432 research outputs found

    Adaptive Path Planning for Depth Constrained Bathymetric Mapping with an Autonomous Surface Vessel

    Full text link
    This paper describes the design, implementation and testing of a suite of algorithms to enable depth constrained autonomous bathymetric (underwater topography) mapping by an Autonomous Surface Vessel (ASV). Given a target depth and a bounding polygon, the ASV will find and follow the intersection of the bounding polygon and the depth contour as modeled online with a Gaussian Process (GP). This intersection, once mapped, will then be used as a boundary within which a path will be planned for coverage to build a map of the Bathymetry. Methods for sequential updates to GP's are described allowing online fitting, prediction and hyper-parameter optimisation on a small embedded PC. New algorithms are introduced for the partitioning of convex polygons to allow efficient path planning for coverage. These algorithms are tested both in simulation and in the field with a small twin hull differential thrust vessel built for the task.Comment: 21 pages, 9 Figures, 1 Table. Submitted to The Journal of Field Robotic

    Finite Element Modeling Of Tides And Currents Of The Pascagoula River

    Get PDF
    This thesis focuses on the simulation of astronomic tides of the Pascagoula River. The work is comprised of five steps: 1) Production of a digital elevation model describing the entire Pascagoula River system; 2) Development of an inlet-based, unstructured mesh for inbank flow to better understand the basis of the hydrodynamics within the Pascagoula riverine system. In order to assist in the mesh development, a toolbox was constructed to implement one-dimensional river cross sections into the two-dimensional model; 3) Implementation of a sensitivity analysis of the Pascagoula River two inlet system to examine the inlet effects on tidal propagation; 4) Improvement of the inlet-based model by performing a preliminary assessment of a spatially varied bottom friction; 5) Implementation of an advection analysis to reveal its influence on the flow velocity and water elevation within the domain. The hydrodynamic model employed for calculating tides is ADCIRC-2DDI (ADvanced CIRCulation Model for Shelves, Coasts and Estuaries, Two-Dimensional Depth Integrated). This finite element based model solves the shallow water equations in their full nonlinear form. Boundary conditions including water surface elevation at the off-shore boundary and tidal potential terms allow the full simulation of astronomic tides. The improved astronomic tide model showed strong agreement with the historical data at seven water level monitoring gauge stations. The main conclusions of this research are: 1) The western inlet of the Pascagoula River is more dominant than the eastern inlet; however, it is necessary to include both inlets in the model. 2) Although advection plays a significant role in velocity simulation, water elevations are insensitive to advection. 3) The astronomic model is sensitive to bottom friction (both global and spatial variations); therefore, a spatially varied bottom friction coefficient is suggested. As a result of this successful effort to produce an astronomic tide model of the Pascagoula River, a comprehensive storm surge model can be developed. With the addition of inundation areas the surge model can be expected to accurately predict storm tides generated by hurricanes along the Gulf Coast

    A High-resolution Storm Surge Model For The Pascagoula Region, Mississippi

    Get PDF
    The city of Pascagoula and its coastal areas along the United States Gulf Coast have experienced many catastrophic hurricanes and were devastated by high storm surges caused by Hurricane Katrina (August 23 to 30, 2005). The National Hurricane Center reported high water marks exceeding 6 meters near the port of Pascagoula with a near 10-meter high water mark recorded near the Hurricane Katrina landfall location in Waveland, MS. Although the Pascagoula River is located 105 km east of the landfall location of Hurricane Katrina, the area was devastated by storm surge-induced inundation because of its low elevation. Building on a preliminary finite element mesh for the Pascagoula River, the work presented herein is aimed at incorporating the marsh areas lying adjacent to the Lower Pascagoula and Escatawpa Rivers for the purpose of simulating the inland inundation which occurred during Hurricane Katrina. ADCIRC-2DDI (ADvanced CIRCulation Model for Shelves, Coasts and Estuaries, Two-Dimensional Depth Integrated) is employed as the hydrodynamic circulation code. The simulations performed in this study apply high-resolution winds and pressures over the 7-day period associated with Hurricane Katrina. The high resolution of the meteorological inputs to the problem coupled with the highly detailed description of the adjacent inundation areas will provide an appropriate modeling tool for studying storm surge dynamics within the Pascagoula River. All simulation results discussed herein are directed towards providing for a full accounting of the hydrodynamics within the Pascagoula River in support of ongoing flood/river forecasting efforts. In order to better understand the hydrodynamics within the Pascagoula River when driven by an extreme storm surge event, the following tasks were completed as a part of this study: 1) Develop an inlet-based floodplain DEM (Digital Elevation Model) for the Pascagoula River. The model employs topography up to the 1.5-meter contour extracted from the Southern Louisiana Gulf Coast Mesh (SL15 Mesh) developed by the Federal Emergency Management Agency (FEMA). 2) Incorporate the inlet-based floodplain model into the Western North Atlantic Tidal (WNAT) model domain, which consists of the Gulf of Mexico, the Caribbean Sea, and the entire portion of the North Atlantic Ocean found west of the 60 degree West meridian, in order to more fully account for the storm surge dynamics occurring within the Pascagoula River. This large-scale modeling approach will utilize high-resolution wind and pressure fields associated with Hurricane Katrina, so that storm surge hydrographs (elevation variance) at the open-ocean boundary locations associated with the localized domain can be adequately obtained. 3) Understand the importance of the various meteorological forcings that are attributable to the storm surge dynamics that are setup within the Pascagoula River. Different implementations of the two model domains (large-scale, including the WNAT model domain; localized, with its focus concentrated solely on the Pascagoula River) will involve the application of tides, storm surge hydrographs and meteorological forcing (winds and pressures) in isolation (i.e., as the single forcing mechanism) and collectively (i.e., together in combination). The following conclusions are drawn from the research presented in this thesis: 1) Incorporating the marsh areas into the preliminary in-bank mesh provides for significant improvement in the astronomic tide simulation; 2) the large-scale modeling approach (i.e., the localized floodplain mesh incorporated into the WNAT model domain) is shown to be most adequate towards simulating storm surge dynamics within the Pascagoula River. Further, we demonstrate the utility of the large-scale model domain towards providing storm surge hydrographs for the open-ocean boundary of the localized domain. Only when the localized domain is forced with the storm surge hydrograph (generated by the large-scale model domain) does it most adequately capture the full behavior of the storm surge. Finally, we discover that while the floodplain description up to the 1.5-m contour greatly improves the model response by allowing for the overtopping of the river banks, a true recreation of the water levels caused by Hurricane Katrina will require a floodplain description up to the 5-m contour

    Fachzeitschrift fĂŒr Hydrographie und Geoinformation

    Get PDF

    Remote Sensing Applications in Coastal Environment

    Get PDF
    Coastal regions are susceptible to rapid changes, as they constitute the boundary between the land and the sea. The resilience of a particular segment of coast depends on many factors, including climate change, sea-level changes, natural and technological hazards, extraction of natural resources, population growth, and tourism. Recent research highlights the strong capabilities for remote sensing applications to monitor, inventory, and analyze the coastal environment. This book contains 12 high-quality and innovative scientific papers that explore, evaluate, and implement the use of remote sensing sensors within both natural and built coastal environments

    Handbook on tsunami hazards and damage scenarios

    Get PDF
    The handbook is one of the products of the SCHEMA project (FP 6 Space priority) and has been conceived to illustrate the basic concepts and methods that have been elaborated and applied in the project to produce tsunami scenarios in view of providing tools to assess hazard and potential damage resulting from tsunamis. One of the main objectives was the elaboration of a general methodology that can be used in all possible cases and that can be adapted easily to the needs of the end users, i.e. chiefly the public administrators responsible for planning of the coastal zone development and protection strategies as well as people and organisations involved in disasters management and mitigation policies. It is for these reasons, that the SCHEMA methodology has been applied to five test sites (Rabat, Morocco; SetĂșbal, Portugal; Mandelieu, France; Catania, Italy; Balchik, Bulgaria) that differ very much from one another, so proving that it is suitable for a quite large variety of cases, and that it has been tested with the active involvement of the end users, so ensuring that it will provide practical and useful tools and it is flexible enough to cover local needs.JRC.DG.G.7-Traceability and vulnerability assessmen

    Benthic mapping of the Bluefields Bay fish sanctuary, Jamaica

    Get PDF
    Small island states, such as those in the Caribbean, are dependent on the nearshore marine ecosystem complex and its resources; the goods and services provided by seagrass and coral reef for example, are particularly indispensable to the tourism and fishing industries. In recognition of their valuable contributions and in an effort to promote sustainable use of marine resources, some nearshore areas have been designated as fish sanctuaries, as well as marine parks and protected areas. In order to effectively manage these coastal zones, a spatial basis is vital to understanding the ecological dynamics and ultimately inform management practices. However, the current extent of habitats within designated sanctuaries across Jamaica are currently unknown and owing to this, the Government of Jamaica is desirous of mapping the benthic features in these areas. Given the several habitat mapping methodologies that exist, it was deemed necessary to test the practicality of applying two remote sensing methods - optical and acoustic - at a pilot site in western Jamaica, the Bluefields Bay fish sanctuary. The optical remote sensing method involved a pixel-based supervised classification of two available multispectral images (WorldView-2 and GeoEye-1), whilst the acoustic method comprised a sonar survey using a BioSonics DT-X Portable Echosounder and subsequent indicator kriging interpolation in order to create continuous benthic surfaces. Image classification resulted in the mapping of three benthic classes, namely submerged vegetation, bare substrate and coral reef, with an overall map accuracy of 89.9% for WorldView-2 and 86.8% for GeoEye-1 imagery. These accuracies surpassed those of the acoustic classification method, which attained 76.6% accuracy for vegetation presence, and 53.5% for bottom substrate (silt, sand and coral reef/ hard bottom). Both approaches confirmed that the Bluefields Bay is dominated by submerged aquatic vegetation, with contrastingly smaller areas of bare sediment and coral reef patches. Additionally, the sonar revealed that silty substrate exists along the shoreline, whilst sand is found further offshore. Ultimately, the methods employed in this study were compared and although it was found that satellite image classification was perhaps the most cost-effective and well-suited for Jamaica given current available equipment and expertise, it is acknowledged that acoustic technology offers greater thematic detail required by a number of stakeholders and is capable of operating in turbid waters and cloud covered environments ill-suited for image classification. On the contrary, a major consideration for the acoustic classification process is the interpolation of processed data; this step gives rise to a number of potential limitations, such as those associated with the choice of interpolation algorithm, available software and expertise. The choice in mapping approach, as well as the survey design and processing steps is not an easy task; however the results of this study highlight the various benefits and shortcomings of implementing optical and acoustic classification approaches in Jamaica.Persons automatically associate tropical waters with spectacular views of coral reefs and colourful fish; however many are perhaps not aware that these coral reefs, as well as other living organisms inhabiting the seabed are in fact extremely valuable to our existence. Healthy coral reefs and seagrass assist in maintaining the sand on our beaches and fish populations and are thereby crucial to the tourism and fishing industries in the Caribbean. For this reason, a number of areas are protected by law and have been designated fish sanctuaries or marine protected areas. In order to understand the functioning of theses areas and effectively inform management strategy, the configuration of what exists on the seafloor is crucial. In the same vein that a motorist needs a road map to navigate unknown areas, coastal stakeholders require maps of the seafloor in order to understand what is happening beneath the water’s surface. The location of seafloor habitats within fish sanctuaries in Jamaica are currently unknown and the Government is interested in mapping them. However a myriad of methods exist that could be employed to achieve this goal. Remote sensing is a broad grouping of methods that involve collecting information about an object without being in direct physical contact with it. Many researchers have successfully mapped marine areas using these techniques and it was believed crucial to test the practicality of two such methods, specifically optical and acoustic remote sensing. The main question to be answered from this study was therefore: Which mapping approach is better for benthic habitat mapping in Jamaica and possibly the wider Caribbean? Optical remote sensing relates to the interaction of energy with the Earth’s surface. A digital photograph is taken from a satellite and subsequently interpreted. Acoustic/ sonar technology involves the recording of waveforms reflected from the seabed. Both methods were employed at a pilot site, the Bluefields Bay fish sanctuary, situated in western Jamaica. The optical remote sensing method involved the classification of two satellite images (named WorldView-2 and GeoEye-1) and this process was informed using known positions of seafloor features, this being known as supervised image classification. With regard to the acoustic method, a field survey utilising sonar equipment (BioSonics DT-X Portable Echosounder) was undertaken in order to collect the necessary sonar data. The processed field data was modelled in order to convert lines of field point data to one continuous map of the sanctuary, a process known as interpolation. The accuracy of each method was then tested using field knowledge of what exists in the sanctuary. The map resulting from the image classification revealed three seafloor types, namely submerged vegetation, coral reef and bare seafloor. The overall map accuracy was 89.9% for the WorldView-2 image and 86.8% for GeoEye-1 imagery. These accuracies surpassed those attained from the acoustic classification method (76.6% for vegetation presence and 53.5% for bottom type - silt, sand and coral reef/ hard bottom). Similar to previous studies undertaken, it was shown that the seabed of Bluefields Bay is primarily inhabited by submerged aquatic vegetation (including seagrass and algae), with contrastingly smaller areas of bare sediment and coral reef. Ultimately, the methods employed in this study were compared and the pros and cons of each were weighed in order to deem one method more suitable in Jamaica. Often, the presence of cloud and suspended matter in the water block the view of the seafloor making image classification difficult. On the contrary, acoustic surveys are capable of operating throughout cloudy conditions and attaining more detailed information of the ocean floor, otherwise not possible with optical remote sensing. A major step in the acoustic classification process however, was the interpolation of processed data, which may introduce additional limitations if careful consideration is not given to the intricacies of the process. Lastly, the acoustic survey certainly required greater financial resources than satellite image classification. In answer to the main question of this study, the most cost effective and feasible mapping method for Jamaica is satellite image classification (based on the results attained). It must be stressed however that the effective implementation of any method will depend on a number of factors, such as available software, equipment, expertise and user needs, that must be weighed in order to select the most feasible mapping method for a particular site

    Numerical Simulation of Cold Front-Related Hydrodynamics of Wax Lake Delta

    Get PDF
    This study applies a three-dimensional numerical model ECOM-si to simulate the circulation in the Wax Lake delta under winter cold front conditions. This model uses real topography and bathymetry of the area to reproduce tides and the circulation between December 2012 and January 2013, which captures a total of seven cold front passages. The model results demonstrate that the circulation in the Wax Lake delta area is significantly affected by the winter cold fronts. The major findings are: (1) Water fluxes in the delta distributary network are not solely propagated within the channels but also between the channels, indicating inundation process by water intrusion onto the saltmarshes, which accounts for ~25% of water flux. (2). The current flows follow the wind direction change. Along-channel current dominates while cross-channel water transport occurs at the southwester lobe during post-frontal passage. The long-term impact on sediment transport will be the lobe shift to southeastward and thus lead to a significant change in geomorphology in the delta. Water intrusion and a temporary reverse flow are observed from model results in the delta channel tip during prefrontal passage. (3) The cold-front-induced flushing event lasts 41-185 hours that flushed out 32% to 76% of total waters by seven cold front events. (4). Subtidal energy accounts for over 45% of total energy while tidal energy contributes to less than 25%. (5) Cold front-induced wind is the most important factor and dominates the hydrodynamic circulations of the Wax Lake delta in winter
    • 

    corecore