
Restructuring Field Layouts for Embedded Memory Systems

Keoncheol Shin Jungeun Kim∗ Seonggun Kim Hwansoo Han
Division of Computer Science System Architecture Lab Division of Computer Science Division of Computer Science

KAIST Samsung Electronics Corp. KAIST KAIST

Daejeon, Korea Suwon, Korea Daejeon, Korea Daejeon, Korea

Abstract

In many computer systems with large data computations,
the delay of memory access is one of the major performance
bottlenecks. In this paper, we propose an enhanced field
remapping scheme for dynamically allocated structures in
order to provide better locality than conventional field lay-
outs. Our proposed scheme reduces cache miss rates dras-
tically by aggregating and grouping fields from multiple
instances of the same structure, which implies the perfor-
mance improvement and power reduction. Our methodol-
ogy will become more important in the design space explo-
ration, especially as the embedded systems for data oriented
application become prevalent. Experimental results show
that average L1 and L2 data cache misses are reduced by
23% and 17%, respectively. Due to the enhanced locali-
ties, our remapping achieves 13% faster execution time on
average than original programs. It also reduces power con-
sumption by 18% for data cache.

1 Introduction

Embedded systems have limited battery, memory and
processing power, which is the most contrasting difference
between embedded systems and general purpose systems.
Early applications of embedded systems are restricted to
rather simple tasks. In recent years, however, with increas-
ing design complexity and demand for large data compu-
tation like multimedia applications, memory subsystems in
embedded systems have become not only the major perfor-
mance bottleneck but also energy sink.

Panda et al. surveyed various mechanisms related to
memory optimizations for embedded systems in [5]. Many
improvements through additional hardware, new architec-
tures and compiler optimizations are achieved. Cache mem-
ories are frequently found in modern embedded proces-
sors in order to reduce the memory access time. Many lo-
cality enhancing optimizations are evaluated as beneficial,

∗This work is done while she was in the division of computer science
at KAIST

since improved data reuse and prefetch effect could amor-
tize the optimization overhead. Data remapping is one of
the techniques used to improve temporal and spatial locality
in structure-type data [6, 4, 2, 8]. While early works often
focused on statically allocated data alone, recent researches
take account of dynamically allocated data as well, since
complex applications tend to use more dynamic data than
static data.

Compiler optimizations traditionally played important
roles in minimizing the memory footprints of programs.
Kistler et al. investigated the effectiveness of field reorder-
ing [4]. They used a profiling technique to find out the best
order of fields within structures. Chilimbi et al. split Java
classes into hot portions and cold portions based on the pro-
files of field access frequencies [2]. Extra pointers are ap-
pended at the end of the hot field areas, linking cold field
areas. While they are able to reduce L2-cache misses, the
total memory usage may increase due to the extra pointer
fields. In addition to that, accessing fields in cold areas
requires extra memory references to go through the extra
pointer links. Truong et al. proposed another approach
to change data layouts through field reorganization and in-
stance interleaving [8]. Identical fields from the multiple in-
stances of the same structure-type are consecutively placed
with the consideration of cache-line alignment. Using this
scheme, rarely used fields are moved away from frequently
used fields. Their placement method, however, is limited in
that all fields should be grouped into two parts and the size
of each group should be the same.

Rabbah and Palem proposed a vertical field layout that
consecutively places the same fields from multiple struc-
ture instances by using customized allocation routines
and compile-time transformations of field offset calcula-
tions [6]. Their method is similar to what Truong et al.
proposed in a sense that fields from multiple instances are
placed together. The weakest point of their layouts is that
they need to insert padding space between fields in order
to make constant offsets for all fields. Intuitively, extra
padding could increase memory usages and cache misses.

In this paper we present a new field remapping scheme

that integrates the benefits from previous works and over-
comes the defects of previous works. The main contribu-
tions of our remapping scheme are summarized as follows:

• no restriction on field types and field sizes,

• no waste of memory due to padding, and

• no address computation overhead for frequently ac-
cessed fields.

The remaining paper is organized as follows: Section 2
discusses the motivation of this research. The data remap-
ping algorithm and our transformation methodology are de-
tailed in Section 3. Our evaluation environments and results
are shown in Section 4. Finally, we conclude with summary
and discussion.

2 Motivation

Before we introduce our field remapping scheme, we
start by describing a field clustering technique. A structure
consists of diverse data fields with different sizes. We often
encounter programs where reorganizing fields within struc-
tures is helpful for their performance. Refer to the example
code in Figure 1. The function search() in the example tra-
verses a linked list and returns the data value in the node
that has a first matching key. We can find that key and next
fields are accessed every iteration whereas data fields are
accessed just once when the function returns. Considering
the access frequencies, we can categorize key and next as
hot fields, and data as a cold field. Generally speaking, it
would be beneficial to fetch and store as many hot fields as
possible in a cache with one memory access.

To achieve this purpose, Rabbah and Palem’s remapping
method (DDRemap) is applied to the example in Figure 1
and consecutively locates all the fields from multiple struc-
tures as shown in Figure 2(a). Notice that data fields are

Node {
int key; // 4 bytes
char data[6]; // 6 bytes
Node ∗next; // 4 bytes

} ∗T;

char∗ search (int key) {
Node ∗cur = T;
while (cur != NULL) {

if (cur –>key == key)
return cur–>data;

cur = cur–>next;
}
return NotFound;

}
Figure 1. Motivation example: structure type definition
of Node and search function for the list of nodes.

O1.key O1.next O2.key

On.key

On.next
On.data

O1.key
O1.next O2.next

O2.dataOi.key

(b)

O1.key

O1.next
O1.data

O2.key

O2.next
O2.data

Oi.key

Oi.next
Oi.data

(a)

...

maximum
field size

MaxObjCnt = n

PP data

On.key
On.nextOn.data

...

...

... ...
...
...

padding

O1.data
Oi.data Oi.next...

...O2.key

On.key On.next On.dataO1.data
O2.next

O2.data
Oi.key Oi.next

Oi.data

(c)

... ...

...

... ...

O1.g1 Oi.g1

Oi.g2

P next

P P next
P data

P

...

P data P next

...

Figure 2. (a) Structure layout after field remapping with
Rabbah and Palem’s, (b) Structure layout after compacting
fields of (a), (c) Structure layout after our field remapping.

put aside from the frequently used fields. To access the
fields in structure objects, compilers statically generate field
offsets from the base addresses of the structure objects.
Note that all the fields of one object are vertically located
with a constant interval MaxFieldSize × MaxObjCnt
as marked with thick line in Figure 2(a). MaxFieldSize
is the maximum field size among all fields fi in the struc-
ture. MaxObjCnt is the maximum number of the struc-
ture objects that can be stored in a memory pool. Since
the size of the memory pool is fixed, we can determine the
MaxObjCnt value at compile time.

Rabbah and Palem’s scheme has extra padding between
fields to make the offset calculation of each field a con-
stant. We can improve cache behavior by eliminating the
useless padding like Figure 2(b). This compaction intrinsi-
cally requires extra instructions to compute address at run-
time. However, we can completely eliminate the extra in-
structions for frequently accessed fields and enhance cache
behavior by field grouping technique. Moreover, we can
apply several strength reduction optimizations to minimize
the access overhead of infrequently used fields. Figure 2(c)
shows the layout after our remapping scheme.

3 Restructuring Field Layout

We call our remapping scheme Compact Group Field
Remapping (CGFRemap). Full details of CGFRemap will
be discussed in the following two sections.

3.1 Field Compaction

Our first objective is to get rid of wasted padding space.
Figure 2(b) shows the layout in which all fields are com-
pactly packed. If we generalize the offset calculation of

2

compactly packed layout, the address offset of the ith
field(fi) of the object pointed by P is:

Offset(P → fi)

= FieldSize(f1) × (MaxObjCnt − rank)

+
∑i−1

k=2
FieldSize(fk) × MaxObjCnt

+ FieldSize(fi) × rank

=
∑i−1

k=1
FieldSize(fk) × MaxObjCnt

+ (FieldSize(fi) − FieldSize(f1)) × rank (1)

When the field offset is computed, we need to know the
relative position i of the object in the memory pool. Let
rank be i − 1 to represent the relative position. In Equa-
tion 1, FieldSize(fi) for all fields are compile-time con-
stants. MaxObjCnt is determined at compile time, since
it depends on the sizes of one memory pool and one struc-
ture instance. The only variable that needs to be determined
at run time is the value of rank. Since we cannot know the
relative positions of structure objects in a memory pool at
compile time, they need to be calculated at runtime. In the
later section we describe how to reduce the runtime over-
head involved in offset calculations.

3.2 Field Grouping

In general many applications frequently use two or three
fields together among several fields within a structure. Re-
fer to our motivation example in Figure 1. The search()
function in the code intends to access key and next fields
together. If we layout fields on the memory as in Fig-
ure 2(c), the probability of fetching the two fields to-
gether would increase. Consequently, our scheme has to
decide which fields are grouped together. We can easily
get the field access sequences by profiling, since embed-
ded systems usually use a few typical programs. From
these access sequences, we can build temporal relationship
graph(TRG) [3] modified to allow self edges. We can de-
termine whether to combine the nodes connected by largest
weighted edge in the TRG through field affinity relations.

As shown in Figure 2(c), in order to access the next field
of Oi, we have to know the offset of the field group to which
the field next belongs. We then find the offset within the
group. By adding the group offset and intra-group offset,
we can calculate the exact offset of next from P . If we gen-
eralize this observation, we can write the following equation
for the field offset in CGFRemap:

CGFRemap(P → fi) = CGFRemap(P → gu,v) =

CGFRemapgroup(P → gu) +

v−1∑

k=1

FieldSize(fk in uth group)

CGFRemapgroup(P → gu) =

u−1∑

k=1

FieldSize(gk) × MaxObjCnt

+ (FieldSize(gu) − FieldSize(g1)) × rank (2)

When we want to access fi by denoting P → fi, we
have to find an equivalent expression P → gu,v . The field
notation gu,v means the vth field within the uth field group.
The way in which we get the group offset is virtually the
same as Equation 1. We just substitute the group name for
the individual field name as in Equation 2.

When we decide the order among field groups, we place
the most frequently accessed group at the first place. Since
the group offset of the first group is zero, only the intra-
group offset is needed for the field offsets in the first group.
In addition to that, intra-group offsets are all compile-time
constants, once we decide which fields belong to which
groups. As a result, frequently used fields should be placed
at the first group and their field offsets will be compile-time
constants. For the rest of field groups we need to perform
extra instructions at runtime to calculate the field offsets.
The following subsections describe how we can reduce the
overhead of runtime offset calculations.

3.2.1 rank calculation using pool alignment

CGFRemap needs to calculate rank at runtime to find
a relative position of the structure object in the pool. If
we know the start address of the pool to which the ob-
ject pointed by P belongs, we can easily calculate rank
from the address of P . Assume that the value of P is
0x4b329030 and the base address of pool is 0x4b329000
as shown in the figure 3(a). Suppose that the size of the first
field group is four bytes, the rank of the object pointed by
P is (0x4b329030 - 0x4b329000)/4 = 12. A simple thought
would record the base addresses of all memory pools in a
table and look up the table whenever necessary. This is,
however, very expensive to calculate the rank, since this
scheme would require extra memory references. To reduce
the overhead involved in the calculation of rank, we align
pools on 4K boundaries as shown in the Figure 3(b). As-
suming we have a pointer P whose value is 0x4b329030,
we can extract the base address of the pool using a bit oper-
ation (0x4b329030 & 0xfffff000 = 0x4b329000).

Figure 4 is our customized memory allocation function
for CGFRemap. This function preserves a large amount of
memory called pool. Whenever the customized memory al-
location is called, it returns the address within a previously
preserved pool as long as the pool can hold the structure.
When the function getPool 4Kaligned() in the code is
first called to get a new pool, it allocates a large amount
of memory called bank which can hold multiple pools in-
side. It then returns the address of 4K pool aligned on the
4K boundaries. For subsequent requests of pools, it returns
a pool from the previously allocated bank. One more thing
to note is that there is a leading space in a bank. As the start
address of bank given by malloc() is arbitrary in reality, we
skip a leading memory space in order to start the first pool
from the 4K aligned address. In our experiment the bank

3

O .g …O .g O .g O .g O .g …

12 g element

(a) (b)

Figure 3. (a) A memory Pool and description of allocation mechanism, (b) Aligning a memory pool on 4K boundaries.

sizes are adapted from 40KB to 4000KB according to the
data sizes of applications.

Input: record type (R),
max number of objects in a pool (MaxObjCnt).

Output: valid heap (base) address where R is allocated.

01. Static Initialize (Base = Limit = 0);
02. if Base == Limit then

// get a 4KB memory pool
03. Base ←getPool 4Kaligned(4096);
04. Limit ← Base + MaxObjCnt × FieldSize(R.g1);
05. end if
06. Address ← Base;
07. Base ← Base + FieldSize(R.g1);
08. Return Address;

Figure 4. Customized memory allocation algorithm for
our field remapping scheme.

3.2.2 Strength reduction in offset calculations

We used several strength reduction techniques to min-
imize the runtime overhead of address computations. The
optimized equation for rank is as follows.

rank(P) = (P & BitMask) / FieldSize(g1)

⇒ (P & BitMask) � Bits(g1) (if |g1| = 2k) (3)

First, we can substitute subtraction by bitwise AND op-
eration due to the pool alignment. BitMask is used to get
the difference between the starting address of the memory
pool and the address value of the pointer P . If we use 4KB
memory pools, the difference would be the last 12 bits from
the pointer P . BitMask (0x00000fff) zeroes out all higher
bits except for the lower 12 bits of P .

Second, we can replace the division operation with the
shift operation if the bit size of the first group is in the form
of power of two. As mentioned previous section, frequently
used fields are put in the first group. Then we do not have
to provide rank calculations for them. If the size of the first
group is not power of two, we had better find another field
that has high frequency of uses and makes the size power
of two. Now we can replace rank in equation 2 with equa-
tion 3, then rewrite of the equation is as follows.

CGFRemapgroup(P → gu) =

u−1∑

k=1

FieldSize(gk) × MaxObjCnt +

(FieldSize(gu) − FieldSize(g1)) × (P&BitMask) � Bits(g1) (4)

The sum of field group sizes from g1 to gu−1,
MaxObjCnt, and the size difference between the first field
group and the uth field group can be obtained at com-
pile time. Even with those constants, we need four extra
run-time instructions to calculate the offset: one add, one
multiply, one bitwise AND, and one shift. It is possible
to further simplify Equation 4. When the uth field group
size is the same as the first field group size, the result of
(FieldSize(gu) − FieldSize(g1)) becomes zero making
the whole second term zero. In this case we do not require
any extra run-time instructions for the offset calculation.

Finally, multiply can be replaced with a shift operation
if the result of (FieldSize(gu) − FieldSize(g1)) is in the
form of power of two. In this case we can also combine two
shift operator and reduce the calculation to one shift oper-
ation. Figure 5(c) shows the assembly code as a result of
strength reductions. Register %eax has the value of pointer
cur which points to the instance of Node structure in Fig-
ure 1. As described so far, there are several opportunities to
reduce the overhead of the offset calculation. Even though
most of these optimizations are conditional, we could apply
these optimizations to the most of the field references in the
experiment.

cur->key = 1;

cur->next = 0;

cur->data[0] =‘a’;

movl $1, (%eax)

movl $0, 12(%eax)

movb $97, 4(%eax)

movl $1, (%eax)

movl $0, 4(%eax)

movl %eax, %edx

andl %4095, %edx

sarl $2, %edx

subl %edx, %eax

movb $97, 2336(%eax)

(a) (b) (c)

Figure 5. (a) original source code, (b) assembly code for
original layout, (c) assembly code for our layout.

4 Experimental Evaluation

Four applications from the Olden benchmark version
1.01 [1] are used to substantiate our claims on locality im-
provement. Tsp is a famous travelling salesman problem
solver, which uses a balanced binary-tree. Health simu-
lates the Columbian health care, which heavily uses double-
linked lists. Mst is a benchmark to calculate the minimum

4

spanning trees from the input graphs. Perimeter is an ap-
plication to calculate perimeters of the regions that are rep-
resented with Quad-tree. For our experiment, we manually
modified the benchmark codes to access fields and allocate
structures with our macros.

We measured execution times on a RedHat 9.0 Linux
PC equipped with a 2.4GHz Pentium4 processor which has
8KB L1 data cache (64byte cache line, 4-way set associa-
tive), 512KB L2 cache (64byte cache line, 8-way set asso-
ciative) and 1GB main memory. All benchmarks are com-
piled with gcc (Ver. 3.2.2) -O3. For simulating the behav-
ior of cache memory, we used Cachegrind in the Valgrind’s
Tool suite (Ver. 3.0.1) [9]. Sim-Panalyzer (Ver. 2.0.2) [7]
is used for the power estimation of the cache memory.

4.1 Impact on cache memory

In order to evaluate memory performance, we measured
the numbers of cache misses. Table 1 and Table 2 show
L1 and L2 cache misses respectively. We used the same
cache configuration as the machine on which we measured
execution times. The column labeled Original represents
the base results from unoptimized layout. The results using
Rabbah and Palem’s method [6] are shown in the column
labeled DDRemap. The results under CGFRemap rep-
resents the measurements from our layout method. Com-
pared to original layouts, reductions of CGFRemap are
23.1% for L1 and 17.4% for L2. DDRemap achieves fairly
good reductions in L1 and L2 cache misses, but less than

Table 1. The numbers of misses in L1 data cache (×103).

Benchmarks Input Original DDRemap CGFRemap
4096 187.4 250.5 92.0Tsp
16384 808.7 1028.6 423.7
7,20 510.5 500.2 483.5Health
9,20 8165.7 8054.7 7763.2
2048 25207.4 23494.5 21330.7Mst
3000 53499.3 50473.2 45847.6
11 85.7 72.4 66.8Perimeter
12 167.0 138.9 126.2

Avg.% improved - -1.59% +23.11%
excluding Tsp - +8.02% +14.39%

Table 2. The numbers of misses in L2 cache (×103).

Benchmarks Input Original DDRemap CGFRemap
4096 6.6 9.0 6.2Tsp
16384 92.4 86.5 68.5
7,20 476.8 382.5 416.4Health
9,20 7681.8 6273.5 6791.1
2048 20659.0 20820.3 18279.0Mst
3000 51827.6 48788.4 43771.3
11 64.8 49.1 47.5Perimeter
12 143.0 106.3 103.5

Avg.% improved - +8.07% +17.36%
excluding Tsp - +15.54% +17.60%

(a) Health with input :7,20 (b) Perimeter with input: 11
Data cache size (4 way set assoc. 32B line size)

Figure 6. Tradeoff between cache miss and power dissi-
pation as cache size increases.

CGFRemap on average. Average numbers for DDRemap
look bad due to the pathological cases in Tsp, where struc-
tures consist of fields with different sizes.

Figure 6 shows the changes of cache misses and power
consumption as we vary the size of the cache. Our scheme
reduces the average power consumption of the data cache
by 17.6% on the same cache size. In addition to that, we
can see that our scheme preserves the application’s perfor-
mance with less than half the cache size. This result can
play a significant role in optimizing the memory subsystem
design in embedded systems. Design space exploration can
make full use of our scheme to reduce cache sizes without
loss of performance, which means better designs in power,
cost, and size. In summary, CGFRemap is able to enhance
the memory performance by benefiting from field compact-
ing and hot field grouping. It can also reduce the power
consumption of the data cache by reducing switching activ-
ities.

4.2 Impact on execution times

Table 3 shows the execution times of each benchmark
with various input values. The execution times under the
Original column show the base performance with unop-
timized layouts. The following columns show execution
times and the percentages of improvement for correspond-
ing layout optimizations. When we use small size inputs,
the effect of each optimization is similar since the execu-
tion time is too short. To intensify the impact of improved
locality on performance, we run the experiment with large
size inputs. DDRemap works relatively well except for Tsp.
Average improvement in execution times excluding Tsp is
8.5%, which is comparable to our field remapping. With
a large input (2 ∗ 107), however, unnecessary padding in

5

Table 3. Comparison of execution times for different field layouts.
Bench- Input Original DDRemap CGFRemap
marks (sec) (sec/% improved) (sec/%improved)

5 ∗ 105 2.96 2.76 +6.8% 2.75 +7.1%
Tsp 5 ∗ 106 50.57 46.85 +7.4% 45.11 +10.8%

2 ∗ 107 881.93 1421.95 -61.2% 637.59 +27.7%
10,20 3.97 3.73 +6.1% 3.63 +8.6%Health
11,20 15.36 14.49 +5.7% 13.78 +10.2%
3000 6.70 7.00 -4.5% 6.55 +2.2%Mst
10000 731.25 716.49 +2.0% 694.33 +5.0%

11 2.57 1.99 +22.6% 2.011 +21.8%Perimeter
12 765.20 618.82 +19.1% 612.17 +20.0%

Avg.% improved - - +0.43% - +12.61%
excluding Tsp - - +8.49% - +11.32%

DDRemap takes toll on the performance, slowing the execu-
tion about 60%. On the contrary, CGFRemap does not have
pathological cases as in DDRemap. Average performance
improvement is 12.6%, which is better than DDRemap.

Since our method uses runtime offset calculations for
some fields, the benefits from improved locality can be re-
duced by the runtime overhead. Table 4 shows the increased
static code sizes due to address computations. Even with
these increased overhead, we could achieve better perfor-
mance by enhancing locality further.

Table 4. Static code size for Original and CGFRemap.
Benchmarks Tsp Health Mst Perimeter
Original 18758B 18774B 18232B 17297B

CGFRemap 20315B 19362B 18583B 17602B
Increased% +8.3% +3.1% +1.9% +1.8%

5 Conclusion and Future Work

We present a new field remapping method for structure-
type data, CGFRemap. CGFRemap places bundles of the
same fields on consecutive memory in turn, instead of map-
ping a structure to the memory as a whole. CGFRemap
eliminates unused padding introduced in the previous work,
but with the runtime overhead to calculate field offsets. For
the hot fields, however, CGFRemap does not require run-
time calculations for their field offsets. Thus, grouping
makes CGFRemap further reduce cache misses with less
overhead. Compared to original layouts, CGFRemap re-
duces L1 cache misses and L2 cache misses by 23% and
17% respectively. As a result, execution times are reduced
by 13% and power consumptions are reduced by 18% in the
data cache. Our remapping scheme can be utilized to find
good alternate solutions to meet the specified constraints in
the design space exploration.

In the experiment, we translated structure related state-
ments in the benchmarks to the predefined macros by pro-
cessing at the source level. Thus, it would be more efficient
to generate the assembly codes for address computations

automatically in the compiler. If we complete the automa-
tion with compiler, we can expect more reduction in execu-
tion cycles needed for runtime offset calculations.

6 Acknowledgement
This research was supported by the MIC(Ministry of Infor-

mation and Communication), Korea, under the ITRC(Inofrmation
Technology Research Center) support program supervised by
the IITA(Institute of Information Technology Assessment) (IITA-
2005-C1090-0502-0031)

References

[1] M. Carlisle and A. Rogers. Olden benchmark.
http://www.cs.princeton.edu/ mcc/olden.html.

[2] T. Chilimbi, B. Davison, and J. Larus. Cache-conscious struc-
ture definition. In Proceedings of ACM SIGPLAN Confer-
ence on Programming Language Design and Implementations
(PLDI’99), pages 13–24, May 1999.

[3] N. Gloy, T. Blackwell, M. Smith, and B. Calder. Procedure
placement using temporal ordering information. In Proceed-
ings of IEEE/ACM International Symposium on Microarchi-
tecture (MICRO’97), pages 303–313, December 1997.

[4] T. Kistler and M. Franz. Automated data-member layout
of heap objects to improve memory-hierarchy performance.
ACM Transactions on Programming Languages and Systems,
22(3):490–505, May 2000.

[5] P. Panda, F. Catthoor, N. Dutt, K. Danckaert, E. Brockmeyer,
C. Kulkrani, A. Vandercappelle, and P. Kjeldsberg. Data and
memory optimization techniques for embedded systems. ACM
Transactions on Design Automation of Electronic Systems,
7(2):149–206, April 2001.

[6] R. M. Rabbah and K. V. Palem. Data remapping for de-
sign space optimization of embedded memory systems. ACM
Transactions on Embedded Computing Systems, 2(2):186–
218, May 2003.

[7] Sim-panalyzer. http://www.eecs.umich.edu/ panalyzer.
[8] D. N. Truong, F. Bodin, and A. Seznecs. Improving cache be-

havior of dynamically allocated data structures. In Proceed-
ings of International Conference on Parallel Architectures and
Compilation Techniques (PACT’98), page 322, Octobor 1998.

[9] Valgrind. http://www.valgrind.org/.

6

