15 research outputs found

    Software trace cache

    Get PDF
    We explore the use of compiler optimizations, which optimize the layout of instructions in memory. The target is to enable the code to make better use of the underlying hardware resources regardless of the specific details of the processor/architecture in order to increase fetch performance. The Software Trace Cache (STC) is a code layout algorithm with a broader target than previous layout optimizations. We target not only an improvement in the instruction cache hit rate, but also an increase in the effective fetch width of the fetch engine. The STC algorithm organizes basic blocks into chains trying to make sequentially executed basic blocks reside in consecutive memory positions, then maps the basic block chains in memory to minimize conflict misses in the important sections of the program. We evaluate and analyze in detail the impact of the STC, and code layout optimizations in general, on the three main aspects of fetch performance; the instruction cache hit rate, the effective fetch width, and the branch prediction accuracy. Our results show that layout optimized, codes have some special characteristics that make them more amenable for high-performance instruction fetch. They have a very high rate of not-taken branches and execute long chains of sequential instructions; also, they make very effective use of instruction cache lines, mapping only useful instructions which will execute close in time, increasing both spatial and temporal locality.Peer ReviewedPostprint (published version

    Linux kernel compaction through cold code swapping

    Get PDF
    There is a growing trend to use general-purpose operating systems like Linux in embedded systems. Previous research focused on using compaction and specialization techniques to adapt a general-purpose OS to the memory-constrained environment, presented by most, embedded systems. However, there is still room for improvement: it has been shown that even after application of the aforementioned techniques more than 50% of the kernel code remains unexecuted under normal system operation. We introduce a new technique that reduces the Linux kernel code memory footprint, through on-demand code loading of infrequently executed code, for systems that support virtual memory. In this paper, we describe our general approach, and we study code placement algorithms to minimize the performance impact of the code loading. A code, size reduction of 68% is achieved, with a 2.2% execution speedup of the system-mode execution time, for a case study based on the MediaBench II benchmark suite

    Measurement-Based Timing Analysis of the AURIX Caches

    Get PDF
    Cache memories are one of the hardware resources with higher potential to reduce worst-case execution time (WCET) costs for software programs with tight real-time constraints. Yet, the complexity of cache analysis has caused a large fraction of real-time systems industry to avoid using them, especially in the automotive sector. For measurement-based timing analysis (MBTA) - the dominant technique in domains such as automotive - cache challenges the definition of test scenarios stressful enough to produce (cache) layouts that causing high contention. In this paper, we present our experience in enabling the use of caches for a real automotive application running on an AURIX multiprocessor, using software randomization and measurement-based probabilistic timing analysis (MBPTA). Our results show that software randomization successfully exposes - in the experiments performed for timing analysis - cache related variability, in a manner that can be effectively captured by MBPTA

    Control/Architecture co-design for cyber-physical systems

    Get PDF

    Statement of Work for Studies in BlueGene/L Scalability and Reconfigurability

    Full text link

    Semantics-preserving cosynthesis of cyber-physical systems

    Get PDF
    corecore