3,715 research outputs found

    Automatic Model Based Dataset Generation for Fast and Accurate Crop and Weeds Detection

    Full text link
    Selective weeding is one of the key challenges in the field of agriculture robotics. To accomplish this task, a farm robot should be able to accurately detect plants and to distinguish them between crop and weeds. Most of the promising state-of-the-art approaches make use of appearance-based models trained on large annotated datasets. Unfortunately, creating large agricultural datasets with pixel-level annotations is an extremely time consuming task, actually penalizing the usage of data-driven techniques. In this paper, we face this problem by proposing a novel and effective approach that aims to dramatically minimize the human intervention needed to train the detection and classification algorithms. The idea is to procedurally generate large synthetic training datasets randomizing the key features of the target environment (i.e., crop and weed species, type of soil, light conditions). More specifically, by tuning these model parameters, and exploiting a few real-world textures, it is possible to render a large amount of realistic views of an artificial agricultural scenario with no effort. The generated data can be directly used to train the model or to supplement real-world images. We validate the proposed methodology by using as testbed a modern deep learning based image segmentation architecture. We compare the classification results obtained using both real and synthetic images as training data. The reported results confirm the effectiveness and the potentiality of our approach.Comment: To appear in IEEE/RSJ IROS 201

    Transition Contour Synthesis with Dynamic Patch Transitions

    Get PDF
    In this article, we present a novel approach for modulating the shape of transitions between terrain materials to produce detailed and varied contours where blend resolution is limited. Whereas texture splatting and blend mapping add detail to transitions at the texel level, our approach addresses the broader shape of the transition by introducing intermittency and irregularity. Our results have proven that enriched detail of the blend contour can be achieved with a performance competitive to existing approaches without additional texture, geometry resources, or asset preprocessing. We achieve this by compositing blend masks on-the-fly with the subdivision of texture space into differently sized patches to produce irregular contours from minimal artistic input. Our approach is of particular importance for applications where GPU resources or artistic input is limited or impractical

    Real-time lattice boltzmann shallow waters method for breaking wave simulations

    Get PDF
    We present a new approach for the simulation of surfacebased fluids based in a hybrid formulation of Lattice Boltzmann Method for Shallow Waters and particle systems. The modified LBM can handle arbitrary underlying terrain conditions and arbitrary fluid depth. It also introduces a novel method for tracking dry-wet regions and moving boundaries. Dynamic rigid bodies are also included in our simulations using a two-way coupling. Certain features of the simulation that the LBM can not handle because of its heightfield nature, as breaking waves, are detected and automatically turned into splash particles. Here we use a ballistic particle system, but our hybrid method can handle more complex systems as SPH. Both the LBM and particle systems are implemented in CUDA, although dynamic rigid bodies are simulated in CPU. We show the effectiveness of our method with various examples which achieve real-time on consumer-level hardware.Peer ReviewedPostprint (author's final draft

    Procedural Cloudscapes

    Get PDF
    International audienceWe present a phenomenological approach for modeling and animating cloudscapes. We propose a compact procedural model for representing the different types of cloud over a range of altitudes. We define primitive-based field functions that allow the user to control and author the cloud cover over large distances easily. Our approach allows us to animate cloudscapes by morphing: instead of simulating the evolution of clouds using a physically-based simulation, we compute the movement of clouds using key-frame interpolation and tackle the morphing problem as an Optimal Transport problem. The trajectories of the cloud cover primitives are generated by solving an Anisotropic Shortest Path problem with a cost function that takes into account the elevation of the terrain and the parameters of the wind field

    Learning to Generate 3D Shapes from a Single Example

    Full text link
    Existing generative models for 3D shapes are typically trained on a large 3D dataset, often of a specific object category. In this paper, we investigate the deep generative model that learns from only a single reference 3D shape. Specifically, we present a multi-scale GAN-based model designed to capture the input shape's geometric features across a range of spatial scales. To avoid large memory and computational cost induced by operating on the 3D volume, we build our generator atop the tri-plane hybrid representation, which requires only 2D convolutions. We train our generative model on a voxel pyramid of the reference shape, without the need of any external supervision or manual annotation. Once trained, our model can generate diverse and high-quality 3D shapes possibly of different sizes and aspect ratios. The resulting shapes present variations across different scales, and at the same time retain the global structure of the reference shape. Through extensive evaluation, both qualitative and quantitative, we demonstrate that our model can generate 3D shapes of various types.Comment: SIGGRAPH Asia 2022; 19 pages (including 6 pages appendix), 17 figures. Project page: http://www.cs.columbia.edu/cg/SingleShapeGen

    Creation and Spatial Analysis of 3D City Modeling based on GIS Data

    Get PDF
    The 3D city model is one of the crucial topics that are still under analysis by many engineers and programmers because of the great advancements in data acquisition technologies and 3D computer graphics programming. It is one of the best visualization methods for representing reality. This paper presents different techniques for the creation and spatial analysis of 3D city modeling based on Geographical Information System (GIS) technology using free data sources. To achieve that goal, the Mansoura University campus, located in Mansoura city, Egypt, was chosen as a case study. The minimum data requirements to generate a 3D city model are the terrain, 2D spatial features such as buildings, landscape area and street networks. Moreover, building height is an important attribute in the 3D extrusion process. The main challenge during the creation process is the dearth of accurate free datasets, and the time-consuming editing. Therefore, different data sources are used in this study to evaluate their accuracy and find suitable applications which can use the generated 3D model. Meanwhile, an accurate data source obtained using the traditional survey methods is used for the validation purpose. First, the terrain was obtained from a digital elevation model (DEM) and compared with grid leveling measurements. Second, 2D data were obtained from: the manual digitization from (30 cm) high-resolution imagery, and deep learning structure algorithms to detect the 2D features automatically using an object instance segmentation model and compared the results with the total station survey observations. Different techniques are used to investigate and evaluate the accuracy of these data sources. The procedural modeling technique is applied to generate the 3D city model. TensorFlow & Keras frameworks (Python APIs) were used in this paper; moreover, global mapper, ArcGIS Pro, QGIS and CityEngine software were used. The precision metrics from the trained deep learning model were 0.78 for buildings, 0.62 for streets and 0.89 for landscape areas. Despite, the manual digitizing results are better than the results from deep learning, but the extracted features accuracy is accepted and can be used in the creation process in the cases not require a highly accurate 3D model. The flood impact scenario is simulated as an application of spatial analysis on the generated 3D city model. Doi: 10.28991/CEJ-2022-08-01-08 Full Text: PD
    corecore