yes
Fleet Operator x x x 3 yes

Road Operator x x x 3 yes
Vehicle Owner x x x 3 yes
Workshop Operator x x x 3 yes
Traffic Manager / Operator x x 2 yes

Automobile Club x 1 yes
Research Organization x 1 yes
Insurance Company x 1 yes

Participant 
in  Service 
Ecosystem

Participant 
in  Data 

Ecosystem
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To shed more light on the perspective of the Data Ecosystem (the light blue area in 

Figure 65), the more detailed model in Figure 66 outlines actors and data flows between 

actors. It is assumed that every data flow in one direction generates a backflow in the form 

of money or another tangible or intangible asset to ultimately maintain a business relation-

ship. For the sake of simplicity, only data flows are visualized in the model. The basic idea 

is that a set of data transformations on different sources and a provision mechanism across 

different actors are required to finally enable a service development cycles process. 

 

Figure 65 High-level model of data-driven service ecosystems in the automotive domain. (Kaiser 

et al., 2019b) 

First, the vehicle data are collected from a vehicle controlled by a driver (actor: road user) 

before they are transferred, either directly to a vehicle manufacturer, or via an external gate-

way provider to a marketplace provider or to a vehicle data service provider. The vehicle 

manufacturer can transfer all data (or selected data points) to a data intermediary, a market-

place provider or directly to a provider of a data-driven service. The marketplace provider 

can transfer data to a data intermediary, a service developer, or even a vehicle data service 

provider. A service provider can use five different data sources to establish a data-driven 

service (#1 to #5 in Figure 66) from a data intermediary, a vehicle manufacturer, a market-

place provider, a vehicle data service provider (e.g. Automatic), or an external data source 

provider (e.g. a weather data provider). The graph shows that if there is no data interface in 

the vehicle for external gateway providers to use (e.g. no OBD interface), the vehicle manu-

facturer will have a dominant position in the ecosystem and thus data acquisition is con-

tested. This is supported by the expert statements. Expert 6, for example, says that “OBD 

dongles are for vehicle manufacturers like a red rag for a bull”.  Expert 9 states that “startups 

are more like groundbreaking shooting stars that will disappear when big players come onto 

the market”, while expert 3 argues that “all international public authorities should unite at 
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least on European level to create a reasonable counterweight to vehicle manufacturers and 

data-intermediaries”.  

 

Figure 66 Detailed model of the underlying data ecosystem with actors and data flows. (Kaiser et 

al., 2019b) 

However, vehicle manufacturers have the feeling that they are not in the best position, as 

illustrated by expert 11, who complains about the “issue of long development cycles”, mean-

ing that “if it is not foreseen/enabled already today in the development of the vehicle to share 

specific data, then it will not be possible until about 2025 to have it present in a vehicle on 

the street”,. Expert 1 adds that there is “sensor raw data in the vehicle, which will never leave 

the vehicle, not even to be transferred to the vehicle manufacturer”.  

The Service Ecosystem part (the light green area in Figure 65) highlights five services 

that were mentioned by more than one expert during the expert interview study and were 

also included in the related literature that was analyzed (e.g. Dremel et al. 2017b; Brandt 

2013), namely maintenance for vehicles and roads, short term traffic management, quanti-

fied vehicle information service, and automotive product improvement. Expert 3, for instance, 

states that “traffic planning and management, road operation companies and infrastructure 

providers will realize the value of vehicle data sooner or later”. Other services mentioned 

only once are excluded from the next figure. These additional services include long-term 

traffic management, autonomous driving functionalities, tutoring, safety and collision avoid-

ance, vehicle monitoring (e.g. in critical areas), and navigation. It should be noted that inter-

view participants were asked to name and describe a prominent service they knew, rather 

than listing all the service ideas that came to mind. The authors did this because capturing 

the full range of services was less important since the main objective was to identify the 

actors and connections between actors in data-driven services, which is a prerequisite for 

understanding the underlying ecosystem in the automotive domain.  
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The first column of Figure 67 shows possible relationships between actors who provide 

a service (left part) or consume a service (right part) and can be read as follows: Data-driven 

services that are offered, such as vehicle maintenance, are displayed in the table header. If 

an actor decides to offer a service, the IDs of possible service consumers are listed in the 

table cell: For example, actor ID 1 automobile club can offer a data-driven service for vehicle 

maintenance (e.g. statistics on known problems of a certain vehicle type) to actor IDs 4, 5, 

6, (7), and 9. If there is no actor ID listed in the table cell, the respective actor may not be 

able to offer this service. Actors, e.g. automobile clubs and vehicle manufacturers may ad-

dress different customers, which is why the cells of their table rows contain different actor 

IDs. If it is not clear whether an actor is a targeted consumer, the actor ID is placed in brack-

ets, e.g. “(7)”. The shading of the color of the table cell indicates the relevance of an actor 

for providing a service (each ID is counted as a full point, each ID in brackets as 0.2 points 

for calculating the color tone) and shows actors who play a major or minor role per service 

in the ecosystem. Based on results on the left side, the information about which actor can 

consume a service is presented in the right part of Figure 67 (three columns are cut off due 

to space constraints), revealing the targeted consumers of a specific service. For example, 

a fleet operator (ID 5) can consume a data-driven vehicle maintenance service from actors 

with the ID 1, 2, 3, 7, (10), and (11). The darker the background color of the table cells, the 

more relevant an actor is as a consumer of services offered by other actors. All actors in the 

data ecosystem part can also be actors in the service ecosystem part as service consumers, 

e.g. a vehicle manufacturer, a data intermediary, an (external) gateway provider, etc. can 

use services provided by external service providers as input for their own purposes. 
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Figure 67 Selected services and actors offering/consuming them (figure truncated). (Kaiser et al., 

2019b) 

14.3 Discussion 

The automotive industry is undergoing a digital transformation, from selling vehicles and the 

provision of related services to the provision of new data-driven services. However, new 

actors entering the automotive sector are colliding with established players, creating new 

ecosystems. Expert 8 argues that “there will be a shift towards a sharing economy” with a 

broad range of new players and mobility services challenging the traditional business models 

of car manufacturers. However, the question raised by expert 10 about “how many service 

providers will be able to find services monetizable to all”, will remain unanswered. 

Our results show that the provision of services (left part of Figure 67) is very competitive 

in most cases, e.g. a data-driven service for vehicle maintenance is provided by four different 

actors (automobile clubs, data intermediaries, vehicle data service providers, and research 

organizations) which in some cases indicates an overlapping consumer audience (e.g. actor 

5 – fleet operators). Figure 67 allows interested parties to participate in the ecosystem to 

explore service issues and make better-informed decisions about service development and 

investments. An improved version of this figure, including additional (and, ideally, all possi-

ble) services, should be regularly updated by public authorities to detect market anomalies 

such as monopolies. Surprisingly, vehicle manufacturers and data intermediaries are key 

actors with regard to providing vehicle data, but not the main actors with regard to data-

driven service provision. According to the expert’s inputs, this role is covered best by vehicle 

data service providers. In a more detailed view, actors such as road operators, traffic man-

agers/operators, or automobile clubs can also play an important role in offering data-driven 
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services. With regard to consuming data-driven services (see right part of Figure 67) road 

users, fleet operators, public authorities, road operators, traffic managers/operators, vehicle 

manufacturers and vehicle owners are the target group and thus relevant actors. Workshops 

only consume certain services, while insurance companies and engineering service provid-

ers are not regarded as consumers of any of the five examined data-driven services.   

By combining the results of a literature review with data from eleven expert interviews, 

the authors have gained a basic understanding of data-driven service ecosystems. The main 

result of this chapter is a model of such ecosystems including stakeholders (actors), data 

and infrastructure (resources) and data-driven services (value exchange) that helps to un-

derstand emerging business relationships. The model consists of two interconnected parts 

– the data ecosystem and the service ecosystem. The data ecosystem shows that the vehi-

cle manufacturer is a critical actor with regard to data collection as vehicle measurements 

can only be retrieved from an external gateway provider or a vehicle manufacturer. If a ve-

hicle manufacturer does not grant direct access to the vehicle data via an interface, data-

driven service developers must negotiate directly with the vehicle manufacturer to gain ac-

cess. This allows manufacturers to control data-driven services without regulation. “Granting 

others access to vehicle data via the OBD interface is a safety risk”, as expert 11 indicates.  

Controversial statements about the cooperation dilemma between vehicle manufactur-

ers and vehicle data service providers were made. Expert 5, CEO of a vehicle data service 

provider, states that “vehicle manufacturers are currently not doing the services on their own, 

they look for service providers, as they don't have the hardware and the resources”, while 

expert 4, a researcher cooperating with vehicle manufacturers, argues that “vehicle manu-

facturers find it difficult to give third parties access to vehicle sensors on deeper levels”, 

meaning that “vehicle manufacturers will highly regulate the ecosystem. [The ecosystem] will 

not be as open as other ecosystems we know from the B2C area. Partners will be chosen 

carefully preferring trusted long-term partners”. According to expert 9, it is challenging for 

third parties to obtain data from vehicle manufacturers, as “we have been discussing with 

OEMs [vehicle manufacturers] to get access to data for years, not yet a success, although 

they seem interested”. In the service ecosystem part of the model, the authors indicate which 

services can be provided or consumed by which actors. The authors focus on five main 

services only, which is another limitation of this research.   
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14.4 Conclusion and Outlook 

In this chapter, relevant actors, relationships, and data flows in a data-driven service eco-

system in the automotive domain are presented. A relevant aspect of this research is how 

such ecosystems emerge and how vehicle data enable new services. To improve under-

standing, the authors reviewed the literature on the ecosystem concept and enriched the 

results with a subsequent expert interview study. The fact that the authors only interviewed 

eleven experts is a limitation of this research. In order to investigate ecosystem mechanisms 

in the automotive domain, further studies are needed to determine the ability of two or more 

actors to cooperate when providing a service, e.g. how likely is it that a vehicle manufacturer 

(in collaboration with other stakeholders) will provide a data-driven vehicle maintenance ser-

vice to a fleet operator? In line with further literature analysis, the authors want to show how 

external factors such as standardization, data protection, autonomous driving, or taxation 

can influence the ecosystem and the willingness of an actor to participate. 
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15. Conceptualizing Value Creation in Data-

driven Services: The Case of Vehicle Data 22 

Summary and Author Contribution 

Analysis of Data-driven Service Ecosystems 
(Paper 2/2) 

The digitalization of the automotive industry brings fundamental changes to how value is 
created and by whom. As part of this transformation, the creation of data-driven services 
generates new value streams, thus leading to the emergence of new actors and ultimately, 
new market configurations. Eventually, vehicle data paves the way for new types of data-
driven services. This chapter aims to provide a (multi-actor) model suitable to support 
academics and practitioners in the identification of the actors that will play a key role in 
data-driven service generation and resources involved in value creation processes. Based 
on interviews with eleven prominent experts of the central European automotive industry, 
a conceptual model that connects these key actors with value-adding data sharing pro-
cesses is developed. To validate the model, it is applied to a real-life case: the design of 
a data-driven service for road surface quality detection. Furthermore, the model’s implica-
tions to both theory and practice are discussed. 

 

With this journal paper in the highly-ranked Journal of Information Management (Im-
pact factor 8.21 in February 2021) I wanted to address the research gap that key concepts 
and relations regarding data-driven value creation are insufficiently explored today, as the 
authors observe it in the research on vehicle data-driven services. Guided by the design-
science paradigm, together with the co-authors I conducted a literature review to set the 
context in the relevance cycle; a participatory approach to build a practice-based, concep-
tual model, capturing the individual views of eleven experts from the automotive domain 
on the ecosystem in the design cycle; and a conceptual validation by applying our model 
to an application case in the rigour cycle. In particular, I conducted all interviews of the 
eleven experts, and developed the conceptual model and validated the model together 
with the second author. As a result, our identification of the most relevant ecosystem ac-
tors provides the foundation for better understanding their data sharing relationships and 
interdependencies. The model connects actors to particular steps within the data value 
creation process and describes a data value chain to generate useful insights from vehicle 
data. Such a model might help organizations that choose to become part of the automotive 
ecosystem to better understand their role, relationships, and opportunities for Data-driven 
Service provision. 
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The ongoing transition towards a digitalised world also affects primarily physical industries 

(Hanelt et al., 2015). Due to its long tradition in catering to a basic human need – mobility, 

the automotive domain stands out in particular (Piccinini et al., 2015). Traditionally, busi-

nesses within the automotive domain were geared towards offering goods (e.g. selling man-

ufactured vehicles as the main product) and product-related services (e.g. selling spare parts 

and conducting maintenance work). However, digitalisation has led the automotive industry 

to think differently, as vehicles become increasingly connected and capture a lot of data 

about themselves and their environment (Swan, 2013; Swan, 2015). This captured vehicle 

data eventually paves the way for new types of data-driven services (Pillmann et al., 2017; 

De Winter et al., 2019; Bridgelall et al., 2018; Pütz et al., 2019). 

Consequently, vehicles are increasingly becoming part of an automotive ecosystem that 

includes not only drivers and passengers but also other road users, vehicle manufacturers 

or service developers. Connected vehicles enable the possibility to develop data-driven ser-

vices such as remote vehicle diagnostics or interactive trip analytics (Papatheocharous et 

al., 2018; Kuschel, 2008). Thus, the digital transformation offers new players outside the 

automotive sector the opportunity to enter this traditionally closed ecosystem (Athanasopou-

lou et al., 2016). Among those, we find major companies like Tesla, Google, or Apple (Witt-

mann, 2017) and start-ups like vin.li and Zendrive.com who create data-driven services re-

lated to digital asset tracking, vehicle health or driving safety (Stocker et al., 2017a). Yet, it 

remains a challenge for those start-ups to translate their technical innovations into commer-

cially successful product offerings.   

Despite these disruptive changes caused by digitalisation, the core industrial product of 

the automotive industry, the vehicle, cannot be digitised entirely (Piccinini et al., 2015). In-

stead, it will be complemented by both traditional and data-driven services (Kaiser et al., 

2019a). Declining revenues from vehicle sales can be compensated by additional income 

from the monetarization of vehicle data (Bertoncello et al., 2016; Seiberth and Gründinger, 

2018; Davenport et al., 2020). However, it remains no less of a challenge for incumbent 

companies in the automotive industry to fully embrace such digital innovation (Svahn et al., 

2017).   

Data-driven services are services that support customers' decision-making processes 

by providing data and analytics to create value for the customer (Schüritz et al., 2019). The 

provision of data-driven services is often, but not necessarily, accompanied by a physical 



240 Conceptualizing Value Creation in Data-driven Services 

product equipped with sensors for digital connection to other products and information sys-

tems-IS (Beverungen et al., 2018; Tomiyama et al., 2019). Although this digital transfor-

mation in the automotive domain is underway (Kuhnert et al., 2018; McKinsey, 2016), little 

is known about the most relevant actors and their data sharing relationships to deliver value-

added services based on exploiting vehicle data. Especially in the advent of big data, it is 

even more important than ever to understand the characteristics of data-based or data-

driven value creation (Lim et al., 2018; Schüritz et al., 2019).   

We put our focus on the automotive domain as their industrial-age core product cannot 

be digitized completely (Piccini et al., 2015). Furthermore, automotive is one of the most 

important industries related to non-digital artefacts (i.e. vehicles) (Henfridsson et al., 2009). 

It is, however, worth noting that the automotive sector has begun to experiment with vehicle 

telematics solutions and connected car initiatives since a few years (Svahn et al., 2017).  

The primary goal of our research is to investigate ways through which (small and big23) 

vehicle data can spawn new data-driven services and to provide a framework to structure 

and evaluate vehicle data-driven value creation. We argue that improved knowledge about 

key actors and their data sharing relationships will contribute to a better understanding of 

vehicle data-driven value creation. Accordingly, a fundamental starting point for our research 

is to map those actors that will have a crucial role in data sharing and then design how data 

sharing relationships can connect them. Thus, this chapter addresses the following three 

research questions: 

• Which actors play a key role in vehicle data-driven service generation?  

• How do data sharing relationships connect those actors to enable value creation?  

• How can a conceptual model illustrate both actors and their data sharing relationships? 

The identification of the most relevant ecosystem actors provides the foundation for better 

understanding their data sharing relationships and interdependencies, allowing us to design 

a conceptual model of data-driven value creation. Conceptual models are abstract represen-

 

23  Although big data and big data analytics are definitely important, we would like to emphasize that we 
do not focus on research on the adoption on big data analytics. Many vehicle data-driven services are 
based on "small data" (using only a few data points of a single signal): For instance, services that can 
detect safety critical situations inside a vehicle and forward this information to operational organiza-
tions like emergency services do not rely on big data analytics. In many cases, a few data points from 
a few signals are sufficient to generate a data-driven service with high added value as for instance 
mentioned by the interviewed data marketplace provider. 
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tations of some subject matter, which serve to promote communication and common under-

standing between stakeholders, thereby improving the prospects for successful information 

system development and use (Wand and Weber, 1993). Conceptual models are mostly of a 

graphic nature and usually contain a visual arrangement of modelling constructs in the form 

of graphical symbols and text (Bera et al., 2019). Besides supporting communication, they 

contribute to a better understanding of a particular domain and provide input for the infor-

mation systems design process (Wand and Weber, 2002). 

The theoretical gap addressed here is the lack of conceptual models that can unravel 

the underlying value chain (actors and data sharing relationships) when establishing vehicle 

data-driven services. We thereby address the calls of researchers (Parvinen et al., 2020) to 

closely examine data-driven value creation and ecosystems (Wamba et al., 2015). Our de-

signed conceptual model aims to link actors with specific steps within the data value chain. 

Thereby, it seeks to help organisations that choose to become part of the automotive eco-

system to better understand their role, relationships, and opportunities for data-driven ser-

vice provision better. Thus, our model supports the design of vehicle data-driven services by 

introducing the most relevant actors, and data flows, ultimately leading to data-driven value 

creation. As of now, the model preserves the different perspectives of key actors while ad-

dressing the research gap that key concepts and relations regarding data-driven value cre-

ation are nowadays insufficiently explored, as we observe it in the research on vehicle data-

driven services. As to these arguments, they are grounded in our research within a large-

scale research project [Omitted for blind review] funded by the European Commission in the 

Horizon 2020 framework programme involving 19 key partners from 11 European countries 

from the automotive, big data, cloud and high-performance computing worlds aiming at bet-

ter exploitation of big data. 

The remainder of this chapter is structured as follows: Section 15.1 presents the frame-

work that guided our research approach and chapter structure. Section 15.2 embraces the 

theoretical foundations of this chapter. After this, in Section 15.3, we elaborate on the data 

collection including results from eleven expert interviews and their sketching activities. These 

views are unified and serve as the basis for our conceptual model presented in Section 15.4. 

We provide the results of the final evaluation of our model in Section 15.5, and discuss our 

findings in Section 15.6 before we summarise and conclude the chapter in Section 15.7. 
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15.1 Research Framework and Chapter Structure 

We address the lack of conceptual models that can unravel the underlying vehicle data value 

chain (actors and data sharing relationships) in establishing data-driven services. Our re-

search framework is guided by the design-science paradigm (Hevner et al., 2004), with its 

three research cycles (Hevner, 2007): relevance cycle, design cycle, and rigor cycle (Figure 

68). Design-science extends “the boundaries of human and organizational capabilities by 

creating new and innovative artifacts” (Hevner et al., 2004). In our case, the innovative arti-

fact is the conceptual model for value creation in vehicle data-driven services. This research 

framework allowed us to obtain the different perspectives of key stakeholders (researchers, 

users, clients, sponsors, and practitioners) while studying complex problems. 

 

Figure 68 Research Approach and Chapter Structure. (Kaiser et al., 2021) 

As part of the relevance cycle (Section 15.2), we conducted a literature review of well-re-

garded scientific electronic databases extended through backward and forward search re-

garding our application context (value creation in vehicle data-driven services) and theoreti-

cal lens (ecosystems). Existing theory on the value of data-driven services and data value 

chains was used as theoretical input within the design phase. 

In the design cycle, we first took a participatory approach to build a practice-based, con-

ceptual model, capturing the individual views of eleven experts from the automotive domain 

on value creation in vehicle data driven services. We complemented our interviewing ap-

proach with simple graphical design activities, letting experts draw sketches on key actors 

and their data sharing relationships (Section 15.3). We consolidated the individual expert 

views in a conceptual model of value creation in vehicle data-driven services, applied con-

ceptual modelling (Wand and Weber, 2002) inspired by the concept of data value chains 

(e.g. Latif et al., 2009; Curry, 2016; Faroukhi et al., 2020) and presented our artifact: a unified 

conceptual model for the data value creation process consisting of three parts, (i) actors 

involved, (ii) key ecosystem actors and (iii) data sharing relationships between the actors. 
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We established proof-of concept before we proceeded to evaluating our model with real-life 

cases (Sections 15.3 and 15.4). 

In the rigour cycle (Sections 15.4 and 15.5), we performed conceptual model evaluations 

by applying our model to in total six real-life application cases enabled by vehicle data and 

established its proof-of-value. After each design, we conducted an evaluation of the model 

that resulted in model revision. This resulted either in a change in model actors, a change in 

data-sharing relationships, or a change in both, while the general structural design of the 

model remained unchanged. Our chapter only includes the sixth evaluation of our model 

within a real-world case, the development of a data-driven service for road surface quality 

detection to underpin its practical applicability. 

15.2 Theoretical Foundations 

This This section places our research in the context of the relevant existing literature. First, 

we illustrate the concept of data-driven services in the automotive domain and the rationale 

behind it. Second, we take a look at the literature on ecosystems which we use as a theo-

retical lens for our study.   

Table 23 shows how research on data-driven services is steadily increasing. In total, we 

identified 222 papers published since 2011 in established scientific electronic databases as 

AISeL, ScienceDirect, Scopus, IEEE Xplore and ACM DL (Falagas et al., 2008; Gusenbauer 

and Haddaway, 2020). More than 36% of these papers were published in 2019. 

Table 23 Search results (all fields) in AISeL, ScienceDirect, Scopus, IEEE and ACM (2011-2019). 

(Kaiser et al., 2021) 

Year \ Database AISeL ScienceDirect SCOPUS IEEE Xplore ACM DL 

2011-2013 1 3 3 2 1 

2014-2016 8 15 7 5 4 

2017-2019 54 56 35 16 12 

 

We included articles that used the following terms: “value creation” or “value”, and “data-

driven services”, or “data-based services”, and “automotive”, or “vehicle”, or “car”, or “mobil-

ity”. We added further papers on the value of data-driven services in general and on vehicle 

data-driven services in particular by applying backwards and forward search. In what follows, 

we thematically discuss the main concepts from a representative sample of 48 of the re-

trieved papers on the value of (vehicle) data-driven services. 
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15.2.1 Value of Data-driven Services 

In the last two decades, the service sector has seen an unprecedented development, also 

due to the expansion of the application of Information and Communication Technologies – 

ICTs (Berkley and Gupta, 1994; Rai and Sambamurthy, 2006) and the subsequent digital 

transformation of businesses and society (Lim et al., 2018; Lusch and Nambisan, 2015; Bha-

radwaj et al., 2013; Spohrer and Maglio, 2008; Chesbrough and Spohrer, 2006). Among the 

different available definitions, we adopt here the concise summary provided by Spohrer and 

Maglio (2008, p. 241) defining service as “pay for performance in which value is coproduced 

by client and provider”. This is true, for example, when considering information intensive 

services (IIS) where the “value is created primarily via information interactions, rather than 

physical and interpersonal interactions, between the customer and the provider” (Lim et al., 

2018, p.121). Moreover, these services rely on the data that generate the information driving 

the activities, making them valuable for the final customer (Kumar et al., 2013; Azkan et al., 

2020; Maass et al., 2018). Consequently, value creation based on data should take into 

account the data value chain as well as key factors, such as for example the data, the data 

source, data collection, data analysis, information delivery, information on the user, the value 

in information use, and the provider network (Lim et al., 2018, p.122). 

Taking these issues into account, the role of data and information value (Brennan et al., 

2019; Attard and Brennan, 2018; Batini et al., 2018) is a central challenge in the competitive 

scenarios emerging from digitalisation, in particular for understanding what concerns the 

evaluation of the information capacity suitable to allow companies to the create and capture 

value by digital assets and data-driven services (Batini et al., 2018). Furthermore, according 

to Dedrick (2010) researchers have framed the impacts of the IT on environment as first-

order (impacts of ICT hardware during the product lifecycle), second-order (impacts of ICT 

on other processes such as transportation or industrial production), and third-order effects 

(changes in lifestyles and economic structures). The latter are relevant when considering the 

increased use of the media's transformative potential of 'green' IS on the demand side, en-

couraging practices such as, e.g., carpooling and ridesharing applications coupled with the 

Internet of Things (Malhotra et al., 2013). 

Moreover, scholars from computer science and IS have also questioned, which business 

models could be suitable to capture the value of data-driven services (Lim et al., 2018; Schür-

itz et al., 2017; Zolnowski et al., 2017; Zolnowski et al., 2016; Schüritz and Satzger, 2016). 
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These contributions complement the questions advanced in the field of technology manage-

ment (Sorescu, 2017; Hartmann et al., 2016) about the role of data-driven services in busi-

ness model innovation. Additionally, IS scholars have investigated the antecedent factors of 

value creation in connection with the big data analytics phenomenon (Günther et al., 2017; 

Mikalef et al., 2020; Surbakti et al., 2020; Wiener at al., 2020). Central questions concern 

the big data analytics capabilities that companies require to a) enhance organisational per-

formance (Wamba et al., 2017; Akter et al., 2016), b) create business value (Wamba et al., 

2015; Grover et al., 2018; Conboy et al., 2020), and c) enable service innovation (Lehrer et 

al., 2018), as well as d) which barriers may prevent their adoption.  

For example, Dremel et al. (2017) discuss in a case study of AUDI how traditional man-

ufacturing organizations can introduce big data analytics and master related organizational 

transformations. Dremel et al. (2020) identify big data analytics (BDA) actualization mecha-

nisms from a revelatory case of a vehicle manufacturer. Akter et al. (2016) aim at improving 

the organizational performance of a company through big data analytics and proposes a 

hierarchical model. Grover et al. (2018) explore the success of big data analytics projects 

with respect to creating strategic business value, i.e., by addressing intra-organizational as-

pects. Lehrer et al. (2018) propose a theoretical model of big data analytics service innova-

tion developed from multiple cases from insurance, banking, telecommunications, and e-

commerce that have all implemented big data analytics. Mikalef et al. (2017) recommend 

that more attention should be paid to the organizational changes that big data analytics 

brings and how big data analytics should be adopted strategically. Mocker and Fonstad 

(2017) discuss AUDI's challenges towards the sharing economy and how AUDI has trans-

formed its organizational structure, processes, and architecture. Svahn et al. (2017) address, 

how incumbent firms embrace digital innovation proposing the Volvo case study and identi-

fying four concerns, but focusing on the perspective of the vehicle manufacturer, only. 

Wamba et al. (2015) emphasize a lack of empirical research to assess the potential of big 

data and provides both a literature review and case studies to present an interpretive frame-

work to analyze the different perspectives of big data as well as a taxonomy to better under-

stand the role of big data in value creation. Wamba et al. (2017) propose a big data analytics 

capability model, extend previous research by examining the direct effects of big data ana-

lytics on firm performance. Woźniak et al. (2015) introduce a practical example for big data 

value creation from Volvo and share the story of building a big data service for the automotive 

industry in a case study. These papers focus heavily on the big data analytics phenomenon 
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and the strategic and organizational capabilities required to create value from big data ana-

lytics. They all take a single-actor (i.e., micro) perspective. 

15.2.2 Data-driven Services based on Vehicle Data 

The recent advances in computing infrastructure, including the Internet of Things (IoTs) as 

well as the data generation/processing capabilities in products, have boosted the develop-

ment of data-driven services. However, those who generate and collect the data are not 

necessarily those who develop and provide data-driven services. The systematic use of the 

data generated in connection with vehicle use happens in practice within complex actor-

networks and ecosystems. Vehicle data paves the way to enabling novel data-driven ser-

vices (Stocker et al., 2017a) and with the current increase in connected vehicles this data 

can finally be exploited. Connected vehicles are equipped with hardware and software to 

connect them to the cloud, collect data from sensors (e.g., the vehicles speed, acceleration, 

and steering wheel angle at a certain time), and send these data to the vehicle manufactur-

ers' servers; this allows obtaining insights on, e.g., driving pattern analysis or estimated time 

of arrival in the case of fleets. Thus, an ecosystem for such services emerges (Venkataram, 

2019; Dhungana et al., 2016).  

In general, vehicle manufacturers seek to leverage the value of the data collected 

through their vehicles to better meet customer needs (Stocker et al., 2017a; Kaiser et al., 

2018b). According to Gissler (2015), all new passenger vehicles sold in 2025 will be con-

nected, forcing vehicle manufacturers to define their role and determine where they can best 

benefit from connectivity. Volkswagen, Daimler and BMW all recently announced major in-

vestments in data-driven services like “Volkswagen We”, “Mercedes me” or “BMW CarData” 

(Volkswagen, 2018; Daimler, 2020; BMW, 2020). However, there are also approaches for 

vehicle data collection and use in data-driven services that bypass vehicle manufacturers. 

These are the ones pursued by tech start-ups such as dash.by, vin.li, or pace.car who bring 

their own solutions into vehicles (to create a gateway to sensor data) and thereby compete 

with the activities of vehicle manufacturers in vehicle data collection (Stocker et al., 2017a).  

Also, emerging data marketplaces, such as caruso-dataplace.com, high-mobility.com or 

otonomo.io, provide another approach to leverage vehicle data (Pillmann et al., 2017). Data 

marketplaces are digital platforms on which data products are traded, acting as neutral in-

termediaries, and allowing others to sell their data products (Spiekermann, 2019). The aim 

of vehicle data marketplaces is to make available vehicle data collected by different brands 

of connected vehicles, vehicle manufacturers, fleet operators and other data providers to 
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interested data-driven service developers directly or indirectly through a single point of ac-

cess. 

15.2.3 Theoretical Lens: the Ecosystem Concept 

In general, an ecosystem describes the relationships and interactions between living organ-

isms and their environment (Schulze et al., 2005; Briscoe and De Wilde, 2006). To differen-

tiate an artificial ecosystem from a natural one, some authors add further attributes to the 

term to qualify it, e.g. software ecosystem, business ecosystem or digital service ecosystem 

(Immonen et al., 2015). However, a commonly agreed definition does not yet exist.  

Considering the field of strategy as relevant for the focus of this research on the auto-

motive industry, an early definition has been provided by Teece (2007, p. 1325), who con-

siders an ecosystem as “the community of organisations, institutions, and individuals that 

impact the enter-prise and the enterprise's customers and supplies” including “complement-

ors, suppliers, regulato-ry authorities, standard-setting bodies, the judiciary, and educational 

and research institutions”. Focusing on modularity and coordination for different types of 

complementarities (in production vs. in consumption), Jacobides et al. (2018) have proposed 

a consolidated perspective on the ecosystem concept. They define it as “a set of actors with 

varying degrees of multilateral, non-generic complementarities that are not fully hierarchi-

cally controlled” (p. 2264). Furthermore, Adner (2016, p. 40) define an ecosystem as “the 

alignment structure of the multilateral set of partners that need to interact in order for a focal 

value proposition to materialize”. Considering 'partners' in the automotive industry, while 

Original Equipment Manufacturer (OEM) traditionally exerted a strong influence on ecosys-

tems, this configuration is currently challenged by the digitalisation characterising new 

breeds of quantified vehicles and new actors on the market (Stocker et al., 2017a).  

Nischak et al. (2017) emphasise that three components are essential elements of digital 

business ecosystems: value exchange (innovation, information, products/services), re-

sources (digital and non-digital) and actors (organisations, individuals, societies). This defi-

nition can be adapted and specialised for digital automotive ecosystems. Similar to a digital 

business ecosystem, a digital automotive ecosystem contains actors that in this case are 

original equipment manufacturers (OEM), data intermediaries or data service providers, for 

example. These actors have access to resources, such as data and infrastructure, for gen-

erating, transmitting and storing data. Leverag-ing these resources, the actors participate in 

value exchanges by providing or consuming data. 



248 Conceptualizing Value Creation in Data-driven Services 

Nevertheless, research on digital automotive ecosystems is still limited. Particularly in 

connec-tion with vehicle data and the process of creating data-driven services, the literature 

repeatedly refers to data-based business ecosystems (Kitsios et al., 2017; Curry, 2016; Na-

chira et al., 2007). For instance, Immonen et al. (2014) outline the open data ecosystem from 

a business viewpoint and define ecosystem actors such as application users, data and ser-

vice providers, application developers and infrastructure providers along with their role in the 

data-based ecosystem. Also, in many cases the authors refer more to technical ecosystems 

(e.g. Kolbe et al., 2017; Gerloff and Cleophas, 2017; Kuschel, 2008; Martínez de Aragón et 

al., 2018). In these technology-oriented perspectives, an analysis of the business relations 

enabled through the digitalisation of the vehicle and the feasibility of new data-driven ser-

vices is largely missing.  

Researchers focusing on the exploration of actors and relationships between actors have 

often taken a different perspective, e.g. describing automotive engineering as an automotive 

ecosys-tem of interacting organisations (Knauss and Damian, 2014), or presenting a strate-

gically moti-vated approach to discover business models in traditional industries and apply 

them to the mo-bility sector without empirically substantiating their findings (Remane et al., 

2017). Researchers have also used data from automotive investment and partnering activi-

ties to better understand the ecosystem: Riasanow et al. (2017) have used data from crunch-

base.com to derive roles, de-sign the automotive value network, and discuss the model with 

five experts. Nischak and Hanelt (2019) have used data about alliances, joint ventures, mer-

gers and acquisitions along with net-work visualisation techniques for a longitudinal analysis 

of the automotive ecosystem. Although vehicle data paves the way to ecosystem-building 

activities, none of the reviewed articles con-tains a focus on vehicle data-based ecosystems. 

15.3 An Expert Perspective on the Value of Vehicle Data-

driven Services 

The literature review showed that actors and their data sharing relationships were only mar-

ginally considered with regard to the development of services based on the data generated 

by connected vehicles. Also, the majority of the reviewed contributions do not address the 

specifics of vehicle data-driven ecosystems, which we aim to elicit by conducting interviews 

with eleven automotive domain experts with an average professional experience of more 

than 16 years, all of them be-ing opinion leaders for the Central European market. 
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15.3.1 Data Collection 

From From May 2018 to December 2018, we have conducted in-depth interviews with ex-

perts from the Central European automotive industry. More specifically, we combine two 

instruments, cap-turing automotive experts' general views on value creation in vehicle data-

driven services by conducting semi-structured interviews, and then aiming towards gaining 

a deeper understanding of the data-driven value creation process through experts’ graphical 

models of actors and data sharing relationships. Two of the authors conducted the interviews 

and the fieldwork, while the other three authors acted as critical and reflexive actors (Gioia 

et al., 2013) during the monthly online meetings for discussing the material added to the 

emerging corpus of interviews, memos, and archival documents.  

According to findings of Scholte et al. (2015) from ecosystem research, expert-based 

approach-es hold the potential that experts can be asked to express their own opinions and 

values starting with what they find important, while in-depth (unstructured or semi-structured) 

interviews can be used to gain a deeper understanding on ecosystems. Interviews have 

been used in the past by previous related research (e.g. Riasanow et al., 2017; Beverungen 

et al., 2019) to conceptualise service (eco)systems. However, we argue that conducting in-

terviews alone may not be sufficient to gain a deep understanding of the complex data-shar-

ing relationships of identified actors. Therefore, we complemented our interviewing approach 

with simple graphical design activities to let experts visualise the value creation process from 

their perspective.  

Involved experts had on average more than 16 years professional work experience (cf. 

Table 24) and included large industries (e.g. automotive manufacturers), small and medium 

enterprises (e.g. data marketplaces, suppliers, and data-driven start-ups), public authorities 

and automotive research organisations. Due to the reputation of the experts, it sometimes 

took months before an appointment was possible. Interviews lasted between 60 to 90 

minutes and were divided into several parts:  

• Part 1: We covered the experts' background, professional experience, and attitude to-

wards using data-driven applications.  

• Part 2: We asked them to describe vehicle data-driven services they knew and have 

already used to judge their experience better. 

• Part 3: We showed experts an existing ecosystem model from the media domain built 

by Gordijn et al. (2006) and asked them to attempt to sketch their view on vehicle-date 

driven value creation, which we assumed to be a cognitively challenging task. To guide 
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experts, we asked them to start their personal design process by first naming relevant 

actors before de-signing data-sharing relationships. Finally, we asked them to describe 

the changes they ex-pect in the digital automotive service ecosystem over the next 5 

years. 

We have conducted in total eleven expert meetings, four of them face to face with experts 

who were using pen and paper to sketch their views (experts 2, 3, 8, and 9). The seven 

remaining meetings were conducted online, using a video conferencing service with screen 

sharing enabled. For the virtual meetings, we prepared a special online document for eco-

system design in which the experts had to list the relevant actors before linking them with 

data sharing relationships. In total, eight experts gave their consent to have their voices 

recorded during the meeting, while the remaining three experts refused recording, due to 

strict automotive confidentiality policies. 

Table 24 Information on the background of the experts involved in the design process. (Kaiser et 

al., 2021) 

Expert 
No. Organisation Expert profile 

Work 
Exp. 

1 Public authority Responsible for a metadata service for accessing vehicle data 23 yrs. 

2 Automotive research Research manager dealing with vehicle data and data-driven 
services 

25 yrs. 

3 Automotive research Senior data scientist involved in vehicle data analytics projects 9 yrs. 

4 Automotive research Senior researcher involved in projects with vehicle manufactur-
ers that deal with data-driven services  

5 yrs. 

5 Provider of data-
driven service 

Senior manager of a provider of vehicle data services 14 yrs. 

6 Public authority Representative in international committees in charge of a vehicle 
data provision service 

26 yrs. 

7 Data marketplace 
provider 

Leader of a national research project on data marketplaces  21 yrs. 

8 Provider of data-
driven services 

Senior consultant involved in development of vehicle data-driven 
services 

7 yrs. 

9 Automotive and soft-
ware engineering 

Owner and managing director of an automotive engineering ser-
vice company 

24 yrs. 

10 Provider of data-
driven services 

Senior developer of vehicle data-driven services  5 yrs. 

11 Vehicle manufacturer Head of a data-driven service department 19 yrs. 

 

In the following section, we present and discuss the various ecosystem models designed by 

the experts, with a detailed example from expert No. 3 and a summary of all other experts. 

15.3.2 Case Vignette 

We present the output of one expert interview as a case vignette. This is a representative 

example to illustrate that all experts have a particular context from their field of expertise, but 

an excellent overview of the automotive and mobility sector in general.  
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Expert 3, Frank, doctor of technical mathematics, has more than 9 years of experience 

as a senior data scientist for an industrial research company. He was jointly responsible for 

the development and operation of a data-driven service based on Floating Car Data (FCD), 

which is used by a traffic control center to provide information for road users, traffic planners, 

and state governments. Therefore, Frank has a particular view on the sharing of vehicle data, 

which is characterized by his own working context. 

Stakeholders relevant to Frank are decision-makers, infrastructure providers, vehicle 

manufacturers, suppliers of vehicle manufacturers, road users, data intermediaries, traffic 

news offices and traffic management. Frank identified several data-sharing relationships be-

tween these actors and presented them as connecting lines on the drawing board (cf. Figure 

69). As a data scientist, Frank began designing the ecosystem around 'data' that is the basic 

ingredient for data-driven services: “The problem that I have is that this data is separated. 

Data packets go from the data intermediary to the road user, and that does not necessarily 

have to be the same data that the road user sends somewhere else.” During this design 

process Frank also starts to explain and interpret what he has achieved so far in the ecosys-

tem model, related to different actors, their needs and relationships in the ecosystem: “Infra-

structure providers would like to [get data from vehicle manufacturers], but they don't get it 

[the data].” Therefore, infrastructure providers, as service users, appear to be actors that 

would benefit greatly from data on vehicle movements and would even start collecting such 

data by using stational roadside units to detect passing vehicles, e.g. to measure and predict 

traffic flows. However, their willingness to pay other actors for vehicle data is still questiona-

ble: “This is still in the making, that infrastructure providers really pay data intermediaries for 

data”, and adds, “INRIX, TomTom, or HERE – these are the classic [data intermediary] play-

ers.”  

Data intermediaries emerge as new players who are beginning to establish a powerful 

position within the ecosystem. “These are institutions that penetrate the market from outside 

and deal a lot with data. They are rather atypical. What is now very immanent in this system 

is that someone enters the traffic data market that actually has nothing to do with it originally.” 

Other new players are about to enter the market for data-driven service generation and are 

seeking cooperation with existing players. Some actors seem to have developed their own 

practices to gather data for decision making, e.g. traffic planners are used to collect their 

own data manually, instead of cooperating with other players: “...traffic planning is still a 

point, but now they are still outside. These would already be relevant, but they now usually 
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collect the data using standard methods.” Infrastructure providers started to make their data 

available to traffic planning and management: “Vehicle measuring stations on the motorways 

belong to the infrastructure provider who makes the data available to traffic management. 

[...] They would also make this data available to the decision-makers, which would be classic 

loop-data.” The cooperation of actors outside the closed automotive ecosystems will only 

slowly take shape. There is still a lack of cooperation at national and European level, which 

would benefit both policy makers and traffic managers. “Decision-makers, infrastructure pro-

viders and traffic management - which is often the same institution - have to join forces and 

network at least at European level in order to achieve a critical mass in order to represent 

the interests of data intermediaries, who currently have a very high power.” 

 

Figure 69 Expert 3 hand drawing and digitized vehicle data-driven service sketch. (Kaiser et al., 

2021) 

In summary, from expert 3’s view point, the main actors for the design of data-driven services 

are data intermediaries (10 relationships), road users (7 relationships), traffic management 

(4 relationships) and infrastructure providers (4 relationships). Among decision makers, traf-

fic management, road operator and traffic planning, four actors have been identified who are 

relat-ed to or usually funded by national authorities reflecting the research background of the 

expert.  

15.3.3 Summary of the Individual Design Processes of 

the Remaining Experts 

This sub-section summarises the results of the individual design activities of the remaining 

experts. Since their sketches are space-consuming, we present only the sketches of the 

experts No. 5 and 6. We are aware that each expert argues from his or her own perspective, 

also depending on the organization in which the expert is employed, so there are discrepan-

cies in the interview statements. The aim of the empirical data collection, however, was to 

gain an overview as complete as possible of the actors and data exchange relationships. 
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Expert 1 was responsible for a metadata service to access vehicle sensor data and iden-

tified the vehicle (driver) as the main actor transmitting generated vehicle data via a telecom-

munication provider to either the OEM, a private- or a public data platform provider. A 

metadata provider, an actor in which he is personally involved, could provide the interface to 

a service provider or road operator to search and automate access to vehicle data.  

Expert 2 understands the ecosystem as a network of relationships between actors 

around a data marketplace. Data collection is mentioned several times and seems to be an 

unresolved problem, as expert 2 is uncertain who is currently deciding on data sharing: The 

expert assumes that data could be shared with a service provider without the knowledge of 

vehicle users. A total of 11 actors were included in the ecosystem sketch, 10 of which were 

connected with data sharing relationships. The eleventh actor, the vehicle user, “does not 

receive any data, but actually only the services”. Main actors are OEM (7 links), vehicle 

owner (5 links), service provider (3 links), vehicle (3 links) and data marketplace (3 links). 

Expert 4 was involved in several large-scale projects with vehicle manufacturers, men-

tions six actors and adds that there are literally data sharing relationships between them all. 

The expert adds that a user can generally pay for services either “with data or with money”. 

Furthermore, the expert argues that the data marketplace will be a “closed platform [of 

OEMs]”, as the “access to useful vehicle data is too critical to be open”, meaning that the 

information could be exploited to launch a cyber-attack on vehicles. 

Expert 5 (cf. Figure 3) is a senior manager of a vehicle service provider, designs an in-

depth model and presents the vehicle as a central actor that passes on vehicle data to seven 

actors. The expert mentions an external influence through national and European regulations 

to positively influence OEMs to provide access to vehicle data for innovative service devel-

opments of other actors. The expert concluded by saying that “trust is the key to the whole 

ecosystem”. 

Expert 6 (cf. Figure 3) sketches a data value chain from the vehicle driver via a data 

enricher, to a service provider who provides a service to the OEM, who in turn provides a 

service to any service user such as workshops, statistic services, enablers such as data 

marketplaces, insurance companies, or public authorities. 

Expert 7 is involved in the development of a data marketplace and has sketched a data 

flow from the OEMs to a data market provider that makes the data available to potential 

buyers and service developers. The expert describes “while the OEM servers will host the 
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data, the data markets will only do the contracting and data access and will be able to mesh 

data [from different data providers]” and predicts that “data markets will succeed and take 

hold [in the ecosystem]. Many of them are just beginning, and some successful ones will 

survive”. 

 

Figure 70 Digitized vehicle data-driven service sketches of experts 5 (left) and 6 (right). (Kaiser et 

al., 2021) 

Expert 8 is a consultant who sketches the model based on his own experiences in developing 

data-driven services with SMEs and public authorities. The main actor is “data”, which can 

be interpreted as a data platform or portal, but automotive (as data supplier) and infrastruc-

ture providers (who receive data from three other actors) play an important role, too. The 

actor ‘automotive’ (a synonym for car/vehicle manufacturers) “also retrieves the data for own 

services, which is probably the main application for car manufacturers”. Service providers, 

IT infrastructure providers and academic research are all relevant players in service provi-

sion, with access to the data remaining the key element. 

Expert 9 is the managing director of an automotive company and did not sketch direct 

data-sharing relationships but mentioned eleven actors. He sees OEMs in a stronger posi-

tion, which is suggested by the statement that “start-ups will disappear when larger players 

[such as OEMs] enter the [service] market”. He doubts that external players will enter the 

value chain between the data source and the data enricher, because “data should not simply 

be passed on to external parties, [..], CAN data must be interpreted correctly”. He argues 

that “the balance of power between technology companies vs. OEMs vs. public authorities 

will be crucial [for the future of the data-driven service ecosystem], and a balanced situation 

would be best” for all stakeholders. 

Expert 10, who is employed by a service provider, mentioned eight ecosystem actors. 

Vehicle data flows logically through the gateway provided by a gateway provider to a data 

platform provided by a hosting provider, to a service provider, and then to customers and 
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fleet operators. The expert mentioned several data-sharing relationships during the interview 

but did not sketch them explicitly. The expert also mentioned the EU as an external influenc-

ing factor. 

Expert 11 is head of service development at a vehicle manufacturer and outlined three 

different actors in two different scenarios depicting the dominant role of vehicle manufactur-

ers in the ecosystem. In the first scenario, where a customer uses a service from the OEM, 

the vehicle user allows data access, “the consumer has the right to say no”, and pays the 

OEM for the service, which provides the technical infrastructure such as the mobile connec-

tion installed in the vehicle. The OEM in turn provides vehicle data to a contractually bound 

service provider and provides the vehicle user with the developed service. In the second 

scenario, the vehicle user buys a service from a third-party service provider and thus grants 

the service provider access to vehicle data. Due to strict European data protection legislation 

the vehicle user can “already decide, which parties can be granted access to the data”. The 

service provider, in turn, uses the OEM's technical infrastructure, such as the mobile con-

nection installed in the vehicle, and pays the OEM for its use, which the expert underlines 

by the statement that “vehicles are equipped with more expensive technology to enable data 

sharing”. 

The statements made by the eleven experts clearly show the influence of their own work 

on the designation of key actors and data sharing relationships. Experts working in the clas-

sic automotive industry (e.g. experts 9, 10 and 11) see the vehicle manufacturer in a domi-

nant role in the data-driven service ecosystem, while scientific actors and those working in 

service development take a more differentiated view on the ecosystem.. 

15.4 A Conceptual Model for Value Creation in Vehicle 

Data-driven Services 

15.4.1 Design Process 

We have used two data sources, interview statements and expert sketches, to derive key 

actors and their data sharing relationships. We carefully examined the transcribed interviews 

and the individual conceptual models sketched by experts and extracted terms that had been 

used to describe the different actors. We ended up with a list of 90 terms, some of which 

were men-tioned more than once, and were finally able to identify 64 different actors. As 

experts tend to use different terms, levels and descriptions for the same type of actors (e.g. 
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'OEM', 'automotive manufacturer', and 'vehicle manufacturer') we have renamed some ac-

tors in order to create a consistent terminology for our conceptual model. Another challenge 

was the distinction between specific actors, such as cloud service providers, and providers 

of data-driven services to end-users. As a result, one group of actors was referred to as 

'provider of cloud computing services', while another one was referred to as 'provider of data-

driven services. We then categorised indi-vidual actors into groups and placed terms such 

as 'AI provider', 'cloud provider', and 'database provider' into the actor group 'platform pro-

vider'. After the ninth expert interview, it became apparent that no previously unknown actors 

were named by the experts who could not be classi-fied into the actor groups described 

below. Following the principle of theoretical saturation (Saunders et al. 2018), we therefore 

judged our sample to be complete. As a result, the cleaned set included 25 actor groups. In 

order to make the actor groups more tangible for our model de-sign, we identified the six 

highest ranked actors named by the experts and classified them into groups (Table 25). 

Table 25 Top ranked actors (left) and actor groups (right). (Kaiser et al., 2021) 

Top ranked actors from ex-

pert interviews (N=64) 

Quantity  Top ranked actor groups (N=25) Quantity 

OEM 7  Vehicle manufacturer 10 

Service provider 6  Data marketplace 9 

Infrastructure provider 3  Vehicle data service provider 9 

Public authority 3  Vehicle user 7 

Road operator 3  Consumer 6 

Vehicle 3  Platform provider 5 

[58 further actors] 1-2  [19 further actor groups] 1-4 

 

We built our first conceptual model on the expert interview statements and their model 

sketches. We thereby carefully examined transcribed interviews and their sketched models 

and extracted terms (actors, actor roles, types of data sharing relationships) to create a con-

sistent terminology for the conceptual model (cf. Table 25). We then designed the first con-

ceptual model of a unified model using only the main actor groups from the consolidated 

actor group list and upon the re-viewed literature, thus establishing proof-of-concept 

(Nunamaker et al. 2015). In a further de-sign step, we linked actors with data supply and 

data consumption activities to outline the data transformation process. The process from 

data supply to data use is often referred to in the scientific literature as the data value chain 

(Curry, 2016, Kaiser et al., 2019a, Latif et al., 2009, Miller and Mork, 2013). Our first design 
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of a conceptual model was inspired by structuring ap-proaches that linked actors with data 

transformation steps (Latif et al., 2009).  

After each design, we conducted an evaluation of the model that resulted in a model 

revision, either in a change in model actors, a change in data-sharing relationships, or a 

change in both, while the general structural design of the model remained unchanged. We 

carried out a total of six such iterations of the model in order to evaluate it against the indi-

vidual views of the en-gaged automotive experts and against several real-life use cases of 

value creation in data-driven services. In doing so, we follow the suggestions of design re-

searchers such as Gregor and Hevner (2013) to use case studies as a technique for con-

ceptual model evaluation. With regard to Sonnenberg and vom Brocke (2011) and Venable 

et al. (2016), our evaluation can be seen as an ex-post evaluation, while we referred to the 

evaluation criteria model completeness, fidelity with real-world phenomena, internal con-

sistency, level of detail and robustness as published by March and Smith (1995). In our ex-

post evaluations, we also demonstrated the usefulness of the model to describe value crea-

tion in data-driven services, establishing proof of value (Nunamaker et al. 2015). 

Using our designed conceptual model to describe value creation referring to concrete 

vehicle-data driven services led to several improvements of the model. We have already 

included the vehicle user as an essential element in the first conceptual model. However, as 

we found that many vehicle data-driven services are not enabled by vehicle data alone, but 

also use contextual data such as weather data or aggregated traffic data that obviously can-

not be provided by the vehicle user alone, we added the actor role ‘contextual data provider’ 

in a second design itera-tion to the model to refer to actors providing other data as part of 

the value creation process. Furthermore, we have learned from several cases that the main 

beneficiary of vehicle-data driv-en services can be the vehicle user, e.g. by offering services 

such as intelligent parking while driving. However, vehicle data can also lead to services 

whose beneficiaries go beyond the vehicle user, e.g. by providing a dynamic map of traffic 

density to urban traffic managers. Hence, we have added the actor role ‘other consumers’ in 

a third iteration of our model. For space reasons, we will only show the final evaluation of 

our model with an exemplary real-life application case in Section 15.5. 

15.4.2 Conceptual Model Description 

The presented conceptual model is a result of iteratively designing a conceptual model. In 

our design process, we performed six iterations of the model, to evaluate it against the views 

of the interviewed automotive experts and against several real-life application cases of value 



258 Conceptualizing Value Creation in Data-driven Services 

creation in data-driven services. Existing theory on value of data-driven services (cf. Sub-

section 15.2.1) and data-driven value chains (e.g. Latif et al., 2009; Curry, 2016; Faroukhi et 

al., 2020) was used as theoretical input within this design phase. Our structural design of the 

model was informed by Latif et al. (2009), referring to entities that can act as ecosystem 

roles connected by data sharing relationships, i.e. consuming or providing data. Figure 71 

shows the metamodel of our conceptual model. It outlines that each participating entity (i.e. 

organisations or persons) can act in one or more actor roles, thereby either providing data 

to the data-driven value creation process, consuming value-added data, or doing both (if 

more than one role is taken by the same ecosystem entity). 

 

Figure 71 Metamodel of our conceptual model: Participating entities, digital ecosystem actor roles 

and types of data in the data-driven value creation process. (Kaiser et al., 2021) 

Participating entities can be individuals, organisations or organisational units that can take 

on one or more of the following actor roles: vehicle users as primary data providers, contex-

tual data providers offering additional data for service design, vehicle manufacturers that can 

exploit access to vehicle sensors, gateway providers collecting vehicle data with their own 

equipment, data marketplace or portal providers allowing access to data via their application 

programming interfaces (APIs), data-driven service providers, and finally vehicle users as 

well as other consumers. We will now take a closer look into these ecosystem actor roles 

and illustrate their data sharing relationships.  

A vehicle user is a professional or private actor that decides to provide vehicle data (i.e. 

data generated while vehicle operation by sensors and electronic control units) to be used 

in data-driven services in any format and in any level of aggregation to the related vehicle 

manufacturer directly, or to other actors via a gateway provider indirectly. Vehicle users must 

give their consent to the sharing of vehicle data to other ecosystem actors. 

A contextual data provider is any organisation that has additional contextual data that is 

relevant to the provision of data-driven services and is willing to share this data for service 
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development. Examples of contextual data providers are companies that can provide geo-

data, weather data, traffic data or map data, but also governmental actors that publish open 

data.  

A vehicle manufacturer is an actor that develops, manufactures, and maintains vehicles 

as its main industrial product. Vehicle manufacturers have equipped vehicles with advanced 

sensors that collect and process a wealth of data to ensure the driving function, optimize the 

vehicle's internal functions and facilitate safety. Most vehicle manufacturers have equipped 

their latest vehicles already with telematics software and connectivity to allow use of the data 

generated in data-driven services. Various types of vehicle dynamics data such as vehicle 

speed, acceleration, rotation, position as well as other data such as information on fuel, bat-

tery, service, and window status, wheel rotation, or steering wheel angle can be provided at 

different sampling rates.  

A gateway provider is an actor that collects either raw or processed vehicle data or other 

contextual data such as weather data or map data for the development of data-driven ser-

vices. Gateway providers may collect vehicle data through deploying a data capturing device 

connected to the vehicle’s on-board diagnostics interface (OBD), to the controller area net-

work bus (CAN), or through the use of a dedicated independent sensor and connectivity 

device. Besides, vehicle dynamics data can also be collected by the gateway provider using 

a special sensor kit that is not connected to the vehicle's bus systems or a mobile application 

installed on a smartphone which captures data from smartphone sensors while the vehicle 

is moving.    

A data marketplace, platform or portal provider is an actor that receives data from various 

vehicle manufacturers, contextual data providers, and/or gateway providers and performs 

data harmonisation, transformation, and storage activities, either with the distinct purpose of 

selling service-specific vehicle data and/or service-relevant data from third parties (market-

place, platform) to enable the development of data-driven services, or to provide such data 

for free (portal). Data market place providers may provide data to the developers of data-

driven services who only need to integrate once via their APIs, instead of having to enter into 

many different relationships with OEMs and other data suppliers, while at the same time 

having to deal with diverse (and changing) data formats. 

A provider of data-driven services is an actor that consumes service-specific (vehicle) 

data from a data marketplace or data portal provider and provides consumable service data 

to a service user, which in turn may be either a vehicle user or another consumer, i.e. any 
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other type of end-user or organisation wishing to consume a data-driven service enabled by 

vehicle data and probably enriched with other contextual relevant data. Vehicle data service 

providers ultimately offer data-driven services, such as road surface quality detection, harsh 

driving detection, or predictive maintenance.  

Finally, both vehicle users and other consumers may be consumers of data-driven ser-

vices offered by data-driven service providers. As the final actor in the data-driven value 

chain, these professional or private actors are end users and main beneficiaries of the entire 

data transformation process. Examples of data-driven services are road surface quality de-

tection (consumed by municipalities or a road infrastructure managers) or harsh driving de-

tection (consumed drivers to improve their driving style or by insurance companies to provide 

a 'pay as you drive' insurance that calculates the insurance premium based on the driving 

style). 

Actors provide and consume different types of data within the data value creation pro-

cess. First, in order to comply with data protection regulations such as the General Data 

Protection Regulation (GDPR) in Europe, vehicle users should grant access to the data their 

vehicle generates before vehicle data may be used in services. Contextual data relevant for 

the development of a particular data-driven service, such as weather data, traffic data or 

data on accident hotspots, are provided by providers of contextual data for the data value 

creation process. This data can be provided as raw vehicle/contextual data (e.g. as data that 

is measured and collected directly from vehicle sensors without any kind of pre-processing) 

or as processed vehicle/contextual data (i.e. including some kind of data cleaning, transfor-

mation, resampling and conversion into a data format that is better suitable for service de-

velopment). Service-specific vehicle/third party data is provided by a data marketplace, plat-

form or portal provider that has been transformed from raw or processed vehicle data into a 

form that can be used by data-driven service developers within data-driven services. Finally, 

consumable service data is provided by data-driven service developers to vehicle users and 

third parties within provided applications (services), creating value for the end-users. 
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Figure 72 A conceptual model for value creation in vehicle data-driven services. (Kaiser et al., 

2021) 

The conceptual model, as shown in Figure 72, outlines individual actors and their steps in 

vehicle data-driven value creation. The value concept we used in the model is added value 

for the data consumer. From the perspective of end-users, consumable service data is the 

most valuable data. Therefore, end users may be willing to provide monetary or non-mone-

tary consideration for this type of data. 

15.5 Evaluation 

We evaluated our conceptual model (the artifact) ex-post by applying it to six real-life cases 

such as designing a data-driven service for road surface quality detection, to identify actors 

and data sharing relationships as shown in Figure 73. After each design, we conducted an 

ex-post evaluation (Sonnenberg and vom Brocke 2011; Venable et al. 2016) of the model 

that resulted in a model revision, either in a change of model actors, a change of data-sharing 

relationships, or a change of both, while the general structural design of the model remained 

unchanged. The presented case is the sixth and final evaluation of the model and based on 

real experiences of two authors working on the project mentioned in the introduction. After 

this last evaluation, the model remained stable. 
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Figure 73 Actors and data sharing relationships in the design of a data-driven service for road 

surface quality detection. (Kaiser et al., 2021) 

A data-driven service for road surface quality detection can be envisaged by the municipality 

of a city, responsible for a road network (e.g. the City of Vienna with a road network of 3.000 

kilometres). The municipality operates a vehicle fleet and has an infrastructure management 
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orange font colour) to support the data collection by equipping all vehicles in the fleet inde-

pendent of their brand with gateways. Vehicle operation data being collected could be pre-

pared for further processing and then either be made available to the provider of the data-

driven service (a company in charge of developing the road surface quality detection service) 

by a platform / portal provider or a data marketplace ideally in combination with correspond-

ing map data from a map provider. As the provider of the data-driven service already coop-

erates with the cloud provider AWS (orange font colour), AWS is also chosen as platform 

provider. Finally, a contracted software development company (orange font colour) is re-

sponsible for developing the road surface quality detection service and takes vehicle data 

and map data required for service provision, applies a data processing approach, extracts 

events indicating a particular road surface quality such as potholes from identified deviations 

of the processed vertical acceleration and pitch together with their positions (vehicle data), 

and visualises the geographic position of identified potholes in a web dashboard (using map 

data) to create value for the service consumer, the infrastructure management department 

of the municipality (orange background colour). In addition, the software development com-

pany prepares a table with prioritised repair lists and interaction possibilities to investigate 

the worsening or improvement of road surface quality for the infrastructure management 

department. 

This real-life application case illustrates the complexity of developing a road surface 

quality detection service and shows the usefulness of our model for better understanding the 

roles of concrete ecosystem actors and their data sharing relationships in the development 

of a vehicle data-driven service. 

15.6 Discussion 

Vehicles are increasingly equipped with advanced sensors to ensure driving functionality, 

optimise the vehicle's functions, and facilitate safety and comfort through increased automa-

tion such as providing adaptive driving assistance systems (Stocker et al., 2017a). Moreover, 

most vehicle manufacturers have additionally equipped their latest vehicles with advanced 

software and connectivity to make use of the data generated and to provide additional ser-

vices to drivers. The data generated during vehicle use can enable new types of data-driven 

services addressing many interesting use cases (if drivers opt in to vehicle data sharing) that 

go far beyond supporting the operation of vehicles, especially through intelligent linking of 

vehicle sensor data with other contextual data such as weather data or data on the traffic 



264 Conceptualizing Value Creation in Data-driven Services 

situation. This raises the important question of which ecosystem actors can and will contrib-

ute to use cases that can only be implemented if data is shared between multiple actors. 

15.6.1 Implications for theory 

The theoretical gap addressed in this chapter is the lack of conceptual models that can un-

ravel the underlying value chain (actors and data sharing relationships) when establishing 

vehicle data-driven services. In this chapter, we have therefore presented a novel conceptual 

model that includes multiple actors and their data sharing relationships (i.e. in terms of a 

data value chain) that are relevant for vehicle data-driven value creation. As such, our multi-

actor model shows data and information flows as a series of data sharing and data transfor-

mation steps that are needed to finally generate value and useful insights to service con-

sumers, establishing proof-of-concept (Nunamaker et al., 2015). Following Baskerville et al. 

(2018) we present a novel and useful conceptual model and thus generate a significant con-

tribution. While previous research in (big) data has shown a clear focus on data users (Wie-

ner at al., 2020), we also emphasize the importance of data providers and intermediaries 

and their interactions in a multi-actor model, thus extending the perspective to the ecosystem 

where the value creation is enacted. Consequently, we emphasize that data-driven value 

creation in the automotive ecosystem must be achieved through collaboration among vari-

ous stakeholders, thus contributing to the debate on realizing value from (big) data (cf. Gün-

ther et al., 2017) by stressing a multi-actor perspective. 

Several researchers in the field of information systems have also been engaged in the 

study of value creation from big data because big data is a comparatively new phenomenon 

and the organizational implications of big data are of great interest to them (e.g., Akter et al., 

2016; Dremel et al., 2017; Dremel et al., 2020; Grover et al., 2018; Lehrer et al., 2018; Mikalef 

et al., 2017; Svahn et al., 2017; Wamba et al., 2015; Wamba et al., 2017). However, they 

focus on the impact of big data analytics on the level of an individual organization (e.g., on 

organizational performance, strategic business value, strategic use, organizational change, 

or required organizational capabilities) and exclude the network and ecosystem perspectives 

for creating data-driven services. They focus on an intra-organizational (i.e., micro) perspec-

tive, whereas we want to look at value creation in a multi-actor ecosystem (i.e., macro) per-

spective. While their research specifically targets the big data phenomenon, we want to em-

phasize that value can also be created from services enabled by the exchange of small data 

between actors. 
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Several studies investigate how vehicle usage data can lead to novel services, such as 

location-based services for carsharing vehicles (Wagner et al., 2015), predictive mainte-

nance of connected vehicles (Gerloff and Cleophas, 2017), or eco-feedback on driving be-

haviour (Bätz et al., 2020). Yet, these studies focus rather on data analytics approaches to 

exploit vehicle data than on the data ecosystem perspective. Also considering the state of 

the art gaps discussed in previous sections, we argue that our proposed conceptual model 

would allow relevant actors to be identified and mapped in order to eventually achieve peri-

ods of stability and change (Nischak et al., 2017, p. 17) and the interactions that ultimately 

lead to the envelopment (Eisenmann et al., 2011) of other emerging digital business ecosys-

tems. Furthermore, our model indicates choices for how the value chain can evolve and, 

above all, which other actors are needed, because the development of a data-driven service 

and the selection of suitable actors is a decision-making task.  

Our model shows that actors are involved in a multi-party data value creation process to 

ultimately provide sustainable data-driven services to service customers such as vehicle 

drivers and therefore contributes to a better understanding of vehicle data-driven value cre-

ation in general. Based on our interviews with experts, all of whom have a connection to 

vehicle data-driven value creation and some of whom are developing these vehicle data-

driven services themselves, we have learned that the successful development and provision 

of data-driven services in the automotive domain and thus the successful monetisation of 

vehicle operation data will require new partnerships between individual ecosystem actors, 

as no actor will bear the service development risk alone. We argue that our conceptual model 

provides a solid understanding of the ecosystem actors and their role in data sharing and in 

the creation of data-driven services, thus supporting strategic decisions, e.g., in terms of 

partnerships and sourcing. In doing so, we are contributing to research on data monetization, 

responding to the call by Parvinen et al. (2020) for a better understanding of the role of data 

aggregators and refiners in data monetization, how they create value and how different par-

ties can capture it. 

We have developed our model empirically, drawing on the knowledge of automotive do-

main experts who have an average of more than 16 years of professional experience in the 

mobility industry. Laying emphasis on actors that have a stake in data generation and shar-

ing, we differ methodically from the approaches of other researchers who study ecosystems 

in the mobility domain, including Riasanow et al. (2017) using crunchbase.com data to visu-

alise the current automotive ecosystem in a generic value network, Remane et al. (2017) 
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focusing on the identification of business model types of start-ups, or Kolbe et al. (2017) 

creating an IoT framework and focusing on semantic interoperability.  

Our background is in the field of data-driven service development in the automotive do-

main, and we stress that our conceptual model is inspired by research on data-driven value 

creation published by Curry et al. (2016), Miller and Mork (2013), or Latif et al. (2009). Our 

concept of connecting automotive ecosystem actors with data sharing and enrichment pro-

cesses is new. We understand our model as a descriptive tool that shows the process to-

wards providing a data-driven service from both an actor and a data perspective. Further-

more, we believe that our presented research is also helpful in better describing and classi-

fying existing data-driven services. Our model can support ecosystem actors to better rec-

ognise and understand their interdependencies with other actors or even to understand what 

interdependencies exist at all.  

It is worth mentioning that actors within the ecosystem for vehicle data-driven value cre-

ation are different from the classical actors within the vehicle supply chain. For instance, 

although vehicle manufacturers (OEMs) are heavily dependent on original equipment sup-

pliers in the supply chain, these Tier-1 (module or system suppliers) and Tier-2 (component 

suppliers) are not specifically addressed in our model. However, they have an indirect rele-

vance within the creation of vehicle-data driven services: First, they can supply the vehicle 

telematics device to the vehicle manufacturer, which enables data acquisition and data trans-

fer to the manufacturer’s backend servers. However, suppliers do not have a direct role 

within the process “from data to service”, as they do not have direct access to the vehicle 

data transmitted by their supplied telematics units to the vehicle manufacturer. Second, sup-

pliers may act as service developers providing not only hardware but also data-driven ser-

vices to vehicle manufacturers. If suppliers choose to do so, they are included in the model 

in the actor role “Provider of data-driven services”. We have deliberately avoided an actor 

role “supplier” in the model. For example, Tier-1 Robert Bosch GmbH not only designs vehi-

cle telematics devices but also offers data-driven services, such as road condition-based 

services (Bosch, 2020a) or Connected Horizon (Bosch, 2020b). The development and pro-

vision of both services can be well described by the use of our model, and both cases served 

within the conceptual model evaluation process. Third, suppliers can act as users of a data-

driven service, and in this case, are included in the model as “other consumers”. A prominent 

example case is the provision of a data-driven service for ECU health, that is made available 

to suppliers. This service can help suppliers to monitor the functionality of ECUs they have 
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designed and delivered to vehicle manufacturers and that are installed in the vehicle by the 

OEM. Suppliers can also take advantage of driving style recognition or environmental con-

dition monitoring services that will both help them to improve their ECU designs as well. 

15.6.2 Implications for practice 

In addition, we see several implications of our work for business practice. Based on a specific 

role of an ecosystem actor, we have shown in the evaluation that our conceptual model is 

useful to practitioners to better understand their own position in the ecosystem.   

For example, a manager responsible for digitalisation can identify which actors are rele-

vant to provide data-driven services. In addition, service developers may recognise the spe-

cial role of a vehicle user, without whose consent to the provision of collected data the de-

velopment of a data-driven service will not be possible. Vehicle manufacturers may be able 

to better communicate their own position in the value chain as the one who can technically 

store, interpret, and forward generated vehicle data. The manufacturer may recognise that 

a scaling provision of certain data-based services will only be possible if other actors are 

granted access to the vehicle’s bus information systems or if the manufacturer stores, trans-

mits and makes vehicle data available to others via its own datacentre.  

Start-ups interested in producing data-driven services may realise that they can also turn 

to data marketplaces that have already signed contracts with vehicle manufacturers and do 

not need to negotiate individually with each manufacturer to access the necessary data. The 

provision of vehicle data to data marketplaces can also lead to new ways for vehicle manu-

facturers to monetise vehicle data, namely when others use it to develop services that gen-

erate value independent of their core product, the vehicle. Those who wish to design data-

driven services can better identify the key players in the ecosystem they need to deal with, 

and those who want to be part of the service delivery process can better understand who 

they need to work with. Since one of the first decisions for organisations seeking to monetize 

vehicle data is to figure out, where to play in the value chain (Hood et al., 2019), we consider 

the knowledge contained in our model to be a significant contribution. 

15.6.3 Limitations 

In our concept phase, we tried to generalise the expert’s individual mental models on data-

driven value creation in order to eliminate individual perspectives as much as possible. Fur-

thermore, we have involved eleven experts from Central Europe in the data collection, who 

also work together with specific players in the automotive ecosystem and thus contribute 
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their own views. All interviewed experts are opinion leaders for the Central European market 

(the location of some of the largest vehicle manufacturers in the world), and therefore we 

believe that the interviewed experts represent an impressive amount of knowledge. The in-

terviews and individual sketching activities of the experts showed that there was a consensus 

on many important patterns (i.e., on the roles of the actors and their data sharing relation-

ships). This seems to show that our sample is appropriate for our research purpose. It is also 

worth noting that two of the authors have been working in the automotive sector for eight 

years each. Their contextual bias is mitigated by closely involving the other three authors in 

the research process in order to adopt an external and critical perspective, and by reflecting 

the results of the design process with them, so that “the higher-level perspective necessary 

for informed theorizing” is maintained (Gioia et al., 2013, p. 5). Finally, we have evaluated 

the model in total six times ex-post by applying it to real-life cases, establishing proof-of-

value (Nunamaker et al., 2015). Furthermore, we established proof-of-use by successfully 

applying the model in a research proposal that was granted with funding. 

15.7 Conclusion 

In this chapter, the authors adopt an ecosystem (i.e., macro) perspective and propose a 

novel conceptual, multi-actor model for value creation in vehicle data-driven services con-

sisting of ecosystem actors and their data sharing relationships, establishing proof-of-con-

cept. They thereby illustrate how different key actors such as vehicle users, manufacturers, 

data marketplaces, and service providers have to engage in data sharing relationships to 

create value from vehicle data (i.e., data that is collected by the vehicle’s sensors) and other 

relevant contextual data. They evaluated their model ex-post by applying it to six real-life 

application cases, such as the development of a vehicle data-driven service for road surface 

quality detection, which they also present in this chapter, establishing proof-of-value.  

The theoretical gap addressed in this chapter is the lack of conceptual multi-actor models 

that can unravel the underlying value chain (actors and data sharing relationships) when 

establishing (vehicle) data-driven services and consider an ecosystem perspective. Many of 

the researchers cited have focused on the perspective of a single organization, with an em-

phasis on deciphering the phenomenon of big data analytics and its implications at the intra-

organizational (i.e., micro) level. As our evaluation has shown the conceptual model contrib-

utes to a better understanding of the (data-driven) value creation logic and reveals critical 

actors and their data sharing activities that ultimately lead to created value. 
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While the authors of this chapter designed their conceptual model as a high-level model 

to reduce the complexity of the whole automotive ecosystem and focus on vehicle data pro-

vision and use, they are aware that their model cannot represent and explain all relevant 

aspects, value flows and power relations. We have focused on the data value chain and 

have therefore only included the most important actors in terms of data sharing. Neverthe-

less, the authors see numerous practical implications as our model could be used as a gov-

ernance and/or creativity tool to influence data sharing regulation (e.g., to better understand 

the dominant role of the OEM in enabling vehicle data-driven services) or even for the design 

of data-driven services outside the automotive domain. In addition, at an academic level, the 

authors see their research as a first contribution to the systematic design of a multi-actor 

model for vehicle data-driven value creation in the automotive sector that can help to guide 

next research endeavours in data-driven service development.  

Finally, the authors expect their article to have further implications on research such as 

becoming a structuring tool to design, compare and / or analyse cases of data-driven service 

development, or simply help future researchers to better understand potentials and pitfalls 

in the development of data-driven services. The authors even believe that the presented 

model is transferable to other domains where non-digital artefacts are the core product that 

generate data during use (such as the aircraft industry), although proving this claim would 

go beyond the scope of this chapter. Going after this claim, however, may spur future re-

search endeavours. 
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16. Summary, Conclusion, and Outlook  

First of all, from an economic point of view, the automotive industry is one of the most im-

portant industries not only in Germany, Austria, and Europe but worldwide. The digital trans-

formation opens up new opportunities for value creation in the automotive industry, but in 

some cases forces radical changes (e.g. from vehicle manufacturers) to remain competitive 

on the market. In this context, data is becoming an increasingly important asset, enabling 

data-driven services that can be used to open up new customer segments. For the develop-

ment of these, new players are also pushing into the ecosystems in which such data-driven 

services are developed in the cooperation of several roles (e.g. data provider, data market-

place, data-driven service developer, etc.).  

Since these data-driven services were only increasingly noticed by vehicle manufactur-

ers and the traditional automotive industry with the start of this dissertation and since there 

was hardly any related work, the investigations of this dissertation clearly extend the body of 

academic knowledge, potentially have a high impact to practice and serve to inform and 

shape future automotive research and practice. Thereby, contributions were made in many 

individual areas, which were presented in chapters 2-15. In a nutshell and to close the sum-

mary, the following core contributions of this dissertation can be mentioned: 

(i) Definition and description of Quantified Vehicles as a form of digitalization in the auto-

motive domain 

(ii) Understanding how Vehicle Data becomes a relevant artifact for business and innova-

tion 

(iii) Understanding and prototypical development of concepts and Data-driven Services 

along the Vehicle Data Value Chain that represent added value for consumers 

(iv) Understanding of the process and actors of value generation, and the interplay of the 

actors with each other in the Data-driven Service Ecosystem 

(v) Development of data-driven value generation and Data-driven Service Ecosystem mod-

els 

The intended recipients of the conducted applied research are equally the actors of the in-

dustry, especially the actors of the Data-driven Service Ecosystem (e.g. OEMs, ICT compa-

nies), as well as the scientific community, e.g. the IS community or automotive research in 

general. I hope that the results have created a fruitful basis on which other researchers or 

even industry players can build further. 
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The fact that the implementation concepts and implementations were only ever proto-

typed and never matured into real products is a clear limitation, even if they were developed 

on the basis of existing literature or empirically collected expert know-how. The same applies 

to the Data-driven Service Ecosystem models, that lack continuous evaluation. It is worth 

mentioning that the ecosystems of vehicle manufacturers (who play a dominant role as data 

providers) are still in the formation phase and therefore in a state of transition. Further limi-

tations are the study sizes, because field studies, surveys, case studies, etc. were mostly 

conducted in small to medium scales. Furthermore, analogies from other industries (e.g. 

platform techniques of the software industry) could have been investigated more intensively, 

as well as to check whether the findings might be valid for domains other than the vehicle 

domain (e.g. for the agricultural sector). 

In the end, however, I was able to improve the understanding of what Quantified Vehicles 

actually are, how (technically) vehicle data can be turned into valuable Data-driven Services 

for end customers, which questions are included in a research agenda the Information Sys-

tems (IS) community could answer, how the underlying Vehicle Data Value Chain is struc-

tured, which could be a frame of reference regarding the processes, how services can be 

developed concretely, which privacy challenges there are and how they could be solved (e.g. 

with the Open Vehicle Data Platform), and how data about vehicle use can be collected 

without vehicle manufacturers with a Vehicle Data Logger and how commodity hardware can 

be integrated.   

Second, I would like to draw a conclusion about what happened in the years 2016 to 

2020 / 2021. Working in automotive research has already given me an insight into a relatively 

conservative and mechanical engineering-driven automotive industry before, which is sud-

denly facing major challenges and a shift towards an even more software-intensive industry 

as a result of digital transformation. Data-driven services were praised by analysts and oth-

ers as a great opportunity to generate value and revenue in the future in the automotive 

domain. So this topic was very appropriate for a business information scientist, and support-

ing this first phase turned out to be very exciting. The different contributions made in many 

individual areas are expected to have an impact on both industry and science. 

However, some of the start-ups (Automatic, dash), which were pioneers in the field with 

their data-driven services (mostly based on OBD data and based in the USA) and introduced 

this innovation, have already disappeared from the market again. To go into more detail, 

Automatic for example, founded in 2011, was once financed with enormous venture capital 
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investments of more than USD 24 million (Stocker and Kaiser, 2016), was bought up by 

SiriusXM for over USD 115 million in April 2017 (TechCrunch, 2017), and decided to discon-

tinue its services in May 2020 (SiriusXM, 2020). In parallel, through standardization pro-

cesses (ISO, C-ITS, NEVADA) as well as many (research and development) projects (e.g. 

AutoMat, Cross-CPP), most vehicle manufacturers in Europe have now taken up the topic 

of Data-driven Services. New vehicles (e.g. from BMW, Daimler) often already offer now the 

technical infrastructure to theoretically collect all sensor data (e.g. wheel speeds per wheel, 

speed, tyre pressure, engine load, steering angle, ABS / ESP on or off, ACC in use, etc.) of 

the vehicle and make them available for algorithms of data-driven services, if the driver or 

vehicle owner wants to do so. This was not the case when the dissertation was started. 

Manufacturers in 2020 even are calling data-driven service developers to become part of 

their own ecosystem to develop manufacturer-specific data-driven services that customers 

(e.g. BMW or Daimler) can then install and use in their vehicles, similar to the app stores on 

smartphones. At the same time, newly developed data marketplaces (such as Caruso and 

Otonomo) offer the possibility of accessing data from several manufacturers via the platform. 

So it can be seen how the industry is developing and it was great to be able to accompany 

this development and shed light on some chosen topics like the value creation within the 

Vehicle Data Value Chain. 

So, what will happen next with this research and the topics involved in Quantified Vehi-

cles: Data, Services, Ecosystems? As an outlook, with (higher levels of, e.g. SAE levels 2-

5) automated driving, there is a further driver to make data available for Vehicle-2-Vehicle 

(V2V) and Vehicle-2-Infrastructure (V2I) communication. For a smooth traffic flow between 

a mixture of automated, semi-automated, and non-automated vehicles, one cannot rely 

solely on sensor technology within vehicles to detect the environment correctly, and so the 

exchange of vehicle and driving data is an important component here too, from which many 

other areas can benefit. Hence, the possibilities for data-driven services based on vehicle 

usage data are still increasing, be it traffic planning, traffic safety, driver tutoring, gamifica-

tion, product optimization, or new products (e.g. navigation to the next available parking 

space), etc, as soon as the vehicle usage data is available in an adequate form. Whereas 

the question remains whether the proprietary solutions of individual manufacturers (e.g., 

BMW and Daimler) with their own ecosystems in which service developers can develop and 

offer data-driven services will be the final state, or whether the provision of data (interfaces), 

selection of available signals, and data frequency will be standardized in the future to enable 
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holistic traffic analyses or automated driving, for example, and whether several years of the 

typically very long automotive development cycles will then again pass until a standardized 

solution is available in series vehicles. 

However, e.g. at the conference monetizing car data in 2020, vehicle manufacturers like 

Audi, BMW, and Daimler stated that there is no longer any talk of profit based on vehicle 

data from vehicle manufacturers. The pools of ideas are full at all manufacturers (they say), 

but they can hardly be monetized, was the common opinion. It is expected that there will be 

services that stand out and bring profit, but the outstanding idea has not yet been imple-

mented. However, since it is possible, that such a service will still be found, manufacturers 

emphasized the “added value” that is created by the offer to justify additional hardware and 

software costs. However, OEMs have learned that it may take many attempts to find a prof-

itable application, which is why the analysts, among others, are taking up the issue of mon-

etizability and offering to advise the OEMs, e.g. Capgemini Invest (Winkler et al., 2020) 

stated that “early achievements lag behind expectations”. B-2-C services, for example, seem 

to have little potential at present, as this customer group (e.g. private drivers) is only willing 

to pay for applications to a limited extent (Cäsar et al., 2020) or to even share data (Winkler 

et al., 2020). A Capgemini Invent study showed, that “out of 23 use-case categories investi-

gated, safety- and security-related services are valued most [e.g. Collision warning, hazard 

warning, theft detection, automatic pedestrian detection, and eCall] while in-car delivery and 

commerce are valued least” (Cäsar et al., 2020), this is why safety and security services are 

still the most likely to be paid for, followed by practical supports such as intelligent route 

planning, real-time parting information, automatic distance control. The B-2-B sector, on the 

other hand, is different. Startups such as Carployee.com, for example, sell their commuting 

solution to the company, and all employees can then use the app for ridesharing. In the 

meanwhile, OEMs attempt to build so-called ecosystems in which third party service devel-

opers and service providers can develop services. In this situation, vehicle manufacturers 

can cover their costs in the role of a data and platform provider. In parallel, there are efforts 

to achieve cross-manufacturer cooperation in Germany. 

The next few years will show which services will establish themselves on the market. In 

any case, the work of this dissertation on “Quantified Vehicles: Data, Services, Ecosystems” 

has made a contribution to better understanding the value-creating steps of the VDVC and, 

for example, has shown what the ecosystem currently looks like and thus also has a share 

in future changes. 
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My work will continue seamlessly, including newly funded research projects, albeit with 

a slightly different focus. In the beginning of 2021 the bilateral (with consortium partners from 

Germany and Austria) research project named ‘D-TRAS’ (Digital Platform for Traffic Safety-

Risk Prediction in Rural Areas) was launched, which uses vehicle data to detect and warn 

motorcyclists of hazards like a slippery turn. In addition, there are plans to leverage the 

emerging vehicle data marketplaces (e.g., Caruso Dataplace), and add driver smartphone 

data to them to expand the capabilities. Smartphones are well suited due to their widespread 

use and the elimination of hardware costs. There is already existing research and literature 

to use smartphone data (e.g. GPS, camera, IMU sensor, microphone, radio signals), for 

example to detect driver distraction, one of the major causes of road accidents, or to auto-

matically calculate commuting suggestions to ultimately reduce congestion at peak times, 

and thus also unnecessary CO2 emissions. So even if vehicle manufacturers here do not yet 

reap big profits from vehicle data in the short term, vehicle data can pave the way to reduce 

congestion, pollution, stress and, most importantly, fatalities, and help road users in areas 

such as parking, safety, etc., so that we can get from A to B more happily in the future. And 

so I am sure vehicle data will continue to play a big role in the future. 
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